University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1997

New results in partition theory.

Luat. Bui
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Bui, Luat., "New results in partition theory." (1997). Electronic Theses and Dissertations. 2848.
https://scholar.uwindsor.ca/etd/2848

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F2848&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/2848?utm_source=scholar.uwindsor.ca%2Fetd%2F2848&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

NEW RESULTS

IN PARTITION THEORY

BY

LUAT BUI

A Thesis
Submitted to the Faculty of Graduate Studies and Research
through the Department of Mathematics and Statistics
in Partial Fulfillment of the Requirements for
the Degree of Master of Science at the
University of Windsor
Windsor, Ontario, Canada

1997

ivl

National Library
of Canada

Acquisitions and
Bibliographic Services
395 Wellington Street

Ottawa ON K1A ON4
Canada

Bibliothéque nationale
du Canada

Acquisitions et)
services bibliographiques
395, rue Wellington

Ottawa ON K1A ON4
Canada

Your e Votre reférence

Our file Notre reference

The author has granted a non- L’auteur a accord€ une licence non
exclusive licence allowing the exclusive permettant a la

National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-30935-5

To Chau Diep.

ABSTRACT

This thesis includes a brief review of the literature of methods of how
partition identities may be derived.

In the third and fourth chapters we introduce a totally new and different
approach in partition theory. With the use of computers we will apply the
method of sampling and simulation to estimate the number of partitions of an
integer. We give an algorithm for generating partitions so that every partition is
equally likely to be generated. We use Capture-Recapture method and an
estimation technique of Boneh, Boneh, and Caron.

In chapter five we give some new results in partition theory, using
generating functions.

The last chapter summarizes the findings of this thesis and compares

these findings with known results.

TABLE OF CONTENTS

Chapter [Introduction e, 1
Chapter II A Survey of Methods Used in Partition Theory 4
[I.A) The Method of Graphical Representation — 4
II.(i1) The Discovery Method @ e, 7
[I.(iii)) Generating Functions o, 10
Chapter [II The Capture-Recapture Method ... 16
Chapter [V Using The Estimation Function =~ ..., 26
Chapter V New Results Using Traditional Methods 29
V.(i) The Recursive Formula For P(n) @ .o, 29

V.(ii) The Number of Partitions of n Into Odd Parts,

None Greater Than2m ..., 31
Chapter VI Conclusions e, 36
References 37
Appendix A e, 38

Appendix B 41

CHAPTER I

INTRODUCTION

Partition theory is an area of additive number theory, a subject concerning the
representation of integers as sums of other integers. The general problem of the theory
may be stated as follows (Hardy and Wright, 1960).

Suppose 4 is a set of positive integers. Let n be a positive integer of the form
n =a + a, + .. + a, where m may be fixed or unrestricted and the a,’s are
taken from 4, may or may not be distinct, and their order is irrelevant. Let P(n) be the
number of such representations of n. What can we say about P(n) ? What properties
does it have ? How large is it ? Is there always at least one such representation for each
positive integer n ?

Given an integer n, let R,(n) be the total number of partitions of n restricted to
some conditions. For example, the restrictions may be that the partitions contain only
even parts, or only odd parts, or the partitions are restricted to parts that are at most k for
some integer k. or the partitions are restricted to distinct parts only. Let R,(n) be the
total number of partitions of » restricted to some other conditions. How is R;(n) related
to R:(n) ? How large is each ? And how are they related to P(n) ? These are questions
that are studied in partition theory.

[f we take the set 4 to be the set of all positive integers, with the a,’s unrestricted,
where repetitions are allowed, we have the standard definition for a partition of a positive

integer.

A partition of a nonnegative n integer is a representation of 7 as a sum of positive
integers, called summands or parts. We will denote the total number of partitions of n by
P(n). P(0) is defined to be 1.

G. W. Liebnitz (1646 - 1716) was among the first mathematicians who paid
attention in the development stages in this area of mathematics (Griffin, 1954), but the
greatest contributions in the early stages of partition theory were due to L. Euler (1707 -
1783) (according to Andrews, 1971). Over the centuries a great number of
mathematicians had devoted their time in a search for new identities in partition theory
and to find a formula for P(n). Further developments in partition theory in the early 20th

century were due to G. H. Hardy (1877 - 1947) and S. Ramanujan (1887 -1920), and in

1 T .’—"
1917 they showed that P(n) is asymptotic to NE] e ‘/j (Cohen, 1978).
n

In chapter II of this thesis we summarize some methods in which the identities in
partition theory may be derived.

In chapters [I and IV of this thesis we will suggest a new approach for estimating
P(n). Instead of searching for a formula for P(n), we will use simulation and estimation
methods to estimate the number of partitions of a given integer n. In chapter III we will
use the Capture-Recapture method and in chapter IV we will use a Prediction Function to
estimate P(n). We will not be concerned with the developments of the methods, but
rather, we will apply the methods to simulated data.

In chapter V we develop some new formulas in partition theory, using generating

functions.

Some of the books we found useful in our study of partitions include Andrews
(1971), Cohen (1978), Griffen (1954), Hardy and Wright (1954), Niven and Zuckerman

(1966), Riordan (1958) and Sloane and Plouffe (1995).

CHAPTER II

A SURVEY OF METHODS USED IN PARTITION THEORY

In this chapter we investigate three methods which can be used to derive partition
identities, the graphical representation method, the discovery method and the generating
function method. In chapter V we will use generating functions to obtain some new

identities.

IL(i) The Method of Graphical Representation

The material in this section may be found in Andrews, 1971.

A graphical representation of a partition is the representation of the partition by
horizontal dots.

Example: The graphical representations of the partitions of 5 are:

5 4+1 3+2 3+1+1

2+2+1 2+1+1+1 1+1+1+1+1

Notice that if we read the columns instead of the rows of graphical representation

we still have a partition. This gives rise to the concept of conjugate partitions.

The conjugate partition of a given partition is formed by reading the number of
dots in successive columns (instead of rows) in the graphical representation.
Example: The conjugate of the partition 5+ 4 + 1 of 10 is 3+2+2+2+1 since

the graphical representation corresponding to 5+ 4 +1 is

Observe that the conjugate of the conjugate is the partition itself.

When the partition is identical to its conjugate we say that the partition is self-
conjugate. We note that the graphical representation of a self-conjugate partition is
symmetrical about the diagonal line.

Example: the partition 5+2+1+1+1 of 10 is a self-conjugate partition since its

graphical representations are respectively

We now demonstrate some uses of the graphical representation of partitions.

Theorem 1 (Andrew, 1971): Let p, (n) denote the number of partitions of n
with at most m parts, and let 7,,(n) denote the number of partitions of n with no parts

greater than m. Then pm(n) = zm(n).

Proof: Let us consider an arbitrary partition of # in which at most m parts appear.
Then the conjugate of such a partition has no parts larger than m since there would be at
most m dots in any column of the graphical representation of the original partition.

This pairing of each partition of n of at most m parts with its conjugate, a partition
of n in which no parts are larger than m, establishes a one-to-one correspondence between
the two types of partitions. Hence, there must be the same number of each type; that is.
Pm(”) = ﬂ'm(”)- u

The following is a simple new result about self-conjugate partitions.

Property 1: Let k and n be positive integers such that k¥ =n>. Then k can be
written as a sum of two self-conjugate partitions, one with the largest part equal to n and

the other with the largest part less than or equal to n-1.

Proof: Suppose k and # are positive integers such that k =n®. Take the graphical
representation a self-conjugate partition with the largest part equal to 7 and complete the

square using dots.

Then the added dots would be symmetric about the diagonal line, thus they form a self-

conjugate partition with the largest part less than or equal to n-1. M

IL.(ii) The Discovery Method

In this section we will introduce a “discovery” method for finding partition
identities. This method is not a method of proof, rather it is a method that helps discover
partition identities (Andrews, 1971).

Let S be an initially unknown set of positive integers. Let P(S,n) denote the
number of partitions of n with each summand in S. Now, suppose D(n) is the totai
number of partitions of n with some restrictions. The objective of this discovery method
is to inductively determine whether a set S exists such that P(S,n) = D(n), and if it exists.
what properties does it have? Some of the well known identities in partition theory such
as Euler's Partition Theory Identity (the number of partitions of n into odd parts equals
the number of partitions of » into distinct parts) and the First Rogers-Ramanujan Identity
(the number of partitions of » in which any two parts differ by at least two equals the
number of partitions of n into parts congruent to either 1 or -1 modulo 5) can be
discovered by this method. We now show by example how this method works.

Let D,(n) denote the number of partitions of 7 in which any two parts differ by at
least 2 and no consecutive odd parts occur as summands. Our goal is to determine the
existence and properties of a set S, such that D,(n) = P(S,,n) for all n.

Now, since D,(/)=1, therefore leS,. Since D,(2)=1, therefore 2S5,
(otherwise we would have P(S, ,2) =2). Since D,(3) =1, therefore 3¢S, (otherwise we

would have P(S,.3)=2). Continuing in this way, the first 7 elements of S, are shown in

Table 2.1.

Table 2. I: Discovering the properties of S,

n | Di(n) | P(S,,n) | P(S, n)if| conclusion Sin{12....n}
if ne s, ngs,

1 1 1 0 lesS; {1}

2 1 2 1 2¢ S, {1}

3 1 2 1 3¢S, {1y

4 1 2 1 4eS, {n

5 2 2 1 58§, {1.5}

6 3 3 2 6€S, {1,5,6}

7 3 4 3 7eS, {1,5.6}

8 3 4 3 8e S, {1,5.,6}

9 4 4 3 9eS, {1,5,6,9}

10 5 6 5 10e S, {1,5,6,9}

11 6 7 6 1leS,; {1,5,6.9}

12 7 8 7 12¢ S, {1,5,6,9}

13 8 8 7 138, {1,5.6,9,13}

14 10 10 9 14 S, {1.5,6,9,13,14}

15 12 13 12 15¢ S, {1,5,6,9,13,14}

16 13 14 13 16¢ S, {1.5,6,9.13.14}

17 15 15 14 17€S, {1,5,6.9.13,14,17}

I[f we continue further we would see that the set S, exists and consists of exactly the
integer congruent to 1, 5 or 6 modulo 8. Thus, we may conjecture that the number of
partitions of » in which any two parts differ by at least 2 and no consecutive odd numbers

occur as parts is equal to the number of partitions of » into parts congruent to 1, 5, or 6

modulo 8.

In the above example we saw that the sets S, exists. This is not true in general. For
example. let D,(n) denote the number of partitions of » in which any two parts differ by
at least 3, by the same process as above Table 2.2 shows that there does not exist a set S,
of positive integers such that P(S,,n) = D,(n) for all n.

Table 2.2: Discovering the properties of S,

n | Di(n) | P(Ss,n) | P(S,,n) | conclusion S.N{1,2,...n}
ifnes, | ifnes,

1 1 1 0 les, {1}
2 1 2 1 2¢ S, {1}

3 1 2 1 3¢S, {1}

4 1 2 1 4¢S, {1}

5 2 2 1 Ses, {1.5}
6 2 3 2 6¢S, {1,5}
7 3 3 2 7eS, {1.5.7}
8 3 4 3 8¢S, {1,5.7}
9 4 4 3 9eS, {1,5,7.9}
10 4 6 5 777 777

Observe that on the last line of Table 2.2, P(S_»,n) #D-(n) whether 10 belongs to
S, or not. Hence, such a set does not exist.

IL.(iii) Generating Functions

The use of generating functions is a very powerful technique with numerous
applications in number theory and combinatorics. We will use techniques from this

section in chapter V. If 4 = {a;.a;,a;,...} is a sequence of real numbers, then

e0]
G(A4,x) = Ta.x" iscalled the generating function for the sequence A.
n=1

We will use G(P(n),x) to represent the generating function for {P(1), PQ2),...}.
Suppose D(n) is the number of partitions of » with some restrictions. Then we will

derote the generating function for {D(1), D(2),...} by G(D(n).x). Given a polynomial

f)=as+a;x+a,x2+.. , we will denote [x”]f(x) to be the coefficient of x” in
flx), ie., [x”]f(x) = g, . With these notations we have R(n) =[x”]G(R(n),x) and

P(n) = [x”] G(P(n),x). By manipulation and interpretation of series and product
identities, generating functions can be helpful in proving partition identities. Generating
functions are most useful for their use in determining the coefficients of x” or for getting
upper or lower bounds of the coefficients of x”?. One may also use generating functions
to arrive at the asymptotic value (if possible) of the coefficient of x”. A good example of
this application is to show that, P(n) < e3 Jn for all n (Cohen, 1978).

We shall now indicate how generating functions are created for certain types of

partitions.

Start with the identities

I+x+x2+. . =(1-x)"1,

10

1+x2+x4+...=(1—x2)-1,
1+x3+x6+...=(1—x3)—1,

and from these identities form the equation
(1 —x)—l(l —xz)—l(l —x3)_1 = (l + X+ x2 +...)(1 +x2+ x4 +...)(1 +x3+x6+...)

=1+x+x2+3x3+4x4 455476487+, .
The coefficient of x/ is 8, and Table 2.3 explains all the possibilities that result in
x’ in the product. The corresponding partition summand is indicated in brackets.

Table 2.3: all possibilities that result in x/

From the first factor From the second factor From the third factor
v/ (I+1+1+1+1+1+1) 1 !
) (1+1+1+1+1) 2 2) 1
e (1+1+1+1) 1 3 3)
3 (1+1+1) 7t (2+2) 1
%2 (1+1) 2) 3 (3)
x (1) 6 (2+2+2) 1
x (1) 1 6 (3+3)
1 e (2) x3 (1

If we associate with each of the rows in Table 2.3 a partition of 7 into ones, twos, and
threes then the total of the ones in the partition is given in brackets from the first factor,
the total of the twos is given in brackets from the second factor, and the total of the threes

is given in brackets from the third factor. Table 2.4 demonstrates this association.

11

Table 2.4: Association between the factors and the partitions of 7

Data from Table 2.3 Associate the partition The partition
%/ 1 1 seven I’s, no2’s, no 3’s I+1+1+1+1+1+1
xJ %2 1 five 1’s, one 2, no 3’s I+1+1+1+1+2
e 1 3 four 1’s, no 2’s, one 3’s 1+1+1+1+3
3 1 t three 1°s, two2’s, no3’s 1+1+1+2+2
2 %2 3 two 1’s, one 2, one 3 1+1+2+3
x %0 1 one 1, three 2’s, no 3’s 1+2+2+2
e 1] one 1, no2’s, two 3’s 1+3+3
1 <t 3 no 1’s, two2’s, one3 2+2+3

Conversely, every partition of 7 will constitute a choice for obtaining the coefficient of

x’ in the above product.

In general, the above observation is true for every integer n. Hence we may

- -1 -1
deduce that (l—x) l(1— x2) (l - x3) is the generating function for the number of

partitions of an integer » into parts no greater than 3. The generalized result may be
stated as in theorem below.

Theorem 2 (Andrews, 1971): The generating function for the number of

m N —]
partitions of an integer into parts equal to or less thanm is [] (1 -x/) .
j=1

Proof: Given an integer n, let r,,(n) denote the number of partitions of » into

parts equal to or less than m an let |x|<I. It suffices to show that
m N — o] e o} R]
I (I—xf) I 2 {n)x" for all n. Now, since X (xJ)k= - for all j =
j=1 n=0 k=0 I-xJ

1,2,...and |x|<1, therefore,

12

=(1+x+x2+...)(1+x2+x4...)...(l+x”’+x2m+...)
=m(0) + ma()x+ ma(2)x2+...

[e o]
= Yza(n)x" . u
n = 0

Now, let 4 be a set of positive integers. With slight modification of the above we
can show that the generating function for the number of partitions of an integer into parts
-1
fromAdis [l (I—xa,) :
a; € A
If we take the above set 4 to be (i) the set of all positive integers then it follows
that the generating function for the unrestricted number of partitions of an integer is
o @)
-1
GPmx)= I (1-xk)7",
k=1
(i) the set of all odd positive integers, and let O(n) denote the number of partitions of »n
into odd parts, then the generating function for O(n) is
[o0]
-1
GOmx) = T (1-x2k-1)7"
k=1

Similar 1o the above development, the coefficient of x” in the expansion of
(1+ xan)(1+ xaz)(l + xas) ... 1s exactly the number of ways n can be represented as the sum

of the a,’s where each a, appears at most once. Thus we may deduce that if D(n) denotes

the number of partitions of » into distinct parts then the generating function for D(n) is

8

GOMD = TT (1+1xk)
k=1

13

With the above results, some identities in partition theory are easily proved.
Thereom 3: the number of partitions of any integer n into odd parts equals the

number of partitions of n into distinct parts (i.e., O(n) = D(n)).

. I1-x?
proof: Consider l+x= 7 ,
-X
I-x*
[+x2 = s
1-x?
1-x6
1+x3= .
1-x3

By multiplying all the terms in the left hand side together we get the generating function
for D(n) while multiplying all the terms in the right hand side together we get the
generating function for O(n) (after cancellations), thus giving us the desired result. |
The above example is only one of the many identities in partition theory which
are proved by using generating functions. We will see another application in theorem 4.
In Andrews (1971) we find the following problem which the author stated as an
excercise. “Prove that the number of partitions of # into distinct parts congruent to 1,2, or
4 (modulo 7) is equal to the number of partitions of n into parts congruent to 1,9, or 11
(modulo 14)”. Theorem 4 is our new result which generalizes the above problem.
Theorem 4: Let q be a prime number. Let n;,n,...,n, be distinct positive
integers less than ¢ such that the set B= {keN: k=2n, (mod 2g), 1 <i <r} is contained in

the set 4 = {keN: k=n; (mod q), | <i<r}. Then the number of partitions of an integer

14

into distinct parts congruent to n;,n;,...,n, (modulo g) is equal to the number of
partitions from the set 4\B.
Proof: Let G(4,x) be the generating function for the number of partitions of an

integer into distinct parts congruent to n;,n;,...,n, (modulo q) and G(A4\B,x) be the

number of partitions into parts from the set AAB. Then G(4x) = [I (1 +xk) and

ke Ad
GuBxr= M (1-x%)7",
ke A\B
Now,
_ (1+xk)(1—xk)
G = ke N (I—xk)
k=n,,..., n,(mod q)
(Vo 3
-1
T e (1= e (=)
k=niseon(mod g) Jk=ni.ccon(mod g} J
-1
L
{keB(x) keA(x>
-1 -1
=n1_k}{nl_k.l-[l—k}
AR RGN WO
= [T I—xk) !
ke A\B

15

CHAPTER III

THE CAPTURE-RECAPTURE METHOD

Suppose we want to estimate the total population of a certain species of animal.

Assume that each member of this species is equally like to be caught. The Capture-

Recapture method works as follows (Devore, 1987).

(i)

(iii)

Let P be the unknown total population of the species.
Catch and tag M, members of the species, and put them back into the population.

Let T, be the number of tagged members of the population. Then 7, =M,. Thus,

T .
the ratio of tagged members to the total population is 7;- , where T, is known

and P is unknown.
Capture another A/, members of the population, and suppose that there are S,

tagged members among the Af,. Then, since each member is equally likely to be

T
caught, we have = FI , where = means “approximately equal”. We may

2

stop here with some terminating condition or continue with (iii), which repeats

T/ M,
Si

step (i1). Our estimate of P is

Tag all members in M, that were not previously tagged and release to the
population. Let the new total of the tagged members of the population be T.

. S.’ T’ . . T;l M
Repeat (ii) using M;, S, T» and YA = P - Our new estimate of P is S 2
3 2

Our objective is to estimate P(n). To achieve our objective, we will first generate

aset 4 of M, different random partitions of n, where each partition is equally likely to be

generated. Next, we generate another set, B, of M, different partitions of n. Use the
Capture-Recapture method on sets A and B. We either stop or continue by setting
A=AUB. To our knowledge, this method of “capturing” partitions by simulation and
storing them in a list is new. Capture-Recapture methods using simulation could have
broad application in combinatorics, when it is difficult to obtain a closed formula for a
count of a particular type and when it is difficult to find an organized counting procedure
for the item of interest. One difficulty would be the simulation to generate population
members with equally likely probabilities. We now give a brief description of how our
sets are generated, followed by some resuits after running the C program capture-

recapture.c in appendix B.

I11.(i) Algorithm to Generate Equally Likely Partitions

Given an integer n, represent n as »n separated dots, i.e.,

(ndots).

Then there are n-1 spaces between these dots. Given n, the program Capture-recapture.c
in Appendix B will randomly generate a string of n-1 zeros and ones. For simplicity.
think of a 1 at the j-th position as a vertical line drawn at the j-th space and a 0 as
meaning no line is drawn at the j-th space. Assume that & lines are drawn randomly. Let
n, be the number of dots before the first line, n, ,, be the number of dots after the last
line. Fori=2to klet n, be the number of dots between line i-1 and line i. Thus we see

thatn = n, + ... + m, is a partition of n. For example, take »=10 and assume

17

k=3 lines were randomly drawnas . .|. . .|. . .|. . . Then this would correspond

to the partition 10=2 +3 + 3 + 2.
Property I: This process does not generate equally likely partitions.

Proof: For example, with n = 8 the partition 1+1+...+1 has probability of being

!
generated equal to 2—7 since there is only one way to divide the dots which gives the
partition 1+1+...+1, which is

S 1 I (PO [I R
3
On the other hand the partition 2+3+3 has probability of being generated equal to ;—,

since there are three ways to divide the dots which yield the partition 2+3+3. They are

and L. .. |

Thus, we use an elimination process so that all partitions of n will be equally likely
generated.

Elimination process: Suppose we randomly divide the dots above and get a
partition of n. We group equal parts together, so we may write the above representation
of nasn = (r)n, + (r)n: + ... + (r,)n, , where n; appears r; times in the

partition. In our example 10 = 2+3+3+2, we would regroup this as 10 = (2)2 + (2)3.

r,!r_».’ r,.’

J
, where r= Xr,, and pick a uniform random

Next, we calculate
r.’ i= 1

18

rilra! o)l

£

number u , with u € [0,1]. If either j = | or u is less than or equal to ;
r!

we say that the partition is good and record it, otherwise we discard it and repeat the
process.

Property 2: Each partition is equally likely to be generated using the elimination
process.

Proof: Before the elimination process, the partition 1+1+...+1 has probability

/ :
on—1 of being generated.
A partition of type (r)m + (ri)n, + .. + (r,)n, has probability
l r! _ ' v .
=1\, Ir ! . i of being generated since there are Y different

arrangements of r objects with r, of type 1, ..., r, of type j. So, if we only keep a

partition of type (r)m + (rJny + .. + (r,)n, with probability

rifra! ool .) ..
; , the probability of generating a partition of type
r:
(rdm + (rdns + .+ (r)n which is not eliminated is
1 r Ir,.’r;! o,) L s, each pastition has the
= . , €eac iti as
2”—1kr1.’r3/ w1yl r! on—1 P

1
same probability of being generated and not eliminated, namely —2—’;—_—1 Since each

partition has the same probability of being generated and kept and since there are P(n)

partitions, then the probability of each partition being generated given that it is kept must

19

1
be () Of course, this means the probability that a generated partition is eliminated
n—1_
must be Z—P(n) []
on—1

Four example. suppose n=10 and the partition (2)2+2(3) was generated, then the

121
probability that this partition is accepted is 24—? = é
IIL.(ii) Algorithm to Apply the Capture-Recapture Method to

Simulated Partitions

(a) With the above method we randomly generate a set A of different partitions of n.
(b) We generate another set, B, of different partitions of n.
(c) Apply the Capture-Recapture method and either stop or set A = AUB and repeat

step (b).

The following pages show the data observed after running the C program
Capture_recapture.c in Appendix B.

For n = 10 we present the actual data produced. Initially we generate 10 distinct
partitions for set A. We generate a sample (set B) of 7 different partitions of 10 in each
sample. Then the number of matches (JANBY|) are recorded, and the set A is updated.
The estimated number of partitions, which we call E(10), is calculated after the second
simulation by using the equation E(10) =(7x | A[)/|A N B|.

Forn=6, 7, 8 and 9 we will construct the tables for the observed data.

20

Forn=10:
Simulation 1:
Initially set A is
{1+1+1+1+1+142+42, 1+1+H1+1424242, 1+1+14242+3, 1+1+1+1+2+4,
1142424242, 1+2+3+4, 242+3+3, 1+1+43+5, 4+6, 2+8)
|A[=9.
Simulation 2:
B = {1+1+143+4, 1+14+242+4, 1+1+2+3+3, 142424243, 1+2+2+5, 2+2+3+3,
1+4+5}
The new partitions are :1+1+1+3+4, 1+2+2+5, 1+142+2+4, 1+1+2+3+3,
[+2+42+2+3, 1+4+5.
The number of matches are: 1
The updated set A is:
{IF1+1+1+1+14242, 1+1+1+1+24242, 1+1+142+2+3, [+1+1+1+2+4,
I+1+242+4242 [+2+43+4, 2+2+3+3, 1+1+345, 4+6, 2+8, 1+1+1+3+4,
1424245, 141424244, 1+1+2+343, 1+24242+3, 1+4+5)
|A|=16
Simulation 3:
B = {1+1+1+1+1+142+2, 1+1+1+14+242+42, 1+1+1+1+14243, 1+1+1+1+2+4,
I+1+1+1+1+5, 1+1+142+243, 1+1+1+3+4}.
The new partitions are: 1 +1+1+1+1+5, 1+1+1+1+1+2+3

The number of matches are: 5

21

The updated set A is:

{IH1H1H1H1H10242, 141411424242, 1+14+1424243, 1+1+1+1+2+4,
I+142424242, 1424344, 242+3+3, 1+1+3+5, 4+6, 2+8, 1+1+1+3+4,
1H242+5, 141424244, 1+1+2+3+3, 142+2+42+3, 14445, [+1+1+1+1+5,
1+1+1+1+14+243}.

| A|=18.

Simulation 4:

B = {I1+1+1+1+1+142+2, 1+1+1+142+24+2, 1+1+1+1+142+43, 1+1+1+1+3+3,
1+1+14+24243, 1+14+2+2+4, 1+1+1+3+4}

The new partitions are :1+1+1+1+3+3, 1+1+1+1+1+2+3

The number of matches are: 5

E(10)=7x (18)/5=25.

The updated set A is:

{1+1+1+1+1+142+42, [+H1+1+1424242, 1+1+1+2+2+3, [+1+1+1+2+4,

I+1424242+2, 142+3+4, 2424343, 1+1+3+5, 446, 2+8, [+1+1+3+4, 1+2+2+5,

141424244, 1+14243+3, 142424243, 1+4+5, 1+1+1+1+1+5, [+1+1+1+1+2+3,

1+1+1+143+43, 1+1+1+1+14+2+3}.

[A|=20.
Simulation 5:
B = {I+1+1+1+1+1+143, [+1+1+1+1+14242, [+1+]1+1+1+243,
1+1+1+1+1+144, T+1+1+14343, 1+1+142+5, [+1+2+3+3}

The new partitions are:1+1+1+1+1+1+1+3, 1+1+1+1+1+1+4, 1+1+1+2+5

The number of matches are: 4

E(10) = 7x20/ 4 = 35.

The updated set A is:

{1+1+1+1+1+14242, 1+1+1+1424242, [+1+1424243, 1+1+1+1+2+4,
I+1+2424242, 1424344, 2424343, 1+143+5, 4+6, 2+8, 1+1+1+3+4, 1+2+2+5,
1+14242+4, 1+1+2+343, 142+2+2+3, 1+4+5, 1+1+1+1+1+5, [+1+1+1+1+2+3,
I+1+1+143+3, 1+1+1+1+14243, [+1+1+1+1+14+14+3, 1+1+1+1+1+1+4,
1+1+1+2+5}.

|A|=23.

We stop at the fourth simulation with E(10) = 35. The actual value P(10) is 42.

We may get large errors in this method if the sample size is not sufficiently large. We

present summaries of our results forn =6, 7, 8 and 9.

n=6. P6)=11. Initially, 5 different partitions of 6 are generated.
Simulation | Number of E(6) Number of Distinct
Matches Partitions Generated
1 2 25/2 8
2 4 40/4 9
3 4 45/4 10
4 4 50/4 11
5 5 11 11
n=7. P(NH=15. Initially, 5 different partitions of 7 are generated.
Simulation | Number of E(6) Number of Distinct
Matches Partitions Generated
1 1 45/4 9
2 3 45/3 11
3 4 55/4 12
4 3 60/3 14
5 5 14 14

23

n=8. P(8)=22. Initially, 5 different partitions of 8 are generated.

Simulation | Number of E(8) Number of Distinct
Matches Partitions Generated
1 3 25/3 7
2 3 35/3 9
3 3 15 11
4 1 55/1 15
5 3 25 17
n=9._PO9)=31. [nitially, 5 different partitions of 9 are generated.
Simulation | Number of E(9) Number of distinct
Matches Partitions Generated
1 1 25 9
2 2 45/2 12
3 2 60/2 15
4 4 74/4 16
5 4 80/4 17
6 3 85/3 19

We observe from the above tables that for n=6,7.8 and 9, the estimated values of
P(n) are good estimations of the actual values. We also note from the above tables that
the total number of partitions generated in all simulations exceeds the true value for P(n).
For small n, there is a good chance that all or almost all of the partitions of n are
generated during the simulations as happened in the first 3 tables for n = 6, 7 and 8. But
as n gets larger, P(n) increases exponentially (Andrew, 1971) so that it will be costly
(time-wise) to generate almost all the partitions for n.

The partitions generated in the C program Capture_recapture.c are unrestricted,
but the program could be easily modified to generate partitions of n with restrictions. For

example, if in our program we restricted the random 0-1 strings so that at most m-1 1°s

can occur for some integer m, then this would restrict our generated partitions to
partitions of n into at most m parts. It is not difficult to modify our program to put other
restrictions on the partitions that we want to generate. With this flexibility we will could
try to estimate the number of partitions of integers with restrictions (such as partitions
with at most m parts, partitions into odd/even parts, partitions into parts greater than some
positive integer k, partitions into parts less than or equal to %,...).

We have restricted our example to small values of n because of computer time
needed, because it makes it easy to compare the estimate with the true value, and because
small values of n illustrate the procedure as well as large values.

It should be noted that our method of generating equally likely partitions using a

discard procedure can be very inefficient for large values of n.

25

CHAPTER IV

THE ESTIMATION FUNCTION

The use of estimation functions gives another method to predict the unknown
population of a certain species. The method of using estimation functions also relies on
sampling with replacement, but unlike the Capture-Recapture method which requires
equally likely probabilities for each member of the species is to be captured, the
estimation function doesn’t need this condition. We use the data from the C program
Prediction.c (which is also found in appendix B) to obtain our results.

One estimator for the number of unseen members of a population was developed
by Efron & Thisted (1976). Another estimator, with additional desirable properties was
developed by Boneh, Boneh, and Caron (1997). We use this latter estimator for our
study. Briefly, their estimation function can be summarized as follows.

Suppose that in sampling with replacement of some species, we notice that there
were k repetitions of a particular captured member for £ = 1,2,.... Let N, represent the
number of distinct members of the species that were captured exactly & times and M =
max{k: N, > 0}. Then the suggested function for estimating the number of unseen

members in the population is

1) W) = DNeek — D Ne—kl+1)

k=1 k=1
By letting ¢ — o0 in ¥(1), we obtain the estimated number of the population of

the species which were not detected in the sample. Hence the estimated total population

M
is T Ni+¥(0).
k=1

The data we use for our study is simulated by the C program Prediction.c listed in
Appendix B. Given an integer » and a sample size S, this program generates S partitions
of n. keeps track of the number of distinct partitions and how many partitions of each
type were generated. The program generates each partition by first generating a string of
zeros and ones of length n-1 then converting it to a partition as in the program
Capture_recapture.c without the elimination process. Thus the partitions generated are
not equally likely.

Here are some of our results using the above prediction function.

For n = 10, our sample consists of 200 random partitions of 10 of which 35

M
distinct partitions were detected. and M = 13. Thus. X2 N.=235. The following table
k=1
summarizes this result.
n =10 and sample-size = 200.
k Ny kx N
1 13 13
2 4 8
3 2 6
4 1 4
5 3 15
6 I 6
7 2 14
8 2 16
9 0 0
10 2 20
11 1 11
12 0 0
15 1 15
19 1 19
26 1 26
27 1 27
Total 35 200

27

Letting t—o, in (1), we may approximate ¥(¢) by the first three terms in ¥(t) since

starting with the fourth term, every term is relatively small. The first three terms of ¥(t)

are I3¢~!+4e2+2e=3. Hence the number of undetected partitions in the above
sample is 4.782 + 0.541 + 0.100 = 5.432. Thus the estimated value for P(10) is 35 +
5.432 =40.432. Compared with the actual value (42), this is quite a “good” estimate for
P(10).

The next table compares the estimated values against the true values of P(n) for
n=11, 12,..., 17. The data simulated for these numbers are found in Appendix Al.
Appendix A2 contains the actual values of P(n) for n ranging from 0 to 99.

Estimated Values for P(n),n=11.12.....17

n Sample Size E(n) P(n)
11 500 53.6200 56

12 1000 74.6900 77

13 1500 95.0000 101
14 2500 130.6922 135
15 4000 173.1445 176
16 5000 223.8152 231
17 8000 283.3109 297

28

CHAPTER YV

TRADITIONAL METHODS

In this chapter we use generating functions to obtain new results in partition

theory.

V.(i) A Recursive Formula For P(n)

In this section we give a new formula for P(n).

n
Property 1: P(n)= X P(k,n—k), where P(m,n) denotes the number of partitions
k=1

of n into parts less than or equal to m, and we define P(n,0) = 1 for all ».

Proof: Recall from chapter II that

m
(i) if f(x)= Xa,xk isa polynomial in x then [x”] f(x) denotes the coefficient a,,
k=0
in f(x), and

w —
(ii) the generating function for {P(1), P(2)....,} is G{ P(n),x) = T1I (I—xk) 1.
Thus, for n>2,
P(n) = [x”]G(P(n),x) = [x”]

= :xn(1+x+x2+---)(1+x2+x4+---)---(1+x”_1+x2("—1)+---)(1+x”+---)---

= ix” (1+x+x2+-~-)(1+x2+x4+---)---(1+x”—1+x2(”°1)+---)(1+xn)

= :x” (1+x+x2+---)(1+x2+x4+---)---(1+x"—2+---)(1+x”_I)(1+xn)

29

= :x”](1+x+x2+---)(1+x2+x4+---)°--(1+x”‘2+---)(1+x”‘1+x")

= ix”]{ (1+x+x2+---)(1+x2+x4+---)---(1+xn_2+x2(”‘2)+---) }+1+

-l T (r-e0) o2

= P(n=2.n)+2, (1)
Now, P(m,n) = The number of partitions of n with every part < m
= the number of partitions of » with every part < m- |
+ the number of partitions of # with every part < m and m must occur
= P(m-In)+ P(mpn-m) e, 2)
Thus, by (2), we have, for n>2,
P(n-2,n) = P(n-3,n) + P(n-2,2)

= P(n-4,n) + P(n-3,2) + P(n-2,n)

=P(l,n) + P(2,n-2) + P2,n) + ... +P(n-2,2)
= P(1,n-1)+ P(2,n-2) + P(2,n) + ... +P(n-2,2)
Substitute this into (1) to get
P(n)= P(l,n-1)+ P(2,n-2) +... + P(n-22)+ 1 + |

or

P(n)=
k

N M

P(k,n-k), since P(n-1,1) = P(0,n-1) = 1 for n21. (]
1

30

V.(ii) The Number of Partitions of » Into Odd Parts,

None of Which Greater Than 2m

In this section we prove that the number of partitions of n into odd parts less than
or equal to 2m is equal to the number of partitions of » into distinct parts from the set
{1.2....2m,2m+2,2m+4,....4m,4m+4 4m+8,... .8m.8m+8,...} .

Lemma I: Given me N,

() ()

let P, = M (r+xk)p M (1-xk)p iz
k>2m k>2m
Lk 50m0d(2i—1) ks.?"'lmod(?))
Then
P, =3 0 (1+xK)pp. v izl
2m<k<2d+im
| k= 0mod 2i) J
Proof: Note that
3) for >1, k sOmod(zi‘ 1)iffeither k EOmod(zi) or k 52[_1 mod(zi)
@) O (1-x2k)p = 0 (1-xk)y
k>2'm k>2*t1m
\lcs.?'-_lmod(?.) ~k52’.mod(2"+l) J
(5) {k:k>2'm, k =0mod(2%)}

31

by (3)

={2im<k<2i*lm : kEOmod(zi)}u{k>2i+1m : kaOmod(zi)}.

. (1+xk)
k>2'm

& = 0 mod 2~ 1)

{ o

(1+xk)
k>2m

P9 [T

k>2'm
| =201 mod(2)

I

k>2im

(1+xk)

\k =0 mod(Zi)

1 I

k>2'm
Lk = Omod(Zi)]

vV

(1+xk)

) [1

k>2m

(1+xk)

) Lk =20~ mod(i)

(1-x4)

-V

I

k>2'm

) ~lc =2i- lmod(zi)

) H' (I—ka)?
k>2m
& = 2= L mod] 2i)
W
I (1-xk)r by (@)
k>2*tm

kk =0 mod(Zi)

1 [1
2m<k<2itip

{ k= 0mod(2i)

(1+xk)

J L Ezimod(2i+1)

S §|

k>2i+m
|« =0 mod(27)

(1+xk)

J

I

k>2*t m

) & EZimod(2i+l)

Observe that the last two terms in the above expression give P,.,.

32

(1-<4

(1-=k)¢,

by (5).

Therefore, forall i € N we have

P, = : IO (1+xK)¢ P..,, as required. =
2im<k<2i+ly
| kEOmod(Zi))
Lemma 2: Let 4, = I1 (1+xk). Then
2Im<kszl+lm
k=0mo Zi)

[x"] P, = [x"](A,- A ..) forall i

i
Proof: Let’s look at the recurrence relation P, = J I1 (1 +xk) PPy
2m<k<2itim
{ k =0 mo Zi))

Then we have
P.=A4P. = A AP . =(Ai At we Aie))Pieyey , j€N.
Thus, given n € N, we can choose je N such that the exponents of x in P,.,., are all
greater than n. Hence lemma 2 is proved. ®
Letm € N,and let 2, ={ 1,2,...2m,2m+2,2m +4,..,4m,4m+ 4, 4m + 8, e}
Proposition 3: The number of partitions of n into odd parts, none of which
greater than 2m equals the number of partitions of n into distinct parts from £2,,.

Proof: Let ,,(n) be the number of partitions of n into odd parts, none of which

greater than 2m. Then its generating function is

(1-x2k-1)7,
I

G (¢3,,,(n) ,X) =

=3

k

33

Let G(.Q,,,,x) denote the generating function for the number of partitions of n

into distinct parts from () . Without loss of generality, it suffices to show

[x”]G(¢zm(n).x) = [x”]G(.Q,,.,x) v n.

(e B
=8

Consider
(l_xzk—l)_l ={ (,_xzk-1)‘1H ﬁ (,_ka-l)}
k=1 k=m+1

by Theorem 3, chapter II,

k=1

]
B (] T (1+xk)}J N (et}

k=1 k=2m+1 k>2m
k =1 mod|(2)
Now, ﬁ (1+xk) =J [1 (1+xk) Il (1+xk))
k=2m+1 k>2m k>2m
k =0 mod|2) } lk = I mod(2)
Therefore,
[] 1 (|
; 20
[1 (1+xk) I1 (I—xk) = 1+x)
k=2m+1 k>2m k>2m k>7m
k =1mod|2) Lk = 0 mod(2) k =1 mod|(2)
[] { 1 (
= 1+x J 1+xk) ﬁ [T (1—x2k)
2m<k<4m lc>4m k>2m
k =0 mod(2) tk =0 mod|2) Lk = 1 mod|(2)

34

(1 1

=‘ 11 (IHI‘)H 1+x JJ r (7
2m<k<dm k>4m k>4m
k =0 mod|(2) k =0 mod|2) [k =2 mod(4)

Substituting (7) into (6) gives

I@I (I—ka'I)_I

k=1

(1 1

2m
= I (l+x) ‘ 1+x H 1+x H l
k=1 2m<k<4m k>4m k>4m

k =0 mod|2) k =0 mod(2) k =2 mod({4)

Now, givenn € N, 3 j € N, such that

(|
[x] H (1 x2k— 1 []{k 11+xk)H2m<[l;[<4m(1+xk)LP,,byLemmal
k =0 mod(2)

(]

=[xn] 21_'In (I+xk) x { I (1+xk) L[Az A;...], by Lemma 2

2m<k<4m
k =0 mod|(2)

=[x"]{[(l+x)(l+x2)---(1+,1r2"’)][(1+x2”'+ 7)(1+x--"”“"’) (I+x4'")] [(1+x4’"+4)---(1+x8'”)] }

[] Gi\nR . This completes our proof. n

35

CHAPTER VI

CONCLUSIONS

In chapter III we gave a new method for estimating the number of partitions of an
integer. In our examples in chapter III we only worked with unrestricted partitions, but
as stated earlier, we could easily modify our C programs to estimate restricted partitions.

In chapter IV, we used an estimation technique developed by Boneh, Boneh, and
Caron (1997) to obtain estimates of P(n).

In chapter V we proved some new results using generating functions. The first
result was a recursive formula for P(n) and the second result showed that the number of
partitions of an integer n into odd parts less than or equal to 2m is equal to the number of
partitions of n into distinct parts from the set {1,2,..2m2m+22m+4,... 4m4m+4,
4m+8,...,8m,...}.

Thus, we have proved some new results using traditional methods and developed
a new method (as applied to partition theory) to estimate the number of partitions.

Outside this thesis, a webpage for partition theory has been prepared by the author

with URL http://www2.uwindsor.ca/~bui2/index.html.

36

REFERENCES

Andrews, G. E. Number Theory. W. B. Saunders Company (1971).

Boneh, S. Boneh, A. & Caron, R. J. Estimating The Prediction Function And The
Number of Unseen Species In Sampling With Replacement. To be appear in the JASA in
1997.

Cohen, D. I. A. Basic Techniques in Combinatorial Theory. John Wiley & Sons Inc.
(1978).

Devore, J. L. Probability and Statistics for Engineering and the Sciences. Wadsworth,
Inc (1987).

Griffin, H. Elementary Theory of Numbers. McGraw-Hill Book Company. Inc (1954),
pp 190 - 193.

Hardy, G. H. & Wright, E. M. An Introduction to The Theory of Numbers. Oxford
University Press (1960).

Niven, A & Zuckerman, H. S . An Introduction to The Theory of Numbers. John Wiley
& Sons Inc. (1966).

Riordan, J. An Introduction to Combinatorial Analysis. John Wiley & Sons Inc (1958).
Sloane N. J. A. & Plouffe. S. The Encyclopedia of Integer Sequences. Academic Press

Inc. (1995).

37

APPENDIX A

(A1) Data To Be Used With The Prediction Function.
n=11 =12 n=13
k Ak k ny k Nk k ni k Mk k ni
1 8 8 1 10 10 1 13 13
2 5 10 2 6 12 2 9 18
3 6 18 3 4 12 3 2 6
4 3 12 4 6 24 4 6 24
5 5 25 5 0 0 5 5 25
k5 23 427 k5 44 942 k5 54 1414
Total 50 500 Total 70 1000 Total 89 1500
n=14 n=15 n=16
k Mk k ni ni ny kny k i kny
1 14 14 1 19 19 1 30 30
2 14 28 2 29 58 2 32 64
3 13 39 3 9 27 3 9 27
4 8 32 4 8 32 4 11 44
5 4 20 5 3 15 5 7 35
k5 70 2367 k5 104 3849 k5 119 4800
Total 123 2500 Total 264 4000 Total 208 5000

38

n=17

k Ni k Nk

1 41 41
2 24 48
3 16 48
4 10 40
5 14 70

k5 159 7753
Total 264 8000

(A2) Table for the number of partitions of n forn=0.1.....99.

n=10m+k.

km| 0 1 2 3 4

0 1 42 627 5604 37338
1 1 56 792 6842 44583
77 1002 8349 53174
101 1255 10143 63261
5 135 1575 12310 75175
7 176 1958 14883 89134
11 231 2436 17977 105558
297 3010 21637 124754
22 385 3718 26015 147273
30 490 4565 31185 173525

8]

B VS N O]
W

O 00 N O W
W

39

k m b) 6 7 8 9
0 204226 966467 4087968 15796476 56634173
1 239943 1121505 4697205 18004327 64112359
2 281589 1300156 5392783 20506255 72533807
3 329931 1505499 6185689 23338469 82010177
4 386155 1741630 7089500 26543660 92669720
5 451276 2012558 8118264 30167357 104651419
6 526823 2323520 9289091 34262962 118114304
7 614154 2679689 10618963 38887673 133230930
8 715220 3087735 12132164 44108109 150198136
9 831820 3554345 13848650 49995925 169229875

40

APPENDIX B

(B1)

Program Capture_recapture.c

#include <limits.h>

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <string.h>

#include <math.h>

#include <stdio.h>

int partition_length(int [], int);

int *string_to_partition(int *, int);
int add_array(int [], int);

float

factorial(long int);

int compare_array(int [], int []);

float

array_prob(int []);

int main(void)

{

int a[1000][1000], b[1000][1000], c[1000][1000], length_a[1000],
length_b[1000], temp_a[1000], temp_b[1000], string_a[1000], string_b[1000],
i,
update[1000], match_array[1000][1000], row_sum[1000], match[1000],
num_catches, catch[1000], row_a, row_b, old_set_1;
set_1, m, nl, n, track_a, track_b, k, k1, I, index, sum, j, i, il, i2, i3, number, temp.
count;

float rand_test, rand_test_2, test_value_a, rand_num_a, rand_num_b,
rand num b 2,
rand_test b_2,rl, 2, rand_num_a 2, test_value_a_2, test_value b,
test_value b 2;
time tt;
printf(" enter the number to be partitioned : ");
scanf("%d", &number);
printf("enter the number of partitions in set_1: ");
scanf("%d", &set_1);
/* PRODUCE A[1][i] */
srand((unsigned) time(&t));
test_value a = 1.50;
while(test_value_a > 1)
{ track a=1;
for (11=0; il < number - 1; il++)
{ string_a[il] = rand() %2; }
string_a[number-1] = I;

41

length_a[1] = partition_length(string_a, number);
for(j =0; j <length_a[l]; j++)
{ ttt = string_to_partition(string_a, number);
temp_a[j+1] = ttt[j];
} temp_a[0] = length_a[l1];
rl =rand() % LONG_MAX;
rand_num_a=rl /LONG_MAX;
if(array_prob(temp_a) > rand_num _a)
test_value_a=0;
else
test_value_a=2;
} /* end first while loop */
for(il =0;il <= length_a[l];il++)
{ a[track_a][il] =temp a[il]; }
/* END PROCEDURE array a[1][*] */

/* PRODUCE SET_A */
for(i2 =2;i2 <=set_1; i2++)
{ rand_test_2 = 2;
while(rand_test 2> 1)
{ for (11=0; il < number - 1; i1++)

{ string_a[il] = rand() %2; }
string_afnumber-1] = 1;
length_a[i2] = partition_length(string_a, number);
for(m=0; m < length_a[i2]; m++)
{ ttt = string_to_partition(string_a, number);
c[i2][m+1] = ut[m];
y c[i2][0] = length_ali2];
/* ELIMINATION PROCESS */
13=1;
nl =0;
while(i3 <i2)
{ if(compare_array(c[i2], a[i3]) ==0)

{ 3=i3+1;
nl =0;
} else
{ i3 =12;
nl =1;
i
!
if(nl =1)
{ rand test 2 =2; } else

{ r2 =rand() %LONG_MAX;
rand num_a_2=r2/LONG_MAX;
rand_test_2 =rand_num_a_2 / array_prob(c{i2]);

42

}
for(count = 0; count <= length_a[i2]; count++)
{ a[i2]}[count] = c[i2][count]; }

printf("enter the number of catches >");
scanf("%d", &num_catches);
for(k = 1; k <num_catches +1; k++)

{

printf("enter how many partitions in this catch ? >");
scanf("%d", &catch[k]);

test_value b =1.50;

while(test_value b > 1)

{ track_b=1;
for (11=0; il <number - 1;il++)
{ string_b[i1] = rand() %2; }

string_b[number-1] = 1;

length_b[1] = partition_length(string_b, number);

for(m=0; m < length_b[1]; m++)

{ ttt = string_to_partition(string_b, number);
temp_b[m+1] = tttfm];

} temp_b[0] = length b[1];

rl =rand() % LONG_MAX,;

rand_num_b =rl / LONG_MAX;

if(array_prob(temp_b) > rand_num_b)

{ test_value_b =0; } else

{ test_value b=2; }

} /* end while loop */

for(il = 0; il <= length_b[1]; il++)
{ b[1][il] = temp_bl[il]; !
/* END PROCEDURE array b[1][*] */

/* PRODUCE SET_B */
for(i2= 2; i2 <= catch[k]; i2++)
{ rand_test_ b_2=2;
while(rand_test b 2> 1)
{ for (11=0; il <number - 1; il++)

{ string_b[il] = rand() %2; }
string_b[number-1] = 1;
length_b[i2] = partition_length(string_b, number);
for(m=0; m < length_b[i2]; m++)
{ ttt = string_to_partition(string_b, number);
c[i2][m+1] = ttt[m];
} c[i2][0] = length_b[i2];

/* ELIMINATION PROCESS */
13=1;
nl =0;

43

while(13 <i2)
{ if(compare_array(c[i2], b[i3]) ==10)
{ i3=i3+1;

nl =0;
} else
{ 13 =12:
nl =1;
h
b
if(nl=1)
{ rand_test_ b 2 =2; } else

{ r2 =rand() %LONG_MAX;

rand_num_b_2 =r2/LONG MAX;

rand_test_b_2 =rand_num_b_2/array_prob(c[i2]);
}

1
f

for(count = 0; count <= length_b[i2]; count++)
{ b[i2][count] = c[i2][count]; }
}
/* UPDATE SET A */
index = 0;
for(1=1; i <= catch[k]; i++)
{ j=1; count=0;
while(j <=set 1)

s
§

1f(compare_array(b[i], a[j]) ==0)
{ j++; count++; } else
{ j=set_1+1:}
;
if(count ==set_1)
{ update[index] = i;
index++;
}
H
if(index>0)
{ for(m = 0; m < index; m++)
{ for(1 = 0; | <= b[update[m]][0]; I++)
{ afset_1 + m + 1][1] = b[update[m]][l];
}
}
} old_set 1 =set 1;
set_1 =set_1 + index;
printf("\nthe number of elements in the updated set A is: ");
printf("%d", set_1);
printf("\nthe number of non_matches were : ");

44

printf("%d", index);

printf(*\nour estimate is :”);

printf(“%f”, (catch[k]*old_set_1)/index);

printf("\n");

}

return(0);

/* END MAIN PROGRAM */

}

/* FUNCTION: COMPARE_ARRAY */

/* Returns 1 if the arrays are the same, 0 if they are different
int compare_array(int array_x[], int array y[])

{

int min_length;

int e;
if(array_x[0] <= array_y[0])
{ min_length = array x[0]; } else
{ min_length = array y[0]; }
e=0;
while(e <= min_length)
{ if(array_x[e] == array_y[e])
{ e++; |} else
{ e =min_length + 10; }
}
if(e = min_length+ 1)
{ return(l); } else
{ return(0); }
H
/* FUNCTION: FACTORIAL */
/* Returns the factorial of an integer */
float factorial(long int c3)
{
if(c3<=1)
return(1);
else
return(¢3 * factorial(¢3 - 1));
}
/* FUNCTION ARRAY_PROB */
/* Returns the probability that a partition is accepted */
float array _prob(int x1[])
{
long int y2[100];
long int arr_ele_fac;
int c5;
long int z3;

45

*/

b
Ad
/¥

long int z4;
x1[x1[0]+1] = 0;

z3=0;

y2[z3] = I;

z4=2;

while(z4 <=x1[0] + 1)
{

if(x1[z4] =x1[z4 - 1])

{

[}
y2[z3] =y2[23] + 1;
z4=2z4 +1;

} else

N

z3=23 + 1;
z4=274 + 1;
y2[23] = ;
}
!
arr_ele fac=1;
c5S=0;
while(¢S <=23)
{
arr_ele_fac = arr_ele_fac * factorial(y2[c5]);
cS=c5+1;
!
if((arr_ele_fac / factorial(x1[0])) =1)
{ return(2); }
else
{ return(arr_ele_fac / factorial(x1[0])); }

FUNCTION: ADD ARRAY */
Returns the sum of the elements in an array */

int add_array(int array1[], int c6)

{

int c7;
int array_sum;
if(c6=1)
{ array_sum = array 1[0]; }
else
{ array_sum = 0,
c7=0;
while(c7 <c6)
{
array_sum = array_sum + array1{c7];
c7=c7+1;
}

46

}

return(array_sum);

}
/* FUNCTION: LENGTH OF PARTITION */
/* Returns the number of parts in a partition =~ */
int partition_length(int string_ [], int string_length)
{ int length;
intc_x;
length = 0;
for(c_x = 0; c_x < string_length; ¢_x++)
{ if (string_[c_ x]=1)
length++;
}
return(length);
h
/* FUNCTION: STRING_TO_PARTITION */
* Converts a 0’s and 1’s string into a partition */
int *string_to_partition(int *x, int k)
{ intc_I;
intc 2;
int length_t;
int sum;
int tt[100];
intc_3;
intc_4;
int ttemp;
int yy[100];
length t=0;
sum = [;
for(c_1=0;c_1 <k;c_l1++)
{
if(xfc_1]1==0)
{ sum-++; }
else
{ tt{length_t] = sum;
length_t ++;
sum = 1;
;
}

for(c_3 =0; c_3 <length_t; c_3++)
{ for(c_4=c_3 +1; c_4 <length_t; c_4-++)
{ while(tt[c_4] > tt[c_3])
{ ttemp = tt[c_4];
ttfc_4] =tt[c_3];
tt[c_3] = ttemp;

47

]
i1

/*

/*

}
}
yy[c_3] =tt[c_3];
h
for(c_2=0;c_2 <length t; c_2++)

{ return(yy); }
END ALL FUNCTIONS */
PROGRAM ENDS */

48

(B2) Program Prediction.c

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <string.h>

#include <math.h>

#include <stdio.h>

int add_array(int] , int);

int compare_array(int [], int [], int, int);

int main(void)

{ int a[1000][1000], length[1000], new[1000], string[1000],

match{1000][1000], total[10001], j1, set_size, i, k, m, n, sum, j, il,
index, index_t, number, temp, count, number_sets, test[1000], row

time_tt;
printf(" enter the number to be partitioned > ");
scanf("%d", &number);
printf("enter the number of partitions > ");
scanf("%d", &set_size);
printf{"\n");
srand((unsigned) time(&t));
for(i=1;1<set size + 1;i++)

{
for(k = 0; k < number - 1; k++)
{ string[k] = rand() %2; }
string[number-1] = ;
length[i] = 0;
sum = [;
for(j1=0; j1 < number; j1++)
{
if(string[jl]==0)
{ sum = sum + ; H
else
{ new[length[i]] = sum;
length[i]++;
sum = [;
}
}
for(m=0; m < length[i]; m++)
{

for(n=m+1; n < length[i]; n++)

{

while(new{n] < new[m])

{

temp = new[n];

49

new[n] = new[m];
new[m] = temp;

!
s

}
a[i][m] = new[m];
H
!
for(row = 2; row <set_size + I; row++)
{
match[l][row 2] = compare_array(a[1], a[row], length[1], length[row]);
} total[1] = add_array(match[1], set_size - 1);
printf(" there were ");
printf("%d", total[1] + 1);
printf(" partitions of type n_1...");
for(j1 = 0;j1 <length[1]; j1 ++)
{ printf("%d", a[1][j1]);
printf("+");
b printf("\n");
index = 2;
index_t =index - 1;
count = 2;
while(count < set_size)
{
for(il = 1;1l <count; il++)
{
test[il - 1] = compare_array(a[count], a[il],length[count],length[il]);
b
if(add_array(test. count - 1) !1=0)
{ count =count + [;
}
else

t
for(m = count + 1; m <set_size + I; m ++)
{
match[index][m - count - 1] = compare_array(a[count], a[m],length[count],
length[m]);
}
total[index] = add_array(match[index], set_size - count);
count =count + 1;
printf(" there were "),
printf("%d", total[index] + 1);
printf(" partitions of type n_");
printf("%d", index);
printf("\n");
forG1 =0; j1 < length{count - 1]; j1 ++)

50

{ printf("%d". a[count - 1][j1]);
printf("+");
} printf("\n");
index++;
J
}

for(row = 1; row < set_size ; row++)
{
match(fset_size][row - 1] = compare_array(a[set_size], a[row],
length[set_size], length[row]);
b
total[index] = add_array(match(set_size], set_size -1);
if(total[index] = 0)
{
printf(" there were ");
printf("%d", total[index] + 1);
printf(" partitions of type n_");
printf("%d", index);
printf("...");
for(jl =0; j1 <length[index]; jl1 ++)
{ printf("%d", a[index][j1]);
printf("+");
} printf("\n");
} printf("\n");
return(0);
/* END MAIN PROGRAM */
H
/* FUNCTION : COMPARE_ARRAY */
int compare_array(int x[], int y[], int c1, int c2)

{
int z;
int hit;
if(cl!=c2)
{ return(0); h
else
{ hit=1;
for(z=0;z<cl; z++)
{
if(x[z] = y[z])
hit = hit * hit;
else
hit = hit * 0;

51

}
return(hit);
!
/* FUNCTION ADD _ARRAY */
int add_array(int array1[], int c6)
{ int c7;
int array _sum;
if(c6=1)
{ array_sum = array 1[0]; }
else
{ array_sum = 0;
c7=0;
while(¢7 <c6)
{
array_sum = array_sum + arrayl[c7];
c7=c7+1;
}
}
return(array_sum);

}

52

IMAGE EVALUATION
TEST TARGET (QA-3)

e
\\.\AU /// A.A.A.A.
REEED ///c,\\ ¢
A%
A
A/q
m m_ m— m— T mmmn
i EEERPITS M.l"l_____ :om g M.__.ﬂ__m__.hr__.m
S EEN 3
— v
_y \
RE S .
4
"
Q \N&% &

© 1993. Applied image. Inc., All Rights R

	New results in partition theory.
	Recommended Citation

	tmp.1363898525.pdf._UQ7N

