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ABSTRACT

In this dissertation the author investigates the
behaviour of reinforced -and prestressed concrete waffle
slabs from initial to collapse load. The theoreticAl
treatment covering the whole range of load, is divided
into three parts: elastic'analysis, ultimate analysis,
and progressive failure analifis. The elastic analysis
part is based on a Fourier series solution for simply
supperted slabs and this is gxtended to continuous waffle
slab structures. The ultimate limit state analysis is
obéained by adopting the vield line theory as an upper
bound solution. - The progressive faillure analﬁsis is
tackled by the finite element method as a numerical
technique; beyond the initiation of the first crack at
sections of maximum stres;es, an iterative incremental
procedure is adopted to take into account the reduction
of rigidities wit&f&he corresponding increment of load-
ing, thus converéinq the non-linear p;oblem into a series
of incrementally linear problems in the,elasti;-plastic
range. ’

Comparison of results is made between skew and
rectangqular waffle slabs as well as between contlnuous

slabs on isolated supports and on continuous line-

supports. A study of the effect of rotating the isolated

/‘{‘
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column support line about the center of the bridge on
the structural response is undertaken.

The theoretical analvses are substanéfated and

verified by experimental results obtained{from tests

on seven models of reinforced and prestressed concrete
waffle slab bridges. The deflections and stréins
obtained-fram the tests are found to be in good agreement
with the theoretical solutions.

From this study it is concluded that the vield-line
analysis is simple and reliable in predictiﬁg the

ultimate load of .waffle slab structures. Furthermore,

prestressed concrete waffle slab construction is well

suited for use in large span structures: Also, in
predicting the collapse load of waffle slab structures,
it is found that the procressive failure analysis of

such structures gives results which are in close agree-

ment with those obtained from the tests as well as from
N :

the vield-line analysis.

U
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NOMENCLATURE

[a] = ,in-plane rigidity matrix of waffle slgé;ff\ﬁJ

As (A;) = area of prestressing steel in longitudinal
(transverse) rib;
2a = skew width of waffle slab;
|
\i? = skew length of waffle slab:
bx(by} = width of transverse (longitudinal) rib;
Cln""'g
Clﬁn,Cl7,) = arbitrarv constants:
...,C24 )
c = cos @;
" Cij = elastic compliances;.
Di = flexibility of column 1i;
D_,D = flexural rigidity of waffle slab per
¥ unit length and per unit width,
respectively;
va’Dvx = transverse and longitudinal shear -
= S rigidities, respectively:;
D1 D2 = coupliﬁé rigidities arising from Poisson
! ratio effect;
d = total depth of section;
E(G) = elastic ?(shear) modulus of concrete;
EI = flexural rigidity of edge beam:
fé .= ultimate strength of concrete at 28 dayqi’
fe = effective stress in prestressing tendon;
fsu = stress in prestressing tendon at
ultimate load;
fv = vield stress of steel:
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CHAPTER I
INTRODUCTION

1.1 General

In recent vears reinforced concrete waffle slab
constructions have been employed successfully in many
buildings and other structures, resulting in reduced
dead weight. The use of prestressed concrete waffle
slabs for rectangular and skew decks of short and medium
span bridges, as well as for marine structures, can also
lead to substantial economies. Waffle slab structures
possess not only aesthe{ic beautyv but alsoiexgellent
structural characteristics. Some of the most notable
examples are: Houston's International Airport terminals
(1) and Montreal's Olympic stadium. Comparative costing
with other structural systems has demonstrated_that
waffle construction, among its other advantages, is
economical. Recently, a feasibility study was under-
taken to examine the suitability and the resulting
economy‘thereof of adopting waffle slab construction
for short and medium span bridges (2). The study showed
that waffle construction is a more economical alternative

to solid slab as well as to one-way girder and slab con-
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struction for relatively widé bridges with skewed or *ir-
regularly shaped'glanform supporteé by randomly spaced
isolated columns. A similar conclusion could be drawn,
when a écmpariSOn i$ made between waffle and voided slab
constructions.
h The use of prestressed concrete waffle construction in
deck bridges and marine structures can have the following
advantages:
1. Reduction in dead load
2. Better livq load distribution
3. Imprbved deck durability and considerable reduc-
tion in the cost of E?intenance
4. Reduction in th;‘dead load moment, thus minimizing
the amount of secondary stresses produced by sus-
tained loads -
In modern design, with the increase in heavy vehicular
loading on highway bridges, the load carrying elements /5T
a structure are, in general, used to the limit of th jji\\\\\
capacity. This has given a stimulus to the styd¢ of cracks
in waffle sl;b structures, which reguires that the design
be based on an inelastic analysis. |
Available analyvtical methods of analysis are in con-
formance with the small-deflection theory of orthotropic
plates. However, in order to ascertain their inherent

s
overload-carrying capacity affected by changes in the

{
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rigidities, redistribution of stresses and cracking of the
, concrete, a progressive failure analysis is required. Thus,
a precise evaluat;on of the ultimate strength of waffle
slabs will invariably enable the designer to achieve more
improvements in design efficiency. It is now generally
‘accepted that the\qugrgtanding of any structure is incom-

plete unless its structural response beyond the elastic

range 1s investigated.

1.2 Object and Scope

The ‘overall objectives of this investigation are:
predict the structural response of waffle slab structures
in the inelastic range; to assess the effects of overload-
ing, and to compute  their ultimate load-carrving capacitg.
This study is concerned %ith the analytical and experimen-
tal inveétigations of Teinforced and prestressed ‘concrete
waffle slab bridges, considering material nonlinearity due
to concrete cracking. Simply supported and continuous
slab models of rectangular and skew planforms are studied
under lateral uniform and concentratedqloads.

The main work embodied in this ‘dissertation comprises:

1) Aﬁ extension of the elastic series solution by

Fourier sefies of simply supported slabs to waffle’
slab bridges continuous over interior isolated

collmn-supports.
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2) A ver;ficaﬁion of the elastic series solution,
and the finite element method by experimental A
investigation on seven waffle slab bridge models.

3) . A prediction of the ultimate load capacity of

waffle slab bridges based on the upper bo&nd
yield-line theory.

4) pPrediction of the c¢racking and ultimate load as

f\\\~well as the crack pattern of waffie slab models
by means of a progressive failure analysis using
the finite element method.

The experimental investigation consisted of testing
of seven one-eighth scale models of waffle bridge slabs.
The firStTthreg models were reinforced concrete and simply
supported on two edges; the second group were two post-
tensioned concrete waffle slabs with straight tendons in
two perpéndicular directions. The last group were two
continuous prestressed waffle slabs with curved tendons
in the main direction and straight tendons in the trans-
verse direction, supported over two interior isolated
columns.

The contents of this study are arranged as follows:

Chapter IT provides'a background and review of éome
of the available literature in analyzing reinforced and
preétressed concrete slab bridges subjected to working

and ultimate load conditions.
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Chapter III, presents two gethods for the elastic
analysis; the first method is based on the elastic series
solution for simply supported slab bridges, and its exten-
sion for continuous slab bridges. The second methed is
based on the finite élement method.

Chapter IV, deals with the ultimate analysis using
the yield-line theory.’

Chapter V, introduces the finite element approach
coupled with an iterative technique for a progressive
failure analysis. &

Chapter VI, presents the experimental study and test
précedures on seven slab bridge models. |

Chapter VII, deals with the discussion of.the theo-

retical and experimental results; and

Chapter VIII, presents the summary and conclusions.



CHAPTER II
BACKGROUND AND REVIEW OF LITERATURE L\

2.1 General

Load tests and analysis have been carried out on
reinforced and orestressed concrete waffle slab decks
for different reasons. An acceptance test, oOr proof
loading of a new structure, has be¢n the most common;
while in some instances a structure, or part of a struc-
ﬁure, has been loaded strictly for research purposes.

In cases of proof loading of a structure, only the’ load
and the deflections are measured. Test loadings were
widely specified in the early part of the twentieth
centurv for slab construction, because at that time there
was no rational method for designing slabs.

This chapter presents the background for the present
investigation which is divided mainly into three distincf
analyses. One analysis 1is concerned with the working load
behaviour, and the second with behaviour at failure (yield-
line theory); the third analysis is the eléstic—plastic
solution (progressive failure analyvsis) which seeks to
£511 the gap between the first two analyses. Some of the

problems and limitations associated with each analysis are



also described.

2.2 Elastic Analysis {(Working Load]

Two methods are described herein; the first is con-
cerned with an elastic series solution using the classical
method of analysis and the second method uses the finite

element analysis as a numerical approach.

2.2.]1 Elastic Series Solution

2.2.1.1 Reinforced Concrete Slabs

Considerable attention has been given recently to de-
velop methgds of designing more economical concrete decks
for bridges,. buildings and marine structures. Concrete
waffle slab structures have become quite popular in
buildings (3), and deck bridges (4, S}. A recent study by
Rennedy and Ghobrial (2) on waffle slab constructions,
showed that waffle slab bridges, supported by isolated
interior columns, are more economical, in terms of the
required amount of steel reinforcement, tham either the
one-way ribbed or solid slab bridges. It was also con-
cluded that the waffle slab system possesses other ad-
vantages such as: Reduction in dead.load mome and
deflection leading to minimizing the amount of secoﬁdéry
stresses, easy accessibility to parts of the structure
for inspection and repair; and, the shallow depth of its

cross—section.



Various methods of estimating the load distribution
in concrete bridge decks have been proposed to date. In
all these methéds values of the effective flexural and
torsional rigidities of the deck system are required be-
fore the a2nalysis can proceed. Analysis and solution of
many problemns involving'plates,of different shapes have
been propoéed by Timoshenko (6}, Szilard (7, 8) and
Lekhnitskii (9).

In 1956, Huffington (10) investigated the métﬁod for
the determinatibn of rigidities for métalic rib-reinforced
deck structures. It was applied to the case of equally
spaced stifféners, of rectangular cross-section, and sym-
metrically placed with respect to its middle pléne.

Jackson (11} pr0poséd a method to estimate the torsional
rigidities of concrete bridge decks using the membrane
analogy and the estimation of the jﬁnction effect; however,
the effect of continuity of the slab was not accounted for.
Recently, a study was conducted by Kennedy and Bali (12) to
determine the precracking and postecracking rigidities of
reinforced concrete slab structures of the waffle type.

Perry and Heins (13) presented a preliﬁinary design
for transtverse floor beams‘in orthotropic deck bridges.

The applied loads were represented in the fgrm of a
Fourier series. The method is not very accurate sinqe it
neglected the effects of the coupling rigidities that

- .

-
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arise from the Poisson's ratio. Cardens et al. (14, 15)
investigated the infplané and flexural stiffnesses of
isotropically andtnonisotropically reinforced concrete
plates. While Bares and Massonnet (16} and Row (17)
analyzed mathematically the grid systems with particular
regard to the bridge type.

Methods of anaiyzing rectangular and skew deck plates
with simple boundary conditions have been investigated by
Kennedy et al. (18, 19, 20, 21, 22) and by.él—Sebakhy
(23). They solved the problem of a skew plate structure
under uniform and concentrated loads using a series solu-
tion; both steel stiffened plates and concrete waffle

‘Zlabs were .included in the analysis; the results were
verified with experiments.' They observed that critical
‘stresses often occur in the obtuse corners of such skew

plate structures.

2.2.1.2 Prestressed Concrete Slabs

In the past, bridge design engineers have shied away
from using prestressed waffle-slab construétion simply
Qecéuse they considered it incompatible to the predomi-
nantly one-way supporting system of a bridge. In the
late 1950's several prestressed slab research projects
were undertaken. Scordelis et al., 1960 (24, 25), studied

the ultimate strength of continuous prestressed glabs and
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proposed several design reccommendations. They investigated
the load distribution between tﬁe columns and the middle
strips. They concluded that the elastic' plate tﬂeory may
be used satisfactorily to predict the behaviocur of pre-
_stressed concrete slaﬁs loaded within the elastic limit and
furthermore, that prestressed slabs can sustain a large
increase in load before widespread cracking takes place.

Hondros and Smith (26) carried out a theoretical and
experimental investigation 0f a post-tensioned diagrid flat
plate simply supported on four sides; they used the Link
Force Method of analysis which ignores the influence of
torsion on"the plate. Muspratt (27) investigated the
load-carrying capacity of a prestressed waffle slab with
unbonded tendons, and‘concluded that'torsional stresses in
the diagonals demand careful investigation.

Possibly the largest stride in the design of pre-
stressed slabs was taken by Lin et al. (28, 29) who were
the firsﬁ to use post-tensioned waffle construction in a
_5ridge: they used large precast concrete pans to form a
;:waffle layout fo; the bridge deck; the dead load on the

bridge was practically balanced by prestressing.

2.2.2 Finite Element Method (Working Load)

A variety of methods for the solution of plate problem

have been used, but the most flexible one appears to be the
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finite element method. It has been applied to a vast .
specﬁrum of engineefing problems, including not only linear
elastic problems, but also those with geometric and material

~

nonlinearities as well as plates with irregular planfornms.

A léfge:number of-publications, most of which have
appeared since 1960, discuss the finite element.method,
particularly its application to structural mechanics
[see Desai (30), and Zienkiewicz (31}].

More sophisticated finite element programs have been
@eveloped recently for solving plate problems. The most
general of these is the STRAND (STRuctural ANalysis and
Design) deveioped by University College, Swansea, Wa;es,
U.K., and is maintained by the Highway Engineering Computer
Branch, U.K. (32, 33). The program possesses only elastic
analysis capability; for example, it cannot predict the
ultimate load-carrying capacity as well as the cracking
load of the structuré. As part of this research the program

was revised to accommodate a progressive failure analysis

up to the ultimate load capacity of the structure.

2.3 Ultimate Load Analysis (Yield-Line Theorv)

.
1

The vield-line theory was first initiated by ingerslev
(34) and substantially pioneered by Johansen (35).‘ In 1953
Hognestad (36) summarized the development of the theory:

anocmalies in the theory were apparent and extensive research
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continued resulting in the publications, by Wood (37},
: .G :
Jones (38), and Jones and Wood (39).
The yield-line theory is a limit design method which

gives an upper-bound solution; therefore it is essential

—

to ensure that t critical qéllaps@ymechanig;\ﬁﬁs

: - -
been selected 1If the.locad-carrying capacitihof the slab
is not to be over-estimated. The method is not specifi-
cally recognized by the American Concrete Institute Code
(40) . However, the theory can be applied to almost any
shape of slab, load and edge conditions as well as to slabs
with irregular column spacing (41, 42), and slabs with edge
beams (43).

The yield lines in cancrete slab structures are formed
by many cracks in the concrete surface. These cracks are
among the most important consideration in the design of
reinforced and prestressed concrete structures. Cracks

~of excessive width may be a source of'danger dﬁe to tﬁe
possibility of corrosive attack on the reinforcement es-—
pecially if it is used in marine structures. In 1962-63
‘\JfTE;) a survey was carried out by researchers a£ the
University of Illinois on crack formation in concrete
structures. Clark (45, 46) designed slab bridges using
the factored elastic moment field, and vield-line theory;

from his study he concluded that, if a slab bridge is de-

signed against collapse in accordance with the Draft British

N
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Code of Practice (47] for Bridges then the crack widths
can, in general, be-controlled to values below the
maximum p:;missible by limiting the spgting ofi the longi-
tudinal reiﬁfércement; When a high peicentage of tensile
reinforcement is used in slab bridges, further studies are
needed to.make a judicious choice of reinforcing bar
spacing. Based on model studies, Clark concluded that the
best qualitative similitﬁde of the overail crack pattekn
1s obtained when threadgd rod reinforcements-are used.

In 1962, Kefip (48) developed a lower bound selution
to the collapse of a simply supported pectangular slab,
orthotropically reinforcement and caféj:ég a-uniformly .
distriﬁuted load. The twisting moments were modified to
produce positive vield moments at the corners. The solu-
tion was compared with the upper bound solution derived
from the yleld—line theory; it was 'found that the lower

bourd collapse loads were close to the upper bound values.

In 1964 Holmes_, {(49), extended the work of Xemp and
[~
Wood by developing a Iower-bound solution to the collapse

of a uniformly loaded isotropically-reinforced rectangular

slab, witd two opposite sides continuous and the other

. sides, simply supported. The solution was compared wi%h

the upper bound values, showing good agreement. A lower
bound solq@ipn for a simply supporteé square slab was

developed by Parkhill (50), based on the assumption of
[ \'—

SN
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an elastic-plastic beha?idﬁr of the ;lab material. It
was shown that the elastic moments within the segnents

of a chosen yield-line pattern were everywhere statically
admissible. - T

| Wood (51) discussed the orientation of .reinforcement
in slabs as well as the quantity based on the predetermined
field of moments. He found that using‘Hillerbofg's rules
for calculation of the reinforcement required for a slab
may result in less steel than that required by the yield
line theory.

Clark .(52, 53, 54) extended the work of Wood and
tested twelve uniformly loaded skew slabs and three skew
highway bridges loaded with the Ministry of Transport
Standard and Abnorme& loadings (U.X.). He conclgdéd'that con-
siderable economies in the total amount of steel required
in a slab can be obtained by using an or;?ogonal arrange-
ment of reinforcement. He also suggested thaty if yield-
line theory is to be incorporated into the limit state
design of such bridges, the longitudinal steel should be
designed to satisfy the limit state design of service-
ability under both standard and abnormal\}Pading; and, the
transverse steel should then be designed by the yield-line
theory for factored abnormal loading; "see reference (55).

Some developments in yield-ljne theorv were carried

ocut in 1965 to determiﬁe the collapse mechanism for re-

e
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1nforced concrete slabs. Kemp C561 evaluated the nodal

and edge forces for reinforced concrete slab by the yield-
line theory. The forces were calculated by a differentia-
tion process using a procédure similar to that employed

in the virtual work method. Morley (57) obtained a suf-
ficient condition for the least upper bound on the collapse
load by considering upper-bound moment distributions for
isotrqpic, homogenecus plates with eccenfric square yield
criterion and postuldted straight:line vield mechanisms;
this condition allowed a demonstration of the basis and
1imits of applicability of Johansén's equilibrium method.
Morley concluded that the equilibrium method is not essen-—
tially confined to plates with the eccentric squére criterion.
Nielsen (58) presented a new nodal-force theory for isotro-
pically reinforced slabs. He showed that agreemént between
the-energy method, and the eguilibrium method is possible
in cases where 2 statically admissible moment field can be
found in each pért of thé slab thch satisfied the afore-
mentioned condition. A comprehensive study on new tech-
nigques in nodal-force theory for slabs was<presented by
Wwood (59), and a new set of rules for design was drawn ub.
Jones (60) discussed the work of Xemp, Morley, Nielgén and
Wood to use the nodal forces in vield-line analysis with
more emphasis on the differences of opinion between the

four authors. He concluded *that these differences were
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mainly due o the discontinuity of load, discontinuous
boundaries and discontinuous stress fields. Xwiecinski
(61, 62) proposed a new yield criterion fpr reinforced
concrete slabs based on partial kinking of the reinforc;4
ment. The yield c%iterion was verified by experimental
work on sixteen model slabs with various arrangements of
reinforﬁement. He neglected the.effect of twisting moment
along the yield lines, and concluded that the adopted de-
sign ocedure could lead to economies in the amount of
reinforcement required in some slabs. Such economies
woul v be significant only in thin slabs, i.e.,
slabs with high span/depth ratios (recommended limit of
35). Taylor (63) studied the effect of the arrangement
of reinforcement on the behaviour of reinf;rced conérete
slabs by testing ten two-way simply supported concrete
slabs. The slabs were designed to have similar ultimate
loads, but diffédrent arrangeﬁents of the reinforcement
were adopted. He concluded that, in slabs designed by
normal plastic theories, the use of variably spaced bars
would lead only %o minimal economy, if any, compared with
uniformly spaced bars; and, variébly reinforced slabs
were slightly stiffer than uniformly reinforced slabs
oer the load range up to the ultimate léad. The in-

fluence of strength of edge beams on the formation of

vield lines was also studied at the University of Illinois.
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(64). Groués of tests were carried out on multiplé panels
of two-way slabs; a positive moment yield line developed
near the mid-span in the exterior panels parallel to the
outside edges 'and the failure extended across the interior
and spandrel beams that formed perpendicular to the out-
side edge. However, it should be pointea out that, although
the calculated failure load for this mode of failure closely
matched the actual failure load, the structure did not fail
‘in the mode the yield-line method had predicted. Failure

of the individual slabs was indicated by theory at a load.
some 25% léwer than the actual load.

In 1971, a set of tests were carried aut on reinforced
concrete slabs by Jain (65), at the University of Windsor
to confirm the elastic-plastic solution, using the finite
difference approximations. The elastic-plastic solution
was applied to rectangular and skew concrete slabs. Prob-
lems of skew in bridge design were clarified by Kennedy and
Tamberg (66) and the need -for further research on the ul-.
timate strength was reguired. |

In 1976, Hughes (67), followed by Ferguson (68),
presented the limit state theory for reinforced concrete
design and resolved some of the earlier inconsistencies in
the equilibrium methods due to the neglected membrane and

corner effects.

Although an appreciable amount of work has been done
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én the analysis of flat slabs, very little work is avail-
abie on waffle slab construction using the vield line
theory aé a design‘method. While this approach theoreti-
cally would lead to an upper bound solution to the collapse
load (35) it is shown later that the results obtained are

quite close to the test results from seven bridge models.

2.4 Progressive Failure Analysis

Scanning through the aforementioned literature on the
vield~line theory, it was concluded that sogg’important
aspects of the behaviour of waffle slab structures; such
as deflections gnd the distribution of moments were lefF
undefined, and therefore needea further exploration. The
advent of the finite elemént_method nct onlv has made Eﬁékrk\
linear gnalysis of such structures of general form under
arbitrary loading and boundary cSnditions a relatively
straightforward matter, but also it has inspired many
successful attempts’to deal with various material and -
geometrical nonlinear problems. .

Successful application of the finite element method
has been made to non-lineﬁr analyses of plates in flexure
e.g., the works of Marcal et al. (69), Armen et al. (70),
and Whang (71). However, these analyvses were peculiar %o

metallic plates and specifically to metals that satisfy

the Von-Mises criterion.
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The earliest work on the non-linear behaviour of a
concrete slab was carried out by Bhaumik and Hanley (72)‘
wﬁo solved the plate equilibriﬁm and moment-—curvature
relationships by converting them into finite difference
form; the applications of Johansen's, Tresca's and Von-
Mises yield criteria were examined. Later, McNeice and
Kemp (73) developed an interesting technigue for the
analysis of Teiﬁforéed concrete slabs, using a finite
element approach together with the assumption of an
elastic-perfectly-plastic behaviour of the concrete and
using a square vield criterion. Jofriet et al. (74) used
a step-by-step procedure, incorporating the change in
rigidity of each region; cracked of uncracked, under in-
creasing load. Bell et al. (75) described a theoretical
model based on the use of anisotropic finite elements, and
a successive approximation technique.

Przemieniecki and Desai (76, 33) presented a compre--
hensivé study on non-linear material and:geometrically
noniinear.. problems using the finite element technigue.
The guestion of nonlinearities arising from material
properties was discussed and metho&é were developea to
ailow for the standard linear forms to be used in an

iterative way to obtain seolutions.
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CHAPTER III

ELASTIC BEHAVIOUR OF CONCRETE WAFFLE

SLAB STRUCTURES

3.1 Introduction

Té meet the design requirement for the ultimate limit
stateg of concrete waffle slab structures, their response
to load intensity causing eventual collapse should be
examined and predicted. It is necessary to studv first
the behaviour of a structure at workipg locad and before
crécking of the concrete (serviceabilitv limit states).
This problem, applied to simply supported bridges, was
investigat;d by the author earlier (23), however, for
continuity to the present worg the method of analysis used

in reference (23) is presented briefly herein.

3.2 Elastic Series Solution for Simply Supported Slabs

An analytical soluticn to post-tenéioned waffle slab
bridges is obtained by superimposing a bending analysis to
an in=-plane stress analyﬁgs, assuming nc coupling; experi-
ence haé shown that such an uncoupled analvsis is quite
valid when the deflection of a structure is relatively

small.

20
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3.2.1 Bending Analysis

The following assumptions are made with resﬁect to
Qaffle-slab construction:

1. The number Qf ribs is large enough for the real
structure to be replaced by an idealized one with
continuous properties, Fig. 3.1.

2. The neutral plane in each of the two orthogonal
directions coincides with the center of gravity
of the total section in the correspondiné direc-
tion, Fig. 3.2.

3. The area of the flange plate is magnified by the
factor 1/(l~u2) to allow for theninfluence of
Poisson's fatio (u) .

Past experiences have shown that the foregoing assump-
tions are valid in praétice. The differential eguation
governing the lateral deflection, w, of a bent orthotropic
slab (6) can be expressed in skew coordinates (u, V),

Fig. 3.3, as

x7 ,uuuy EtW suuv EZW,UUVV - E3w,uvvv * BV vy
. .
= ¢ gqfu,v) (3.1)
in which

Dx = flexural rigidities of the slab per unit width

in the x direction.
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D = flexural rigidities of the slab per unit width

'

in the y direction

El = 4 sDx

t
]

"2 (30.s% + HCY)
b4
- 2 2
Eq —.4s(st + He™) |

, =D.s*+ 2 gs?c? + p c*
x Y

1
"

¢ =cosB s = sin 9, © = skew angle
u = x sec ©
v =y - x tan @ ?
2 = Doy +_Dyx + D, + D,
where
ny, Dyx are the transverse and longitudinal torsional

rigidities per unit width, respectively, D, and D, are the

coupling rigidities arising from the Poisson ratio effect.

“

g(u,v) is the intensity of lateral load.

The solution to Eg. 3.1 can be expressed in the form

(21} :

W= _ZI [Clnch k,8,u + C, sh klsnu) cos (k,u +v )8

[}
+ (C3nch klsnu + C4nsh klsnu) sin (kzu +V')Bn + (CSnCh klsnu

+ CGnSh klsnu) cos (k3u - v)Sn + (C7nch klsnu + CBnSh klsnu)

1

-

sin (kyu - v)8 + (Cg ch kykqa v + Cyq.sh k,kja V)

cos (k4k2V + u)an + (Cllnch k4klanv
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+ Cy,opSh k4klaﬁv)51n(k4kéy+ ule  * (C, 3pch ksklanY
+ Cl4nsh ksklanv)cos (k5k3v - u)an + (ClSnch ksklanv

+ C nsh k. .k anV)Sln(k5k3V - u)an]

16 571
u v u, 2
+ Ci7 ¥ Cg (R + Cyg (F) *+ Gy F
4 4
k.u =V
v, 2 u, 3 v, 3 6
+ Chy BT+ Cyy (17 + Cuz (HI7 + Cyy (ﬂ_b )
zj'- v2b2 . 5b4
+ c4a 24 ! 24 + E (T, cosa_u
0 4E n=l Im m
4
+ TZmSLnamu)
L~ -] [=-] o
; ¥y v
* ngl (TBnCOSBnV * T4nSlanv) + m=l n=1 (TSmn

a cosB V
cos ¢ u cosB

+ T sinctucos 8V + T_ cos & u sin B_V
gmn m n Tmn m n

+ T8mn sin e u sin BnV) (3.2)
) . _ / ' /2. . _ /
in which kl =c[( Dny + H)/2Dx] : k2 = ¢c[( Dny

- m/201Y% 4 s ky = el /DD - B/ - s

3 ¥
k, = l/fk2 + kz)- ke = 1/(k2 + kz)- k_ =E,/D ; ch = cosh;
4 Sl A 1 37" 6 4’ "x’ !
sh = sinh; OLn = n7/a; 8n = nm/b; Cln, ey C16n, Cl?: -
>
C24 = arbitrary constants; and ag s Tlm, L T3n, L
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Temn'= constants determined from the particular integral of

the governing differential eqguation (21). The solution

given by Eq. 3.2 is applicable to torsionally soft and

2 s
<
= Dny' The

constants Cln, e, Clsn, Cl7'._.’ C24 are found by satis-

flexurally stiff slab classification, i.e., H

fving the boundary conditions.

3.2.1.1 Boundary Conditions

For a simply supported post-tensioned waffle.slab

bridge, Fig. 1, the following boundary conditions must be

satisfied:

Simply supported edges, v= b and -a < u ga

w=20 - (3.3)

and Moo= My . (3.4)

Elastically supported edges, u = :*a and -b ¢ V < b
= - ~= =E .

’ v Qx /f;yfy Iw’ (3.5)

and'Mx,Efeﬂﬁfxyy + M, (3.6)

For a free edge, Egs. (3.5) and (3.6) beccme

v, = 0 E. (3.7)

M M, _f (3.8)
in whichM_ and Moy = bending and twisting moments of the

x0y coordinate system; V. = Kirchhoff edge reaction; Q. ="

. -
shearing force of the xOy coordinate system; EI and GJ =

flexural and torsional rigidities of the elastic support,

respectively; M; = the.moment along the normal n to the
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edges v = *b; and Ml and M2 = the external moments due tb
prestressing forces normal to the edges v = *b and u = za,
respectively. The constants in Eg. 3.2 are found by
satisfying the boundary conditions (Egs. 3.3-3.6). Advan-
tage 1s taken of guadrant symmetry by dividing any locading
into pblar symmetric and antisymmetric components. For a
§ypmetric loading statg, all odd terms in Eg. 3.2 vanish,
&éile for the antisymmetric loading state, all even terms
vanish. The number of constants in Eqg. 3.2 is thus duced
from 24 to 12 for either of the two loading cases. >r N
ﬁumber of harmonics in Eg. 3.2, a matrix equa;ion of dimen=~
sion 8N + 4 is generated from the four boundary conditjions
along two adjacent edges. The coefficients of the solution
matrix equation can be found elsewhere (23). T#e solution
of this matrix equation for each of the two loading states
vields the arbitiary constants and therefore the deflection
function, w, the bending and twisting moments, and the
stresses and strains can then be célculated, e.g., the
bending strains £y and Ey are determined from the moments

M_ and M_ anéd in terms of the rigidities, D D D D
x Y . xl’ yf lr 2

and M__ - in terms of D as follows (23):
xv Xy ‘

-

"~ z{M; D - M D)

vl
€, = -“ e '
X -{%;py DlDZ) . (3.9a)
- : v (0, P,- DyD,) (3.9b)



xy - D ' (3.9¢)

in which z = the vertical distance from a fiber to the
neutral axis of the section; a tvpical geometry for a

waffle slab construction is shown in Fig. 3.2.

3.2.1.2 Flexural and Torsional Rigidities

In order to predict accurately the response of waffle
slab bridges to 'applied load, it is essentiai that the de-
signer use realistic estimates of the rigidifies of the °
structure (Fig. 3.2]. Recently Kennedy and Bali (12)
deduced analytical expressions for the various rigi@ities
for both the precracking an@ postcracking stages; the re-
sults were verified by experimental tests. Such expres-
sfsns'for the rigidities have been employed in thé analysis

presented herein.

3.2.2 In-Plane Stress Analvsis

Fig. 3.3a shows a waffle glab bridge subjected to
*

external in-plane prestressing stresses at its edges, Oy

. .
and gs» these stresses can be more conveniently represented

by Fourier series if they are assumed to act as shown in

Fig. 3.3b. Thus one can Qrite, for the stresses along the

edges u = 0 and u = 2a

O = pI1 By Sin < ~ (3.10)
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in which ¢ = 2b + 2a sin © -

* © . ' ™
and o, = I, B sin =, (3.11)

for the stzisses along the edges Vv = 0 and v = 2b. ' The
in-plane stkess field in skew coordinates u, v can be repre-

sented as

" ] *
g =¢ + ad_ sec & (3.12a)
.. u X )
!/
0 * * L,
Oy = Oy + Oy + O’x sin @ tan © (3.12b)
/'

0 * o
=T - g tan © : (3.12c)

T
U.Y uv X

. . 0 . .
in which the stress system [0 03 TéL] is determined from
14 ’

0 ' 0 0 ’
=0 ;00 =0 ;To= -
Uu L,V v ,uufTuV_ ¢,uv (3.13)

where @ an appropriate stress function, found by apply-
ing the Wirtual work principle to the strain energy 7
functibnal

1 2a 2b 2
= o)
U=z S S-o (€11 2032%7v ¥ *€13% uy

2, | 2 .
+ c22crv + 2c23 Oy Ty T c33ruv] du v (;.14)

in which cijv= the elastic compliances referred to the u-v
system of axes and which can be found in terms of the waffle
slag\}n—plane st{;;;ésses in the x-y system by applying the

usual transformations. Once the stresses I qv-and Tyyv 2Fe
r

»

"~ - ) -3
¥
Y 4

e
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found, the inplane stresses I cy and Te

r

by the following transformation:

3.2.2.1 In-Plane Axial Rigidities

are determined

Oy * rsec @ -sinBcos@ 2 tan O
e ,
o] = 0 cos © 0 :
y & s
Txy 1 sin © _ 1 ] (3.15)
The cq;fg;;onding strains are Eound from
| oL BTy ~ A0
X 2 (3.16a)
(Ay1Ry5 = By2)
£ — (Alldy A12 x) -~ _
Y 2 3.16b
(R11Ry0 ~ B10) . (3.165)
. T,
and 7. = =X (3.16c)
Xy  Bgg
in which [A] = the equivalent in-pl&fe rigidity matrix of
the waffle slab in the x-y system. )

To deduce the rigidity matrix [A}, it is assumed that:

(1) The in-plane strains in the flange plate element (deck)

. are equal to those in the ribs (beams); apd (2) the in-plane °

shearing stresses are resisted by the flange plate element

alone. Thus the in-plane forces pef unit length "in the

flange plate of thickness’h, Fig. 3.2 are



29

) hE(e_ + npe_)
(N_)o. = ho_ = X ¥

xng - - 2) ’ {3.17a)
U
hE(e._ + pe_) .
(N) = ho = b X (3.17b)
e Y - 9 :
H
(NJCY)P = h'rxy = hG‘ny/ (3.17¢c)

in which E and G = the elastic and shear moduli.of the con-

-

crete, respectively,
. For the same strains in the ribs (beams), the in-ﬁlane

forces in the ribs (Fig. 3.2) per unit length can be written

as:

. be(d - h)sx

(Nx)r = S% (3.18a)

Eb_(d - h)e |
= I b4 (3.18b)

<

(ny)r =0 (3.18c)

in which 4@ = total depth of the section; bv(bx) = width of
longitudinal (transverse) rib; and Sy(S#) = spacing of
longitudinal (transverse) rib.

Thus, the £otal in-plane forces per unit length of the
section become

N, = (Fx)p + (Nx)r, etc. (3.19)

L 4

or, in matrix notation



Ny [ 21 312 9] e
< >
Ny Pon | P21 Pa2 Of{fy }
ol - L O 0 A3 | Yy | (3.20)

_in which [A] = the equivalent in-plane rigidity matrix of
the waffle slab given by: A;; = E((1/1 - w?) + b _(d - n)/

_— _ 2, _ 4 2
(h 5 )1: Ay, = By = GEI/Q - w%): By, = EI/(1 - 39)
+ by(d - h)/(hsy)]: and Ayy = G.

The final results for post—-tensioned waffle slabs are
obtained by appropriate superposition, thus, deflections
and moments are found from the bending analysis alone (by
virtue of the uncoupling agsumption), while total stresses
‘and strains are derived from the bending'and in-plane analy-
ses, e.9., total strains are found by combining Egs. 3.9

and 3.16.

3.3 Elastic Series Solution for Continuous Slabs’

(Influence Lines)

The analytical solution presented herein for simply
supported slab of rectangular and skew plan form can be
readily extended to prestressed concrete waffle slab
bridges continuous over line piers by superimposing the
in-plane solution, in Section 3.2.2, and the-bending' <

solution for continuous orthotropic slab bridges presen-
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ted by Gupta and Kennedy (77); this latter Folution is :)
adjusted to accammodate the boundary conditions for the
moments at the simply supported edges and at the free
edges due to the prestressing, as well as to account for
the varying profile of prestressing steel by means of
equivalent uniformlv distributed loading (2}. -

For several reasons, waffle slab construgtion inl
highway ﬁridges, buildings and marine structures are
quite often supported by isolated interior columns. To
arrive at a solution for such bridges of prestressed
waffle slab construction, the colunn reactions need to be
evaluatedqfirst; this can be performéd as follows:

(2} Remove all column reactions, Ri (1 = },-——r);
apply the external load, g, tc the simply supported pre-
stressed waffle slab bridge and calculate the slab de-
flections at the center of the column positions, i.e., ‘

1q’ wzq; ---; qu from Eg. (3.2). The load

calculéte w
g may be due to dead load plus the eguivalent load due
to prestressing or it may include also the applied live
load. If the transverse and longitudinal preétﬁéss along \k
the edges are eccentric, then the edge moments due to
prestressing, Ml and M,, will appear in the boundary
Ecquations (3.4) and (3.6)

(b) Apply consecufively a unit load over the area

of each column, say j, and determine by means of Eg. 3.2,

\
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in each of such loading, the deflection of the waffle slab

at the center .of column i, i.e., wij’ putting Ml =0 in

<@

Eg. (3.4) and M, = 0 in Eq. (3.6).

(¢} Allow for prescribed settlement Ai of column i,

and for its elast%c deformation R.D., in which
S . .
D, = the specified flexibility of column i.
-_“jkr . LT . . ;
(d) ‘ite the‘follqwing_compatibility equation for

deflection of the waf%le slab at the center of column 1

position:
T r =
if1 581 (RyGwy s + D, 8,0 + a5 -wdl = o (3.21)
in which'
Gij = the Kronecker delta, i.e., Gij = 1 when 1 = j
and 5ij = 0 when 1 # j or, in matrix form
_(Wij+Dl) Y -er 17 Rl- Fw‘f-af-
a1 MCPPRCPY -Wzr || Ry | = ¥3-a5
Yoo W]
B W, (VepDy) | | R hw;-’-—af__ (3.22)

Sclving the above equation will vield the column reac-—

tions, Rl' -—-, Rr. Héving found the reactions, the pre-
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stressed waffle slab bridge can be analyzed for the effect
of total loading, e.g., dead load + equivalent load due to
the prestressing steel profile + live load + column load

. treated as upward patch loads; or, dead.load + eguivalent

- load due to the prestressing steel profile + upward patch

loads due to the column reéctions. Once the beriding solu-
tion is obtained it is superimposed on the in-plane stress

solution to yield the final stresses for design.

3.4 Elastic Finite Element Analvsis

-

3.4.; General

The use of the digital computer has greatly widened
the scope of the analytic techniques available such as the
finite element method. The finite element program STRAND,
which has been tested extensively and is available at the
Ministry of Transportation and Communication, Ontario,
analyzes reinforced and prestressed concfete-slab bridge‘
structures. The user has to specify the percentage losses
due to wobble, friction, etc., at various positions along
the cable. However, in thié work, préstressing losses are

not considered,

3.4.2 Scove and Definition of the STRAND Program

The STRAND program is written in FORTRAN IV and is

designed/;o operate on computers having a core equivalent

3

N\
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-of 32K (24 bit word) or greater. It is a complex computer

program for the analysis and design of isotropic and or-

thotropic slab systems; the analvsis is based on the finite

element technique using triangular elements. The STRAND

.program consists of seven sub-programs: FECK2, IPUT2, LOAD,

SAADS, OpUT2, PPUT and SPUT. These sub-prograns are com-

bined together with a flexible flow chart that car accom-

modate readily different paths depending on the nature of

the problem at hand. These sub-programs are described

below:

FECK2:

. IPUT2:

LOAD:

SAADS:

Checks the input data for IPUT2

Generates biﬁary or formatted data files for
anaiysis by SAADS

Calculates equivalent nodal load data for uni-
formly distributed loads, bgam locads, knife edge
loads, and c@ncentrated loads. %t also can pro-
duce the equivalent nodal load data either on
punched cards or as a full binary file of all

the finite element déta,

Carries out finite element plate bending and

plane stress hnalysis due to lateral and in-plane
loads. It also carries out finite element plate
bending and plane stress analysis due to pre-

stressing .loads using triangular pléte elements.

The input data may be a formatted set of data or
~
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in the form of a bhinary file. A binary file of
results may be rade.

OPUT2:- . Used for the design of reinforced concrete slabs.
Produces the reactions accompanying the moment
fields.

PPUT: Gen;rates_a binary file of finite element data '
from prestressing cable loading‘data and the -
finite element mesh data OUTPUT by IPUTZ. Two
distinct sets of daté are prepared, one for an
in-plane analysis and the other for a plate-
bending aqalysis.

SPUT: Used for the design of prestressed concrete slab
structures and processes the results file of
either a prestressing analysis by SARDS or the
file of both a prestressing analysis and normal

'A\‘__ loading analysis produced by SAADS. Factored
combination of prestressing and normal loadings
can be made.

The program IPUT2 automatically generates the finite
element mesh and nodal co-ordinates for regular‘aeck shapes
or any shape which can be defined by a séries of straight
Iines called generators. The program also geperates the
noda%\loading data for different loading cases.

.The effect of prestressing upon a waffle slab struc-

ture can be separated into two independent effects. These
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are the out-of—Plane bending duerto the cable eccentricities
in elevation and the in-plane stfesses due to the cable
forces.' The STRAND proéram can deal with straight and

. curved tendons in the elevatibn, agd‘the prestressing
forces are taken as external fo£ces at the ncdes. The
analysis of the structure under the in-plane and out-of-
plane pres@reséing loads sis carried out by program SAADS
usiﬁgﬂzzzgégular and be?m'elements} Fig. 3.4 for both the
plane stress and plate bending analysis. The program SAADS
also carries out the plate bending analysis due té normal
loadings such as dead weight, live,load, etc. Alfeéture
“of SAADS is its abili%y to ‘store the element stiffnesses of
the structure for future runs.

Fig. 3.5 spows the flow chart of the STRAND prégram
and the relationships of the varidus~p;ograms to each
other. Table 3.1 shows the limitations on the size of
problem which may be handled by the STRAND program.

The program assumes the right-handed global co—'

ordinate system, Fig. 3.6a, which is usually oriented so

a L

that the origin is at one corner of the bridge deck. The
positive x-directioﬁ is then usuallyv taken as being paral-
lel or tangential to the length of the bridge, and the
y—direction is taken across the bridge deck. The z-direc-
tion is then defined as being positive downwards. The‘sign

conventions adopted for the nodal forces and displacements
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and stress resultants for plate bending and plane stress

analysis are .shown in Fig. 3.6b.

N

3.4.3 BAnalysis bv SAADS Program

The finite element method is an approximate analyti-
cal tool. Its accuracy devends on thé mesh size and the
type of element used as the basic unit of the mesh.
Figures 3.7 and 3.8 show some typical meshes that are
generated throughout this study to aﬁalyze different
problems in slab structures. i

The analysis is performed by using non-conforming
triangular plate bending or plane‘stress‘elements. Beam
eleménts can also be included in both types of analysis
but these are assumed to be concentric with thé neutral
axis of the slab. In the plate bending analysis three’
degrees of freedom are considered at each node, namely
W, Wx,and Wy; for the plane stress analysis two degrees
of freedom u‘and v are assumed at each node; see Figs.
3.9a and 3.9b.

If the problem involves the analvsis of a grgstregged
concrete structure, then PPUT may be used in addition to
generate the loads from the prestressing cables. The
data reéuired when using SAADS includes the nodal co-
ordinates and element topology, material properties,.

boundary conditions and applied loads.
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The output from SAADS is similar for botﬁ plate bend-

ing and plane stress and consists of the nodal displace-
ments and reactions at both fixed and elastic boundaries
for each load case. For plate bending the centroidal or
nodal averaged moménts and principal moments are produced .

while for plane stress it is the in-plane stresses and
b

- . ' . |
principal stress which are printed ?jﬁff-‘“

bnce the input data has been read in, the computer
forms the element stiffnesses which are then -transferred

intp global CALQEEEEEteS and stored. The solution proce-

dure recalls the element stiffhesses Ffrom disk and forms

the overall structural stiffdess matrix and then carries

out a banded Gaussian
.

operation the boundary conditions-are imposed and the

imination process. During this

equations are modified and stored on file ready for back
substitution._ The current load vector is modified and
multiplied by the modified stiffness egquations and thus
the nodal displacements énd reactions are found. From
.these displacements the stresses and momenti, etc., in

.

each element are calculated.

]
\



CHAPTER IV -

YIELD LINE THEORY FOR WAFFLE SLAB

STRUCTURES (ULTIMATE ANALYSIS)

4.1 Introdﬁction

' 57
The yield line theory is a plastic theory for the

prediction‘gf ultimate flexurél strength of concrete slab
structures, and can be successfuily applied even to com-
plex slabs, with limited mathematical effort. The yield
lines, or the crack pattern locations depend on the load-
ing position as well as on ﬁhe boundarv conditions.

The terms positive and negative yield lines are often
used to distinguish between yield lines giving tension in
the bottom fibre of a slab and those giving tension in the -’

top fibre of a slab.

When such a slab is overlcaded beyond the cracking
load, vielding will begin in regions of high stresses, and_.
as.Loafing continues, yield lines will form and spread
into a/crack pattern. The load carrying capacitv of the
slab'will be reached when t@e yield l}ne has spread to the
‘slab edges, at which load the slab reaches a state of
neutral eguilibrium.

»

39
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4.2 Assumptions for-Prediction of a field{;ine Pattern

The following géngral assuﬁptions assist in the pre-

diction of the vield-line pattern for any slab:

1. Yield lines terminate at a-slab boundaf§.

2. Yield lines are straight (it should be noted,
however, that for somé systems of concentrated
loads or dircular supports a multiple system of
vield -lines can approximate a single curved yield
line, in the form of a fan mechanism).

3. Yielé lines pass through the %ntersection of the
axeé of rotation of adjacent'slab elements, and,

4. .Axes of rotation generally ;ie along l%nes of

s
supports and pass over columns.

4.3 Ultimate Load Analvsis

EhéfUltimate Load Method of analysis is eﬁtremely >
useful as:
1. A check on the elastic analysis and heﬁég the
derlvatLOn of a load factor for the design loads.
2. A design procedure to determine the cross—sectlonal
N

geometry and reinforc1ng or prestressing steel re-

quirements for the structure.
The ultimate load analysis is based on a postulated
. Y

vield-line pattern with the application of either the

virtual work or-Johansenfs\"equilibrium" method. In this .

. N
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dissexfation the virtual work method has beeriadopted and

the results checked by the equilibrium method. %L\\
Whgh an a%missible yiel?-line pattern is.comgi?tely 7
formed only anl“infinitesimai" increase in load is recuired
to‘cause the structure to collapse. By the principle of
virtual work, the work done on the slab By the loads
equals the work done agé%nst the yield liﬂes as they ‘ro-
tate. Hence, 1f a point on the slab is diyen a virtual
deflection, §, disp@acepents in the form of rotations
compatible with this deflection'mugt take place along the
~ yield liﬁes.\\ghe internal wérk done on the slab -is the
sum oﬁ—fée rotations, in the yield lines multiplied by the
resis:ing/;ollapsé\m;;egts. -The external work_doné by the
loads’is the éum of the loads multiplied by their respec-
tive deflections. Egquating the internal and external work
. givés the relation between the collapse resistance moments
(_/ i# the slab and the collapse load.
The ultimate moment can be readily calculated if the
*position and m;gnitude of the center of pressure of the
i compressive sﬁress block can be definéd. According to
‘the ACI code an Ferguson (68), the éEress distribution

- is taken as s¥%own in Fig. 4.1. Eguating the longitudinal

. o
forces. in Fig. 4.1 yields:

”

A, f;y =8 £.(5) (k)

k = A fy/a fé s (4.1)



w

M, = Ag £, (@ = k/2) o @‘.2)

-

where

.- ' . 1 :
B = 0.85 for £ = 30 MPa (4 ksi) or less fox £_ >30 MPa

'\ .
(4 ksi), the factor § is reduced linearly at the

rate ©f 0.05 per 7 ‘MPa (1 ksi) excess over 30 MPa

-

(4 ksi), but not to any value less than 0.653

A, = area of steel in mm? oo
£ = yield stress of the steel in MPa :

y = ¥ , .
fé = ultimate strength of concrete at 28 days imr MPa
M, = ultimate moment of the secion in MPa.

S = spacing between the ribs in mm, and -

X = the depth of the compression stress block in mm.

It should be neted that the primary cause of failure
is either the vielding of the steel or the crushing of the /
concrete. Any given faiiure mechanism establishes.aﬁ \
upper limit on the collapse load and the real collapse
load is the smallest one that can be found from all pos- &

.sible mechanisms.

v

4.4 Yield Moment on Axes Not Perpendicular to Reinforcing
When there is no twisting moment and the yield moments
in the two perpendicular directions are equal, the yield

moments in all directions are egual. Hognestad (36) showed

[following Johansen's demonstration (35)] that when the
. —



43

reinforcement in one direction differs from that in a
perpendicular direction by some coastant ratio, the slab
dimensions can be modified t; permit analysis és an
jsotropic slab. Such cases will not be considered in

this work.

If m_ is the yield moment about the x—axis and W

Yy
about the y-axis, the yield moment about an axis at an
angle & with the x-axis will be ///A

m_ = m c052 1 ; , cos2 (90 - a)
3 x A

_ 2 .2 )

= mx cos” o + my sin” o (4.3)
when o, = my = m,

‘m =

m as stated before.

4.5 O&orrection Forces for the Equilibrium Method

Correction forces appear when a yield line iqterF
sects a free edge at other than a 90° an 7 These cor-
rection forces substitute for twisting méments along
assumed yield lines and for normal shears which exist at
negative moment yield lines. They are i'nternal forces,

appearing on the free body diagram only, and act normal

to the plane of the slab with magnitude

m, = m cot o ‘ . (4.4)

where
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@ = is the angle between the yield line and the.

-

free edge. . -

4.6 Effect of Four Concentrated Loads on the Yield-Line

Pattern {(Wheel Truck]

It is obvious that a single cqncentrated load is more
critical than four concentrated loads.’ Under the action
of several concentrated loads there will be at least more
than a single yield-line, resulting in a higher ultimate
moment capacity for the slab. However, the study in this
dissertation is based on a single.concentratéd loéd.

, Based on previous experience and on thertest results
from seven concrete waffle slab bridge models, it was
possible to consider the most érobable vield-line crack
patterns of failure for the most common and critical locad-
ing conditions on the deck. While this approach theoreti-
callylwould lead to an upper bound solution to the collapse
load (35), it is shown laéer that the results obtaiaed are

-~

quite close to the test results.

4.7 Simply Supported Waffle Slabs

4.7.1 Skew Waffle Slab Bridge Under Unﬁ@grmly

Distributed Load

Figure 4.2 shows a simply supported skew waffle slab

bridge with reIatf&ely weak edge beams:; the assumed single

line failufe cradk pattern (fg) , intercepting the edge
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beams -is also shown. Past experience and observations
o%\the crack'patterns'of the testeé;models suggest that
the failure line (fg] will be inclinef to the x-aXxis an
angle of aooroximatély 0/2. At collapse it is assumed
that the failure line (fg) deflects downward a distancge

§; while this assumption leads to variable rotations of
the parts of the bridge at failure, however, working

with average rotations will give the correct answer. It
can be shown that the external and internal virtual works,

We and Wi' respectively, are

W_ = (2b0)g [(3b - = tan 3) §x6b] (4.5)
f
W, o= 2m; (2)(8/b cos®) cos B/2 + 2 vm,
0 .
(£ tan 5) (§/b cos ©) sin 5
P a— . — ) (4.6)
b - L ean 2 p+fian?
7 =20 2 )
in which my (le) = ultimate positive moment of resistance
per unit width (length) about the x-axis (v-axis); (2b) and

£ are, respectively, the span and orthogonal width of the

waffle slab bridge; and, MB = ultimate moment of resistance
, :

of the edge beam (resistin%)a sagging moment).

Equating W, to W, and rearranging will vield the £fol-
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lowing expressépn fér the ultimate collapse load It

_ 26 ., . 20 )
q, = 6 Iml (cos 5 ¢+ V sin EJ/b cos @ cos 3 )
2 2% _ 20 2 0
+ 2 MB b/L (b° - 7 tan EJ]/(Bb -3 tan 5)

- ' (4.7)
For, a rectangular bridge, with & = 0, Eg. 4.7 reduces to
. ) | 5 .
qy = 2(my + ZMB/ﬁ)/b ‘ (4.8)

It should be noted that 'in waffle slaﬁ_gridge.construc—
tion, genérally the edge beams are relatively weak; how-
ever, for relatively strong edge beams an X-tvpe failure
pattern is more likely to develop (38). For no edge begmé;
Eq. 4.7 vields

q, = 6m (cos? % ﬂ§§5§?n§<%1/tcb cos O cos %)

~

(3b - % tan g-)]; 7 (4.9)

and,»for a rectangular bridge with no edge beams, Eg. 4.8

reduces to
= Zml/b : ‘ {4.10)

4.7.2 gkew Waffle Slab Bridge Under Concentrated

Load at Center

For this case it is assumed that the failure pattern
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is that of Fig. 4.2. Taking q., as thé superimposed load
(including dead load) on the bridge per unit area, and Pu
aé the ultimate COnFentrated load at center causing col-
lapsé, the external and internal virtual works due to the

various loads and displacement § can be shown to be:
{

= £ ©
Wé = Pu g + 2b£c [(3b - = tan EJ §/6b] F4.ll)

O]

Zn 2 (&/b cos @)(:;; = +-2uul (£tan-§4

Wi = \\\ 2
\ e/ 5
(8/b cos ©) sin =% 2 [
-2 MB b - é tan 2
2 2
¥
8
+ (4.12)
b + % tan %g
- Equating We to Wi vields:
P, = 24 5 [m, (cos % + v sin? %}]
b(cos @ cos 71
4bM
+ 2 - 2q, (b - £tan 3 (4.13)
2 £ 6)

(b™ - v tan -2—'

For a rectangular bridge, with o = 0, Eg. 4.13 reduces to:
- . _ 2

L (2ml£ + 4MB £b qD)/b (4.14)

For no edge beams, Egs. 4.13 and 4.14 reduce, respectively

to: ' 4

o

[p.
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- P = 2¢ U“ Im1 (c052 % + Vv sin2 g%]
-u b(cos 8 cos 5)
' ' £ <) :
- £qD (b - g tan 3) (4.15)
and, :
_ 2
P, = (2my - b)) /b (4.16)

. It should be noted that the caée of vehicle loads on
the bridge would lead to a higher ultimate load; thus, for
a conservative design .and simplicity only the case of a

concentrated loa¥ at center is treated herein.

) L]
4.7.3 gkew Waffle Slab Bridge Under Concentrated

Load at Center of Edge Beam

>3
The observed crack patterns of the tested bridge

models confirm that for this case of loading the most likely
failure crack pattern is the one shown in Fig. 4.3; the
vield line (fg} is positive, corresponding to sagging momené
condition, and the negative ‘yield lines (gg') and (gg'') .
correspond'to hogging moment conditions. QAssuming that the
concentrated load P at location £ deflects downward a dis-
tance §, then the e#ternal and internal virtual works can

be shown to be

]

. W, =P (8) + 2y b’ cos 0 (8173 ” (4.17)

and

W, = my (2vyb cos 9) (25/b) + vm1(2yb sin 0)
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'1§/(yb cos ©}] + 2 {m, (2vyb cos 6} (&/b)

+ m_b [8§/(2vyb cos @)1} + My (28 /b) - (4.18)

in which m, = ultimate negative moment of resistance per
unit width about the x-axis; am, = ultimate negative moment
of resistance per unit length about the y-axis.

Equating we to\Wi yields the collabse load P:

P =4 vy (ml + mz) cos 0 + 2 vmy tan O + nmz{(y cos 0}

.\\ ".

~

- 29b® cos © q /3 + 2 Mg/ (4.19)
‘ 3P . )
For the least collapse load, 5;-= 0; or,
_ 1 _ 2 1/2
Y= 538 {nm2/[4 (ml + m21 2b qD/B]} (4.20)

Using Eg. 4.20 in Eq. 4.19 the ultimate collapse load Pu

-

becomes:

Py = 2{\J1'ul tan 0 + MB/b

+ /{nm2 14 (ml + m2) - 2b2qD/3]} (4.21) -

Por a rectangular bridge © = 0, Eg. 4.21 reduces to

o =2 /b + /amy [4tm) + m,) = a3} (4.22)

For a bridge with no edge beams, Egs. 4.21 and 4.22 becone:

SN
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p,=2 {wm tan @+ / mm, [4(m + my) - 2b7°q /3]}

u
(4.23)
.o - 2>
for a skew bridge, and
P =2 /fnm [4m., + m )} = 2bzc /3] ' | - (4.24)
u 2 1 2 "D -

for a rectangular bridge. B _///ff—

4.8 Continuous Waffle Slab Supported by Isolated Columns

An outline is presented in this investigation of the
. vield-line theory for continuous prestressed waffle slabs,
supported over interior isolated columns, simply supported

at both ends, and with free edges. A

4.8.1 Rectangular Waffle Slab Supported by Two

Isclated Columns

.Figure 4.4 shows a rectanqular prestressed waffle slab
model supported by two isolated interior columns with rela-
tively weak edge beams (the stiffﬁess of the beam is less
than 1/8 of the slab stiffness). Both ends of the slab
are simply supported, and the two column supports c¢an allow
rotation.of the slab in the x and y directions. The aspect
ratio of this model is 2 to 1 and ié/;ﬁbjected to two con-
centrated ioads, 2 Pu,with Py acting at the center of each span
~as well as the self weight of the slab, dp- Past experience

and observations of the crack Qatterns of the tested slabs

)
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suggest that the failure lines ff: gg and ii’ Qill be
parallel to the spgports, since the two simple suppoéts
and the line conneéting the two columns are parallel.
At collapse it is assumed that the failure line ££
and ii' deflect downéérd a distance §. Thé external
virtual work in the‘slab due to the concentratéd loads

and self-weight.is

=
i

o 2 puo + 4 (bﬂ/?) (8/2) 9

(2P 6 + bLsqp) (4.25)
in which
§ = unit deflection under lines ff , ii .

The internal virtual work %F

W. = 4 ml.ﬂ(gﬁ/b) + 8 MB (26 /b} + 2 m., £ (2§/b} +

i
4 Mé (26 /B) (4.26)
in which
\Mé = u;timate momen# of resistance of the edge beam,

resisting a hogging (negative) moment.

I

Equating We to W; and rearranging yield the following

expression for the ultimate collapse load Pt

Po= (4/b) [4m) + 2my+ (4/8)(2 My + M) - g b°/2]

¥

(4.27)
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. x .
~4.8.2 Skew Waffle Slab Supported by Two -

Isclated Columns

This is the most complex slab type in bridges, since
it is skewed as well as supported over isolatéd interior
columns. In addition, this type serves to emphasize that

» moments are in fact vector quantities and as such may need
to be resolved into components. Experience is needed with
this type of bridge in order to predictléccurately the crack
‘pattern in the fop and bottom surfaces'of the concrete and
the relative lateral displacemént of the slab surface.

Figure 4.5 shows a 45° skewed waffle sl;b having the
same &olume of concrete, amount of steel, total thickﬁess
and rigidities in the x and y directions as the aforemen-
tioned rectangular slab; here the mﬁ?’isolated columns are
positioned off the transverse centerline of the model.

Based on the assumptions mentioned earlier and ob-
serving the crack patée?ns of the tested slab models, the
failure lines for this skew model are assumed as shown in
Fig. 4.5, The assumed crack pattern.is confirmed by a
finite element analysis as will be explained later in,
Chapter v.

Fér thi§ waffle slab System, the slab model transmits
the load to £he'supports by means of twWo-way action. The'

crack pattern in this slab type is different from the pat-

tern of the rectangular slab model. The line connecting
~
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the two ﬁupporting columns is not parallel to the supports.

To find the center of rotatioh, 0, of the yield-line ii,
both linés gg' and J'f are extended and the point of
intersectionpéﬁﬁs then determined and connected to point T
(where the load is applied). Unit deflection is assumed
:along line 1T except point i|which is assumed to deflect
only half the uhIE deflectibn of point T. This assumption
is made on the basis of rotation.of the two columns about
the center of the bridge anéhbbse;ving that the length of
the edge bean éf is ciose to half the length of‘gJ'.
However, 1f the two columns are poéi;iohed on the center
line of the bridge, the assumed deflection of line ii which
is parallel to the supports will be uniform along its
giength. Previous practi;e and study of skew slabs at

working load, suggest that the downward deflection of

L 2
point o, the center of the bridge, can be taken as 0.258

\

(§ is the assumed unit deflection under the cocentrated”

load). Once the downward deflections of point 1, T and
P

o are determined, all the other lateral deflections can

be, determined.

The extermal virtual work in-the slab due to two

y -
concentrated loads, P,r 2t the'cgntre of each span and

-
DI

due to the self-weight of the slab (qD) is -

1l=n

W, = 2P + L a8 . ' (4,28)



in which . o \\
dpi = self-weight of each segment of the cracked

planes of the slab {assumed uniformly distri-

"buted %oad.acting on that plane)

2]
]

the corresponding deflection of each cracked:

segment under its center of gravity

n = maximur number gf cracked seagment of the slab.

ng“iﬁternal virtunal work is

(8 +

8 ) {.756 + 1.258)
x xX * X, - X
_ 2 6 1 5
w. = 2 [my (£/23 3 + my (£/2) . V)
(.56 % 0) (.755 + .758)
. m (2/2) x4 N (2/2 3 %1
1 W2 = oy W2 z
\

\. %

' .58 ' { 5
+my (£/2) (0 * 52 v my 2/ + 29 )
i (1.256 .+ .758) © (.758 + .758)
X x X p.d
S 1 s+, w2 X 3

+

2 [m, (£/2)

(0.56 + 0) (0.56 + 0.58)
, &7 72 772

vl + vml (x11 —

+
[\
1

N

[ ../’.
(£ tana2) 58) b } 8
an (-

+ vm

+

. / \
2 [27m, (£/2 tan al) (%%)-] k ' : \
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"755
. § 1.258 ¢ ,1.258
+ My )+ My ( = ) + Mg ( = )
6 5 5 ,
.755 v ., .758 '
_— 4.
f MB ) + Mg ( ) + Mg ( %5 ) - (4.29)
in which . . , . -
ol = slope of the line 0 g' with the X axis:;
N 22 = slope of the iine 0 i with the X axis;
) ® = the skew angle with the 'y axis;
o
0l = slope of crack pattern TT : and
Xqr xz, x3, Xy xs, x6, = distances as shown in

QFig. 4.5. | ) | Cj >

Equating Egs. 4.28 and 4.29, the ultimate collapse load

(Pu) is obtained as

i=n

- .z L5, s T~ (4.
() = 1~ (I ap. §.)/26 ) v TN (4.30)

4.8.3 Effect of the Skew Angle on the Yield-line

Pattern

From the analytical study of the tested seven slab

" models, and from observagion of the crack pattern in each

slab model it is found that the skew angle plays a major

: role on thé propagatlon of the crack nattern. In the
rectangular slab models, 1 e., when the skew angle = 0,
-the crack pattern lncludes a single crack line parallel
-to the supports: thigﬂgrack pattern follows lines of

maximum’ stress as mentloned earlier. For brldges with

it
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skew angles up to approximateiy 20° it.is expected that
_\Fhe crack pattern will be similar to that of rectangular
bridges; Thﬁs, for such small skew angles its effect on
the crack pattern is not very pronounced. However, it ig
expected that for briﬁges with skew angles between 20° to
45°, say, the yield-line £f, in Figure 4.5, will form )
making an*angle ©/2 with the x—axis;_additionally,‘a new
crack line Qb (Figure 4.5) will start forming betﬁeen the
loaded point on the bridge and the nearest abtuse corner
to the load. For bridges with skew angles exceeding 45°,
it is expected that cracks w;ll start under the load, say
& Q', and will propagate only to points £' and Q, causing
failure; i.e., the crack line Q'f will not form in this
case.

It is inte}esting to note that inbridge model PC4,

-locating the two .columns off the .transverse center line

of the model introduces two way slab action in both panels

-

of the bridge modelt for this reason, the longitudinal
crack Q'OT (Fig. 4.5) forms joining the two loaded points
Q' 'and T and intersecting the mid-point.of the negative
vield line %% . \ .

. 3



CHAPTER V -

PROGRESSIVE FAILURE ANALYSIS

5.1 Intreoduction

- o Vs

While the STRAND program is an extremely powerful
analytical tool in solving reinforxced and prestrES;ed
concrete slab bridges, it cannot predict the ultimate
load-carrying capacity of the structure. In Chapter III
a ligear elastig/analysis was presentea for slab struc-
tures using the STRAND program; the analysis was based
on the finite element techﬁique. In Chapter IV the‘ul-
timate method of analysis was adopted based on yield-line.
theory. The present chapter describes a progressive™
failure anaiysié of the structure by the method of suc-
cessive approximation tez;;hque: such an analysis, #fected
by mddifying the STRAND Program described iﬁ Chapter III?-
provides complete information on the behaviour of concrete’
waffle slabs as the load level is incf;ased from zero to
failureﬂ The yieldQE}iterion of maximum étress theory is

re

adopted in this analysis.

5.2 Analvsis by the Finite Element Method

Finite element analysis for material nonlinearity

is still under intensive. research. One of the principal
»

N
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limitations in this area, as far as reinforced and pre-

-

stressed concrete structures a;e concerned, is the dif-
ficulty in adequately representing the material properties.
In other words, better techniques of computinc-géterial
parameters and utilizing-experiméﬁtal data must be devised.
Relati§ely little information for two-dimensional nonlipear‘
material behaviour is available. Moreover, few analytical
and experimental results are available for coqparison with:
finite element solution for two-dimensional proBlems in-
volving material noﬁlinearity. ,

The procedure dséd_in the analysis herein is shown in
the flow diagram of Fig. 5.1. The first step is to calculatg
the uncracked and cracked rigidities of the concrete slab,
assuming that if the element is cracked it has reached its
limiting capacity (neglecting tension in the ooncrete, see
Appendix A). The second step is to idealize the slab -into
a suitable mesh of triangular finite elements of uniform
size. .However,‘in areas of high-stress concentrations,
such as isclated columps under concentrated {oads. and
at the obtuse1corners.in skew slabs, a finer mesh is re-
quired. - c -

The analysis is started by assigning ‘the gppropriaté
initial orthotropic elastic constants to the fiﬂite ele-

. ~ .
ments and then carrying out a linear elastic analysis.

For each element, the centroidal deflection, moments,
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paximum principal moments, and their directions are found:
such moments are assumed to apply unif?rﬁly over the ele-
ment. f‘urther assumption is n(.acie‘l tha‘g merbrane action is
neglected, which means that a confinqggsLab will be less
stiff than expected. Large disél;;ement,;ffects and tension
membrane action are likewise neglected; although these could
be taken into account, they only lead to a greater complexity
%hiph is not warranted. It is aiso'assumed that, when cracks
occur, the cracked area extends uniformly over an entire
element, i.e., an element is either uncracked or cracked.
Bevond the imitiation of first crack, an i<erative incre-
mental procééure is adopted to take into account the reduc-
tion of stiffnesses with the corresponding increment of
loading. The egquilibrium equation for a single element

is

[k] {4} = {q} (5.1)
[y -
stiff- deflec- load
ness tion :

where nonlinearity occurs in the stiffness matrix (K],

which is a function of the nonlinear materialsproperties.

'&\\% The basis of the incremental procedure is the subdivi-

sion of the locad into rnany small load increments. Usually

-

these load increments are of ecual magnitude, but in general

' o
4 .
they need not be ecual. The load is applied one increment
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at a time, and during the aﬁblication of each increment

Eq. (5.1) is assumed to be linear. In other words, a
fixed value of [K] is assumed throughout-each increment,
but [K] may take different values during different load

o

increments. Essentially, the incremental procedure approxi-

nates the nonlinear problem as a series of linear problems.

An initial value of the locad can be given before crack-

ing the concrete, so the totil effective load becomes
[N

n
_ -z . (5.2)-
(0} = fo ) + Iy Tafi]
, : (‘?@ 3
in which . L) ‘ . -
——

{Q} = is the total load vector;

{QO} = is the initial load vector; and

{AQiT Qﬁ the load lncrééent vector.

The increment in the load can be chosen with different
values depending on the accuracy of the solution and the

N\

computer time required. If the cracking load is apprefi;
mately known, the solution can be started with the initial

load fQO} just below the.cracking load to save some com-
puter time. )

Once the first crack is located, the incremental pro-
cedures for the load is stopped and the iterative procedure
for the reduced stiffness ;s started. The iterative pro- '

cedure continue under the same load until there is no change

in the number of cracked elements; the incremental procedure
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is then star®ed agaih. At the end of each igad increment
the failure of the slab is checked against either.yielding
of the steel or crushing of the concrete.
At every stage of the iterative prﬁcedure, new element
stiffness matrices are computed for each cracked element.
Past experience ana test results from the seven waffle slab
[ concrete bridge models, show "that the' cracked rigidity of a
f///f“ waffle concrete section is less than one tenth of uncracked
zL . rigidity. For this reason it is assumed that the modulus
of elasticity for concrete is the same for cracked and Gn—
cracked sections.

.

5.3 Uncracked Rigidities for Plate Bending Analysis

&

- For proper desiqn it is essential that the designer
. should ﬁgé_realistic estimates for the rigidities of
waffle slab structire. - Estimates of these rigidities

. : - ’
(flexural and torsional) are given in references (12, 23)

- 5 -
5.4 Rigidities of Cracked Sections i .
5.4.1_Flexural Rigidities
) a After the concrete starts to crack, the waffle section

continues to behave elasticaily, provided the steel stress
is_below its vield point and the compressive stress in the
1
concrete does not exceed 0.5 fc. _For simplicity, it is
: \.

assumed that the tension cracks have progressed to the

neutra,l axis (assumed to be in the top flange-plate, which
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r .
is generally the case}, and that plane sections before

bending remain plane after bending. The transformed sec-
tion of concrete is used for computing thekrigidities,
[considering the compression steel area times (n—i) and
tension steel area times (nl)]. Based con the above
assumptions, the rigidities of the cracked section of a

waffle slab can be expressed aE:

- _.12
D, =E (I, +I_ /(1 -¥491/s (5.3a)
- Y: L (5!
Dy = E (ISy + Icy/(l #_))/sy (5.%b)
Dl = uD (5.3c)
Y
D2 = pr (5.34)
L4
in which
I {I ) = moment of intertia of the concrete [and
cx cy )

(n-1) times area of compression steel, if ahy] in compres-
-
sion about the neutral axis for bending about an axis‘ger-

pendicular to the x-(v-) direction, ite., for the nedtral

axis lying in the top flange plate, N
I =5 (xd.)3/3 - (5.4a)
cx biq b4 “H7 :
3
I =8 {Xd 3 : 5.4b
N cy v. yJ / _ ( )
st(Isv) = moment of inertia of the transformed steel

section about the neutral axis for bending

about an axis perpendicular to the x-(y-)
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direction, i.e..,

o Ay 2 .
st = nAs {(h + dx Wd') de) (5.52a)
— T — L - 2 g .
I, = pA's (b +dy a") - x4, (5.5b)
T t . R . :
Dx(Dvl = flexural rigidity of the top flange-plate

with respect to the neutral blane of the gross
cracked section aséociated with bending.about.
an axis perpendicular to the x-{y-) direction.
The location of the neutral axis de (ox Kdv)

\ is determined by equating the compressionlforce

+o the tension force on the section.-

Thus, when the neutral axis lies in the top flange-—

plate, de is given by
!

. | o .
na_((h + dy - @) - Ky - s, (87020

) =0
W (5.6a)
and R4 _ by
y
nA' (' 4 -am = xa ) - S (Xka_)2/2(1-5%) =0 =
s v 4 v oy -
o ‘ (5.6Db)

5.4.2 Torsional Ricidity

-— -
For a waffle-type slab the parameter ¢, defined in
‘reference (1l1), can be expressed as:

- 0.5 .
a = (DXY + DYX + D, + Dz)/z(Dny) (5.7

N
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Experimental test results have shown (22) that for

this type of slab ny = Dyx' ' LN

Thus Eg. (5.7) becomes

& =(20__ +D, + D.)/2(0 D )°-53 ' (5.8)-
Xy 1 2 Xy *

~hence ¢

‘;%é:=_&£p;53)'5 - (D + D,)/2 : (5.9)

—_—

It is assumed that the parameter & remains the same
: g

bgfore and after craéking of:the coné?ete. Thus 5§/ al- |,
_culaéing ¢ from Eg. 5.8, using the precracking fieéural

and torsional rigidities 512} 23), the postcracking tor-
sfonal rigidity D;v can be estimated from Eg. 5.9, in which
Dx’ Dy, Dl and 02 ;re estimated fro§ Eog. 5.3 for the post-
créckinq condition. Since Dy énd D2 are small compared to
D an? ?& in a2 waffle slab dropping D, and D, from Eg. 5.?,

will yield another form for the parameter &:

(D, + Dvx)/Z(Dny)O'S | (5.10)

a
-'

. 0.5 .~ & :
.ny/(Dny) - ) {5.11) -

o3

Thus, the torsional rigidity can now be represented as:
-z 0.5 - : R
ny-fa(Dny} - (5.12)
' = N .
in-which D, and D_ are~determined from Eq. 5.3.

-

- . -



CHAPTER VI
EXPERIMENTAL INVESTIGATION

6.1 Introduction

In order to verify the analyticai formulation -and the’
modified computer program, a series of éxperimental tests
were carried out on seven concrete waffle slab bridge
models. Five slab models were simply supported and the
remaining two were continuous over two interior.isolafed
cql;mn supports. The first three models (RC1l, RC2, RC3}
were reinforced concrete waffle slabs, the seéond four
models (PCl, PC2, PC3, PC4) were prestressed pogt—tensioned
concrete waffle slabs. Two of the reinforced concrete
models, RC1 and RC2, were rectangular in vlan and'the-third
one, RC3 was skewed 45°, while fwo of the prestressed con-
crete models, ﬁal and PC3, were rectangular ;n plan and the
remaining two prestressed concrete models, PC2 and PC4 we;é
skewed 45° in plan. The reinfarced concrete models were
free along the sides, parallel to the traffic flow, whiie
the prestressed ones were.eiastically_supported by rela-
tively weak edge beams due.to construction reguirements.
The prestressing wire§ in slab models PCl and PC2, were
s:raight tendons in the_x agﬂ v directions,:whiie in slab

2
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modeis PC3 and PC4 they were curved in the longitudina}
'direction, and straight hﬁ/the transverse direction. De-
tails on the testing of the five simply supébrted slab
bridge models can be found in reference (23).

All bridge models were one-to-eight in scale 'since
this scale was judged to'be the most suitable taking into
account the heterogeneity of conpreté, fabrication and
casting of the concrete models as well as the reliability
in a;sgssing their rigidities. The elaitic material pro-
perties of the slab models Qére determined aceording to
the American Society for testing and material specifica-
tions. Details of the test b?idge mogels are presented
in Table 6.1. ™~ -

The. ultimate load and the orientation of vield lines
were observed and compéred with the predicted analytical
results. Load versus deflection behaviours were also 5b~

tained as well as stresses and moments at- different loca-

tiq&g of the slab models. Tests were conducted in two

rdistinct segquences: £

First: The waffle slab models were tested at diffe}ent
poings iﬁ the elastic stress doméézb(with no
- cracks- in concrete) under a laterai concentratgd
loading applied symmetrically and anti-symmetri-
cally, and * -

Second: the slab models were tested to failure with two’

symmetrically placed cosépntrated loads.
4\

e
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6.2 Materials

6.2.1 Concrete

-

High eafly strehgth'Portland cement manufaceured‘bY.
the Canade Cement Company ﬁae used in the two continuousy
pfestressed waffle siabe, PC3 and Pé4; thig provided_a
7-day concrete strength of 48 Mpa (7 ksi). éhe.maximuﬁ'
Size of aggregate was 6 mm (0.25 in) due %o the narrow
dimensions between the sides @f the formwork. ' The eom-
biqed aggregate was prepared according to the ACT cede
(4dl by mixing 40 t?_GO% fine aggregates of the'toferﬁ.
aggregates. This gave é well éraded combined aggregate
with a fineness modulus equal to 2.50. Crushed stones
with hard, and durable properties were used- for the coarse
aggregate. Mixing,of concrete was performed in an Eerich
Counter Current Mixer, Model EA2(2W) with five cu. ft.-

charging capacity.

6.2.2 Reinforcement )

High tensile stéel wires of 5 mm @6,2 in) diameter
were used for prestressing the two waffle slab dels.
Tensile tests on the wi;es.g;;;\sﬁ‘ave:ageJEIE;i:te
strength of 1550 MPa (225 ksi), and a yield stress of
1200 MPa (175 ksi). The wire had a smoothaeurfaCe which

helped in providing good control En the amount of pre-

Stressing force required in each wire during the pre-

~ »
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stressing operation; only minimum friction was expected to
occur. between the concrete and the curved steel tendon
during the prestressing operation as well as dufing‘loading

of the slab.

6:3 Formwork

Two forms were made from plywood, 19 mm (0.75 in)
thick, with wood joist,.5% x 152 mm (2 x 6 ins.) in cross-
.section used as stiffeners. The flrst "form was rectangular
in plan and used for casting the slab model, PC3, Fig. 6.4.
The_second form waé skewed 45° in plan and used for the skew
slab model, PC4, Fig. 6.5. Styrofoam cubes were used for
producing the wéffle shapes, Figs 6.2 aﬁd 6.3, and were

fixed on the wood surface by a water-resistant ,glue.
- . . -

6.4 Description of the Two Continucus Slab Models K -

- . |
6.4.1 .Continuous Rectangular Post-Tensioned Waffle

Slab Model, PC3 oA

The overall‘diménsion of this slab model was 1.257 m
X 2.514m (49.5 in. x 99 in.) and of mass 500 kg (1100 1bs.).
" The waffle shape and dimensions are shown in Flg 3;2. Solid

i

droo panels were formed around regions of maxzmum ‘sheaxr,
located at the two interior column'positidns and at -the two
ends of the slab model. The model was p:estresseﬁ”bf 27

_ﬁign tensile steel wires in both directions: nine curved
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wires were used in the longitudinal direction, with 18

—

straight wires used in the transverse direction. The wire

prafiles and the eccentricities in the x and y directions
are shown in Fig. 6.6. )

To study the slab model under the working-lﬂad ondi -

tion (i.e., before cracking of the concrete), ten\tests

were carried out by means of a movable loading jig
tests were with a single concentrated liia' and fthree tests .
were with two c¢oncentrated loads, each acting on one span.
Finally, the slab model was testeé under two conqgntrated

loads symmetrically placed at the center of each span with

the load being increased from zero to collapse.

6.4.2 Continuocus 45° Skew Post-Tenstoned Waffle

Slab, PC4 .

In this model the longitudinal ribs were perpendicular
to the transverse ribs. The steel bearing plates used in
prestressing were fitted into specially-formed grooves along
the edges (Figs. 6.7 and 6.8); the plates were provided with

two perpendicular eccentric holes to accommodate the pre-
— N
i -

stressing wires in the.two directicns. The number of

prestressing wires were increased to 34 wires due to the
skewness of the slab. The center line joining the two

isolated columns was inclined to the transverse center line

of the bridge model by an angle ¥ = 11° as shown in Fig. 6.5.

”
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The loading proceduré'and the segquence in applying the

lateral load on this model were the same as that in the
rectangular model. Figure 6.9 shows the profile of the
longitudinal prestressing wire and its eccentricities

.measured from the bottom fibre of the model.

6.5 Experimental Equipment d

6.5.1 Prestressing Ecuipment

A prestressing hydraulic jack of 89 RN (20 kips)
capacity was used for post-tensioning as shown in Fig. 6.7.
Mechanical gripping devices with open grip type were em-
Ployed. End bearing steel plates and washers were used at
both ends of the wires to transfer and distribute the pre-

“stressing force from the steel to the concrete.

6.5.2 Automatic Strain Indicator

Figure 6.10 shows the automatic strain indicator which
was used in recording .the strains during the experiment.
This modél was manufactured by Vishy Intertechnology, Inc.,
Malvern, Penna, U.S.A. The strain indicator includes mainly
four devices: the V1E-21 Switch Balance, the V1E-20 Digital
Strain Indicator, Scan Controller V/E-25, and the Automatic
Printer V/E-22. The V/E-21 Strain Indicator provides a
method of sequentially reading the outputs of up to ten

channels of strain gauge information. Eight V/E-21's were

a7
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connected to the same indicator which gave a capability of

recording readings from 80 strain gauges.

6.5.3 Hydraulic Jack for Lateral Loading

A 178 KN (40 kips) hydraulic jack was used for testing
the slab'models at various points. The length of the jack
was 490 mm (20 in.) with a 430-mm-travel (17 in.) piston.
The jack was attached to a heavy steel beam by means of
Heavy C clamps and fixed in such a way that it cguld be
rea@ily moved in both the longitudinal and transverse di-

rections: see Fig. 6.11.

6.6 Instrumentation

6.6.1 Electric Strain Gauges on the Concrete

The concrete strains were measured on the top and
bottom surfaces of the slab model, using electric strain
gauges of type EA-06-500BE~120. Rosette 45° electric strain
gauges of type EA-06-250RA-120 were used at the obtuse
corners of the skew model. The two models were ilnstrumen-
ted at various locations and especially arcund the loaded
area, the interior column supports, and, in the case of)
the skew model, at the obtuse corners.

The gauge locations on the concrete surfaces were
smoothened using f£ine sand paper; all dust was removed

using compressed air and then the surfaces were cleaned
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with acetone; all cavities were.then filled by applying
an epoxy of high strength «£RTC). This epoxy was mixed by
one volume activator B, and ﬁhe same volume of resin A.-
After the surfaces were dry, they were again smoothened
with fine silicon carbide paper and the gauges were
mounted using Eastman 910 cement. After soldering the
wires to the gauges, the latter were moisture-proofed
using coating epoxy Bean Gagkote #3, and cured for 24
hours 'under rocm temperature. The gauges were then con-

nected to the strain indicator, balanced to zerc and made

ready for testing.

6.6.2 Mechanical Dial Gauges

_ The lateral deflections resulting from the prestress-
?;g and lateral loading were measured using meéhanical dial
gauges with a sensitivity of 0.025 mm ¢0.001 in.}. 1In the
two slab models PC3 and PC4, all the dial gauges were placed
at the top surface of the slabs, and supported on a steel
frame separated from the slab as shown in Fig. 6.12. In

the érea(s) where the load(s) was applied the dial gauge(s)
was placed on top of the loading steel plate(s), as shown

in Fig. 6.12. The location of the dial gauges are shown

in Figs. 6.13 and 6.14 for the rectangular and skew models,

respectively.

SN
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6.6.3 Load Cells

A universal flﬁt load cell having a capacity of 222 KN
(50 kips), was used in the two slab models to measure the
lateral load transferred to the slab through the hydraulic
jack. Thirty-four cylindrical load cells were used to
.measure the prestressing forces in the wires. The readings
from these cylindrical load cells wexe monitored throughgut
the test, first to measure the initial and after-losses
prestressing force before applying the lateral load on the
model, and fiﬂally, the prestressing force‘in the wires at
‘collapse of thé model. The calibrations of all .the load
cells are given in Appendix D. Two universal flat load
cells having a capacity of 111 KN (25 kips), were used at

the top of the two columns to measure the reactions,ﬁgfgyf

duced by prestressing as well as thé lateral load.

6.7 Construction of the Slab Models

The dimensions of the two slab models are shown in
Figs. 6.4 and 6.5. The recuired Qood forms were prepared
as shown in Fig. 6.15, and the styrofoams were placed intﬁ
position by glue. Rubber hoses having an inner diameter
of 6.4 mm (0.25 in.}) and 1.66 mm (0.062 in.) thick were
used to cover the steel wires during casting of the con-
crete and to prevent bonding between the steel and the

concrete. The longitudinal steels were inserted in the
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~ .
rubber hoses having a curved profile to accommodate the
negative moment at the interior column support region.
The wires were supported on 3 mm (0.125 in.) steel wires
(chairs) which provided a varying eccentricity of 25 mm
(1 in.) to 82 mm (3.25 in.) from the soffit of the models,
as shown in Figs. 6.8 and 6.9. The straight transverse
prestressing steels were located at the center of gravity
of the section.
One hour before mixing the concrete, the inside of

the forms were painted with‘grease material, Vitrea oil
150, for easy form release after setting of the concrete.
The form was placed on a special steel bed, having an
attached vibrator, Fig. 6.15. Care was taken during
casting and vibrating to ensure that no segregation oc-
curred. The top surface of the slab was leveled and
troweled smooth after casting then covetred with a plastic
sheet. After six hours, water—curing of the élab was
started and continued for 7 days; the sfgb was then allowed
to dry 2 days befo applying the epoxy to the surface and
mounting the stfain [gauges.

| To determine ‘e compressive strength of the concrete,
six 76 mm x 152 mm (3.in. x 6 in.) cylindres weré cast with
each model. They were cured in the same way as the slab

nodel.

KRR
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6.8 Experimental Setup and Test Procedure -

6.8.1 Rectangular Prestressed Concrete Waffle Slab

Extreme care and adequate precautions were taken in
moving the forms out and during transfer of the slab
from the casting bed, to its supports; this was necessary
since the‘slab was still plain concrete and not yet pre-
stressed. The slab model was supported at beth ends on
38 mm (1.50.in.) diameter steel rollers, and supported in
the interior region on two isolated columns, each being
composed of 101 x 101 x 25 mm (4 x 4 x 1 in.) steel plate,
resting on a universal flat load cell supported by a me-
chanical screw jack for adjusting the level of the support
column with the end supports. Steel and rubber shims were
used between the supports ané the concrete surface to give
full contact between the slab and its supports. The slab
was mounted with forty-five strain gauges to measure the
strain on the top and bottom surfaces of the concrete,
and sixteen mechanical dial gauges to measure the lateral
deflection produced by prestressing as well as the lateféi
load. 7PFig. 6.13 shows the locations of both the strain and
dial gauges. The slab under two-concentrated loads ap-
plied at the center of each span is shown in Fig. 6.19.

The slab model was prestressed by 27 high tensile
steel wires; adequate precautions'were taken during the

prestressing operation by installing steel bearings on
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the four sides of the slab and following a certain seguence
in post-tensioning the wires (23). To protect\thé slab
‘from premature cracking as well as uplift due to the ve:ﬁ
tical component of the prestressing force, two steel
-éolumns were used as bracings on the top surface of the
slab, Fig. 6.16; these steel columns were located in line
with the column supports to prevent any coupling that
mighgﬂﬂave occurred otherwise; the steel columns were sup-
ported on two spherical bearings to allow rotation.

Before commencing the test the slab was subjected to
a small load and then unloaded; this was repeated several
times to minimize the residual stresses and to insure good
seating of the model on its supports. The slab was tested
by a single-concentrated load at seveﬁ various positions,
and tested by-two-concentrated loads at three different
positions before cracking the concrete. Finally, the slab
was loaded by two concéntrated loads, each load at the
center of th; span, up to failure; it was sﬁbsequently

relcaded to examine its response after failure.

6.8.2 45° Skewed Prestressed Concrete Waffle Slab

The 'experimental procedures for this slab were similar

. -
to the ones for the rectangular model. This 45° skewed
slab was mounted with férty-five strain gauges to measure

the strain on the concrete surfaces and sixteen dial gauges

to measure the deflections as shown in Fig. 6.14 The slab
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was prestressed by thirty-four high tensile steel wires
in both directions, i.e., nine curved wires in the longi-
tudinal direction and twenty-five straight wires in the
transverse directions.

This slab was subjected to six concentrated single-
loads and five concentrated double-loads at various loca-
tions; the same seqguence in loading was followed as for
the rectangular slab model. The craéking as well as the
ultimate loads were recorded; cracks, forming the yield
lines at the top and bottom surfaces of the slab model,
were traced. Figure 6.20 shows the slab model in posi-

-

tion.



CHAPTER VII
DISCUSSION OF RESULTS

7.1 General

To demonstrate the appiication of the analvtical methods
developed earlier in this dissertation, test results from
seven l/8—scalé waffle slab models are presented. The test
results are compared with results from the finite element
method and the series solution in the elastic domain. The
study and the comparison between the experimental and théo-
retical results are extended beyond the elaé&ic domain, to
include the ultimate load as well as the progressive failure
ahalysis solutions.

The efficiencv of continuous waffle slab construction
in transmitting the load through the intergbr column sup-
ports is examined. A comparison is made between the struc-
tural response of slabs supported on continuous pier line
support and that of slabs supported on two isolated inter-

ior columns:; the effect of rotating the interior column

supports about the center of the bridge is also studied.

78
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7.2 Elastic Solution (Working Load Céndition

7.2.1 Simply Supported Slab Models

The matrix solution eguation resulting from the bend-
ing anélysis and containing the unknown constants in Eqg.
3.2, was solved by the Gauss-Jordan elimination method.
The matrix elements were subjected to the usual scaling
operation and stability checks indicating that the genera-
ted matrices are stable. The use of double precision im-
proved the resilts only in cases involving large matrices.
The average execution time on an IBM 360/65 computer was
50 seconds to analyze one structure with double\precisicn.
It was found that eight harmonics in the elastic series
solution provided sufficient accuracy for engineering ap-
plications for various skew angles and for both uniform
and concentrated wheel loads. The accuracy of the solu-
tions, including static moment eguilibrium checks, has
been well established and deéails can be fould elsewhere
(21). The solution to the matrix equation for the in-
plane analysis was obtained by a standard Gaussian elimina-
tion method. Convergency study indicated that eleven
harmonics were sufficient to yield the reguired engineer-
ing accuracy for the in-plane stresses given by Eq. 3.14;
the execution time on an IBM'360/65 computer was approxi-
mately 6 minutes to analyze one structure.

The results from the bending and in-plane stress
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analyses were superimposed and then compéred to the exper~
mental test results; the rigidities of the test models were
first determined (12); the deflection function w was then
found from Eg. 3.2 after satisfying the boundary c0ndi;
tions, Egs. 3.3 - 3.6; the moments Mx' ﬂy,and Mxy were then
calculated (6), and thus the bending and torsional strains
from Eq. 3.9; thesé strains were combined with the inﬂplane
.strains from Eq. 3.16 to vield the total strains.

The execution time on an IBM 370/3031 computer using
the finite element program STRAND for one structure was
3 minutes. To check the accuracy of the STRAND program,.a
comparison between the theoretical and experimental results
. for deflection and strains was made for the two prestressed
concrete waffle slabs, PCl and PC2. Figure 7.1 shows a
comparison between the test results and those from the
STRAND program as well as the series solution for the center
deflection of the rectangular model and deflection at the
center of the edge beams. The results from the STRAND
solution slightly underestimate these deflections; the
results for strains, shown in Fig. 7.2 show the same
tendency. A close agreement is shown in Fig. 7.3 between
the test results and those from the STRAND program for
the center deflection of the skew prestresséd model, PC2.
Figure§ 7.4 and 7.5 present comparisons of results for

strains in the skew slab model when subjected to a load
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at the center of the slab, and at the center of the edge
beam, respectively. Good agreement is shown for the strains
at the center of the model and fair agreement can be ob-
served in Fig. 7.5 for the strains near the obtusercorner

_ where the strains are difficult to predict accprately due

to the steep stress gradient in this region. In using the
STRAND program, a finer mesh around the obtuse corner and

in the vicinity of the concentrated load was used.

" Nothwithstanding the differences noted between the
STRAND and the test results, it can be concluded that the
solution by the STRAND program, ::.tilizing the rigidities
derived in reference (12), is reliable to predic} the
response of prestressed concrete waffle slab bridges under
A

7.2.2 Continuous Prestressed Waffle Slabs

load.

7.2.2.1 Series Solutions Using Influence Lines

The analyvtical solution presented earlief‘using Fourier
Sefies for simply supported slabs is adjusted to accommodate
continuous prestreéséd slab bridges« with varying profiles of
prestressing steel. The method is applied to the rectangu-
lar and skew prestressed slab models, each supported by.two
interior isolated coldﬁns. The column reéctions are com-

pared with those obtained from the experiment as well as

from the STRAND program. The results, shown in Table 7.1
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and 7.2 indicate good agreement; the solution by the
STRAND program overestimates the column reaction of the
skew slab model by 15%. It should be noted that the
series solution method for continuous slabs reguires a
lengthy procedure in finding‘a.complete-solution to a

bridge problem and may not be suitable for the design

office.

7.2.2.2 Finite Element Method

Figures 7.6 to 7.12 show the theorepical and experi-
mental results for deflections, strains and moments due to
the prestressing of the rectangular and skew slab models.
Figure 7.6 shows the distribution of the upward deflection
(Camber) due to prestressing, with good correspondence be-
tween theory and& experiment. The distribution of the
deflection along the transverse direction is almost uni-
form; this confirms that a waffle slab structure when
subjected to uniform load, acts as a wide beam. This
uniform load, due to the applied prestressing force is
more or less uniform as shown in Figs. 7.13 and 7.14.

Figures 7.7 and 7.8 show the‘resulting strains at the
bottom and top surfaces of the slab, due to prestressing.
Close agreement is obtained between the theoretical and
experimental strains. The distribution of moment due to
prestressing is shown in Fig. 7.9:; one can notice that the

moments in the longitudinal direction are relatively large
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in comparison to those in the transverse direction.

Figure 7.10 shows the camber of the skew slab model
lQue to'préstressing. Close agreement. is observed between
the theoretical and experimental results; there is more
variation in the deflection profile of this model than in
.the rectangular model; this is due to: - (i) skew, and
(ii) the inclination of the lime connecting the interior
supports, to the transverse center line of-the bridge model.
The corresponding strains are compared with the theoreti-
cal ones in Fig. 7.11 and show fair agreement. A compres-
sive strain is observed along the side of fhe slab due to
the transverse prestressing force while a tension strain
.0f 70 uymm/mm is present at the obtuse corner. Figure 7.12
shows the resulting moments due to prestressing a skew
slab model; Eg.. 3.9 is used to c?lculate the moments from
the experimentally measured strains; the good corregpon-
dence between the theoretical and expefimental resulté
confirms that if a suitable and more refined mesh is
chosen for the finite element.method, the designer can

rely on this method for analyzing slab bridges.

7.2.2.2.1 Rectangular Concrete Waffle Slab

Figures 7.15 to 7.19 show the load deflection relation-
ship due to a single load, applied at different positions

on the slab model; while Figs. 7.20 to 7.23 show the same

~
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load-deflection relationship due to a/pair of equal loads
(the two-load system). A study of these figures reveal
good correspondence between the the&retical and experimen-
tal results before cracking of the/concrete.

Figgres 7.24 to 7.28 show thg deflection profiles due
to the single-~ and two-~load sysgéms. It is observed that
deflection due to a single concéntrated load at the center
of the edge beém, equals almost three times the resulting
deflection for the same load acting at the center of the
slab. Also, the deflection at the center of the slab due
to the two-load system, equals 80% éf the resulting deflec-
tion due to the single-load system applied at the slab
center.

Figures 7.29 to 7.33 present comparisons between the
theoretical and experimental load-strain relationships in
both the x and y directions. Good agreements are noted -
between the two results; it may be said that the strain
gauges are more sensitive and reliable than the mechanical
dial gauges, especially when small—éefleéﬁiong prevail.

Figures 7.34 to 7.38 show the distributiéns of the
moments resulting from a single concentrated load of
36 kN (8 kips}. It can be observed that tLe critical
stresses are under the lcocad for the single~load system,

whereas for the two-load system thev occur at the interior

column support region. It can also be nOt£C§i5that the
»
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moment decreases rapidly moving away from the loading

point.

7.2.2.2.2 Skew Concrete Waffle Slab

It may be recalled that the skew waffle slab model
was constructed with the same volume of concrete; thick-
ness and rib spacings as the rectahgular slab model. Such
similarity makes it possible to study the effect of skew
on the design parameters.

Figures 7.39 to 7:45 show the load-deflection rela-
tionships in the working stage (before cracking of the
concrete) due to single concentrated load applied ;t dif-
ferent locations on the model. While Figures 7.46 to 7.48
show the load-deflection relationships for the two-load
system. Although each prestressed concrete slab model
was tested more than ten times at different loading posi-
tions, the results show that the response of the structure
to load cont;nued to be linear elastic. To ensure such
response, the slab models were tested at half the cracking
load to guarantee that there was no microcrackipg in the
models; again it can be observed that there is\close agree-
ment between the theoretical and experimental results.

The deflection distribution patterns due to lateral
load are given in Figs. 7.49 to 7.5;. It can be cbserved

that the maximum deflection occurs under the load when
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applied at the center of the edge beam for both the single-
and two-load systems.

Figs. 7.55 to 7.60 show the load-strain relationships
for the two-load system applied at different positions.
Good correspondence is shown between the theoretical and

<:axperimental results. When theée results are compared with
the corresponding ones for the rectangular slab model, it
is observed that the transverse ribs in the skew model are
working more effectively with the longitudinal ribs, to
transmit the load to the supports.

The distribution of the moments for the skew slab model
due to the single- and two-~load systems at different posi-
tions are given in Figs. 7.61 to 7.66. The moments were
calculated at the point; where the experimental strains
are measured; comparison with the theoretical moments shows
fair agreement. It is observed that the critical stresses
in the skew slab occur near the obtuse corners near the

.interior column supports, as well as under the load as

shown in Fig. 7.61, 7.63 and 7.65%

7.3 Ultimate Load Solution (Yield-Line Theorv)

Figure 7.67 shows the tested iconcrete waffle slab
models, and the proposed crack pattern for each slab model.
To discuss the results from testing these slab models, the

latter are divided into three groups: Group A, consisting

AN



87

of three slab models, RCL, RC2 and RC3; Group B, consist-
ing of two slab models, PCl and PC2; and Group C, consist-

ing of two slab models, PC3 and PC4.

7.3.1 Reinforced Concrete Waffle Slabs (Group A)

The relationships between load and deflection as well
as between load and strain at the center of the uniformly
loaded reinforced concrete model RCl are shown in Fig.
7.68. Comparison of the theoretical and experimental
results shows close agreement up to the cracking load; as
expected, the results begin to diverge at the start of
microcracking. It is interesting to note that the mea-
sured strains near the free edge in the y-direction were
sensibly the same as those in the same direction at the
center of the bridge, which confirms that when subjected
to uniformly distributeéd load, such a bridge would be-
have as. a wide beam in carrying the load. Figure 7.69
shows the single-line crack pattern intercepting the
longitudinal ribs with no visible cracks iﬁ the transverse
ribs; this crack pattern is further evidenced by the re-
latively large measured strains in the longitudinal ribs
and the small measured strains in the transverse ribs.

The ultimate load of 7.6 kPa (1.l psi), was reached after
extensive vielding of the reinforcing steel followed by

crushing of the concrete plate deck. The theoretical

—_
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collapse load was 5.6 kPa (0.81 psi) (see appendix B}, on
the basis of Ehe single-line crack pattern. The micro-
crackiné load was approximately one-third the ultimate
load.

.The second reinforced concrete bridge model, RC2, was
tested to collapse by a concentrated load at the center.
The results for deflection and strains at the center of
‘the slab model, presented in Fig. 7.70, indicate good
agreement between theory and experiment up to the cracking
load. It should be observed here that, unlike the case of
bridge model RCl, the measured strains in the transverse
ribs were relatively significant; this shows that when a
waffle slab bridge is subjected to a concentrated wheel
load, it will exhibit excellent transverse load distribu-
tion characteristics. The measured strain results indi-
cated that the first vield of the reinforcing steel oc-
curred at the center of the model in the longitudinal
direction and subsequently propagated across the width of
the bridge model through the transverse ribs. The model
finally &ollapsed at a load of 12.4 kN (2.80 kips) after
the concrete plate deck had-crushed. All the longitudinal
ribs were severely crackéd across the center iine of the
bridge model while the transverse ribs suffered only
hairline cracks at the botfom, as shown in Fig. 7.71.

This model also exhibited a single-line crack pattern

)
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similar to that of model RCl1 (Fig. 7.69]. The theoretical
collapse load was 10.9 kN (2.45 kips). For the purpose
of comparison, results of strains at the center of the
prestressed concrete bridge moael PCl of group B are
plotted alsc in Fig. 7.70. It is observed that even for
a céntral concentrated load of more than twice the collapse
load of model RC2, the response ©f model PCL is linear with
close agreement between theory g;d experiment.

Bridge Model RC3, with a skew of 45°, was failed with
a concentrated load at center. Results for load versus
dgflection and load versus strain are presented in Fig.
7.72, showing good agreement between theory and expefiment
up to the cracking load. The measmred strains in the
transverse ribs were substantial, indicating excellent
transverse—-load distribution capability. The cracking at
the hottom of this model is shown in Fig. 7.73 with cracks
inclined to the axes of the ribs; this is due to the pre-
sence -of combined flexure and torsion, in contrast to the
rectangular models, RCl and RC2, where the cracks were
normal to the longitudinal ribs and due predominately to.
flexure. In model RC3 cracking of the concrete occurred
first, followed by vielding of the reinforcing steel at
the center of the middle longitudinal rib; with increased
load cracks progressed toward the free edges along an in-

clined line, as shown in Fig. 7.73. The model finally
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collapsed under a central concentrated load of 19.8 kN
(4.5 kips) compared to a theoretical value of 17.8 kN
(4.0 kips). The experimental crack pattern agrees well
with the assumed theoretical vield-line crack pattern

shown in Fig. 4.2.

7.3.2 Prestressed Concrete Waffle Slabs, Simply

Supported (Group B)

The post—tensioned récfangular waffle slab bridge
model PCl was loaded near the center of the edge beam to
failu}e. Results for deflection and strain, presented in
Fig. 7.74, show close correspondence between theorv and
experiment up to the cracking load. First, cracks oc—
curred under the load, followed by cracks along a curved
Eoundary as shown in Fig. 7.75. The final collapse load‘
of 26.7 kN (6.0 kips) was reached after some punching
shear failure of the flange plate deck had taken place
around the loading plate. The theoretical collapse load.
of 25.3 kN (5.69 kips) was éerived (see Appendix‘a)’
adopting the simplified yield-line crack pattern of Fig.
4.3; the closeness of the two results gives verification
t6 this assumed crack pattern. If the magnitude of the
load reguired to punch through the plate deck is added
the theoretical collapse load increases to 26.8 kN {(6.04
kips}). |

The 45° skewed post-tensioned waffle slab bridge
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nmodel PC2 was tested to failure by a concentrated load

at the ‘center. Deflection and strain results are pre-
sented in Fig. 7.76; close correspondence between theory
and experiment can be observed for loaﬁs pricor to cracking
The first crack appeared at the bottom of the central
longitudinal rib due to a concentrated load of approxi-
mately 26.6!kN (6 kiés); upon further loading large
cracks, caused by severe twisting, appeared at the top of
the deck around the obtuse corners, Fig. 7.77. The

model failed at a load of 53.8 kN (12.10 kips) precipita-
ted by punching shear failure through the concrete plate
deck: the failure crack pattern was similar to that for
model RC3, Fig. 7.73. The calculated theoretical col-
lapse load of 46.5-kN (10.44 kips) was based on the as-
sumed yield-line pattern of Fig. 4.2 which corresponds
closely to the actual failure crack pattern of the model. -
The theoretical collapse load increases to 54:6 KN

(12.27 kips) when the punching shear capacity of the

plate deck is included.

7.3.3 Continuous Prestressed Coﬁcrete wWaffle

Slabs (Group C)

The continuous rectangular post-tensioned waffle
slab bridge model PC3 supported by two interior isolated |
v

columns, was tested to failure by a two-load system, with



92

a concentrated load at the center of each span. Close
agreement is observed between the theoretical and éxperi“
mental results, as shown in Figs. 7.15 to 7.33, pribr to
éracking of the concrete. First cracks occurred around
the two column supports in the top surface of the slab
model, followed by other cracks under the applied load iﬁ’
the bottom surface of the model. Upon increasing the
loading further, the cracks propagated across the width of
the slab model through the transverse ribs. All the longi-
tudinal ribs were crackéd across the center line of each
span panel at the bottaom surface; furthermore, the top
surface of the concrete flange plate was alsc cracked
along the line connecting the two interior support columns,
as shown in Fig. 7.78. This continuous slab model exhi-
bited three single-line crack patterns parallel to the
supports, one in each span panel (positive yield-line)

and one along the line joining the two interior support
columns (négative vield-line); see Fig. 4.4.

The experimental collapse load was 108.7 XN (24 kips),
reached after punching shear failure of the plate deck had
taken place around the loading plates. The theoretical
collapse load was 109 kN (24.5 kips), derived bv adopt-
ing the simplified yield-line crack pattern of Fig. 4.4
{see Appendix B). Thé closeness\g; the theoretical and

experimental results gives verification to the assumed



93

crack pattern. The simplicity of the yield line meﬁhod
in solving a complicated problem is Qu££e evident.

The 45° skewed continuous prestressed waffle slab
bridge model PC4 was tested to failure by éwo concentrated
loads as in slab model PC3. Deflection and strain results
in the elastic stage and before cracking of the concrete
were presented earlier in Figs. 7.39 to.7.60; close cor-
respondence can be observed between the theoretical re- -
sults obtained by the finite element method and by experi-
ment. .

Experience is required with this type of structure to
predict the crack propagation and the formation of the

vield-line, since the slab is skewed 45° and supported by

two isolated staggered columns around

e center of the
slab model. Based on pasf experience and fro tudying
tﬁis slab model under different load conditions, the pro-
posed crack pattern in Fig. 4.5 is used to estimate the
theoretical collapse load. The first crack appeared at
the top surféﬁe around the two suppori columns, due to

. <§£;—concentrated loads of approximately 72 kN (16 kips):
upon further loading, cracks appeared under the two loads
at the bottom surface of the slab model (Fig. 7.79) and
extended along a path of maximum stress to the free edges
{({Fig. 7.80), lines Q'f} and fi in Fig. 4.5; upon increasing

the load further, severe cracks, due mainly to twisting,
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extended to the obtuse corners and to the center of the
slab as well as along 3/4 the lengths of lines Q'f and Ti'.
For .simplicity in design the crack pattern is assumed
along the full lengths of lines Q'f and Ti' as shown'in
Fig. 4.55 this assumption is confirmed by the progressive
failure/énalysis as will be discussed later.

The calculated theoretical collapse load of 115.7 kN
(2610 kips), which is close to the experimental fallure
load of 119 kN (26.7 kips), was derived adopting the
yvield-line cra&k pattern of Fig. 4.5, (see Appendix B).
The assumed crack pattern correspond closely to the actual
failure crack pattern of the slab model.

A summary of results for the ultimate collapse loads
as well as the central deflection corresponding to the
cracking load for the seven bridge models are presented
in Table 7.3. It can be observed that there is close
agreement between theory and experiment, and that the
prestressed concrete bridge models are much stiffer and
stronger than the reinforced concrete models. As was
mentioned earlier punching shear failure of the deck was
evident in bridge models PCl, PC2, PC3, and PC4. Punching
shear capacity is influenced bv many factors such as:

concrete area resisting punching, shape of section,

"strength of concrete, percentage of steel and the effec-

tive prestress in the steel. |
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7.4 Progressive Failure Analysis (Finite Element Method)

7.4.1 Simply ‘Supported Waffle Slabs

Figure 7.81 shows’Eﬁe\9f§;§>pr0pagation of the simply
supported rectangular reinforced concrete waffle slab (RCi)
by means of the Progressive Failure Analysis. The slab
model was subjected to a uniformly distributed load. The
first cracks aﬁpeared at the bottom surface and along the
line of symmetry of the slab model due to a uniform load
of 2.6 kN/m° (0.38 psi) as shown in Fig. 7.8la. More
cracks appeared around the center line of the slab model
upon increasing the uniform load. The final theoretical
collapse load of 5.7 kN/mz (0.82 psi) based on the
Progressive Failure Analysis is below the experimental
collapse load;of 7.6 kl‘T/m2 (1.1 psi). It can be noted
that this médel exhibited a single-line crack pattern
which is identical to thé‘b?e used in tﬁg ultimate load
method. It can also be not;d that this.slab model acts as
a wide beam under the uniform load; notice that in Fig.
7.8ia all the elements along the transverse center-line
cracked simultaneously. Figure 7.96 shows the load-
deflection relationship for the recighgulag model due to
uniform load. Close agreement ié observed between thecry

and experiment.

Pigure 7.82 shows the crack propagation of the rec-
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-
tangular slab model (RC2) due to a single concentrated

load at the center of the slab model. ~Fhe first crack
appeared directly under the load at the bottom surface .
of the &lab model due to a load of 5 kN (l.12 kip).

Upon increasing the load other elements in the region

* of the initial crack began to crack to form a single-

line crack pattern extending towards the free edges of
the model. The ultimate collapse lcad by the Progressive -
Failure Analysis is 10.3 kN (2.32 kips), which is close
to the actual failure load as well as the theoretical
ultimate load based on the yield-line theory. The com-
parison is shown in Table 7.3. Figure 7.97 shows the
load-deflection relationship for the rectangular slab N
model (RC2) due to a single concentrated load at the
center of the model. Good agreement is again cbserved
between theory and expeiiment. ’
Figure 7.83 shows the propagation of cracks in the
skew slab model (RC3)} due to a single coﬁaentrated load
applied at the center of the slab model. The first
cracks occurred at the bottom surface under a load of
17.4 kN (3.90 kips), and thev extended along a line

. e
making an angle of approximately 6/2 with the x axis,

and intersecting the two free edges. The final -crack
pattern of the model, shown in Fig. 7.83d, due to 2

load of approximately 17 kN (3.84 kips) agrees closely
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with the one derived by the vield-line analysis as shown
in Fig; 4.2. The load deflection relationship for this
- model ig shown in Fig. 7.98 and close agreement is noted
between the theoretical and experimental results.

Figure 7.84 shows the crack propagation of the rec-~
tangular prestressed waffle slab (PCl) due to'a;laterél
concentréted load applied at the center of the edge beam.
The first crack occurred at the bottom surféce under a
load of 9.6 kN (2.16 kips) and extended along the center-
line of the model; this was followed by the appearance of
another crack at the top surface of the model as showﬂ in
Fig. 7.84d. The final collapse load of 24 kN (5 4 kigs)
obtained by the Progressive Failure Analysis is in good
agreement with the actual failure load, as well as with
the collapse lcocad estimated by the yield-line analysis as
shown iq Table 7.3. Results for the load-deflection re-
lationship are presented in Fig. 7.99, and good agreement
is noted Eetween theory and experiment. /

The 45° skewed post-tensioned waffle slab model (PC2)
was tested to failure by a concentrated load at the center.
Crack propagation is presented in Fig. 7.85, and is similar
to that of the reinforced skew slab shown in Fig. 7.83.
However, Qith model PC2 the first crack occurred at a
load of 16 kN (6.6 kips) and the model failed at a load

of 28 kN (11.4 kips), which corresponds closely to the
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acéual failure load. Figure 7.100 shows the 1oad-éefle§tion
reiationship for the skew slab model due to a concentrated
load at the center; again, close agreement is shown betwéen
theory and experiment. It is observed that the maximum
central deflections of the prestressed models are ﬁu&h
smaller than the maximum central deflections of the rein-
forced concrete models. This is due to the fact that the

causes of failure in the two types are different; in the

prestressed waffle system the failure is due to crushing

~of the relatively thin concrete flange plate, while in the

reinforced waffle system failure is due to yielding of the

steel reinforcing.

7.4.2 Continuous Prestressed Waffle Slabs

Figures 7.86 to 7.90 show the crack propagation of
the rectangular prestressed continuous waffle slab (PC3)
by means of the Progressive Failure Analvsis. The first
crack appeared at the top surface around the two interior
support colurns due to two concentrated loads of approxi-
mateiy 67.5 kKN (14.96 kips) applied at the center of each
span; upon further loading further elements cracked under
the load at the bottom surface and subseqpeﬁély the crécks
extended to the free edges of the sl;p”ﬁodel. The corres-
ponding theoretical collapse load was 110 kN (24.7 kips)

/
. /
which is close to the actual failure load as well as the
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theoretical collapse load éalculated on the basis of an

assumed yield-line pattern. It can be obserﬁed that the
final crack pattern of the model corresponds closely to

the assumed yield-line crack pattern.

Figure 7.101 shows the load-deflection relationship
for the continuous rectangular prestressed slab model,
subjected to two concentrated loads, applied at the center
of each span panel. Close agreement is observed between
the theory and experiment. ‘

- Figures 7.91 to 7.95 show the crack propagation 6f
the continuous prestressed skew waffle slab model (PC4)
by means of the Progressive Failure Analysis. The first
cracks occurred at the two ipterior column supports due
to a load of 71 XN (15.84 kips); this was followed by
cracks under the two concentrated loads. Cracks were
Also formed at the top surface along the line joining the
two interior column supports, forming a negative vield line,
and intersecting the two free edées: similarly, cracks under
the loads extended at the bottom surface to form positivé
vield lines. The final cracked pattern of the model in
Fig. 7.95 closely resembles that assumed in the yield-
line analysis. The theoretical collapse load bv
Progressive Failure Analysis was 117.5 kN (26.4 kips),
which is in good agreement with that calculated using

the yield line analysis. Figure 7.102 shows the load-

- .
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deflection relationship for the skew model (PC4): close

.\ .
correspondence is shown between theory and experiment.

7.5 Effect of Rbtating the Interior-Column Line About

the Center of the Slab Bridge Model

Figure 7.54 and figs.'g.lOB to 7.105 show the de-
flection distribution for the continuous skew slab model
subjected to two concentrated loads each of 35.6 kN
{8 kips) capacitv, and applied at the center of each span
panel. Upon rotating the column-line, keeping their x
distance constant from the longitudinal center line of the
slab model, the deflection pattern changes gradually to
become almost flat at the middle of the longitudinal
center line; the central deflection of the slab model
increases from 0.05 mm (0.002 in.) to 0.127 mm (0.005 in.)
due to the increased distance between the two columns.
Figure 7.66 and Figs. 7.106 to 7.108 show the corres-—
ponding moment distribution for the same slab model. It
can be observed that the longitudinal moment decreases
whereas the transverse noment increéées. Study of these
figures indicates that the best location for the two
interior columns will be as shown in Fig. 7.106, in which
the transverse and longitudinal moments at the center of
each span panel are almost equal, i.e., both the transverse
and the longitudinal ribs.will be working effectiveiy to-

gether in carrving the load.
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7.6 Effect of Continumous Pier Line Support in a

Rectangular Slab

- 7.6.1 Rigid Pier Line Support

Figure 7.109 shows the deflection distribution for
a rectangular prestressed waffle slab due to two concen-
trated loads eaéh of 35.6 kN (8 kips) acting at the
center of each span panel. The slab is supported bv a
rigid continuous pier line support. Figure 7.110 shows
the corresponding mament distribution for the same slab.
Comparing these deflections with these in a similar slab
supported by two isolated rigid interior columns, it ‘is
noted tﬁgt the latter deflections are about 5% greater
" than the formér. The same conclusion can be drawn when
comparing the resulting moments in both slab models as

shown in Figs. 7.110 and 7.38.

Y

L

7.7 Effect of Continuous Pier £ine Support in a Skew Slab
==

7.7.1 Rigid Pier Line| Support

Figures 7.111 and %ﬁ&}/ééow the deflectian and
moment distributions, respectively, for a skew waffle slab
due to two concentrated loads applied at the center of each
span panel; the slab is supported bv a rigid continuous
pler line support. Comparing the deflection values with

those in Fig. 7.104 for a skew slab with two isolated
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rigid column supports, shows that the latter are approxi-
mately 10% greater than the former. The same observa-

tion is obtained when comparing the moment distributions

for both slabs. . .



CHAPTER VIII
SUMMARY AND CONCLUSIONSe

A study of the behaviour of reinforced and prestressed
concrete waffle slab structures, loaded to failure, has
been presented. The elastic response of such structures,
of rectangular or skew planform,’is predicted by means of
a Fourier series solﬁtion based on an orthstropic plate
theorv using realistic estimates for the orthotropic rigi-
ties. The solution is formulated by the superpoéitiOn of
results from a bending analysis to those from an in-plane
stress'analysis, and applied to single span as well as to
continuous waffle slab bridges.

The results obtained from the series solution in the
elastic range are compared with the results obtained from
a2 finite element solution; furthermore, the ultimaté col-
lapse loads of such structures arelestimated by means of
the yield-line theory.

The intermediate stage after the cracking of the
concrete and before collapse of the structure is studied =~
by means of ; progressive failure analysis using the
finite element technique. Modified flexural and tor-

sional rigidities of cracked regions are used in the

103
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analysis.
Test results were obtained from an experimental pro-

gram on seven reinforced and prestressed waffle slab

ﬁodels: Five slab models were simply supported, while
the remaining two were continuous over interior isolated
column supports. The experimental results verify and
substantiate the elastic, ultimate load and progressive
failure analysgs.

A. comparison 1s presented between the behaviour oﬁ
waffle slab structures supported on interior isolated
columns, and those supported on a continuous pier. =&
study of the effect of rotating the column supvort line
about the center of the bridge on the structural response
of a waffle slab bridge are also made.

Based on the experimental work and in conjunction
with the analytical studies undertaken, the following
conclusions can be drawn:

1. The elastic behaviour of concrete waffle slab struc-
tures can be accurately predicted by means of the
classical ortﬁofroPic plate theory.

2. The reliability of the estimates of the orthotropic
;?;xural, torsional, and axial rigidities of waffle
slab construction is confirmed.

3. A waffle slab bridge has an excellent transverse

load distribution characteristic due to its signi-
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ficant transverse and toréional rigidities.

The elastic response of a prestressed concrete
waffle slab bridge can be predicted more accurately
than a reinforced concrete one, due to the absence
of local crécking and microcraking.

tﬁe vield-line analysis is simple and reliable in
predicting the collapse load of rectangular and skew
waffle slab bridges in reinforced and prestressed
concrete construction.

Prestressed concrete waffle slab construction ‘is
much stiffer and stronger than one in reinforced
concrete, and therefore, it is well suited for use
in large-span structures, as well as in marine
structures.

A progressive failure analvsis using a finite element

.

approach, and variable rigidities is shown to predict

’ collapse loads of reinforced and prestressed waffle

slabs very close to those obtained by the vield-line
analysis.

The progressive failure analysis provides the de-
signer with reliable information regarding the ser-
viceability and ultimate limit states of reinforced

and prestressed waffle slab structures.
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FIGURE 6.19

FIGURE 6.20
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WAFFLE SLAB PC3 UNDER TWO CONCENTRATED
LOADS EACH AT THE CENTER OF EACH SPAN

WAFFLE SLAB PC4 UNDER A SINGLE CONCEN-
TRATED LOAD AT THFE CENTER OF THEE EDGE
BEAM . : .
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FIGURE 7.69 SINGLE-LINE CRACK PATTERN OF WAFFLE
SLAﬁ MODEL RC1
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FIGURE 7.71
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SINGLE-LINE CRACK PATTERN OF WAFFLE
SLABR MODEL RC2
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FIGURE 7.73
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CRACKS OF SKEW WAFFLE SLAB MODEL RC3
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FIGURE 7.75 CRACKS OF WAFFLE SLAB MODEL PCl "
DUE TO EDGE LOAD
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FIGORE 7.77 SINGLE-LINE CRACK PATTERN OF
WAFFLE SLAB MODEL PC2

FIGURE 7.78 NEGATIVE SINGLE-LINE CRACK PATTERN -
JOINING THE TWO COLUMNS IN WAFFLE
SLAB MODEL PC3



FIGURE 7.79 COMBINED FLEXURAL AND TORSIONAL
CRACKS IN WAFFLE SIAB PC4

B
FIGURE 7.80 YIELD LINE IN WAFFLE SLAB PC4
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THE DISTRIBUTION OF THE MOMENT IN RECTANGULAR SLAB WITH
CONTINUOUS PIER SUPPORTS DUE TO TWO CONCENTRATED LOADS

FIGURE 7,110
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TABLE 3.1

LIMITATIONS OF STRAND PROGRAMS

Number of nodes

Nuttber of elements (plate and
beam combined]

Half~-band width

Number of rigid boundary nodes (at
which all, or any degree of freedom

.1is restrained)

Number of elastic boundary nodes (at
which all, or any degree of freedom
is elastically restrained )

Number of material types

he)

500

900

- 114

100

100

100

YO
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TABLE 7.1

COLUMN REACTIONS DUE TO A SINGLE CONCENTRATED
LOAD 4 KIPS ACTING AT THE CENTER OF THE SPAN

-

—T
R2 RZ
v ;
Rl Rl
Rectangular Slab Skew Slab (45°)
R R R R
Method 1 2 1 . 2
(kips) (kips) | (kips]) (kips)
Influence line 1.36 1.386 0.84 1.93
Finite element '
| méthoa _ 1.35 1.35 0.73 2.10
Experiment 1.34 1.34 0.88 1.80.
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TABLE 7.2

COLUMN REACTIONS USING FINITE

ELEMENT METEOD

Rectangular Slab Skew Slab
. R R R R
P 1 2 1 2
Load Position (kips) (kips) | (kips) | (kips)
Single concentrated
load at the center 3.4 .63 3.27 .46
of the edge beam
(4 kips)
Single concentrated
load at the center 1.35 1.35 0.70 2.10
of tHe span (4 kips) )
Single c0ncentrated‘ p
load at the center
of the slab model 1.96 1.56 | 1.9 1.9
{4 kips)
© concentrated
loads, each acting '
at the center of 2.7 ?'7 2.8 2.8
the span (4 kipsl
Two concentrated
loads each acting
at the center of 6.7 1.2l 7.45 -91
the beam (4 kips)

FES
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-

CRACKED AND UNCRACKED RIGIDITIES OF

WAFFLE SLAB STRUCTURES
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APPENDIX A

1. Uncracked Rigidities of Waffle Slab

f!

_ L2
c28 = 9500 Ib/in”.

£ modulus of elasticity = 57000 / fé

. N
> = 57000 Y 9500
\_«-) . .. +
= 5.55 ¥ 10% 1b/in?
n = Poisson's ratio QE concrete
- /E_. /350 = /9500/350=0.28
| . E 6
Modular ratip of concrete (n} = EE 30 x 10 s
e ‘ c 5.55 x 10
To find the N.A.
From Figure<3.2
e = (1.5) (3} (2.5) + [(5-5)Cl}/2(1—.2782)]
x “105x3 4+ [5.5%xL/(L=-.2V8}]
_11.25 + 2.98 _ )
= T rTTgg - 1.36 in.
e = 1.36 in.
v in
Moment of inertia of rib ‘
3
_ _ 1.53x3
Ix = Iy = 1.5x3 (2.5-1. 36) -—jnr—— = 9.20 in.
Flexurai\gigidities
N
-~ _ ¢ a p) -'z'.:
D, =D+ .Eh{ex h/2) /(l'p ] + E Ix/sx

!

4

. g;\

u
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Eh3 2 2
= ————— + (By(e,~h/2)"/(1-n)} + E I_/s_

12 (1-u“)
6 ‘ 6 2 6
5.55 x 10 5.555x10°x1(1.36-.5) 5.55x10°%9 .22
= 2l 2 + 5.5 :
12(1-.278%) (1-.278%) .
_ 6 6 6
= 0.50 x 10° + 4.4526 x 10° + 9.3121 x 10 .
D. =D =14.30 x ios 1b inz/in
x v b *

. 6 6 2
(0.278) 7.3 x 10 + 1-31x10°x(1.36-.5)

D, = wp! =
L.- 7= 12 (1~.278%) (1-.278%)
= 0.278 [0.66x10° + 5.8593x10°]
= 1.40 x 106 1b. inz/in
Ler = Tyl * Tuy2 * Iyys .
. 4
I = £ X .292 x 5.5 X 13- = 0.80 in -
xyl 2
T .= .229 %3 x1.53 = 2.30 in?
Xy2: .

I_3= 4 x .8035(5.4-1)(.0314)%/3.14 = 0.0031 in?

_ (2.318 + 0.803) _ . 4

Ixyl = 0.803 58073 = 3.12 in
~ (3.121 + 2.318 + .003) _ . 4,
Total Ixy = 55 = 0.99 in /in

_ E _ 5.555x1 _ 6
Cyx T ZUIFRY T 3(TE-a7Ey 217 %10

o
]

D, = 2.1733 x 10% x*.989 = 2.15 x 10° 15.in%/in

- -
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Axial Rigidities for Plane Stress Probfém
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—

Frum El. Sebakhy (23)

1
E' = E_( Y -+
X x 1-u2

11

D

D,

D

2

33

12 .

= 5.55%10° ¢

Ax

R

1

4=

(1.5) (3)/5.5

1-.278

= 10.56%°
2

5.55%10°
.+.

_ _ 6 . 2,
= ST = 2-17x10 Iﬁfln’/ln

2

1b.in%/in

T 6
- g = 0.27g (5-555x10°)

1

(1-.278°]

for the STRAND pfogram

= E'R = 10.56x10
X

= Ejh = 1.67x10°

= E'h = 10.56x%10

_ ' 6

=gh = 2.17x10

6

6

"1b.in%/in

lb.inz/in

1b.in%/in

1b n‘/l

Rigidities ¢f Cracked SecLiOn

= 1.67

lb.inz/in

A. Cracked Section in Bogéam Surggce of Concrete

To find the N.A. in Fig. 3.2{)

de

na

.S

= K

[h + dx -dan)

: 2 2
=S, (Rd ) “/2(1-1%)

del

7

Ve

.

)

/

=10.56x10% 1b.in%/in



b

C e 2, . ‘ 3 ‘
(rx.2%) : _ _ 2 _ 2
5.4 ==~ [(4f}.0) Kd .1 - 5.5(kd "1 /2(1-.2787)

S 2_
2.98 de =0

.5089 - .16964 Rd_

2 ‘ =
Kjx -f .056921 K@x - L1707 = 0

xq = (=-0569218 + /.0032408+4x.1707)
X . -

=-+,038 in

2
I =o (xd_)3/3
cx X X
* -~ =
- 3 . 4
= 5.5(.3856)7/3 = 0.105 in
et N . 4 ‘_. ' ‘&.
Icy = 0.105 in
” 2 )
_ (1X.2°) . L2 .n. . 4 ‘ .
f{I_Sx = 5.4 —1— [3 .3856] = 1.16 in
6 0.10551
D_ = 5.55x10 [1.159545 + 1/5.5 -
oo (1-.278%) : r
= 1.285x10°% 1b.in?/in .
S 6 2, ' - S
D, = 1.285x10" 1b.in"/in &
' ‘ 6 6 .. . 2,.
D1 = .278x0.114951 x10~ = 0.031%x10° 1b.in“/in

0.0319x10° 1b.in%/in

o
I
]

Torsional Rigidities

~

. 1/2
+D2}/2DxDy

(D +Dyx+Dl

xy

(2.1494+2.l494+l.377+l.377)x106/2x /714.2647xl4.2647x1012

0.247
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1/2

o
I

(DxDY)

0.2472 / (1.285x1.285z1022
6

0.317x10% 1b.in2/in

B. .Cracked Section in Top Surface of the Concrete
To find the N.A. in Fig. 312

2
1.5(de )

.. (5:4)(.031415) (3.25-Kd_) - =0
' * 2(1-.2782)

.8128kd 2 =9
X .

0.55134-0.16964de

Kd 2 + 0.2087Kd. - .678 = 0 .
b. 4 X

-.2087 +7.0435 + 4x%.678

R4 =
X 2 . -
- T22087 * 1.6599 _ o 55s6 5o
2 K

: 1.5x.7256° |

I = == hd = 0.191

cxX :

3

I_, = (5.4)(0:031415) (3.25-.7256) % = 1.08 16.in%/in -
o 6 BN 6 .. . 2,
D = 5.55x10° [1.08+1.911/5.5 = 1.282x10° 1b.in“/in

o . -y 6 .. : 2,
D, = ' v ' -z 1.282x10° 1b.in"/in
D, = 0 |

a = .247 (from previous calculation)

D_, = .247(1.282%10°x1.282x10%) ¥ = 0.317x10% 1b.in%/in.



APPENDIX B

THEORETICAL COLLAPSE LOAD BY

YIELD~-LINE THEORY



264

APPENDIX B

CALCULATIONS OF THEORETICAL

b?LLAPSE,LOADS

All computations are performed with reference to
. 4

2 (24 mn?);

Fig. 4.1. Given data: A_ = A' = 0.0368 in
S S s

fY = 40 ksi (276 MPa); b = 42 in. (1062 mm); £ = 71.5 in.

(1816 mm); Sx = sy = 5.5 in. (140 mm); unfactored qp = 0.2

psi (1.4 kPa).

(1) Bridge Model (RCl) Subjected to Uniformly Distributed

Load: [fé = 5 ksi (34.5 Mpa]
= ' y - 3 B = . R
( From C T, or (8 fc) sty} Asfy' with 0.80 (10)

k = 0.067 in. (1.7 mm).

Therefore

m, = Asfy (lever arml/sy =-(0.0368)C40,000)(4.U - 0.625
- 0.033)/5.5
= 894 lb-in./in. (4.0 kN.m/m). From Ec. 4.10,

(2) (894)/(42)2 = 1.01 psi (7.0 kPa)

Ty
with 9y = 0.20 psi (1.4 kpPa) the net q, = 1.01 - 0.2

= 0.81 psi (5.6 kPa).

(2) Bridge Model (RC2) Subjected to Concentrated Load at

Center: [fé = 6.6 ksi (45.5 MPa)]

Here k = 0.056 in. (1.2 mm). As before, m, = Asfv

(lever arm)/sV = 896 lb-in./in. (4.0 kN.m/m). From
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(4)
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N

Eg. 4.16 with qD = 0.2 psi (1.4 kPa), Pu = 2.45 kips
(11.0 kN).

Bridge Model (RC3) Subjected to Concentrated Load at

Center: {fé = 4.7 psi (32.4 Mpa)}

| From C = T, or (0.83)(4700) (x) (5.5) = (0.0368) (40,000),

k = 0.07 in. (1.8 mm).
Therefore

m, = (0.0368] (40,000) (4.0 - 0.625 - 0.035) /5.5 =

894 1b-in./in. (4.0 kN.m/m)
and,

vmy = (0.0368) (40,000}(4.0 - 0.875 - 0.035) /5.5 = 827
lb-in./in. (3.6 kN.m/m)
Substituting in Eq. 4.15, with @ = 45°, yields Pu =

4-00 xips (17.9 kN).

Bridge Model (PCl) Subjected to Concentrated Load at

Center of Edge Beam: [£, = 7.7 ksi (53 Mpa}]

fsu-in the y-direction = 4 kips (17.80 kN); fSu in the

-

x~-direction = 2.85 kips (12.6 kN} |[NOTE: vValues of fsu

are obtained from the measured strains; if unknown, use

su

£ = 1.15 fe.] From C = T in the y-direction: 4000 =

(0.66) (7.7) (k) (5.5), k = 0.14 in. (3.6 mm); thus my =
(4000) (3.0 - 0.07)/5.5

I

2.13 kip-in./in. (9.5 kN.m/m).

The negative moment of resistance of section at rupture
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of the concrete, assuming a modulus of rupture of 400

pgi (2.76 MPa), is m, = 0.71 kip. in./in. (3.15 kN.m/m)};

2
from symmetry of section, nm, = 0.71 kip in./in. (3.15
kN.m/m). The moment of resistance of the edge beam

My = 1.5 kip. in (6.6 kN.m). Substituting in Eg. 4.22,
the coll;pse load becomes Pu = 5.69 kiﬁg (35.3 kN).
Considering the punching shear capacity cof the plate

deck, the average punching distance is assumed as 0.5k,
due to the position of the load on the bridge model, with
an effective perimeter p of 10 .in. (254 mm):; thus, R
P = (0.07) (10)(500) = 0.35 kips (I.45 kN). Therefore

the total theoretical collapse load increases to

Pu = 5.69 + 0.35 = 6.04 kips (26.8 kN}.

(5) Bridge Model (PC2) Subjected to Concentrated Load at

Centre: [fé = 8.3 ksi (57 MPal}]

fsu in the y-direction = 4 kips (17.8 kN); fsu in the
x-direction = 3.5 kips (15.6 kN}. From C = T in the
y-direction: 4000 = (0.65})(8.3) (k}(5.5), hence

k = 0.14 in. (3.6 mm); thus my = 64000)(3.0 - 0.07)/5.5
= 2.13 kip. in./in. (9.5 XN.m/m}; similarly, vm; = 1.706
kip-in./in (7.5 kN.m/m). The moment resitance ¢f the

edge beam M_ = 1.5 kip. in (6.6 kN.m). Therefore,

B
substituting in Egq. 4.13, with @ = 45°, Pu = 10.44 kips
(46.3 kN). The load reguired to punch through the

plate deck a distance of 0.14 inch (3.6 mm) is P _ =
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o

(perimeter of loading plate] (0.14) (500) = 1.83 kips
(8.2 kN). Therefore total collapse load Pu = 10.44 +

1.83 = 12.27 kips (54.6 kN).

(6) Bridge Model (PC3) Subjected to Two Concentrated Loads,

each applied at Center of Each Span Panel: fé = 8.70

ksi (60 MPa)

Area .of prestressing steel = 0.0314 in2 (20 mmz).
Maximum yield str;ss of the steel-= 178 ksi (1230 MPa)
Initial average longitudinal prestressing force =

3.3 Kips (14.7 kN).

Longitudinal prestressing force at punching{failure =
3.3 x 1.15 = 3.8 kips (l6.9kN). -

Initial average transverse prestressing force-= 3.0
kips (13.4 kN).

Transverse prestressing force at punching failure =

3 x 1.15 = 3.5 kips (156 kN)

To find the depth of stress block at ultimate load
< for +ve moment, and from C = T, from Eg. 4.1,

3.80 = (0.65)(8.70) k (5.5)

..k =0.122 in (3 mm)

-

n, = 3.8 (3.0 - 0.061)/5.5 2.03 kip.in/in (9.0 kN.m/m)

For -ve moment, and from C

it

T
3.80 = (0.65)(8.70) k (1.5)

..k =10.447 in (11.4 rm)
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L. m, = 3.8(3.19 - 0.22)/5.5 = 2.05 kip.in/in (9.1
kN.m/m) substituting in.Eg. 4.27, with My = Mé = ?D =0
P, = 12.22 kips (54.4 kN)

. . the total load = 2Pu = 24.44 kips (108.8 kN)}

Bridge Model (PC4) Subjectea to Two Concentrated Loads,

each at the center of one span: fé = 9.50 ksi (65 MPa)

Initial average longi;udinél prestressing force = 2.70
kips (12 kN}; longitudinal prestressing force at punching
failure = 2.70 x 1.15 = 3.10 kips (13.8 kN); initial
average longitudinal prestressing force = 2.90 kips (12.9
kN); lateral prestressing force at punching failure =
2.90 x 1.15 = 3.3 kips (14.8 kN). The depth of the
stress block k, from Eg. 4.1,

3.1 = (0.65)(9.5) k (5.5)

.. k =0.091 in longitudinal direction

.7. from Eqg. 4;2

my = 1.67 kips. in/in (7.43 kN.m/m)

k = 0.36 in (9 mm) ¢

m2 = 1.86 kip. in/in (8.2 kN.m/m)

Transverse Direction
-y

For tension at bottom surface vm, = 0.859 kip. in/in

(3.8 kN.m/m). For tension at top surface nm, = 1.44

kip. in/in (6.4 kN.m/m). From Fig. 4.5 and after
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determining point 0

X, = 22.0 in (.56 n) ; X, = 27.5 in (.7 m)
X3 = 13.2 in (.34 m); X, = 16.5 in (.42 m)
X; = 30.8 in (.78 m); Xg = 38.5 in (.97 m)

Substituting the assumed deflections in Eg. 4.30,
P.26 = 2 [(m1(24.75)(a/27.s'+ 5/38.51/2 . |
4 m, (24.75) (.756/22 + 1.258/30.8)/2
+ my (24.751(0.56/16.1 + 0)/2
+ m, (24.75) (,756/22 + .75§/22) /2
+ my (24.75) (0 + .58/16.1) + m,(24.75) (0 + &/27.5)
+ m,(24.75) (1.256/30.8 + .75§/22)/2
+ m,(24.75) (.758/22 + .756/13.2)/2
+ vmy (22) (0 + .58/24.75)/2
+ vmy (22) (.56/24.75 + .58/24.75)/2
+ vmy (12.17) (2} (.56/24.75) + vm, (2.75) (2} (5/24.75)
+ pm, (5.75) (.56/24.75) (2) ]
P.28 = 2 [(.77142 + .924 + .384 + .843 + .768 + .90) m,¢
£ (924 + 1.125) m8+ (.222 + .444 + 491 + .222)umy

2
+ .232 nm2]

2P = (9.184 my + 4.098 m. + ?.761 umy + .464 nmz)

. 2P = 15.337 + 7.622 + 2.371 + .668

‘The Total Load = 26 kips (115.7 kN)
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THE INPUT DATA FOR THE STRAND PROGRAM
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NOTATIONS OF STRAND PROGRAM

NFOR Input file on (disk) or tape

NPROB Number of problems -to be solved in one run

NL Results from SAAD to be kept

NSIZ Max. half-band width ..,

NAVE C\hﬁ\j Average nodal stresses from SAADS

NCEN Central element stresses reguired from
SAADS

XKEEP Element stiffnesses to be store for

future run

NDF Number of degrees. of freedom at a node

AL lLength of the bridge along X axis

BL - Bridge width along y axis

ALPHA angle of skew (anti-clockwise from X axis
NDIV Number of the divisions across the

bridge width

NEQI Are the above divisions equal

NSPAN Number of regions over the length

MDIV Number of divisions over the length of
the bridge

K Region number

NDVS Number of divisions in the region

NEQ2 Are the above divisions ecual

SL Length of the region along x axis

NBEAM Number of rows of the beam element

NPMAT Number of the type of plate matefial



“

NBMAT

IPR

GASH(I)

IG

GASH(I)

Il
Jl

I2
J2

MAIN

NST

Il
Jl

NFIX(N)

US (N, I),

r

Il
J1

X

b4
ST(I)

DX
DY
Dl
DXY

D1l
D22
D12
D33
tl

ith)
jth)
ith)
jth)

ith
jth

W
ex

Oy

Gx

-
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Number of the plate element material
Number of the types of beam material

Is the deck to be prestressed
Plate rigidities =

Material type number

Elastic constants

Starting point of plate material

Ending point of the plate material

Material type number

Number of rigidly restrained boundary
nodes :

Number of elastically restrained boundary

nodes

Grid cord. of restrained node

Plate
Banding

Specified displacement

Plane

. Stress
Specified X
Specified Y



Elastically
Il ith
Ji jth

(ST(N,I),I=b3>

NLD

Il
subtracting
NOPRINT

TLOAD
Lpa
NEEL
NHEEBE
NPL

NBEAM

Tl 1th )
J1 jth )

R(I}
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Grid Co-ord. of the restrained nobk

Stiffness for w
Stiffness for ex Bending
Stiffness for ey

-

Plane Stress

number of load cases

Load case number Load case

are results to be printed
Load case title

Number of U.D.L.

Number cof knife edge )
Number of abnormal vehicle Bending
Number of nodes loaded with

point load

Number of beam load

Plane stress

Grid Co-ord of the load case noae

Load in the w direction
Load in the @ direction
Load in the @y direction

L)
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DATA PREPARATION FQR IPUT2

Card Column
Type on Card Description

1 FORM OF QUTPUT CARD
One Card
¢
5 O - Input file for SAADS is to be
generated in formatted BCD form
_ on punch cards
1 - Input file for SAADS is to be
generated as binary file on mag-
netic tape or disc units
2 PROBLEM CARD
One card
1-5 Number of the problems to be solved
in one run \
3 TITLE CARD

One card

1-72 Title of problem

4 UNIT CARD
One card

1-72+ Description of units used in the
problem

5 MESH TYPE CARD

one card
5 O - Mesh of a parallelogram type

1 - Mesh of a circular type
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Card Column .
Type on Card T Description
2 - Mesh of a transitional spiral type
3 - Mesh of a pseudo-regular type
6 CONTROL CARD
One Card
5 Are the results from SAADS to be kept
: on a magnetic file?
g - No .
1~ Yes
6-10 Mdximum half-band width implied by
coupling the elastic boundary condi- *
tions. If there is no coupling fill
in as "zero .
15 - Are average nodal stresses reguired
from saaDS?
. -
—_ 0 - No .
/\‘—~
l - Yes )
20 Are centroidal eleﬁent stresses re-
guired from SAADS?
1l - No
Q - Yes
25 Are element stiffnesses to be stored
on a magnetic tape for future runs?
0 - No
1 - Yes
30, Number of the degreés of freedom at

A . @ node (for plane stress = 2; for
. plate bending = 3)

iontinue at Card Type 7 if the mesh is of a regular type
palallelogram, circular or transition spiral)

Continue at Card Type 10 if the mesh is of a oseudo-
regular type
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Card Column
Type on Card

Description

7
73
1-10%*
11-20%*
21-30*
7B
1-5
10

GEOMETRY CONTROL CARDS

Two cards
-

Card one

.

(a] Parallelogram type" Length of

.the bridge” side measured along the

X axis

-(b) Circular type: Angle in degrees

subtended by the bridge

(c] Transition spiral type: Length
along the inside edge of the bridge”

(al Pallellogram type: Bridgef-width
measured parallel to the Y axis

(b} Circular on transition spiral type:
Bridgef width measured along a radius

(2} Parallelogram type: Contained
angle of skew) in degrees between the
bridgef sides measured anti-clockwise
from the X axis at the origin

(0° < ® < 18Q0°)

(b} Circular type: Radius of the
inside edge of the bridge”

{c} Transition spiral type: Minimum
radius of the inside of the bridge

Card two

Number of the divisions across the
bridge” width

Are the above divisions equal? “—/f
0 - No

1 - Yes

¥ Por plane stress analysis replace 'bridge' by 'plate'



277

Card Column
Type on Card Description

11-15 Number of the regions over the length
of the bridge”

16-20- Number of the divisions over the length
- of the bridge’

8 WIDTH DIVISION CARDS

, One card per each division. These cards
are omitted if the divisions are of
equal width

T 1-10 Number of the division

«
11-29* (a) Parallelogram type: Division width
measured parallel to the ¥ axis

(b} ~Circular or transition spiral:
Division width measured along a radius

L
9 LENGTH DIVISION CARDS
This set is repeated for each region.
If the region contains equal division
widths only subset 93 is required. If
the region contains unequal divisions
subsets 9A and 9B must be specified

9a One card

1-5 ~ Number of the region. The number ing
must be from one and be sequential

6-10 - Number of the divisions in the region
, L5 Are the above divisions equal?
0 - No -
1 - Yes

lg-25* (a) Parallelogram type: Length of
the region measured along the X axis

7 For plane stress analysis replace 'bridge' by 'plate’
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Card /’Column
Type on Card

Description

9a Conéinued

16-25*
' ~
fﬁ///gé
1-10
11-20%*
Continue
10
1-5

P

/

6-10 /
\

15

i

_.subtended by the region

\ Diagonal from lmi}' Jp 'O 103

(b) Circular type: BAngle in degrees

~

(¢} Transition spiral: Length of the
region measured along the inside edge
of the bridge” ' ‘

One card for each division in the region.
This subset is omitted if the divisions
are equal

Number of the division. The numbering
rust be from one and be sequential for
each region

(a) Parallelogram type: Length of
the division measured along the X axis

(bl Circular type:
by the division

Angle subtended

®

(c}) Transition spiral: Length of the
division measured along the inside edge
of the bridge?

on Card Tvpe 12

GEOMETRY CONTROL CARD ~°
(PSEUDO - REGULAR MESH)

One card

Number of the divisions across the
width of the bridge’”

Number of the divisions over the
length of the bridgef

0 - Mesh of triangles as in Fig. 2.3(5)
n+l

l\r Mesh of triangles as in Fig. 2.3(b)

2 ; Mesh of best conditioned triangles
ShoiES?t diago?al

,
S

# For plane stress analysis replace 'bridge’ by 'plate’
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‘Card
Type

Column
on Card

_ Description

i

11

1lAa

118

12

13
13

1-10*

11-20*

21-30*

31-40*

1-10*

11-20%*

WIDTH DIVISION CARDS

Sub-sets A and B are repeated for each
j grid line (the i grid lines are not
necessarily straight)

One card '

¥ co-ordinate of starting nodal point
of’ the grid line

Y co-ordinate of starting nodal point
of the grid line

X co-ordinate of end nodal point of
the grid line

Y co-ordinate of end nodal point of

the grid line

One card for each 8 division widths
along j grid line

width of 1lst division measured along
the j grid line :

e
Width of 2nd division measured along
the j grid line, etc.

BEAM CONTROL CARD
One card

Number of rows of the beam elements

BEAM CARDS

One card for each row of the beam
elements. If the number of the rows
of the beam elements is zero these
cards are omitted

lth))Grid co-ord. of the starting
. of the row
jth)
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Card
Type

Column
on Card

Description

13

14

15

15a

Continued

11-15
16-20

21-30

31240

11-15

ith)
)
jth)

Grid co-ord of the end nodal point
of the row

Material number of the row of beam
elements

Beam load number of the row of beam
elements. A number is not assigned
if the beam is not loaded (Plate

bending onlyl

MATERIAL CONTROL CARD

One card

Number of the types of plate materials

Number of the plate element material
patches. These patches must have a
plate element material property number
assigned to them

Number of the types of beam materials

MATERIAL PROPERTY CARDS

One or two cards for each different
material property. Plate element
properties must precede beam element
properties and must be numbered in
sequence

TRIANGULAR PLATE ELEMENTS

Bending (Normal Loading) Analvsis

If only this analySLS 1s to be per-
formed (ie- plate is not to be pre-
stressed) tvpe (i) or (ii) data is
required with one card for each
material type N
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Card Column
Type on Card Description
15Aa Continued
Prestress Analysis
For the analysis of decks which are to
be prestressed some additional data
might be necessary. If the plate is
solid and isotropic only data type (i)
.is required. If, however, the plate is
voided and/or orthotropic a card (ii)
" followed by a card (iii) is required
for each type of material
Plane Stress Analvsis
For plane stress analysis one card of
type (i) or (iii} is regquired for each
type of material
15A (1] Solid, isotropic slab
(i)
1-10 Material type number
11-20%* Young's modulus
21-30* Poisson's ratio
31-40* Plate thickness
15a (1i) Voided and/or orthotropic slab
(i1} (Plate Bending)
1-190 Material type number
11-20* DX 1}
)
21-30* DY ]
) Plate rigidities
31-40* D1 )
)
41-50* DXY]
15a

(1ii)

(iii) voided and/or orthotropic slab
(Plane Stress)
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Card Column
Tvpe Cn Card Description
15A .
(iii) Continued
1-10 Material type number
11-20* D11}
1
- * B
21-30 Dzz% Elastic constants
31-40* D12}
51-60* tl The eguivalent plate thickness
15B
15B BEAM ELEMENTS
158 Bending and Prestress Analysis
(1)
One card for each material type
1-10 Material type number
11-20* Young's modulus
21-30%* second moment of area about the NA
of the beam
31-40%* Carrv-over factor for the bending
moments. This is 0.5 for constant
section beams, but varies for
haunched beams
41-50* Torsion factor gt (=3G/E)
51-60* area of cross-section. This is only
included if the structure is to be
: designed as prestressed
158 Plane Stress Analysis
(i1)
Onc card for each type of material
1-10 Material tyvpe number
11-20%* Young's modulus
21-30* Area of Cross section
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Card Column
Type on Card Description
16 PLATE MATERIAL PATCH CARDS
One card for each plate material patch
1=5 1th ; Grid co-ord of the nodal point °
6-10 : jth'j starting the patch
10-15 1th 1 crid co-ord of the nodal point
16-20 Sth ) ending the patch
21-30 Material type number of the plate
elements within the patch
17 BOUNDARY CONTROL CARD
One card
1-5 Number of rigidly restrained boundary
nodes with or without fixed displace-
pents
6-10 Nunber of elastically restrained
boundary nodes
18. . RIGIDLY RESTRAINED BOUNDARY CARDS
One card for each rigidly restrained
boundary node, in ascending nodal order.
This set is omitted if all the boundary
conditions are elastic
18 Plate Bending Analvysis
(1} ]
1-15 lth; Grid co-ord of the restrained node
6~10 jth)
13 Is the w degree of freedom restrained?

0 - No

1l - Yes
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Card Coliumn
Type on Card

Description o

18 Continued
(1)
14

15

16-25*
26—-35%*
36-45*

18
(ii)

15

16-25%*
26-30:

Note:

"0 - No

Is the ex degreé of freedom restrained?
0 - No~
1 - Yes

Is- the @V degree of freedom restrained?

1l - Yes

Specified w displacement of the node

Specified Gx displacement of the node
Specified Gy displacement of the node

Plane Stress Analysis

ith; Grid line of the restrained node
jth}

Is the X degree of freeddm restrained?
0 - No

1l - Yes

Is the Y degree of freedom restrained?

0 - No

1 - Yes

Specified X displacement of the node

Specified Y displacement of the node

The displacements can only be specified
for the rigidly restrained degrees of
freedom
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Card Column

Type on Card

Description

19
19
(1)
1-5
6~10
11-30*
31-50*
51-70%*
19
(ii)
1-5
6-10
11-30*
31-50*
20
1-5
21
1-5

ELASTICALLY RESTRAINED BOUNDARY CARDS

One card for each elastically restrained
boundary node. The nodes must be in
ascending nodal order. This set is
omitted if all the boundary conditions
are rigid.

Plate Bending Analysis

ith; Grid co-ord of the strained node
jth)

Stiffness for the w degree of freedom
Stiffness for the ex degree of freedom

Stiffness for the @v degree ©of freedom

Plane Stress Analvsis

ith)

] Griéd line of the restrained node
jth}
Stiffness in the X direction

Stiffness in the Y direction

LOAD CASE CONTROL CARD
One card

Number of load cases

LoAD CASE CARD
One card
Invad case number. The load case num-

bers must begin at one and be
sequential
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Card Column

Type on Cardf'

A
Description

21 Continuéé

10
11-78+

22

22

(1)
1-5
6-10
11-15
16-20
21-25

22

(ii)

' 1-5
6-10

23

23

(i)
1-5
6-10

Are results to be printed?
0 - Yes
1 - No

Load case title

LOAD TYPE CARD

One éafd .
A 2

Plate Bending Analysis

Number of uniformly distributed loads
Number of knife edge loads

Number of abnormal vehicles

Number of nodeé loaded with point loads

Number ©of heam locad property numbers
used in load case

Plane Stress Analysis

Number of uniformly distributed area
loads in the load case

Number of point loads in the load case

UNIFORMLY DISTRIBUTED LOAD CARDS

Plate Bending Analvsis

One card for each UDL

ith)
} Grid co-ord of the node starting
jth) the loaded area ay

T
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Card Column™~
Type on Card Description
23 Contined -
(1) _ _
11-15 lth; Grid co-~ord of the node ending
16-20 th) the loaded area
21-30~* Load per unit area
23 Plane Stress aAnalvsis
(i1}
One card for each area load ..
1=5 Y81 6rid line of the node starting .
6-10 jth) the loaded areé
11-15 lthi Grid line of the node ending
16-20 the loaded area
21-30* per it area in the X direction
31-40* Load per unit area in the Y direction
24 ENIFE EDGE LOAD CARDS
(Plate Bending Analysis Only)
One card for each knife edge load
1=5 ith) Grid co-ord of the node starting
6-10 jtn) the load
11-15 ith) Grid co-ord of the node ending
16-20 5th) Fhe load
21-30* Load per unit length along the line
acting in the z direction
31-40%* Load per unit length along the line
acting in the @x direction
41-50* Load per unit length along the line

acting in the ey direction

Note: The loads can only lie along the i or J
grid lines
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Card Column
Type on Card Description
25 ABNORMAL VEHICLE LOAD CASES
(Plate Bending Analysis Only)
Subsets A and B are repeated for each
abnormal vehicle
25A One card
1-5 Number of bogies (ie pairs of axles)
of the vehicle applied to the structure
258 One card for each bogie \\\
1=3 lth; Grid co-ord of the node starting
6-10 jth) the area in which the bogile sits
11-15 lth% Grid co-ord of the node ending
16-20 jth) the area in which the bogie sits
21-30* X co-ordinate of the centroid of the
bogie
31-40* Y co-ordinate of the centroid of thr
bogie
41-50* Angle of orientation of the bogie axles
' to the Y axis (positive clockwise)
51-60%* Axle length ie distance between the
er wheels on each axle
51-70* Load acting from each wheel of the bogie
Note: Each axle has 4 wheels and each bogie con-
sists of a pair of axles and each abnormal
vehicle may have 1 or 2 bogies
26 POINT LOAD CARDS

One card for each node loaded
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Card Column
Type on Card

Description

26 Continued

26

(1) \"\11_%/5

26
(ii)

27

1-5
5-15*

Notes: (i) Plate

Plate Bending Analvsis

ith )
) Grid co-ord of the loaded node
jth )

Ioad in the w direction
—

Lead in the ex direction

Load in the ey direction

Plane Stress Analysis

ith] )
) ‘Grid line of the node which is
jth) loaded-

Load in the X direction

Iocad in the Y direction

BEAM LOAD CARDS

(Plate Bending Analysis Only)

One card for each beam locad property
number used in the load case

Beam load propertv number
Load per unit run of the beam

BendinQ\Analysis

1. Repeat Cards Types 21 to 27 for each
load case :

2, Repeat Cards Types 3 to 27 for each
problem in“the run '

(1ii) Plane Stress Analvsis

1. Cardngypes 22 to 23 and 26 are
repeated for each leoad case

2. C

vpes 3 to 23 and 26 are

repeated for each problem in the run
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-
P

card  Column =" ©
Type on Card s Description
1 1-10 4 (F10.2F flexure cracked rigidity
. ' T in x direction
11-2Q.,- o (F10.2) flexure cracked rigidity
3] in y direction
3¢ |
- 21-30 & ; (F10.2) coupling cracked rigidity
mi . .
31-40 (F10.2) torsional cracked rigidity
41-50 (F10.2) maximum positive moment
causing cracks
51-60 T (F10.2) flexure cracked rigidity
o in x direction
g0 ' :
61-70 98| (F10.2) flexure cracked rigidity
- in v direction
mw
71-80 (F10.2) coupling cracked rigidity
- — :
2 1-10 Torsional cracked rigidity (top surface)
11-20 Maximum -ve moment causing cracks in
top surface of concrete
3 1-10 "Ultimate positive moment causing
vielding of sttel or crushing of
concrete
11-20 Ultimate negative moment causing
vielding of steel or crushing of .
concrete - B
4 10 Either leave blank or insert 1 if the
first problem to be run is of the same
type as the first problem of a previous
SAADS run on the same structure in which
the element stiffnesses were kept.
15 Either leave blank or insert 1 if the

second problem to be run is of the same ,
type as the second problem of the previous
SAADS run on the same structure in which
the element stiffnesses were kept.

¥
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Card Column
Type on Card Description
3 Continued Note: When a prestress analysis takes

vlace (using data prepared by PPUT)
two separate problems are analyzed
consecutively. The first problem
is the plate bending problem and
the second problem is the plane
stress problem for the same struc-
ture. If the element stiffnesses
are saved from a prestress analysis
they will therefore be saved in the
same order, i.e., plate bending as

problem l; plane stress as problem
2.

PO TP S
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DATA PREPARATION FOR PPUT

Step 1 CONTROL DATA

Card Columns

Type on Card _ Description
1 _ INPUT UNIT DEFINITION CARD
One Card.
5 0 - Input file for SAADS is in formatted

form on punched cards (generated by
IPUT2 or prepared by hand)

1 -~ Input file for SAADS generated by
IPUT2 is in binary form magnetic
tape or disc units.

10 1 - Enter if SAADS input file is in card

form. If not, leave blank.
2 PRESTRESSING STAGE CONTROL CARD
One Card :
1-5° Number of prestressing stages to b

analyzed in the problem.

N
Step 2 DATA FOR SAADS ON CARDS
This step is omitted if the data for SAADS is not on cards.
The data on cards which has been either generated by IPUT2 or

prepared by hand according to the SAADS input instructions is
included here.

Step 3 PLANE STRESS BOUNDARY DATA

Card Columns

Type on Card Description
3 IN-PLANE BOUNDARY CONDITIONS CONTROL CARD
One Card .
1-5 Number of ridigly restrained boundary

nodes with or without fixed displacements.
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Card Columns
Type on Card Description

3 Continued

6-10 Number of elastic boundary conditions.
4 ) IN-PLANE RIGIDLY RESTRAINED BOUNDARY
CARDS

One card for each rigidly restrained
boundary node is ascending nodal order.
This set is omitted if all the boundary
conditions are elastic.

L1=5 Boundary node number. ‘
9 Is the X degree of freedom restrained?
0o - ﬁb
1l - Yes.
- 10 Is the Y degree of freedom restrained?
¢ - No
1 - Yes.
11-30* Specified X displacement of the node.
31-50* Specified Y displacement of the node.

The displacements c¢an only be specified
for the rigidly restrained degrees of
freedon.

5 IN-PLANE ELASTICALLY RESTRAINED BOUNDARY
' CARDS

One card for each elastic boundary
stiffness in ascending nodal order of
N_ (Nr < Nc). If all the boundary

conditions are rigid then this set of
_cards is omitted.

1-5 Node number Nr'

10 - Is the stiffness at Nr in the X or Y
direction?
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Card Columns
Tvpe on Card . Description

5 Continued
10 l - means X

2 - means Y.

11-15 NodeinUmber Nc.
20 . Is the gstiffness at Nc in the X or v
direction?
. l - means X

2 - means Y.

21-30* Stiffness

r

Step 4 PRESTRESS CABLE DATA

This set of data (Card Tvpes 6-10) is repeated for each
prestressing stage.

Card Columns

Type on Card Description
6 PRESTRESSING STAGE CARD
"?ne card.
1-5 Number of prestressing stage. The pre-

stressing stage numbers must begin at
one and be seguential for each problem.

10 5::7lf_,) 0 - SAADS results will be printed

- 1 - SAADS results will not.be printed.
11-77" Title of prestressing stage.
7 ' CABLE CONTROL CARD

Cne Card.

[r
’
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Card Columns

Type ocn Card

Description

7 Continued
1-5

10

Number of cables in prestressing stage.
0 Nodal loadings will be printed.

1l Nodal loadings will not be printed.

Cards Types B-10 are repeated f£or each cable in the
prestressing stage.

8
1-5
6-10
20
30
31-40%*
9

CABLE PARAMETER CARD

One Card.

Cable Number.

Number of points along cable at which
the cable position is defined. Usually
this is the same number as the mesh
lines which are crossed by the cable.

Is the plan shape of the cable straight
or curved?

0 - means straight.
1 - means curved.

Is the elevation shape of the cable
straight?

0 - means straight.

1 - means parabolic.

*2 - means arbitrary.

Maximum effective prestressing force
in the cable.

CABLE POINT DATA

One card for each point on the cable .
whose position is to be defined.
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Card
Type

Columns
on Card

Description

9

Continued

1-10

11-20*
21-30*
31-35

Plan shape of cable

2. Straight. The end co-ordinates and
one intermediate co-ordji-
nate at each point are
entered.

b. Curved. The co-ordinates at all
the points must be given.

Elevation shape of cable

a. Straight. only cable eccCentricities
at the end points need be
'specified. The other ec~
centricities may be left
" blank.

b. Parabolie. Only eccentricities at the
end points of the para-
bolas need be stated. The
Other eccentricdities may
be left blank.

€. Arbitrary. The ecCentricities at all
the points on the cable
must be specified.

The eccentricitieg are
measured in a positive
sense downwards from the
neutral axis of the
structure.

Number assigned to the cable point. These
numbers must begin at one for each cable
and be sequential.

X co—ordinate of point if it is required.

Y co-ordinate of point if it ig required.

Adjacent finite element node to the
right of the point.
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Card Columns
Type on Card

Description

9 Continued

36-40

41-50*

51-60%

10

10A

10B

Adjacent finite element node to the left
of the point.

The right and left sense is defined by
looking along the cable from end point
one.

If the cable passes through a node point,
the left node number may be left blank.

Eccentricity of cable point.

Percentage loss of the maximum effective
pPrestressing force at the point

PARABOLIC ELEVATION CABLE DATA -

Subsets A and B are only required if
the cables have been specified as para-
bolic in elevation. Otherwise the sub-
sets are omitted.

One Card.

Number of parabolas along the cable.
One card per parabola.

Number assigned to the parabola. The
numbers must begin at one and be con-
sequential for each cable.

Starting cable point number of the
parabola.

Ending cable point number of the para-
bola. -

Maximum dip of the parabola.
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DATA PREPARATION FOR SPUT

Card Columns
Type on Card

Description

1

10

15

20

25

CONTROL CARD

One card.

Are nodal averaged or element centroidal
results from SAADS to be processed?
(see note below)

AY

1 - Nodal Averaged

0 - Element Centroidal

Are the stress field and principal stress
field of extreme fibre stresses to be
printed?

0 - Both

1 - Principal Stresses only.

Are results from SAADS for both normal

loading and prestress loading to be
processed?

0 - Both

1 - Prestress results only

Are results required at every node (or
element) or only at ranges of nodes (or
elements) or at particular nodes (or
elements) ?

0 - Results at every node (or element)

1 - Results at ranges of nodes (or
elements)

2 - Results at particular nodes (or
el ements)

Is an output tape of SPUT results
required?
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Card
Type

Columns
on Card

Description

1

2a

2b

Continued

30

1l - Yes

¢ - No

Are combined reactions to be printed?
0 - Yes

1 - No e

Note: (i) Centroidal element values
must be processed if beam
elements are present. If
plate elements only are used
then either centroidal or
or nodal averaged results
may be processed by SPUT

RESULTS CONTROL CARDS

If there is a 0 in column 20 of card
type 1 go to card type 3 otherwise one
card of type 2a + One or Two cards
tvpe 2b reguired.

Number of ranges of nodes (or elements)
or number of particular nodes (or ele-
ments) at which results to be printed.

Max. number of ranges = 15; max. no. of
particular nodes (or elements) = 30

RANGES OF NODES (or ELEMENTS)

g%art node (or element) of first range
End node (or element) of first range
Start node (or element) of second range
End node (or element) of second range
etc.

Note: This pattern is repeated up to
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Card Columns
Type on Card Descriotion

2b Continued

8 times on one card. For more than 8

ranges a second card is required. The
node or element numbers must appear in
ascending order.

PARTICULAR NODES (or ELEMENTS)

2b 1-5 First node (or element) number
6-10 Second node (or element) number
11-15 Third node (or element) number

- . etc. etc.

Note: Up to-l6 nodes (or elements may
be included on one card. For more than
16 nodes a second card is regquired. The
node or element numbers must appear in
ascending order.

3 STRESS CONTROL CARD 4

One card

1-5 Number of different allowable stresses
in slab for one load case combination.

4 MATERIAL CONTROL CARD

One card

1-5 Number of types of plate and beam
materials.

5 NCDAL OR CENTROIDAL MATERIAL PROPERTY
CARDS

One card for each nodal or centroidal
property tvpe. If nodal averaged values
are to be processed the material proper-
ties must be those at the nodal points.
If centroidal results are to be proces-
sed the properties must be those of the
element centroids.
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Card Colunns
Type on Card Description
5a PLATE PROPERTIES
One card of type (i) or (ii) for each
type of property.
S5A(L) (1} Solid or isotropic plate
1-10 Property type number
11-20* Plate thickness, t.
52 (1i) (1i} Voided and/or orthotropic plate.
1-10 Property type number
11-20%* Equivalent plate thickness, t'.
21-30%* Séction modulus per unit length of
plate for bending about the v axis
- Zx
31-40* Solid Area per unit length of plate.
for direct stress in the x direction
- Ax
41-50* Section modulus per unit length of
plate for bending about the x axis
-ZY )
S1-60%* Solid Area per unit length of plate
for direct stress in y direction
61-70* Torsion modulus per unit length of
the plate, 2
® xy
71-80* Shear area per unit length of plate
A
Xy
5B BEAM PROPERTIES ~)
1-10 Property type number
11-20* Beam section modulus
21-30* Beam X-sectional area
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Card Columns
Type on Card

Description

6

7
1-5
8
1-5
6-10
9
1-10
11-20*

-

MATERIAL ALLOCATION CARDS

One card for each nodal point or element
where the material type or allowable
stress begins, in ascending nodal or
element order. This set must start with
first node and end with the last node or
element specified.

Nodal point or element number

Property type number

Stress type number

Note: If nodal average results are to
be processed, nodal point numbers must
be specified. If centroidal values are
to be processed then the element numbers

must be given

COMBINATION CARD

One Card

Nunmber of combinations of factored load
cases to be examined

COMBINATION CASE CARD

One card

Load combination number. The load com-

binaticn numbers must begin at one and
be sequential. )

Number of load cases in the combination

ALLOWABLE STRESS CARDS

One card for each different allowable
stress type.

Allowable stress type number

Maximum allowable principal tensile
Stress /
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Card Columns
Type on Card Description
9 Continued
21-30~* Maximum allowable principal compres-—
sive stress
10 LOAD CASE CARD
One card for each load case in the com-
bination
1-5 Normal load case number or prestress
stage number
10 Is the load case due to normal locading
or prestressing?
0 - means prestressing
1 - Means normal loading
11-20%* Multiplying factor for the load case
Nete:

Card types 8, 9 and 10 are repeated for each

combination.

&
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CALIBRATION OF LOAD CELLS AND
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24 Yield stresg at 1%
elongation=24.4 kN
20 2
Area of wire = 19.6 mm
16
12
8
4

1 | | |

12 16 20 24

STRAIN (mm/mmxlo'G}
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