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Abstract

A kernel has been developed to enable the construction of distributed and parallel software
for sequential, distributed, and parallel (virtual) machines. Additionally, a simple graphical
user interface is provided to demonstrate two example programs written using the developed
kernel. The example programs, although simple, sufficiently demonstrate that the resulting
kernel design can be used to construct and deploy a complete distributed and parallel (virtual)
machine. The kernel as developed in this thesis serves as a proof-of-concept prototype based

on an underlving abstract design.
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Document Conventions Used in this Thesis

It was necessary to adopt some writing conventions in this thesis to remain terse and
succinctly communicate with the reader. The constant-width typeface Letter Gothic is used for
source code, class hierarchy definitions, class and method names, or, for references to terms

in a specific computer programming language or pseudocode. Usually such text is indented:

public interface AnExamplelnterface

{

Object getProperty();

void setProperty{(Object anObject);

boolean isNull();
However at times it is necessary to use source code, class and method names, references to
programming language terms, and/or pseudocode within the thesis body text proper. When
such is employed, these items always appear in the Letter Gothic typeface. For e.g., “An
IteratorforémptyContainer represents a zero-length sequence.” The term IteratorforEmptyContainer
is a Java class that is defined in this thesis (see page 74 for the complete text). All of the

remaining text is presented in the proportionately spaced, serif typeface of Classical

Garamond having standard English-language semantics.
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CHAPTER 1.
Introduction

1.1. Purpose of the Thesis

The focus of this thesis aims to partially solve the following problem: “How can one design
and implement a computing system that minimizes the work in designing, implementing, and
maintaining any computing system including itself>” Such a system, if indeed one exists,
would be of enormous benefit to not just computer scientists, but, also to society as a whole,
for computing systems are ubiquitous in society. For example, corporations are systems that
compute, i.e., manufacture and produce products and services; personal computers compute
the execution of various softwares; schools compute the dissemination of knowledge and
skills; etc. Essentially, a computing system is a group of interacting entities that perform some
specific task and therefore may require some set of inputs and may produce some set of

outputs.

From the perspective of a philosopher or scientist, a computing system can be said to be a
machine that performs some set of tasks requiring some kinds of input which produces some
types of output. Each task merely computes something, which includes “nothing”, by some
unspecified means. If the task is being performed by a computer, then it is likely a function,
procedure, or a relational operator. If the task is being performed by a human, then it could
also be theorem proving, modelling, walking, enjoying music, etc. as appropriate in a given
situation. Each task found within a computing system, may interact, forming a network with
other tasks in order to “compute” what the computing system must. Since a computing system
is a network (of tasks), it therefore has ropological structure. Further, computing systems may

be considered “tasks” themselves; i.e., a computing system may interact with other computing

Copyright © 1999 Paul Preney. All Rights Reserved. Page 1



systems.

[t is important to note that to consciously use a computing system it has to be recognized first
so as to permit its definition. Once it is defined, its properties and behaviours can be studied,
e.g., ideally with the scientific method, in order to better understand that computing system.
Then, in order to actually use a defined computing system, it must somehow exist; —either
by creating an implementation of it if possible, or that it exists already. Interfaces must be
provided to properly communicate all necessary “input” and “output” to the computing
system, otherwise the system may not be of any use. Obviously, the encoding of such inputs
and outputs is vital to appropriately manipulate that computing system. If the input encoding
is not understood, then at best garbage output is returned. If, on the other hand, the output
is not understood, then the reader of such will not be able to understand its meaning without

analysis and insight.

The goal of designing and implementing a complete computing system as discussed above
however is beyond the scope of this thesis. It is not even known whether or not it is possible
to state at this time that such a system even exists. Instead, keeping the aforementioned goal
in mind, the objective of this thesis is to design an architecture that should be reflected and
used in such a compuring system’s kernel. Additionally, the computing system’s kernel in this
thesis should support the minimization of work “in designing, implementing, and maintaining
any computing system including itself.” This means that the kernel must allow for the
possibility to model and implement, i.e., encode, any computing system including itself.
Restated, the design of the kernel presented in this thesis, must allow for the modelling of
arbitrary computing systems. Since this includes modelling itself, the kernel design presented

in this thesis is a hypothetical basis for any metamodelling (computing) system.
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1.2. Justification of This Thesis’ Purpose

[t may not be immediately obvious why one would even assert a need to research and create
a system towards minimizing the work involved to design, implement, and maintain an
arbitrary computing system. To create or design something is to construct a model and
possibly, an implementation for such. The tasks of creating and designing happen so often

that one usually doesn’t even think about it; —this is especially true when using computers.

The utility of a computer is driven by one’s ability to write software to fulfill such purposes.
It makes sense that the easier it is to facilitate the design, implementation, and maintenance
of software, the easier it will be to design, implement, and maintain software. Similar
reasoning holds true for computing systems which can contain computers. This is the single

most important practical goal of pursuing this line of research.

Since it is important how input to a computing system is encoded and how its output is
decoded, it is of equal importance to be able to design the appropriate computing system
input and output interfaces from/to other interacting computing systems. At the very least,
in computing systems involving human beings and computers, appropriate human-computer
interfaces must be present so that human beings and computers can easily communicate
through a variety of protocols with one another. Of course, there are machine-to-machine
interfaces as well. Concerning oneself with the design of interfaces to computing systems,
forces the researcher to acknowledge the design(s) of how those interfaces interface with each
other. Specifically, designing interfaces is called modelling and designing how interfaces
interface is called metamodelling. As this thesis is concerned with the discovery and

implementation of ideal metamodelling systems, modelling and metamodelling issues are
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paramount. Hence, this is also an important justification for pursuing this line of research.

There are a number of other relevant justifications as well. These include: (i) to create a
system that is “self-aware”, not necessarily to create a “thinking” being, but, rather to
automate and maintain new implementations of pre-existing designs; (ii) to create a system
that facilitates the automation of information addition, retrieval, and purging to/from data
stores; (iil) to create a system that can track the evolution of both model designs and
implementations; and (iv) to create a system that can, as much as possible, automate how
software is deployed across and within computing systems dynamically from a sufficient

specification (i.e., sequential, parallel, distributed, etc.).

Obviously, it is an enormous undertaking to even attempt to accomplish the goals mentioned
above as well as those that have not been mentioned. To maximize the chance of realizing
these goals, this thesis narrows its focus to begin designing and implementing a computing

system architecture and specific kernel operations that will serve to facilitate metamodelling.
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CHAPTER 2.
Fundamental Concepts

The terms model and modelling mean different things to different persons. This is easily
verified by scanning the literature looking for the keywords model and modelling; —one
obrains nearly everything that has been written regarding computer graphics, programming,
network, and software design, etc. In essence, everything ever created through the guise of
engineering or science has been based on a model, and thus, the specification thereof is the
process of modelling. This essential fact unfortunately complicates the task of generating a
formal literature survey on the relevant topics as it pertains to either this thesis or its general
research topic. This chapter serves as an overview of the literature and also provides the
necessary foundarion to understand and appreciate fully the rest of this thesis document.

Please note that security and job scheduling are beyond the scope of this document.

2.1. Definition of Model, Modelling, Implementation, & User
For the computing sciences, perhaps the most suitable definition of what a model is, both
abstractly and existentially, is given by Date and Darwen:
A model is an abstract, self-contained, logical definition of the objects,
operators, and so forth, that together constitute the abstract machine with
which users interact. Note: The term “objects™ here is generic —it is not

meant in its object-oriented sense.

An implementation of a given model is the physical realization on a real

computer system of the components of that model.
— [DATE98]

Additionally, modelling is defined as, “to make a model (representation) of [something]”
[LEXIC87]. Noting that “virtual” means “abstract” and that a “computing system” is a

“machine”, then a model defines a virtual computing system. Furthermore, a model’s
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existential form is its implementation, i.e., its encoding or “physical realization” of its abstract
definition. Consider the following strings:

ten

1111111111

1010

10
A

These strings represent five separate encodings (i.e., implementations) of the logical definition
(i.e., model) of the number “ten”; —in English, base 1 (unary), base 2 (binary), base 10
(decimal), and base 16 (hexadecimal) respectively. One should note that while thinking
abstractly about a model there is no need to worry about how the model is implemented since
one is only concerned with its definition; e.g., if one is aware of what the number “ten” is.
However, when required to perform an operation with the number “ten”, “ten” must be
encoded somehow so that the computing system that performs such (e.g., “multiply input by
27) can be defined and implemented to operate with that encoding. This does have a direct
effect on the amount of time, space, and energy required to perform that operation in a given
computing system. It is imperative to define models independent of any of their
implementations, else one has merely defined an implementation. Such clarity of definitions
is of paramount importance if one wishes to implement a well-defined, consistent computing

system that is both transparently object-oriented and relational [DATE98].

A computing system cannot be of practical utility unless there is an entity thar exists outside
of that computing system and interacts with it. Such an entity is called a user and usually
refers to a human being although this need not be the case. A user interacts with a computing

system by providing properly encoded input, interpreting any generated output, and by
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providing a proper operating environment for that system.

2.1.1. Examples of Modelling in the Literature

Many areas of modelling research and development focus on data visualization. A data
visualization machine is one that accepts some data and allows the human user to “see”,
“hear”, “touch”, “smell”, or “taste” the data in order to better interpret the dara set
[KALAW93]. In fact, any implementation that produces output is considered a visualization
machine provided that some user interprets such output through an appropriate input
medium [KALAW93]. For practical and technological reasons, usually such visualizations are
limited to the visual or auditory senses when the user is a human being. Much of the visual
data is presented as either two- (e.g., [ONODE90]) or three-dimensional (e.g., [SCHRO96,
SCHRO98]) images, possibly animated. When multiple visualizations of such data sets are
possible, one can explore a darta set from different perspectives, thus, expanding the ability
for the user to better understand and present to others that data set [SCHRO98]. Thus,
experimental scientists are better able to discover, design, and evaluate (e.g., simulate)
theoretical models [ALMST96, HYDE96], teachers are better equipped to impart knowledge
and understanding to students [HYDE96, NAPS96], and others are even able to communicate
their data to interested parties through a medium such as the World Wide Web [HALL96,
MATHE96a, MATHE96b, SCHAT97, WOOD96] via technologies like VRML [AMES97].
In essence, modelling either enables or is a process of discovering and designing definitions

(i.e., models). The well known scientific method [CAMPB90, RAVENS9] is a modelling

process.

Models, implementations, and the modelling process can be found across a wide variety of

subject areas in the literature. In addition to some of the examples mentioned in the previous

Copyright © 1999 Paul Preney. All Rights Reserved. Page 7



paragraph, some of these subject areas include: search engine and database query (e.g.,
[GRAEF93, GRAEF94, GRAEF96, SCHAT97]), population biology and ecosystems (e.g.,
(FORGA96, LEVIN97]), medical (e.g., [CHI9, WEINS97]), weather (e.g., [MAX9S,
WITTE96]), computer circuit topology (e.g., [AGARW99]), multibody systems (e.g.,
(EBERH96]), tools for hypermedia (i.e., dynamic exploration) (e.g., [BOSSA96, LI96]),
international phone calling fraud (e.g., [EICK96]), geographical & soil (e.g., [FAUST96,
LI93]), circuit design and visualization (e.g., [ARSIN96]), adaptive human interface design
(e.g., [ENCARY9S5]), computer programming (e.g., [SHANB97, TOPCU98a)), and system
specification, metamodelling, and virtual machine research (e.g., [BRONT95, CHEN76,
CREAS96, FORMA94, FORMAY9]). Additional examples are easily found in science and

engineering literature.

2.2. The Turing Machine Model & Its Limitations

In 1935 a computing model was proposed by Alan Turing. This abstract machine is one that
has unlimited and unrestricted memory and is fully capable of accomplishing anything that
modern, digital computers are capable of as all of those are, in essence, Turing machines
[COPEL99, SIPSE97]. Alan Turing’s purpose in proposing such a machine was to have a
simple model fully capable of computing any calculation that a mathematician could;
—provided that such was performed by some specific algorithm with limited time and energy
in an unintelligent, yet disciplined, manner [COPEL99]. Since Turing’s model describes all
such Turing machine implementations, his model is now known as the universal Turing

machine.

2.2.1. The Turing Machine Model

All Turing machines consist of a processor with a “tape head” that can read and write
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symbols as well as move an infinitely long tape. Prior to starting a computation, the tape
contains only an input string and is otherwise marked blank. Since the machine can move the
tape, it has the ability to read in information that it has written. Once it starts a computation,
the machine continues to operate until it arrives at the halting state, which stops the
machine’s execution. If the halting state is never entered, then the machine will execute
forever. The processor in such machines always executes some specific algorithm which
operates the tape head and “informs” the machine when it has arrived in its halting state
[BOAS90, SIPSE97]. The universal Turing machine (UTM) is a machine that simulates

another Turing machine provided as input along with other symbols on its “tape” [SIPSE97].

There are many variations of the standard, single-tape Turing machine [BOAS90]. All of these
variations differ from the single-tape Turing machine through time and space efficiency
tradeoffs. However, since these machines are all machines that can be simulated by the UTM,
they are therefore subject to the limitations of the UTM. Formal definitions of the universal

Turing machine and various implementations can be found in [BOAS90, SIPSE97].

2.2.2. Limitations of the Turing Machine Model

Computer scientists, mathematicians, and philosophers have known that there exist problems
whose answers may never be computed by a Turing machine. If a Turing machine is used to
try to solve such problems, then it may never arrive at the halting state; —i.e., it may continue
to run forever. These problems are characterized as undecidable [SIPSE97]. An example of
this type of problem is,

Given a computer program and precise specification of what that program is

supposed to do (e.g., sort a list of numbers). You need to verify that the

program performs as specified (i.e., that it is correct).
— [SIPSE97]
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Thus, if one is trying to prove that a given computer program halts, that too is also
undecidable. This indicates that there are limits to what a Turing machine can compute. Since
all of today’s digital computers, outside of some research areas, are based on the Turing

machine model, they too are so limited [COPEL99].

[t remains an open problem as to whether there exists a computing device that can compute
the answer to more functions than those of today’s computers, which are based on the Turing
machine model. Alan Turing first thought of such devices, known today as hypermachines or
oracles, calling it an “O-machine” [COPEL99]. Furthermore, Kurt Gédel acknowledged to
the American Mathematical Society that,

“... on the basis of what has been proved so far, it remains possible that there

may exist (and even be empirically discoverable) a theorem-proving machine

which in fact is equivalent to mathematical intuition, but cannot be proved to

be so, nor even be proved to yield only correct theorems of finitary number

theory.”
~— Kurt Gédel as quoted in [CASTI96]

This implies that there may exist machines that can solve more problems than today’s digital
computers. It has been noted that some researchers believe that the human mind is one such

type of hypermachine [COPEL99].

2.3. Computing Architecture

Every computing device has an underlying model, i.e., architecture, from which it has been
constructed. Today’s digital computers actually employ a variety of architectures that are
useful in computing including pipeline, processor arrays, cached systems, shared and disjoint
memory, etc. Conceptually, these and many other architectures can be categorized by their
behaviour at run-time (e.g., sequential, parallel, and distributed), temporally (e.g.,

synchronous, asynchronous, timeout policy), communicability (e.g., message serialization and
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transport protocols, event notification models), device organization (e.g., queuing
specifications, quality-of-service, knowledge representation), and device functionality (e.g.,
efficiency, correctness, and availability of algorithms). These categories are neither exhaustive
nor mutually exclusive, rather they characterize different views of computing systems based

on some selection criterion.

An implementarion of a given computing architecture need not be a real, physical computing
device (i.e., computing hardware), —it can be an abstract, logical one (i.e., a virtual machine).
The difference between computing hardware and a virtual machine is that the former
computes according to the laws of physics inherent with its design, whereas the latter is
provided as encoded input to another machine that implements the architecture of another
machine. In many cases, what is “real” versus “abstract” depends on the definition of what
“physical” and “logical” mean for the user of such devices. For human beings, “physical”
corresponds to objects that are understood in conjunction with at least one of the senses:
hearing, seeing, taste, touch, and smell; whereas, “logical™ corresponds to objects that can
only be understood through cognition alone (i.e., without the physical senses). In practice,
a computer refers to a physical machine (i.e., hardware) and a virtual machine refers to logical
machine simulators (i.e., computer software). For clarity, the term computing system will be
used to refer to any model or implementation that defines or performs computations (e.g.,

machine, human being).

2.3.1. Sequential, Parallel, & Distributed Computing

Today, there are three fundamental classes of computing architectures: sequential, parallel,
and distributed. A sequential computing device is one which has a single processor capable

of working on a single problem at a given time instant. If restricted to Turing machines, it is
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synonymous with Von Neumann architecture found in today’s “conventional” digital
computers [BUYYA99b]. In contrast, a parallel computing device is one which can have more
than one processor working together on one or more problems at a given time. Parallel
machines therefore, have the potential to compute an answer faster by dividing up the
problems-at-hand across two or more processors. Such systems are synonymous with
concurrent computer, multiprocessor system, and the multicomputer [BUYYA99b]. Somewhat
“in-berween” sequential and parallel computing devices are distributed computing devices.
Distributed computing devices are composed of smaller, usually independent, heterogeneous
computing devices connected together by some type of communication network. Distributed
computing allows for both sequential and parallel computing to occur within its network
[BUYYA99b]. Technically, parallel computing devices are distributed computing devices with
the distinction being that they are hard-wired, homogeneous processors within close
proximity, i.e., less than 50 c¢m, to one another. A distributed device’s processors are
considered to be separated by larger distances, are entirely separate machines, cannot be
assumed to be homogeneous, and are easily added or removed from the communication
network. [n any event, when sequential and/or parallel computing are used in a distributed
computing network as a single computing system, that computing system’s architecture is

called cluster computing [BAKER99a].

Some might wonder why one should even bother researching parallel or distributed
computing. The primary selection criterion necessary for computing depends on the time it
takes to obtain an answer for a problem. If that answer arrives in a time interval considered
acceptable for a sequential machine, then there is no need to utilize distributed or parallel

resources. For many applications a sequential machine is sufficient and the most cost-effective
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solution. A key reason that research into parallel and distributed computing is essential is
because there exist problems considered intractable without the use of massively
parallel/distributed computing devices. These problems have been called Grand Challenge
Applications [ARGON99, BAKER99a, SILVA99, LI96] and involve massive amounts of
computation over immense data sets. Another reason is the location of required resources,
including time. If these resources can be found on a single machine, then sequential or parallel
computing is usually sufficient, otherwise, a distributed solution will be necessary. This is an
area where distributed computing stands out since it allows individuals that don’t have such
resources to efficiently utilize resources distributed throughout a nerwork, such as the
Internet. Since any distributed system involves, at some point, running sequential processes
in parallel, research is primarily concerned with setting up an environment where that

happens efficiently.

2.3.2. Flynn’s Classification System

In an attempt to classify different sequential and parallel execution models, Michael Flynn
proposed a classification scheme based on the number of instruction streams and the number
of data streams that can be simultaneously processed [FLYNN96]. This resulted in the

following architectural models:

SISD: Single Instruction, Single Data stream.
SIMD: Single Instruction, Multiple Data stream.
MISD: Muluple Instruction, Single Data stream.

MIMD: Multiple Instruction, Multiple Data stream.

Each data or instruction stream is independent of all other streams. Additionally, each

instruction stream is a sequence of actions and each data stream is a sequence of objects.
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2.3.2.1 The SISD Model

The SISD class of processors is the most common and has the least amount of parallelism; —it
is a true sequential processor. Most of today’s processors would be placed within the SISD
model since they are based on Von Neumann’s machine architecture [TANEN90]. Parallelism
is often found in such processing systems, however, it is internal to the processor. With SISD
computer systems, this parallelism is found at the hardware level as a distributed network of
interconnected CPUs on the motherboard where techniques such as pipelining, instruction-
[evel parallelism (ILP), and very long instruction word (VLIW) are typically employed

[FLYNN96].

2.3.2.2 The SIMD Model

The SIMD class of processors includes array and vector processors and are ideal for efficiently
processing data structures such as vectors and matrices. Array and vector processor
architectures differ in their focus of parallelism. Array processors have multiple concurrently
processing elements that operate on data elements. Meanwhile, vector processors have a
single processor that operates on multiple data elements simultaneously. Due to their different
designs, array processors obtain their efficiency by having large numbers of simple processing
units, whereas vector processors depend on smaller data sets, pipelining, and high clock rates.
Vector processors tend to have a higher latency period than array processors as the fetch of
the data becomes one of the most important operations. Unfortunately, there aren’t many
SIMD architectural models due to their limited application base and marker demands
[FLYNN96]. Perhaps future dynamic topology construction techniques for hardware
discovered through projects like the Oxygen project [AGARW99] will further the

development and utility of the SIMD model.
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2.3.2.3 The MISD Model
There has been little research done with MISD processing. As mentioned in [FLYNN96],

abstractly the MISD model includes vector processors and the only machines implementing

this model were perhaps those in the 1940s that used plug boards for programs.

2.3.2.4 The MIMD Model

MIMD processors are the most common form of parallel processors researched and
developed thus far. Unlike the SISD and SIMD models, instruction-level parallelism is not
hidden. Thus, the MIMD model permits the realization of the goals of multiprocessing and
multiprogramming coding styles. In this model, it is possible to have different data storage
models (i.e., policies) regarding which processors have access to specific data stores.
Addressing these problems is important to maintaining data consistency and data cache
coherency in computing machines. Today, data consistency is solved through a combination
of hardware and software means; data cache coherency is almost always ensured through

hardware means alone [FLYNN96].

2.4. Key Characteristics of Cluster Computing

There are six important characteristics that determine the utility of (distributed) computing
systems: resource sharing, openness, concurrency, scalability, fault tolerance, and transparency

[COULQO®95]. These are examined in the following subsections.

2.4.1. Resource Sharing

Anything that can be shared across computing systems amongst some set of users is a
shareable resource. These resources include time, space (e.g., RAM, disk space, files), and

positionflocation (of resources) (e.g., massively parallel systems, virtual private networks, the
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Internet). There exist two models of resource management, the client-server model and the
object-based model [COULO95]. The client-server model is the most common model in use
today. It consists of a set of server processes that are each responsible for managing a set of
resources and a set of client processes that request those resources. In this model all of the
resources are held and solely managed by the server processes. The object-based model views
every shareable resource as an object thart is uniquely identified and can move anywhere

within the network without changing its identification key.

2.4.2. Openness

The characteristic of openness refers to how a computing system can be extended. A
computing system is said to be open when the interfaces of that system’s machinery are
published to allow the addition or transformation of its functionality by a third party without
actually changing the systems construction. The more complete the published information is,
the more open the system is considered to be. This characteristic is what enables the creation
of interfaces that can permit heterogeneous hardware and software to interact in cluster

computing [COULO95].

2.4.3. Concurrency

Concurrency is the appearance of several computing processes being run simultaneously
[COULQB95]. Hence, both sequential and parallel computing systems are capable of running
concurrent processes. In a sequential computing system that is running N concurrent
processes, concurrency is achieved by interleaving each process according o some time
sharing policy. In a computing system with M processors (M> 1), parallel processing allows
for the possibility of reducing the total time to run those N concurrent processes by a factor

of N/M. However, to achieve such time performance gains it is imperative to use algorithms
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thar efficiently synchronize accesses and updates to shared resources.

2.4.4. Scalability

Scalability refers to how well a computing system functions as the number of networked
computing systems (i.e., nodes or processors) present as cluster size increases. Ideally the
computing system and its computing methodology should not need to be explicitly changed
when the scale of the system increases. The ability of a system to scale up to larger numbers
of nodes is a measure of its utility for cluster computing. A system that does not scale up or
down well will often require redesigning the entire computing system; —a task that is both

costly and time consuming.

2.4.5. Fault Tolerance

Faulr tolerance refers to a computing system’s ability to detect and possibly recover from
failures. A failure occurs when something happens that prevents a computation request from
being correctly computed as required by its model. A failure can be manifested by errors in
interpreting input or generating output, erroneous implementations (e.g., a software “bug™),
or, by the lack of an established operating environment required for the computing system
(e.g., water short-circuits a computer; a required network hub stops functioning).
Unforrunately, not all faults are recoverable, however, as much as possible, it is desired that

computing systems at least detect as many faults as possible.

2.4.6. Transparency

Transparency is the concealment from the user of separate real or logical components found
in a computing system so as to allow the user to view the system as a whole, rather than a

collection of component parts. There are eight types of transparency according to the ANSA
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Reference Manual and the International Standards Organization’s Reference Model for Open
Distributed Processing (RM-ODP) (see [COULQO95]): access (i.e., by providing a universal
method to access any system component), location (i.e., by providing access to any system
component without any knowledge of its location), concurrency (i.e., by providing
concurrent access to shared information without interference from participating processes),
replication (i.e., by providing multiple instances of the same data for performance and
reliability gains without user knowledge of such), failure (i.e., by providing automatic fault
recovery so that computations are completed), migration (i.e., by providing for the movement
of components within a system without affecting the user or the system), performance (i.c.,
providing for the dynamic reconfiguration of the system as conditions vary without user
interference), and scaling (i.e., providing for changes in scale of a system without further
modification of its computing machinery) transparency. Specific circumstances dictate

whether or not one desires a certain type of transparency.

[§S)

.5. Communication Models

2.5.1. Definitions of Data, Code, & Message

All computing systems may require input and may produce output. Anything provided as
input to or as output from such systems is called data. Data are encodings of models that are
assumed to be understood by either their senders or receivers or both. At times, it is necessary
for the sender of some data to impart some “understanding” of a specific model of
computation (i.e., procedure, function, operation, heuristic, etc.) to a computing system in
order for that system to perform the desired task(s). When such models of computation are
encoded, sent, and used by that computing system, they are termed codes. For example, a

human programmer writes a program in a well-defined computer programming language
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(e.g., C+ +) which is then fed to a compiler (i.e., a computing system) for processing. The
compiler either produces machine-readable code output that can be executed by a computer
or issues a report on errors in the original source code. Note that all implemented codes can
be considered to be data, but, a datum can only be considered code if a computing system
manipulates that datum as a model of computation. The latter distinction is important, e.g.,
while the computer programmer communicates C+ + to the computer, it is not considered
to be code by the computer until it is in machine-readable form and ready to be executed as
a model of computation. A message is the data actually communicated from a user to a
computing system and vice versa via their respective input and output interfaces. The term
message differs from data in that the former implies communication between two logical or

real entities, whereas the latter refer to the encoding itself.

2.5.2. Mobility of Data

Every computing system, whether abstract or physical, receives messages via their input
interface and sends messages via their output interface. There are three different, commonly
used ways of characterizing such communications: broadcast, point-to-point, and multicast
(e.g., [BUYYA99b], [COULO95], [MPI95]). Further, such communications between

components can be considered as (sub)nerworks in their own right.

2.5.2.1 Broadcast

A broadcast is a communication from an entity to an arbitrarily large set of entities.
Broadcasts are one-way channels, always from a single source to many [BUYYA99b).
Examples of broadcasts include AM/FM radio broadcasts and writing to any of TCP/IP’s

broadcast addresses (e.g., 255.255.255.255).

Copyright © 1999 Paul Preney. All Rights Reserved. Page 19



2.5.2.2 Point-to-Point

Point-to-point communications occur between two entities and are implemented as two-way
communications channels [BUYYA99b]. Examples include calling someone on a telephone

and the use of Transmission Control Protocol (TCP) sockets (e.g., Telnet, FTP).

2.5.2.3 Multcast

A multicast is a communication to an entire group of entities. It differs from a broadcast in
that the communications are not necessarily one-way and not all possible receiving entities
may receive all communications packets sent (e.g., network congestion or failure, individuals
leaving the multicast session, etc.) [BUYYA99b). Internet action games, where people all over
the Internet log onto a single server and play in the same virtual world, and teleconferencing

can be considered multicast sessions.

2.5.3. Mobility of Code with Data

Since any useful computing system must interact with other systems, internally and/or
externally, it is imperative that data are communicated using an understood language, or
protocol, between the communicating systems. In distributed systems, the opportunity exists
for the communication of code along with any required data, called mobile code [CARZA97].
By sending messages with code, the receiver can use such code to compute the answer to the
problem on its own as it sees fit. When transmitting such messages, one imparts the
knowledge resource (e.g., data) and/or the know-how (e.g., code) to the receiver of such.
Research has been done by Carzaniga et al (see [CARZA97]) to categorize mobile code usage

as paradigms to aid designing distributed applications.
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2.5.3.1 Client-Server Paradigm

The client-server paradigm is one where a server offers a set of services to clients. The server
has both the know-how and resources to satisfy client job requests. This paradigm is the most
well-known and widely used of four (4) paradigms discussed by Carzaniga. Examples of this
paradigm include the X Windows system and many of the standard Internert services such as

the Domain Name Service (DNS) and File Transfer Protocol (FTP).

2.5.3.2 Remote Evaluation Paradigm

The remote evaluation paradigm involves the submission of a program or a set of executable
instructions to another system with the appropriate resources to execute such. Consequently,
there is a transfer of know-how from the submitter to the holder of the resources. In return
the holder of the resources executes that know-how, whose output is often received by the
submitter. From the submitter’s perspective, the holder of the resources receives its know-how
and must consider any costs that may imply. Similarly, the receiver of that know-how should
consider the costs of malicious or false information that compromises that site’s security or

integrity.

2.5.3.3 Code on Demand Paradigm

The code on demand paradigm is the reverse of the remote evaluation paradigm. Instead of
a user giving some know-how to another machine to perform a particular task, the user has
the resources and simply asks the other machine to send the know-how for a particular need.
Java applets on web pages are excellent examples of this paradigm. In asking for a particular
web page, the user receives some information in return, which could include a Java applet
that performs a specific task on the user’s machine. Similar security and integrity concerns to

those in the remote evaluation paradigm arise from the transfer of know-how in this
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paradigm.

2.5.3.4 Mobile Agent Paradigm

The mobile agent paradigm is distinguished by an entity, called an agent, having the know-
how to perform an operation but does not have the resources to complete that operation.
Thus, the agent finds another entity that has such resources and moves itself completely to
that entity’s location so that it can complete its operation by using the other entity’s resources.
Such agents, often called intelligent agents (see [HAROL96}), have yet to be fully researched
and utilized because of security and portability concerns. Such concerns can now be addressed
by writing application software for the Java platform which has several classes designed for

enforcing one’s security policies when running third-party Java software (e.g., see [OAKS98]).

2.5.4. Topological Issues Concerning Computing Systems

Generally speaking, all computer programs are finite state automatons, which can be
represented as graphs which are usually directed and acyclic [AHO86). Each computer
program consists of a set of states and a set of transitions from and to those states.
Additionally, computer networks are also graphs consisting of a set of machines
interconnected via various media (e.g., wires, optical fibre). Whereas computer networks are
concerned with data communication, computer programs are concerned with computartion.
The resulting graphs in each case have topological structures that must be addressed. In order
for any two computers within a network to communicate, an addressing infrastructure and
communication protocol must be in place so that packets are reliably transmitted from one
machine to the other. Similarly, in order to transit from one program state to another, a
simulation machine must exist or be created to interpret a sequence of instructions to perform

such. To provide various guarantees of performance and reiiability, or, to facilitate protocol,

Copyright © 1999 Paul Prencey. All Rights Reserved. Page 22



kernel, and machine architecture design, researchers often create systems that place
constraints on the types of program or network graphs that are allowed to deployed on a
computer or network. For example, nearly all of compiler theory (e.g., [AHOS86] and
[FIELD88]) is devoted to such topological concerns. A key problem in both computer
programs and networks is the handling and assignment of addresses. While addresses are a
necessity for identification and communication purposes, it is important that they are unique
and are not too tightly coupled to any underlying software or data. These constraints have
given rise to many different types of network structures, computer systems, and environments
with varying degrees of flexibility, fault tolerance, and performance guarantees. It is not
possible to review all of these systems, although some have been introduced under different
guises above (e.g., broadcast, point-to-point, and multicast communication). Instead, the more
recent research area of metacomputing systems (see [BAKER99b]) will be examined because
it hybridizes the above concerns in an effort to create a more ideal, dynamic, and
collaborative computing environment. Metacomputing systems research requires all of the
knowledge of previous network and program topology with a lot of new ideas to solve many

problems efficiently.

2.5.4.1 Metacomputing

The term metacomputing is thought to have originated with the CASA project in 1989 and
was promoted by Larry Smarr, the NCSA Director, thereafter [BAKER99b]. A metacomputing
system is, loosely speaking, a parallel computer where the nodes are dynamic as

computational participants'. For example, if these nodes were people, a metacompuring

"The reader should note that this thesis presents a partial kernel for metacomputing
purposes.

Copyright © 1999 Paul Preney. All Rights Reserved. Page 23



system is a network of networks of people (e.g., governments, corporations, societies,
communities, families) that participate together in various ways to perform various tasks (e.g.,
govern, sell products, raise a family). Of course, over time individual persons, corporations,
societies, governments, etc. join and leave networked individuals performing various tasks.
Obviously, each individual performs their work concurrently relative to other individuals.
Thus, these individuals can be viewed as a massively parallel “computing device”. Although
a precise definition of metacomputing has not yet been determined, metacomputers are

analogous.

Metacomputing is essential to the long-term needs of humans. In a practical way, human
computational needs are infinite, but our resources are finite. These resources include money,
energy, and time. Hence, metacomputing aims to utilize as many free resources that are
available at a given time by large sets of networked computers and it aims to do this efficiently
with guarantees of cost and time. Ideally such resource utilization is seamless, fault tolerant,
and supports all types of collaboration amongst its users. Practically, researchers have a long

way to go before such lofty goals are met.

Mertacomputing is currently represented by virtual computer architectures. Research focuses
not on individual components of such systems, but rather on how such components work
together as a resource unit. As noted by Baker and Fox in [BAKER99b], a metacomputer
consists of the following four components: (i) processors and memory, (ii) networks and
communications software, (iii) a virtual environment, and (iv) the ability to access data
remotely. Further, they state that an implemented metacomputer,

does not interfere with the existing site administration or autonomy; does not
compromise existing security of users or remote sites; does not need to replace
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existing operating systems, network protocols, or services; allows remote sites
to join and leave the environment whenever they choose; does not mandate
the programming paradigms, languages, tools, or libraries that a user wants;
provides a reliable and fault tolerance infrastructure with no single point of
failure; provides support for heterogeneous components; uses standards, and
existing technologies, and is able to interact with legacy applications; [and]
provides appropriate synchronization and component program linkage.

—[BAKER99b]

An ideal metacomputer implemented today would consist of middleware that works with
existing systems in both traditional and non-traditional ways®. Baker and Fox include
sufficiently general principles that metacomputing encompasses all knowledge and research
in the computing sciences. While today’s systems fall short of such an achievement, there are
several metacomputing projects being undertaken. These include the Globus Project

[GLOBU99] and Legion [LEGIO99].

2.5.4.2 Globus

The Globus Project [GLOBU99] involves the Information Sciences Institute of the University
of Southern California (http://www.isi.edw/), Mathematics and Computer Science division of
the Argonne National Laboratory (http://www.anl.gov/), and the Acrospace Corporation
(http://www.aero.org/). The aim of Globus is to enable the construction and utilization of
computational grids. A compurational grid is a type of metacomputer that provides reliable
access to high-end compurational resources without regard to the geographical distribution

of those resources.

The Globus Project consists of a kernel called the Globus Metacomputing Toolkit (GMT).

The GMT may be viewed as a middleware network-enabled operating system as it is

“It may be thar after many useful metacomputing systems have been researched and tested
they will form a new basis for all operating systems.
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responsible for things such as resource allocation, process management, communication
services, authentication, remote data access, etc. Currently, Globus can interface with MPI

(i.e., Message Passing Interface, [MPI95])), Java, C+ +, RPC, and Perl environments.

2.5.4.3 Legion
Legion [LEGIO99] began at the University of Virginia in late 1993 with its first public release

at the Supercomputing 97 conference in San Jose, California. It is an object-oriented
metasystem that strives to provide seamless interaction between geographically distributed
computing resources, i.e., it is an attempt to provide to every user’s workstation a single,
reliable virrual machine. Legion is set up as an object-oriented system with both classes and
metaclasses with the following attributes: (i) everything is an object, (ii) all classes manage
their instances, (iii) users may define their own classes, (iv) with a core set object APIs to serve
as its kernel. Legion emulates the PVM (Parallel Virtual Machine) and MPI APIs [BUYYA99a,

LEGIO99]. It also interfaces with C, C+ +, and Fortran.

2.6. Temporal Models

[t is esscntial at some point for computing systems to properly handle temporal concerns.
Such is necessary to ensure job scheduling is performed properly, to observe job run-times and
enforce policies, and, to provide applications with real and virtual synchronized clocks for
a variety of applications including specific types of fault tolerance. There are two general
categories of time classification: synchronous and asynchronous. These terms are correctly
used when speaking of units of time on a specific clock, i.e., an event is said to be
synchronous if it occurs at the same time as another event as observed on a common clock,
whereas it is asynchronous when it doesn’t occur at the same time [BUYYA99b]. These two

terms are also used loosely with respect to computer software research and development and
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refer to synchronous or asynchronous program event behaviours often implicitly. For
example, the synchronized keyword in Java refers to the resulting code execution timing
properties of the Java virtual machine’s monitors [MEYER97]. Essentially, each synchronized

object in Java serves as a simple virtual clock device.

Measured absolute and relative times are important to distributed and parallel computing
because they are needed to establish reasonable concurrency control logic (i.e., job scheduling
and control) within operating systems. Additionally, proper time measure is needed in many
cases to establish algorithm correctness in distributed databases and to implement various

types of fault tolerance and fault detection [COULQ95].

2.6.1. Time Sensitivity

Callison [CALLI95] has proposed a time-sensitive object (TSO) model as an alternative to
traditional (real-time) models based on constrained periodic and sporadic processes. The TSO
model tolerates some types of system and timing errors, allows for a reduction in application
complexity, and a possible increase in concurrency throughput. Traditional computing
systems usually use periodic fixed time intervals to schedule process execution. This may lead
to a variety of problems including odd timing interactions such as a low-priority process
obtaining a time slice just when a higher priority process, blocked because of the lower

priority process, requires access to a data stream.

Fundamental to the TSO model is that all data has a time period for which it is valid and
outside that period, it is no longer valid. At one extreme are single-interval transient objects.
These objects are created, live for a short period of time, and then are destroyed without their

values changing. At the other extreme are those objects that are immutable and live as long
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as the system which includes them. In general, most objects fall between these two extremes.
For these objects, an allowance is made in the model to recognize the time interval that their
values are valid. This interval is called the validity interval. The validity interval itself changes
over time giving rise to a current validity interval and those objects that may store validity
interval histories, called multi-interval objects. Multi-interval objects are either valid for a
fixed time period after which they will change or they are expected to describe the latest time
when some change of values may occur. The former is called a periodic time object and the
latter is called sporadic. In the sporadic case, it is possible to have error-producing, inferencing,
or unbounded condirions. An error-producing condition is caused by a failure of information
to arrive by a specified rime. One may infer correct timing behaviour based on the sequence
of a set of events on which is based an inferencing condition. Finally, there may exist
situations where no known time limit can be determined for an object (e.g., the time required
for a nerworked computer system to come back up after crashing). This is the unbounded
condition. These conditions allow the detection of errors and/or specific program states to
which a system can be programmed to react. In general, time-sensitivity is important to
metacomputing systems because they allow the possibly asynchronous events of joining and
leaving of parallel computing sessions. The efficiency of such parallel compurations would
be highly dependent on attributes specific to real-time behaviours and is subject to models
such as the TSO model detailed here. Thus, such models would be expected to be part of the

design of a metacomputing system’s kernel and architecture.

2.7. Some Cluster Computing Implementations

There are increasing numbers of cluster computing solutions available today. Most of these

solutions are part of ongoing research projects; most are available free of charge and can be
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put to immediate practical use. Three implementations will be briefly reviewed.

2.7.1. Message Passing Interface (MPI)
The Message Passing Interface (MPI) [MPI95, MPI97] is a middleware standard for message

passing (e.g., function calls implemented via point-to-point or multicast communication,
Linda [BENAR90]) whose main objectives are portability of developed code and high
performance computing. The MPI standard is specified by a consortium of corporations,
universities, and governmental organizations. The MPI standard contains hundreds of kernel
API functions which are responsible for various types of communication (e.g., broadcast,
point-to-point) and the administration of groups of such communications. Additionally, the
MPI kernel permits blocking and non-blocking for nearly every class of kernel function to
allow for maximum efficiency of code. Unfortunately, the MPI standard does not specify how
different MPI implementations may communicate with one another and it does not allow the
allocarion of tasks to specific CPUs. Despite this, however, several implementations of MPI
are available for supercomputing hardware as well as Unix servers and workstations. The MPI
standard allows the programmer to develop with Fortran, C, and C+ +, which makes it

popular with many researchers who use Fortran and may need to interface with legacy code.

2.7.2. Parallel Virtual Machine (PVM)
Parallel Virtual Machine [GEIST94], or PVM, from the Oak Ridge National Laboratory,

permits a network of heterogeneous computers to be used as a single “virtual” compurer,
hence its name. PVM accomplishes this feat by requiring the user to run a kernel daemon on
all of the machines within a given PVM machine. Consequently, programmers can write code
using the PVM API calls to that daemon, thereby enabling portability. The PVM API calls are

concerned with various types of communication methods (e.g., broadcast, point-to-point),
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task control and coordination, and controlling the state of the virtual machine itself. Unlike
MPI, PVM dictates an inter-PVM daemon protocol which enables different vendor
implementations of PVM to talk to one another. For its flexibility, however, PVM has paid
a small price in speed when compared to MPI, but it is available on nearly all Unix platforms

and under Windows NT.

2.7.3. Virtual Distributed Computing Environment (VDCE)

Unlike the previous two implementations, Virtual Distributed Computing Environment
(VDCE) focuses on creating a metacomputing system from the ground-up deployed through
the World Wide Web via the Java virtual machine [TOPCU98a]. VDCE is a research project
at Syracuse University and is intended for use across high-speed ATM networks. VDCE
consists of three components: (i) a graphical programming environment, called the
Application Editor, (ii) an Application Scheduler responsible for mapping resources to suit
the requested task, and (iii) a run-time system which executes and manages all VDCE
controlled resources. To facilitate deployment of the Application Editor to the user, VDCE
takes full advantage of the web by authenticating users and subsequently deploying the Editor
through that medium. The remainder of the system successfully deploys applications and
returns results after computing across a set of nodes. When compared to the P4’ message
passing library, VDCE performed very well outperforming the P4 library in many instances
[TOPCU98b]. Additionally the Application Editor, a GUI software construction tool, enables

reduced program design and development times as well.

’ P4 is a library for writing distributed shared-memory and message passing programs in C
and Fortran [ARGON99]. It is a precursor system and served as a partial basis to early
versions of MPICH [GROPP98].
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CHAPTER 3.
The Modelling Cycle and Job Metamodels

All too often, the author has seen people discuss modelling as if it were merely constructing
machine implementations. It is not simply just that. The most generic form of modelling
concerns the modelling of modelling itself. Consequently, modelling is a potentially
transcendental exercise that ideally can permit the inclusion of just about any meaningful
discussion topic within its bounds. In science, one attempts to discover and validate truths
from carefully controlled and reviewed observations. For scientists these truths are embodied
as models (e.g., via mathematical argument, experimental observations, etc.) of the subjects
of study. Within the scope of creating and implementing a modelling system, it is important
to discuss aspects of metamodelling and the ability of machine models to process jobs. Such
is discussed in this chapter, before presenting a partial solution towards that end in the

tfollowing chapter.

3.1. The Modelling Cycle Metamodel

When one aims to build a kernel-architecture suitable for modelling systems, it is imperative
to create and present a general model of modelling itself. Generally, the term metamodelling
refers to a model of modelling, and similarly, the term metamodel refers to a model of a
model®. All models of modelling may have common characteristics suitable for the creation
of a universal metamodel of (meta)modelling. Just as the end product of modelling is the

creation of application specific machine models and implementations, the end product of

* “Model” and ‘metamodel’ are analogous to ‘class’ and ‘metaclass’ respectively (for the
latter see [FORMA99]), however, a ‘model’ defines a machine, whereas a ‘class’ defines
and/or implements an interface. Note that ‘class’ and ‘metaclass’ refer to specific concepts
in the object-oriented paradigm; —‘model’, ‘metamodel’, as well as ‘(meta)modelling’ are
more general concepts.
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metamodelling is the creation of modelling-specific machine metamodels and their
implementations (i.e., models). This arises from the fact that all models are abstract
definitions which define machines, thus all metamodels are therefore concerned with the
abstract design of definitions of those machines. Of course, a metamodel itself also defines

a machine as all metamodels are indeed models.

In his pursuit to discover a universal metamodel for any model, the author will propose
below an initial set of characteristics for such a metamodel. All models of practical utility are
initially conceived of (i.e., created) and likely are eventually destroyed. Hence, all models
have a lifetime, from their individual moments of conception until their individual moments
of death. It is useful to give an analogy here to biological organisms for rhey too have
lifetimes. In biology, when one speaks of aspects of an organism’s lifetime, one speaks of that
organism’s life history which includes things such as survivorship (i.e., the ability to survive
over time) and evolutionary properties (i.e., the ability to adapt to new or changing
environments; “survival of the fittest”; “evolution™). It is useful to consider a model’s life
history to enable research on how models should be designed in order to increase their
survivorship and to account for their eventual deaths. To do so would hopefully allow
researchers to minimize the cost in designing, implementing, and maintaining models. New
and better models are discovered everyday, older models evolve to accommodate changes in
their environment and the remaining unsuitable models perish in an environment in which
they are of no utility. For example, consider a computer science research project where model
design and implementation takes place amongst a group of researchers. Ideas and models will
be conceived and will die throughout the time period of the project. The demands of the

research project’s goals, and that of its researchers, naturally select for those model designs
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and implementations that are best able to satisfy such demands within the research
environment. As a research project’s environment is one of creating designs and
implementations of models (i.e., metamodelling), it is imperative to recognize aspects of a
model’s life history. Such is outlined in Figure 1 below as a life history cycle, called the

Modelling Cycle Metamodel.

Creation Modification

N
LN

Version

v

Destruction Publish/Query
Figure 1. The Modelling Cycle Metamodel.

Figure 1 was created and defined by the author to better understand and communicate what
happens to models and their implementations throughout their lifetimes. Doing so, aided the
design of a suirable (partial) kernel-architecture in this thesis. The latter is important for if the
kernel does not provide support for the above metamodel, then a key goal of this thesis (i.e.,
to address maintenance issues) has not been achieved. Figure 1 was conceived through the
author’s own modelling initiarives (e.g., object-oriented programming, analysis, and design
patterns), general observations of how people use information (e.g., computer files, paper
documents, etc.), and through his own knowledge and observations about research, cognitive,
and modelling natural processes (e.g., experimental design, evolution of ideas, scientific
method, and biological evolution). Additionally, Hammer et al, in a preliminary paper (see

[HAMMED96}), also address “lifecycle” phases as an important issue that must be addressed
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in distributed object-oriented real-time systems.

A model’s life cycle (see Figure 1) is composed of five phases: the creation (i.e., model
conception), modification, version, publication/interrogative (i.c., Publish/Query in Figure 1),
and destruction (i.e., model death) phases. The starting state of any model is the creation
phase. For a model, creation is the act of defining its logical machine definition, whereas, for
implementarions, it is the act of defining an encoding of some model. After its creation, a
model or implementation may be modified. If such happens, then its corresponding machine
or encoding definition has somehow been altered. In any event, at some point a model or
implementation should be in a state to be recognized by other models or implementations
(i.e., the Version phase in Figure 1), unless it perishes first (i.e., the Destruction in Figure 1).
Having the Version state in the Modelling Cycle will allow a formal definition of model
evolution to be defined in the future in terms of version identifiers that will be associated with
models. Further, such identifiers would serve to identify individual models within a
population of models (i.e., a modelling system). Additionally, by passing through the Version
phase, models and implementations are allowed to be published and interrogated after which
it is accessible by an appropriate group of users as dictated by some usage metamodel that is
left unspecified here. Once published, a model or implementation may be modified to give
rise to new versions of themselves. Sooner or later, however, it is possible for any model to
be destroyed after which it no longer exists (i.e., the Destruction phase in Figure 1). The reader
should note that such destructions may not only arise from within the modelling system, but,

may also be manifested by violations of a system’s axioms (e.g., the loss of power to a digital
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computer housing such a system). As such, it is possible for all models to die’. Consequently,

no model can wholly control all aspects of its life cycle.

Although somewhat off-topic, it is worthwhile to engage in some discussion of some
intriguing biological questions and concepts applied to the domain metamodelling. It may
surprise the reader that biological issues related to taxonomy® (e.g., “What criteria constitutes
species differentiation?”), sociology” (e.g., “What set of behaviours define a community?”,
“How do communities interact?”), and phenotype (e.g., mimicry of physical appearance) are
all relevant in the domain of metamodelling. For example, the above can be applied to
metamodelling by noting the following: a biological species is the same as (model) type®,
taxonomy is a hierarchical extension of a formal type and naming schema of models, sociology
is a study of dynamic or run-time behaviours of models, and phenotype is equivalent to a
model’s interface (e.g., an abstract class in object-oriented programming). Further, it is

interesting to note that biological evolution directly selects for organisms of a specific

"Except God! Atheists and agnostics may prefer substituting the notion of God with the
notion of a meramodel! that defines and, at least partially, implements all that has existed,
exists, and will exist, or potentially so, should such a metamodel exist, as one metamodel,
or as several cooperative metamodels.

*i.e.., the hierarchical classification of organisms based on a specific set of criteria.
i.e., the communications structures between interacting organisms.

*Here, type is used in the computer science sense. Specifically, type refers to a fundamental
classification of what something is. It is interesting to note that there is no universally
applicable definition (i.e., model) in biology of what a species is. Type has similar
problems in metamodelling systems (e.g., Paul’s list type is a “doubly-linked list” whereas
Susan’s list type is a “hash table™). Due to timing considerations, this issue has been left
out of this thesis.
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phenotype’ [RAVENS9], —only indirectly selecting for that organism’s expressed genes. The
author hypothesizes that the same will be found true when observing evolution in
metamodelling systems (i.e., where an organism is a model or implementation, its genes are
its definition, and its phenotype is expressed as a Broker presented in the next section). An
example towards supporting this hypothesis is the existence of mimicry of object-oriented
interfaces found in the Adapter and Proxy design patterns in [ALPER98] and [GAMMAZ95].
Such mimicry is argued here as an evolutionary response to the selection pressures of class
interface redesign. The Adapter and Proxy patterns allow existing models and
implementations (i.e., object-oriented classes and their instances) to survive longer (i.e.,
increase survivorship) in new environments. With such interesting questions and examples,
it is the firm belief of the author that it is absolutely essential for long-term metamodelling
research to fully examine metamodelling relevant structures such as these. These structures
should be compared to already well-known and well-studied ones found in biology,

chemistry, physics, economics, and many other fields of research and practical study.

Thus, the Modelling Cycle Metamodel is proposed to describe the transition of models from
their respective births until their respective deaths. Implementing such a metamodel within
a real modelling system, however, will have to wait until the author creates a sufficient
metamodelling system wherein such can be defined and experimented with. Until then, the
author can only engage in abstract debates and dissertations of the cycle. Nevertheless, it has
been presented herein to address the long-term ideal goals of this thesis to aid the

development of metamodelling as a formal research field.

°An organism’s phenotype is its physical appearance as seen by another individual or
selection pressure. Notze: it is an indirect, outward manifestation of an organism’s genes
within an environment. Examples include colour blindness, mid-digital hair, size, etc.
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3.2. The Job Metamodel

The practical utility of any modelling system, as far as this thesis is concerned, is its ability ro
compute. That is, a model defines a machine that computes something given an appropriate
message stimulus. The coupling of a model with a specific message stimulus is a job request
that performs a specific computation over that datum (i.e., the message) by some encoding
(i.e., implementation) of that model. Ideally, the user that made the job request obtains a job
result within some set of job requirements, although this need not be the case. If the former
happens, the job is considered successful, otherwise the job is considered unsuccessful. If one
is to construct, understand, and research a metamodelling system that can potentially run any
appropriate job applied to it, it is essential to view how a user interacts with any abstract or

real machine. This section provides an overview of such.

3.2.1. Jobs and Their Users

For a model and its implementations to be of practical utility, there has to be some set of
external users of such. From the user’s perspective, 2 model or implementation appears to be
a machine that may compute (e.g., the Computing System in Figure 2 below) something (i.c., a
job result) given some initial stimulus (i.e., a job request). To communicate the job request to
the machine and to then comprehend the job result returned, the user will interact with a set
of devices on/in the machine that brokers each of these communications. How the machine
actually performs its computation is not irrelevant to its user(s)'®. An illustration of a user

interacting with a computing system is shown in Figure 2 (see page 38).

""What is relevant to the user is the selection of an appropriate machine to perform the
desired computation. Further detail of any selection methodologies and pressures are
bevond the scope of this thesis.
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Figure 2 shows a set of users interacting with a set of devices, collectively labelled as the
Broker. All that the user ever “sees™ of the Computing System is the Broker component, the job
requests the user(s) send (i.e., the arrow from User(s) to Broker in Figure 2), and the job results
the user(s) receive (i.e., the arrow from Broker to User(s) in Figure 2). The remainder of the
Computing System is a black box of an unknown number of processing units that perform the
task individual users think it is performing (i.e., the dashed arrow between Broker and the
numbered CPU units within the machine in Figure 2). In general, 2 computing system need not
return any job results or even do any processing whatsoever. This too can be considered a
computation, —such as the relatively common computer 8op'' instruction. As the definition
of a user, model, and implementation define machines and their operations have been
discussed earlier in this thesis, the only remaining component of the Job Metamodel that

requires further discussion is the Broker.

r
Broker CPU1
A
\ CPU2
\
N
User(s) »>
(PUn
Computing System

Figure 2. Illustration of a user interacting with
a computing system.

''NoP is 2 common Assembly language instruction corresponding to that machine’s “No
OPeration™ machine instruction. The term is used loosely here.
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The Broker provides all of the mappings between a computing system’s external input and
output interfaces and their corresponding internal machinery. All machines have internal
components designed to accomplish a set of tasks and some additional components designed
to allow external users to effect specific computations on such machines. As mentioned
earlier, the internal components of a computing system are irrelevant to the user, however,
the components that represent the Broker are relevant. This is because it is through the Broker
that the user interacts with using some set of conventions (i.e., protocols) in order to
communicate with the computing system machinery. Such user-computing system interaction
is called brokering, hence the term Broker used here. For example, if computing system is
defined as an electrical circuit composed of a light bulb and a single pole-single throw switch,
it is the switch and the light filament that comprise the Broker'>. The remaining components,
the wiring, electrons, and other materials in such a system are all internal machine
components. Therefore, as the Broker provides mappings between the external (i.e., user) and
internal (i.e., computing system) environments, it must be considered to be a translator or
compiler between the protocols used in the two environments. These protocols need not be
the same (e.g., the physical motion of flicking a light switch is an external language which is
mapped internally to either a flow or non-flow of electrons, an internal language). This ends
the overview of the Job Metamodel. The task of further detailing the Job Metamodel is the
primary focus of the remainder of this thesis document. It begins with an example illustration

of a user using a computing system in the next section.

"“It is assumed that the user of such a system is a human; that when the switch is in its
closed state, the circuit is completed wherein electricity flows and causes the filament to
emit photons; and, that when the switch is in its open state, the circuit is broken and the
light filament doesn’t emit photons .
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3.2.2. An Example

[t is important to illustrate how a user would use a system based on the Job Metamodel so the
reader may better appreciate the (partial) kernel-architecture design proposed and presented
later in this thesis. The example is illustrated in Figure 3 below. Figure 3 is identical to Figure

2 except that it now includes more detail to aid in understanding the example.

I
10
13 Broker /_\
26,12 CPU
Distributor
S
s PU2
User
9
. AY
Scheduler
CPUn
Computing System (Cluster)

Figure 3. An example illustration of job dataflow through a
computing system.

Consider the scenario where a single user wants the said computing system to perform a job.
For simplicity of presentation, it is assumed that this job will run successfully. The above
figure illustrates the message flow, represented by numbered arrows, from the user’s initial
job request until the user receives the job results. The relative temporal sequence of each
message is noted by increasing numbers next to each arrow. In addition, the computing
system is composed of a Broker, defined earlier, a Scheduler, that schedules machine processing
jobs, a Distributer, that controls and manages job distribution, and a set of processing machines
units, labelled as CPU | through CPU n. The submitted job proceeds, therefore, with the

following twelve (12) chronological steps below whose numbers correspond to the numbered
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arrows in Figure 3:

1. The User provides a message as input to the Computing System’s Broker.

o

The Broker responds with an acknowledgement that it has accepted the
message provided in the previous step. Such an acknowledgement may
include returning a unique job request identifier to allow future messages to

reference the submitted job.

[F%]

. The User asks the Broker to start the job within the next three (3) hours.
4. The Broker then forwards the request from the previous step to the Scheduler.

The Scheduler finds an available time slot within three hours to run the job

n

so it tells the Broker that its request is satisfied.
6. The Broker then tells the user that the request, from step 3, is satisfied, as

determined in step 3.

~1

At some point in time, the Distributor would have or will notify the Scheduler
that is has finished some ser of jobs. This is not a prerequisite step for step
8 to occur.

8. When the time arrives to run any scheduled job (e.g., the one in step 3), the
job is sent to the Distributor.

9. The Distributor performs whatever is necessary to execute the job across some
set of machines (i.e., CPU 1 through CPUn) as it sees fit or as specified within
the actual job request. When complete the Distributor has the job results.

10. The Distributor then sends the Broker the job results.
11. The Distributor tells the Scheduler that the job has been completed.

12. The Broker communicates the job results to the User.
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This example is not unlike a user going to a web site and requesting some data (i.e., step 1),
to which the web site responds that the request has been approved (i.e., step 2), and then at
some scheduled time, the web site computes and then sends back the requested data to the
user (i.e., steps 4 and 7-12), say via email. The user is not aware of how many machines are
actually used with such requests; —the user only interacts with the web site which serves as
a Broker for such requests. Brokers also permit the implementation of security and external
usage policies of a computing system and the ability to encapsulate or hide the internal
components of a computing system. This serves to facilitate the computing system’s utility
as well as to protect it, just as encapsulation and strong type-checking does for object-oriented

systems.

One should note that the twelve steps can be broken down into three phases, the job request
phase (i.e., steps 1 and 3), the compurational phase (i.e., steps 4-5 and 7-11), and the job
result phase (i.e., steps 2, 6, and 12). One could view this example as a user’s single job or as
two jobs depending on whether or not steps 1 and 3 are considered as single or separate jobs.
While such distincrions may seem arbitrary, they may be important to consider during the
implementation of model machinery to establish user-required guarantees such as
computational efficiency, security, etc. Further, the user need only know what a given
implementation’s underlying model is and whether or not it is correct and reliable. This is the
reason that only job requests and job results involve interaction between the user and the
computing system, —the job computation phase occurs entirely within the computing system
itself, independent of any direct user interaction. If direct user interaction with anything
except the Broker is permitted, then the user would need to fully understand the internal

implementation of that computing system before interacting with it in a meaningful way. This
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is not desirable as it creates more than one point of interaction with the model of interest

complicating the definition of the use of any devices found within the Broker.
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CHAPTER 4.
The Job Metamodel in Detail

At the heart of the Job Metamodel is the need for a user to interact via a broker with a
computing system. Fundamentally, this requires a machine model that inherently represents
the broker and its operations where job requests and results can be communicated while
allowing job computations to be performed. Clearly, such a model must have both external
and internal interfaces used by the user and the machine respectively. This chapter details
precisely this, a partial modelling infrastructure that must be represented when constructing
any metamodelling system. The infrastructure defined herein defines abstractly how

computations are to be performed.

4.1. Virtual Machine Node Model

To sufficiently represent a computing system, one needs to couple an appropriate broker
interface with a hidden method (i.e., a model or implementation) of computation. The broker
interface is responsible for capturing job requests and releasing job results, whereas the model
of compuration attempts to use those job requests to compute some type of job result. Taken
together, the broker and computing machinery comprise a general machine model called a
node (i.e., a Computing System as presented in the previous chapter). If such a node is
implemented abstractly (e.g., in software) then it is considered to be virtual otherwise it is
considered to be real. It is possible to compose a series of nodes together to form machines
by connecting the appropriate job result flows to the proper job request sinks. By composing
and connecting machine nodes together, arbitrary larger machines are possible from a well
designed set of primitive machines (i.e., nodes). Ideally, every node should be able to be

represented by a common model so as to facilitate the design and implementation of nodes
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independent of any context-sensitive brokering or computational attributes. The virtual
machine node model presented in this section meets these ideal requirements. It is illustrated

in Figure 4 below.

—r> | ENQ DEQ | —>

Extemal
Interface

_1— mso[ —— *

Internal
Interface

DEQ | COMP | ENQ

Figure 4. The Virtual Machine Node Model.
Each virtual machine node conrains three types of internal components: (i) an interface to
insert job requests into a queue, called the enqueue interface (i.e., ENQ in Figure 4), (ii) an
interface to remove job results from a queue, called the dequeue interface (i.e., DEQ in Figure
4), and (iii) a processor where computations are defined to occur (i.e., COMP in Figure 4). The
enqueue and dequeue interfaces together form a queue. The actual node queuing interface
that the user sees is shown as the External (Machine/Node) Queve in Figure 5 below. As it
completely found in the user-accessible, external interface of the machine node, this (abstract)
queue is what has been referred to as the Broker in the previous chapter and, in this chapter,
the broker interface. The ENQ and DEQ devices within this interface are, themselves, virtual
machine nodes that enqueue job requests and dequeue job results respectively. This is

highlighted clearly in Figure 5.
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External (Machine/Node) Queve
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Figure 5. The Broker: The virtual machine node’s external queue.
The broker interface should be viewed as a transforming priority queue, a prioritized sequence
of incoming job requests that are possibly transformed into outgoing job results. The
transformations employed on job requests are simply the computations that the machine
performs on such. This type of priority queue is in contrast to traditional priority queues'’
that do not alter the state of any clements while they are in the queue, —only their temporal
ordering of extraction from the queue may be altered as compared to their insertion. The
reason the broker interface must be transforming is to accommodate the processing of job
requests and the generation of job results. In general, a job result is not what was enqueued
as a job request. Additionally, the queue must be somehow prioritized as it is possible that
incoming job requests may not be immediately processed upon arrival, forcing such requests
to be placed on hold or effectively ignored'®. This is necessary since a machine cannot wholly

control all of the aspects of its own existence (i.e., the Modelling Cycle Metamodel in the

i.e., as known in the field of computer science.

"“The term effectively ignored is used to cover any situation whereby a job request does not
cause any corresponding computed job result to be output from that machine node; i.e.,
the machine node is permitted to fail, by accident or by design.
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previous chapter); —a model can neither create itself nor completely prevent its destruction

by a third party.

The queue that the user sees as the broker interface is not a single queue. The broker interface
is really composed of two separate transforming priority queues: the incoming job queue in

Figure 6,

/lncoming Job Queve

——¥
—>|| ENQ DEQ | —>

External
Interface
Processor eee

Internal
Interface

DEQ || COMP | ENQ

Figure 6. The virtual machine node’s incoming job queue.

and the outgoing job queue in Figure 7,
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Ovtgoing Job Queue\
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Figure 7. The virtual machine node’s outgoing job queue.
Thus, the enqueuing portion of the incoming job queue and the dequeuing portion of the
outgoing job queue represent the broker interface. These two queues are linked by the
processor which handles the items dequeued from the incoming job queue and produces the
items enqueued on the outgoing job queue. It should be noted that it is the processor that
connects a dequeuing interface with an enqueuing one. The latter is significant as any node
can be viewed as a processing unit. This implies that a computing system may have nodes that
serve to connect together other nodes in order to establish broadcast, point-to-point, and
multicast communications. Further, the incoming and outgoing queues are machines in their
own right and each may be implemented by other virtual machine node instances. Such a

nesting of nodes within a node is presented in Figure 8 (see page 49).

Since nothing has been said abour how, when, or what type of computations are performed,
the presented node model is sufficient to serve as a fundamental architectural element of a
computing system. Further, the Virtual Machine Node Model is distinct from the universal
Turing machine; —Turing defined his machine as capable of only computing any calculation

that a mathematician could, as long as it was performed by a specific algorithm with limited
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time and energy in an unintelligent, yet disciplined, manner. The Virtual Machine Node
Model considers nothing other than the broker interface by which computations may be
performed (i.e., job requests and results). Thus, it may be possible to create an
implementation of the Virtual Machine Node Model that could perform computations in an
intelligent, even undisciplined manner. This allows for the possibility for wider scope of
modelling opportunities since the Virtual Machine Node Model, while distinct from the
universal Turing machine, could easily accommodate Turing’s model. Thus, the proposed
Virtual Machine Node Model is conjectured to be entirely suitable for use as a fundamental

architectural element of modelling systems.

External
interface

Internal
Interface

Figure 8. The nesting of virtual machine nodes within a node.

4.2. Aspects of the Job Metamodel’s Design

There are many aspects of an ideal Job Metamodel not included in the presentation above.
These include fault tolerance, transaction processing, policy enforcement (e.g., security, usage,
authentication, and encryption), queue management strategies, machine and job
administration, resource acquisition issues, concurrency issues (e.g., deadlock avoidance, job
distribution, and job scheduling), topology and architectural issues (e.g., of machine

construction, job deployment, processor type: SISD, MISD, SIMD, MIMD, etc.). Because of
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their importance in computing, all of these topics are warranted in a complete dissertation
of the Job Metamodel. However, here the Job Metamodel is incomplete as it does not define
such. This is one reason why this thesis provides only a partial solution to the goal of
establishing a ideal metamodelling system. The Job Metamodel presented here is not limited,

—its design acrually allows for the implementation of aspects of an ideal Job Metamodel.

4.2.1. Allowances for Other Job Metamodel Details

Just as it would be foolish to define a Job Metamodel that is not compatible with the
Modelling Cycle Metamodel, it would be foolish to define a Virtual Machine Node Model
(VMNM) that is known to not be compatible with a completed Job Metamodel. Each of the
above aspects of a Job Metamodel can be implemented within the abstract design of the
VMNM. As each component of the VMNM can be seen as real or abstract machines in their
own right, it is possible then, with the proper models of fault tolerance, transaction
processing, policy enforcement, etc. defined, to implement all of the aforesaid aspects as
contained machines with a VMNM. This is especially true as all machines are have effectively
three transforming priority queues and a processor. Thus, in a set of VMNM
implementations, one can implement the aforesaid aspects within any set of transforming
priority queues and/or set of processors as is proper. Some of these aspects will dictate specific
interface requirements of job data, however, as such are either implementations or models
themselves, they constitute abstract or real machine realizations that can be considered to be
represented by the VMNM. Therefore, it is argued that the Virtual Machine Node Model can

be used to satisfy the aforesaid aspects.

4.2.2. The Enqueue and Dequeue Interfaces

The enqueue and dequeue interfaces only have the ability to enqueue and dequeue job data
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respectively. In this thesis, the author represented these interfaces similar to that of a
traditional queue known to computer scientists (i.e., see Enqueue, Dequeue, and Queue on pages
79, 78, and 83 respectively). The traditional queue was chosen because it hides the queuing
nature of the internal processor from the Virtual Machine Node Model’s design; —i.e., it
allowed all nodes to have the same broker interface. Arguments for a non-traditional queuing
interface can be purt forth arguing that there should be a “Parallel” Virtual Machine Node
Model that permits enqueuing and dequeuing across a set of broker interface queues to
directly support parallel data flows. The latter would add state information to each queue that
determines correct queue utilization and it ties an encoding of a queue identification model
(e.g., two’s complement integers) to the Virtual Machine Node model. Since the addition of
such information complicates and limits how the Virtual Machine Node Model could be
implemented, the debated “Parallel™ Virtual Machine Node Model was seen as inferior to the

presented Virtual Machine Node Model.

The Virtual Machine Node Model may appear to some to support only a single data stream,
however, it can acrually support multiple data streams. This can be accomplished by
specifying and using job data interfaces that support multiple data streams (c.g., an array of
data streams). The enqueuing and dequeuing of such job data can be seen as a parallel
transmission of a tuple as is often required by machines that support multiple data streams.
Such nodes would be considered vector processors. One can also create a broadcast node that
upon receiving a job request, distributes the received data to a set of nodes that compute in
parallel. When complete those nodes can transmit their results back to be accumulated. These
nodes can be nested, as a group, within a node to form an array processor. Thus, multiple

data streams can be handled by the Virtual Machine Node Model.
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Multiple instruction streams can also be handled. An instruction stream is simply a data
stream containing instructions on how to perform a set of tasks. Multiple instruction streams
can be achieved by transmitting code to a set of nodes that will execute the code they each
received. Further, the single and multiple instruction and data stream models can be
combined to produce systems corresponding to each of Flynn’s four models. Thus, the
presented Virtual Machine Node Model can be utilized to support all of the machine

architectures addressed by Flynn.

4.3. A Java Implementation

In the end, it is important to demonstrate a model by implementing it. The Job Metamodel
was implemented as a preliminary microkernel (simulation) in the Java virtual machine. The
public and protected Java interfaces that implement the kernel-architecture design of the job
Metamodel are found in Appendix A (see page 70). While some classes are present to
facilitate the use of the kernel within the Java runtime environment, all of the important
models are defined as abstract classes/interfaces from which implementations are derived.
Although the designs presented in Appendix A are specific to Java, the involved
classes/interfaces can be easily ported to other languages and platforms. It is, perhaps, best to
map all of the relevant elements from the Job Metamodel to their corresponding Java classes

and interfaces defined in Appendix A. These mappings are defined thus:
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in Figure 4) as a model

Job Metamodel Term Java Class/Interface Name Page #
virtual machine node as a model Queue 83
virtual machine node as implementations VM, VMBus 97, 101
enqueue interface (i.e., ENQ in Figure 4) Enqueue 79
dequeue interface (i.e., DEQ in Figure 4) Dequeue 78
computing system processing unit (i.c., COMP Processor 93

All of the remaining classes and interfaces in Appendix A are present to construct a

meaningful implementation of the presented Job Metamodel’s kernel-architecture. This

implementation and its demonstration are detailed in the next chaprer.
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CHAPTERSS.
The Implementation & Its Results

In order to ensure that a model is of practical utility, it is necessary to construct an
implementation of it designed to test various aspects of that model. To this end, an
implementation of the Job Metamodel (i.e., a Job Model) presented in the last chapter was
created and then implemented. Two example machines were also constructed to demonstrate
usage of the Job Model’s implementation. This chapter outlines various aspects of the Job
Metamodel’s partial implementation and gives a high-level overview of the demonstration

programs created to show a physical realization of the metamodel.

5.1. The Selection of an Appropriate Implementation Environment

The selection of a suitable run-time environment and machine platform to implement the Job
Metamodel was not an easy process. Since the digital computer using object-oriented
technology is an ideal implementation platform to simulate the Job Metamodel, it was
selected to do precisely that. This meant that the Job Metamodel implementation would be

written as computer software.

When writing computer software, there is a question of how much does one base a product
upon a third-party product’s interface. Ideally, if one has the time, one would simply attempt
to create a complete environment for metamodelling from first principles. Thus, the author
had essentially two choices: to use an existing system as a basis or to write a virtual machine
from the ground up. Either way, the implementation must allow for some representation of

models and implementations that would allow their definition, creation, and inheritance of
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attributes'. In the end, the Java language and platform was used to implement the concepts

presented in this thesis.

Java, as a language and platform, has a number desirable features that would serve to facilitate
an implementation of the Job Metamodel to prefer it over other general purpose
programming languages such as Smalltalk, C, C++, etc. and their respective environments.
Those features are: (i) its compiled form can be executed on virtually any existing computer,
(11) it is able to interoperate with web browsers within a secure, easy to download
environment for the user, and (iii) it is object-oriented, supports concrete and abstract classes
(i.e., models), mulriple inheritance of interfaces, and class serialization (i.e., to easily transmit
data between nodes when necessary). Other excellent, easily available, general-purpose
computer languages and platforms (e.g., Smalltalk) could not satisfy such requirements
without a significant investment in compilers for different platforms and writing code specific
to each platform to perform tasks such as network socket I/O and concurrency (e.g., threads).

Thus, Java was selected as the implementation language and platform.

5.2. The Kernel Implementation

The complete public and protected interfaces for all of the classes that serve as the partial
kernel implementation of the Job Metamodel are listed in Appendix A (see page 70). The
previous chapter merely pointed out which Java classes/interfaces correspond to specific Job
Metamodel terms. However, to fully appreciate the implementation, some further discussion

is required to explain how the kernel functions.

PFor reasons why inheritance should be considered essential see [FORMA99].

g
“
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5.2.1. VM and VMBus

There are two implementations of the Virtual Machine Node Model: vM and vMBus (see pages
97 and 101 respectively). Instances of both classes have installed processors (i.e., classes
derived from Processor on page 93) and queue (i.e., classes derived from Queue on page 83)
instances usually set via object construction. To facilitate machine development, testing, and
deployment, each vM object defaults to using ProducerConsumerMonitor (see page 83) instances for
its incoming and outgoing job queues and a ProcessorfForaAlgorithm (see page 95) object if an
Algorithm (see page 87) instance is passed into its constructor. Meanwhile, each vMBus object
is hard-wired to use ProducerConsumerMonitor instances for its queues, and, its processor type
must be an instance of ProcessorforDispatcher (see page 96). Together, these two Virtual

Machine nodes allow one to dynamically create and then simulate a machine.

Alone, a vM instance, as a consequence of its use of ProcessorforAlgorithm, will automatically
dequeue and process information sequentially as job data is enqueued'. The type of
processing it performs depends on which Algorithm was passed into the constructor of that vM
object. While a vM is customizable by using custom Processor and Algorithm types, a VMBus node
only accepts different types of Dispatcher objects. This is a consequence of VMBus using a
ProcessorforDispatcher instance to allow one to string together vM nodes into a state machine.
In general, each vMBus node is a machine that automatically forwards queued outgoing job
results to other incoming job queues. By way of contrast, v nodes do not have the ability to
automatically forward requests from its incoming queue to other machine’s incoming queues

because ProcessorforAigorithmdoesn’t provide such behaviour. If this machine were represented

'"A different type of Processor could be used to provide different types of concurrent
behaviour. With Processorforalgorithm, the jobs are processed in a first-come, first-served

(i.e., FIFO) fashion.
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as computer hardware, each vM node would be a chip on a computer’s motherboard, whereas,
each vMBus node would be that computer’s bus; —the wiring that connects together those
computer chips. Just as the laws of physics governing current flow automatically move
electrons from a chip’s outgoing wires to another chip’s incoming wires, so do vMBus instances
provide the same for vM nodes. This is more than just a convenience, if vMBus did not exist,
then each processor would need added functionality to forward such information or be faced

with job data becoming stuck in outgoing queues'”.

The reader may have noticed the presence of the methods startListeningTo, stopListeningTo,
startSpeakingTo, and stopSpeakingTo in VMBus. These methods allow the incoming job queue (i.e.,
startListeningTo and stopListeningTo) to become attached to another node’s outgoing job
queue, and conversely, the outgoing job queue (i.e., startSpeakingTo and stopSpeakingTo) to
become attached to an incoming job queue. In creating such attachments, a dynamic state
machine is formed. In general such a machine is a graph and no restrictions are placed on
how the nodes are connected. However, if the kernel user does not want introduce a new
Queue type that is a hybrid of vM and vMBus, then it is essential to have an instance of vMBus to
connect any two VM instances. The kernel supports dynamic invocations of all vMBus methods
in order to permit dynamic machine construction and evolution. Additionally, every vM
permits the dynamic installation of Processors (i.e., Installer, see page 92) and dynamic

processor control (i.e., Controiler, see page 90). Each v and vMBus has an Installer and

""Some may argue that vMBus’ functionality could or should be implemented within a vu
node. This was not done because it was decided to have each Processor perform a “single”
task with the least amount of, possibly unused, state information as possible. Not only did
this simplify the definition of all Processors, but, it also allowed different styles of
internode broadcasts to be easily implemented (e.g., SynchronousDispatcher and
AsynchronousDispatcher on pages 96 and 88 respectively) and changed at run-time.
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Controller accessible by the methods getProcessorinstalier and getController respectively. Much

of the functionality of both vM and vMBus nodes rely heavily on the ProducerConsumerMonitor class.

ProducerConsumerMoni tor is a Queue-derived class that provides a thread-safe solution to both the
finite and infinite producer-consumer problems permitting both synchronous and
asynchronous queuing behaviour [BENAR90, STALL92]'®. Alone, it represents about two
weeks of work designing its interface and testing it in a heavily multithreaded environment.
[ts final interface design is that of an abstract queue (i.e., Queue) and serves to hide all of Java’s
multithreading monitor mechanisms from a user of this kernel. This is important for two
reasons: (i) it greatly simplifies the coding of inter-Thread communication when using large
numbers of threads and (ii) to hide the Java virtual machine’s monitor instructions (e.g.,
monitorenter and monitorexit, see [MEYER97]) and related keywords (i.e., synchronized). Sadly,
Java does not use C. A. R. Hoare’s communicating sequential processes (CSP) for process
synchronization (i.e., [HOARE78]), instead it uses an earlier paper by Hoare (i.c.,
[HOARE74]) [BUYYA99b]. The ProducerConsumerMonitor class eliminates the need to use
monitor related keywords within code blocks in order to facilitate code development and
possible future development of a CSP framework. To support queuing behaviours other than
the traditional first-in, first-out (i.e., FIFO) ordering, ProducerConsumerMonitor accepts any Queue
instance via its constructor. In the thesis software implementation, a traditional FIFO queue
(1.e., VectorAsQueue, see page 83) is used throughout. Surprisingly, the author wasn’t able to
find an objecr-oriented solution to the infinite and finite buffer producer-consumer problems

in textbooks or the literature. Thus, it is indeed possible that this is the first public mention

"The reader will note the presence of isfFull and iskmpty styled methods in Enqueue, Dequeue,
and Queue (see pages 79, 78, and 83 respectively).
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of such a solution.

Despite such useful functionality found in these kernel classes, the kernel performs nothing
by itself. For the kernel to be useful, it is necessary to write programs which utilize such. Two

such uses are detatled in the next section.

5.3. The Demonstration Examples

For reasons of development time and code complexity, the author decided to adopt a “keep
it simple” philosophy with regard to the actual computaticn being performed with any
implemented demonstration of the kernel. This is acceptable as the purpose of the
demonstration is not to demonstrate a specific model of computation, rather, it is to
demonstrate that the partially implemented kernel-architecture (i.e., the Job Metamodel) can
actually be implemented and work properly. The operation of adding integers was chosen
since addition is one of the simplest operations to write code for, run sequentially or in
parallel, and verify the correctness of the computed result. Thus, the two demonstration
programs were defined to compute the sum of a randomly generated array of positive
java.lang.Integers. These integers were summed using the java.math.8igInteger class to properly

handle large numbers.

Since Java renders deployment across the World Wide Web easy via java.applet.applet with
most commonly used web browsers, no software was needed to install the system on a user’s
machine as his/her web browser would do that when an appropriate page was downloaded.
Therefore, the system needed only be set up on an appropriate set of servers so that the user
could generate job requests and receive their results. The first demonstration runs entirely on

the user’s computer, intentionally avoiding nearly all network problems if machines are
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down, etc. The second program runs across a set of computers connected across a network
(i.e., Ethernet, ATM). Since network fault tolerance has not been implemented the second
program is very sensitive to network failures and timeouts, hence, the reason for the
deployment of the first program. Appendix C (see page 134) shows a variety of screen

captures of the demonstration programs discussed in the next section.

5.3.1. The Single Node Demonstration

The single node demonstration consists of creating a virtual machine with seven (7) nodes'’

as is illustrated in Figure 9 below.

1>

RI GA SA RO

N_ N N/
DO DI D2

Figure 9. Single node demonstration program model.
In the figure, each arrowhead represents the act of enqueuing while each arrow tail represents
the act of dequeuing. The machine nodes labelled, Rl, GA, SA, and RO, represent vM nodes using
a ProcessorforAlgorithm processor. These nodes are respectively coupled with
Aigorithm_RenderlInput, Algorithm_GenerateArray, Algorithm_SumArrayOnClient, and
Algorithm_RenderOutput found in Appendix B (see pages 122, 117, 126, and 123). The
remaining nodes, DO, D1, and D2 are vMBus instances. The grey box represents the created
machine with the necessary incoming and outgoing job queue arrows effectively coming from

the human user.

""This count excludes the necessary vMBus starting state to enqueue the data into RI.
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Rl obtains its input when the user clicks on the Invoke Task... button from the main applet screen
as illustrated in Figure 11 on page 134. When invoked, Rl brings up a window allowing the
user to choose the random number seed used to generate the random numbers and the
number of numbers that he/she wishes to sum. Practical limits have been placed on the range
of these numbers. When these limits are exceeded error messages appear at the bottom of the
window. Upon clicking Ok, those two numbers are sent to D0 and are then forwarded to GA.
If Cancel is chosen, then nothing is output from Rl and that line of execution ceases. Otherwise,
GA then generates an array of random java.lang. Integers of the appropriate length and outputs
that to D1 which forwards the information to SA. $A then sums the array and outputs it as a
java.math.Biglnteger instance to D2 which forwards it to RO. Upon receiving the sum, RO
displays it in a window (see Figure 14 on page 137) visible to the user. Miscellaneous
debugging and timing information is also output in that window (see Figures 15 and 16 on
pages 138 and 138 respectively). After the data are output to the window, the execution of

the job has been completed.

This machine is initially created when the user downloads the applet, prior to the user
clicking the Invoke Task... button. The code to actually create this machine once the Algorithm-
derived classes for Rl, GA, SA, and RO are written was very simple and can be found on page
113 in the constructor of ComputeSumOfRandomIntegerArray 1CPU. The simplicity of that code is

testament to the simplicity of the design of vM and vMBus.

5.3.2. The Two Node Demonstration

The two node demonstration is nearly identical to the single node demonstration except that

it (i) has more states and (ii) its states are spread across separate computers. However, this
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does not affect the simplicity of setting up the machine, provided the proper input and output

(e.g., network socket I/O) devices are represented as Virtual Machine Node implementations.

The two-node demonstration consists of thirteen (13) nodes™ presented in Figure 10 below.

@ @ -
................ \‘M%

Figure 10. Two node demonstration program model.

In this figure DO, D1, D2, D3, and D4 are vMBus nodes while Ri, GA, TA, RA, SA, TR, RR, and RO are

vM nodes. The vM nodes correspond to a variety of Algorithm-derived classes: Rl with

Algorithm_RenderInput (see page 122), GA with Algorithm_GenerateArray (see page 117), TA with
Algorithm_TransmitArrayToBroker (see page 127), RA with Algorithm_ReceiveArrayFromClient (see page
119), SA with Algorithm_SumArray (see page 124), TR with Algorithm_TransmitResultToClient (see
page 129), RR with Algorithm_ReceiveResultFromBroker (see page 120), and RO with
Algorithm_RenderOutput (see page 123). The purpose of each state is indicated in its class name
after “Algorithm_". Additionally, Rl, GA, and RO are identical to the nodes of the same label in
the single node demonstration earlier. Similarly, SA is nearly identical to the node labelled as
$A in the single node example; —instead of outpurtting debugging and timing information to

a window on the user’s screen, it outputs the information to the standard outpur device on

the server it is running. Of the remaining nodes, TA and TR are output devices. These devices

“®As in the single node example, this count excludes the necessary vMBus starting state to

enqueue the darta into Rl.
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use Java’s built-in serialization mechanism to output, via a TCP network socket, the array and
summed result to the broker and client respectively. Conversely, RA and RR are input devices
receiving the outputs from TA and TR respectively. Therefore, this machine is identical to the
Figure 9 earlier except that it inserts TA and RA between GA and SA, and, TR and RR between SA
and RO. This is necessary to accomplish the required network socket communication to run
this machine across two computers. From the user’s perspective there is no difference between
this and the single node examples except that the “Monitor” window omits the detail from

the outpur to the standard console on the server machine (see Figure 13 on page 136).

As with the single node example, this machine is initially created when the user downloads
the applert, prior to the user clicking the Invoke Task... button. The code to actually create this
machine can be found on page 115 in the constructor and main() function descriptions found
with the class ComputesumOfRandomIntegerarray_2cPus. The code there is aimost as simple as found

in the single-CPU demonstration.

5.4. General Discussion of the Kernel Implementation & Examples

The two demonstration examples discussed above clearly show that it is indeed possible to
implement the required kernel insofar as discussed in this thesis. Each implemented
component of the Job Metamodel kernel was itself an autonomous Virtual Machine Node
implementation with the ability to be utilized in a variety of software environments within
a Java virtual machine. This was possible by the encapsulation of all internal Virtual Machine
Node components, except the external queue representing the broker interface. This provided
a loose coupling between the internal machinery of a node and that of the broker interface
which the user and internal machinery interact with. Within the realm of object-oriented

computing, such loose couplings are desired and have many beneficial consequences
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[PFLEE98].

The presented examples were designed to simply illustrate that a working kernel could be
implemented on a single computer and across a computer network. Hence, the examples do
not attempt to fully realize the true power and flexibility of the kernel’s design. Since each
VM is a Queue, it is possible to install entire vM instances in place of the incoming and outgoing
job queues at the point of vM instance construction as was shown in Figure 8 on page 49. Such
can be used to hide dara flows to and from vM instances across machine address boundaries.
This is best illustrated with an example. Consider again Figure 9 (see page 60). The final state
machine illustrated computes the sum of an array of integers within a single address space
(i.e., a single CPU computer). However, abstractly, the same figure could be argued to
represent the computation in the two node demonstration (i.e., two networked computers).
For this to hold true, the job data flow through the edge (i.e., arrow) from GA to $A has to
instead perform the same transition through TA and RA in Figure 10 (see page 62). In Figure
9, such a transition would be argued to be “hidden” inside GA’s outgoing job queue and $A’s
incoming job queue. Thus, an evolutionary compiler monitoring the status of a dynamically
changing distributed networking environment could easily modify that transition in Figure
9 to that of Figure 10 by installing TA as 6A’s outgoing job queue and RA as SA’s incoming job
queue. So long as such changes have the same fault tolerant properties and effective job
semantics before and after such a transformation, the transition will be guaranteed to perform
properly in each case. Thus, if the transition from SA to RO is modified by similar logic

through the installation of TR and RR as queues, Figure 9 can fully represent Figure 10 and vice
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versa®'. Thus, the design of the queuing mechanisms in the Virtual Machine Node Model
allow for the dynamic, not just static, transformation of the deployment of virtual machine
nodes in some appropriately relevant address space (e.g., network, machine address
boundaries). To do such transformations automatically and meaningfully, requires a much
larger Job Metamodel kernel that is fully aware of the state automaton represented by the
machine(s) being modelled. This kernel, in fact, would have to be a compiler with enough
machine metainformation and general communication infrastructure deployed across all
participating machines to realize this goal. This is precisely the long-term aim of the author’s
personal and academic research into metamodelling. Achieving the first part of this, a

execution framework for the simulation of modelling, was the primary aim of this thesis.

*'For simplicity, it is assumed in this discussion that there is no debug and timing related
monitoring information used or produced by RI, GA, TA, RA, SA, TR, RR, RO, and any of the
dispatching nodes. If such monitoring information appeared it would be represented
explicitly by v4 node instances for such purposes. The monitor information in this thesis
was to merely provide feedback to the researcher and user of the kernel’s design and
functionality and not to be part of any actual simulated machine execution framework.
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CHAPTER 6.
Conclusions

This thesis asked, “How can one design and implement a computing system that minimizes
the work in designing, implementing, and maintaining any computing system including
itself?” In so doing, it considered academic, experimental, and personal information which
could not possibly be exhaustively documented in any thesis. It was explained that to strive
towards this goal was to attempt to create a computing system capable of metamodelling.
Those considerations lead to the presentation the Modelling Cycle and Job Metamodels.
These two Metamodels were argued as an important start to begin addressing what must be
the architecture and kernel of a future computing systemn that achieves this thesis’ idealistic
goals. Thus, the Modelling Cycle and Job Metamodels along with the partial kernel
implementation of the latter are the achievements of this thesis. Such achievements and some

additional comments are detailed below.

6.1. Thesis Achievements

The first achievement of this thesis was the Modelling Cycle Metamodel. This model was
proposed to better understand, research and recognize aspects of the life history, survivorship,
and evolution of models and their implementations. While not directly implemented in the
modelling kernel and its demonstration within this thesis, it was used to aid Job Metamodel’s
design and future research that must account for the evolution of models in a computing

system.

The second and most important achievement of this thesis was the Job Metamodel. The Job

Metamodel characterized what a computing system, job, user, and broker interface are and
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how they interact with each other via the broker interface. To provide for an eventual
complete, formal Job Metamodel, the Virtual Machine Node Model presented a machine
architecture for any computing system suited to the task of (meta)modelling and that of
designing, implementing, and maintaining computing systems. Further, the Virtual Machine
Node Model distinguishes itself from Turing machines by only considering the interfaces by
which computations are performed rather than how they are done. The question of how
computations should and ought to be performed was intentionally left undefined in the model
itself. This allows for the potential of larger problem sets to be entertained by computing
systems than those based on the universal Turing machine. Last, the Virtual Machine Node
Model can be used to create systemns representing all of Flynn’s architectural models (i.e.,
SISD, SIMD, MISD, MIMD) and, thus, the model has the ability to at least represent those

systems.

Finally, an implementarion of the Virtual Machine Node Model and various aspects of the
Job Metamodel, complete with two working examples, were implemented to execute within
the Java virtual machine. Besides lending support that the presented model can be practically
created and utilized, rhe software provided a simple representation of the proposed
computing system architecture running across one and two node systems. This representation
was able to use the interface of an abstract queue coupled with some additional functions to
allow for the construction of the state machine. Further, the external, incoming, and outgoing
job queues of the Virtual Machine Node Model were easily implemented and provide the
necessary framework to encapsulate and permit the dynamic transformation of computing
system behaviours, deployment, and policy enforcement. The latter addressed an essential

requirement in changing cluster computing environments.

Copyright © 1999 Paul Preney. All Rights Reserved. Page 67



6.2. Some Comments and Directions

The Modelling Cycle and Job Metamodels defined the rationale on a set of abilities that a
metamodelling system ought to be able to represent and accomplish. Most importantly, these
metamodels allowed job computations to be performed, modelled, and evolved over time.
Whereas static implementations would allow for greater efficiency, dynamic ones would allow
for an increase in model survivorship in environments of change. Examples of relatively static
environments include today’s non-networked computers, their applications, and their
networks. However, there is a greater need for virtual computers and networks that work
with various types of physical computer and network setups. If one considers the enforcement
of institutional, corporate, and individual copyright, trademark, patent, and other so-called
intellectual property policies of machines on the Internet, as well as nested and overlapping
subsets thereof, one soon realizes that these environments are very dynamic, driven by

constant asynchronous change amongst various collaborative entities.

Further, many of these collaborating entities are researchers thatr are responsible for
developing and testing models as hypotheses against other models in a formal exercise called
natural philosophy; —science. In the end, collaboration is what is important to
metacomputing, science, and society; —for collaboration is the coupling of some set of
interfaces (e.g., human beings talking to one another, intelligent software agents
communicating, etc.) used as a means to an end. Given that this thesis’ definition of
computation is nothing more than a means to perform some operation, modelling and
metamodelling are collaborative exercises aimed at providing some end through the use of

various existing, defined, and/or implemented collaborative agents.
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Besides providing the Modelling Cycle and Job Metamodels, this thesis provided an
implementation of the Virtual Machine Node Model, a key component of the Job
Metamodel. This implementation was a dynamically created virtual machine that satisfied the
idealistic goals as dictated by the Job Metamodel, and, established a basis by which further

research and development can occur.

The author intends to pursue further research and development of this thesis and other, more
general, metacomputing and metamodelling goals. One product will likely be the creation of
virtual code deployment machines with built-in compilers and simulators. Such machines will
be coupled with metamodelling frameworks (e.g., via metaclasses) that are “self-aware” of all
of their contained models, to research the capability of models and implementations to
automatically adapt to selection pressures of various types of computing environments. In so
doing, metamodels of policy enforcement should be able to be coupled with compiler
technology to work together with the Modelling Cycle, Job, and other metamodels efficiently
and automatically in any such system. While such could easily drive several large projects, all

projects are accomplished one step and one day at a time. This thesis was one such step.
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APPENDIX A.
Kernel Code

A.1. Overview

This appendix contains all of the public and protected classes and interfaces for all of this
thesis’ kernel code. The code is presented hierarchically first by package and then by
class/interface in alphabetical order. All pubiic and protected methods have their prototypes
given and have their functionality described. All of the code uses valid Java syntax except
code listed for Java classes, since the method definition is omitted. However, in all other

respects, all Java classes listed herein are syntactically correct.

A.2. Package: preneypaul.msc.1ibs.dp
A.2.1. Overview

This package contains classes that qualify as design patterns and design pattern wrappers.

A.2.2. Classes Hierarchy

(java.lang.0bject)
(Java.lang.Throwable)
(java.lang.Exception)
BasicException

A.2.3. Classes

BasicException

A.2.4. Interfaces

Iterator
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A.2.5. Class: BasicException

A.2.5.1. Overview

A BasicException was designed to represent/hold any type of exception that is capable of being
thrown in Java. Since the kernel code was designed to run third-party client code, there has
to be a way to capture any exception that is thrown and to allow that to be properly re-
thrown in such a manner that it is handled as a java.1angException-derived object. Specifically,
a wrapper class is needed for all classes derived from java.lang.Throwable. Thus, this pattern

permits proper error handling and reporting of all errors that occur in third-party code

executed within the kernel.

A.2.5.2. Definition

public class BasicException extends Exception

{
public static final String copyright
= *Copyright (c) 1999 Paul Preney. All Rights Reserved.”;

public BasicException();

public BasicException(Exception anException);
public BasicException(String aString);

public BasicException(Throwable aThrowable);
public Exception getInvokingException();
public Throwable getinvokingThrowabie();
public boolean isExceptionlnvoked();

public boolean isThrowablelnvoked();

A.2.5.3. Methods

A.2.5.3.1. BasicException()

Equivalent to java.lang.Exception’s Exception() constructor.

A.2.5.3.2. BasicException(Exception anException)

Equivalent to invoking java.lang.Exception’s Exception() constructor except that it also stores
a reference to anException; i.e., isExceptionInvoked() and isThrowablelnvoked() will both return

true.
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A.2.5.3.3. BasicException(String aString)

Equivalent to java.lang.Exception’s Exception(String aString) constructor.

A.2.5.3.4. BasicException(Throwable aThrowable)

Equivalent to java.lang.Exception’s Exception() constructor except that it also stores a reference

to aThrowable; i.e., isThrowablelnvoked() will return true.

A.2.5.3.5. Exception getInvokingException()

If isExcentionInvoked() returns true, then the java.lang.Exception-derived object passed to this
object’s constructor will be returned. Otherwise, null is returned or a

java.lang.ClassCastException is thrown.

A.2.5.3.6. Throwable getInvokingThrowable()

If isThrowableInvoked() returns true, then the java.lang.Throwable-derived object passed to this

object’s constructor will be returned. Otherwise, nul1 is returned.

A.2.5.3.7. boolean isExceptionInvoked()

[f this object was created by passing in a java.lang.Exception-derived object, then this method

returns true; false otherwise.

A.2.5.3.8. boolean isThrowableInvoked()

If this object was created by passing in a java.lang.Throwable-derived object, then this method

returns true; false otherwise.
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A.2.6. Interface: Iterator
A.2.6.1. Overview

The Iterator pattern is an abstract representation of traversing through a sequence of objects

in a well-defined order.

A.2.6.2. Definition

public interface [terator

{
static final String copyright
= “Copyright (c) 1999 Paul Preney. All Rights Reserved.™;

Object getitem();
void goToFirst();
void goToNext();
boolean isDone();

A.2.6.3. Methods
A.2.6.3.1. Object getItem()

Returns the current object in the sequence if isbone() returns faise; otherwise, null is returned.

A.2.6.3.2. void goToFirst()

Tells the 1terator to (re-)start iterating from the beginning of the sequence.

A.2.6.3.3. void goToNext ()

Tells the 1terator to retrieve the next item in the sequence.

A.2.6.3.4. boolean isDone()

Rerturns true if there are no more elements in the sequence; false otherwise.

A.3. Package: preneypaul.msc.1ibs.dp.imp1
A.3.1. Overview

This package consists of specific implementations of the preneypaul.msc.1ibs.dp package.
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A.3.2. Classes Hierarchy

(java.lang.0Object)
IteratorforEmptyContainer
IteratorforVector

A.3.3. Classes

IteratorforEmptyContainer
[teratorforvector

A.3.4. Class: IteratorfForEmptyContainer
A.3.4.1. Overview

An IteratorforEmptyContainer represents a zero-length sequence. This object was created to
avoid having to have an zero-length sequence object, typically derived from
preneypaul.msc.iibs.ds.Container, defined just to create an Iterator which would never iterate
through any elements since there were none. Thus, this object saves both time and RAM

resources.

A.3.4.2. Definition

import preneypaul.msc.libs.dp.lterator;
final public class IteratorforEmptyContainer impiements Iterator

{
public static final String copyright
= "Copyright (c) 1999 Paul Preney. All Rights Reserved.";

public IteratorfortmptyContainer();
public Object getItem();

public void goToFirst();

public void goToNext();

public boolean isDone();

A.3.4.3. Methods

See the superclass for unlisted method descriptions.

A.3.4.3.1. IteratorForEmptyContainer()

Constructs an Iterator for a zero-length sequence; i.e., isbone() always returns true.
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A.3.5. Class: Iteratorforvector

A.3.5.1. Overview

While java.util.Enumeration exists to iterate through a Vector, it was preferred to have an
Iterator-derived iterator pattern object used universally throughout the kernel code for
consistency. The observant reader will note that 1terator differs from java.utii.Enumeration in

how one tells the iterator object to iterate through the sequence.

A.3.5.2. Definition

import preneypaul.msc.libs.dp.Iterator;
import java.util.Vector;
final public class IteratorForVector implements [terator

{
public static final String copyright
= “Copyright (c) 1999 Paul Preney. All Rights Reserved.";

public [teratorForVector(Vector aVector);
public Object getltem();
public void goToFirst();
public void goToNext();
public boolean isDone();

A.3.5.3. Methods

See the superclass for unlisted method descriptions.

A.3.5.3.1. IteratorforVector(Vector aVector)

Constructs an Iterator that will iterate through avector from its lowest numbered index to its

highest.

A.4. Package: preneypaul.msc.libs.os
A.4.1. Overview

This package was created to hold operating system (OS), i.e., kernel, relevant objects.

A.4.2. Classes Hierarchy

(java.lang.Object)
(java.lang.Throwablie)
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(java.lang.Exception)
(preneypaul .msc.libs.dp.BasicException)
0SException

A.4.3. Classes

OSException

A.4.4. Class: 0SException
A.4.4.1. Overview

Based on BasicException, this object serves as the primary base exception class for all of the

kernel code.

A.4.4.2. Definition

import preneypaul .msc.libs.dp.BasicException;
public class OSException extends BasicException

{
public static final String copyright
= *Copyright (c) 1999 Paul Preney. All Rights Reserved.";

public 0SException();

public OSException(Exception anException);
public OSException(String aString);

public OSException(Throwable aThrowabie);

A.4.4.3. Methods

See superclass for method descriptions.

A.5. Package: preneypaul.msc.libs.os.ds

A.5.1. Overview

This package contains all operating system, i.e., kernel-relevant, data structures. For power

and flexibility, nearly all of the data structures are defined as abstract interfaces.

A.5.2. Classes Hierarchy

(java.lang.0Object)
ObjectHolder
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A.5.3. Classes

ObjectHolder

A.5.4. Interfaces

Container

Dequeue

Enqueue
InteratableContainer
Queue

A.5.5. Interface: Container

A Container holds a collection of objects. As this is an abstract interface, the representation of

exactly what a Container is, must be defined by derived classes.

A.5.5.1. Definition

public interface Container

{
static final Striang copyright
= “Copyright (c) 1999 Paul Preney. All Rights Reserved.";

boolean isEmpty();
boolean isFull();

A.5.5.2. Methods

A.5.5.2.1. boolean isEmpty()

Returns true if the Container is empty, i.e., the Container is presently holding no (contained)

objects; false otherwise.

A.5.5.2.2. boolean isFull()

Returns true if the Container is full, i.e., the Container is presently holding the maximum

number of (contained) objects it can; false otherwise.
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A.5.6. Interface: bequeue

A.5.6.1. Overview

A Dequeue represents a half-queue, specifically, the half that permits the removal of objects
from some queue. All derived instances of this interface must be thread-safe and must obey
the defined blocking behaviours. This class is typically used with the Enqueue and Queue

interfaces also in this package.

A.5.6.2. Definition

pubiic interface Dequeue extends Container

{
static final String copyright
= "Copyright (c) 1999 Paul Preney. All Rights Reserved.";

Object dequeue();

boolean isDequeueEmpty();

boolean isDequeuefull();

boolean tryDequeue(ObjectHolder anObject);

A.5.6.3. Methods

A.5.6.3.1. Object dequeue()

Returns the next object to be removed from the Dequeue, i.e., some Queue. [f the queue is empty,
1.e., isDequeueEmpty() returns true, then the method blocks until some object can be removed
from the said Queue. If such blocking behaviour is not desired, then the trybequeue method

should be used instead.

A.5.6.3.2. boolean isDequeueEmpty()

Returns true if no elements can be removed from the Dequeue; false otherwise. Note: Even if
this method returns true, in a multithreaded environment, one is not guaranteed that there

will be an element to remove from the queue after calling this method.
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A.5.6.3.3. boolean isDequeueFull()

Returns true if the Dequeue can hold no more elements; false otherwise. This method has
limited urility except when it is used as part of the Queue interface presented later in this

package.

A.5.6.3.4. boolean tryDequeue(ObjectHolder anObject)

Returns true if an element was removed from the Dequeue; false otherwise. If true is returned,
anObject holds the object removed from the queue, i.e., anObject.isDefined{) will return true.
If faise is returned, anobject.isDefined() will return faise. Unlike dequeue(), this method will

never block.

A.5.7. Interface: Enqueue

A.5.7.1. Overview

An Enqueve represents a half-queue, specifically, the half that permits the addition of objects
to some queue. All derived instances of this interface must be thread-safe and must obey the
defined blocking behaviours. This class is typically used with the pequeue and Queue interfaces

also in this package.

A.5.7.2. Definition

public interface Enqueue extends Container
{
static final String copyright
= “Copyright (c) 1999 Paul Preney. All Rights Reserved.";

void enqueue({Object anGbject);
boolean isEnqueuetmpty();

boolean isEnqueueFulli();

boolean tryEnqueue(Object anObject);
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A.5.7.3. Methods
A.5.7.3.1. void enqueue(Object anObject)

Adds anobject to the Enqueue, i.e., some Queue. If the queue is full, i.e., isEnqueueFuli() returns
true, then the method blocks until the object can be added to the said queue. If such blocking

behaviour is not desired then the tryEnqueue method should be used instead.

A.5.7.3.2. boolean isEnqueueEmpty ()

Returns true if there are no elements that can be removed from the Enqueue; false otherwise.
This method has limited utility except when it is used as part of the Queue interface presented

later in this package.

A.5.7.3.3. boolean isEnqueueFull()

Returns true if the Enqueue can hold no more elements; false otherwise. Note: Even if this
method returns false, in a multithreaded environment, one is 7ot guaranteed that an element

can be added to the Enqueue after calling this method.

A.5.7.3.4. boolean tryEnqueue(Object anObject)

Returns true if anObject was added to the Enqueue; false otherwise. Unlike enqueue(), this

method will never block.

5.8. Interface: 1teratableContainer

A.
A.5.8.1. Overview

Since it may be possible to iterate, in some standard way, through many different types of
Containers, this interface, IteratableContainer, defines such. In this way, there will exist a

standard way to obtain an Iterator for a Container.
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A.5.8.2. Definition

import preneypaul.msc.libs.dp.lterator;
public interface IteratableContainer

{
static final String copyright
= "Copyright (c) 1999 Paul Preney. All Rights Reserved.";

[terator iterate();

A.5.8.3. Methods

A.5.8.3.1. Iterator iterate()

Rerurns an Iterator capable of iterating through some sequence of elements in some standard
way for that object instance. All implementations of this method must be thread-safe and the
IteratableContainer must not change while iterating through its sequence. That is, the sequence
that the returned Iterator object iterates through must be invariant over the returned 1terator

object’s lifetime.

A.5.9. Class: ObjectHolder
A.5.9.1. Overview

Although Java supports passing arguments to methods by reference, such arguments cannot
be used to pass back the nul1 value. ObjectHolder was defined to allow passing via arguments
to methods arbitrary values back to the method caller. Additionally, the state of the object
being passed back is tracked as well; i.e., if the ObjectHolder instance holds any valid object

value, including null, then isbefined() will return true; otherwise, isbefined() will return fatse.

A.5.9.2. Definition

public final class ObjectHolder
{
public static final String copyright
= "Copyright (c) 1999 Paul Preney. All Rights Reserved.”;

public ObjectHolder();

public ObjectHolder(final Object anObject);
public final synchronized Object getObject();
public boclean isDefined();
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public final synchronized void setObject(Object anObject);
public final synchronized void undefine();

A.5.9.3. Methods
A.5.9.3.1. objectHolder()

Creates an ObjectHolder instance that sets the status returned by isDefined() to be false.

A.5.9.3.2. ObjectHolder(final Object anObject)

Creates an ObjectHolder instance that holds anobject and sets the status returned by isbefined()

to be true.

A.5.9.3.3. object getObject()

Returns the object being held if the status returned by isbefined() is true; otherwise null is

returned.

A.5.9.3.4. boolean isDefined()

Returns true if an object is being held; false otherwise.

A.5.9.3.5. void setObject(Object anObject)

Tells the objectHolder instance to hold anobject and set the status returned by isbefined() to be

true.

A.5.9.3.6. void undefine()

Tells the objectHolder instance to release any object it may be holding and set the starus

returned by isbefined() to be false.
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A.5.10. Interface: Queue
A.5.10.1. Overview

A Queue represents a full-queue, specifically, the functionality of an Enqueue and a Dequeue

combined into a single object. Enqueue and Dequeue are interfaces also defined in this package.

A.5.10.2. Definition

public interface Queue extends Enqueue, Dequeue

{
static final String copyright
= "Copyright (c) 1999 Paul Preney. All Rights Reserved.";

A.5.10.3. Methods

See the superclasses for method descriptions.

A.6. Package: preneypaul .msc.1libs.os.ds.impl

A.6.1. Overview

This package contains classes that are implementations of classes/interfaces defined in the

preneypaul.msc.libs.os.ds package.

A.6.2. Classes Hierarchy

(Java.lang.Object)
VectorAsQueue

A.6.3. Classes

VectorAsQueue

A.6.4. Class: VectorAsQueue

A.6.4.1. Overview

VectorAsQueue is an implementation of the Queue and IteratableContainer interfaces that uses

java.util.vector. For its efficiency and simplicity, the kernel uses this class for most of its
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queuing support.

A.6.4.2. Definition

import preneypaul.msc.libs.dp.[terator;
import preneypaul .msc.libs.os.ds.0ObjectHolder;
public class VectorAsQueue implements Queue, IteratableContainer

{
public static final String copyright
= "Copyright (c) 1999 Paul Preney. All Rights Reserved.";

public VectorAsQueue();

public synchronized Object dequeue();

public synchronized void enqueue(QObject anObject);
public boolean isDequeuefmpty();

public boolean isDequeueFull();

public boolean isEmpty();

public boolean isEnqueuetmpty();

public boolean isEnqueueFull();

public boolean 1sFuli();

public synchronized Iterator iterate();

public synchronized boolean tryDequeue(ObjectHolder anObject);
public synchronized boolean tryEnqueue{Object anObject);

A.6.4.3. Methods

See the superclasses for unlisted method descriptions.

A.6.4.3.1. vectorAsQueue()

Constructs a VectorAsQueue object with its Queue initially empty.

A.7. Package: preneypaul.msc.libs.os.monitors

A.7.1. Overview

This package contains a series of specialized “monitor™ classes essential for synchronizing
concurrent threads/processes. All multithreading synchronization behaviours in the kernel are

controlled with objects from this package.

Note: Originally, this package contained several “monitor™ classes, including various types
of semaphores and older versions of solutions of the well known producer-consumer

problem. All of those classes were made obsolete and were removed with the (only) remaining
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class, ProducerConsumerMonitor, as its blocking behaviours are implicit and it is guaranteed to

avoid resource deadlock.

A.7.2. Classes Hierarchy

(java.lang.0Object)
ProducerConsumertoni tor

A.7.3. Classes

ProducerConsumerMonitor

A.7.4. Class: ProducerConsumerMonitor

A.7.4.1. Overview

The ProducerConsumerMoni tor class implements both the finite- and infinite-buffer solutions to
the producer consumer problem [BENAR90, STALL92]. This class is the single most
important class in the kernel for it is the only one that is used to synchronize threads. Since
this class guarantees resource queue deadlock will not occur between concurrently executing
program sections, it was a lot easier to ensure that code using this class was also correct. The
astute reader will note that the reason why this solution is adequate for the infinite-buffer
producer-consumer problem is that it operates on abstract Queves; —i.e., there is no “real”,
hard-coded notion of when isempty() and isFui1{() actually occur, nor, is there a “real”, hard-

coded notion of how a Queue is represented on any given system.

Note: The class design for the ProducerConsumerMonitor is the product of several weeks of code
design and testing. The final form, presented here, is not only elegant and correct, bur also,
permits both synchronous and asynchronous queuing behaviours. Much of the code design
and testing of this class effected the design of the Container, Dequeue, Enqueue, and Queue classes.

[ know of no published, object-oriented solution to the producer-consumer problem that gives
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such flexibility.

A.7.4.2. Definition

import preneypaul.msc.libs.dp.Iterator;
import preneypaul.msc.libs.os.ds.ObjectHolder;
public final class ProducerConsumerMonitor implements Queue
{
public static final String copyright
= “Copyright (c) 1999 Paul Preney. All Rights Reserved.“;

public ProducerConsumerMonitor(Queue aQueue):;
public Object dequeue();

public void enqueue{final Object anObject);
public boolean isDequeueEmpty();

public boolean isDequeueFull();

public boolean isEmpty();

public boolean isEnqueueEmpty();

public boolean isEnqueuefull();

public boolean isFull();

public boolean tryDequeue(ObjectHolder anObject);
public boolean tryEnqueue(final Object anObject);

A.7.4.3. Methods

See the superclass for unlisted method descriptions.

A.7.4.3.1. ProducerConsumerMonitor(Queue aQueue)

Constructs a ProducerConsumerMonitor instarnice that acts upon the Queue, aQueue.

A.8. Package: preneypaul .msc.1ibs.os.vm

A.8.1. Overview

This package contains all of the essential classes for the kernel code.

A.8.2. Classes Hierarchy

(java.lang.0bject)

AsynchronousDispatcher

CallReturnSpace

Processor
ProcessorForAlgoritha
ProcessorfForDispatcher

SynchronousDispatcher

(java.lang.Throwable)
(java.lang.Exception)

(preneypaul.msc.libs.dp.BasicException)
(preneypaul .msc.libs.os.0SException)
VMException
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A.8.3. Classes

AsynchronousDispatcher
CaliReturnSpace
Processor
ProcessorforAlgorithm
ProcessorforDispatcher
SynchronousDispatcher
VM

VMBus

VMException

A.8.4. Interfaces

Algorithm
Controller
Dispatcher
Installer

A.8.5. Interface: Algorithm

A.8.5.1. Overview

The Algorithm interface represents an abstract algorithm, function, or procedure. Every
Algorithm may accept some input and may produce some output. The primary purpose of this
interface is ro remove third-party code dependency on the Processor class also defined in this

package. In this way, a third-party can write Algorithms independent of the type Processor that

they are to run on.

A.8.5.2. Definition

import preneypaul.msc.libs.os.ds.ObjectHolder;
public interface Algorithm

{
static final String copyright
= “Copyright (c) 1999 Paul Preney. All Rights Reserved.";

void algorithm(Object anlnput, ObjectHolder anQutput);
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A.8.5.3. Methods

A.8.5.3.1. void algorithm(Object anInput, ObjectHolder anOutput)

This method will execute some implementation-specified algorithm given anlInput and will
(optionally) produce some output to be held in anOutput. Absolutely no exceptions should be

thrown from this method. If any exceptions are thrown, they will be noted by the Processor

executing this Algorithm and will subsequently be ignored.

A.8.6. Class: AsynchronousDispatcher

A.8.6.1. Overview

An AsynchronousDispatcher asynchronously broadcasts objects to a set of “listening” objects.
Analogously, if one was talking about computer hardware, this class embodies the act of

broadcasting data asynchronously across the computer bus to some number of hardware

processing units. This class is considered a function object.

A.8.6.2. Definition

import preneypaul.msc.libs.dp.*;
public final class AsynchronousDispatcher implements Dispatcher

{
public static final String copyright
= "Copyright (c) 1999 Paul Preney. All Rights Reserved.";

public AsynchronousDispatcher();
public final void dispatch(final Object anObject, final Iterator alisteners);

pubiic String toString();

A.8.6.3. Methods

A.8.6.3.1. AsynchronousDispatcher()

Constructs an instance of an AsynchronousDispatcher.

A.8.6.3.2. void dispatch(final Object anObject, final Iterator alListeners)

Dispatches anobject to the listeners defined in the sequence, aListeners. The sequence must be
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of type WM, a class, that is also defined in this package.

A.8.6.3.3. public String toString()

Returns the string *Asynchronousbispatcher®. Used for logging purposes.

A.8.7. Class: CallReturnSpace
A.8.7.1. Overview

CallReturnSpace is experimental class meant to conform to part of the TUPLE type definition in
the Tutorial D specification defined in [DATE98]. In this thesis, this class serves as a
mechanism to supply an unordered set of typed arguments as input to and output from the
Algorithm class’ algorithm method and as the key message-passing type transmitted amongst
Processors. Specifically, a Cat1ReturnSpace defines a one-to-one associative dictionary function:
java.lang.Class X java.lang.String — java.lang.Object. Thus, this dictionary allows a given

object type to be given a java.lang.String name to further identify that object.

A.8.7.2. Definition

public class CallReturnSpace

{
public static final String copyright
= "Copyright (c) 1999 Paui Preney. All Rights Reserved.";

public CallReturnSpace();
public Object get(Class aClass, String aName);
pubiic void put(Class aClass, String aName, Object anObject);

A.8.7.3. Methods

A.8.7.3.1. callReturnSpace()

Constructs an instance of CallReturnSpace.

A.8.7.3.2. Object get(Class aClass, String aName)

Returns the object associated with a specific type, aClass, with the name, aName. If there is no

Copyright € 1999 Paul Preney. All Rights Reserved. Page 89



object associated with aClass and aName, then null is returned.

A.8.7.3.3. void put(Class aClass, String aName, Object anObject)

Stores anObject associated with the type, aClass, and the name, aName.

A.8.8. Interface: Controlier

A.8.8.1. Overview

A Controller defines an abstract interface that allows run-time process/thread control of a vM
and its internal Processor, if any. This places, as is proper, control of a vM to outside the vM
itself; e.g., a human controls a computer by starting it, turning it on, stopping it, turning it

off, etc. tasks which the computer machinery cannot itself accomplish without “outside™ help.

A.8.8.2. Definition

public interface Controller

{
static final String copyright
= “Copyright (c) 1999 Paul Preney. All Rights Reserved.";

VM getControlledvM();
boolean isRunning();
boolean isSuspended();
void resume();

void start();

void startOrResume();
void stop();

vord suspend();

A.8.8.3. Methods
A.8.8.3.1. vM getControlledVM()

Returns the vM that is being controlled by the Controller instance.

A.8.8.3.2. boolean isRunning()

Returns true if the associated VM’s Processor machinery is running; false otherwise.

Copyright © 1999 Paul Preney. All Rights Reserved. Page 90



A.8.8.3.3. boolean isSuspended()

Returns true if the associated vM’s Processor machinery is suspended; false otherwise.

A.8.8.3.4. void resume()

Resumes running the associated vM’s Processor machinery if it was previously suspended.

A.8.8.3.5. void start()

Starts running the associated VM’s Processor machinery only if is not already running.

A.8.8.3.6. void startOrResume()

Starts or resumes, as appropriate, running the associated VM’s Processor machinery if it was not

already running or if it was previously suspended.

A.8.8.3.7. void stop()

Stops running the associated VM’s Processor machinery if it was already running.

A.8.8.3.8. void suspend()

Suspends running the associated VM’s Processor machinery if it was already running.

A.8.9. Interface: Dispatcher
A.8.9.1. Overview

A Dispatcher broadcasts objects to a set of “listening” objects. Analogously, if one was talking
about computer hardware, this class embodies the act of broadcasting data across the
computer bus to some number of hardware processing units. This class is considered a

function object.
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A.8.9.2. Definition

import preneypaul.msc.libs.dp.*;
public interface Dispatcher

{
static final String copyright
= "Copyright {c) 1999 Paul Preney. All Rights Reserved.";

void dispatch(Object anObject, Iterator alisteners) throws VMException;

A.8.9.3. Methods
A.8.9.3.1.void dispatch(Object anObject, Iterator aListeners) throws VMException

Dispatches anobject to the listeners defined in the sequence, aListeners.

A.8.10. Interface: Installer
A.8.10.1. Overview

An Installer defines an abstract interface that allows run-time installation and de-installation
of Processor instances to specific VM instances. This places, as is proper, the installation of a v
component to be outside the vM itseif; e.g. a human installing/removing chips from a
motherboard is something that (normal) computer machinery cannot do itself without

“outside” help.

Note: This class only permits a single object to be installed at any given time for a given
Installer instance. However, derived implementations are free to define what they are

installing. The installed object is called a “plugin™.

A.8.10.2. Definition

public interface Installer
{
static final String copyright
= "Copyright (c)} 1999 Paul Preney. All Rights Reserved.";

Object getPlugln();

boolean isPiuggedin();

Object plugin(Object anObject) throws VMException;
Object unplug() throws VMException;
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A.8.10.3. Methods
A.8.10.3.1. Object getPlugIn()

Returns the installed object; nu11, if no object is installed.

A.8.10.3.2. boolean isPluggedIn()

Returns true if an object is installed, faise otherwise.

A.8.10.3.3. Object plugIn(Object anObject) throws VMException

Installs anobject, if possible. If anObject is successfully installed, then the method returns the
previously installed object (it unplugs the previously installed object first). If there was no
previously installed object, then null is returned. Otherwise, the installation was unsuccessful
and a VMException is thrown. If the latter occurs, then the previously installed object remains

installed.

A.8.10.3.4. object unplug() throws VMException

Returns the installed object after de-installing it first.

A.8.11. Class: Processor
A.8.11.1. Overview

A Processor defines an abstract interface that defines a specific entity capable of doing some
type of work. In this thesis, the work is that of running an Algorithms and Dispatchers. The
reader should note that each processor, for it to be of use, must be installed, by an Installer,
in some type of VM instance. Once installed, those Processors can be controlled through two

mechanisms: the VM’s Controller object and/or the data flow through the machine.
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A.8.11.2. Definition

import preneypaul.msc.iibs.os.ds.*;
public abstract class Processor
{
public static final String copyright
= "Copyright (c) 1999 Paul Preney. All Rights Reserved.";

public Processor();

public getVMWhereThisProcessorlsInstalled();

public boolean isThisProcessorinstalled();

public abstract void process(Dequeue alListener, Enqueue aSpeaker) throws VMException;
protected Processor.ForlnternalUseOnly getForlnternalUseOnly();

protected class ForinternalUseQnly

I3

{

}

public void setVMWhereThisPrccessorIsinstalled(VM avM);

A.8.11.3. Methods
A.8.11.3.1. Processor()

Constructs a Processor that is not installed or running in any vM.

A.8.11.3.2. getVMwhereThisProcessorIsInstalled()

Returns the vM where this Processor has been installed; nu11, if not.

A.8.11.3.3. boolean isThisProcessorInstalled()

Rerturns true if this Processor has been installed; faise otherwise.

A.8.11.3.4.void process(Dequeue aListener, Enqueue aSpeaker) throws VMException

This method will be called from a vM object instance when appropriate to perform processing
with the incoming data in aListener and the produced outgoing data in aSpeaker. Any errors
caught during processing must be captured and, if necessary, wrapped using the vMException

exception type.

A.8.11.3.5. Processor.ForInternalUseOnly getForInternalUseOnly()

For internal use only. Used for tracking which vM the Processor instance is installed. A class was

created since multiple (class) inheritance is not possible in Java.
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A.8.11.3.6. void ForInternalUseOnly. setVMwhereThisProcessorIsInstalled(VM
avM)

This method notes that this Processor instance has been installed in avm.

A.8.12. Class: ProcessorforAlgorithm

A.8.12.1. Overview

A ProcessorForAlgorithm separates the queuing mechanism used between the vM and its instailed

Processor from the Algorithm that specific Processor will be running.

A.8.12.2. Definition

import preneypaul.msc.libs.os.ds.*;
public class ProcessorforAlgorithm extends Processor

{
public static final String copyright
= "Copyright (c) 1999 Paul Preney. All Rights Reserved.";

public ProcessorforAlgorithm(Algorithm anAlgorithm);
public final synchronized void process(Dequeue alistener, Enqueue aSpeaker);
public String toString();

A.8.12.3. Methods

See the superclass for unlisted method descriptions.

A.8.12.3.1. ProcessorforAlgorithm(Algorithm anAlgorithm)

Constructs a Processor that runs the Algorithm defined by anAlgorithm.

A.8.12.3.2. String toString()

Returns a string for logging purposes.
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A.8.13. Class: ProcessorforDispatcher
A.8.13.1. Overview

A ProcessorforDispatcher separates the queuing mechanism used between the vM and its installed

Processor from the Dispatcher that specific Processor will be running.

A.8.13.2. Definition

import preneypaul.msc.libs.os.ds.*;
public class ProcessorforDispatcher extends Processor
{
public static final String copyright
= "Copyright (c) 1999 Paul Preney. All Rights Reserved.";

public ProcessorforDispatcher(Dispatcher aDispatcher);
public final synchronized void process(Dequeue alistener, Enqueue aSpeaker);
public String toString();

A.8.13.3. Methods

See the superclass for unlisted method descriptions.

A.8.13.3.1. ProcessorforDispatcher(Dispatcher aDispatcher)

Constructs a Processor that runs the Dispatcher defined by adispatcher.

A.8.13.3.2. String toString()

Returns a string for logging purposes.

A.8.14. Class: SynchronousDispatcher
A.8.14.1. Overview

An SynchronousDispatcher synchronously broadcasts objects to a set of “listening” objects.
Analogously, if one was talking about computer hardware, this class embodies the act of
broadcasting data synchronously across the computer bus to some number of hardware

processing units. This class is considered a function object.
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A.8.14.2. Definition

import preneypaul .msc.libs.dp.*;
public final class SynchronousDispatcher implements Dispatcher

{
public static final String copyright
= "Copyright (c) 1999 Paul Preney. All Rights Reserved.”;

public SynchronousDispatcher();

public final synchronized void dispatch(final Object anObject,
final Iterator aListeners);

public String toString();

A.8.14.3. Methods

A.8.14.3.1. SynchronousDispatcher()

Constructs an instance of an SynchronousDispatcher.

A.8.14.3.2. void dispatch(final Object anObject, final Iterator aListeners)

Dispatches anobject to the listeners defined in the sequence, aListeners. The sequence must be

of type vM, a class, that is also defined in this package.

A.8.14.3.3. String toString()

Returns the string *Synchronousdispatcher®. Used for logging purposes.

A.8.15. Class: vM
A.8.15.1. Overview

A vM defines a virtual machine (VM) complete with support for installing (via Instailer),
controlling (via Controller) a single processing unit (Processor). Since a machine is not
practically useful unless it is able to accept input and output data, every vM is also an
implementartion of Queue; input data is Enqueued and output data is Dequeved. While the
restriction that only one Processor can be installed at a time in a vM, one can always create a
multiprocessing, distributed, parallel, etc. as required Processor since the Processor class is

abstract. Thus, this vM class is generic and is able to support arbitrary machine types. The vM
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class is a standalone virtual machine. To link together vMs to construct a larger virtual machine

one must use the vMBus class defined below.

A.8.15.2. Definition

import preneypaul.msc.libs.dp.Iterator;
import preneypaul.msc.libs.os.ds.*;
public class VM implements Queue
{
public static final String copyright
= "Copyright (c) 1999 Paul Preney. All Rights Reserved.";

public VM();

public VM{Queue alListenerQueue, Algorithm anAlgorithm, Queue aSpeakerQueue)
throws VMException;

public VM(Algorithm anAlgorithm) throws VMException;

public YM{Processor aProcessor) throws VMException;

protected final void doClearProcessingThread();

protected Controller doCreateController();

protected Thread doCreateProcessingThread();

protected Installer doCreateProcessorinstalier();

public Object dequeue();

public void enqueue(final Object anQObject);

protected void finalize();

public final Controller getController();

public Iterator getInternalVMs();

protected final Dequeue getListenerQueue();

public final Processor getProcessor() throws VMException;

public final Installer getProcessorlnstaller();

protected final Enqueue getSpeakerQueue();

public boclean isDequeueEmpty();

public boolean isDequeueFull();

public boolean isEmpty();

public boolean isEnqueueEmpty();

public boolean isEnqueueFull();

public boolean isFull();

protected final boolean isProcessingThreadRunning();

public String toString();

public boolean tryDequeue{ObjectHolder anQbject);

public boolean tryEnqueue(Object anObject);

A.8.15.3. Methods

See superclass for unlisted method descriptions.

A.8.15.3.1. vM()

Constructs a vM without a Processor. Two ProducerConsumerMonitors are installed for the Enqueue

and Dequeue interfaces of this vM object automatically.
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A.8.15.3.2.vM(Queue aListenerQueue, Algorithm anAlgorithm, Queue aSpeakerQueue)
throws VMException

Constructs a VM with associated queues, alListenerQueue and aSpeakerQueue, and an Algorithm,
anAlgorithm. The VM automatically installs anAlgorithm in a ProcessorForAlgorithm instance. The
reader should note that aListenerQueue’s Dequeue and aSpeakerQueue’s Enqueue respective interfaces
are passed into the installed Processor’s Dequeue and Enqueue process method arguments
respectively. Conversely, aListenerQueue’s Enqueue and aSpeakerQueue’s Dequeue interfaces form the
basis of this vM’s Queue interface. If it is not possible to create the request virtual machine, an

exception is thrown.

A.8.15.3.3. vM(Algorithm anAlgorithm) throws VMException

Constructs a VM with a ProcessorforAlgorithm Processor using anAlgorithm. Two
ProducerConsumerMonitors are installed for the Enqueve and Dequeue interfaces of this vM object

automatically.

A.8.15.3.4. vM(Processor aProcessor) throws VMException

Constructs a vM with the given Processor, aProcessor. Two ProducerConsumerMonitors are installed

for the Enqueue and Dequeue interfaces of this VM object automatically.

A.8.15.3.5. void doClearProcessingThread()

This method sets the reference to the thread running the processor to nulil. This method
should always be «called from a terminating java.lang.Thread «created via

doCreateProcessingThread(). No other method should ever call this method.

A.8.15.3.6. Controller doCreateController()

Creates an appropriate Controller for this vM. This method should never be directly called. Its

purpose is to allow vM-derived classes to override the type of Controller instance that gets
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created.

A.8.15.3.7. Thread doCreateProcessingThread()

Creates an appropriate java.lang.Thread instance capable of invoking the installed Processor’s
process method. This method should never be directly called. Its purpose is to allow vm-

derived classes to override the java.lang.Thread creation mechanism.

A.8.15.3.8. Installer doCreateProcessorInstaller()

Creates an appropriate Instailer for this vM. This method should never be directly called. Its
purpose is to allow vM-derived classes to override the type of Installer instance that gets

created.

A.8.15.3.9. void finalize()

Ensures that the vM frees all resources that it is making use of, such as stopping a running

Processor, etc.

A.8.15.3.10. Controller getController()

Returns the Controlier for this vM’s installed Processor.

A.8.15.3.11. Iterator getInternalVMs()

Returns, at the vM implementation’s discretion, a sequence of vMs that are installed internally
forming a machine within this vM. This may be required for development environments and

dynamic queries about internal vMs detail.

A.8.15.3.12. Dequeue getListenerQueue()

Returns the Dequeue that must be passed into a Processor’s process method.
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A.8.15.3.13. Processor getProcessor() throws VMException

Returns the Processor that is installed. An exception is thrown if no Processor is installed.

A.8.15.3.14. Installer getProcessorInstaller()

Returns the Processor Installer that this vM requires.

A.8.15.3.15. Enqueue getSpeakerQueue()

Returns the Enqueue that must be passed into a Processor’s process method.

A.8.15.3.16. boolean isProcessingThreadRunning()

Returns true if the thread running the Processor is running; false otherwise. Note: This is not
the same as asking if the Processor itself is running, that should be done through the vM’s

Controller. This method should be demoted to protected scope.

A.8.15.3.17. String toString()

Returns a string for logging purposes.

A.8.16. Class: VMBus
A.8.16.1. Overview

A vMBus defines a virtual machine suitable for conducting “bus” operations; i.e., it serves as a
device design to link rogether other vMs into a network forming, in fact, a larger virtual
machine which could be further encapsulated within a Processor device inside another vM
object instance. The Collector class is required to capture incoming data that is in some Dequeue

and place it in an €nqueue (of another vm).
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A.8.16.2. Definition

import preneypaul.msc.libs.dp.*;
public class VMBus extends VM
{
pubiic static final String copyright
= "Copyright (c) 1999 Paul Preney. All Rights Reserved.";
public VMBus(Dispatcher aDispatcher) throws VMException;
public Iterator getListeners();
public synchronized void startListeningTo(VM aVM);
public void startSpeakingTo(VM aVM);
public synchronized void stopListeningTo(VM avM);
public void stopSpeakingTo(VM avM);
protected class Collector
{
public Collector(VvM avM);
public void startCollecting();
public void stopCoilecting(};
protected void finalize();

A.8.16.3. Methods

A.8.16.3.1. vMBus (Dispatcher aDispatcher) throws VMException

Constructs a  vM with a ProcessorforDispatcher Processor using aDispatcher. Two
ProducerConsumerMonitors are installed for the Enqueue and Dequeue interfaces of this vM object

auromatically.

A.8.16.3.2. Iterator getlListeners()

Returns a sequence of vMs that are listening (i.e., via their Enqueue interfaces) for incoming data.

A.8.16.3.3. void startListeningTo(VM aVvM)

Tells this vMBus instance to start listening (via the Enqueue interface) to avM’s Dequeue interface for

data.

A.8.16.3.4. void startSpeakingTo(VM aVM)

Tells this vMBus instance that it is to start speaking (via the Dequeue interface) to avM’s Enqueue

interface with its output data. This method won’t work, however, unless avM’s startListeningTo
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method is also called as is proper.

A.8.16.3.5. void stopListeningTo(VM aVvM)

Tells this vMBus to stop listening to avM’s Dequeue interface for incoming data.

A.8.16.3.6. void stopSpeakingTo(VM aVM)

Tells this vMBus to stop speaking to avM’s Enqueue interface for incoming data. avM’s

stopListeningTo method should be called whenever this method is called.

A.8.16.3.7. Collector.Collector(VM avM)

Creates a Collector that dequeues incoming data from avM and enqueues it in the vMBus object

which created the collector.

A.8.16.3.8. void Collector.startCollecting()

Starts the daemon java.lang.Thread that collects incoming data.

A.8.16.3.9. void Collector.stopCollecting()

Stops the daemon java.lang.Thread that collects incoming data.

A.8.16.3.10. void Collector.finalize()

Forces the daemon java.lang.Thread that collects incoming data to stop.

A.8.17. Class: VMException
A.8.17.1. Overview

A VMException is identical in every respect to its parent class, 0SException. A new class was
created however, to differentiate between exceptions thrown from the

preneypaul .msc.libs.os.vm package from exceptions thrown elsewhere.
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A.8.17.2. Definition

import preneypaul.msc.libs.os.0SException;
public class VMException extends CSException
{
public static final String copyright
= “Copyright (c) 1999 Paul Preney. All Rights Reserved.";

public VMException();

public VMException(Exception anException);
public VMException(String aString);

public VMException(Throwable aThrowable);

A.8.17.3. Methods

See corresponding superclass constructors for descriptions.

Copyright © 1999 Paul Preney. All Rights Reserved. Page 104



APPENDIX B.
Demonstration Code

B.1. Overview

This appendix contains all of the public and protected classes and interfaces for all of this
thesis’ kernel code. The code is presented hierarchically first by package and then by
class/interface in alphabetical order. All public and protected methods have their prototypes
given and have their functionality described. All of the code uses valid Java syntax except
code listed for Java classes, since the method definition is omitted. However, in all other

respects, all Java classes listed herein are syntactically correct.

B.2. Package: preneypaul.distdemo

B.2.1. Overview

This package contains the bootstrap code for the example programs used in this thesis.

B.2.2. Classes Hierarchy

(java.lang.Qbject)
(java.awt.Component)
(java.awt.Container)
(com.sun.java.swing.JComponent)
(com.sun.java.swing.JPanel)
AutoscrollbListPanel
MonitorPanel
UserlobControlInterfacePanel
(java.awt.Panel)
(java.applet.Applet)
(com.sun.java.swing.JApplet)
UserdobControlInterfaceApplet
(java.awt.Window)
(java.awt.Frame)
(com.sun.java.swing.JFrame)
TaskDesktop
(com.sun.java.swing.Defaul tDesktopManager)
TaskDesktopManager

B.2.3. Classes

AutoscrolllListPanel
MonitorPanel
TaskDesktop
TaskDesktopManager
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UserJobControl InterfaceAppiet
UserJobControlInterfacePanel

B.2.4. Interfaces

MonitorQutput
VMInfo

B.2.5. Class: AutoscroliListPanel
B.2.5.1. Overview

This class extends a Jpanel to contains a JList (with a JscroliPane) that adds Strings to the
bottom of the list. As items are added, the list is automatically scrolled such that the last item
in the list is always visible. This class is used to show the various outputs in the example

programs.

B.2.5.2. Definition

import java.awt.lLayoutManager;
import com.sun.java.swing.*;
public class AutoscroilListPanel extends JPanel

{
pubiic static final String copyright
= "Copyright (c) 1999 Paul Preney. All Rights Reserved.";

public AutoscrollListPanel();

public AutoscrollListPanel (LayoutManager layout);

public AutoscrollListPanel(LayoutManager layout, boolean isDoubledBuffered);
public Autoscrolllistpanel (boolean isDoubledBuffered):

public void write(String aString);

B.2.5.3. Methods

See the superclass for unlisted method descriptions.

B.2.5.3.1. void write(String aString)

This method adds astring to the last line of the list. The scroll bar is automatically set to

ensure that aString is showing in the list.
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B.2.6. Class: MonitorPanel
B.2.6.1. Overview

A MonitorPanel is a JPanel that has a JTabbedPane control, each of which contain a
AutoscollListPanel. MonitorPanels are used to show different types of output, such as debug,

timing, and “normal” outputs, for a specific VMInfo instance.
£,

B.2.6.2. Definition

import java.awt.layoutManager;
import com.sun.java.swing.*;
public class MonitorPanel extends JPanel implements MonitorOutput

{
public static final String copyright
= “Copyright (c) 1999 Paul Preney. All Rights Reserved.";

public MonitorPanel ();

public MonitorPanel (LayoutManager layout);

public MonitorPanel (LayoutManager layout, boolean isDoubleBuffered);
public MonitorPanel (boolean isDoubleBuffered);

public synchronized void writeToMonitor(String aCategory, String aString);

B.2.6.3. Methods

See the superclasses for unlisted method descriptions.

B.2.6.3.1. void writeToMonitor(String aCategory, String aString)

Writes to the AutoscrollListPanel’s write method aString found on the JTabbedPane pane,

aCategory. [f no tabbed pane for acategory exists, then one is automatically created.

B.2.7. Interface: MonitorOutput

B.2.7.1. Overview

A MonitorOutput represents any type of outpurt device that can output strings differentiated by

some category of output. An example of this is the MonitorPanel class.
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B.2.7.2. Definition

public interface MonitorQutput

{
static final String copyright
= *Copyright (c) 1999 Paul Preney. All Rights Reserved.";
void writeToMonitor(String aCategory, String aString);

B.2.7.3. Methods

B.2.7.3.1. void writeToMonitor(String aCategory, String aString)

Causes the string, aString, to be output to the log represented by aCategory.

B.2.8. Class: TaskDesktop
B.2.8.1. Overview

A TaskDesktop instance is a window, specifically a JFrame, that shows a MonitorPanel for some
VMInfo instance. A VMInfo instance is, in this thesis, an example program that demonstrates the
functionality of this kernel. A TaskDesktop window has a menu that allows the user to request
that the (i) monitor window be shown if it is not; (ii) more instances of the example program
be run; and (iii) to exit from the TaskDesktop. Upon startup, the TaskDesktop runs a single

instance of the example program.

B.2.8.2. Definition

import java.awt.event.ActionlListener;
import java.util.Hashtable;
mport com.sun.java.swing.*;
public class TaskDesktop extends JFrame implements ActionlListener, MonitorQutput
{
public static final String copyright
= “Copyright (c) 1999 Paul Preney. All Rights Reserved.";

public TaskDesktop();

public TaskDesktop(VMInfo avMInfo);

public void actionPerformed(ActionEvent e);

public JDesktopPane getTaskDesktopPane();

public void writeToMonitor(String aCategory, String aString);
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B.2.8.3. Methods

See the superclasses for unlisted method descriptions.

B.2.8.3.1. TaskDesktop(VMInfo aVMInfo)

Constructs a TaskDesktop for the specified example demonstration program, avMinfo. The

TaskDesktop superclass’ title will be set to avMInfo.getTitie().

B.2.8.3.2. void actionPerformed(ActionEvent e)

Performs the processing of any of the menu items chosen from the menu bar.

B.2.8.3.3. JDesktopPane getTaskDesktopPane()

Returns the JbesktopPane that is being used within the Taskbesktop window.

B.2.8.3.4. void writeToMonitor(String aCategory, String aString)

Causes the string, aString, to be output to the log represented by acategory for the monitor

window associated (and contained) with a specific TaskDesktop window.

B.2.9. Class: TaskDesktopManager
B.2.9.1. Overview

Each TaskDesktopManager instance is responsible for ensuring that Jinternalframes do not become
resized or moved to outside any of the side boundaries of its parent frame window, a JFrame.

In this thesis, the parent window is always of type TaskDesktop.

B.2.9.2. Definition

mmport com.sun.java.swing.”;
public class TaskDesktopManager extends DefaultDesktopManager
{
public static final String copyright
= *Copyright (c) 1999 Paul Preney. All Rights Reserved.";

public TaskDesktopManager();

public void beginResizingFrame(JComponent aFrame, int aDirection);
public void endResizingFrame({JComponent aFrame);
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public void setBoundsForframe(JComponent aFrame, int x, int y, int w, int h);

protected static final String RESIZING = "RESIZING";

B.2.9.3. Methods

See the superclass for unlisted method descriptions.

B.2.10. Class: UserJdobControlInterfaceApplet
B.2.10.1. Overview

A UserJobControlInterfaceApplet is the key java.applet.Applet-derived class that a web browser
will download in order to run the thesis code examples. The applet’s client area contains a

UserJobControlInterfacePanel which provides all of the functionality that the user sees.

B.2.10.2. Definition

import com.sun.java.swing.*;
public class UserJobControllnterfaceAppiet extends JApplet

{
public static final String copyright
= “Copyright (c) 1999 Paul Preney. All Rights Reserved.*:

public UserJobControlInterfaceApplet();
public String getAppletinfo();
public void init();

B.2.10.3. Methods

See the superclass for unlisted method descriptions.

B.2.10.3.1. String getAppletInfo()

Returns the thesis code copyright message.
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B.2.11. Class: UserdobControlInterfacePanel
B.2.11.1. Overview

UserJobControllInterfacePanel is a JPanel-derived class that provides all of the functionality that
the user sees in a UserJobControl InterfaceApplet instance. It contains a listing of all of the nodes
that the code will run on as well as an interactive listing of all of the example “programs™ that

can be run across those nodes. A button is provided to run a selected example program.

B.2.11.2. Definition

import java.awt.lLayoutManager;

import java.awt.event.ActionlListener;

import com.sun.java.swing.*;

import com.sun.java.swing.event.ListSelectionListener;

class UserJobControllnterfacePanel extends JPanel
implements ListSelectionListener, ActionListener

{
public static final String copyright
= "Copyright (c) 1999 Paul Preney. All Rights Reserved.";

public UserJobControlinterfacePanel ();
public UserJobControllnterfacePanel (LayoutManager layout,

boolean isDoubledBuffered);
public UserJobControllnterfacePanel {boolean isDoubledBuffered);
public void actionPerformed(ActionEvent e);
public void invokeTask_ActionPerformed(ActionEvent actionEvent});
public void populate(String aBrokerAddress):
public void task_ValueChanged(ListSelectionEvent listSelectionEvent);
public void valueChanged(ListSelectionEvent e);

B.2.11.3. Methods

See the superclasses for unlisted method descriptions.

B.2.11.3.1. void actionPerformed(ActionEvent e)

Forwards any button events to the invokeTask_ActionPerformed method. All other events are

1gnored.

B.2.11.3.2. void invokeTask_ActionPerformed(ActionEvent actionEvent)

For the selected example program, encapsulated in an internally stored vMInfo object instance,
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this method invokes that vMInfo instance’s execute method.

B.2.11.3.3. void populate(String aBrokerAddress)

This method populates all of the available nodes’ internet addresses.

B.2.11.3.4. void task_ValueChanged(ListSelectionEvent listSelectionEvent)

This method is responsible for ensuring that a description of the example program appears

for a selected example program. This allows the user to know what he/she is selecting.

B.2.11.3.5. void valueChanged(ListSelectionEvent e)

For any events originating from the list of example programs, this method forwards

processing to the task_valueChanged method. All other events are ignored.

B.2.12. Interface: vMInfo

B.2.12.1. Overview

The vMinfo interface is essentially a 3-tuple of program title, program description, and a

method to create and run some task.

B.2.12.2. Definition

public interface VMInfo

{
static final String copyright
= "Copyright (c) 1999 Paul Preney. All Rights Reserved.";

void execute();
String getDescription();
String getTitle();

B.2.12.3. Methods
B.2.12.3.1. void execute()

Creates and runs some task.
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B.2.12.3.2. String getDescription()

Returns a String describing the task that the execute method creates and runs.

B.2.12.3.3. String getTitle()

Returns a String with the title of the task that the execute method creates and runs.

B.3. Package: preneypaul .distdemo.tasks

B.3.1. Overview

This package defines classes for the example program rasks that will be demonstrated by

VMInfo-derived objects.

B.3.2. Classes Hierarchy

(java.lang.0bject)
ComputeSumOfRandomIntegerArray 1CPU
ComputeSumOfRandomIntegerArray_nCPUs

B.3.3. Classes

ComputeSumOfRandomintegerArray_1CPU
ComputeSumOTRandomintegerArray_nCPUs

B.3.4. Class: ComputeSumOfRandomIntegerArray 1CPU
B.3.4.1. Overview

The ComputeSumOfRandomIntegerArray_1CPU represents an example program that computes the sum
of a randomly generated integer array for a single CPU. This example program runs on the

client’s machine only.

B.3.4.2. Definition

import preneypaul.distdemo.*;
public class ComputeSumOfRandomIntegerArray_ICPU implements VMInfo

{
public static final String copyright
= “Copyright (c) 1999 Paul Preney. All Rights Reserved.";

public ComputeSumOfRandomIntegerArray_ICPU();
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public void execute();

public String getDescription();
public String getTitle();
public String toString();

B.3.4.3. Methods

See the superclass for unlisted method descriptions.

B.3.4.3.1. ComputeSumOfRandomIntegerArray 1CPU()

This constructor builds the machine that is responsible for computing the sum of a random
integer array on the client’s machine. Specifically, the machine deployed is best illustrated by

the following code fragment:

VM theRenderinput = new VM(new Algorithm RenderlInput());

VM theGenerateArray = new VM(new Algorithm GenerateArray());
VM theSumArray = new YM{new Algorithm SumArrayOnClient());
VM theRenderQutput = new VM(new Algorithm RenderQutput());

VMBus theDispatchers = new VMBus[4];

theDispatchers[0] = new VMBus(new SynchronousDispatcher());
theDispatchers[0] .startSpeakingTo(theRenderinput);
theDispatchers[1] = new VMBus(new SynchroncusDispatcher()):
theDispatchers{l].startListeningTo(theRenderInput);
theDispatchers[1].startSpeakingTo(theGenerateArray);
theDispatchers[2] = new VMBus(new SynchronousDispatcher());
theDispatchers[2].startlListeningTo(theGenerateArray);
theDispatchers[2].startSpeakingTo(theSumArray);
theDispatchers[3] = new VMBus(new SynchronousDispatcher());

theDispatchers{3].startListeningTo(theSumArray);
theDispatchers[3].startSpeakingTo(theRenderQutput);

B.3.4.3.2. void execute()

This method enqueues a properly formatted CallReturnSpace instance into the machine’s start

state.

B.3.4.3.3. String toString

Returns a string for logging purposes.
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B.3.5. Class: ComputeSumOfRandomIntegerArray 2CPUs
B.3.5.1. Overview

The ComputeSumOfRandomIntegerArray_2CPUs represents an example program that computes the
sum of a randomly generated integer array across two CPUs. For time reasons, this was never

extended to be an arbitrary set of 2 CPUs.

B.3.5.2. Definition

import preneypaul.distdemo.*;
public class ComputeSumOfRandomIntegerArray 2CPUs implements VMInfo
{
public static final String copyright
= "Copyright (c) 1999 Paul Preney. All Rights Reserved.”;

public ComputeSumOfRandomIntegerArray 2CPUs(final String aBrokerHost);
public static void main(String[] args);

public void execute();

public String getDesription();

public String getTitle();

public String toString();

B.3.5.3. Methods

See the superclass for unlisted method descriptions.

B.3.5.3.1. ComputeSumOfRandomIntegerArray 2CPUs(final String aBrokerHost)

This constructor builds the half-machine that is responsible for computing the sum of a
random integer array on the client side. Specifically, this half-machine deployed is best

illustrated by the following code fragment:

VM theRenderinput = new VM(new Algorithm Renderinput());

VM theGenerateArray = new VM(new Algorithm_GenerateArray());

VM theSumArray = new VM(new Algorithm_SumArrayOnClient());

VM theReceiveResultFromBroker = new VM(new Algorithm RenderOutput());

VM theTransmitArrayToBroker = new VM(new Algorithm_TransmitArrayToBroker(...));

VMBus theDispatchers = new VMBus([4];
theDispatchers[0] = new VMBus(new SynchronousDispatcher());
theDispatchers [0] .startSpeakingTo(theRenderInput);

theDispatchers[1] = new VMBus(new SynchronousDispatcher());

theDispatchers[1] .startListeningTo(theRenderinput);
theDispatchers[1] .startSpeakingTo(theGenerateArray);
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theDispatchers([2] = new VMBus(new SynchronousDispatcher());
theDispatchers[2].startListeningTo(theGenerateArray);
theDispatchers[2] .startSpeakingTo(theSumArray);

theDispatchers{3] = new VMBus(new SynchronousDispatcher()});
theDispatchers[3].startListeningTo(theSumArray);
theDispatchers[3].startSpeakingTo(theRenderQutput);

Some of the necessary code above has been omitted and can be identified by the use of an

ellipsis (...)-

B.3.5.3.2. void main(String[] args)

This method is responsible for constructing the remote half-machine that performs the actual

sum of the array. The machine created is as follows:

VM transmitResultToClient = new VM(new Algorithm_TransmitResultToClient());
VM sumArray = new VM(new Algorithm SumArray());
VK receiveArrayFromClient = new VM(new Algorithm_ReceiveArrayFromClient());

VMBus dispatchers[] = new VYMBus[2];

dispatchers[0] = new VMBus (new AsynchronousDispatcher());
dispatchers[0] .startListeningTo(receiveArrayFromClient);
dispatchers{0] .startSpeakingTo(sumArray);

dispatchers[1] = new VMBus (new AsynchronousDispatcher());
dispatchers{l].startListeningTo(sumArray);
dispatchers[l].startSpeakingTo{transmitResultToClient);

B.3.5.3.3. void execute()

This method enqueues a properly formatted callReturnSpace instance into the machine’s start

state.

B.3.5.3.4. String toString()

Returns a string for logging purposes.

B.4. Package: preneypaul .distdemo.tasks.sum

B.4.1. Overview

This package contains all of the algorithms and any necessary associated classes required for

this thesis’ example programs.
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B.4.2. Classes Hierarchy

(java.lang.Object)
Algorithm GenerateArray
Algorithm ReceiveArrayfFromClient
Algorithm_ReceiveResultFromBroker
Algorithm RenderInput
Algorithm_RenderQutput
Algoritha_SumArray
Algorithm_SumArrayOnClient
Algorithm_TransmitArrayToBroker
Algorithm_TransaitResultToClient
(java.awt AWTEventMulticaster)
IntegerArrayAlgorithmInputPanellListenerEventMulticaster
(java.awt.Component)
(java.awt.Container)
(com.sun. java.swing.JComponent)
(com.sun.java.swing.JInternalFrame)
IntegerArrayAlgorithmInputFrame
(com.sun.java.swing.JPanel)
IntegerArrayAlgorithalnputPanel
(java.beans.SimpleBeanInfo)
IntegerArrayAlgorithmInputPanelBeaninfo

B.4.3. Classes

Algorithm_GenerateArray
Algorithm_ReceiveArrayFromClient
Algorithm ReceiveResul tfromBroker
Algorithm RenderInput
Algorithm_RenderQutput
Algorithm_SumArray

Algorithm SumArrayOnClient
Algorithm_TransmitArrayTo8roker
Algorithm_TransmitResultToClient
IntegerArrayAlgorithminputFrame
IntegerArrayAlgorithmInputPanel
IntegetArrayAlgorithminputPanelBeanInfo
IntegerArrayAlgorithminputPanellistenerEventMuiticaster

B.4.4. Interfaces

IntegerArrayAlgorithmlnputPanellistener

B.4.5. Class: Algorithm_GenerateArray

B.4.5.1. Overview

This algorithm, with the appropriate input, generates an array of random integers as output.
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B.4.5.2. Definition

import preneypaul.msc.libs.os.ds.*;
public class Algorithm_GenerateArray implements Algorithm

{
public static final String copyright
= "Copyright (c) 1999 Paul Preney. All Rights Reserved.*;

public Algorithm GenerateArray();
public void algorithm(Object anInput, ObjectHolder anQutput);
public String toString();

B.4.5.3. Methods

See the superclass for unlisted method descriptions.

B.4.5.3.1. void algorithm(Object anInput, ObjectHolder anOutput)

This algorithm, given a random number seed and an array length, generates an array of
random integers of that length. To accomplish this, this method accepts a caliReturnSpace
object in lieu of anInput and outputs a new CallReturnSpace via anOutput as detailed in the

following table:

Input (Type): CallReturnSpace (see page 89)

(Class) Type Identifier Remarks

Integer "seed” Seed used by the random number
(java.lang) .
generator when generating the array.

IOtEQE;‘ “count*® Number of randomly generated Integers
(java.lang) to be generated in an array for output.

MonitorOutput "MonitorLog® Contains a reference to a class that permits
output to monitors.
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Output (Type): CallReturnSpace (see page 89)

(Class) Type Identifier Remarks

Vector "IntegerArray® A generated array of "count® Integer
(Java.util) elements.

MonitorOutput "Monitoriog* Contains a reference to a class that permits

output to monitors. Is the same reference
to "MonitorLog" received as input.

During the actual call, some information is output to a monitor as well.

B.4.5.3.2. String toString()

Returns "GenerateArray*.

B.4.6. Class: Algorithm_ReceiveArrayFromClient
B.4.6.1. Overview

This algorithm, with the appropriate input, reads an array of integers from a client’s socket

connection. This algorithm serves as an input device driver.

B.4.6.2. Definition

import preneypaul.msc.libs.os.ds.*;
import preneypaul.msc.libs.os.vm.*;
public class Algorithm _ReceiveArrayFromClient implements Algorithm

{
public static final String copyright
= "Copyright {c) 1999 Paul Preney. All Rights Reserved.";

public Algorithm ReceiveArrayFromClient();
public void algorithm{Object aninput, CbjectHolder anQutput);
public String toString();

B.4.6.3. Methods

Sece the superclass for unlisted method descriptions.

B.4.6.3.1. void algorithm(Object anInput, ObjectHolder anOutput)

This algorithm, given a java.net.Socket returns only information received from that socket,
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name a java.lang.Vector of java.lang.Integers and the host and port that accepts replies to the
transmitted datum. To accomplish this, this method accepts a Cal1ReturnSpace object in lieu of

anInput and outputs a new CallReturnSpace via anOutput as detailed in the following table:

Input (Type): CallReturnSpace (see page 89)

(Class) Type Identifier Remarks

Socket " IncomingRequest” The TCP socket that will receive a vector

(Java.net) of Integers by Java’s serialization
mechanism.

Output (Type): CallRerurnSpace (see page 89)

(Class) Type Identifier Remarks

\zector . “IntegerArray*” The array of Integer elements received.
Jjava.uti

String "ReplyToHost" A string thar identifies the host that will
(java.lang) accept replies.

Ir}tege;‘ “"ReplyToPort” An integer that identifies the host’s port to
(java.lang) send replies back.

During the actual call, some information is output to the standard output console as well.

B.4.6.3.2. String toString()

Returns "ReceiveArrayFromClient".

B.4.7. Class: Algorithm ReceiveResultFromBroker

B.4.7.1. Overview

This algorithm, with the appropriate input, receives a computed result (i.e., a sum) from a

computing system’s broker interface. This algorithm serves as an input device driver.
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B.4.7.2. Definition

import preneypaul.msc.libs.os.ds.*;
import preneypaul.msc.libs.os.vm.™;

public class Algorithm_ReceiveResultFromBroker implements Algorithm

{
public static final String copyright

= "Copyright (c) 1999 Paul Preney. All Rights Reserved.";

public Algorithm_ReceiveResultFromBroker();
public void algorithm(Object anlnput, ObjectHolder anQutput);

public String toString();

B.4.7.3. Methods

See the superclass for unlisted method descriptions.

B.4.7.3.1. void algorithm(Object anInput, ObjectHolder anOutput)

This algorithm receives the result (i.e., a sum) in the form of a java.lang.BigInteger object. To

accomplish this, this method accepts a callReturnspace object in lieu of anInput and outputs a

new CallReturnSpace via anOutput as detailed in the following table:

Input (Type): CallRerurnSpace (see page 89)

(Class) Type Identifier

Socket "IncomingRequest”
(java.net)
MonitorQutput “MonitorLog"

Remarks

The TCP socket that will receive a vector
of Integers by Java’s serialization
mechanism.

Contains a reference to a class that permits
output to monitors.

Output (Type): CallReturnSpace (see page 89)

(Class) Type Identifier
Biginteger "SumQfArray"
(java.math)

MonitorQutput “MonitorLog”

Remarks
Sum of an array.
Contains a reference to a class that permits

output to monitors. Is the same reference
to “MonitorLog" received as input.

During the actual call, some information is output to a monitor as well.
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B.4.7.3.2. String toString()

Returns "ReceiveResultFromBroker®.

B.4.8. Class: Algorithm RenderInput
B.4.8.1. Overview

This algorithm, with the appropriate input, outputs a random number generator input seed

and an integer count. This algorithm serves as an input device driver.

B.4.8.2. Definition

import preneypaul.msc.libs.os.ds.*;
import preneypaul.msc.libs.os.vm.*;
public class Algorithm RenderInput implements Algorithm
{
public static final String copyright
= "Copyright (c) 1999 Paul Preney. All Rights Reserved.";

public Algorithm_Renderlnput();

public void algorithm(Object anlnput, ObjectHolder anQutput);
public String toString();

B.4.8.3. Methods

See the superclass for unlisted method descriptions.

B.4.8.3.1. void algorithm(Object anInput, ObjectHolder anOutput)

This algorithm, given an instance of IntegerArrayAlgorithmInputFrame, outputs 2 random number

generator input seed and an integer count, if the user clicks on an “OK” button. Otherwise,

nothing is output. To accomplish this, this method accepts a caliReturnspace object in lieu of

anInput and outputs a new CallReturnSpace via anOutput as detailed in the following table:
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Input (Type): CallReturnSpace (see page 89)

(Class) Type Identifier Remarks
IntegerArrayAigorit  “frame® The window frame that prompts the user
AmInputframe for the required random number input

seed and integer count.

MonitorQutput “MonitorLog* Contains a reference to a class that permits
output to monitors.

Output (Type): CallReturnSpace (see page 89)

(Class) Type Identifier Remarks

Integer “seed” The random number seed as specied by
(java.lang) the user.

Integer "count® The number of integers as specified by the
(java.lang) user.

MonitorQutput "Monitoriog® Contains a reference to a class that permits

output to monitors. [s the same reference
to "MonitorLog" received as input.

During the acrual call, some information is output to a monitor as well.

B.4.8.3.2. String toString()

Returns "RenderInput®.

B.4.9. Class: Algorithm_RenderOutput

B.4.9.1. Overview

This algorithm, with the appropriate input, outputs a java.math.Biginteger sum to a

MonitorOutput window. This algorithm serves as an output device driver.

B.4.9.2. Definition

import preneypaul.msc.libs.os.ds.*;
import preneypaul .msc.libs.os.vm.*;
public class Algorithm_RenderQutput implements Algorithm
{
public static final String copyright
= “Copyright (c) 1999 Paul Preney. A1l Rights Reserved.";

public Algorithm_RenderQutput();
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public void algorithm(Object anlnput, ObjectHolder anQutput);
public String toString();

B.4.9.3. Methods

See the superclass for unlisted method descriptions.

B.4.9.3.1. void algorithm(Object anInput, ObjectHolder anOutput)

This algorithm, given an instances of Biginteger and MonitorQutput, outputs its decimal (i.e.,
base 10) value to the Monitoroutput device. There is no output produced by this algorithm. To
accomplish this, this method accepts a cal1Returnspace object in lieu of anInput and outputs a

new CallReturnSpace via anOutput as detailed in the following table:

Input (Type): CallReturnSpace (see page 89)

(Class) Type Identifier Remarks

Biginteger "SumOfArray” An integer representing a sum.
(java.math)

MonitorQutput “MonitorLog” Contains a reference to a class that permits
output to monitors.

During the actual call, some additional information is output to a monitor as well.

B.4.9.3.2. String toString()

Returns “RenderOutput”.

B.4.10. Class: Algorithm_SumArray

B.4.10.1. Overview

This algorithm, with the appropriate input, outputs the sum of an array of integers.
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B.4.10.2. Definition

import preneypaul .msc.liibs.os.ds.*;
import preneypaul.msc.libs.os.vm.*;
pubiic class Algorithm SumArray implements Algorithm

{
public static final String copyright
= "Copyright (c) 1999 Paul Preney. All Rights Reserved.";

public Algorithm_SumArray();
public void algorithm(Object anlnput, ObjectHolder anQutput);
public String toString();

B.4.10.3. Methods

See the superclass for unlisted method descriptions.

B.4.10.3.1. void algorithm(Object anInput, ObjectHolder anOutput)

This algorithm, given a vector of Integers, outputs the sum of those integers. To accomplish
this, this method accepts a CallReturnSpace object in lieu of anInput and outputs a new

CallReturnSpace via anOutput as detailed in the following table:

Input (Type): CallReturnSpace (see page 89)

(Class) Type Identifier Remarks
Vector “IntegerArray” This array is a vector of java.lang.Integer.
(java.util)
String “ReplyToHost* A string that identifies the host that will
(java.lang) X

accept replies.
Integer "ReplyToPort® An integer that identifies the host’s port to
(java.lang)

send replies back.

Output (Type): CallReturnSpace (see page 89)

(Class) Type Identifier Remarks

Biglnteger "SumOfArray” The sum of the array passed as input.
(java.math)

String "ReplyToHost" A string that identifies the host that will
(java.lang)

accept replies.

Integer "ReplyToPort* An integer that identifies the host’s port to
(Java.lang) send replies back.

Copyright © 1999 Paul Preney. All Rights Reserved. Page 125



During the actual call, some information is output to the standard output console as well.

B.4.10.3.2. String toString()

Returns “SumArray”.

B.4.11. Class: Algorithm_SumArrayOnClient
B.4.11.1. Overview

This algorithm, with the appropriate input, outputs the sum of an array of integers. It is

equivalent to Algorithm_SumArray except that it writes information to a MonitorOutput device

instead of standard output.

B.4.11.2. Definition

import preneypaul.msc.libs.os.ds.*;
import preneypaul.msc.libs.os.vm.*;
public class Algorithm_SumArrayOnClient implements Algorithm
{
public static final String copyright
= “Copyright (c) 1999 Paul Preney. All Rights Reserved.”;

public Algorithm_SumArrayOnClient();
public void algorithm(Object anInput, ObjectHolder anQutput);
public String toString();

B.4.11.3. Methods

See the superclass for unlisted method descriptions.

B.4.11.3.1. void algorithm(Object anInput, ObjectHolder anOutput)

This algorithm, given a vector of Integers, outputs the sum of those integers. To accomplish

this, this method accepts a CaliReturnSpace object in lieu of anInput and outputs a new

CallReturnSpace via anQutput as detailed in the following table:
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Input (Type): CallReturnSpace (see page 89)

(Class) Type Identifier Remarks

Vector "IntegerArray® This array is a vector of java.lang.Integer.
(java.util)

MonitorQutput "MonitorLog*® Contains a reference to a class that permits
output to monitors.

Output (Type): CallReturnSpace (see page 89)

(Class) Type Identifier Remarks

Biglnteger “SumOfArray* The sum of the array passed as input.
(java.math)

MonitorOutput “MonitorLog® Contains a reference to a class that permits
output to monitors. Is the same reference
to "MonitorLog® received as input.

During the acrual call, some information is output to a monitor as well.

B.4.11.3.2. String toString()

Rerturns "SumArrayOnClient*.

B.4.12. Class: Algorithm TransmitArrayToBroker

B.4.12.1. Overview

This algorithm, with the appropriate input, transmits an array of integers to a specied host’s

port. This algorithm serves as an output device driver.

B.4.12.2. Definition

import preneypaul .msc.libs.os.ds.*;
import preneypaul.msc.libs.os.vm.*;
public class Algorithm_TransmitArrayToBroker implements Algorithm
{
public static final String copyright
= “Copyright (c) 1999 Paul Preney. All Rights Reserved.";

public Algorithm TransmitArrayToBroker(String aHost, int aPort, String aReplyHost,
int aReplyPort);

public void algorithm(Object anInput, ObjectHolder anQutput);

public String toString();
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B.4.12.3. Methods

See the superclass for unlisted method descriptions.

B.4.12.3.1. Algorithm_TransmitArrayToBroker(String aHost, int aPort, String
aReplyHost, int aReplyPort)

Constructs an Algorithm_TransmitArrayToBroker object instance. This constructor remembers the
transmission target host’s DNS name and server port, i.e., aHost and aPort, and the host DNS

name and port, i.e., aReplyHost and aReplyPort, in where replies to any sent data can be sent.

B.4.12.3.2. void algorithm(Object anInput, ObjectHolder anOutput)

This algorithm, given a vector of Integers, outputs that information with a host’'s DNS name
and port, to which responses can be sent, to the server as specified during this object’s
construction. Nothing is output from this algorithm. To accomplish this, this method accepts
a CallReturnSpace object in lieu of aninput and outputs a new CallReturnSpace via anOutput as

detailed in the following table:

Input (Type): CallReturnSpace (see page 89)

(Class) Type Identifier Remarks

Vector “IntegerArray" This array is a vector of java.lang.Integer.
(java.util)

MonitorOutput "MonitorLog” Contains a reference to a class that permits
output to monitors.

During the actual call, some information is output to a monitor as well.

B.4.12.3.3. String toString()

Returns "TransmitArrayToBroker®.
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B.4.13. Class: Algorithm TransmitResultToClient
B.4.13.1. Overview
This algorithm, with the appropriate input, transmits a java.lang.BigInteger (i.e., the sum of

an array of integers) to a specified host’s port. This algorithm serves as an output device

driver.

B.4.13.2. Definition

import preneypaul.msc.libs.os.ds.*;
import preneypaul.msc.libs.os.vm.*;
public class Algorithm_TransmitResultToClient implements Algorithm

{
public static final String copyright
= "Copyright (c) 1999 Paul Preney. All Rights Reserved.";

public Algorithm TransmitResultToClient();
public void algorithm(Object anlnput, ObjectHolder anOutput);
public String toString();

B.4.13.3. Methods

See the superclass for unlisted method descriptions.

B.4.13.3.1. void algorithm(Object anInput, ObjectHolder anOutput)

This algorithm, given a Biglnteger, 2 host DNS name, and port, outputs that integer to the
server running on that host’s port. Nothing is output from this algorithm. To accomplish this,
this method accepts a CallReturnSpace object in lieu of anInput and outputs a new CalIReturnSpace

via anOutput as detailed in the following table:
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Input (Type): CallReturnSpace (see page 89)

(Class) Type Identifier Remarks

Biglnteger *SumOfArray® An integer.

(java.math)

String "ReplyToHost” A string that identifies the host that will
(Java.lang) accept replies.

Integer "ReplyToPort® An integer thar identifies the host’s port to
(java.lang)

send replies back.

During the actual call, some information is output to the standard output console as well.

B.4.13.3.2. String toString()

Returns "TransmitResuitToClient".

B.4.14. Class: IntegerArrayAlgorithmInputFrame
B.4.14.1. Overview

This class represents the Java Swing window that is used to prompt the user for information

via IntegerArrayAlgorithmInputPanel.

B.4.14.2. Definition

import com.sun.java.swing.*;
public class IntegerArrayAlgorithmInputFrame extends JInternalFrame

{
public static final String copyright
= "Copyright (c)} 1999 Paul Preney. All Rights Reserved.”;

public IntegerArrayAlgorithmlnputFrame();
public IntegerArrayAlgorithminputFrame(String title);
public IntegerArrayAlgorithmInputPanel getinputPanel();

B.4.14.3. Methods

See the superclass for unlisted method descriptions.

B.4.14.3.1. IntegerArrayAlgorithmInputPanel getInputPanel ()

This method returns an instance of IntegerArrayAlgorithmInputPanel, enabling the client code
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to query the necessary information from that.

B.4.15. Class: IntegerArrayAlgorithmInputPanel
B.4.15.1. Overview

This class represents the Java Swing window surface responsible for querying a random

number seed and an integer count from a user. This class is automatically inserted when an

instance of IntegerArrayAlgorithmInputFrame is created.

B.4.15.2. Definition

import
import
import
import
import
import
import
nublic

Java.awt.LayoutManager;
Jjava.awt.event_Actiontistener;

Jjava.awt.event _KeyEvent;

Jjava.util.EventObject;

com.sun.java.swing.*;

com.sun. java.swing.event.CaretEvent;
com.sun.java.swing.event.CaretlListener;

class IntegerArrayAlgorithmInputPanel extends JPanel

implements CaretListener, ActionListener

{

public static final String copyright

= "Copyright (c) 1999 Paul Preney. All Rights Reserved.";

public IntegerArrayAlgorithmInputPanel();
public IntegerArrayAlgorithmInputPanel (LayoutManager layout);
public IntegerArrayAlgorithmlnputPanel (LayoutManager layout,

boolean isDoubleBuffered);

public IntegerArrayAlgorithmInputPanel (boolean isDoubleBuffered);
public void actionPerformed(ActionEvent e);
public void addIntegerArrayAlgorithmInputPaneltistener(

IntegerArrayAlgorithmInputPanellistener newlListener);

public void caretUpdate(CaretEvent e);

protected void fireCancelButton(EventObject newEvent);

protected void fireOkButton(EventObject newEvent);

public int getNoOflIntegers();

public int getSeed();

public void keyPressed(KeyEvent e);

public void keyReleased(KeyEvent e);

public void keyTyped(KeyEvent e);

public void noOfintegersField_CaretUpdate(CaretEvent caretEvent);
public void noOfintegersField_KeyTyped(KeyEvent keyEvent);

public void randomNoSeedField_CaretUpdate(CaretEvent caretEvent);
public void randomNoSeedField_KeyTyped(KeyEvent keyEvent);

public void removelntegerArrayAlgorithmInputPanellistener(

IntegerArrayAlgorithmInputPanellListener newlListener);
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B.4.15.3. Methods

This class’ methods have not been defined as they only serve to enable proper Java Swing

input handling as required by the demonstration software.

B.4.16. Interface: IntegerArrayAlgorithmInputPanelListener

B.4.16.1. Overview

This interface abstractly represents the €ventListener interface required for proper input

handling within IntegerArrayAlgorithmInputPanel instances.

B.4.16.2. Definition

import java.util.EventListener;
public interface IntegerArrayAlgorithmInputPanellistener extends EventListener

{
static final String copyright
= "Copyright (c) 1999 Paul Preney. All Rights Reserved.”;

void cancelButton(EventObject newEvent);
void okButton(EventObject newEvent);

B.4.16.3. Methods

This class’ methods have not been defined as they only serve to enable proper Java Swing

input handling as required by the demonstration software.

B.4.17. Class: IntegerArrayAlgorithmInputPanelListenerEventMulticaster

B.4.17.1. Overview

This class represents the AWTEventListener interface necessary for proper event multicasting as

required to handle input within IntegerArrayAlgorithmInputPanel instances.

B.4.17.2. Definition

import java.awt.AWTEventMulticaster;

import java.util.EventObject;

public class IntegerArrayAlgorithminputPanellistenerEventMulticaster extends AWTEventMulticaster
impiements IntegerArrayAlgorithminputPanellListener

{
public static final String copyright
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= "Copyright {c) 1999 Paul Preney. All Rights Reserved.";

protected IntegerArrayAlgorithminputPanellistenerfventMulticaster(
IntegerArrayAlgorithmInputPaneiListener a,
IntegerArrayAlgorithminputPanellistener b);

public static IntegerArrayAlgorithmInputPanellListener add(
IntegerArrayAlgorithmInputPanellistener a,
IntegerArrayAlgorithminputPanellistener b);

public static IntegerArrayAlgorithminputPanallistener remove(
IntegerArrayAlgorithminputPanellistener a,
IntegerArrayAlgorithmInputPanellListener b);

public void cancelButton(EventObject newEvent);

public void okButton(EventObject newEvent);

B.4.17.3. Methods

This class’ methods have not been defined as they only serve to enable proper Java Swing

input handling as required by the demonstration software.
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APPENDIX C.
Sample Captured Software Screens

C.1. Screen Capture of the Main Demonstration Applet Screen

The figure below shows the main screen of the demonstration applet outlined in this thesis.

As is shown, the applet is downloaded through a client using a web browser capable of

running Java v1.1 applets.

* The Applet:

Capyrigit () 1998 Paad Pransy. AR Rights Reserved.
Chooss Deme Tasic Task
For 1 CPU Compute the sum of a randomly generated integer array] [ This task computes

or 2 CPUs: Compute the sum of a rancomiy generated integer e sum cf a user

length speciied,
randomly generatea
array of integers in a
virtual macthine of 2
CPUs

19216802

fwww preney [an

Figure 11. A screen capture of the main applet used to invoke
specific example demonstrations.
Based on the IP of the host that delivered the applet and the client’s machine a list of nodes

appear that allow the software to be run across. Additionally, there are a variety of

demonstration tasks that can be chosen to be executed across those nodes by the user.
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C.2. A Example Set of Demonstration Screen Captures

Since both the 1-CPU and the 2-CPU demonstrations are nearly identical, only screen
captures from a 2-CPU demonstration’s job run will be shown here. The figure below shows
a screen capture of the window that is shown after selecting the 2-CPU demonstration
example. Shown is the user inputting a random number seed and an integer count that will

be summed across address boundaries after he/she clicks the “OK” button.

Execute: enqueue(Frame(1 34329835) sta
Execute: enqueue(Frame[134329835] co

Input the randos number
generator seed and the number
of integers that you wish to
perfora the sum 0f. Each
integer requires 4 bytes of

Ramslem seet: (5
No. of integers: {10000
Mamory Usage: 40 /b

Lox || comem |

Figure 12. A screen capture of informatlon being inputted in order
to start a job run for the 2-CPU demonstration.

Also, shown is the “Monitor” window device. This device serves as an output medium for
various types of information reported during the execution of the virtual machine kernel-
architecture. The “Monitor” window in Figure 12 is showing its debug output. Clearly visible
within the window is the enqueuing of a java.awt.Frame into the start state of the 2-CPU
demonstration’s virtual machine. That frame, entitled “Enter Input Parameters...”, appears in
the foreground where the user provides the necessary input. In general, all monitor windows

have an “Output” tab and dynamically show other tabs when information is output in
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specified categories other than “Output”.

C.2.1. Server Side Output

The figure below is a screen capture of the standard output as produced on the server side as
a result of a 2-CPU job request. This output is equivalent to the “Monitor” window on the
client side. It produces output on the standard output device since it the server must be able

to run without a graphical user interface present.

§ Totnet 1000 preney 1an
B

e -t S

dono:ﬁﬂ:Proc

ProcessorforDispatcher-tryDequeue
nousDispatcher
ProcessorforDispatcher-dispatch-attespt:UM:ProcessorforDispatcher:RsynchronousDi
spatcher

Starting... UM:Processorforflgoritha:TransaitResultToClient

Resusing... UM:ProcessorforfAlgorithe: TranseitResultToClient
ProcessorfForflgoritha-trylequeve(input)-attespt :UM:Processorforilgorithe: Transei
tResultToClient
Processorforfalgorithe-trybequeue(input)-done:UM:Processorforilgoritha:TransaitRe)
sultToClient
ProcessorforRlgoritha-slgorithe-start:UN:ProcessorfForflgorithe: TransmitResultToC
lient

wnn SUROFRrray: 10772839042622

wwr ReplyToHost: 192.168.8.2

uun ReplyToPort: 1057

wnm Write to client port successful
ProcessorforAlgorithms-algoritha-stop:UM:ProcessorforAlgorithe: TransaitResultToCl
ient

ProcessorForDispatcher-dispatch-done :UM:ProcessorForDispatcher :RsynchronousDispa
tcher

Proceceorforflgoritha-finished:UN:Processorforalgoriths: TransaitResultToClient
ProcessorforDispatcher - cospleted.UM:ProcessorforDispatcher:RsynchronousDispatc
her

(input)° o;sorForDiopateﬁ;r. sgnchré‘

Figure 13. A screen caprure of information output on the server
side of a 2-CPU demonstration’s job run.

The 192.168.0.1 IP address was the address the servers used in this example. As is visible in
the figure, the client address was 192.168.0.2. The reader should note that there are client
and server components running on each machine. In this appendix, server simply refers to the

(broker) machine that performs the actual summation.

C.2.2. Client-Side Output

At the end of any computation demonstration in this thesis a sum of an array of integers is
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output. The figure below, shows the sum of the job submitted in Figure 12 above.

For2 CPUs Compute the sum of aa randomly qenerated integer nrre
p Y 3 Y

IThe sum1s: 107726839042622

¢ . PR -

Figre 1. A screen cature of tc ouput on theMr vicc for
a 2-CPU demonstration job run.
One should notice that an additional “Timings” tab has appeared since invoking any job
causes some timing output to be generated on the monitor device. The output of the “Debug”
tab (see Figure below) shows the job enqueued into the virtual machine and the computation

of each of its internal (virtual) machine components on the client’s machine. The algorithm

names correspond to classes starting with Algorithm_ found in Appendix B.
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Figure 15. A screen capture of the debug output on the Monitor

[Execute: enqueue(Frame(134329835] started.
Execute: enqueue(Frame(134329835]) completed.
Renderinput OK chosen on input dialog

GenerateAsray: Starting to generate array of 10000 integers with seed 5
GenerateArray. Finished generating array of 10000 integers with seed 5
GenerateAsray: exiting

(TransmitAsrayToBroker: Starting 10 write the job data to: www preney lan
[TransmitArrayToBroker Job data writen successtully.
[TransmitArayToBroker Finished wriing the job data to. www preney.jan
RecerveResultFromBroker Recewing job results.
ReceeResultFromBroker Job resuits read successfully.
RecerveResultFromBroker: Finished reagding the job resutts.

device for a 2-CPU demonstration job run.

Finally, the various timings regarding the computation time for client-side machine

components are shown in the figure below:

For 2 CPUs Compute the sum of a randomly generated integer array

Figure 16. A screen capture of the timing output on the Monitor

Renderinput Time to obtain yserinputs' 67948 miliseconds

GenerateAsray Time to generate random array of 10000 integers with seed 51s

[TransmitArtayToBroker: Time to transmit the job data to www.preney ian was: 22
ReceveResultFromBroker Time 10 recerve the job results was' 400 msflisecond
RenderOutput Time to display the sum of array output of 107728390426221ts. 20

:

N ORI VIR

device for a 2-CPU demonstration job run.

T an

The server used in this example was an Intel 80486 with 16 Mb of RAM running the Linux
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2.2.5 kernel with the Apache v1.3.9 web server. This example runs corresponding faster on
better machine architectures. Some of the operating systems that the thesis software has been

tested under include Windows95/98/NT, OS/2, AIX, IRIX, and Solaris.
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