
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2013

Comparative Mining of Multiple Web Data Source Contents with Comparative Mining of Multiple Web Data Source Contents with

Object Oriented Model Object Oriented Model

Yanal Alahmad
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Alahmad, Yanal, "Comparative Mining of Multiple Web Data Source Contents with Object Oriented Model"
(2013). Electronic Theses and Dissertations. 4730.
https://scholar.uwindsor.ca/etd/4730

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4730&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/4730?utm_source=scholar.uwindsor.ca%2Fetd%2F4730&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Comparative Mining of Multiple Web Data Source Contents with

Object Oriented Model

By

Yanal Alahmad

A Thesis

Submitted to the Faculty of Graduate Studies through the School of Computer Science

in Partial Fulfillment of the Requirements for the Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada

 2012

© 2012 Yanal Alahmad

Comparative Mining of Multiple Web Data Source Contents with

Object Oriented Model

By

Yanal Alahmad

APPROVED BY:

Dr. Abdulkadir Hussein, External Reader

Department of Mathematics and Statistics

Dr. Xiaobu Yuan, Internal Reader

School of Computer Science

Dr. Christie I. Ezeife, Advisor

School of Computer Science

Dr. Alioune Ngom, Chair

School of Computer Science

iii

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this thesis has been

published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone’s copyright

nor violate any proprietary rights and that any ideas, techniques, quotations, or any other material from

the work of other people included in my thesis, published or otherwise, are fully acknowledged in

accordance with the standard referencing practices. Furthermore, to the extent that I have included

copyrighted material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright owner(s) to

include such material(s) in my thesis and have included copies of such copyright clearances to my

appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved by my

thesis committee and the Graduate Studies office, and that this thesis has not been submitted for a

higher degree to any other University or Institution.

iv

ABSTRACT

Web contents usually contain different types of data which are embedded under different

complex structures. Existing approaches for extracting data contents from the web are manual

wrappers, supervised wrapper induction, or automatic data extraction. The WebOminer system is an

automatic extraction system that attempts to extract diverse heterogeneous web contents by modeling

web sites as object oriented schemas. The goal is to generate and integrate various web site object

schemas for deeper comparative querying of historical and derived contents of Business to Customer

(B2C) such as BestBuy and Future Shop. The current WebOMiner system generates and extracts from

only one product list page (e.g., computer page) of B2C web sites and still needs to generate and

extract from a more comprehensive web site object schemas (e.g., those of Computer, Laptop and

Desktop products). The current WebOMiner system does not yet handle historical aspects of data

objects from different web pages.

This thesis extends and advances the WebOMiner system to automatically generate a more

comprehensive web site object schema, extract and mine structured web contents from different web

pages based on objects' patterns similarity matching, and stores the extracted objects in historical

object-oriented data warehouse. Approaches to be used include similarity matching of DOM tree tag

nodes for identifying data blocks and data regions, automatic Non-Deterministic and Deterministic

Finite Automata (NFA and DFA) for generating web site object schemas and content extraction,

which contain similar data objects. Experimental results show that our system is effective and able to

extract and mine structured data tuples from different web websites with 79% recall and 100%

precision. The average execution time of our system is 21.8 seconds.

Keywords: Web content mining, Object-Oriented, Web data extraction, Wrapper induction, Frequent

Objects Mining, Data warehouse, DOM-Tree.

v

ACKNOWLEDGEMENT

I would like to give my sincere appreciation to all of the people who have helped me

throughout my education. I express my heartfelt gratitude to my parents for their support throughout

my graduate studies.

I am very grateful to my supervisor, Dr. Christie Ezeife for her continuous support throughout

my graduate study. She always guided me and encouraged me throughout the process of this research

work, taking time to read all my thesis updates. Really, I have got financial support and research

assistantship positions from Dr. Ezeife which helped me to proceed with my study.

I would also like to thank my external reader, Dr. Abdulkadir Hussein, Dr. Xiaobu Yuan, my

internal reader and my thesis committee chair, Dr. Alioune Ngom for making time to be in my thesis

committee, reading the thesis and providing valuable input. I appreciate all your valuable suggestions

and the time, which have helped improve the quality of this thesis.

At last, I would express my appreciations to all my friends and colleagues, especially Tamanna

Mumu, Gunjan Soni, and Sabbir Ahmed for their help and support. Thank you all!

vi

DEDICATION

This thesis is dedicated to my parents, my mother Hind Alzoubi and my father Nawaf Alahmad.

vii

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY .. iii

ABSTRACT ... iv

ACKNOWLEDGEMENT ... v

DEDICATION ... vi

LIST OF FIGURES ... ix

LIST OF TABLES ... xi

CHAPTER 1 - Introduction ... 1

1.1 Web Mining ... 5

1.1.1 Web Structure Mining .. 6

1.1.2 Web Usage Mining ... 7

1.1.3 Web Content Mining .. 9

1.2 Object-Oriented Data Warehouse (OODWH) Model .. 10

1.2.1 Definition of Object-Oriented Data Warehouse (OODWH) Model................................. 11

1.2.2 Aspects of Object-Oriented Model (OOM) .. 17

1.2.3 Components of Object-Oriented Database Model .. 20

1.3 Types of Extracted Web Pages .. 22

1.3.1 List Pages .. 22

1.3.2 Detailed Pages .. 23

1.4 Thesis Problem Statement .. 26

1.5 Thesis Contributions .. 28

1.6 Outline of the Thesis .. 31

CHAPTER 2- Related Work ... 32

2.1 Manual Wrapper Generation .. 32

2.2 Supervised Wrapper ... 35

2.2.1 STALKER .. 38

2.2.2 WHISK ... 40

2.2.3 SoftMealy ... 42

2.2.4 HLRT .. 45

2.3 Automatic Wrapper Generation ... 47

viii

2.3.1 Automatic Extraction using Tag-Tree .. 47

2.3.2 Automatic Extraction using DOM-Tree ... 52

CHAPTER 3 - Advanced Full Automatic WebOMiner-3 .. 60

3.1 Preliminaries .. 60

3.1.1 DOM Tree ... 61

3.1.2 Data Block and Data Region .. 61

3.1.3 Tuple Formation from Data Block ... 63

3.2 Advanced Web Object Miner (WebOMiner-3) ... 64

3.2.1 Crawler Module .. 66

3.2.2 Cleaner Module: ... 66

3.2.3 Extractor Module .. 66

3.2.4 Frequent Objects Mining Module ... 78

3.3 OO Data Warehouse and Integration Module ... 87

3.4 Complexity Analysis .. 96

CHAPTER- 4 Evaluation of WebOminer-3 ... 98

4.1 Strength of WebOMiner-3 ... 98

4.2 Empirical Evaluations .. 100

4.3 Experimental Results ... 102

CHAPTER 5 - Conclusion and Future Work .. 104

5.1 Future Work ... 105

REFERENCES ... 107

VITA AUCTORIS .. 111

ix

LIST OF FIGURES

Figure 1: Web structure graph .. 6

Figure 2: OODB schema of compUSA website. ... 12

Figure 3: OODB schema of BestBuy website. ... 14

Figure 4: OODWH Integration of Computer product from two websites. .. 16

Figure 5: OODWH schema for integrating two websites schemas. ... 17

Figure 6: Inheritance relationships between computer products. ... 18

Figure 7: Aggregation relationship between PC and its parts. ... 19

Figure 8: Class Definition of Computer Objet. .. 21

Figure 9: Inheritance hierarchy relationship of different data objects. ... 22

Figure 10: List product web page. .. 23

Figure 11: Detailed product web page .. 24

Figure 12: A snapshot of weather application source (Hammer et al., 1997). 33

Figure 13: A sample of extraction specification file (Hammer et al., 1997). ... 33

Figure 14: A section of HTML file (Hammer et al., 1997). ... 35

Figure 15: HTML source code of web page d. ... 37

Figure 16: (a) HTML code of training web page, (b) Tree hierarchal. .. 39

Figure 17: Repetitive patterns. .. 40

Figure 18: A training instance hand-tagged with two extractions (Soderland, 1999). 41

Figure 19: WHISK rule (Soderland, 1999). ... 41

Figure 20: Output of wrapper WHISK. .. 42

Figure 21: Fragment of HTML code for faculty member’s web page. .. 43

Figure 22: SoftMealy extraction rules. ... 44

Figure 23: SoftMealy generalised extraction rules. .. 45

Figure 24: (a) Example query response web page; (b) The HTML code of the page. 45

Figure 25: Generated wrapper using HLRT. .. 46

Figure 26: Tag-Tree of a list product web page. .. 48

Figure 27: Iterative tree alignment with two iterations (Zhai and Liu, 2005). 50

Figure 28: RoadRunner matching (Crescenzi et al., 2002). ... 51

Figure 29: OWebMiner () algorithm (Annoni and Ezeife , 2009). ... 53

Figure 30: DOM tree of web document from Chapters.ca website. ... 54

Figure 31: WebOMiner Architecture Model (Ezeife and Mutsuddy, 2013). ... 56

Figure 32: DOM tree of the product list web page. .. 58

Figure 33: Sample of ContentObjectArray[] array. .. 58

Figure 34: workflow of WebOMiner-2 (Harunorrashid, 2012) ... 59

Figure 35: (A) snapshot of HTML code for list product web page (B) Dom tree. 61

Figure 36: Graphical DOM tree illustrates data region and data block. ... 62

Figure 37: Objects of product data block. .. 63

Figure 38: Advanced WebOMiner-3 Architecture. .. 65

x

Figure 39: Advanced WebOMiner-3 main algorithm. ... 65

Figure 40: Extract() algorithm. ... 66

Figure 41: ContentObjectsExtraction() procedure. .. 68

Figure 42: snapshot of HTML code of electronic products list web page.. 70

Figure 43: DOM tree of electronic products list web page. ... 71

Figure 44: ContentObjectArray[] array after Extraxt() algorithm. ... 75

Figure 45: getParsePath() procedure. ... 75

Figure 46: Root tag node and all its sub-tree. ... 77

Figure 47: isProduct() procedure. ... 77

Figure 48: getObjectType() procedure. .. 78

Figure 49: Frequent Objects Mining (FOM) algorithm. ... 79

Figure 50: MineFrequentObjects() algorithm ... 79

Figure 51: FO-tree Construct() algorithm. ... 80

Figure 52: generateRE() algorithm. .. 81

Figure 53: generateLeafNodesPaths() procedure. .. 82

Figure 54: ContentObjectArray[] array after extraction from DOM Tree. .. 83

Figure 55: FO tree. .. 84

Figure 56: Paths of leaf nodes. ... 84

Figure 57: Regular expressions of generated paths. ... 85

Figure 58: GenerateNFA() algorithm. .. 86

Figure 59: NFA structure of text-list tuple. .. 86

Figure 60: NFA structure of product tuple. .. 87

Figure 61: NFA structure of image-list tuple. .. 87

Figure 62: NFA structure of text tuple. .. 87

Figure 63: CreateOODWH() algorithm. ... 89

Figure 64: CompUSA OODB schema. ... 91

Figure 65: BestBuy OODB schema. ... 93

Figure 66: diagram for the initial OO ‘Computer’ object data warehouse. .. 96

Figure 67: WebOMiner-3 Recall. ... 102

Figure 68: Error rate of WebOMiner-3. ... 103

Figure 69: Execution time of WebOMiner-3 different websites. ... 104

xi

LIST OF TABLES

Table 1: AWeb Log File Record .. 7

Table 2: Comparative analysis between DEPTA and WebOMiner-3. ... 99

Table 3: Comparative analysis between WebOMiner and WebOMiner-3. .. 99

Table 4: Comparative analysis between WebOMiner-2 and WebOMiner-3. 100

Table 5: Experimental results showing extraction of data records from web pages. 101

1

CHAPTER 1 - Introduction

Number of web pages is growing very fast every day and World Wide Web (WWW) now

represents a huge repository of data source in the world. Web coverage of information is very wide and

diverse, where users find some difficulties to retrieve all the information they want. So, web data

analysis and web content mining have become very important research area. Web content mining aims

to extract useful knowledge from the contents of web and conclude future decision based on this

knowledge. For example, web content mining can extract potential useful information about products

or individual item from different web sites such as prices, titles, products series, etc. Web contents are

heterogeneous in nature and can be in different formats, e.g., structured tables, texts, images, links,

multimedia data, etc. So far there is no complete automatic extraction model catches the full diversity

of web contents (Annoni and Ezeife, 2009).

There are three main classes of data extraction from web. The first class is called manual

extraction, where a user or developer manually labels targeted items inside a web page and writes the

extraction rules to extract such items. The manual approach suffers from many of problems, it is

considered time consuming, requires a lot of human efforts to write extraction rules and update them.

The second class is called wrapper induction, where a set of manually labeled pages are given and

machine-learning techniques are applied to identify specific patterns and build extraction rules from

large initial training web pages. The extraction rules are applied for further manipulation and

extraction of data from subsequent pages that contain important information similar to those pages in

training collections. Wrapper induction suffers from several problems, where manual labeling is still

labor intensive and time consuming. In addition, wrapper needs regular maintenance by experts to

accommodate the frequent changes and updates of websites to keep the extraction rules valid. The

third class is automatic extraction, where a set of training pages are given and the extraction rules are

2

built automatically. Automatic extraction system is able to extract web contents even if only one

training page is given. Many of researchers consider current automatic web content extraction methods

as inaccurate and make many assumptions about web pages which need to be extracted (Zhai and Liu

2005).

Many of the important information on the web are contained in regularly structured format

such as list of online electronic products objects. Such objects represent structured database records

generated from underlying database of website and displayed in web page in a regular structured

format. Data objects are valuable and very important because they represent the main theme of their

websites. Often a list of such continuous objects represents a list of similar items, e.g., list of products,

books, services, etc. Mining data objects is very useful because it allows different information from

different web pages to be integrated together in one database, which add more web services like

shopping comparisons, e-commerce, and web search. Web Sources allow access to deep web and

underlying database in HTML or semi-structured format, which makes it difficult task on any software

to extract data objects and their related attributes from web pages. Annoni and Ezeife (2009) propose a

new model called OWebMiner to represent web contents as objects. They encapsulate each web

content type as object-oriented class to catch the heterogeneous contents together based on the page

structure. Annoni and Ezeife (2009) depend on the visual coordination of web page contents to define

the data block and data region that contains similar data objects which complicates the extraction

process. They also depend only on the HTML tags without attributes in the comparisons of data

objects which are sometimes not enough to recognise what type of object is. Also they do not provide

any result to show the output of extracting web data objects from any list product web page to do a

simple query from that page. Mutsuddy (2010) developed the work by (Annoni and Ezeife, 2009) to

build WebOMiner system to wrap web contents as objects and then extract these objects and store

3

them in relational database. WebOMiner system is a hierarchal system that represents web page as a

DOM tree to facilitate the extraction process based on the proposed definition of block-level and non

block-level of data block by (Mutsuddy 2010; Ezeife and Mutsuddy, 2013). The authors propose a Non

Deterministic Finite state Automation (NFA) approach to define the structure of each extracted data

block. WebOMiner system suffers from some shortcomings. It defines the NFA structures of the data

tuples based on the wide authors’ observations of the B2C websites product list data schema (e.g.,

product <title, image, price, brand>) which makes the extraction process not fully automatic and limits

the performance of the proposed system. The proposed extraction process does not guarantee unique

identification of the complete data objects which are related to one data block. The current existing

WebOMiner is able to extract data objects from only one list product web page of B2C website, and

has not been tested to extract the objects from different list product web pages. This means that the

generated schema of a B2C web site has only one product class. In addition, the authors do not

introduce any clear automatic database structure to store the extracted data objects. Besides that, the

WebOMiner is not yet a historical system that can answer such queries that are related to historical

data, such as what was the price of Dell CORE i5 and 6 GB RAM Laptop in the August of 2011?.

Harunorrashid (2012) advanced WebOMiner to a new version called WebOMiner-2, where the author

try to automate the process of building the NFA structure of data block types based on the generated

regular expression of repeated object contents. The WebOMiner-2 still is not fully automatic and

suffers from some shortcomings. It builds the structure of only one product data block. Also it extracts

the data object contents from only one list product web page, in addition the proposed database

structure is relational database (RDB) and it is neither historical nor object-oriented. Moreover,

WebOMiner-2 does not provide any GUI to allow the end user to do ‘Comparative Shopping’ between

extracted product items and answer queries related to them. Zhang (2011) proposed object-oriented

4

class model, database schema, and object-oriented join (OOJoin) method to join superclass and

subclass tables by matching their types and their hierarchical relationships, then mine hierarchical

frequent patterns (MineHFPs) from multiple integrated databases using the extended TidFP technique

(Ezeife and Zhang, 2009).

This thesis studies the idea of modeling web contents as data objects and extends the current

existing WebOMiner and WebOMiner-2 systems through modifying their techniques and algorithms.

The new modifications include modifying the cleaner module to do better cleaning of the extracted

web page by removing extra comments, scripts, style sheets, and metadata which are contained inside

the html code of the page. Define a new extraction algorithm based on the DOM tree tag nodes

similarity matching technique to identify similar data blocks; the new algorithm guarantees extraction

of all the matched data tuples and their related attributes to distinguish each data tuple individually.

We also propose to fully automate the process of defining the NFA structure for more than one class of

tuple type and generate the complete schemas of different websites. The new modified version of NFA

generator algorithm builds frequent object tree (FO-Tree) to compute the frequency of data attributes

and preserve the sequence order and relationship between the attributes, then the FO-Tree is mined to

generate the frequent pattern of data blocks which represent the structure of website schema. We also

propose to build historical object-oriented data warehouse (OODWH) schema to integrate and store

the extracted data tuples from different web pages in the domain of B2C websites. The OODWH

schema is generated by matching different NFA schemas for different websites sources to define the

common attributes of the products and build the fact and dimension tables for the integration purposes.

The proposed data warehouse will be able to integrate the different structure class of different products

objects from different websites, and store the historical information about these products. The rest of

this chapter is organised as section 1.1 introduces web mining and its categories; section 1.2 introduces

5

object-oriented data warehouse model; section 1.3 introduces types of extracted web pages; section 1.4

thesis problem statement and section 1.5 thesis contributions; and section 1.6 outline of the thesis

proposal.

1.1 Web Mining

Web mining is one of the data mining applications techniques to analyze and extract relevant

knowledge from the web to make future decisions. For example, Internet Service Provider (ISP)

Company uses web mining techniques to analyze users’ web browsing patterns to identify users’ web

interests and their needs. Etzioni (1996) consider web mining as a data mining technique to extract

knowledge from World Wide Web pages and services. Web is very large, diverse, dynamic, and

mostly unstructured data storage, it raises the difficulty to deal with the information from different

perspectives. How the users would get the relevant documents they want from search results with fast

response time. The web service provider needs to monitor users’ web usage to identify their interests.

Business analysts need to identify users’ needs to build suited websites to attract customers. All of

them need techniques and methods to facilitate the extraction of web contents, and conclude the

appropriate knowledge in easy and accurate way. For all the previous reasons web mining became very

active and important research area. Borges and Levene (1999) classify web mining into three

categorizations: web content mining, web structure mining, and web usage mining. Web contents are

the primary information of web document, which usually include different types of data such as texts,

images, hyperlinks. Kosala and Blockeel (2000) define web structures, the way how web contents are

represented. Web usage is the history of user’s visits of web pages sorted in chronological order in web

log files. There are other web contents not considered important as primary information of web page.

This unwanted web contents are called noise information and should be cleaned before mining web

contents process begins (Gupta et al., 2005; Li and Ezeife, 2006).

6

1.1.1 Web Structure Mining

Web structure mining is a tool to define the structural relationship between web pages linked

together by information or direct internal hyperlinks (Madria et al., 1999; Kosala and Blockeel, 2000).

Hyperlinks are used in web pages to navigate from one page to other pages. Web content mining

focuses on document level (inner-page) structure, while web structure mining focuses on hyperlink

level (inter-page) to discover the model underlying the link structure of web page. The link connection

between web pages is very important information, and can be used to filter web documents and rank

them. The link structure model of web contains important information such as the relationships

between websites, which can help in filtering and ranking web pages for search engines based on the

importance of web pages. A link from page A to page B is a recommendation of importance of page B

from author of page A. Set of connected web pages by internal hyperlinks can be represented as web

structure graph as shown in figure 1, where each node represents a web page, and the edge represents

the hyperlink between two web pages.

Web Page

Outer Link

Inner Link

High ranked

page

Figure 1: Web structure graph

Web structure graphs help to give a sign for the popularity of a website through computation of the in-

degree and out-degree for each web page. In-degree of a web page A represents the number of web

pages that have a direct link to A. The out-degree represents the number of internal links inside page A

7

that refer to other web pages. As shown in figure 1 that the web page which is referred by label ‘High

ranked page’ has the highest in-degree value which equals to four and out-degree equals to two. This

means that this web page is important compare to other web pages.

1.1.2 Web Usage Mining

Srivastava et al., (2000) defines web usage mining as an application of data mining to extract

knowledge from web usage log information, in order to understand and better serve the needs of web-

based applications. Generally, web usage and users’ visits to different web pages are stored in

historical order in web log files. Log file can be: server log, error log, and cookie log (Buchner and

Mulvenna, 1998). Typical web log record representing one web user access during one session is like

the follows:

 145.208.78.51-[26/Feb/2012:10:16:30-0500]“http://www.compusa.com/applications/

category/monitors/samsung.html HTTP/1.0 200 2781”.

 Table 1, shows the full interpretation of the previous web log record which contains information about

one user’s access to a web page during one session.

Field Meaning Example

Host/IP Address Client IP address 145.208.78.51

User User log name ‘-‘ for anonymous user

Date and Time Data, time, and time zone of

user’s request.

26/Feb/2012:10:16:30-0500

Requested URL Uniform Resource Locator

(URL) which has been requested

by user.

http://www.compusa.com/applications/

category/monitors/samsung.html

HTTP/1.0

Status Status code returned to user 200 [series of success]

Bytes Bytes transferred 2781 bytes

Table 1: AWeb Log File Record

8

Generally, usage data are collected by web servers in web data log files which are considered

important sources for web traffic data. Web log registers user’s navigational web pages during each

session the user browses the web. Web usage mining researchers convert such usage logs into

structured database tables through pre-processing to be able to apply web usage mining techniques and

conclude the knowledge discovery. They represent each visited web page as an event and all the

visited pages by a user during a period of time are collected as a transaction of sequence events for that

user id. Thus, given a set of web pages P={a, b, c, d}, which represents a set of visited web pages by

all users in a period of time, a web visit sequence for three users can be represented as the following

three transactions in the format [transaction id, <sequence of web pages access>]: [T1, <adc>]; [T2,

<abcd>]; [T3, bcda]. Mining such database may generate the frequent patter <ab> with support 70%

which means that over 70% of users who visited page ‘a’ also visited page ‘b’. The mining algorithms

such as Apriori (Agrawal and Srikant, 1995) mines the frequent large pattern set Li from the database

table by generating the candidate items set Ci and select the most frequent items which meet the

minimum support which defined by the end user as input for the Apriori algorithm, for each ith

iteration the algorithm generates the next Ci+1 by doing the join between Li apriori-join Li. Analyzing

frequent patterns of users’ visits to web pages can help business organisations to know customers’

behaviors and their needs. Analyzing web log data and users’ history registered data can also give

valuable information to better organise and build web sites in appropriate way to target more

customers. For example, if the web log shows that a web user’s visits are most of the times to a certain

type of pages such as http://....../......./electronics/laptops.html, which is a path for marketing laptops.

This means that a particular user is interested in buying electronic devices especially laptops. Web

usage mining also helps companies to get such information and develop their marketing policies to

increase their sales.

http://....../......./electronics/laptops.html

9

1.1.3 Web Content Mining

Web content mining aims to mine useful knowledge from web page contents. Web contents can

be in different formats: images, texts, audios, videos, hyperlinks, etc. Web content can also be

unstructured (eg., text), semi-structured (eg., HTML), and structured (eg., XML, tables). Kosala et al.

(2000) show that the majority of web contents are unstructured data contents. Unstructured web

content can be represented as a set of words or texts. Each word can be Boolean or term frequency and

can be reduced using different removal and selection techniques. Many of the proposed text mining

techniques like information retrieval (Salton and Harman, 2003; Chowdhury, 2010), machine learning

(Han and Kamber, 2000; Sebastiani, 2002), natural language processing (NLP) (Kao and Poteet,

2005), query answer question (Q/A) (Demner-Fushman, 2006) can be used to mine unstructured web

content.

Multimedia web data mining includes analysis of large amounts of multimedia information

which are located on the web to find special patterns or statistical relationships between multimedia

data contents. Multimedia data represent any type of information that can be stored, and transmitted

over the web in digital format like images, audios, videos, graphics, etc. Oh et al. (2003) propose a

new technique to mine video data and extract interesting patterns from motions of mined videos. The

mining algorithm can be applied on raw and surveillance videos. It works in two main steps; the first

step the input data frames are dived into basic unites called segments in the structure of video. The

second step the algorithm clusters the video segments into similar groups to conclude the knowledge

and interesting patterns such as motions, object, and color. Mining multimedia web data is very

important for many business companies to develop their marketing through identifying users’ habits

and observe their needs.

10

Semi-structured and structured web sources contain highly valuable rich information and

include many of different types of data formats. Typical HTML page is considered semi-structured

web data, which consists of text, image, hyperlink, structured data records, tables, and list. Such

different types of data represent facts about the nature of web page contents worth to be extracted and

mined for beneficial knowledge. Extracting structured data means obtaining regularly formatted data

objects from the web, and creating structured database based on the extracted data. For example,

extracting data object from Amazon website includes extracting each product which represents book

and all the data attributes that are related to that book such as ISBN number, title, author, image,

publishing date, etc.

1.2 Object-Oriented Data Warehouse (OODWH) Model

Kim (1990) defines the object-oriented database (OODB) as a logical structure of the real-

world objects, constraints on them, and the relationships between the objects. In this thesis we propose

to build object-oriented data warehouse (OODWH) model to store the extracted data context about

different data objects such as products, lists, texts from different websites. Our advanced extraction

system WebOMiner-3 extracts the object-oriented schema of each B2C website individually before

building the integrated object-oriented data warehouse schema for capturing more comprehensive and

detailed complexity of real world data, such as information related to different products browsed on

B2C websites like versions, prices, images, or specifications. The main idea of object-oriented data

warehouse is to provide a more natural way to represent data product items, providing a framework for

manipulating the heterogeneous types of web contents and the complex relationships between them.

The basic segment of object-oriented system is an object. Object is something existed, identified and

distinguished, where each object consists of set attributes and unique identification identifies it than

the other objects. The object can be a physical object such a computer, person, and book. The

11

abstraction set of attributes, methods and operations which manipulate these attributes is called the

class.

1.2.1 Definition of Object-Oriented Data Warehouse (OODWH) Model

Object-Oriented database represents a set of classes Ci which are connected together through

the inheritance hierarchal relationships between the super-classes and sub-classes (Kemper and

Moerkotte, 1994). Zhang (2011) defines object-oriented database model as the following, OODB is a

set of hierarchal interconnected classes. Each class is defined as an ordered relation Ci = (K, T, S, A,

M, O), where K is the instance (object) identifier, T is the class type, S is the super type of the class, A

is the set of attributes, M is the set of methods, and O is the set of objects. Class inheritance hierarchy

H represents the relationships between the classes.

In this thesis, we define a new object-oriented data warehouse (OODWH) model to integrate

different OODB sources in one data warehouse that is suitable to the nature of the extracted data

contents from different B2C websites. The data warehouse (DWH) is defined as subject-oriented,

historical, non-volatile database integrating a number of database sources. The new OODWH model is

defined as OODWH = (C, F, D), where C is set of hierarchal interconnected classes, where each class

is defined as an ordered relation Ci = (K, T, S, A, M, O), where K is the instance (object) identifier, T

is the class type, S is the super type of the class, A is the set of attributes, M is the set of methods, and

O is the set of objects. F represents the fact tables, each fact table Fi is defined as Fi=(FK, SubA,

SourceA, DateTimeA), where FK represents the set of foreign keys that are related directly to the

primary keys of the dimension tables, SubA represents the subject attributes, SourceA represents the

source of database from which the data were extracted, DateTimeA represents the date and time

attributes which store the date and time of inserting data into the fact table. D represents the set of

dimension tables, each dimension table Di is defined as Di =(PK, DA), where PK represents the

12

primary key attributes of dimension table, and DA represents the other detailed attributes of dimension

table.

Example OODWH Integration:

Let us suppose that we need to extract all the information that is related to all the Laptops and

Desktops products from both the ‘compUSA’ and ‘BestBuy’ websites. WebOMiner-2 (Harunorrashid,

2012) is able to extract the OODWH schema of only one website and store the extracted data contents

into relational database. Since the WebOMiner-2 extracts information about only one product item

from only one source website, it would not able to integrate data of different products from different

websites. Our new extraction system WebOMiner-3 generates the object-oriented database (OODB)

schema for each given website individually, and then integrates different website’s schemas into one

object-oriented data warehouse schema to store the data content from different websites. For example,

let us suppose the OODB schema for the ‘compUSA’ website as shown in figure 2.

is-ais-a

OODB schema

Figure 2: OODB schema of compUSA website.

As shown in figure 2 that the OODB schema for ‘compUSA’ website has three classes: C1= Computer,

C2= Desktop, and C3=Laptop and are defined as the following:

C1 (Computer) = (K, T, S, A, M, O)

K represents the instance (object) identifier such as Computer_ID=1111, Computer_ID=4444; T

represents the class type which is ‘Computer’ ; S represents the super class which is ‘Root=null’ for

13

computer class because the computer inherits the root class; A represents the common attributes

between the ‘Desktop’ and ‘Laptop’ subclasses, so A= {Computer_ID, serialNo, computer_type, title,

brand, price, memory_size, processor_type, processor_speed}; M represents the methods which

manipulate the attributes such as setComputerID(String ID), getComputerID(),…, etc; O represents all

the instances (objects) of type computer such as computer1, computer2, computer3, etc.

The second class represents the class of ‘Laptop’ and is defined as the following:

C2 (Laptop) = (K, T, S, A, M, O)

K represents the instance (object) identifier such as Laptop_ID=2222, Laptop_ID=4444; T: Laptop; S

represents the super class of Laptop which is ‘Computer’ because the subclass ‘Laptop’ inherits the

superclass ‘Computer’; A: represents the distinct attributes of laptop which are not common with the

desktop A= {Laptop_ID, Computer, screen_size, touch_screen, weight, color,webcamRes}; M:

setScreenSize(String size), getScreenSize(), etc; O: laptop2, laptop4.

The third class represents the class of ‘Desktop’ and is defined as the following:

C3 (Desktop) = (K, T, S, A, M, O)

K represents the instance (object) identifier such as Desktop_ID=1111, Desktop_ID=3333, T:

Desktop; S represents the super class of Desktop which is ‘Computer’ because the subclass ‘Desktop’

inherits the superclass ‘Computer’; A: {Desktop_ID, Computer, form_factor, Bays, line_injack,

PS2_Conn}; M: setFormFactor(String factor), getFormFactor(), etc; O: desktop1, desktop3.

Also the OODB schema of ‘BestBuy’ website has three classes C1(Computer), C2(Laptop),

C3(Desktop) as shown in figure 3.

14

OODB schema

is-a is-a

Figure 3: OODB schema of BestBuy website.

The WebOMiner-3 integrates these two OODB schemas into one OODWH schema by matching the

attributes of the two sources schemas as shown in figure 4. The OODWH is defined as following:

 OODWH=(C, F, D)

Where C represents the three classes which are C1=Computer_dim, C2=Desktop_dim,

C3=Laptop_Dim; and each Ci is defined as:

Ci = (K, T, S, A, M, O)

The superclass C1 Computer contains the common attributes between the ‘Desktop’ and ‘Laptop’

subclasses in the two websites sources and is defined as C1(Computer_dim)= (K, T, S, A, M, O),

K represents the instance (object) identifier such as ComputerID=2222; T represents the class type

which is ‘Computer_dim’ ; S represents the super class which is ‘Root=null’ for computer superclass;

A={ ComputerID, title, memorySize, processorType, processorSpeed};

M represents the methods such as setTitle(String t), getTitle();O represents all the instances (objects)

of type computer such as computer1, computer2, computer3, etc.

The C2 Laptop contains the distinct attributes of ‘Laptop’ subclass table and is defined as

C1(Laptop_dim) = (K, T, S, A, M, O), K represents the instance (object) identifier such as

LaptopID=8888; T represents the class type which is ‘Laptop’ ; S represents the super class of Laptop

which is ‘Computer_dim’ because the subclass ‘Laptop_dim’ inherits the superclass ‘Computer_dim’;

15

A: represents the distinct attributes of laptop which are not common with the desktop from both

CompUSA and BestBuy websites A={LaptopID, Computer, screenSize, touchScreen, weight, color,

webCam}; O represents all the instances (objects) of type laptop such as laptop2, laptop8.

The C3 Desktop contains the distinct attributes of ‘Desktop_dim’ subclass table and is defined as

C1(Desktop_dim)= (K, T, S, A, M, O), K represents the instance (object) identifier such as

DesktopID=7777; T: represents type of subclass which is ‘Desktop’; S represents the super class of

Desktop which is ‘Computer_dim’ because the subclass ‘Desktop_dim’ inherits the superclass

‘Computer_dim’; A: represents the distinct attributes of desktop which are not common with the laptop

from both CompUSA and BestBuy websites A= {DesktopID, Computer, bays, linJack, ps2}; O

represents all the instances (objects) of type desktop such as desktop1, desktop7.

F represents the fact tables which are {ComputersFact, TuplesFact}; each fact table Fi is represented

as Fi= (FK, subA, sourceA, DateTimeA}, FK represents the foreign keys = {ComputerID, serialNo};

subA represents the subject attributes = {price, type, brand}; sourceA represents the source website

from which the data were extracted = {compUSA, BestBuy}; DateTimeA represents the date and time

of the extraction process.

D represents dimension tables, each dimension table Di is represented as Di= (PK, DA), PK represents

the primary key attributes for example in the Laptop_Dim table the primary key is LaptopID; DA

represents the other detailed attributes which describe the tuple inside the table, in the List_Dim table

the DA= {link, title}. The complete D in OODWH in this example is { Computer_dim, Desktop_dim,

Laptop_Dim, List_Dim, Text_Dim, Form_Fact, Noise_Fact}. Figure 5 shows the complete OODWH

schema.

16

WebOMiner-3

is-a is-a

Figure 4: OODWH Integration of Computer product from two websites.

17

ComputersFact

 ComputerID

 serialNo

 type

 brand

 price

 website

 extractedDateTime

Computer_dim

PK ComputerID

 title

 memorySize

 processorType

 processorSpeed

Desktop_dim

PK DesktopID

 Computer

 bays

 lineJack

 ps2

Laptop_Dim

PK LaptopID

 Computer

 screenSize

 touchScreen

 weight

 color

 webcam

is-a is-a

TuplesFact

 TupleID

 type

 website

 extractedDateTime

Text_Dim

PK TextID

 text

List_Dim

PK ListID

 link

 title

Noise_Dim

PK NoiseID

 type

 context

Form_Dim

PK FormID

 type

 context

Figure 5: OODWH schema for integrating two websites schemas.

1.2.2 Aspects of Object-Oriented Model (OOM)

The main aspects of any object-oriented model include define the classes and creation of the

objects which involve actions of the object’s attributes. In addition, to the hierarchal relationships

between these objects, inheritance, association, aggregation, and encapsulation.

18

 Inheritance Relationships

Inheritance relationship is a special relationship in which the definition of a class is based on

the definition of another existing class. For example, if one class inherits another class then the first

class is called the subclass and the second class is called the superclass. A subclass contains all the

attributes and methods of superclass, and has its own attributes and methods. This means, every

subclass can be a superclass but the opposite is not always true. Figure 6 shows the inheritance

relationship between the ‘Computer’ superclass and ‘Desktop’ and ‘Laptop’ subclasses. As shown in

the figure 6, there is an inheritance relationship is called ‘is-a’ relationship and can be interpreted as

the following: ‘Every laptop or desktop is-a computer, but not every computer can be laptop or

desktop’

Figure 6: Inheritance relationships between computer products.

Computer

Computer_ID
Title

Brand
Type

Processor_Brand
Processor_Speed

set_ComputerID()
get_computerID()

set_brand()
get_brand()

Laptop

Memory_Speed
Screen_Size

Display_Type
Integrated_Webcam
Webcam_Resolution

set_memorySpeed()
get_memorySpeed()

set_screenSize()
get_screenSize()

Desktop

LAN_Ports
Bays

Line_inJack
Connection_Type

Power

set_lanPorts()
get_lanPorts()

set_bays()
get_bays()

superclass

attributes

methods

subclass

Is-a Is-a

19

 Association Relationships

Association refers to the connection relationship between classes. The classes are connected

through links and each link has cardinality such as, one-to-one, one-to-many, and many-to-many for

example there is one-to-one relationship between the ‘Laptop’ class and ‘Computer’, where the laptop

can be only one computer, and the computer can be only one laptop. In the ‘Student’ and ‘Course’

classes relationship, there is association relationship with a cardinality of type many-to-many, where

the student can register for more than one course, and the course can be taken by more than one

student.

 Aggregation Hierarchies

 Aggregation is special type of association relationship and called ‘part-of’ relationship in which

the whole object consists of small parts (objects). For example, the aggregation relationship between

the PC (Personal Computer) as a whole and its components which defined as a separate classes such as

hard disk, CPU, monitor, keyboard as shown in figure 7.

PC

Hard Disk CPU Keyboard Monitor

Figure 7: Aggregation relationship between PC and its parts.

 Encapsulation

The concept of encapsulation in object-oriented programing language or database refers to the

idea of encapsulate all the attributes, operations and methods which are related to a specific object

through hiding their implementation, and define a small interface to deal with the object’s attributes.

For example, the laptop product object contains a set of attributes such as brand, processor type,

memory size, and methods which manipulate the attributes such as setBrand(String B) method which

20

assigns the brand value for the brand attribute. The object encapsulates all its attributes, methods, and

operations in one class.

1.2.3 Components of Object-Oriented Database Model

The object-oriented database model consists of the following main concepts:

1) Class:

Is a general abstraction representation of all the instantiated objects which share the same

attributes, methods and operations. For example, all computers desktops, laptops, and pads share

the following attributes: CPU, RAM, Hard Drive. The class defines all the general common

attributes and methods of the objects which are applicable to be inherited. Figure 8 shows the class

definition of computer object.

2) Attributes:

The data items which describe the properties and specifications of a specific object. For example,

Computer Type, Computer Brand, CPU Speed, RAM Capacity, Hard Drive Capacity are attributes

of any computer object.

3) Methods:

The procedures which assign and retrieve the attribute values. For example, the procedure

setCPU_Type() assigns the value of CPU type attribute.

21

Figure 8: Class Definition of Computer Objet.

4) The object and object identifier:

Object is a real world entity as ‘Computer’ and represents an instance of the abstraction definition

of the class. In object-oriented database every object has a unique identifier called OID to

distinguish each object individually, and this identifier remains unique through the whole life time

of the object.

5) Class Inheritance Hierarchy Relationships:

Class hierarchy represents the classification of objects class type. Data objects with similar

properties and specifications are grouped together and described by class type. Similar objects

mean objects have similar attributes, methods, features, and behaviors. If objects share in common

similar attributes but also slightly differ in other attributes, they should belong to different class

type. The relationship between the classes of slightly different objects is called the hierarchal

relationship. Class inheritance represents the relationship between the classes in the object

database, for example the child (subclass) inherits the parent (superclass). Figure 9 shows the

hierarchal object-oriented relationship of B2C websites.

22

Root

Future

Shop
CompUSA BestBuy

Text Product List Noise

Computer Monitor

Laptop Desktop

LinkTextLinkImage

TV-

Monitor
PC-

Monitor

Figure 9: Inheritance hierarchy relationship of different data objects.

1.3 Types of Extracted Web Pages

Liu (2006) classifies data rich web pages in e-commerce into two types: list pages and detailed

pages. Usually such pages containing rich data come from underlying structured database and

embedded templates hidden beneath HTML tags. In this thesis, we are mainly interested in list and

detailed product web pages.

1.3.1 List Pages

List page is a page that contains a list of continuous similar data objects such as product object,

list object, text object. Figure 10 shows an example of list product page from e-commerce web site for

electronic devices (CompUSA.com). As figure 10 shows, the page contains two main data regions,

data region1 and data region 2, which are labelled by continuous line. The data region is defined as a

group of adjacent and similar data blocks which share the same parent tag node within a particular area

of the page. Data block is defined as a sequence of adjacent HTML tag nodes which share the same

parent tag node and all together are related to a distinct data item inside the page such as monitor

product object. Figure 10 shows a data product object for SAMSUNG laptop computer with a price of

449.99$ labelled by dashed line. Each data block represents a data record (tuple). For example, in

23

figure 10 data region1 contains a group of sibling data blocks for laptops products objects. Each laptop

object is presented by adjacent HTML tags and attributes such as <image><price><tittle><product

number> <brand> which are related together.

1.3.2 Detailed Pages

Detailed page is a page that contains details of information about a single data object. Figure 11

shows an example of detailed page which gives detailed information about laptop product. As shown

in figure 11, the page contains information about the description of the product, image, title, price,

specifications in different locations of detailed web page.

Figure 10: List product web page.

24

Figure 11: Detailed product web page

25

Example Queries that can be answered by WebOMiner-3:

Develop a comparative shopping system that is able to answer the following types of queries:

1. List all Dell core i5 and 6GB RAM laptops prices which are offered now by ‘CompUSA’,

‘BestBuy’, ‘Homedepto’, ‘Shopxscargo’, and ‘Factorydirect’ websites, and compare the prices with

the previous month prices for the same laptop specifications. The WebOMiner and WebOMiner-2

systems cannot answer such query because it requires an integrated and historical data warehouse.

2. Make a comparison of HP laptops prices which have been offered by ‘CompUSA’, ‘BestBuy’,

‘Homedepto’, ‘Shopxscargo’, and ‘Factorydirect’ websites since the last two years until today grouped

by the months of the year. This query requires an integrated and historical data warehouse.

3. List all cpu type, cpu speed, model brand, model title, features of Desktops have been offered by

the previous five websites ordered by year of manufactured and cpu speed. This query requires an

integrated and historical data warehouse.

4. What is the best place right now to go and buy Dell Laptop with Intel CORE i7 and 8 GB Ram

among the ‘CompUSA’, ‘BestBuy’, ‘Factorydirect’ websites?. The WebOMiner and WebOMiner-2

systems cannot answer such query because it requires an integrated data warehouse.

5. Is there any sale on Sony core i7 8 GB RAM in ‘Homedepto’ website compare to its’ prices of the

previous year at the same current month?. The WebOMiner and WebOMiner-2 systems cannot answer

such query because it requires a historical data warehouse.

To answer such queries directly from the web is a difficult task to do, where the user should browse

each web site and write down the price of the product which the user is looking for, and then do the

manual comparison to decide which web site offers the cheapest price of the required product. For this

reason, we propose to advance the WebOMiner system to better automate the extraction process using

DOM Tree tag nodes matching technique, and then identify each extracted data block type through

26

matching with the right NFA structure, and finally store the identified extracted data tuple in the right

place in the proposed historical object-oriented data warehouse (OODW) repository. Then post such

previous queries on the OODW to get the answers.

 We need to distinguish our proposed work from similar related works by “Web Query Interface”

(Bornhovd and Buchmann, 1999; Liu, 2006) and “Web Service” (Walchhofer et al., 2010). Web query

interface provides user a global query interface to query data from multiple data sources without

physically creating database or data warehouse. Such interfaces extract queries’ results from web or

any other sources on the fly and return the results directly to the end user without intermediate

database storage. The main problem with query interface is it needs huge amount of costly efforts to

filter the data from different data sources and to guarantee the consistency between them in order to

return results for the posted query. In addition, in many cases query interface retrieves inaccurate

results. So it is clear that query interface cannot answer our target queries. Web service is a new

technique used in ‘Semantic Web’ to extract and integrate data from business websites. Web service

does not deal with free HTML web information, besides it is a service and needs to be bought from

service provider. For example, ‘yahoo tool bar’ is a web service offered by ‘Yahoo’ company to be

used by other websites and users for search options. Web service does not hold historical data, so it

cannot answer our target queries. Our proposed system deals with free HTML pages, and stores

historical data and it is promising to answer our target queries.

1.4 Thesis Problem Statement

A large number of list product web pages such as ‘BestBuy’ website pages contain essential

information in structured format. Such structured information is called data block or tuple and describe

a specific item on the web. Such similar data blocks are adjacent and located in one data region in list

product web page. Each data block has a detailed web page that describes the product in details and

27

lists all its specifications. For example, once the customer logs in to CompUSA website and clicks on

the web list computer laptops web page will find many of laptop blocks, each laptop block is described

by summarised information called attributes such as the type of the laptop which is represented by

title, brand, manufactured company, serial number, price, image. Also each laptop block has a link to

the detail web page which describes the properties and specifications of laptop.

The problem statement of mining data objects can be summarised as follows: Let us suppose

that we have a set of product list web pages P= {p1, p2,…., pn} from different B2C web sites. pi

contains a set of different types of data blocks B={db1, db2,…, dbn}. Each data block dbi is embedded

underneath a set of HTML tags, where some data blocks {db1, db2....dbl} have the same HTML tags

template, and some of them have different HTML template. Each data block dbi consists of one or

more data attribute fij. Given a set of list and detailed product web pages P (Desktop and Laptop list

web pages) from different websites W, the WebOMiner-3 generates the object-oriented database

(OODB) schema for each website w individually which combines the information about all the

products (Desktops and Laptops) items in the website. Then the WebOMiner-3 integrates the

generated OODB schemas of websites by matching the common attributes between the product items

and put the them in one superclass, and build a subclass for each product item which contains the

distinct attributes that are not common with any other product such as ‘Laptop’ and ‘Desktop’

subclasses, then builds the fact table which stores the historical information about the products items

from different websites based on the main subject attributes such as price, brand, type attributes. For a

product (Laptop or Desktop) list web page pi given as input, the new advanced WebOMiner-3 system

would crawl pi from the web and store it in local machine, and then it cleans the HTML code of pi to

build the DOM tree of the given web page. WebOMiner-3 traverses the generated DOM tree to

automatically extract and mine each data object obi in each pi based on the similarity of HTML tag

28

nodes of those similar data blocks that share the same root tag node, and then automatically identify

type of each data block (tuple) dbi and store it in the appropriate place in historical object-oriented data

warehouse repository.

Mining such data blocks and their attributes from the web and storing them in data warehouse

repository is very important and beneficial for customers to develop the web market companies. In

addition locating such information about data items in one data repository has an important role to

provide a comparative shopping service for customers allowing them to do a comparison between the

products that they intent to buy. Also such information helps to develop many of the web services and

develop online websites and e-markets which have good impact on both the merchants and the

customers. Actually, extracting such structured data tuples from the web contents is a real challenge

and not an easy task due to complex structure of the web pages that contain these objects, beside that

there are many of different types and formats of web data contents which represent the data objects

that are targeted to be extracted.

1.5 Thesis Contributions

This thesis includes many of pre-processing steps to automatically extract web contents that are

not addressed by Annoni and Ezeife (2009); Mutsuddy (2010); Harunorrashid (2012); Ezeife and

Mutsuddy (2013). We propose advancing the WebOMiner system for extracting and mining of web

contents. The new modifications and enhancements include adding a new extraction procedure based

on the similarity of DOM tree tag nodes’ patterns to identify data blocks and their data regions inside

the list product web page, building a full automatic Non Deterministic Finite Automate (NFA)

structure for each type of similar data block based on the generated regular expression of frequent

object. The new modifications also include proposing a new historical object-oriented data warehouse

29

to integrate and store the extracted data tuples from different web pages in the domain of B2C

websites. The following are main contributions of this thesis:

1. Propose a new extraction technique based on the similarity of the DOM tree tag nodes string

patterns of the targeted data blocks inside a list product web page. The new technique compares

the HTML pattern for each data block with other blocks’ patterns and extracts the blocks that have

the same HTML pattern and are neighbours. The WebOMiner and WebOMiner-2 do not have a

clear definition for the block level and non-block level data blocks which are used to extract data

records from web page; in addition, their definition is not applicable for some web pages like

BestBuy website. Also the WebOMiner and WebOMiner-2 do not specify the boundary of data

block whether level or non-level data block. For example, they do not provide any algorithm to

specify when the extraction process starts and when or where it ends.

2. Build a fully automatic Non Deterministic Finite Automata (NFA) structure for each type of the

extracted data block such as product, list, text, form, noise. The new concept of fully automatic

NFA will be accomplished through frequent object mining (FOM) technique. The WebOMiner-2

depends only on the frequency of data attributes and does not take into the consideration the

sequence order of the attributes. For this reason, the WebOMiner-2 generates many of extra

regular expressions which need to be built as NFA structures because they are candidate to be data

records. For example WebOMiner-2 considers the pattern ‘image title’ is different than the pattern

‘title image’ and generates two different regular expressions for them and two NFA structures.

The WebOMiner-3 solves the sequence order of the attributes problem by preserving the

frequency and sequence order of the attributes through build the frequent object tree (FO-Tree)

which gives the unique paths for each candidate data record.

30

3. Modify data block and data region definitions which have been used by (Mutsuddy, 2010; Ezeife

and Mutsuddy, 2013). To find the block level and non-block level data blocks inside the page, the

WebOMiner and WebOMiner-2 need to scan every tag node in the DOM-Tree of the web page

which is a very costly process. Also the proposed definitions are not applicable for some web

pages like ‘BestBuy’ website. For that reasons, we modify the definitions of both data block and

data region to save some comparisons during the extraction process. The new definitions of data

block and data region are applicable for all the list and detailed product web page. Besides that the

definitions are more efficient during the identification of data blocks to be extracted from DOM-

Tree.

4. We combine between HTML tag names and their attributes to guarantee building a unique

structure for each type of tuples like product tuple, list tuple, text tuple. For example, we benefit

from the HTML tag such as <a> tag and its attribute ‘title= Dell laptop core i7’ to know that the

current processed data block is a laptop product item with the title= ‘Dell laptop core i7’ and has a

link refers to the value which is stored in the src attribute ‘src=compusa\dell1.asp’.

5. We identify noise data block and prevent inserting them in data warehouse.

6. Extract the specifications for each data block from the detailed product web page.

7. Build automatic object-oriented data warehouse to store the historical information about data

tuples, integrate data tuples from different web pages, and use this data warehouse for further

mining processes and manipulations.

8. Build a GUI interface allows the end user to post a query to compare product items from different

web pages and show the differences between them.

31

1.6 Outline of the Thesis

The reminder of the thesis is organised as follows: chapter 2 reviews related work to this thesis

proposal. Chapter 3 includes details discussion of the new advanced WebOMiner-3 system along with

all the proposed algorithms. Chapter 4 discusses performance analysis and experimental results.

Chapter 5 draws the conclusion of this research and discusses future work.

32

CHAPTER 2- Related Work

Our research area in web content mining is related to Information Extraction (IE), which

focuses on automatic structured data extraction techniques. There are three main categories of

structured web contents extraction techniques: manual wrapper generation, semi-automatic or

supervised learning wrapper, automatic wrapper generation. Related works in this chapter are

organised as manual wrapper generation in section 2.1, supervised wrapper induction in section 2.2,

and automatic wrapper generation in section 2.3.

2.1 Manual Wrapper Generation

Wrapper is specialized routine program to extract data from web pages and convert the

information into structured format like relational database, XML. Manual wrapper is built by user or

programmer developer who writes the code of the extraction rules, and then applies these rules to

extract the data of interest from web pages. Many of research works have been done on generating

manual wrappers such as (Hammer et al., 1997), Xwrap (Liu et al., 2000), W4F (Sahuguet and

Azavant, 1999). Hammer et al., (1997) propose a manual wrapper program to extract data from HTML

pages as objects and store them in structured database. The proposed wrapper takes as input a

descriptor that specifies types of data of interest, and how they should be identified and wrapped into

data objects. The following example illustrates the proposed system by (Hammer et al., 1997). Let us

suppose that there is a web application provides information about the weather status in different cities

of the world as shown in figure 12.

33

Figure 12: A snapshot of weather application source (Hammer et al., 1997).

Since this web application always retrieves the web page as a search result, it cannot directly answer

the queries such as (what is the temperature for Liverpool for Jan 29, 1997?). For this reason, we need

to extract the contents of this web application, and store them in structured database to be able to

answer such queries. The proposed manual extraction system parses the HTML code of this web page

based on the extraction specification file shown in figure 13.

Figure 13: A sample of extraction specification file (Hammer et al., 1997).

34

The specification file contains a sequence of commands; each command represents the current

extraction step. The command is of the format [variables, source, pattern]. Where the source represents

the input HTML code that should be parsed, pattern specifies the text of interest from the source, and

variables store the extracted results. The extraction process begins by the initial command (lines 1- 4

figure 13) by fetching the contents of the URL given in line 2 and store them in the variable root as

shown in figure 13. Line 3 (figure 13) ‘#’ means extract all the contents of the given URL. The second

command (lines 5-8) applies the pattern in line 7 to the source root and stores the result in variable

called temperatures. The pattern at line 7 means discard everything until the first occurrence of </TR>

tag after the two consecutive tags <TABLE> <TABLE>, and then starts the extraction until the

beginning of the tag </TABLE> (i.e. extract the data between the command </TR># and </TABLE>).

Now the variable temperatures contains the information stored in line 22 until line 45 (figure 14). The

third command (lines 9- 12 figure 13) splits the contents of the temperatures variable into ‘sets’ of text

using the split string <TR ALIGN=left>. The result of sets will be stored in variable _citytemp. The

command 4 (lines 13-16 of figure 13) copies the contents of each set into the variable citytemp starting

with the second set from the beginning. The first integer in the command _citytemp[1:0] (line 14

figure 13) refers to the beginning of the copying process (since the array index starts at 0, the position

1 means starting from the second element). The second integer of _citytemp[1:0] refers to the last

index of _citytemp[] variable. This process will remove the first row from the table which contains the

header information (lines 22- 29 of figure 14). The last command (lines 17-20 figure 13) extracts each

individual cell value from citytemp variable and stores it in the specified variable as per line 17 (i.e.

country, c_url, city, weath_today, etc.). After the five commands are executed, the variables will store

the data of interest.

35

Figure 14: A section of HTML file (Hammer et al., 1997).

2.2 Supervised Wrapper

Zhai and Liu (2007) propose an instance-based learning method to extract structured data from

web pages. The proposed method does not need an initial set of training pages to learn the extraction

rules. Authors claim that the proposed instance-based learning method is able to start the extraction

process from one manually-labeled web page. It extracts target items by comparing the prefix and

suffix HTML tags of the new instance to be extracted with those of the labeled instances of targeted

36

web page. If any item in targeted web page cannot be extracted, it is sent again to manual labeling. For

example, user is interested in extracting four attributes from a product web page: name, image,

description, and price. The template T for a labeled page is represented as follows:

T = < pattern name, pattern image, pattern description, pattern price >

Each patterni in T consists of a ‘prefix’ tokens stream and ‘suffix’ tokens stream. For example, if the

price of the product is embedded in the HTML source code as shown in the following code segment:

Then the instance-based learning method will use the following pattern to uniquely identify the price

attribute:

 price pattern = (prefix: (<table><tr><td>), suffix: (</td></tr><tr>)).

For a new page d, the method compares the stored prefix and suffix strings with the tag stream of each

attribute of page d. The key idea of the extraction process is based on whether the new attribute can be

uniquely identified using minimum number of prefix and suffix matches which is called ‘sufficient

match’ technique by (Zhai and Liu, 2007). If any attribute cannot be uniquely identified, page d is sent

for manual labeling. For example, assume the following five HTM tokens <table> <tr> <td> <i>

are saved as prefix string of price attribute, and the HTML source code of the targeted page is given as

shown in figure 15. There are four strings are matched with the prefix of price attribute in the four

rows of the table below the first row as shown figure 15. The number inside the brackets () refers to

token id and the dash ‘- ‘ means that there is no match. The best match score is 5 which represents

exact match with the prefix string, but the proposed method uses the sufficient match score which

guarantees the uniquely identification of the attribute. In this example, the sufficient match score is 3,

37

which comes from the match of the string <td>(33)<i>(34)>(35) at the fourth row of the table in figure

15. This match can uniquely identify the price attribute, so additional tokens <table>(31) and <tr>(32) are

not needed any more. As shown in figure 15 there are four strings, and three <i> strings

together which are not sufficient for uniquely identification of price item.

Figure 15: HTML source code of web page d.

Wrapper induction is built using a learning process of the extraction rules from the initial

training sets, and then applies these rules to extract web contents from other web documents. Wrapper

induction can be supervised or semi-automatic and in both cases, it needs initial set of training web

pages to learn the extraction rules of targeted items inside web pages. Normally user labels or marks

the targeted items of the initial training web pages. Once the wrapper is learned, the extraction rules

are applied for the similar targeted web pages to extract web contents and data items from these pages.

Many of research works have been conducted to induct the wrapper from the initial set of training web

pages such as HLRT(Kushmerick et al., 1997), SoftMealy(Hsu and Dung, 1998), STALKER (Muslea

et al., 1999), WHISK(Soderland, 1999), and IEPAD (Change et al., 2001).

38

2.2.1 STALKER

Muslea et al (1999) propose an inductive algorithm called STALKER based on the idea of

hierarchal information extraction to generate high accuracy extraction rules. STALKER uses

supervised learning approach to learn the extraction rules from manual-labeled training web pages.

Writing extraction rules of training web pages is the main problem with wrapper induction systems.

The problems of manual writing extraction rules are time consuming, need many of expertise people

and many of maintenance as long as the web pages keep changing. To extract data items from web

page, STALKER takes extraction rules include Start Rule and End Rule as input and starts extracting

the data items. Start Rule represents the starting point of the data extraction and the End Rule

represents the stopping point of extraction data. An example of STALKER algorithm is giving below:

Consider the coffee descriptions giving in figure 16. Figure 16 (a) represents an example of

‘Tim Horton’ coffee training web page having four different branches in Canada. This page shows the

name of the coffee in line 1 and then followed by four branches shown in lines 2-5 showing their

addresses. Figure 16 (b) shows the hierarchal tree presentation of the training web page. The user

wants to extract the area code of the phone numbers from all branches addresses of the coffee. The

wrapper needs to go through all the following steps to do the extraction:

1. Identify the name of the coffee. Wrapper can use the start rule SkipTo (), and the end rule

() at line 1 to identify the name of the coffee.

2. Identify the list of addresses. Wrapper can use the start rule SkipTo (

), and the end rule

</p>.

3. Iterate through the list of addresses line 2-5 to break it into four different records. To identify the

beginning of each address, wrapper can use the start rule SkipTo (<i>), and end rule SkipTo (</i>).

39

4. Once each address is specified, wrapper needs rules to extract the area code. The following are

possible rules wrapper can use to start the extraction process.

 Start Rules: End Rules:

R1: SkipTo (() SkipTo ())

R2: SkipTo (-<i>) SkipTo (</i>)

String:

Coffee

String:

Name
String:

Address

String:

Street
String:

 City
Integer:

Area Code

Integer:

Phone

Number

(a) HTML code of training web page

(b) Hierarchal Tree

Figure 16: (a) HTML code of training web page, (b) Tree hierarchal.

Change et al (2001) propose a new system called Information Extraction based on Pattern

Discovery (IEPAD) to extract data from web documents. It is based on the fact that if the web page

contains structured data records to be extracted, they are often represented using the same template.

Thus, the records patterns can be discovered and the data records can be easily extracted. IEPAD

automatically discovers extraction rules by identifying data records boundaries and repetitive patterns.

IEPAD uses data structure called PAT tree (Morrison, 1968) to discover repetitive patterns in the web

page. Once the extraction rules are discovered, the extractor receives the web page and targets patterns

as input and applies pattern matching algorithm to identify and extract all the occurrences of target

items. For example, in the following HTML code of a web page shown in figure 17 contains repeating

pattern which can be used as input to IEPAD.

40

Figure 17: Repetitive patterns.

By coding each HTML tag as individual token e.g., () , and each text as (_), IEPAD generates the

following pattern for the three tags occurrences in figure 17:

“ ()(_) () (<i>) (_) (</i>) (
) “

The user has to determine which text tokens, for example, the second, and fifth (_) are important and

worth to be extracted. As shown in figure 17, the second (_) text token represents the name of the

country, and the fifth (_) token represents the country code.

2.2.2 WHISK

Soderland (1999) proposed a wrapper induction system called WHISK which automatically

learns the extraction rules from the initial training set, and then applies these rules to extract the data

from the web pages similar to those pages in training sets. WHISK is supervised wrapper that learns

the extraction rules from the hand-tagged web pages. For example, figure 18 (a) shows an instance

code of rental advertisement domain web page. Figure 18 (b) shows the hand-tagged instances to be

extracted.

41

Figure 18: A training instance hand-tagged with two extractions (Soderland, 1999).

WHISK builds the extraction rules based on the training instances, so the generated extraction rules

based on the hand-tagged instances in figure 18 (b) will be as shown in figure 19.

Figure 19: WHISK rule (Soderland, 1999).

This rules looks for the bedroom number and the associated price. The wildcard ‘*’ means skip any

sequence of characters until the next pattern. In figure 18 (a) the wrapper skips the characters until

reaches the string ‘Capitol Hill’ and stores it in the variable $1, then it skips the code until reaches the

first digit which equals to 1 and store it in the variable $2, then it continues skipping the characters

until hits the first number which represents the price and equals to 675 and stores it in the variable $3.

The final output of applying the WHISK rule (figure 19) on the HTML code shown in figure 18 (a)

will be as shown in figure 20.

42

Figure 20: Output of wrapper WHISK.

2.2.3 SoftMealy

Hsu and Dung (1998) address the problems that are related to the current existed wrappers

systems. They claim that all the current existed web contents wrappers are restrictive to process the

web pages that contain structured data records with missing attributes, extra attributes, and different

order attributes. The authors propose a wrapper induction system called ‘SoftMealy’ to extract data

tuples from web pages. SoftMealy is based on the contextual rule concept, where each distinct attribute

of each data tuple inside the web page can be represented as a transition rule. Before going to the

detailed example describes how SoftMealy works, we need to introduce some definitions which have

been proposed by (Hsu and Dung, 1998). They consider the HTML page as a set of tokens, and each

token is denoted as the symbol t(v), where t is a token class and v is a string. The following are some

classes and their strings:

 CAlph(WINDSOR): All uppercase string : e.g. “WINDSOR”.

 C1Alph(Professor): The first uppercase letter, followed by a string with at least one lowercase

letter: e.g. “Professor”.

 0Alp(and): The first lowercase letter, followed by a string with zero or more letters: e.g. “and”.

 Num(123): Numeric string: e.g. “123”.

 Html(<I>): HTML tag: e.g. “<I>”.

 Punc(,): punctuation symbol: e.g. “,”.

43

 Control characters: e.g. new line “NL(1)”, e.g. four tabs “Tab(4)”, and three blank spaces

“Spc(3)”.

For example, if SoftMealy wrapper wants to extract structured data tuples for each faculty member in

the computer science department at university of windsor through the fragmentation HTML code of

the CS department web site shown in figure 21.

Figure 21: Fragment of HTML code for faculty member’s web page.

As shown in figure 21 that the HTML code contains five tuples. Each tuple provides information about

the faculty member as a sequence of attributes. In this example, each data tuple contains the following

attributes: URL U, name N, academic title A, and administrative title M. The data tuple can be

represented as a set of attributes (U,N,A,M). Let us suppose that we need to extract the academic title A

for each faculty member. SoftMealy will generate the following extraction rules (figure 22):

44

Figure 22: SoftMealy extraction rules.

The first row of figure 22 represents the left separator s(A)
L
 of attribute A. It states that the left context

is HTML token “” followed by a comma “,” and one space and HTML token “<I>” at the end

from left to right. While the right separator s(A)
R
 of attribute A states that the right context is the string

“Professor”. By applying the first rule, SoftMealy will be able to extract all the title academic attributes

A for the first three data tuples shown in figure 21. The wrapper will start from left to right parsing the

HTML tokens of data tuple number 1 of figure 21 and will finds the matched tokens “ , <I> “

which represents the left delimiter of the attribute A. Then the wrapper continues in parsing the HTML

tokens until finds the string “Professor” which represents the right delimiter of the attribute A. In this

case the SoftMealy knows the boundary of the academic title attribute A and be able to extract it for

each data tuple. It discovers that there are some repetitions in the extraction rules, so it generalises

them as shown in figure 23. Where “|” means “or”. SoftMealy covers the delimiters whose left context

syntax matches one of three distinct s(A)
L

 in figure 23.

45

Figure 23: SoftMealy generalised extraction rules.

2.2.4 HLRT

Kushmerick et al.(1997) address the problem of wrapper construction through query responses.

For example, let us suppose there is a web page browses a tabular list of countries and their phone

country codes, and a user got an answer for a query as shown in figure 24(a). The HTML code of the

web page is rendered in figure 24(b).

(a)

(b)

Figure 24: (a) Example query response web page; (b) The HTML code of the page.

The authors consider the wrapper uses the string position as a delimiter between the extracted contents.

It is obviously in figure 24 (b) that the country’s names are surrounded by and tokens, and

the country codes by <i> and </i>. This is called left-right (LR) strategy to extract the required web

46

contents. But LR fails in extracting many of web contents because not all the contents between tags

 and are country names. For example, the last ‘End’ string of figure 24(b) is surrounded by

 and but it is not country name, and LR extracts it as a country name. For that reasons,

(Kushmerick et al., 1997) propose to use the ExecuteHLRT strategy to distinguish the beginning of the

head of the page and the last tuple inside the body of the page. HLRT stands for header, left, right, and

tail; where it is considered a more sophisticated approach than LR approach. Figure 25 shows the code

of the generated wrapper by ExecuteHLRT strategy.

Figure 25: Generated wrapper using HLRT.

The algorithm in figure 25 skips the header of web page, and for each data tuple it skips the tuple

delimiters and extracts the data contents which are surrounded by these delimiters. For the first tuple in

figure 24 (b) ‘ Canada <i> 230 </i>’, the algorithm skips the first left delimiter l1=

and the first right delimiter r1= , and extracts the first attribute k=1 which is the string ‘Canada’

in this example. Then it skips the second left delimiter l2= <i> and the second right delimiter r2=

</i>, and extracts the second attribute k=2 which is the Canada’s phone area code with the string value

equals to ‘230’. Then the algorithm continues in extracting all the data tuples from the HTML code

until hits the tail t of the web page which is the token <hr> in this example.

47

2.3 Automatic Wrapper Generation

Wrapper generation using supervised learning suffers from two main shortcomings: it is not

applicable for large number of websites due to large efforts that are required to do the manual labeling

of web pages in training data sets. For example, if a website needs to know all the products which have

been sold in web, it will be kind of impossible task to manually label all these products. The cost of

wrapper maintenance is considered very high. Web is a dynamic repository and keeps updating

constantly. Since wrapper depends on HTML format of web page, any change in the template or code

of the page will disable the work of the wrapper. So the wrapper needs constant changing and

manually maintenance to repair it which make the task of build and maintain the supervised wrapper

system very costly. For all the previous problems which are related to supervised wrapper generation,

researchers have studied the idea of build automatic data extraction from the web, and found it

possible. (Liu et al., 2003 ; Zhai and Liu, 2005; Annoni and Ezeife, 2009; Mutsuddy, 2010) proposed

different automatic web contents extraction systems to extract data from web documents and store it in

structured database to facilitate the data retrieval process.

2.3.1 Automatic Extraction using Tag-Tree

Liu et al. (2003) propose a new method called mining data record (MDR) from web pages to

automatically extract structured data records from web pages and store them in relational database.

Authors claim that their proposed method is based on two main observations: 1) A group of data

records which contain similar data objects are normally located at a particular region, and share in

common similar HTML tags in their structure template. They call such region a data region. 2) The

nested structure of HTML tags can be represented as a tag tree. Figure 26 shows a tag tree of a list

product web page. As shown in figure 26 that the web page contains two adjacent data records in the

48

two dashed boxes, each data record is wrapped by five tr tag nodes and they have the same parent node

which is tbody.

html

body

tabletable div

tbody

tr tr tr tr tr tr tr tr

td td td td td td td td

td tdtd td
tdtdtdtd

Data Record 1 Data Record 2

Data Region

Figure 26: Tag-Tree of a list product web page.

MDR method represents each web page as a tag-tree, where each HTML tag is represented as a node

such as <tr> tag. After building tag-tree, MDR mines each data region inside web page. (Liu et al.

2003) define a data region as ‘a collection of two or more generalized nodes with the following

properties: a) all the generalized nodes have the same parent; b) all the generalized nodes are

adjacent and have the same length’. They also define the generalized node as ‘a node of length r (r >=

1) of HTML tags nodes of tag-tree and all the nodes are adjacent and have the same parent’. They

also consider each data record as a generalized node. As shown in figure 26 that the data record 1 has

four adjacent tr tag nodes, and the data region consists of two adjacent generalized nodes with the

same parent tbody node and have equal length which equals to four. After identifying each data region

in the page, MDR mine data records inside each data region and store them in structured database.

Zhai and Liu (2005) address the problem of extracting structured data records and their

attributes from web pages and store them in relational database. They claim that the current existed

49

methods do not tackle this problem so far. For this reason, they develop their algorithm MDR (Liu et

al. 2003) to build a new system called Data Extraction based on Partial Tree Alignment (DEPTA). In

their new proposed method partial-tree alignment, they initially pick the seed tree Ts to be the optimal

tree which contains the maximum number of data attributes and then gradually compare Ts with other

sub tag-trees which represent data records to grow Ts and get the final tag-tree which contains almost

all the expected data attributes. The proposed algorithm represents each data record in the page as a

sub tag-tree Ti, and for each Ti(i≠s), it matches each node in Ti with Ts. If the match is found for node

Ti[j], a node Ti[j] is inserted in Ts. If the match is not found the sub tag-tree Ti is inserted in temporary

next matching repository R for subsequent matching. Figure 27 shows the partial aligning multiple

trees. The algorithm accepts the initial three sub-trees S={T1, T2, and T3} as an input. It choices T1 as

Ts and removes T1 from S. It then aligns the rest of sub-trees in S against Ts until S gets empty. In

figure 27, it aligns T2 to Ts, they produce one match in node b, nodes n, c, k, and g do not fit in Ts and

there are no locations for them in Ts, so they could not be inserted in Ts. It inserts T2 in R for holding

to be matched later. Now it matches T3 with Ts, it finds that the unmatched nodes c, h, and k can be

inserted into Ts, it updates Ts and sets the flag to be ‘true’ to indicate that the original seed tree Ts has

been modified. It then checks for the stopping condition whether S=0 and flag=’true’, which means

that all the sub-trees in S have been processed and the original seed tree has been modified. Then the

sub-tress in temporary repository R should be processed. In figure 27, there is only one sub-tree T2. So

T2 is matched with Ts and unmatched nodes n, and g are inserted to generate the final seed tree Ts

which contains all the required attributes.

50

Figure 27: Iterative tree alignment with two iterations (Zhai and Liu, 2005).

Crescenzi et al. (2002) propose a new technique to automatically extract web contents from

web using automatically generated wrapper. The authors tackle the problem of extracting the

underlying database structure from which the structured data records inside web pages have been

generated. The main motivation of their work is that the website generation process can be seen as an

encoding to the original underlying database from which the data records were generated. The

proposed system is called ‘RoadRunner’ uses the matching technique called ACME which stands for

Align, Collapse under Mismatch, and Extract to compare HTML pages of the same class and

automatically generate wrapper based on the similarities and differences between wrapper optimal

page and targeted sample page. It compares the two pages using ACME technique to align matches and

51

collapse mismatches. There are two types of mismatches: string mismatches ‘#PCDATA’ which

happens when different strings occur in the same position between wrapper page and sample page. Tag

mismatches ‘(tag)?,’ happens when different HTML tag or operator occurs between the two compared

pages. RoadRunner uses UFRE (Union Free Regular Expression) in building wrapper to reduce the

complexity of the proposed algorithm. Figure 28 shows an example of matching wrapper page and

sample page to generate wrapper. As shown in figure 28, the first string mismatch occurred at token

number 4, to solve this problem RoadRunner generalizes the wrapper to label the discovered mismatch

by replacing the string ‘John Smith’ by the string ‘#PCDATA’, the same thing will happen later for the

string ‘DB Primer’. As shown in figure 28, the first tag mismatch occurred at token 6 of sample page,

where tag would be added to generalize the wrapper as optional tag. The match process

continues until RoadRunner received to the end of one of the two compared web pages. Finally, the

proposed algorithm generates wrapper which represent extraction rule that can applied to extract data

from other web pages similar to wrapper page. As shown in figure 28, the generated wrapper is located

at the bottom left corner of the figure.

Figure 28: RoadRunner matching (Crescenzi et al., 2002).

52

2.3.2 Automatic Extraction using DOM-Tree

Annoni and Ezeife (2009) claim that the current existed data extraction models failed to catch

the full diversity of different types of web contents. They propose a new object-oriented model to

encapsulating heterogeneous web contents into object class hierarchy to extract and mine web content

in a unified way. Their paper has two major contributions for web contents extraction: 1) Build a

unique object-oriented model that focuses on web document content and presentation structure. 2)

Extract and mine all different types of web contents regardless of the web document structure

(unstructured, strictly structured). Annoni and Ezeife (2009) present web page as a DOM tree, and use

visual based context structure, and data presentation features to identify the hierarchy of web object

model. They define web page as a web zone object which is a composition of WebElement objects,

and WebRender objects. The WebZone is divided into three sub-zones header, body, and footer zone.

They define an algorithm which takes HTML page as input and returns the web zone objects, where

they suppose that any web document contains three zones at most. So the number of series which are

used to separate these zones equals to two at most. They define series1 to separate header zone on

body zone, and define series2 to separate body zone on footer zone.

They classify web content objects into six types by relying on four basic types which are already

defined by Levering and Cutler (2006): Text, Image, Form, and Plug-in content. They add two new

types: Separator element and Structure element. They also classify web presentation objects into six

types: Banner, Menu, Interaction, LegalInformation, Record, and Bulk. Figure 29 shows main

algorithm OWebMiner () by Annoni and Ezeife (2009).

53

Figure 29: OWebMiner () algorithm (Annoni and Ezeife , 2009).

This algorithm takes web page (WDHTMLFile) as input and returns a set of patterns of extracted

objects. Line (A) of the algorithm extracts all the content and presentation objects inside web page and

stores them into two separate object arrays according to their DOM tree hierarchical dependencies.

Line (B) stores the objects into relational database. Line (C) mines the stored objects inside database

and builds the patterns of these objects. They also develop two important sub-algorithms called

PresWebObjectScan() and ContWebObjectScan(). ContWebObjectScan() stores the extracted web

content objects into ContentOjectArray[]. It process DOM tree starting <HTML> node until hits

series1, then it calls algorithm ProcessContentSibling() to start extracting of content objects until hits

series2. The algorithm recursively traverses DOM tree block-level tags by depth-first search until it

hits non block-level tag. Then it processes all its siblings by breadth-first search until hits block-level

tag or no more siblings are left. For all the siblings of non-block tags the ProcessContentSibling()

algorithm stores each extracted content object in ContentObjectArray[]. Finally, the algorithm returns

ContentObjectArray[].

Example OWebMiner:

 This example illustrates the extraction process flow of the proposed algorithm

ProcessPresentationSibling() proposed by (Annoni and Ezeife , 2009) to extract both web presentation

objects and web content objects from the given web page. ProcessPresentationSibling() algorithm

receives DOM tree of web page as input. It returns an array contains the extracted objects that are

Algorithm OWebMiner()

Input: a set of HTML files (WDHTMLFile) of web documents.

Output: a set of patterns of objects.

Begin

For each WDHTMLFile

(A) Extract web presentation objects and content objects

sequentially with respect to their hierarchical dependencies.

(B) Store the object hierarchies into a database table

endFor

(C) Mine patterns lying within objects

end

54

labelled with a counter called ‘indTag’. It scans the block-level tags by depth-first search until a non-

block level tag is found. But it follows breadth-first search when a non-block level tag is parsed until a

block-level is found or no more siblings are left. The authors applied the ProcessPresentationSibling()

algorithm on a web document from Chapters7.ca web site to extract the presentation and web content

objects from that web page. Figure 30 shows the input DOM tree of web page of ‘Chapters.ca’ web

site.

Region node

Region node1

A

B

B1

B1A

LI 1

Header Zone

B2

B2A

2 Region node

Series 1

A

A1

Menu 2

Menu 3

A2

Menu 4
Body Zone

3

4 Region node

A

Menu 5

A2

A3

5
6

7

8
9

Series 2

A

B

C
D

E

Foot Zone

Menu 6

Figure 30: DOM tree of web document from Chapters.ca website.

The process begins from the DOM tree root ‘<html>’ tag, reaches <div1> node which is the first tag

of the header zone based on the definition by the authors. Since <div1> is a block-level tag the

algorithm continues in depth-first search scanning until reaches node ‘<a>’ which is labelled by the

55

letter ‘A’, and it continues the depth-first search until reaches ‘shape’ node which is a non-block level

node, so the ‘shape’ node and all its siblings are extracted and stored into ‘tagArray[0]’ which

represents link object with its related image labeled by the string ‘LI1’, and ‘indTag’ counter is

increased by 1. Then ProcessPresentationSibling() algorithm recursively is called with the DOM tree

and the input string ‘html/body/form/div1/div=B’. Since <div=B> node (labelled by the letter ‘B’

figure 30) is a block-level node the algorithm continues scanning in depth-first search until reaches

node ‘ul’(‘B1’), and again by the depth-first search it reaches the node ‘’ (‘B1A’) which is a non-

bock level nodes so ‘=B1A’ and all its siblings which are non-block are stored in ‘tagArray[1]’

which represent the second presentation menu (Menu2)object because the tagArray is composed of

four tags and each of them has inner <a> link tag, and the ‘indTag’ counter is increased by one.

Then the algorithm is called recursively with the input ‘html/body/form/div1/div/ul=B2’ since

‘’(‘B2’) is a block-level node the algorithm continues in depth-first search until reaches

‘=B2A’ node (‘B2A’) which is a non-block level node, so ‘=B2A’ and all its sibling are

extracted and stored in ‘tagArray[3]’ as the third presentation menu object (Menu 3). The

ProcessPresentationSibling() algorithm recursively keeps continue scanning and mining content

objects inside given web page using depth-first search and breadth-first search until the end of the

footer zone.

Mutsuddy (2010); Ezeife and Mutsuddy (2013) developed the work by (Annoni and Ezeife,

2009) to build a new system called WebOMiner. They define data block and data region to ensure the

consistency and the relationship between related data items which is the case that was not tackled by

(Annoni and Ezeife, 2009). So they modified ProcessContentSibling() algorithm to identify data block

and data region. Also they address a new idea which is based on relating HTML tags with their

attributes information to uniquely identify each web content type. They propose a full object-oriented

56

model which consists of four modules to extract all types of data objects inside web page regardless of

their structured formats: A) Crawler Module; B) Cleaner Module; C) Extractor Module; and D) Miner

Module. Figure 31 shows the proposed architecture of web miner model by (Mutsuddy, 2010; Ezeife

and Mutsuddy, 2013).

Figure 31: WebOMiner Architecture Model (Ezeife and Mutsuddy, 2013).

The authors developed a mini-crawler algorithm that takes URL of targeted list product web

page as input, and downloads the page from the web and stores it in the local computer for further

processing. The cleaner module uses HTML-Cleaner 2.2 to clean the downloaded web page from noise

HTML tags and format scripts. The HTML-Cleaner 2.2 software is an open source and can be

downloaded from web for free. The extractor module builds DOM Tree of the web page, and then

applies the modified extraction algorithm ProcessContentSibling() by (Annoni and Ezeife, 2009) to

extracted the data objects from the page and store them in ContentObjectArray[] array. The miner

57

module mines and labels the extracted data objects in ContentObjectArray[] based on the appropriate

defined class of the object. Mutsuddy (2010); Ezeife and Mutsuddy (2013) categorise data objects into

six types: product, list, link, text, form, noise. They build none full automatic structure of Non-

deterministic Finite Automata (NFA) for each type of the six objects based on their observations for

the contents of web pages which are in the domain of the B2C websites. The WebOminer() algorithm

in miner module scans ContentObjectArray[] array for the second time to classify each data object

based on the matched structured NFA.

Example WebOMiner:

 Mutsuddy (2010); Ezeife and Mutsuddy (2013) modified ProcessContentSibling() algorithm

by (Annoni and Ezeife, 2009). This application example shows how the modified version of

ProcessContentSibling() algorithm extracts the data objects from the DOM tree of the web list product

page shown in figure 32 which has been used as a running example by (Mutsuddy, 2010). The DOM

tree will be built automatically by importing the required DOM tree packages, and calling special

classes’ functions like DocumentBuilderFactory, and NodeIterator in Java programming language.

This algorithm extracts data objects from DOM tree and stores them in ContentObjectArray[] array

until it hits the Foot zone which is labelled by ‘series-2’ (figure 32). In this running example, ‘series-1’

is assigned by <div> tag at line 7 (figure 32) which is a block level tag, so the algorithm calls the

CheckTagObject() algorithm which creates an OpenSeparator object ‘{‘ and stores it in the first

position of ContentObjectArray[0], then TTag variable is set to the next child tag ‘<div>’ at line 8

(figure 32) and the same thing will occur that CheckTagObject() algorithm stores another

OpenSeparator object ‘{‘ it in ContentObjectArray[1]. Now the TTag variable is set to the next child

node ‘<a>’ at line 9 and the algorithm calls itself recursively. Since ‘<a>’ is a non-block level tag the

algorithms extracts the five sequence siblings (line 9 to 17 figure 32) and stores the respective ‘<link>’

58

followed by ‘<image>’ objects for all the five siblings into ContentObjectArray[2]-

ContentObjectArray[11]. Line 19 ends the data block with the ‘</div>’ tag and the algorithm stores

the CloseSeparator object ‘}’ into ContentObjectArray[12]. Figure 33 shows a snapshot of the

ContentObjectArray[] array after storing the web content objects inside it.

Figure 32: DOM tree of the product list web page.

Figure 33: Sample of ContentObjectArray[] array.

59

Harunorrashid (2012) develops the WebOMiner to a new version called the WebOMiner-2. The

new miner system tackles the manual process of generating the NFA structure of the data blocks which

is considered the main shortcoming of WebOMiner. The WebOMiner-2 automates the process of

generating the NFA structure of data blocks through building the regular expression of frequent

patterns of data attributes which are extracted from DOM-Tree and stored in contentObjectArray[].

The generated regular expressions will be input for the NFA generator algorithm which builds the

NFA structures as shown in figure 34. The WebOMiner-2 generates the database schema automatically

to store different types of web content objects (list, product, text). The WebOMiner-2 suffers from

some shortcomings, it still uses the concepts of block level and non-block level data blocks which are

proposed by (Annoni and Ezeife, 2009). Identifying the data block and data region by WebOMiner-2

is very costly, where it requires scanning each tag node in DOM-Tree to recognise whether it is a

block level or non-block level data block. Also the WebOMiner-2 stores the extracted data tuples in

relational database (RDB) which neither historical nor object-oriented database.

Figure 34: workflow of WebOMiner-2 (Harunorrashid, 2012)

60

CHAPTER 3 - Advanced Full Automatic WebOMiner-3

As we discussed in section 2.3.2, Mutsuddy (2010); Ezeife and Mutsuddy (2013) proposed a

new complete model called Web Object Miner (WebOMiner), and Harunorrashid (2012) develops it to

WebOMiner-2 to extract and mine data objects from the list product web pages in the domain of B2C

websites. Their proposed systems suffer from some shortcomings and needs to be advanced. We

studied their work and propose a new miner module called WebOMiner-3. The new version of miner

module generates the schema for more than one website and does the integration between different

schemas to build a unique object-oriented data warehouse (OODWH) to store the extracted data from

different B2C websites such as ‘compUSA’, ‘BestBuy’. The WebOMiner-3 proposes a new extraction

algorithm based on the similarity of the DOM tree tag nodes of the targeted data blocks; builds a full

automatic NFA structure for each data tuple type based on frequent object mining (FOM) technique

which is also proposed in this thesis. Finally build object-oriented automatic data warehouse to

integrate and store historical information about different product items from web sources. This thesis

addresses the shortcomings of the works by Mutsuddy (2010) ; Harunorrashid (2012); Ezeife and

Mutsuddy (2013) and tackle them, and advance the WebOMiner and WebOMiner-2 systems. Our

approach is deeply discussed in the subsequent sections of this chapter: section 3.1 introduces some

preliminaries definitions that will be used in the rest of this thesis; section 3.2 presents the overall

architecture of the advanced WebOMiner-3 model. Section 3.3 describes the OO data warehouse and

integration module, the complexity analysis of the system is described in section 3.4.

3.1 Preliminaries

In this section, we introduce some definitions and concepts that will help to deeply understand

the target of this thesis and move on understanding the proposed new advanced WebOMiner-3 model.

61

3.1.1 DOM Tree

The Document Object Model (DOM) tree is an application programming interface (API) that

represents valid HTML page, and formatted XML page as a tree logical data structure. Each document

contains only one root node which represents the top hierarchy of the page, and internal nodes which

represent the HTML or XML tags, and the leaf nodes which represent the last level of the DOM tree

and normally contains text data type. Figure 35 (A) shows a snapshot of HTML code for a list product

web page. Figure 35 (B) shows the DOM tree of the web page in figure 35(A).

<html>

<head> <body>

<tr> <tr>

<td> <td> <td> <td>

TV Monitor price $399
Computer

Monitor
price $69

<html>

<head><title> Example of DOM Tree </title> </head>

<body> <tr> <td> TV Monitor </td> <td> price $399 </td>

<td> Computer Monitor </td> <td> price $69 </td>

</body></html>

A

B

root node

internal tag node

leaf node

Figure 35: (A) snapshot of HTML code for list product web page (B) Dom tree.

3.1.2 Data Block and Data Region

 Data Block (tuple): a sub-tree of DOM tree of n (n>1) tag nodes which are siblings and have the

same parent tag node.

 Data Region: is a group of one or more similar data blocks (d>=1) which are siblings and have

the same parent tag node.

62

The definition of data region can be reformulated as if T represents the DOM tree structure of product

list page pi, and
1 ,

2 , 3 ,…, n represent data regions in T, then i is a sub-tree of T and i T

are siblings. A data region
i contains a set of adjacent similar data blocks τ which share the same

parent tag node. All data blocks τ in one data region i have the same number and similar pattern of

HTML tag nodes.

The definition of data block can be reformulated as data block τ  i contains a combination of more

than one tag nodes which share the same parent tag node and configure a sub-tree t of main DOM

Tree T. Figure 35 shows a DOM tree to illustrate the definitions of both data block and data region. As

shown in the figure that the data block 2 which is referred to by label (r2) contains five sibling tag

nodes and all of them share the same parent node which has the label ‘<table> (r2)’. Also figure 36

shows the outer data region which is surrounded by dashed-line rectangle contains two sibling data

blocks (r2) and (r3), where the two data blocks have the same HTML tag pattern and the same length of

tag nodes. Each data block contains the HTML tag pattern ‘<tr> <td> <tr> <td> <td> <td> <tr> <td>

<td> <tr> <td>’ and has the same length of tag nodes which equals to twelve in figure 35.

<html>

(T)

<table>

(Ʀ2)

<head>

<title>
<div>

(Ʀ1)
<div>

(Ʀ3)

<table>

(r2)

<body>

<tr>

<table>

(r3)

<tr> <tr> <tr> <tr> <tr> <tr> <tr>

<td> <td> <td> <td> <td> <td> <td> <td>

<td> <td><td> <td> <td><td>

Data Block 2 Data Block 3

Data Region

Figure 36: Graphical DOM tree illustrates data region and data block.

63

3.1.3 Tuple Formation from Data Block

Annoni and Ezeife (2009) categorise data blocks inside product list web page into six basic

types: 1) Product data block, 2) List or Navigation data block, 3) Form data block, 4) Text Data Block,

5) Decorative/Singleton data block, and 6) Noise data block. One of Our main purposes is to fully

automate the extracting process and enhance its efficiency, mining such types of data records from list

and detailed products web pages. Build the historical object-oriented data warehouse repository to

integrate and store the data records. The product data block is considered the most important data

block in product list page because it contains all the information that are related to one product data

tuple. Related objects of the product data block are: ‘name’ or ‘title’ of the product, ‘image’ of the

product, ‘product number’, ‘product brand’ or ‘type’, ‘product info‘, ‘price’, ‘product save’, and

additional information such as another ‘description’ of the product, ‘discount’ or if there is ‘sale’ on

the product or not. These objects are found ordered or un-ordered in a list of flat or nested HTML tags.

Each product has different structure in different list product web page. The format of the product data

block in nested HTML tags is shown below:

{, {<title>,<number>,…, <brand>,<price>}}

Ezeife and Mutsuddy (2013) propose the separator object to identify and separate data blocks on each

other. Figure 37 shows the content objects of a product data block which contains a separator object.

<image>‹ <title> <num> <brand> <price> ›

Separator Object Image Object Text Object Price Object Separator Object

Figure 37: Objects of product data block.

64

3.2 Advanced Web Object Miner (WebOMiner-3)

We propose to advance ‘WebOMiner’ system for the extraction and mining structured web data

contents from the web using object-oriented model. Our development includes proposing a new

extraction technique based on the similarity between the DOM tree tag nodes patterns. The new

extraction algorithm identifies each data block individually and each data region which contains

adjacent one or more data blocks. It is more efficient than the previous extraction algorithm by

(Mutsuddy (2010); Ezeife and Mutsuddy (2013)) because it compares lower number of DOM tree tag

nodes. Also we propose to build a full automatic NFA structure for each data tuple type to identify

types of the extracted data blocks. The new automatic NFA will be generated based on the concept of

frequent object mining (FOM). The new modifications include build historical object-oriented data

warehouse (OODWH) to integrate and store data tuples from different list and detailed product web

pages into one central data repository. The extracted data contents can be used for further mining

purposes and other manipulations. Figure 38 shows the architecture of the new advanced WebOMiner-

3 system. WebOMiner-3 consists of five modules: (1) Crawler module (2) Cleaner module (3)

Extractor module (4) Frequent Objects Mining module (5) Data Warehouse and Integration module.

These modules are called sequentially by the main algorithm WebOMiner-3 (shown in figure 39). We

will explain below each module of WebOMiner-3 system individually and will deeply discuss how

each algorithm of each module works.

65

Figure 38: Advanced WebOMiner-3 Architecture.

Figure 39: Advanced WebOMiner-3 main algorithm.

Algorithm WebOMiner-3 Main

 Input: Set of HTML files (WebPageFile) of web documents.

 Output: Set of patterns of objects.

 Variable: ContentObjectArray[].

Begin

 for each WebPageFile

A. Call Crawler Algorithm() to crawl webpage into local directory from WWW. /* simple code to

 crawl the web page from the web and download it in local machine. */

 B. Call HTMLCleaner-2.2 Software() to clean-up HTML code. /* inside the code */

 C. Call Extract() to create DOM tree of refined HTML file and extract web content objects

sequentially from DOM Tree. Store objects in ContentObjectArray[]. /* figure 40 page 66 */

D. Call FrequentObjectsMining() to call NFA generator and identify data records patterns.

 /* figure 49 page 79 */

F. Call Create OODataWarehouse() to store data records into data warehouse /* figure 49 page 79 */

 end for

G. Mine for knowledge discovery within extracted contents. /* pending to develop*/

End

66

3.2.1 Crawler Module

We plan to use the crawler module which was proposed by Mutsuddy (2010). They proposed a

mini-crawler algorithm to download the target web page and create a mirror of it, and then store it in

the local computer.

3.2.2 Cleaner Module:

We use ‘HTMLCleaner-2.2’ software to clean the targeted web page. HTMLCleaner-2.2 is

open source software and can be downloaded from http://htmlcleaner.sourceforge.net. Actually, DOM

tree cannot be built properly if the given web page is not clean. The HTMLCleaner-2.2 is not enough

to clean the web page, so we modified the cleaner module to clean the content of downloaded web

page more properly. The cleaner now cleans all the noise contents such as ‘comment written by web

developers’, ‘script’ codes, ‘flashes’, ‘meta data’.

3.2.3 Extractor Module

The extractor module takes the cleaned web page as input and creates the DOM tree logical

structure for that page. We use Java DOM tree application package to build and traverse DOM tree for

the given list product web page. Then the extraction process starts. Figure 40 shows the main

extraction algorithm. Line 1.0 of the algorithm takes the cleaned web page as input and uses the Java

DOM tree package to create the DOM tree of the given page. Line 2.0 calls the

ContentObjectsExtraction() procedure to starts the extraction process.

Figure 40: Extract() algorithm.

Algorithm Extract()

Input: Clean Web Page.

Output: Populated ContentObjectArray[].

Begin

1.1 Use Java DOM Tree Package to build DOM Tree.

2.0 Call ContentObjectsExtraction() to extract data content objects /* figure 41

 page 68 */
End

3.0 Call ContentObjectsExtraction() to End

67

The new proposed extraction process is based on the idea of similarity between DOM tree tag nodes

names. In the similarity matching the extraction process will be able to determine the boundary of each

data region and all the data blocks inside a specific region. For each located data region a special text

string ‘region’ will be inserted in ContentObjectArray[] array, and for each determined data block

inside a specific data region an open-separator object ‘{‘ will be inserted in ContentObjectArray[] to

refer for the beginning of the data block and close-separator object ‘}’ to refer for the end of the data

block. Then extract and insert all the data objects which are related to a specific data block will be

inserted between the open-separator object and the close-separator object. After the extraction process

ends, ContentObjects-Extraction() procedure returns the ContentObjectArray[] which is filled with all

the data regions that are separated on each other, and all data blocks that are related to a specific data

region where each data block is surrounded by open-separator object ‘{‘ and close-separator object ‘}’.

Figure 41 shows the pseudo code for ContentObjectsExtraction() procedure.

68

Figure 41: ContentObjectsExtraction() procedure.

Procedure ContentObjectsExtraction()

Input: DOM tree, website of page p

Output: Populated ContentObjectArray[].

Begin

1.0 while DOM tree has more nodes

1.1 Node n= DOMtree.pareser.nextNode()

1.2 if n.getParsePath() != n.nextSibling().getParsePath()

1.3 if n.getParsePath() != n.previousSibling().getParsePath()

1.4 continue;

1.5 Else

1.6 ContentObjectarry[indexTag]=’{’ ;

1.7 indexTag++;

1.8 db= n.getParsePath();

1.9 if isProduct(db)

1.10 for each data object obj in db

1.11 objType=getObjectType(obj, website);

1.12 ContentObjectarry[indexTag]= objType;

1.13 indexTag++ ;

1.14 end for

1.15 Else

1.16 for each data object obj in db

1.17 objType=getObjectType(obj);

1.18 ContentObjectarry[indexTag]= objType;

1.19 indexTag++ ;

1.20 end for

1.21 ContentObjectarry[indexTag]=’}’ ;

1.22 indexTag++ ;

1.23 ContentObjectarry[indexTag]=’region’ ;

1.24 indexTag++;

1.25 for i=1 to n.getPathLength()

1.26 DOMtree.pareser.nextNode() ++ ;

1.27 end for

1.28 Else

1.29 ContentObjectarry[indexTag]=’{’ ;

1.30 indexTag++ ;

1.31 db= n.getParsePath();

1.32 if isProduct(db)

1.33 for each data object obj in db

1.34 objType=getObjectType(obj, website);

1.35 ContentObjectarry[indexTag]= objType;

1.36 indexTag++ ;

1.37 end for

1.38 Else

1.39 for each data object obj in db

1.40 ContentObjectarry[indexTag]=obj ;

1.41 indexTag++ ;

1.42 end for

1.43 ContentObjectarry[indexTag]=’}’ ;

1.44 indexTag++ ;

1.45 for i=1 to n.getPathLength()

1.46 DOMtree.pareser.nextNode() ++ ;

1.47 end for

2.0 End while

End

69

Line 1.0 of the algorithm reads sequentially all the nodes of DOM tree and stops when there is

no more nodes in DOM tree. Line 1.1 reads the next node of DOM tree and stores it in the ‘n’ Node

variable. Line 1.2 does the similarity comparison between the pattern string path of the tag node ‘n’

and its next sibling. To get the next sibling for any node, DOM tree provides a function called

‘getNextSibling()’ returns the next sibling for the current node. The string pattern path of any specific

node can be returned through the procedure called ‘getParsePath()’ which is proposed by us in this

thesis and it will be described in subsequent lines. If there is no match between tag node ‘n’ and its

next sibling, the comparison will be done between the current tag node ‘n’ and its previous sibling as

per line 1.3. DOM tree provides a function called ‘getPreviousSibling()’ returns the previous sibling

for the current tag node. If the match fails the algorithm continuous to the next node of DOM tree as

per line 1.4, but if the match succeeds between the current tag node ‘n’ and its previous sibling, the

algorithm inserts open-separator object ‘{‘ in the next position of ContentObjectArray[] as per line 1.6

because the algorithm considers the current tag node ‘n’ and all its sub-tree as a new data block. Then

the algorithm extracts all data objects which are embedded underneath of the tag node ‘n’ and its sub-

tree tag nodes as per lines 1.8-1.20. After it finishes, it inserts the close-separator object ‘}’ in the next

available position of ContentObjectArray[] as per line 1.21. The algorithm considers the previous

sibling of current node ‘n’ is the last sibling of the current tag node ‘n’ which represents the end of a

specific data region, so it inserts the string ‘region’ at the next available position of

ContentObjectArray[] as per line 1.23 to surround the data regions. Then the algorithm computes the

length path of the tag node ‘n’ and all its sub-tree to move the pointer to the first node after last node in

‘n’s sub-tree as per lines 1.25-1.27. The length of tag node ‘n’ and its sub-tree will be computed

through the function called ‘getPathLength()’ which is proposed by us in this thesis and will be

described in subsequent lines. If the similarity comparison between the node ‘n’ and its next sibling

70

matches as per line 1.2, then the else part of the algorithm will be executed as per line 1.28. It

considers the current tag node ‘n’ and all its sub-tree as a new data block and inserts the open-separator

object ‘{‘ in the next position of ContentObjectArray[] as per line 1.29. Then it extracts all data objects

which are embedded underneath of the tag node ‘n’ and its sub-tree tag nodes as per lines 1.32-1.42.

Then it inserts the close-separator object ‘}‘ in the next position of ContentObjectArray[] as per line

1.43. Then it computes the length of tag node ‘n’ and its sub-tree to move the current tag node to the

first node after the last node in ’n’s sub-tree as per lines 1.45-1.47.

Example Extraction Process:

The following example illustrates the ‘Extract’ algorithm (figure 40) and ‘ContentObjectsExtraction()’

procedure (figure 41) and describes how they work. Let us suppose there is a snapshot of HTML code

of web list product web page as shown in figure 42. For the example purposes we suppose this HTML

snapshot is cleaned.

 <html><head><title>Electronic Products Web Site</title></head>

 <body><div>Electronic Products</div> TVs Computers

 Monitors <table> <tr><td id=”title”>HP laptop core i5</td> <td>

 </td> <td id=”Brand”> HP </td><td id=”price”> $699 </td></tr><tr>

 <td id=”title”>Sony laptop core i7</td><td></td><td id=”Brand”> Sony </td>

 <td id=”price”>$899<td></tr> <tr><td id=”title”>Dell laptop core i7</td> <td></td>

 <td id=”Brand”> Dell </td> <td id=”price”>$920</td></tr> </table>

 </body> </html>

Figure 42: snapshot of HTML code of electronic products list web page.

The Extract() algorithm takes the HTML code of the web page shown in figure 42 as input, and then

calls the Java DOM tree API package to create the DOM tree of that page as per line 1.0 of the

algorithm. The generated DOM tree of the given electronic products list web page is shown in figure

43.

71

<html>

<head>

<title>

<body>

<div>

Electronic

Products

Website

Electronic

Products

<a>

TVs

<a>

Computers

<a>

Monitors

<table>

<tr>

<td> <td> <td>

HP laptop

core i5

 HP

<td>

$699

<tr>

<td> <td> <td>

Sony laptop

core i7

Sony

<td>

$899

<tr>

<td> <td> <td>

Dell laptop

core i7

Dell

<td>

$920

<a> <a>

<a>
<a>

<a>

Figure 43: DOM tree of electronic products list web page.

After building the DOM tree, the Extract algorithm calls the contentObjectsExtraction() procedure as

per line 2.0 (figure 41). The contentObjectsExtraction() takes the generated DOM tree (figure 43) as

input and starts traverse the tree, and does the similarity between DOM tree tag nodes to extract the

data objects and store them in ContentObjectArray[] array. The procedure initially assigns current tag

node ‘n’ to the root of DOM tree which is the ‘<html>’ tag node as per line 1.1 (figure 41), the tag

node ‘<html>’ has not any sibling so the procedure continuous as per line 1.4 and assigns the current

tag node ‘n’ to the next tag node in DOM tree which is ‘<head>’. Since the tag node ‘<head>’ has only

one sibling which is the tag node ‘<body>’, the procedure does the similarity comparison between the

string pattern path of tag node ‘<head>’ and all its sub-tree and the string pattern path of tag node

‘<body>’ and all its sub-tree as per line 1.2. The string pattern of tag node ‘<head>’ and all its sub-tree

is ‘head title #text’ which is not equal to the string pattern of tag node ‘<body>’ and all its sub-tree

which is equal to ‘body div #text a #text a #text a text table tr td a #text td img td #text td #text tr td a

72

#text td img td #text td #text tr a td #text td img td #text td #text a img a img’ and since the tag node

‘<head>’ has no previous sibling, the procedure continuous and reads the next ‘n’ tag node which is

‘<title>’. As we mentioned previously that the function called ‘getParsePath()’ returns the string

pattern of any given node and all its sub-tree. Since the tag node ‘<title>’ node has no siblings, the

procedure reads the next tag node which is ‘<body>’ also it has no siblings, the procedure reads the

next tag node ‘<div>’ and compares the string pattern path of tag node ‘<div>’ and all its sub-tree

which equals to ‘div #text’ with the string pattern of tag node ‘<a>’ and all its sub-tree which equals ‘a

#text’ since they are not similar the procedure continuous and reads the next node which is ‘<a>’.

Since the tag node ‘<a>’ has two siblings, the procedure compares the string pattern of tag node ‘<a>’

which equals to ‘a #text’ with the string pattern of its next sibling ‘<a>’ tag node which equals to ‘a

#text’, since the two string are the same the procedure knows this is the beginning of a data block node

and the else part of the procedure at line 1.28 will be executed, so it inserts the open-separator object

‘{‘ in the first position of ContentObjectArray[] array as per line 1.29 (figure 41), and increments the

counter indexTag as per line 1.30 to refer for the next available position of ContentObjectArray[]

array. Once the procedure knows the beginning of the data block node, it assigns the currents data

block to the variable db as per line 1.31 through calls the procedure getParsePath() of the current tag

node which returns the complete structure patterns of data block. Then it checks if the current data

block db is of type ‘product’ or not through calls the procedure isProduct() which determines if the db

is product or not through our simple assumption to the current attributes order of product data block in

currently being extracted list product web page of B2C website. The isProduct() procedure is deeply

discussed in subsequent paragraphs. Since the current db ‘a #text’ is not of type ‘product’ because it

does not meet the rule of product data block in current being extracted web page from ‘CompUSA’

website in this example, the procedure extracts all the data objects of data block node and all its sub-

73

tree and store them in ContentObjectArray[], so it inserts the ‘link’ object in the second available

position of ContentObjectArray[], and inserts the ‘text’ in the third position as per lines 1.39-1.42.

After extracts all the objects that are related to the current data block, the procedures know this is the

end of the data block, so it inserts the close-separator object ‘}’ in the next available position of

ContentObjectArray[] array as per line 1.43. Then the procedure computes the length of current tag

node ‘n’ which equals to ‘<a>’ and all its sub-tree through the function called ‘getPathLength()’. This

function computes number of tag nodes elements in the sub-tree of the given node except the leaf

nodes. Since the current tag node ‘<a>’ has only one leaf node in its sub-tree the ‘getPathLength()’

will return zero and the procedure reads the next tag node ‘<a>’ which is the second child of the

‘<body>’ tag node as per lines 1.45-1.47. The same thing will be done for the second tag node ‘<a>’,

the procedure inserts the open-separator object ‘{‘, ‘link’ object, ‘text’ object, and close-separator

object ‘}’ in ContentObjectArray[] array. Then the procedure reads the next ‘<a>’ node which is the

third child of ‘<body>’ tag node, since it has no next sibling the procedure compares it with its

previous sibling as per line 1.3. The tag node ‘<a>’ has string pattern equals to the string pattern of its

previous sibling ‘<a>’ node which equal to ‘a #text’ so the similarity comparison succeeds and the

procedure recognises a new data block node of non ‘product’ type, so it inserts open-separator object

‘{‘, ‘link’ object, ‘text’ object, and close-separator object ‘}’ in the next available positions of

ContentObjectArray[] array as per lines 1.16-1.20. Since the current tag node ‘<a>’ is the last sibling,

the procedures recognises that this is the end of a specific data region and inserts the string object

‘region’ in ContentObjectArray[] as per line 1.23. The procedure continuous and reads the next node

which equals to ‘<table>’ tag node since it has no siblings, the procedure reads the next node which

equals to ‘<tr>’ tag node since it has the next sibling ‘<tr>’ node, the procedure compares the string

pattern of the current tag node ‘<tr>’ which equals to ‘tr td a #text td img td #text td #text’ with the

74

string pattern of the next sibling tag node ‘<tr>’ which equals to ‘tr td a #text td img td #text td #text’,

since the nodes are similar the procedure considers the current tag node ‘<tr>’ as a data block node and

inserts the open-separator object ‘{‘ in ContentObjectArray[] as per line 1.29. Then the procedure

assigns the current data block to the variable db as per line 1.31 through the procedure getParsePath().

Since the current db is ‘product’ data block because it meets the rules of product type data block by the

procedure isProduct() as per line 1.32. Then the procedure extracts all the objects that are related to the

tag node ‘<tr>’ and its sub-tree, and assign type of each obj through calls the procedure

getObjectType() as per line 1.34. So the procedure inserts ‘title=HP laptop core i5’ object, ‘img’

object, ‘Brand=HP’ object, and ‘Price=$699’ object in the next available positions in

ContentObjectArray[] as per lines 1.33-1.37. The procedures knows the end of the data block node and

all its sub-tree, so it inserts the close-separator object at ContentObjectArray[]. The same thing will be

done to the second ‘<tr>’ node, the following data objects: ‘link object, title=Sony laptop core i7’

object, ‘img’ object, ‘Brand=Sony’ object, ‘Price=$899’ object, and close-separator object ‘}’ in

ContentObject-Array[] array. Also the same thing will done to the last ‘<tr>’ node through the

comparison matching with its previous node the following objects: ‘title=Dell laptop core i7’ object,

‘img’ object, ‘Brand=Dell’ object, ‘Price=$920’ object, and close-separator object ‘}’ in

ContentObject-Array[] array. Since the ‘<tr>’ node is the last sibling, the procedure recognises that

this is the end of a specific data region, so it inserts the string object ‘region’ in ContentObjectArray[]

as per line 1.23. The procedure continuous until reads all the tag nodes in DOM tree. Figure 44 shows

the ContentObjectArray[] after finish the the contentObjectsExtraction() procedure and with this the

Extract() algorithm will end. Actually, if we apply the WebOMiner and WebOMiner-2 to extract the

data contents from the DOM-Tree shown in figure 43, both of the systems would fail to extract all the

list and product data tuples in the page because they are looking for non-block level data blocks to start

75

the extraction process, while all the lists and the products data blocks in the DOM-Tree are level data

blocks, so the two system will not be able to identify the list and the product data blocks and they fail

to extract them.

Figure 44: ContentObjectArray[] array after Extraxt() algorithm.

Figure 45 shows the pseudo code of getParsePath() procedure and will be described through

application example 3.2.

Figure 45: getParsePath() procedure.

Example Finding Path of Tag Node:

This example illustrates how the procedure getParsePath() (figure 45) works. Let suppose extracting

the string pattern path of tag node ‘<tr>’ and its sub-tree shown in figure 46. The first line of

getParsePath() procedure assigns the variable path with the name of rootNode which is ‘<tr>’ tag

nodes, so the value of variable path will be ‘path=tr’. The built in procedure ‘getNodeName()’ returns

Algorithm getPrasePath()

Input: rootNode

Output: the complete string path of rootNode and its sub-tree

Begin

1.2 path = rootNode.getNodeName();

1.3 node =rootNode.getFirstChild();

1.4 while node!=null

1.5 path =path || node. getNodeName();

1.6 if node.hasChildNodes()

1.7 if node.getNextSibling()!=null

1.8 stack.push(node.getNextSibling());

1.9 node=node.getFirstChild();

1.10 else

1.11 node=node.getNextSibling();

1.12 if node==null and !stack.isEmpty()

1.13 node=stack.pop();

1.14 end while

1.15 return path;

End

76

the name of the current node. Then the procedure creates a new node ‘n’ and assigns it to the first child

of the root node as per line 1.2, so the new node ‘n’ will be assigned to the first ‘<td>’ tag node in left

side of figure 46. Then the procedure checks if the current ‘n’ node is not null node i.e., it checks if

there is no more nodes in the path of root node as per line 1.3, otherwise the procedure will stop as per

lines 1.13-1.14. The current ‘n’ tag node equals to ‘<td>’ and not equals to null, so the procedure

concatenates the tag node ‘<td>’ name with the previous value of variable path as per line 1.4, so the

new value of path will be ‘path=tr td’. Then the procedure checks if there are child nodes of the current

node as per line 1.5. Since the ‘<td>’ node has one child node equals to ‘<a>’ tag node the procedure

proceeds. The built in ‘hasChildNodes()’ procedure checks whether the current node has children

nodes or not. Then the procedure checks if the current tag node ‘<td>’ has sibling node or not as per

line 1.6. The build in ‘getNextSibling()’ returns the next sibling node of the current node. Since the

‘<td>’ tag has three siblings the procedure inserts the first sibling which is the second ‘<td>’ tag node

in stack as per line 1.7. Then the procedure assigns the current ‘n’ node to the first child of ‘<td>’ tag

node which equals ‘<a>’ tag node. The same process will be repeated for the current ‘<a>’ tag node.

The path variable will be replaced by ‘path= tr td a’, since the tag node ‘<a>’ has one child and no

siblings the current node will be the child node which equals to ‘#text’ so the path variable will be

replaced as ‘path= tr td a #text’. Since the current node ‘#text’ has no child node the else part of the

procedure will be executed as per line 1.9. Line 1.10 assigns the null value to the current node because

‘#text’ node has no siblings. Line 1.11 checks if the current node equals to null and there are no more

nodes in the stack to end the procedure, but since the stack is not empty the procedure pops the top of

the stack which contains the ‘<td>’ tag node and the while loop will be repeated again for the second

‘<td>’ tag node. The procedure continues traversing the whole sub-tree until no more nodes are

77

available and the stack is empty. Finally it returns the complete path of the root node and all its sub-

tree which equals to ‘path = tr td a #text td img td #text td #text’ in the current example.

<tr>

<td> <td> <td>

Sony laptop

core i7

Sony

<td>

$899
<a>

Figure 46: Root tag node and all its sub-tree.

Figure 47 shows the pseudo code of isProduct() procedure. It is a simple procedure takes the full

pattern string of the current tag node and its sub-tree as input and returns Boolean ‘true’ value if the

pattern is ‘product’ data block as per line 1.1-1.2 or ‘false’ if the pattern is not as per line 1.3.

Figure 47: isProduct() procedure.

Figure 48 shows the pseudo code of getObjectType() procedure. This procedure takes the object order

of ‘product’ data block and the website of web page which is being extracted as input and returns type

of the object. Based on our simple observation of the product list web page in ‘CompUSA’ website,

the order of ‘product’ data block as follows <link title img brand price>. The procedure checks if the

website is ‘compUSA’ and the object index equals to 1 then it returns the ‘link’ as type of the object as

per lines 1.1-1.3, if not the procedure checks if the object index equals to two then it returns ‘img’ as

per lines 1.4-1.5, if not it checks if the object index equals to three then it returns ‘brand’ as per lines

Algorithm isProduct()

Input: string pattern of tag node and its sub-tree

Output: Boolean Flag (‘true’, ‘false’)

Begin

1.1 if pattern.contains (at least one ‘img’ object and one

‘link’ object and two ‘#text’ objects)

1.2 return ‘true’;

1.3 else

1.4 return ‘false’;

End

78

1.6-1.7, if not it checks if the object index equals to four then it returns ‘price’ as object type as per

lines 1.8-1.9, and the procedure ends.

Figure 48: getObjectType() procedure.

3.2.4 Frequent Objects Mining Module

As we discussed before that (Mutsuddy, 2010; Ezeife and Mutsuddy, 2013) proposed non full

automatic approach to build NFA structure for each data tuple type such as product tuple, list tuple,

text tuple, form tuple, singleton tuple, and noise tuple. They based on their observations to a limited

number of web pages in domain of B2C websites to identify and build all the possibilities of the NFA

structure for each tuple type. For example, in their work they suggested 10 different NFA’s structures

for the product tuple to guarantee the identification of all products that might be in different formats

and structures inside the observed list product web pages. This none full automatic approach is

considered the main shortcoming of work by (Mutsuddy, 2010; Ezeife and Mutsuddy, 2013). In this

module, we propose to build a full automatic approach to build NFA structure for each tuple type

based on the already extracted data objects which are stored in ContentObjectArray[] array. Build

automatic NFA will help to identify each data tuple inside ContentObjectArray[] array. Identifying the

accurate type of any tuple helps us to know the right place of it in the data warehouse in order to store

it correctly. In addition, automatic NFA would save a lot of time which is required by manual

approach to build the same NFA structures. Also build NFA from current extracted data objects will

Algorithm getObjectType()

Input: object index, website

Output: object type

Begin

1.1 if website=’compUSA’

1.2 if object_index=1

1.3 return ‘link’;

1.4 else if object_index=2

1.5 return ‘img’;

1.6 else if object_index=3

1.7 return ‘brand’;

1.8 else if object_index=4

1.9 return ‘price’;

End

79

suggest the exact required number of the required NFA structures to identify data tuples inside targeted

web page, while in the manual approach the authors assume a fixed number of NFA types which

equals to six in their work, and this limits the flexibility and extensibility of the proposed system, and

it may miss identification of some important tuples as a result. Manual approach enforces the system to

do an extra comparisons and processing steps which negatively effect on the performance of the

system. Our proposed automatic approach is based on the proposed ‘frequent objects mining’ (FOM)

approach which aims to build regular expression of frequent objects patterns in ContentObjectArray[]

array. Then build NFA structure of each regular expression. FOM builds the regular expression of

frequent objects patterns through build frequent object growth tree (FO-growth Tree), and then

traversing all the paths of the leaf nodes of FO-growth tree. Each generated path represents one regular

expression. Figure 49 shows the proposed FOM algorithm.

Figure 49: Frequent Objects Mining (FOM) algorithm.

Line 1.0 of the FrequentObjectsMining() algorithm calls the MineFrequentObjects() procedure to build

regular expression of the frequent objects r in ContentObjectArray[] array. Figure 50 shows the pseudo

code of MineFrequentObjects() algorithm.

Figure 50: MineFrequentObjects() algorithm

Procedure MineFrequentObjects()

Input: ContetObjectArray[]

Output: A set of frequent objects patterns

 begin

1.0 Call FO-Tree Construct() /* figure 51 page 80 */

2.0 Call generateRE() /* figure 52 page 81 */
end;

Algorithm FrequentObjectsMining()

 Input: ContetObjectArray // Data structure contains content objects

 Output: A set of patterns of object’s contents

 begin

1.0 Call MineFrequentObjects() /* figure 50 page 79 */

2.0 Call GenerateNFA() /* figure 58 page 86 */

 end;

80

Line 1.0 of MineFrequentObjects() procedure calls the FO-Tree Construct() algorithm to build FO

tree. This algorithm builds the logical data structure tree called ‘frequent object tree’ (FO-tree) which

represents the frequency of objects, and then traverses the FO-tree to finds the path of each leaf node in

FO-tree. To clearly understand the FO-tree, we introduce here the basic definition of FO-tree:

 Definition 2: Frequent Object-tree (FO-tree) is a logical tree data structure with the following

two main properties:

1. It consists of a root node with a label ‘null’ value, a set of object-prefix sub-trees as the

children of the root.

2. Each node in the object-prefix sub-tree consists of three items: object-name, count, and node-

link. Object-name identifies which object this node represents, count registers the number of

tuples in ContentObjectArray[] array contains this object, and node-link links to the next node

in FO-tree or to null if there is no next node.

Based on this definition, FO-Tree construction algorithm shown in figure 51.

Figure 51: FO-tree Construct() algorithm.

Algorithm FO-tree Construct()

Input: ContetObjectArray[]

Output: FO-tree, the frequent object tree of ContetObjectArray[] tuples

begin

1.0 Create the root of FO-tree, T, and assign it with ‘null’ value.

2.0 for each data block dbi in ContetObjectArray[]

3.0 for each obj in dbi

4.0 if T has a child node such that n.object-name = obj.object-name

5.0 n.count++

6.0 else

7.0 create a new node n in T

8.0 n.count=1

9.0 n.name= obj.object-name

10.0 n.parent node-link refer to obj

11.0 end for

12.0 end for
13.0 return T

end

81

Line 1.0 of FO-tree Construct() algorithm creates the root node of FO-tree, T, and assigns it with the

‘null’ value. Then for each data block dbi in ContentObjectArray[] which represents the sequence of

one or more objects obj, the algorithm takes each object obj and searches for the node ‘n’ in ‘T’ which

has the same object name value of obj as per line 4.0 (figure 51). If it finds the node ‘n’, the algorithm

increments the node n.count by 1 as per line 5.0. If it does not find the node ‘n’, the algorithm creates a

new node ‘n’ and sets ‘n.count=1’ and assigns the ‘n.object-name’ by ‘obj.object-name’, and links the

new ‘n’ node with the ‘T’ via ‘n.parent-link’ as per lines 7.0-10.0.

Line 2.0 of MineFrequentObject() algorithm (figure 50) calls the generateRE() algorithm which

generates the regular expression of each leaf node’s path in FO-tree. Figure 52 shows the pseudo code

of generateRE() algorithm.

Figure 52: generateRE() algorithm.

Line 1.0 of generateRE() algorithm generates all the paths to leaf nodes of FO-tree through calling the

procedure generateLeafNodesPath(). Line 2.0 takes each path and generates the regular expression of

that path. Line 2.1 checks the frequency of the path if it is greater than or equal to one, if so the

algorithm assigns the open bracket ‘(‘ symbol to regEX variable as per line 2.2. Then the algorithm

Algorithm generateRE()

Input: FO-tree

Output: the complete set of regular expressions

Begin

1.0 generateLeafNodesPaths();

2.0 for each leaf node path in FO-tree

2.1 if freq(path) > =1 then

2.2 regEx=’(‘;

2.3 for each node in path

2.4 regEx= regEx || node.GetNodeName();

2.5 end for

2.6 regEx= regEx || ’)’ || ’+’;

2.7 else

2.8 regEx=null;

3.0 end for

End

82

concatenates the name of each node in the path in consequence order as per lines 2.3-2.5. Line 2.6

assigns the close bracket ‘)‘ symbol to regEX variable referring to the end of the regular expression,

and assigns the ‘+’ symbol to the end of the regEX referring that this regular expression has repeated

one or more times as per line 2.6.

Figure 53 shows the pseudo code of generateLeafNodesPaths() procdure. Line 1 of the procedure

initializes the variable pathlen with zero value and line 2 initializes the path[] array with null value.

Line 3 checks if the current node is not, if so the node’s name will be inserted in the current available

position of path[] array as per line 3.1, and the pathlen counter will be incremented as per line 3.2.

Then the procedure checks if the current node is a leaf node or not, if it is a leaf node it inserts the

complete path of this leaf node starting from the root node into the setPaths[] array. But if the current

node is not a leaf node then the procedure is called recursively again two times for both the left node of

current node and for the right node of the current node.

Figure 53: generateLeafNodesPaths() procedure.

Example Generating Leaf Node Path:

 This example illustrates the MineFrequentObjects() procedure (figure 50) and how it works. It

calls FO-tree construct() algorithm (figure 51) which builds frequent objects tree (FO-tree), and calls

Algorithm generateLeafNodesPaths ()

Input: FO-tree, path [], pathlen

Output: setPaths[] /*the complete set of paths */

Begin

1.0 pathlen=0

2.0 path[]=null

3.0 if node is not null then

3.1 path[pathlen]=node.GetNodeName();

3.2 pathlen++

3.3 if node is a leaf node then

3.4 path[pathlen]=node.GetNodeFrequency();

3.5 add path to setPaths[]

3.6 else

3.7 generateLeafNodesPaths(nodeleft, path, pathlen)

3.8 generateLeafNodesPaths(noderight, path, pathlen)

End

83

generateRE() algorithm (figure 52) which traverses the built FO-tree and generates the regular

expressions of frequent object patterns. Let the MineFrequentObjects() procedure takes the

ContentObjectArray[] which contains 72 data objects shown in figure 54 as input.

Figure 54: ContentObjectArray[] array after extraction from DOM Tree.

Line 1.0 of procedure calls the FO-tree Construct() algorithm (figure 51) which builds the frequent

object tree as shown in figure 55. Each node in FO-tree represents the object name and repetition of

the object with its sequence except the root of FO-tree which is labelled with ‘null’ value. For example

in FO-tree shown in figure 55, the left node of the first level of FO-tree contains the object ‘link:7’ and

this means that the object ‘link’ has repeated seven times. Line 2.0 of MineFrequentObjects()

procedure calls the generateRE() algorithm (figure 52) to generate regular expressions. generateRE()

takes the generated FO-tree in figure 55 as input and generates all the paths of each leaf node in FO-

tree. Each path consists of a sequence of one or more nodes names and the length of this path, where

the length of path can be represented as the frequency of the leaf node. For example, the path of the

‘text’ leaf node at the left most of FO-tree is ‘link text (4)’, where 4 represent the frequency of this

path and can be found in the leaf node.

84

link:7

null

text:4

text:3

title:3

image:3

prodno:3

brand:3

price:3

image:5

brand:3

price:3

link:2

Figure 55: FO tree.

Line 1.0 of generateRE algorithm calls generateLeafNodesPaths() procedure (figure 53) to find all

paths of leaf nodes of FO-tree. Lines 1.0-2.0 of the procedure initializes the variables pathlen and

path[]. Line 3.0 checks if the current node is not null, if it is not the procedure inserts the name of the

node in the current position of path[] array and increments the pathlen counter as per lines 3.1-3.2.

Line 3.3 checks if the current node is leaf node or not. So if the current node is a leaf node then the

procedure inserts the frequency of the node in the last position of path[] array as per line 3.4, and adds

the current generated path to the setPaths[] as per line 3.5. But if the current node is not leaf node then

the procedure is called two time recursively one for the left node of the current node and the other one

for the right node of the current node. Figure 56 shows all the paths of leaf nodes of FO-tree in this

running example.

Figure 56: Paths of leaf nodes.

85

Line 2.0 of generateRE() algorithm takes each generated path and build the regular expression of that

path. Figure 57 shows all the regular expressions of the generated paths.

Figure 57: Regular expressions of generated paths.

Line 2.0 of FOM algorithm (figure 49) calls GenerateNFA() algorithm to generate the NFA structure

for each data tuple type which will be used to identify tuples in ContentObjectArray[] array. Figure 58

shows the pseudo code of GenerateNFA() algorithm. The algorithm sequentially scans each regular

expression generated by generateRE() algorithm and starts automatically builds the NFA structure of

each regular expression. For example, the GenerateNFA() algorithm picks the regular expression ‘(link

text)
+
’ since the initial NFA is not existed, the algorithm creates the initial state ‘q0’ and refer to it as

the current state ‘gc’ to ‘q0’ as per line 2.0. For ‘link’ object, it creates a new state ‘q1’ and refers to it

as next state by the header of ‘q0’ state. Store ‘link’ object as the transition between state ‘q0’ and state

‘q1’ as per line 3.3.1. For the next iteration it scan the ‘text’ object and creates a new state ‘q2’, and

refers to it by ‘q1’, store ‘text’ object as the transition between state ‘q1’ and state ‘q2’ as per line 3.3.1.

Since ‘text’ is the last object, it is denoted as the last state ‘F’ as per line 3.4. Figure 59 shows the NFA

structure of the text-list data tuple.

86

Figure 58: GenerateNFA() algorithm.

Figure 59: NFA structure of text-list tuple.

The algorithm continues building other tuples NFA structures. For example there are two product

tuples in regular expression list shown in figure 56. In this case the NFA generator merges the two

NFA’s structure in one NFA structure for product tuple. The first regular expression is ‘(link title

image prodno brand price)
+
’ and the second regular expression is ‘(image brand price)

+
’, so NFA

merges them to one NFA structure for product tuple as shown in figure 60.

Algorithm GenerateNFA (Enum x)

Input: Enumeration x //Pattern Table of specific tuple type x

Output: Seed NFA of tuple type x

Begin

If NFA exist

 1.1 set qcq0;

 2.0 else

 2.1 initialize data structure for NFA, N= (Q, Σ, δ, q0, F);

 2.2 set Q {q0}, δ0, F 0;

 2.3 set qcq0;

 3.0 for each object ‘o’ in Regular_Expression

 3.1 If  δ(qc , o) = qn or  δ(qc , ε) = qj ˄ δ(qj , o) = qn in Seed NFA

 3.1.1 set qc qn;

 3.2 Else if  δ(qc , o´) = qn ; where o´ o //create ε transition

 3.2.1 create new state qa ; a < c

 3.2.2 create transition δ(qa , ε´) = qc ; // i.e., δ δ U{((qa , ε´), qc)}

 3.2.3 set qcqa , QQ U {qc} ;

 3.2.4 create transition δ(qc , ε´) = qj , qcqj ; here c < j

 3.2.5 create new state qm and δ(qc , o) = qm ; // i.e., δ δ U{((qc , o), qm)}

 3.2.6 set qcqm , QQ U {qm} ;

 3.3 else

 3.3.1 Create new state qc+1 and δ(qc , o) = qc+1 ; // i.e., δ δ U{((qc , o), qc+1)}

 3.3.2 set qcqc+1 , QQ U {qc+1} ;

 Endif

 3.4 If ‘o’ is the last object in RE

 3.4.1 If Q ∩ qc+1 = 0;

 Set qcF;

 3.4.2 Else

 Refine Seed NFA to create representation pattern;

 Endif

 endif

 endfor

 End

87

 q0

 q1 q2

<link>

 q3 <image> q4 <prodno><title> q5 <brand>
q6

 ε

 ε

<price>

Figure 60: NFA structure of product tuple.

The NFA structure of image list tuple is shown in figure 61 and the NFA structure of text tuple is

shown in figure 62.

Figure 61: NFA structure of image-list tuple.

Figure 62: NFA structure of text tuple.

After identifying the structure of product data tuple, the algorithm extracts the specification attributes

for each product tuple in list product web page from its own detailed web page.

3.3 OO Data Warehouse and Integration Module

The main purpose of the proposed Object-Oriented Data Warehouse (OODWH) is to integrate

and store the extracted data tuples from different B2C websites in hierarchal and historical order for

further processing and knowledge extraction. In addition, the proposed OODWH serves as a data

repository for information about different types of products which are browsed online where the end

user can query such data and get all the answers to do a comparison shopping between these products.

The WebOMiner-3 generates the complete website schema after calling the NFA generator algorithm

which generates the NFA structures of all data block types such as product, list, and text tuples. After

88

generating the website schema, the WebOminer-3 automatically creates the OODB for that website

separately based on generated schema and then fetches the data contents from the

ContentObjectArray[] array and stores them in the right place in OODB tables. Once a new website is

extracted and built in OODB, the WebOminer-3 starts the integration process. In the integration

process, the WebOMiner-3 matches all the columns of all super-classes of all OODB sources and build

a unique superclass, then does the same columns matching of sub-classes and creates a new sub-

classes tables inherit the main superclass table. Each new subclass table will be a subclass and

dimension table at the same time. Also the WebOminer-3 does the matching between ‘List’, ‘Text’,

‘Form’, ‘Noise’ tables for all OODB sources and creates a new dimension tables named as the

following: ‘List_Dim’, ‘Text_Dim’, ‘Form_Dim’, ‘Noise_Dim’. Then the WebOMiner-3 creates two

fact tables to integrate data contents from different OODB sources. The first fact table is called

‘ComputersFact’ which stores information about all computers ‘Desktops’ and ‘Laptops’ and their

prices, OODB source, and their historical information. The second fact table is called ‘TuplesFact’

which stores historical information about all tuples of type ‘List’, ‘Text’, ‘Form’, ‘Noise’ from all

OODB sources. The data warehouse will be in star schema, where each fact table represents the center

table and all other dimension tables are directly connected to it through the primary and foreign key

relationships. Figure 63 shows the pseudo code of CreateOODWH() algorithm. Line 1.0 of the

algorithm creates the connection to Oracle database server. Line 2.0 checks if the current website

OODB schema is already existed or not. If the schema is existed, the WebOMiner-3 checks for the

new updates in the schema and does the new modifications as per lines 2.1-2.2. If the schema is not

existed, that means that the website is a new source, then the WebOMiner-3 creates the OODB

separately based on the given website schema which was also generated by WebOMiner-3 as per line

89

3.1. Then the WebOMiner-3 checks if the number of OODB sources is greater than one, if so the

WebOMiner-3 starts the integration process between all the OODB sources.

Figure 63: CreateOODWH() algorithm.

Line 3.3 of the algorithm (figure 63) does the matching between all super-classes that are located in all

OODB sources, and creates one unique superclass contains all the matched or similar attributes as per

lines 3.3.1 and 3.3.2. Then the algorithm does all the matching between all similar sub-classes

attributes in all OODB sources and creates a unique subclass for each similar sub-classes that share the

similar attributes as per lines 3.5.1 and 3.5.2. Then the algorithm creates the hierarchal relationship

Algorithm CreateOODWH()

Input: Website schema

Output: Populated data warehouse

Begin:

1.0 Register Oracle driver and create Oracle connection.

2.0 if the current website schema is already existed

2.1 checkUpadate();

2.2 if there is any new modification

2.2.1 modify();

3.0 else

3.1 create OODB(website schema);

3.2 if different OODB >1

3.3 for all super-classes in all OODB sources

3.3.1 matching();

3.3.2 create unique superclass();

3.4 end for

3.5 for all sup-classes in all OODB sources

3.5.1 matching();

3.5.2 create all unique sub-classes ();

3.5.3 each new subclass inherits superclass;

3.5.4 rename new subclass to newname_dim;

3.6 end for

3.7 for all tuple tables in all OODB sources

3.7.1 matching();

3.7.2 create all unique tuple tables ();

3.7.3 rename each new tuple table to newname_dim;

3.8 end for

3.9 create fact table ‘ComputersFact’ ;

3.10 connect all sub-classes dimension tables with

‘ComputersFact’ fact table;

3.11 create fact table ‘TuplesFact’;

3.12 connect all tuples dimension tables to ‘TuplesFact’ fact table

4.0 populate Data();

5.0 end if

End

90

between the sub-classes and the superclass, where each subclass inherits the superclass as per line

3.5.3. Then the algorithm names each subclass table by the newname_dim and that means that each

subclass table will be a dimension table too as per line 3.5.4. Then the algorithm does the matching

between all other tuples attributes for all OODB sources and creates a unique table for similar tables

that share the similar attributes as per lines 3.7.1 and 3.7.2. Then the algorithm names each tuple table

by newname_dim because each tuple table will be a dimension table as per line 3.7.3. Then the

algorithm create the main fact table called ‘ComputersFact’ which will store the integrated and

historical information about all types of computers (desktops, and laptops) between all OODB sources

as per line 3.9, then the algorithm connects all dimension sub-classes (tables) to the ‘ComputersFact’

table through the primary key and foreign key relationships as per line 3.10. Then the algorithm creates

the second fact table called ‘TuplesFact’ which stores integrated and historical information about all

other tuples types except product tuples from all OODB sources as per line 3.11. Then the algorithm

connects all non-sub-class dimension tables to the ‘TuplesFact’ through the primary key and foreign

key relationships as per line 3.12. Finally, the WebOMiner populates the data from all OODB sources

into the new integrated OODWH as per line 4.0.

Example Build OODWH Schema:

Let us suppose that the generated OODB Computer schema of ‘compUSA’ website as the following:

Computer as superclass table inherits the root superclass=null has the structure:

Computer = <Computer_ID, Computer_type, title, brand, price, memory_size, memory_type,

processor_type, processor_speed, OS >.

Laptop as subclass inherits the Computer superclass has the structure:

Laptop = < Laptop_ID, Computer, screen_size, touch_screen, weight, color, battry_type,

integrated_webcam >

91

Desktop as subclass inherits the Computer superclass has the structure:

Desktop = < Desktop_ID, Computer, form_factor, Bays, line_inJack, PS2_connector >

List tuples table has the structure:

List = < List_ID, link, text >

Text tuples table has the structure:

Text = < Text_ID, Text >

Form tuples table has the structure:

Form = < FormID, Type, context >

Noise tuples table has the structure:

Noise = < NoiseID, Type, context >

The CreateOODWH() algorithm (figure 63) checks if the OODB schema of ‘compUSA’ website is

existed or not in OODWH, it finds that the OODB schema of ‘compUSA’ is new so the algorithm

creates the OODB schema separately as shown in figure 64.

Desktop

PK Desktop_ID

 Computer

 form_factor

 Bays

 line_inJack

 PS2_connector

Laptop

PK Laptop_ID

 Computer

 screen_size

 touch_screen

 weight

 color

 battry_type

 integrated_webcam

Computer

PK Computer_ID

 computer_type

 title

 brand

 price

 memory_size

 memory_type

 processor_type

 processor_speed

 OS

compUSA OODB schema

Text

PK TextID

 textList

PK ListID

 link

 title

Noise

PK NoiseID

 type

 context

Form

PK FormID

 type

 context

Figure 64: CompUSA OODB schema.

92

Let us suppose that the WebOMiner-3 extracts a new OODB schema for ‘BestBuy’ website, the

generated schema is defined as the following:

Computer as superclass table inherits the root superclass=null has the structure:

Computer = <Computer_ID, Computer_type, price, title, brand, RAM_size, RAM_type,

processor_class, processor_speed, OS >.

Laptop as subclass inherits the Computer superclass has the structure:

Laptop = < Laptop_ID, Computer, screen_size, touchScreen, weight, color, battry_type, webcam >

Desktop as subclass inherits the Computer superclass has the structure:

Desktop = < Desktop_ID, Computer, form_factor, Bays, lineJack, PS2 >

List tuples table has the structure:

List = < List_ID, link, text >

Text tuples table has the structure:

Text = < Text_ID, Text >

Form tuples table has the structure:

Form = < FormID, Type, context >

Noise tuples table has the structure:

Noise = < NoiseID, Type, context >

The CreateOODWH() algorithm (figure 63) checks if the OODB schema of ‘BestBuy’ website is

existed or not in OODWH, it finds that the OODB schema of ‘BestBuy’ is new so the algorithm

creates the OODB schema separately as shown in figure 65.

93

Computer

PK Computer_ID

 computer_type

 price

 title

 brand

 RAM_size

 RAM_type

 processor_class

 processor_speed

 OS

Desktop

PK Desktop_ID

 Computer

 form_factor

 Bays

 lineJack

 PS2

Laptop

PK Laptop_ID

 Computer

 screen_size

 touchScreen

 weight

 color

 battry_type

 webcam

BestBuy OODB schema

Text

PK TextID

 textList

PK ListID

 link

 title

Noise

PK NoiseID

 type

 context

Form

PK FormID

 type

 context

Figure 65: BestBuy OODB schema.

The CreateOODWH() algorithm figures out that the number of OODB schemas in OODWH is greater

than one, so the algorithm starts the integration process between all the OODB sources. Initially, the

algorithm compares the superclass tables in all OODB schemas sources and finds the matched or

similar attributes, so the algorithm creates one superclass table called ‘Computer’ has the similar

attributes between ‘Computer’ superclass table in ‘compUSA’ OODB and ‘Computer’ superclass table

in ‘BestBuy’ OODB. The new ‘Computer’ superclass table in OODWH has the following structure

after the matching process is done:

Computer as superclass table inherits the root superclass=null has the structure:

Computer = <ComputerID, ComputerType, title, memorySize, memoryType, processorClass,

processorSpeed, OS >.

94

Then the CreateOODWH() algorithm compares the similar subclass tables in all OODB schemas

sources and finds the matched or similar attributes, it compares the ‘Laptop’ subclass tables structures

between OODB schema of ‘compUSA’ and OODB schema of ‘BestBuy’. The new ‘Laptop’ subclass

table in OODWH has the following structure after the matching process is done:

Laptop = < LaptopID, Computer, screenSize, touchScreen, weight, color, battryType, webcam >

Then the algorithm renames the ‘Laptop’ subclass table to ‘Laptop_Dim’ and creates the hierarchal

relationship between ‘Laptop_Dim’ subclass and ‘Computer’ superclass, where ‘Laptop_Dim’ inherits

‘Computer’.

Then it compares the ‘Desktop’ subclass tables structures between OODB schema of ‘compUSA’ and

OODB schema of ‘BestBuy’. The new ‘Desktop’ subclass table in OODWH has the following

structure after the matching process is done:

Desktop = < DesktopID, Computer, formFactor, Bays, lineJack, PS2 >

Then the algorithm renames the ‘Desktop’ subclass table to ‘Desktop_Dim’ and creates the hierarchal

relationship between ‘Desktop_Dim’ subclass and ‘Computer’ superclass, where ‘Desktop_Dim’

inherits ‘Computer’.

Then the algorithm creates the main fact table called ‘ComputersFact’ which integrates the historical

information about all computer products (desktops, laptops) from all OODB sources. The

‘ComputersFact’ table has the following structure:

ComputersFact = < ComputerID, brand, price, website, extractedDateTime >

Then the algorithm connects the two new subclass tables ‘Desktop_Dim’ and ‘Laptop_Dim’ to the

main fact table ‘ComputersFact’ in a star schema through the primary and foreign keys relationships.

95

Then the algorithm compares the similar tuples tables between all OODB sources and creates a unique

tuple table for each tuple type and makes it as a dimension table, so the new dimension tuples tables

will be as the following:

List_Dim = < List_ID, link, text >

Text_Dim tuples table has the structure:

Text_Dim = < Text_ID, Text >

Form_Dim tuples table has the structure:

Form_Dim = < FormID, Type, context >

Noise_Dim tuples table has the structure:

Noise_Dim = < NoiseID, Type, context >

Then the algorithm creates the second fact table called ‘TuplesFact’ which integrates the historical

information about all tuples except computers tuples from all OODB sources. The ‘TuplesFact’ has the

following structure:

TuplesFact = < TupleID, type, website, extractedDateTime >

Then the algorithm connects all the tuples dimension tables, except subclass dimension tables of

computers products, to fact table ‘TuplesFact’ in a star schema through the primary and foreign keys

relationships. The final OODWH schema will be as shown in figure 66. After building the complete

structure of OODWH, the CreateOODWH() algorithm populate the data from all the OODB sources

and loads it in the right tables in OODWH.

96

ComputersFact

 ComputerID

 brand

 price

 website

 extractedDateTime

Computer

PK ComputerID

 computerType

 title

 memorySize

 memoryType

 processorClass

 processorSpeed

 OS

Desktop_Dim

PK DesktopID

 Computer

 formFactor

 Bays

 lineJack

 PS2

Laptop_Dim

PK LaptopID

 Computer

 screenSize

 touchScreen

 weight

 color

 battryType

 webcam

is-a is-a

TuplesFact

 TupleID

 type

 website

 extractedDateTime

Text_Dim

PK TextID

 text

List_Dim

PK ListID

 link

 title

Noise_Dim

PK NoiseID

 type

 context

Form_Dim

PK FormID

 type

 context

Figure 66: diagram for the initial OO ‘Computer’ object data warehouse.

3.4 Complexity Analysis

The complexity analysis of our system WebOMiner-3 focuses on the sequential execution of

major processes in extraction, frequent objects mining, and object-oriented data warehouse modules

and neglects the crawler and cleaner modules due to the lightweight processes are done there. The

worst case execution time of the extraction algorithm is O(N
2
), where N represents the total number of

tag nodes in DOM-tree. In the worst case the algorithm needs to compare each node n with all the

97

other nodes in DOM-Tree. The worst case of the frequent object mining module is O(MN), where M is

the number of distinct data tuples that can be generated and the N is the cost of building the NFA for

each distinct data tuple type. The worst case execution time of OODWH module is O(MN
2
), where M

is the number of websites needs to be integrated into the OODWH and N represents the total number

of distinct tables will be built in the data warehouse. Also this process includes matching the common

and distinct attributes of tables to build the object-oriented data warehouse. As a result, the total

execution time of WebOMiner-3 system in the worst case will be O(N
2
)+ O(MN)+ O(MN

2
) which can

be summaries as O(N
2
).

98

CHAPTER- 4 Evaluation of WebOminer-3

We are done with the implementation of WebOminer-3 and working to enhance the proposed

algorithms to get more accurate and scalable results. WebOMiner-3 is an extension of WebOMiner

and WebOMiner-2 which are unique works for mining web contents in object-oriented approaches. A

comparison performance results between these three systems are given in this chapter, but a valid

comparison with other extraction and mining systems is not existed in this thesis.

4.1 Strength of WebOMiner-3

WebOMiner-3 is automatic system to extract web contents from web based on object-oriented

model. Many of extraction and mining system have been proposed in the literature. Earlier systems use

supervised, unsupervised, and wrapper generation techniques to extract contents from the web. IEPAD

is a semi-unsupervised extraction system recognises repeated patterns by building tag-tree and uses

center star method to extract targeted web contents. RoadRunner is unsupervised extraction system

which generates the wrapper as regular expression from set of matched web pages by matching HTML

tokens and collapses the unmatched HTML tokens. These systems are different from automatic

WebOMiner-3 system due to the wide variance in the extraction process. DEPTA is semi-supervised

extraction system uses DOM-Tree logical structure to analyse the web page and facilitates the

extraction process of its contents. DEPTA uses one web page as training page to mark the targeted web

contents and then builds the wrapper to extract similar web contents from other web pages. DEPTA is

closer to WebOMiner-3 in terms of presenting web page as DOM-Tree, so we compare our system

with DEPTA beside the comparison with WebOMiner and WebOMiner-2. The comparative analysis

between WebOMiner-3 and DEPTA is summarised in table 2, between WebOMiner-3 and

WebOMiner is summarised in table 3, and between WebOMiner-3 and WebOMiner-2 is summarised

in table 4.

99

DEPTA WebOMiner-3

Does not focus on the correctness of HTML code Clean the HTML code very well that the DOM-

Tree is built correctly.

Uses the web browser to get visual coordination of

HTML tags hierarchical positions to build DOM-

Tree and then traverses the tree to extract web

contents.

Uses the DOM-Tree java package to build the

tree which does not depend on the location of tag

nodes to build the tree.

It extracts only textual contents type from the web. It extract different types of web contents based

on the tag nodes and their attributes such as Text,

Image, Links, etc.

Does not provide any implementation for the

database.

Automatically builds the OODWH and stores the

extracted data in the right tables of the data

warehouse.

It extracts only the product data objects. It extracts different types of data objects such as

product, list, text, form, noise.

Table 2: Comparative analysis between DEPTA and WebOMiner-3.

WebOMiner WebOMiner-3

It builds the NFA structure of product data block

based on the manual observations of the authors.

It builds the NFA structures of all data block

types automatically based on the extracted data

contents.

It extracts the schema for only one website. It generates the schema for more than one

website.

It does not integrate the extracted data contents

from different websites.

It integrates the extracted data contents about

different data tuples (product, list, text) from

different websites using the data warehouse.

It uses only the htmlcleaner-2.2 to clean the web

page before build the DOM-tree.

It uses the htmlcleaner-2.2 and new cleaner

procedure to clean the comments, scripts, style

sheets, and metadata inside the webpage.

It uses the concepts of level and non-level data

blocks definitions to identify data blocks during

traversing the DOM-Tree which is a very costly

process that requires checking every tag node in

DOM-Tree.

It proposes a new definition for both data block

and data region and proposes a new efficient

similarity matching technique of DOM-Tree tag

nodes to locate the data blocks and data regions.

It stores the extracted data contents in relational

database (RDB) which is neither historical nor

object-oriented.

It stores the extracted data contents in object-

oriented data warehouse (OODWH) which is

more appropriate and beneficial due to the nature

of the extracted data contents.

Table 3: Comparative analysis between WebOMiner and WebOMiner-3.

100

WebOMiner-2 WebOMiner-3

It extracts the schema for only one website. It generates the schema for more than one

website.

It automatically generates the NFA structure of

different data block types based on the frequency

of data attributes and generating the regular

expression of the frequent patterns. It does not

take into the consideration the sequence order of

data attributes, so it generates many of extra

candidate patterns of data blocks.

It automatically generates the NFA structure of

different data block types based on the frequency

and the sequence order of data attributes and

generates a specific number of candidate patterns

of data blocks.

It does not integrate the extracted data contents

from different websites.

It integrates the extracted data contents about

different data tuples (product, list, text) from

different websites using the data warehouse.

It extracts data contents from only list product

web pages.

It extracts data contents from both list and

detailed product web pages.

It uses only the htmlcleaner-2.2 to clean the web

page before build the DOM-tree.

It uses the htmlcleaner-2.2 and new cleaner

procedure to clean the comments, scripts, style

sheets, and metadata inside the webpage.

It uses the concepts of level and non-level data

blocks definitions to identify data blocks during

traversing the DOM-Tree which is a very costly

process that requires checking every tag node in

DOM-Tree.

It proposes a new definition for both data block

and data region and proposes a new efficient

similarity matching technique of DOM-Tree tag

nodes to locate the data blocks and data regions.

It stores the extracted data contents in relational

database (RDB) which is neither historical nor

object-oriented.

It stores the extracted data contents in object-

oriented data warehouse (OODWH) which is

more appropriate and beneficial due to the nature

of the extracted data contents.

Table 4: Comparative analysis between WebOMiner-2 and WebOMiner-3.

4.2 Empirical Evaluations

We have tested our system WebOMiner-3 system so far on four websites in the domain of B2C

(e.g., Bestbuy.com, Homedepto.com, Shopxscargo.com, Factorydirect.com) and compare it with the

result given by (Harunorrashid, 2012) for the same four websites. WebOMiner is implemented in Java

programming language. We then run our system using 64-bit Windows 7 operating system at Intel core

i5 3.1 GHz, 4 GB RAM Dell machine for each of the these four websites for empirical evaluation of

our WebOMiner-3. We use the standard precision and recall and error rate measures to evaluate

101

WebOMiner-3 compare to WebOMiner and WebOMiner-2. Recall is computed as the average

percentage of total number of correct retrieved data tuples by the total number of existing data tuples

in the web page as shown in formula 1 below. Precision is computed as the average percentage of total

number of correct retrieved data tuples by the total number of retrieved data tuples in the web page as

shown in formula 2 below. Error rate is measured as the percentage number of failed data tuples by the

total number of existing data tuples in the web page as shown in formula 3 below.

 ….………………Formula 1

 ………………… Formula 2

 ..….…………… Formula 3

The comparative result between our system and WebOMiner and WebOMiner-2 is tabulated in table 5

below:

Table 5: Experimental results showing extraction of data records from web pages.

Recall =

Precision =

Error Rate =

102

4.3 Experimental Results

The main purpose of experimental results is to measure the performance of WebOMiner-3

system. Table 5 shows the results of WebOminer-3 system measured by recall, precision and error

rate. We have taken one page of each website for experiment and data records in columns show

different types of data records. Total column represents the total number of data records in the given

web page. WebOMiner-3 is able to extract different types of data records from different websites

correctly with recall 79% and precision 100%. WebOMiner-3 failed to extract 39 out of 183 are

existed in four web pages from different websites and achieved low recall value due to the tag nodes

patterns of data blocks similarity matching technique which WebOMiner-3 uses to identify and extract

data blocks from DOM-Tree. The new tag nodes similarity technique matches the tag nodes string

patterns of data blocks based on the exact matching of patterns to identify the similar data blocks, so

the WebOMiner-3 does not take into the consideration any degree of similarity between the data

blocks and may lose some similar (not matched) data blocks. Figure 67 shows the recall of

WebOminer-3 system for each website has been targeted in the experiments.

Figure 67: WebOMiner-3 Recall.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bestbuy.com Homedepto Shopxscargo Factorydirect

R
e

ca
ll

WebOMiner-3 Recall

WebOMiner-3

103

As shown in figure 67 that the WebOMiner-3 has better recall in all the websites which were included

in the experiments except (Shopxscargo)’s website. For the (Bestbuy) website the recall for

WebOMiner-3 is 91%. For the (Homedepto) website the recall for WebOMiner-3 is 80%. For

(Shopxscargo) the recall for WebOMiner-3 is 87%. For the (Factorydirect) website the recall for

WebOMiner-3 is 60%. Figure 68 shows the error rate of WebOMiner-3 in each website of the

experiments. As shown in figure 68, for the (Bestbuy) website the error rate is 8%. For the

(Homedepto) website the error rate for WebOMiner-3 is 20. For (Shopxscargo) the error rate for

WebOMiner-3 is 13%. For the (Factorydirect) website the error rate for is 39%.

Figure 68: Error rate of WebOMiner-3.

Figure 69 shows the execution time of WebOMiner-3 for each individual website is involved in the

experiments. The execution time includes the extraction process starting from the crawling step until

the data records are inserted in the OODWH. The results shown that the average execution time of

WebOMiner-3 is 21.8 seconds. As shown in figure 69 that the execution time of WebOMiner-3 to

extract data tuples from (CompUSA)’s website is 29 seconds, 23 seconds for (Bestbuy), 17 seconds for

(Homedepto), 11 seconds for (Shopxscargo), and 29 seconds for (Factorydirect)’s website. Actually,

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Bestbuy.com Homedepto Shopxscargo Factorydirect

E

r

r

o

r

R

a

t

e

WebOMiner-3 - Error Rate

WebOMiner-3

104

the execution time results of WebOMiner-3 is reasonable and gives a positive pointer to the good

performance of the system.

Figure 69: Execution time of WebOMiner-3 different websites.

CHAPTER 5 - Conclusion and Future Work

This thesis extends the work by Mutsuddy (2012); Ezeife and Mutsuddy (2013) and

Harunorrashid (2012), to automate the extraction process of structured data records from list and

detailed web pages in the domain of B2C websites, and store the extracted data tuples in historical

object-oriented data warehouse for comparative shopping and eservices. The new version of the

extraction system is called WebOMiner-3 and consists of five compatible modules: crawler, cleaner,

extractor, frequent objects mining, and object-oriented data warehouse and integration modules. We

introduced a new automatic technique based on the tag nodes similarity to extract data contents from

DOM-Tree and mine these contents to build the NFA structure for each data record type to identify the

extracted data tuples and store them in the correct position in object-oriented data warehouse

(OODWH). The generated NFA structure helps to identify the basic structure of data warehouse which

stores information about structured data tuples from different web pages in historical manner. The

crawler module takes the URL of the intended web page to extract data records from it and downloads

105

the page into the local machine; the cleaner module cleans all the comments, style and java script

contents from the page. The extractor module represents the web page as DOM-Tree logical structure

and then extracts the tag nodes from the tree based on our technique tag nodes similarity matching and

store all the extracted data contents in array data structure. The frequent object mining module

automatically builds the NFA structure for each data record type based on the frequency and sequence

of data objects of data tuples. The object-oriented data warehouse module builds the structure of the

data warehouse and inserts the data tuples from contents array into the right tables of data warehouse.

The experiment results shown that WebOMiner-3 behaved well. The results were measured in terms of

recall, precision and error rate. The results show that the recall of WebOMiner-3 is 79% and the

precision is equal to 100%. The error rate for WebOMiner-3 equals to 21%.

5.1 Future Work

Although the improvements which WebOMiner-3 has done over the previous two systems

WebOMiner and WebOMiner-2 in the field of object-oriented web contents mining, still there are

some improvements that can be done to improve the accuracy and the performance of WebOMiner-3.

Actually, the WebOMiner-3 still needs more modifications on the cleaner module to clean the contents

of web page before the extraction process starts which will have positive effect on the accuracy of the

system. Also the extraction module needs more optimized comparison technique based on the

similarity rather than the exact matching between the string patterns of data blocks to identify them.

Any similarity technique can be used to compare the tag nodes of DOM-Tree to correctly identify

deeper data records inside the webpage and increase the accuracy of the extraction process which will

increase the recall of WebOminer-3 system. There is a big room for the improvements of object-

oriented data warehouse and integration module. The concept of object-oriented needs to be fully

applied and takes more advantages of it. Finally, many of data mining techniques such as

106

classification, frequent patterns and association rules can be applied on the OODWH to benefit the e-

market and conclude future decisions.

107

REFERENCES

1. Agrawal R., and R. Srikant: (1995) Mining sequential patterns. In Proceedings of the 11th

International Conference on Data Engineering, pp. 3–14.

2. Annoni, E. and Ezeife, C. (2009). Modeling web documents as objects for automatic web

content extraction object-oriented web data model. In Proceedings of the International

Conference on Enterprise Information Systems. pp. 91- 100, May 6-10, Milan, Italy.

3. Arocena, G. and Mendelzon, A. (1998). WebOQL: Restructuring documents, databases and

webs. Proceedings of the 14th IEEE International Conference on Data Engineering (ICDE),

pp. 24-33, Orlando, Florida.

4. Baumgartner, R., Flesca, S., and Gottlob, G. (2001). Visual web information extraction with

lixto. In Proceedings of the 27th International Conference on Very Large Data Bases.

VLDB'01. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 119-128.

5. Borges, J. and Levene, M. (1999). Data mining of user navigation patterns. In Proceedings of

the WBBKDD'99 Workshop on Web Usage Analysis and User Profiling, August 15,

1999, San Diego, CA, USA, pp. 31-36.

6. Bornhvd, C. and Buchmann, A. (1999). A prototype for metadata-based integration of internet

sources. In Advanced Information Systems Engineering, M. Jarke and A. Oberweis, Eds.

Lecture Notes in Computer Science, vol. 1626. Springer Berlin / Heidelberg, 439-445.

7. Buchner, A. G. and Mulvenna, M. D. (1998). Discovering internet marketing intelligence

through online analytical web usage mining. SIGMOD Rec. Vol.27, No.4, 54-61.

8. Chang, C.H., and Lui, S.C. (2001). IEPAD: information extraction based on pattern discovery.

Proceedings of the 10th Int’l Conf. World Wide Web (WWW), pp. 223-231.

9. Chowdhury, G. (2010). Introduction to Modern Information Retrieval, Third Edition, 3rd ed.

Facet Publishing.

10. Crescenzi, V., Mecca, G., and Merialdo, P. (2002). ROADRUNNER: automatic data

extraction from data-intensive web sites. In Proceedings of the 2002 ACM SIGMOD

international conference on Management of data. NY, USA, pp. 624-624.

11. Demner-Fushman, D. (2006). Complex question answering based on a semantic domain model

of clinical medicine. Ph.D. thesis, University of Maryland at College Park.

12. Ezeife, C.I., and Mutsuddy, T. (2013). Towards comparative mining of web document objects

with NFA: WebOMiner system, to appear in the International Journal of Data Warehousing

and Mining (IJDWM), a 2013 volume.

108

13. Etzioni, O. (1996). The world-wide web: quagmire or gold mine? Commun. ACM 39, 11, 65-

68.

14. Ezeife, C. I. and Zhang, D. (2009). Tidfp: Mining frequent patterns in different databases with

transaction id. In Proceedings of the 11th International Conference on Data Warehousing and

Knowledge Discovery. DaWaK '09. Springer-Verlag, Berlin, Heidelberg, pp. 125-137.

15. Gupta, S., Kaiser, G., and Stolfo, S. (2005). Extracting context to improve accuracy for html

content extraction. In Special interest tracks and posters of the 14th international conference

on World Wide Web. WWW '05. ACM, NY, USA, pp. 1114-1115.

16. Hammer, J., Garcia-Molina, H., Cho, J., Aranha, R., and Crespo, A. (1997). Extracting semi

structured information from the web. Technical Report 1997-38, Stanford InfoLab.

17. Han, J. and Kamber, M. (2000). Data mining: concepts and techniques. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA.

18. Harunorrashid, M. (2012). Mining multiple web sources using finite state automata. Master’s

thesis, School of Computer Science, University of Windsor.

19. H.Inmon, W. (2005). Building the data warehouse. Addison-Wesley, Reading, Mass.

20. Hsu,C.N. and Dung,M.T. (1998). Generating finite-state transducers for semi-structured data

extraction from the Web. Information Systems, Volume 23, Issue 8, pp. 521-538.

21. Kao, A. and Poteet, S. (2005). Text mining and natural language processing: introduction for

the special issue. SIGKDD Explor. Newsl. 7, 1 (June), 1-2.

22. Kemper, A., and Moerkotte G.(1994). Object-oriented database management. Published by

Prentice-Hall Inc, ISBN: 0-13-629239-9.

23. Kim, W. (1990). Object-oriented databases: definition and research directions. Knowledge and

Data Engineering, IEEE Transactions on 2, 3 (sep), 327-341.

24. Kosala, R. and Blockeel, H. (2000). Web mining research: a survey. SIGKDD Explor. Newsl.

2, 1-15.

25. Kushmerick, N., Weld, D., and Doorenbos, R. (1997). Wrapper induction for information

extraction. Proceedings of the Fifteenth International Conference on Artificial Intelligence

(IJCAI), pp. 729-735.

26. Laender, A. H. F., Ribeiro-Neto, B., and da Silva, A. S. (2002). Debye - date extraction by

example. Data Knowl. Eng. 40, 2 (Feb.), 121-154.

109

27. Laender, A. H. F., Ribeiro-Neto, B. A., da Silva, A. S., and Teixeira, J. S. (2002). A brief

survey of web data extraction tools. SIGMOD Rec. 31, 84-93.

28. Levering, R. and Cutler, M. (2006). The portrait of a common html web page. In Proceedings

of the 2006 ACM symposium on Document engineering. DocEng '06. ACM, NY, USA, pp.

198-204.

29. Li, J. and Ezeife, C. (2006). Cleaning web pages for effective web content mining. In

proceedings of the 17th International Conference on Databases and Expert Systems

Applications, DEXA 2006, Krakow, Polland, Sept 4-8, published in LNCS, pp. 560-571,

Springer Verlag.

30. Li, Z. and Ng, W. K. (2004). Wiccap: from semi-structured data to structured data. In

proceeding of 11th IEEE international conference and workshop on Engineering and

Computer based Systems. Brno, Czech Republic, May 24-27: pp. 86-93.

31. Liu, B. (2006). Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data (Data-

Centric Systems and Applications). Springer-Verlag New York, Inc., Secaucus, NJ, USA.

32. Liu, B., Grossman, R., and Zhai, Y. (2003). Mining data records in web pages. In Proceedings

of the ninth ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. KDD '03. ACM, NY, USA, pp. 601-606.

33. Liu, B. and Zhai, Y. (2005). Net a system for extracting web data from at and nested data

records. In Web Information Systems Engineering WISE 2005, vol. 3806. Springer Berlin /

Heidelberg, 487-495.

34. Liu, L., Pu, C., and Han, W. (2000). XWRAP: an XML-enabled wrapper construction system

for web information sources. Data Engineering, 2000. Proceedings 16th international

conference on , Vol., No., pp.611-621.

35. Madria, S., Bhowmick, S., Ng, W., and Lim, E. (1999). Research issues in web data mining. In

Data Warehousing and Knowledge Discovery. Lecture Notes in Computer Science, vol. 1676.

Springer Berlin / Heidelberg, pp. 805-805.

36. Morrison, D. R. (1968). Patricia practical algorithm to retrieve information coded in

alphanumeric. J. ACM 15, 4 (Oct.), pp. 514-534.

37. Muslea, I., Minton, S., and Knoblock, C. (1999). A hierarchical approach to wrapper

induction. In Proceedings of the third annual conference on Autonomous Agents. AGENTS

'99. ACM, NY, USA, pp. 190-197.

38. Mutsuddy, T. (2010). Towards comparative web content mining using object oriented Model.

Master’s thesis, School of Computer Science, University of Windsor.

110

39. Oh, J., Lee, J., Kote, S., and Bandi, B. (2003). Multimedia data mining framework for raw

video sequences. Lecture Notes in Computer Science, vol. 2797. Springer Berlin / Heidelberg,

pp. 18-35.

40. Raposo, J., Pan, A., Alvarez, M., Hidalgo, J., and Vina, A. (2002). The wargo system: semi-

automatic wrapper generation in presence of complex data access modes. In proceedings of

13th International Workshop on Database and Expert Systems Applications. pp. 313-317.

41. Ristad, E. S. and Yianilos, P. N. (1996). Learning string edit distance. Tech. Rep. CS-TR-532-

96, Princeton University, Department of Computer Science.

42. Sahuguet, A. and Azavant, F. (1999). Wysiwyg web wrapper factory (w4f). In proceedings of

Toronto, ON, Canada.

43. Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Comput. Surv.

34, 1 (Mar.), 1-47.

44. Soderland, S.(1999). Learning information extraction rules for semi-structured and free text.

Journal of Machine Learning, 34(1-3): pp. 233-272.

45. Srivastava, J., Cooley, R., Deshpande, M., and Tan, P.-N. (2000). Web usage mining:

discovery and applications of usage patterns from web data. SIGKDD Explor. Newsl. 1, 2

(Jan.), pp. 12-23.

46. Zhai, Y. and Liu, B. (2005). Web data extraction based on partial tree alignment. In

Proceedings of the 14th international conference on World Wide Web. WWW '05. ACM,

NY,USA, pp. 76-85.

47. Zhai, Y. and Liu, B. (2007). Extracting Web Data Using Instance-Based Learning. Lecture

notes in computer science, Springer, vol. 10(2) pp. 113-132.

48. Zhang, D. (2011). Mining Multiple Related Tables using Object-Oriented Model. Master’s

thesis, School of Computer Science, University of Windsor.

111

VITA AUCTORIS

NAME: Yanal Alahmad

PLACE OF BIRTH:

Ramtha, Jordan

YEAR OF BIRTH:

1982

EDUCATION:

Al al-Bayt University, B.Sc., Mafreq,

Jordan, 2004

Jordan University of Science and

Technology, M.Sc., Irbid, Jordan, 2007.

University of Windsor, M.Sc., Windsor,

ON, 2012

	Comparative Mining of Multiple Web Data Source Contents with Object Oriented Model
	Recommended Citation

	tmp.1372947483.pdf.MnRgS

