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ABSTRACT 

Semantic neighbourhoods are those clusters of words that have shared or related 

meanings.  They have traditionally been difficult to operationalize because words can be 

related in many different ways. The present study used an operationalization of semantic 

neighbourhoods from a computational model of semantics derived from co-occurrences 

in large bodies of text (Durda & Buchanan, 2008). With this variable, the present study 

examined how young adults (ages 18-25) and older adults (ages 60-80) differ in their 

processing of semantics.  Results reveal that words with rich semantic representations are 

processed faster than words that are less richly represented. However, words with many 

close neighbours were responded to more slowly than words with more dispersed 

neighbourhoods. In a priming experiment, close semantic neighbours led to faster 

processing of words compared to distant semantic neighbours. Young and older adults 

showed similar results on all experiments in terms neighbourhood size, density, and 

priming effects. The results suggest that older adults have intact semantic processing with 

respect to neighbourhood effects and show a similar pattern of performance to young 

adults.  
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CHAPTER 1: 

INTRODUCTION 

Cognitive models of word recognition are often informed by research examining the 

effects of various word characteristics such as semantics, phonological, and orthographic 

features (e.g., Borowsky & Masson, 1996; Coltheart, Davelarr, Johnson, & Besner, 1977; 

Coltheart, Rastle, Perry, Ziegler, & Langdon, 2001; Forster, 1976; Grainger & Jacobs, 

1996; Harm & Seidenberg, 1999; 2004; McClelland & Rumelhart, 1981; Morton, 1969; 

Seidenberg & McClelland, 1989; Plaut, 1997; Plaut & Booth, 2000; Plaut, McClelland, 

Seidenberg, & Patterson, 1996). One means of examining the influence of such 

characteristics is by looking at neighbourhood effects. For example, an orthographic 

neighbour is a word that differs from a target word by one letter (Sears et al., 1995) 

whereas a phonological neighbour is a word that differs by one phoneme (Coltheart et al., 

1977). To illustrate these concepts, the words bike and like are orthographic neighbours 

because they differ by one letter whereas bike and beak are phonological neighbors 

because they differ by one phoneme. Orthographic and phonological neighbourhood 

effects have been relatively well studied (e.g., Andrews, 1997; Forster & Shen, 1996; 

Frost, 1998; Lukatela & Turvey, 2000; Luce & Large, 2001; Luce & Pisoni, 1998, Sears 

et al., 1995; Vitevich & Luce, 1999). However, the structure and influence of semantic 

neighbourhoods (i.e., words that are closely related to a given target word based on their 

meaning) are less well understood. Nonetheless, research in the area of semantic 

influences has increased over the last couple of decades, with results underscoring the 

important contribution of semantics in visual word recognition (e.g., Balota, Cortese, 

Sergent-Marshall, Spieler, & Yap, 2004; Balota, Ferraro, & Connor, 1991; Buchanan, 
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Westbury, & Burgess, 2001; Dunabeitia, Aviles, & Carreiras, 2008; Grondin, Lupker, & 

McRae, 2009; Hino, Lupker, & Pexman, 2002; Locker, Simpson, & Yates, 2003; 

Pexman, Hargreaves, Edwards, Henry, & Goodyear, 2007; Pexman, Hargreaves, 

Siakaluk, Bodner, & Pope, 2008; Pexman & Lupker, 1999; Pexman, Lupker, & Hino, 

2002; Recchia & Jones, 2012; Schvaneveldt, Durso, & Mukherji, 1982; Siakaluk, 

Buchanan, & Westbury, 2003; Strain, Patterson, & Seidenburg, 2005; Yap, Pexman, 

Wellsby, Hargreaves, & Huff, 2012; Yap, Tan, Pexman, & Hargreaves, 2011; Yates, 

Simpson, & Locker, 2003).   

Semantics is an important aspect of language and the store of general knowledge 

thought to build up over a lifetime (Lund & Burgess, 1996) is commonly referred to as 

semantic memory (Spaan, Raaijmakers, & Jonker, 2003).  Importantly, our knowledge of 

the world is not static and it has been suggested that lifetime experiences with language 

dynamically change and shape the structure of our semantic representations (Burke & 

Shafto, 2008). The age-related changes to the structure and influences of the semantic 

lexicon are therefore important aspects of our understanding of cognitive aging. 

Interestingly, although cognitive changes are reported as a part of the normal aging 

process, research suggests that semantic processing remains relatively stable throughout 

healthy aging (e.g., Burke, Mackay, & James, 2000; Burke & Shafto, 2008; Kemper, 

1992; Thornton & Light, 2006).  This relative stability notwithstanding, semantic 

language deficits, along with other cognitive and neurological symptoms, are widely 

reported in pathological cognitive aging such as neurodegenerative dementias, including 

most prominently Alzheimer’s disease and semantic dementia, a variant of 

frontotemporal dementia (e.g., Caine & Hodges, 2001; Chertkow & Bub, 1990; Hodges 
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& Patterson, 1995; Lambon et al., 2001; Perry & Hodges, 1999; Rabinovici & Miller, 

2010). Examining the subtle changes in semantic structure and processes that may occur 

in healthy aging is therefore an important undertaking as it contextualizes the more 

pathological changes that occur with dementia.  

This review has two main sections. The first section describes the role and the 

arrangement of the semantic lexicon within relevant models of visual word recognition 

and outlines the semantic effects that such models must accommodate.  The second 

section of the review describes age effects in semantic language processes including 

general semantic abilities related to vocabulary and word associations, semantic priming 

effects and semantic richness in aging. To provide a context for aging and language 

changes, models of cognitive aging are presented with a focus on how they relate to 

semantic processing.  

The experimental series that follows the review examines semantic 

neighbourhood effects with young and older adults in order to extend our knowledge of 

how semantics impacts the word recognition process and how that occurs in the context 

of aging.  

Semantics 

Semantics and Models of Visual Word Recognition 

The mental lexicon is a mental storehouse of all knowledge acquired about words 

including orthographic (visual), phonological (auditory), and semantic (meaning) 

properties. Interest in semantics has grown considerably within the past decade, with 

findings demonstrating the impact of semantic processing on visual and auditory word 

recognition (e.g., Buchanan et al., 2001; Locker et al., 2003; Pexman, et al., 2008; 
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Pexman & Lupker, 1999; Pexman, Lupker, & Hino, 2002; Rodd, Gaskell, & Marslen-

Wilson, 2002; Strain, Patterson, & Seidenburg, 1995; Wurm, Vakoch, & Seaman, 2004; 

Yates et al., 2003). Similar to findings for other word properties (orthography and 

phonology) words that are closely related to many other words based on their meaning 

are thought to be processed more quickly than words with few semantic neighbours 

(Buchanan et al., 2001, Pexman et al., 2007; Plaut & Shallice, 1993). This section 

reviews models of visual word recognition with an emphasis on semantic processing.  

 In Morton’s (1969) threshold activation model, each unit of meaning is divided 

into units called “logogens”. These logogens are composed of information related to a 

word including visual, auditory, and semantic properties of the word. Logogens behave 

like detectors, gathering evidence from input units within the sensory system. Once a 

certain amount of evidence has been accumulated (through visual or auditory activation), 

a threshold is reached and a logogen’s meaning is activated, thus allowing a response. A 

logogen’s basic resting level of activation may vary according to several factors, such as 

word frequency and context (Morton, 1969).  For example, frequency effects occur as 

each logogen has a resting activation level that is proportional to its frequency within a 

language (Coltheart et al., 2001). Thus, low frequency words need greater activation to 

reach threshold than their high frequency counterparts.  

In terms of semantics, when a word occurs without contextual information, its 

semantic content only becomes activated once activation of the logogen itself has reached 

threshold. Therefore, in this model, with identification occurring prior to semantic 

activation, it is not possible for the semantic content of a word to play a role in the visual 

word identification process.  
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 Unlike the logogen model, Forster’s serial search model (1976) is not a threshold 

model but assumes a matching processing between incoming information about a word 

and knowledge of words already stored. According to this model, incoming information, 

in either orthographic or phonological form, is grouped into bins based on similar 

descriptions. These bins are ordered by frequency, with higher frequency words 

appearing first in the bin. Words are then compared to a master file, containing all 

information in the mental lexicon. When a sufficient match is made between the lexical 

entry and the master file, word recognition occurs. Therefore, the search process is akin 

to the structure of a library search (Forster, 1976). The serial search model is similar to 

the logogen model in that it assumes that semantic information becomes activated only 

after access to the word has occurred (Rodd, 2004). 

The Interactive Activation Model (IAC) proposed by McClelland and Rumelhart 

(1981) consists of three distinct layers of activation related to visual word perception. 

Activation first occurs at the feature level, then spreads to the letter level, which finally 

causes activation at the word level. In this view activation spreads automatically to other 

levels in a cascaded process and this occurs before the lexical representation is fully 

activated. For example, activation at the feature level will automatically spread activation 

to the letter level. Another key feature of the IAC model is the interactive component. 

This component proposes that “bottom-up” activation from sensory information interacts 

with “top-down” activation from higher order levels of processing to constrain and 

determine perception (McClelland & Rumelhart, 1981).  In other words, activation at the 

letter level receives activation from “bottom-up” connections (the feature level) at the 

same time as it receives activation from “top-down” connections (the word level). The 
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activation of words or “nodes” occurs through a combination of excitatory and inhibitory 

connections.   

To accommodate demonstrations of pre-lexical semantic influences on word 

recognition researchers have proposed modifications to some of the above models (e.g., 

Balota et al., 1991; Forster & Hector, 2002). Forster and Hector (2002) suggest that 

selection of a candidate does not involve activation of semantic features, but rather is 

influenced by a network of semantic associates that occur between a specific lexical entry 

and previously established semantic connections. In this way, the check is akin to 

referencing  “a thesaurus” that provides some information about category membership 

but does not activate full semantic features (Forster & Hector, 2002).      

Balota et al. (1991) further proposed a modification to the IAC model, in which a 

meaning-level unit is added to the system. This meaning-level unit is added to the 

previous model as a fourth level of activation. With this addition to the model, activation 

is spread first from the feature level to the letter level, the letter level to the word level, 

and finally word level to the meaning-level. In keeping with the IAC model, the “bottom-

up” driving force of activation spreads in a continuous flow through the units. Once 

activated, semantic-level units can activate word-level units through feedback 

connections. In the case of a lexical decision task, the semantic meaning level provides 

feedback to the orthographic level, which then increases the activation at the orthographic 

level. Because the orthographic level is the level at which word recognition occurs, this 

increased activation may then allow for faster recognition of the word item.  The authors 

propose that more meaning may provide an extra source of activation through a feedback 

“top-down” process. Thus, Balota et al. (1991) suggest the possibility of a “more-means-
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better” approach to semantics: stronger meaning representations provide for greater 

facilitation for word recognition. According to this modification, more semantic 

neighbours would therefore increase activation at the semantic level, which feeds down 

to the orthographic level. Facilitation is achieved through this increase in activation at the 

orthographic level, which as previously stated, is necessary for making lexical decisions 

during visual word identification.     

The models presented thus far can all be described as localist models because in 

such architectures word meanings are represented by a single unit. For word recognition 

to occur, a single unit corresponding to the word needs to be activated. However, more 

recent distributed models of word recognition propose a different type of representation 

in visual word recognition (e.g., Borowsky & Masson, 1996; Plaut & McClelland, 1993; 

Plaut, et al., 1996; Rogers & McClelland, 2004; Seidenberg & McClelland, 1989).  

Distributed Models 

Although distributed models may vary considerably, the general principles are as 

follows: Instead of word meaning corresponding to a particular unit, word information is 

represented as patterns of activation across many neuron-like processing units. More 

specifically, during the visual word recognition task, these processing units may be 

orthographic, phonological, and semantic, with interconnections between all three units 

(e.g., Borowsky & Masson, 1996; Seidenberg & McClelland, 1989). The architecture of 

distributed models resembles more of a neural-network pattern with processing occurring 

via propagation of activation over simple processing units. The connections between the 

simple processing units are “hidden” weighted units and these weights determine the 

representation that arises internally. These weighted units are learned and shaped by 
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experience (Rogers & McClelland, 2004). Learning is an important assumption of 

distributed models as a means to model how representations develop. It is emphasized in 

order to examine how children acquire language (e.g., Harm & Seidenberg, 1999), how 

skilled cognitive processes develop and also how degradation can occur in the system 

(e.g., Rogers et al., 2004). For example, Rogers et al. (2004) trained a model of semantics 

based on visual features and verbal descriptors of objects and then simulated lesions in 

the model to examine whether error types were similar to those made by people with 

semantic dementia. The implementation of these distributed models provides a way to 

examine how cognitive processes are acquired, become skilled, and mature or decline. 

Connections between the units can be competitive or cooperative. Each time the 

units are activated, a reconstruction of internal representations occurs through a “filling 

in” process. Knowledge is reconstructed when propagation occurs over a certain pattern 

of activation (Rogers & McClelland, 2004). During visual word recognition, incoming 

information through orthography activates hidden weighted units, which in turn activate 

semantic units and phonological units (Harm & Seidenberg, 2004). Due to the dynamic 

nature of the model, interconnected units serve to constrain each other. Activation 

eventually settles into a distributed pattern over time. The meaning that is computed is 

the one that satisfies the most constraints between the units in the network (Harm & 

Seidenberg, 2004). 

Findings of facilitation in lexical decision tasks for words with multiple meanings 

(polysemous words; e.g., bank), has led to an interactive distributed feedback model to 

account for such findings in word recognition (e.g., Hino & Lupker, 1996; Pexman & 

Lupker, 1999). This model has also been suggested as an explanation for the findings of 
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the impact of semantics on word recognition (Yates et al., 2003). In a distributed model 

of this type, connections between orthography, phonology, and semantics are interactive 

and bidirectional.  

These bidirectional connections allow for a cascade of activation. Models that rely 

on cascaded processing assume activation is spread throughout the system automatically, 

and therefore allow the possibility of semantic influences on word recognition, before the 

stimulus has been fully recognized (Coltheart et al., 2001; McClelland & Rumelhart, 

1981; Plaut, et al., 1996). For example, a person may read the letters “spli” that begin a 

word, and activate word meanings such as “split” or “splinter” providing semantic 

feedback to the word recognition process, before the word gains complete lexical access 

and is recognized.  

Lexical decisions are made primarily based on activation in the orthographic units 

(Pexman & Lupker, 1999) with responses made once settling occurs in the orthographic 

units. Settling refers to the process where as many as possible constraints are satisfied 

between the phonological, orthographic, and semantic connections to find the appropriate 

solution. The amount of time it takes for settling can vary, and semantics may play a role 

in this model by influencing the settling process (e.g., Pexman & Lupker, 1999; Yates et 

al., 2003). According to Yates et al. (2003), when words have large semantic 

neighbourhoods, they are likely to be more richly represented at the semantic level. 

During visual word recognition, activation spreads to the semantic units. If words have 

richer semantic representations the pattern of activation in semantics will be stronger and 

more enhanced. This stronger activation will then feed back to orthography to allow the 
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orthographic units to reach a stabilization point more quickly resulting in a facilitatory 

effect during lexical decision (Yates et al., 2003).   

In sum, the presumed role of semantics within models of visual word recognition 

varies considerably. In localist models, the original assumption regarding semantics was 

that activation only happened once full lexical access had occurred and as a result 

semantics could not affect the word recognition process. In contrast, interactive models 

have provided a way to accommodate semantic neighbourhood influences on word 

recognition through spread of activation and feedback (Balota et al., 1991; Hino & 

Lupker, 1996). Distributed models, propose a similar feedback mechanism as means for 

semantic influence despite a different underlying mechanism. Semantic neighbourhoods 

may influence the rate of settling due to richer representations providing stronger 

feedback to orthographic units which are used when making lexical decisions (Yates et 

al., 2003).  

Semantic Processing 

Semantic processing is the way in which semantic information is transmitted and 

communicated. The following review focuses on semantic activation and its transmission. 

Quillian’s original theory (1969) of semantic processing described concepts (e.g., 

words) as being represented as nodes with relational links to other concept nodes. 

Memory searches resulted in “tagging” related conceptual nodes that would, in turn, 

“tag” other related nodes. The architecture of a taxonomic hierarchy provided a way to 

store and retrieve semantic information. For example, activation of the word canary 

would spread to the superordinate category of bird, which would then spread to concepts 

or attributes related to birds. Although several types of relational links were 
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hypothesized, words that were more related were proposed to have stronger links 

between them.  

Building on semantic processing experiments, Collins and Loftus (1975) 

expanded Quillian’s (1969) theory with their automatic spreading activation hypothesis. 

This theory posits that a word automatically causes a spreading of activation throughout 

the semantic system activating a related concept node (Collins & Loftus, 1975).  One 

extension of their original theory is that the spreading of activation occurs as a decreasing 

gradient, losing strength over time. Another extension is the assumption that concepts are 

organized by semantic similarity: The more properties words have in common, the more 

closely they will be linked in the network. For example, fire engine will prime vehicle, 

which will, in turn, prime ambulance and bus.  

In the case of semantic priming, when a prime is presented, activation spreads to 

semantically related words causing them to be above resting level (Collins & Loftus, 

1975). This higher resting level means less visual encoding and processing resources are 

needed in order to recognize the word. The amount of activation necessary for 

recognition is reduced, and activation is facilitated for a related word. 

In sum, although the mechanisms for semantic processing differ based on 

theoretical orientation, one general commonality is that once semantic activation occurs, 

there is automatic activation of semantically related concepts. However, the structure and 

organization of semantic space is less well understood. It is difficult to ascertain which 

words or concepts are considered as “related” and which are not, as words may be related 

to each other in many different ways.  

 



  

 

12 

Semantic Neighbourhoods 

In visual word recognition, context or semantic priming has been used to examine 

how people respond to context within sentences, paragraphs, and also as single words 

(e.g., Balota et al., 1991; Balota et al., 2004; Zelinski & Hyde, 1996). There have been a 

variety of outcome measures to examine this processing, the majority of which examine 

response times. In the lexical decision task, participants are shown either a real word or a 

non-word, and are asked to make a decision about whether it is a real English word 

(Rubenstein, Garfield, & Millikan, 1970). Furthermore, they are asked to make this 

decision as quickly as possible. In a word naming task, participants are required to read 

the presented word aloud as quickly as possible. In a semantic categorization task, 

participants are shown words that either belong to a certain category, or do not, and are 

asked to decide whether a particular word is part of that category (e.g., is an animal).  

Generally, large orthographic neighbourhoods have a facilitative effect on 

reaction times, possibly due to global activation and feedback from multiple neighbours 

(Grainger & Jacobs, 1996). Prior research has demonstrated that words with many 

orthographic neighbours are responded to more quickly in lexical decision and semantic 

organization tasks (e.g., Andrews, 1997; Forster & Shen, 1996; Sears et al., 1995). 

However, this is not always the case for phonological neighbourhoods. When examining 

spoken word production, close phonological neighbours have actually created an 

inhibitory effect with a slowed reaction time (e.g., Luce & Pisoni, 1998).  Therefore, 

neighbourhood effects have been shown to be both facilitative and inhibitory for different 

word characteristics. 



  13 

Less is known regarding semantic lexical arrangement than about its phonological 

or orthographic counterparts. One reason is that unlike orthography and phonology, 

words related to each other based on meaning have considerably more variability 

(Buchanan et al., 2001). Buchanan et al. propose that at one extreme this may mean that 

semantic organization is completely unique to each individual and therefore cannot be 

defined beyond the individual level. At the other end, it may mean that semantics has a 

large and variable structure but it also has many shared characteristics. Buchanan et al.’s 

(2001) approach is midway between the extremes with the assumption that although 

individual variability exists in semantics, there are nonetheless organizational influences 

that define the structure of semantic space.  

There have been many ways that the organization of semantic space is said to 

occur. Early categorization based models (Collins & Quillian, 1969) proposed that 

semantic organization followed a taxonomic structure based on a hierarchy. Over time, 

there have been many additions to the dimensions of semantics. Contextual dispersion, 

which examines the number of times words appear in different content areas, is said to 

capture semantic information as words that are more widely distributed across content 

areas are thought to be more richly represented (Pexman et al., 2008). Research has found 

that words that appear in more samples from a corpus (i.e., have greater contextual 

dispersion) facilitate reaction times in lexical decision tasks (Adelman, Brown, & 

Quesada, 2008; Pexman et al., 2008). Furthermore, polysemous words, words with 

multiple meanings that are unrelated (e.g., bank) have shown facilitatory effects in lexical 

decision tasks (e.g., Hino and Lupker, 1996; Hino et al., 2002).  Body-object interaction 

(BOI), which is based on principles of embodied cognition, relates to the ease that an 
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object has in interacting with the human body (Siakaluk et al, 2008). Words high in body-

object interaction have shown facilitation effects in lexical decision and semantic 

categorization tasks due to greater activation of sensorimotor information for high BOI 

words enhancing semantic feedback (Siakaluk et al., 2008; Siakaluk, Pexman, Aguilera, 

Owen, & Sears, 2008).   

 One commonly used measure for representing semantics involves the number of 

features of a word. Feature based models propose that nearness in a semantic system 

reflects the amount of feature overlap between representations, as well as correlations 

between features and the distinctiveness of features related to a concept (McRae, de Sa, 

& Seidenberg, 1997). In this view, neighbourhoods are developed by presenting 

participants with concepts and asking them to give all the features that come to mind 

when they think of that concept (McRae, Cree, & Seidenberg, 2005; Vinson & Vigliocco, 

2008). For example, TIGER and DOG share many features such as “has four legs”, “has 

fur” etc. When a word is activated, its semantic features also become activated through 

automatic spreading of activation. Through the same automatic spreading activation 

principle, these semantic features will activate another word that also has those features 

in common.  For example, TIGER may activate the feature FUR which in turns activates 

the word DOG because it has that feature. Therefore, similarity is based on the number of 

shared features (McRae et al., 2005).  

In contrast to feature-based models, association-based models are organized on 

the basis of associates in language (Dunabeitia et al., 2008). One such model uses word 

association norms in which participants are provided with a word and are asked to name 

the first related word they think of (Nelson, Bennett, & Leibert, 1997; Nelson, McEvoy, 
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& Schreiber, 1994). For example, for the word CAT, responses may include MEOW, 

DOG, WHISKERS, etc. The proportion of participants producing a response to a word is 

then used as the “strength” of connection between two words; responses given more often 

(by more people) are closer associates than words that are given less often (Nelson et al., 

1997).   

An alternative method for generating association values comes from lexical co-

occurrence models derived from a large corpus of text. The number of times pairs of 

words co-occur within large bodies of text is computed and used to determine a measure 

of semantic relatedness (e.g., Durda & Buchanan, 2008; Lund & Burgess, 1996; Shaoul 

& Westbury, 2006; 2010).  One early example of a co-occurrence model is the 

hyperspace analogue to language (HAL; Lund & Burgess, 1996). This model sees words 

or concepts as represented as points or vectors in a multi-dimensional space. Once 

established, relationships between these points are quantified and can be tested through 

distance metrics (Lund & Burgess, 1996). In this model, a large number of words (e.g., 

300 million) are examined using a moving window over 10 words at a time. HAL 

generates co-occurrence values for the words that occur together within this window of 

words. The associative strength is inversely related to the number of words separating 

them. For example, words that are adjacent receive a value of 10, while words that are 

separated by nine other words receive a value of one. A matrix for each word is 

constructed to create a high-dimensional space in which words are represented as vectors. 

Words that have similar vectors are located closer to each other in high-dimensional 

space. Thus, close “neighbours” in semantic space as defined by how often they co-occur, 

are those that are most similar semantically. Words used together in similar lexical 
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contexts that occur close to one another will form clusters of semantic neighbourhoods. 

HAL has been shown to capture semantic (words that have similar meanings; e.g., bed-

table), categorical (words that capture categorical information; e.g., bird-eagle), and 

associative information (words that tend to occur together; e.g., coffee-cup) as well as 

behavioural data (Lund & Burgess, 1996; Lund et al., 1995).  

There is support for the value of lexical co-occurrence models in word recognition 

(e.g. Bodner, & Pope, 2008; Buchanan et al., 2001; Lund & Burgess, 1996; Pexman et 

al., 2003; Siakaluk et al., 2003). However, early models of HAL have been criticized for 

the influence of frequency on both its vector representations and also the distances 

between vectors (e.g., Shaoul & Westbury, 2006).  

This criticism is of concern, as visual word recognition effects are known to be 

quite sensitive to frequency (Durda & Buchanan, 2008). The WINDSORS model of 

lexical co-occurrence (Durda & Buchanan, 2008) is a modification to the HAL model and 

offers an advantage over HAL by controlling for the effects of word frequency, which 

can have a strong influence on word co-occurrence values. The WINDSORS model has 

been shown to capture many aspects of semantic memory, including concept similarity, 

features, and category information (Durda & Buchanan, 2008). Shaoul and Westbury 

(2010) proposed an extension to their model that instead of using a fixed number of 

words to be included as a neighbourhood created a membership threshold which involved 

using a certain threshold by taking the mean and SD for a word to every other word in the 

database with the number of neighbours within that threshold defined as NCOUNT 

(Shaoul & Westbury, 2010). They further defined the mean distance between a word and 

every other word within the defined threshold as average radius of co-occurrence or 
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ARC. However, no such measures exist for the WINDSORS model of lexical co-

occurrence (Durda & Buchanan, 2008).  Experiment 1 of the present study addresses this 

gap. 

Additionally, lexical co-occurrence models examine large bodies of text produced 

by adults across the lifespan and consequently the values derived from them can be 

assumed to reflect sampling across a wide age-range.  In contrast, word association 

norms and feature norms are typically developed by asking university students (e.g., 

Nelson et al., 1994) to name the first meaningful word that comes to mind when reading a 

target word or to name features associated with a word. This may be especially relevant 

for research on semantics and aging as word associates produced by university students, 

composed mainly of young adults, may not be the same as those produced by older adults 

and may not be representative of their semantic networks. Co-occurrence models 

eliminate those effects by examining texts produced by adults of various age ranges.  

To summarize the above, models of the semantic lexicon have historically been 

difficult to create because words may be related by meaning in many different ways 

creating large amounts of variability within models (Buchanan et al., 2001).  Many 

models of semantic space have been proposed based on shared features, number of 

associations produced, contextual dispersion, words with multiple meanings (polysemous 

words), words high in body-object interaction, and computation models of lexical co-

occurrence. These have allowed for a greater examination of how semantics may 

influence the visual word recognition process.  The following describes the results of 

those examinations. 
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Semantic Influences in Visual Word Recognition 

Words that have a high number of semantic features have resulted in faster lexical 

decision and naming times (Pexman et al., 2002). Pexman, Holyk, and Monfils (2003) 

examined how context information might influence the facilitation effects seen for words 

with many semantic features. Participants read sentences where a congruent word was 

presented at the end of the sentences (e.g., After the crash Bob was nervous about getting 

on an airplane), an incongruent word was at the end of the sentences (e.g., When I go 

home from work I tend to travel by airplane), or unrelated word was at the end of the 

sentences (e.g., After a heavy snowfall, Joel has to wear his airplane). When congruent 

sentences were presented, context appeared to constrain processing such that the 

facilitation advantage for words with many semantic features did not occur. Furthermore, 

in a semantic categorization task, when the semantic category provided specific 

contextual information (bird/non-bird) compared to less specific contextual information 

(animal/non-animal), Pexman et al. (2003) found less facilitation for words with many 

features. Therefore, neighbourhood size produces a process-constraining effect that is 

similar to that produced by context.  

Pexman et al. (2007) examined differences in neural activation using fMRI 

measurement during a semantic categorization task. Participants were asked whether a 

presented word was a consumable object (e.g., almonds) by indicating “yes” or “no” on a 

keypad. Results revealed that words with greater semantic richness (more semantic 

neighbours), or more semantic associates, resulted in less overall neural activation, than 

words with few semantic associates. They suggest that faster settling occurs for words 

with richer semantic representations (more neighbours), and more effortful and extensive 
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lexical activation is required for words that are less rich semantically. Enhanced N400 

amplitudes were also seen during EEG recordings for words with many semantic features 

when participants’ ERPs were recorded while performing a lexical decision task 

(Rabovsky, Sommer, & Rahman, 2012). 

Semantic relatedness has been found to impact memory performance (Fernandes, 

Craik, Bialystok, & Krueger, 2007). When participants heard words and were 

simultaneously asked to perform a visual task involving either semantically related 

(compared to unrelated words) during encoding, they later had poorer recall of words. 

Thus competition effects may also emerge for words that are more similar in meaning 

than unrelated words during learning trials. 

Although there are many ways of measuring semantic neighbourhood size or 

semantic richness, it appears that words with larger semantic neighbourhoods result in 

faster processing than words with smaller semantic neighbourhoods (e.g., Buchanan et 

al., 2001; Pexman et al., 2008; Siakaluk et al., 2003; Yap et al., 2011; Yap et al., 2012; 

Yates et al., 2003). The effect of semantic neighbourhood size or semantic richness was 

found even after other word characteristics were controlled (e.g., Balota et al., 2004; 

Buchanan et al., 2001).  

Buchanan et al. (2001) examined two forms of language-based theories of 

semantic representation, association norms and lexical co-occurrence models, to see 

which captured greater variability in response times. Similarity within the semantic 

lexicon for the association norms was measured by taking the number of associates 

produced for a given word (Nelson et al., 1994). Recall that association norms are 

derived by asking participants to read a word, and respond with the first meaningfully 
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related word that comes to mind. For the lexical co-occurrence model, words that are 

more closely related based on meaning are closer together in high-dimensional space. 

Semantic distance was measured using the HAL (Lund & Burgess, 1996) model by 

computing the average distance from a word to its 10 closest neighbours. The lower the 

semantic distance number, the more semantic neighbours a word has within a specified 

area. In a hierarchical regression, word characteristics of log frequency, orthographic 

neighbourhood size, word length, number of associates, and semantic distance were 

examined. Results reveal that both semantic distance and number of semantic associates 

impacts lexical decision times, although semantic distance effects were more robust. 

Additionally, their results revealed that the greater the mean distance from a word to its 

10 closest neighbours, the greater the lexical decision time. In sum, close semantic 

neighbourhoods facilitate word processing (Buchanan et al., 2001).  

To further extend these findings, Siakaluk et al. (2003) manipulated semantic 

distance by creating low and high semantic distance groups formed by examining the 

mean distance between a word and its 10 closest neighbours. Two forms of semantic 

categorization tasks were given: a yes/no task, asking participants if the word is an 

animal name, and a go/no-go task, in which participants only respond to non-animal 

words. This was done in order to examine the effects of semantic distance on tasks that 

requires the meaning of a word be activated before making a decision, that is to say, 

complete lexical selection must take place. Overall, the findings indicated that semantic 

distance (mean distance from a word to its 10 closest neighbours) impacts word 

recognition in a categorization task that entails complete lexical processing of a stimulus. 
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Yates et al. (2003) examined the effect of semantic size using the number of 

words produced in a word association task (Nelson, Schreiber & McEvoy, 1992) as a 

measure of semantic neighbourhood size. In a lexical decision task, facilitation was found 

for words with larger semantic neighbourhoods. They further examined the effect of 

semantic neighbourhood size by using a pseudohomophone task. A pseudohomophone is 

a non-word that sounds like a real word but its spelling is not orthographically correct 

(e.g., nale). When participants made lexical decisions about pseudohomophones, words 

with larger semantic neighbourhoods took longer to reject as real words than those with 

smaller semantic neighbourhoods (Yates et al., 2003). The authors propose that semantic 

activation occurs for the word nail when nale is viewed. If nail is part of a large semantic 

neighbourhood, feedback is increased to the orthographic level, with additional feedback 

from the phonology level, which makes it appear more “word-like”, and takes longer to 

reject as a non-word.  

The increased interest in semantics has led to many different representations of 

semantic richness and models of semantic space. In an examination of these multiple 

measures of semantics, Pexman et al. (2008) compared number of semantic neighbours 

(through WINDSORS norms), number of semantic features, and context dispersion (how 

often words appear in a number of different content areas). Results indicate that number 

of semantic neighbours was significantly related to lexical decision reaction time while 

number of semantic features and context dispersion were related to both lexical decision 

time and a semantic categorization task. Thus they report that semantic richness can be 

defined in many different ways and each of the three measures of semantic richness had 

unique relationships with different variables. As part of an extension of this work, Yap et 
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al. (2011) included a measure of semantic richness, number of semantic associates (i.e., 

the number of distinct first associates produced for a word in a free association task), 

word ambiguity (the number of senses for a given word) and used a different lexical co-

occurrence model to estimate number of semantic neighbours (mean semantic similarity 

5000; MSS-5000; Shaoul & Westbury, 2010). Three outcome variables were examined: 

speeded pronunciation, lexical decision, and semantic categorization. In a regression 

model, their results indicated that the MSS-5000 variable influenced reaction time in a 

lexical decision task but not speeded pronunciation or semantic categorization. Number 

of features and context dispersion accounted for unique variance for all three tasks while 

number of senses was not related to performance on a speeded pronunciation. 

Interestingly, number of associates was not related to performance on any of the three 

tasks.  

In the most recent extension of this work, Yap et al. (2012) conducted a 

comprehensive comparison of measures of semantic association or richness. Similar to 

past research, their results support the influence of semantic richness on various word 

recognition tasks including lexical decision, speeded pronunciation, semantic 

categorization, and progressive demasking (Yap et al., 2012). Two richness variables 

showed the most reliable effects across tasks (imageability and number of features). They 

further found that several measures showed task-specificity including semantic density. 

Semantic density was based on average radius of co-occurrence values (ARC) from 

Shaoul & Westbury (2010) and showed effects in lexical decision tasks but not in other 

tasks, including semantic categorization. This is similar to semantic density findings by 

Pexman et al., (2008) and Yap et al., (2011). However, with regards to semantic density, 
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the authors questioned whether their results may have been influenced by competing 

facilitation and inhibitory effects associated with close and distant neighbours. It was 

postulated that this may be a reason for the non-effect seen in a semantic categorization 

task (Yap et al., 2012). 

As part of an examination of the effects of close and distant neighbours, Mirman 

and Magnuson (2008) studied the effect of the spread of semantic neighbourhoods in an 

investigation of the effectiveness of several models of semantic representation contrasting 

feature, association-based, and computational models. The authors discovered that in 

some cases semantic neighbourhood size had an inhibitory effect on speed in a 

categorization task, while in other cases it was facilitatory. Furthermore, when words had 

many near neighbours as compared to many distant neighbours, the results were 

inhibitory. Mirman and Magnuson (2008) argue that near neighbours delay processing, 

because they act as competitors while distant neighbours create a gradient that increases 

settling for the correct word. These results indicate that competition and facilitation 

effects emerge depending on the number of close and distant neighbours. However, 

research into this area is sparse and a greater understanding of the impact of close and 

distant neighbours may provide greater insight into the effect of lexical associates across 

task performance, particularly for lexical decision and semantic categorization tasks. 

The preceding studies suggest that semantics has a significant impact on the word 

recognition process. Thus, the concept of semantic richness, measured in a number of 

different ways, most prominently in features, associations, and through lexical co-

occurrences, has been shown to impact word recognition. Semantics in healthy older 

adults provides a unique opportunity to examine how meaning within language is 
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impacted by adulthood and aging. The following sections examine the process of 

cognitive aging and include more specifically language and aging with a review of 

relevant models of cognitive aging.   

Aging and Cognition 

Research in the area of aging and cognition suggests that as we age cognitive 

abilities begin a gradual decline that occurs in some cases beginning in early adulthood; 

declines are seen behaviourally across a wide variety of cognitive abilities (Craik & 

Salthouse, 2008; Park, 2002; Park & Gutchess, 2005; Salthouse 1996; Schaie, 1994; 

2005). In terms of memory abilities, Rabinowitz, Craik, & Ferguson, (1982) theorized 

that inadequate processing resources were the mechanisms behind poor memory 

performance in the form of declining attentional resources. Salthouse (1993; 1996) 

further suggested a more generalized explanation of poorer cognitive abilities with aging. 

He proposed that as people age there is general slowing, a reduction in processing speed 

which constrains other cognitive abilities reliant on this process and, in turn, also limits 

the amount of information that can be processed at any given time (Salthouse, 1996).  

Reductions in working memory capabilities have also been proposed as an 

underlying mechanism; working memory involves the ability to hold information online, 

process, and manipulate it. It has been proposed as an important construct in the 

explanation of age related variance in performance, especially during more effortful tasks 

(Park et al., 1996). Another function, proposed as part of the general rubric of executive 

functioning, that is thought to have an impact on older adults is a decline in inhibition 

(Hasher & Zacks, 1988; Zacks & Hasher, 1997). The authors argue that older adults are 
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less able to inhibit irrelevant information, which interferes with directive attention and 

cognitive processing.  

More recently, with greater technological advances in imaging abilities, there has 

been growing interest in neuroanatomical changes and cognitive aging. In general, older 

adults show reduced cerebral volume in the frontal lobes (Raz, 2000). In terms of 

functional patterns, for certain cognitive processes older adults have broader bilateral 

activation across the cortices while young adults demonstrate a more lateralized 

activation (Cabeza et al., 1997).  Interestingly, if older adults are given instructions and 

are asked to deeply process the meaning of a word during a memory task as opposed to 

simply remember them, they show patterns of neural activity (i.e., greater recruitment of 

frontal regions) similar to young adults (Logan et al., 2002).  

Thus semantic associations appear to reduce age related deficits: During a 

memory task where young and older adults were provided with contextual information 

only younger adults effectively used the context rich information for recollection 

(Skinner & Fernandes, 2009). However, once older adults were instructed to encode 

stimuli more deeply by creating associations between they were able to effectively use 

this strategy to improve their recollection on a memory task (Skinner & Fernandes, 

2009). Thus, meaning and context appear to shrink the age gap in terms of functional and 

behavioural abilities. 

Despite a decline in many cognitive domains, there are some abilities (e.g., those 

that are composed of knowledge learned in the past) that show little to no decline. The 

following section provides a review of vocabulary knowledge with aging as well as a 

more specific focus on aging and language. 
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Vocabulary Studies and Word Association Studies  

Although age related declines in retrieval have been shown at the 

orthographic/phonological level of language processing, evidence suggests fewer age 

related deficits in semantics (Burke & Shafto, 2008). In fact, vocabulary and verbal 

reasoning scores appear to remain relatively intact over the lifetime for healthy adults and 

may even show an increase (Lezak, Howieson, Loring, Hannay, & Fischer, 2004). In a 

longitudinal study examining 5000 adults over the span of as long as 35 years, no decline 

in verbal abilities was found (Schaie, 1994). In addition, examination of verbal abilities 

across the lifespan indicates well preserved functioning into the 90s for healthy adults 

(Schum & Sivan, 1997). Verhaeghen (2003) conducted a meta-analysis examining 

vocabulary scores between 1986 and 2001, and found an increase in vocabulary test 

scores with aging. However, some findings indicate an adverse influence for the eldest of 

older adults. Longitudinal research by Backman and Nilsson (1996), examining changes 

in semantic memory over a 10-year period, found that even after controlling for 

intelligence, a decrease in semantic performance began once participants reached their 

75th or 80th year. However, prior to 75, no age related deterioration was observed. 

Findings of intact semantic language functioning also include current-events knowledge, 

which appears to be positively correlated with age (Beier & Ackerman, 2001).   

Federmeier, Mclennan, De Ochoa, and Kutas (2002) recorded event related 

potentials (ERPs) of older and younger adults while they listened to a sentence in which 

they heard either the expected word at the end of the sentence, an unexpected word from 

the same semantic category, or an unrelated, unexpected word. Results revealed both 

older and younger adults’ processing was facilitated by an unexpected word from the 
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same semantic category due to similarities between the two category exemplars. The 

authors proposed that context effects in the sentence serve to constrain and pre-activate 

features of likely upcoming words. Thus, younger and older adults showed similar 

influence of semantics.  

In contrast to the above findings, some tasks requiring more complex meaning 

interpretations from context show decline in older adults. Zelinski and Hyde (1996) 

examined the effects of context in aging by having older and younger adults produce 

interpretations after reading short stories. Older adults were more likely than younger 

adults to generalize, leading to erroneous interpretations.  

In word association tasks, participants are asked to give the first word that comes 

to mind after being presented with a word. Older and younger adults produced similar 

word associates in these tasks (e.g., Burke & Peters, 1986). Burke and Peters (1986) 

found that older and younger adults gave the same number and proportion of responses in 

a word association task, although older adults provided slightly more variability in their 

responses. When they controlled for verbal abilities, no differences were found in the 

proportion of unique responses between the younger and older samples. The authors 

concluded that differences in vocabulary affected variability in responses for word 

associations and that semantic structure is influenced by verbal abilities and not by age.  

 In sum, there are many ways to examine semantic organization and semantic 

processing. Several longitudinal studies have found preservation of semantic skills and 

vocabulary in older adults, while noting deficits in using context. Taken together, it 

appears that older adults generally have preserved vocabulary skills as they relate to 

semantics. One means of measuring changes in fluency with aging in clinical settings is 
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the commonly used verbal fluency task. The following review will examine literature 

related to fluency and aging.  

Aging and Fluency  

A commonly used test of verbal abilities in neuropsychology is the verbal fluency 

test; in this task participants must generate as many words as possible based on 

phonological criteria, (e.g., words beginning with a certain letter), or a semantic category 

(e.g., animals) within 60 seconds (Lezak, 1995). A widely used example of this task is the 

Controlled Oral Word Association Test (COWAT; Benton & Hamsher, 1976) which, in a 

commonly used version, asks participants to generate as many words as possible in sixty 

seconds that begin with C, F, and L. Tests of verbal fluency have been widely used as a 

part of assessments designed to examine cognitive impairment (Henry, Crawford, & 

Phillips, 2004). They have also been proven effective in determining impairment levels 

and for diagnostic purposes (Hall, Harvey, Vo & O’Bryant, 2011). Success in these tasks 

relies heavily on executive processes for self-generation of words and monitoring of 

responses. However, disproportionate atrophy and deterioration of the frontal lobes is 

thought to occur with normal aging and may therefore impact executive functioning 

abilities (e.g., West, 1996). Although both phonemic and semantic fluency tests impose 

considerable demands on executive functioning, semantic fluency has been shown to be 

more sensitive to semantic hierarchy and rely more heavily on semantic stores than 

phonemic tests (Henry & Crawford, 2004). Thus poor performance on tests of semantic 

fluency may reflect deficits in the semantic memory store, and not executive dysfunction 

(Henry, Crawford, & Phillips, 2004). Performance on fluency measures has been variable 
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with aging and consequently an examination of results found on fluency tests may 

provide some insight into language changes with older adults.  

Generally, studies have found that older adults perform more poorly than younger 

adults on fluency tasks (Auriacombe, Farbrigoule, Lafont, Jacqmin-Gadda, & Dartigues, 

2001; Kempler, Teng, Dick, Taussig, & Davis, 1998; Lanting, Haugrud, & Crossley, 

2009). A meta-analysis of norms for the COWAT found a progressive age related decline 

in fluency (Loonstra, Tarlow, & Seller, 2001). These findings would suggest that through 

the lifespan there is a decline in the ability to retrieve words in a certain lexical category. 

However, one alternate explanation is that the decline is reflective of overall slowed 

processing speed in older adults rather than impoverished lexical or semantic stores (e.g., 

Phillips, 1999). Fluency tests are timed and thus processing speed decreases may lead to a 

reduction in the number of generated words when older adults are compared to younger 

adults. 

 However, results in this area have not always been consistent: Some studies 

report equivalent rates of fluency in older and younger adults (e.g., Bolla, Lindgren, 

Bonaccorsy, & Bleecker, 1990; Crawford, Bryan, Luszcz, Obansawin, & Steart, 2000; 

Parkin & Java, 1999; Treitz, Heyder, & Daum, 2007) while others report greater fluency 

in elderly adults relative to younger adults  (e.g., Llewellyn & Matthews, 2009; 

Salthouse, Fristoe, & Hyun Rhee, 1996). One possible explanation for the discrepant 

findings may be the influence of other mediating factors, for example verbal IQ.  It has 

been suggested that verbal fluency may be reflective of verbal IQ and may mediate the 

relationship between fluency and aging (Bolla et al., 1990; Parkin & Java, 1999). Bolla et 

al., (1990) found that fluency rates were significantly affected by verbal IQ and suggested 
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that their findings of equivalent fluency rates for younger and older adults may have been 

due to a higher level of verbal intelligence in their population. They suggest that older 

adults with higher verbal intelligence may use compensatory strategies to mask the 

normal age related changes in performance with the use of more effective recall and 

organizational strategies, a broader vocabulary, and greater facility with semantics (Bolla 

et al, 1990). Studies have also found positive correlations between education level and 

fluency rates (e.g., Tombaugh, Kozak, & Rees, 1999).  

When examining semantic and phonemic fluency rates separately, an interesting 

finding has emerged in healthy older adults. Semantic fluency abilities appear 

significantly worse than phonemic fluency in older adults compared to younger adults 

(e.g., Brickman et al., 2005; Parkin, Hunkin, & Walter, 1995; Troyer, 2000). For 

pathological aging, semantic and phonemic fluency rates are reduced for older adults 

with amnestic MCI compared to healthy older controls (Nutter-Upham et al., 2008) and 

participants with Alzheimer’s disease produced significantly fewer animal names than 

healthy older adults, people vascular dementia, and those with a mild cognitive 

impairment (Hall, Harvey, Vo & O’Bryant, 2011). Further, poorer semantic fluency 

compared to phonemic fluency have been shown for those with Alzheimer’s disease 

compared to healthy older adults (Monsch, Bondi, Butters, & Salmon, 1992). 

Thus phonemic and semantic fluency rates appear to be reduced in healthy older 

adults when compared to younger adults, with a greater decline in semantic fluency 

compared to phonemic for older adults. A similar pattern is also seen when comparing 

amnestic mild cognitive impairment and Alzheimer’s disease. The result may reflect 

underlying changes in normal aging to the semantic system, however, several alternative 



  31 

possibilities exist as it has also been suggested that education and verbal IQ may 

influence these findings. To focus more specifically on semantics, a review of semantic 

priming effects and aging will follow as the vast majority of studies examining the 

structure of semantic organization and aging have used this paradigm (Ferraro, 1995). 

Semantic Priming Effects with Aging  

Semantic priming provides a simple way of examining the impact of semantic 

context on word recognition (e.g., Meyer & Schvaneveldt, 1971; Neely, 1991).  In a 

priming task (see Neely, 1991), two events occur. The first involves presentation of a 

word (the prime) for a brief period of time, for which no response is needed on the part of 

the participant. This prime is followed by another word (the target), or by a non-word. 

Participants are then required to make a word/non-word decision about the target item, 

referred to as a lexical decision task. In the semantic priming condition, the prime and 

target are semantically related. For example, the prime CAT might be used to prime the 

target DOG. Facilitation is said to occur (i.e., a priming effect occurs) if the response 

times are faster for the word DOG when CAT is used as a prime compared to response 

times to DOG when it is primed by an unrelated word such as PIN. The semantic priming 

effect is the difference of the unrelated minus the related condition.  

There are several mechanisms that have been proposed to explain semantic 

priming effects; the two most prominent are automatic spread of activation and 

expectancy based priming (e.g., Neely, 1991).  During semantic priming participants are 

not required to make an explicit judgment regarding the relatedness between the prime 

and the target. Therefore, the facilitation induced in a semantic priming task is presumed 

to be due to automatic processes (Giffard, Desgranges, Kerrouche, Piolino, & Eustache, 
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2003). Faster automatic recognition of a target after presentation of a semantically related 

prime is posited to be due to automatic spreading of activation (Collins & Loftus, 1975). 

When a prime is presented, its activation is spread automatically throughout the semantic 

system to other memory nodes that are related to the prime. Once these other nodes 

become activated their resting level is increased. This increased resting levels means that 

less activation is needed for them to become activated (Collins & Loftus, 1975).  

The second mechanism involves expectancy as a means to explain priming. 

Expectancy is an attentional process such that participants may come to expect that a 

certain type of word will always follow another word. This expectancy effect, unlike 

automatic spreading activation, cannot occur without awareness and intention (Neely, 

1991). Participants will therefore expect that a particular type of target word will follow 

the prime word and generate a set of potential targets after viewing the prime (Neely, 

1991). Thus, faster recognition occurs by reducing the demands on additional activation 

requirements. Automatic spreading of activation and expectancy reduces the amount of 

sensory processing needed for word recognition (Neely, 1991).  

 The examination of young versus older adults’ semantic priming rates has sparked 

debate in the literature. Although older adults’ reaction times in semantic priming are 

slowed in comparison to younger adults, the difference between the primed and unprimed 

conditions, termed the semantic priming effect, has generally been equivalent for young 

and older participants (e.g., Burke, White & Diaz, 1987; Chiarello, Church, & Hoyer, 

1985; White & Abrams, 2004); however, some have found larger priming effects for 

older adults, (e.g., Cerella, 1985; Chiarello et al., 1985; Laver & Burke, 1993; Lima et al., 

1991; Madden, Pierce, & Allen, 1993; Myerson et al., 1992). In the case of increased 
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priming effects for older adults, there have been several explanations for the underlying 

cause of this finding (e.g., Giffard et al., 2003; Laver, 2009; Laver & Burke, 1993; 

Myerson, Hale, Chen & Lawrence, 1997).  

 In Laver and Burke’s (1993) meta-analysis of semantic priming effects, most 

individual studies showed a non-significant increase in semantic priming for older adults. 

However, these effects reached significance in the meta-analysis. The authors conclude 

that greater semantic priming for older adults is due to greater experience with language 

and elaboration of connections in the semantic system. Younger adults show smaller 

semantic priming effects because they do not have the benefit of years of language 

experience leading to more connections in the semantic system.  

However, other studies have supported a general slowing hypothesis as an 

explanation for larger priming effects in older adults. Myerson et al. (1997) compared 

young and older adults’ reaction times to lexical decision and semantic categorization 

tasks. Their results reveal that after controlling for lexical slowing, young and older 

adults had equivalent priming rates. They suggest that the slower responses found for 

older adults across tasks are consistent with slowed processing speed but otherwise intact 

semantic organization.    

 Similarly, results by Giffard et al. (2003) reveal that when using standardized 

residuals (instead of raw reaction time) in a lexical decision task there were equivalent 

semantic priming effects obtained for the younger and older groups. The authors 

concluded that the large difference in semantic priming effects for older adults compared 

to younger adults is a reduction in processing speed with age, and that once this effect is 

controlled, and both young and older adults have equivalent amounts of time to allow for 
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the effect of semantics, semantic priming effects are comparable between the two age 

groups.   

Laver (2009) compared semantic and episodic priming (repeated presentation of 

prime-target pairs) in young, middle aged, and older adults controlling for response time 

variability. Due to the fact that participants are required to make a response as quickly as 

possible in a pronunciation task, longer overall response latencies have been found in 

older adults. This increased time to respond allows for more processing time for older 

adults compared to younger adults (Laver, 2009). As a result, slowed cognitive 

processing in aging would lead to an increase in context effects of semantics because the 

long processing time allows semantics to build up and has a greater chance to take effect 

(Giffard et al., 2003). In order to control for the extra processing time that older adults 

may have over younger adults due to their slower responding, several techniques have 

been used. Laver (2009) incorporated a response signal so that all participants respond 

within a particular window of time. Results reveal no differences in automatic semantic 

or episodic priming for young, middle aged, and older adults.  

Additionally, further investigation into the neuroanatomical basis for semantic 

priming has revealed that both younger and older participants show similar neural 

correlates during this task (Gold, Anderson, Jicha, & Smith, 2009). Activation occurred 

in the inferior temporal region, for both older and younger adults, in a semantic priming 

paradigm; the authors concluded that a preserved fMRI response pattern for older adults 

occurred in lexical decision trials. Gold et al. (2009) propose that the similar 

neuroanatomical patterns between younger and older participants are due to intact 

automatic spreading of activation within the semantic system.  
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Thus, research findings on semantic abilities, particularly in automatic processes, 

is somewhat mixed. In some cases it appears that older adults have stable priming effects 

while others show that older adults may be more influenced by semantics when it is 

extended to a priming paradigm. The following section focuses on semantic 

neighbourhood and density effects for healthy older adults.  

Aging and Semantic Neighbourhoods  

Extensive research has examined semantic priming effects in older adults. 

However, few studies have examined the influence of semantic richness as measured by 

language based models of semantic arrangement on older adults’ word processing. 

Studies in this area have found interesting results regarding the possible changes in 

semantic representations with age. 

Using word naming data provided by Spieler and Balota (1998), Buchanan et al. 

(2001) compared different measures of semantic relatedness for young and older adults. 

Semantic association size, defined as the mean number of responses from participants 

when they are asked to say the first thing that comes to mind after hearing a word, was 

provided by Nelson et al. (1994).  This was compared with semantic density (defined as 

the mean distance between a word and its 10 closest neighbours) using a lexical co-

occurrence model (HAL; Lund & Burgess, 1996). In a regression analysis controlling for 

frequency, orthographic neighbourhood size, and word length, results revealed a 

significant correlation between naming times (the time it takes to name a target word) and 

the semantic density measure for older adults. These results suggest that older adults may 

be more influenced by semantics or more sensitive to semantic density.  
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More recently, Dunabeitia, Marin, and Carreiras (2009) used word association 

norms to compare words with many semantic associates and words with few semantic 

associates for a group of individuals with Alzheimer’s disease and a control group of 

healthy older adults. Although healthy older adults responded faster than Alzheimer’s 

patients in a lexical decision task, both groups showed facilitation for words with more 

semantic associates.    

Further investigations into the density of older adults’ semantic neighbourhoods 

have produced some interesting findings. Burgess and Conley (2002) examined bodies of 

text produced by younger and older adults using a lexical co-occurrence model. When 

examining their semantic neighbourhoods (10 closest neighbours) they found that older 

adults had greater semantic similarity between neighbours, which they equated to an 

increase in density (many close neighbours). It was posited that experience may lead to 

greater accumulation and elaboration of semantic representations over time, resulting in 

denser neighbourhoods. However, a similar study was also conducted comparing 

transcribed text from interviews of older adults and Alzheimer’s patients (Conley, 

Burgess, & Glosser, 2001). Again, using a lexical co-occurrence model they examined 

the semantic neighbourhoods of those interviews. Comparing the 10 closest neighbours, 

it was found that Alzheimer’s patients had denser (closer semantic neighbours) than 

healthy older adults. 

In sum, the area of aging and semantic neighbourhood size and density has not 

been well researched and there are mixed results on the influence of semantics for older 

adults. It is evident that further research is needed to determine how aging may influence 

semantic lexicon arrangement and, conversely, the influence of semantics in older adults’ 
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word processing.  The recent expansion of examinations of semantic neighborhood size 

and density (Mirman & Magnuson, 2008) provides a potential foothold to further our 

understanding. 

Models of Cognitive Aging  

Theories of aging and cognition have sought to explain the different patterns of 

language processing that change with aging (e.g., Cerella, 1985; Hasher & Zacks, 1979; 

Salthouse, 1996). The following consists of a basic overview of selected models of 

cognitive aging with an emphasis on how they address language functioning.  

General slowing theories have been some of the most extensively researched 

theories of cognitive aging (Burke & Shafto, 2008). Initially, the assumption was that as 

people age, there is a slowing of nervous system functioning, which affects all cognitive 

processes in a similar manner (Birren, Woods, & Williams, 1980), however, it has further 

been suggested that not all cognitive processes show similar rates of slowing. With aging, 

speed of information processing decreases, affecting a range of cognitive functions 

including memory and language (Salthouse, 1996). Salthouse (1996), assumes two main 

mechanisms through which slowing occurs. The first is the time limit mechanism, which 

proposes that there is a finite amount of time during which cognitive operations take 

place. When a large proportion of the time is taken up in the early stages of processing, 

less is available for later stages. During complex cognitive tasks that involve multiple 

demands that depend on earlier operations, slowed initial processing may lead to less 

resource availability. The result may be slowed decision making for later tasks. The 

second assumption is that information availability decreases over time. Because of slower 

processing for older adults, initial information that is relevant and may be required in 
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later operations cannot be used due to decay or displacement over time (Salthouse, 1996). 

The result is processing deficits due to degraded time course of activation. With respect 

to our current understanding of the impact of semantic neighborhood size and spread on 

word processing such a view would suggest that older adults will be slowed in terms of 

their speed of processing semantic and spread variables. 

For lexical processing, especially in a semantic priming paradigm, researchers 

have attempted to find a regression coefficient, known as the Brinley plot, to quantify the 

amount of slowing for older adults in word recognition (e.g., Cerella, 1985; Lima, Hale, 

& Myerson, 1991; Myerson, Ferraro, Hale, & Lima, 1992).  In a Brinley plot, mean 

reaction times of older adults are regressed on mean reaction times of younger adults to 

indicate a consistent slowing factor. This may differ based on the level of difficulty of the 

task demands (Cerella, 1985).  

The inhibition deficit hypothesis by Hasher and Zacks (1988; 1997) proposes that 

older adults are not as efficient in their ability to inhibit irrelevant materials or distracters 

as compared to younger adults. Inhibitory responses degrade with aging while excitatory 

responses do not. This lack of suppression is thought to be due to greater input of non-

relevant material during encoding. For example, when older and younger adults were 

asked to read a passage and ignore distracting text (in a different font) interspersed 

throughout the passage, older adults had more difficulty ignoring the unrelated stimuli, 

particularly if it was semantically related (Connelly, Hasher, & Zacks, 1991). Similarly, 

when reading an ambiguous sentence, older adults maintained possible interpretations of 

the sentence for a longer period of time than younger adults (Hamm & Hasher, 1992).  
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These results support the theory that older adults are less efficient in their ability 

to inhibit semantically related, and possibly irrelevant, information. With respect to 

semantic neighborhood effects, according to this view, older adults should show a greater 

disadvantage for words with many near neighbors compared to younger adults. 

The transmission deficit theory (Burke et al., 2000; Burke & Shafto, 2004) 

postulates that language processing depends on how quickly and how much priming can 

be processed across connections of representational units (nodes), within the language-

memory system (Burke & Shafto, 2004). Connections within the representational unit are 

strengthened with frequent and recent use and weakened with disuse. Aging is thought to 

weaken connection strength at all levels, leading to processing deficits (Burke & Shafto, 

2008). Although transmission deficits may result from weakened connections within the 

representational units at a general level, architecture and structure of systems such as 

memory and language provide the framework for examining functional deficits.    

More specifically, during reading, bottom-up priming from many orthographic 

and phonological nodes all converge upon a single node. This then allows for activation 

of a lexical node, which transmits priming to semantic nodes to activate word meaning 

(Burke & Shafto, 2004). The phonological system’s architecture is such that phonological 

representations are organized hierarchically from syllables to the lowest level of 

phonological features. Single connections within the phonological system make the 

system more vulnerable to transmission deficits and degradation (Burke & Shafto, 2004).  

Thus because phonological nodes involve one-to-one connections they are vulnerable to 

transmission deficits that may occur, such as in tip of tongue (TOT) experiences. The 

TOT experience occurs when people are certain that they have particular information in 
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their memory but are temporarily unable to access or retrieve the information (Brown, 

1991). This is one of the most frequent kinds of memory failure in older adults and 

appears to increase with age (e.g., Juncus-Rabadan, Facal, Rodriguez, & Pereiro, 2010; 

Rastle & Burke, 1996).  

The transmission deficit theory proposes that in contrast to the phonological 

system, the semantic system remains intact. The semantic system has many redundant 

and converging connections that are built up over time causing them to be more resistant 

to degradation (Burke & Shafto, 2004). In other words, older adults have acquired more 

general knowledge over the course of their lifetime, as compared to younger adults, 

leading to more elaboration of connections within the semantic system. This enrichment 

leads to greater interconnections between concepts allowing for convergence or 

summation priming to occur faster and more easily on semantic nodes (Burke et al., 

2000). This has been offered as a possible explanation for the finding of larger semantic 

priming effects in older adults. In the current context, this view would lead to a prediction 

that elderly adults show larger effects of semantic neighborhood size than young adults. 

 The preceding theories of cognitive aging related to language processing and 

semantics provide a framework for understanding how language representations may 

change over the course of adulthood. Examining semantic neighbourhood effects in a 

lexical co-occurrence model provides an interesting way to not only examine how 

neighbourhood affects word reading but also how it may change with aging. 

There were two major goals for these experiments. The first was to further 

evaluate a model of semantics as defined by lexical co-occurrences (WINDSORS model; 

Durda & Buchanan, 2008) and to add to the growing literature in the area of semantics 
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and word recognition. The second was to examine semantic effects in aging as research is 

sparse examining the impact of semantic richness on older adults.  

Rationale and Study Outline 

In order to address the second goal of the experiment series, both young and older 

adults participated in all experiments.  As was previously mentioned, the WINDSORS 

model is a model of semantic space, designed to capture semantic information by 

examining large bodies of text and looking at the number of times words co-occur 

together. It is similar to other co-occurrence models, such as the Hyperspace Analogue to 

Language Model (HAL; Lund & Burgess, 1996) but offers an advantage over other 

models by controlling for the effects of word frequency. In lexical co-occurrence models, 

such as WINDSORS, words are represented as vectors. The distance between words in 

semantic space corresponds to their similarity in meaning (Durda & Buchanan, 2008). 

Words that are very close together in semantic space are, therefore, more similar. Thus, 

the first experiment used behavioural data to evaluate semantic similarity and define 

neighbourhood size in the WINDSORS model (Durda & Buchanan, 2008). 

The second experiment used the standardized cut-offs derived from experiment 

one to define semantic neighbourhood size. Words for this experiment had either large or 

small semantic neighbourhoods. Put differently, some words were related to many other 

words based on their meaning (large semantic neighbourhood) while other words were 

related to few words based on their meaning (small semantic neighbourhood). Both 

young and older adults were tested with these items. This experiment therefore examines 

the influence of semantic richness and aging on word recognition.  
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The goal of the third experiment was to examine the effects of semantic density. 

Previous measures of semantic density used a cut-off of the 10 closest neighbours 

(Buchanan et al., 2001; Siakaluk et al., 2003). However, one criticism of this approach is 

that the 10 closest neighbours is an arbitrary measure of distance (Shaoul & Westbury, 

2010).  This way of measuring does not take into account the potential confounding 

effect of overall neighbourhood size. It is possible that a word with many semantic 

neighbours has more close neighbours than a word with few neighbours by sheer virtue 

of its size and therefore greater probability of both more close and distant neighbours 

(Shaoul & Westbury, 2010). Further distinction around the distribution of neighbours is 

therefore needed to disentangle these effects. Recall that for the purposes of the present 

experiments density refers to the distribution or amount of spread of neighbours through 

a semantic neighbourhood irrespective of size, while semantic neighbourhood size refers 

to the sheer number of semantic neighbours within a defined neighbourhood size. The 

examination of semantic density provides a deeper analysis of the properties of their 

neighbourhoods and their influence on lexical decision latencies. 

The final experiment is designed to examine the effects of semantic distance in a 

priming paradigm. A primed lexical decision paradigm allows for an examination of how 

semantic information, which has been shown to impact word reading, is used by older 

and younger adults. Thus as the final step in the experimental series it provides an 

indication of how meaning might influence the word reading process through facilitation 

or inhibition. Although much research has been done regarding semantic priming and 

aging, typically, the focus has been on examining the priming differences between close 

semantic associates and controls (e.g., Giffard et al., 2003; Laver, 2000). Consequently, 
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we do not have a great deal of information on how more distant neighbours might impact 

word recognition for older adults. This experiment will provide a more detailed 

examination of the priming process by using close, distant, and unrelated prime-target 

pairs.  

CHAPTER 2: 

EXPERIMENT SERIES 

Experiment One: Defining Semantic Neighbourhood Size in the WINDSORS Model 

In order to evaluate the impact of semantic neighbourhood sizes on reaction time, 

the neighbourhoods first needed to be defined. This experiment was exploratory in nature 

with the purpose of examining several different thresholds for neighbourhood size to 

determine which one best captured a target word’s semantic information. 

Experiment 1: Methods 

Participants  

  Lexical decision reaction times were provided by the Balota, Cortese, and Pilotti 

(1999) corpus as part of an archival analysis. In this database, thirty young adults (mean 

age: 21.1 years) and thirty older adults (mean age: 73.6 years) were asked to indicate as 

quickly as possible whether they thought a word string was a real English word or not. 

This database contains 2906 monosyllabic words. In order to control for variability 

associated with certain word characteristics, a subset of words was selected. These words 

have orthographic frequency counts (how frequently words are used) of less than six per 

million words and are three to six letters in length, as obtained though Wordmine (Durda 

& Buchanan, 2006). This resulted in a total of 1343 words.  These words were used in the 

development of semantic neighbourhoods and will be referred to as target words. 
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Stimuli and Procedure 

  In order to develop semantic neighbourhoods, the distance between a target word 

and every other word in the WINDSORS model (Durda & Buchanan, 2008), which 

contains approximately 50000 words, was calculated. These represent the similarity 

between words in semantic space. Similarity ratings range from 1 to -1. The scores can be 

thought of as a continuum with similarity scores close to 1 indicating more semantic 

similarity and words ranging from 0 to -1 indicating little to no relationship. For example, 

the words north and south have a high similarity rating of .73, while movie and usher 

have a lower similarity rating of .03. The next step involved calculating the means, 

standard deviations, and standard scores of these similarities. All words with a standard 

score above a certain threshold were considered as part of a target word’s semantic 

neighbourhood. Recall that semantic neighbours with larger similarity ratings (i.e. closer 

to 1) indicate greater semantic closeness. Therefore, words with standard similarity 

scores above a certain cut-off were included in the semantic neighbourhood.   

  The appropriate cut-offs were the topic of investigation in this study with the 

resulting values assumed to roughly translate into a marker of the size of their semantic 

neighbourhoods. Six standard deviation thresholds or cut-offs ranging from .5 SDs to 5.5 

SDs above the mean were then examined in separate analyses for young and older adults. 

Mean semantic neighbourhood sizes and standard deviations are listed in Table 1. The 

corresponding neighbourhood size values were correlated with the Balota et al. (1999) 

RTs. These analyses were conducted with the young RT data and the elderly RT data 

separately to determine whether the age groups differ with respect to their critical cut-off 

points. 
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Results 

Young Adults 

Six hierarchical multiple regressions were run using mean lexical decision reaction times 

for each word as the dependent variable. The following cut-off points, in standard 

deviations, were used to determine semantic neighbourhood size: .5 SD, 1.5 SD, 2.5 SD, 

3.5 SD, 4.5 SD, and 5.5 SD.. Each distance was tested separately. For each regression 

step 1 was identical: word characteristics known to influence word recognition were 

statistically controlled by entering them in step 1. These variables are orthographic 

frequency and orthographic neighbourhood size, both known to affect lexical decision 

reaction times. Step 1 was significant for orthographic frequency and orthographic 

neighbourhood size, F(2, 1340) = 119.01, p < .001. In the second step of the model, one 

of six semantic neighbourhood sizes was entered as determined by standard deviation 

cut-offs. With the addition of semantic neighbourhood size as a predictor in step 2, the 

model was significant for the 1.5 SD cut-off [F(1, 5.83) = p < .05; R2 = .151 in step 1 and 

.155 in step 2] and 3.5 SD cut-off [F(1, 1339) = 4.33, p < .05; R2 = .151 in step 1 and 

.154 in step 2]. The semantic neighbourhood sizes created from remaining four cut-off 

points (.5 SD, 2.5SD, 4.5 SD, 5.5SD, and 6.5SD) were each run in a hierarchical multiple 

regression but did not reach significance. 

Older Adults 

  The analyses were identical to those described above except that the dependent or 

predicted variable was the mean reaction times of thirty older adults.  In these analyses, 

step 1 was significant for orthographic frequency and orthographic neighbourhood size, 

F(2, 1340) = 71.1, p < .001. With the addition of semantic neighbourhood size as a 
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predictor in step 2, the model was significant for the 1.5 SD [F(1, 1339) = 6.96, p < .05; 

R2 = .096 in step 1 and .101 in step 2) and the 3.5 SD cut-off [F(1, 1339) = 4.36, p < .05; 

R2 = .096 in step 1 and .099 in step 2]. The semantic neighbourhood sizes created from 

remaining four cut-off points (.5 SD, 2.5 SD, 4.5 SD, 5.5 SD, and 6.5 SD) were 

submitted to hierarchical multiple regression but did not reach significance. 

Table 1 
 

Overall Mean semantic neighbourhood sizes and Standard Deviations, as determined  
 

by the WINDSORS model of lexical co-occurrences, for a subset of words (1343)   
 

provided by the Balota, Cortese, and Pilotti (1999) corpus. 
 
    

 
Neighbourhood               Mean          SD                          
Cut-off 

 
.5 SD            13932.08     561.06    
 
1.5 SD            3070.94                 344.68 
 
2.5 SD             633.35       100.7 
   

     3.5 SD    193.8                   90.2 
  

     4.5 SD     79.74          62 
  

     5.5 SD     37.6        40.78 
 

 
Discussion 

The 1.5 SD and 3.5 SD cut-off criteria for semantic neighbourhood size accounted for a 

significant proportion of variability in the model for both the young and older adult’s 

RTS when they were added in step 2.  This further supports findings that semantics is 

influential in the single word recognition process. These results also support the 
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WINDSORS model of lexical co-occurrences and indicate through behavioural data that 

the model captures semantic information important in word recognition and it provides us 

with an empirically tested metric that is appropriate for both younger and older adults. 

Semantics are indeed an influential part of the word processing puzzle. Further 

experiments directly manipulating WINDSORS semantic neighbourhood size are now 

possible using the results obtained through this experiment for criteria of a semantic 

neighbourhood.  

  The following experiments will use the 3.5 SD cut-off as an indicator of semantic 

neighbourhood size. Although both the 1.5 SD cut-off and 3.5 SD cut-off were significant 

predictors of reaction time and could be used to define a semantic neighbourhood, the 1.5 

SD produced extremely large neighbourhood sizes with a mean number of semantic 

neighbours of over 3000 words. There was also a considerable amount of variability with 

a standard deviation of 330 words. The 3.5 SD neighbourhood size was considerably 

smaller (M = 193.8) than the 1.5 SD size (M = 3070.94). As a result, the 3.5 SD cut-off 

was selected because it was expected to minimize the amount of noise and variability in 

the semantic neighbourhood measure.   

Experiment 2: The Effect of Semantic Neighbourhood Size 

The previous experiment found that a 3.5 SD cut-off point for semantic neighbourhood 

size captured the influences of semantic information in word recognition. In order to 

more closely examine the impact of semantics on reaction times in both young and older 

adults, a lexical decision experiment was designed using words with many semantic 

neighbours (large semantic neighbourhoods) and words with few semantic neighbours 
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(small semantic neighbourhoods). Given previous findings (e.g., Buchanan et al., 2001) 

there should be a facilitation effect for words with larger semantic neighbourhoods.  

According to the general slowing hypothesis (Salthouse, 1996) response times for 

older adults should decrease in all conditions as slowing is generalized to all cognitive 

functions. However, according to the transmission deficit hypothesis (Burke & Shafto, 

2008), older adults have more connections in the semantic system and should therefore 

show similar or greater facilitation compared to young adults for words with more 

semantic neighbours compared to few semantic neighbours.  

Recruitment Procedures and Pre-test Measures for Experiments 2-4 

The following participant recruitment, demographic, and pre-test measures were 

identical for the remainder of the experiments in the series (2-4). Participants were never 

involved in more than one study to ensure that all words were not previously experienced 

as part of an experiment (due to overlap in words used as part of the experimental 

measures). 

 Participants     

 Young adults. Students from the University of Windsor aged 18-25 received course 

credit in exchange for their participation. Criteria for participation in the research study 

consisted of individuals whose native language is English. Further demographic variables 

collected at the time of testing are described in full below.  

          Older Adults. Healthy men and women aged 60-85 were recruited from the 

community through posters at local seniors centers and word of mouth. Similar to the 

young adult group, inclusionary criteria consisted of native English speakers, who were 

reportedly neurologically intact with no history of neurological incidents. Older adults 
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were also given the Montreal Cognitive Assessment (MoCA; Nassredine et al., 2005) in 

order to rule out any participants with cognitive impairment. The MoCA is a brief 

cognitive assessment tool designed to screen for mild cognitive impairment. As a result it 

is a more conservative estimate of cognitive abilities than more traditional measures (e.g., 

The Mini Mental State Exam - MMSE; Folstein, Folstein, & McHugh, 1975). It takes 

approximately five to ten minutes to administer. A cut-off criterion of 26 out of 30 and 

above was used for inclusion (Nassredine et al., 2005). Older participants were given $10 

compensation for their participation.  

Demographic Measures. All participants completed a demographics questionnaire 

(See Appendix A for the young adults full questionnaire and Appendix B for the older 

adults questionnaire). Participants were asked to provide their age, gender, native 

language, and number of years of formal education completed. Furthermore, they were 

asked if they were bilingual, had a personal history of learning disabilities, family history 

of learning disabilities, diagnosis of ADHD/ADD, speech or language difficulties, speech 

or language therapy, any neurological conditions (e.g., stroke, epilepsy, tumour etc.), as 

well as any head injury or loss of consciousness. Handedness information was also 

collected. This was done in order to ensure consistency in responding. All participants 

made “yes” responses in a lexical decision task with their dominant hand. As a result, left 

handers received lexical decision instructions to press the “V” key with their left hand if 

they thought something was a real English word and press the “N” with their right hand if 

they thought it was a nonword.  

        Pre-Test Measures. In addition to the demographics questionnaire (and MoCA for 

older adults) all participants were given a reading proficiency test taken from the Wide 
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Range Achievement Test – Third Edition (WRAT-3; Wilkinson, 1993) word reading 

section. Participants were also given a short version of the North American Adult Reading 

Test (NAART35; Uttl, 2002). These tests provide an estimate of reading levels (WRAT-3) 

as well as an estimate of IQ (NAART35). 

Experiment 2: Methods 

English words were generated by the MRC database 

(www.psy.uwa.edu.au/mrcdatabase/uwa_mrc.htm). All stimuli were monosyllabic words 

with four to five letters. Low frequency words with frequency counts of less than six per 

million as obtained through the Wordmine database (Durda & Buchanan, 2006) were used 

for the experiment. Semantic neighbourhood size was calculated using the cut-off of 3.5 

SD that was established in experiment 1. Words with the highest 30% of neighbours and 

lowest 30% of neighbours were used to make up the word lists. Forty words comprised the 

many semantic neighbours group and 40 comprised the few semantic neighbours group. 

Word lists were balanced for orthographic frequency, orthographic neighbourhood size, 

number of letters, phonemes, and phonological frequency (see Appendix D). Independent 

t-tests were conducted using the preceding variables to ensure that word lists did not differ 

on these word characteristics.  

Eighty non-word stimuli that look like words, but have no meaning in the English 

language, were created to match the words used in the experiment on word length, 

number of syllables, and orthographic neighbourhood size. These nonword stimuli 

contained pronounceable consonant and vowel blends. Each participant saw all words in 

random order. Participants viewed a total of 80 real words (40 with large neighbourhoods 
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and 40 with small neighbourhoods) and 80 non-words matched for orthographic 

neighbourhood size and number of letters. 

Procedure 

The experimental sessions were conducted individually using a laptop computer 

with DirectRT software (Empirisoft, 2006). Young adults were tested in laboratory 

facilities at the University of Windsor. Older adults were tested either in their homes or at 

the laboratory facilities at the University of Windsor. In all cases (in lab or at home) the 

testing was completed in a quiet environment free from distraction.  

Participants were instructed both verbally and in writing (see Appendix C) to 

decide whether the presented word was a real English word as quickly as possible.  

All experimental stimuli were presented in the center of the computer screen. 

Participants engaged in five practice trials before beginning the experiment. Feedback 

was provided during the practice trials. After the final practice trial, they were again 

presented with the instructions on screen. To begin, a cross symbol (+) was presented on 

the screen for 500ms to orient participants. The cross was then replaced by a word or 

non-word that remained on screen until participants made a response. Right-handed 

participants were to press the “N” key if it was a real word and the “V” key if it was a 

nonsense word or not a real word. Left-handed participants pressed the “V” key if it was 

a real word and the “N” key if it was a nonsense word.  

Results 

A total of 80 participants completed the first experiment; 51 in the young adult condition 

and 29 in the older adult condition. Data from ten participants in the young adult 

condition were removed: six people did not meet the inclusionary criteria for age, three 
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participants revealed that English was not their first language and one participants’ data 

was removed due to computer malfunction during administration. Additionally, two 

participants in the young adult condition had extremely slow mean reaction time latencies 

(1159 ms and 1595 ms) and their data were removed from the analyses as outliers. Data 

from five of the older adults were removed: One participant indicated that English was 

not their first language, three participants had MoCA scores below the cut-off for 

inclusion in the experiment, and one participant indicated a neurological condition. The 

remaining 39 participants in the young adult condition and 24 participants in the older 

adult conditions were included in the analyses.  

Demographics 

 In the young adult condition 8 men and 31 women participated with an average 

age of 21 years (SD = 1.7 years).  The average education level was 14 years of schooling 

(SD = 1.4 years). In the older adult condition 3 men and 21 women participated with an 

average age of 68.25 years (SD = 4.6 years).  The average education level was 16.6 years 

for older adults with an average MoCA score of 27.5. 

As the complete list of demographic information in Table 2 indicates older adults had 

significantly higher scores on the NAART35, WRAT-3 Reading, and education level 

[t(61) = -7.28, p < .01; t(61) = -3.35, p < .01; t(61) = -5.06, p < .01, respectively], they 

were examined further. However, reading level (WRAT-3), education level, and IQ 

estimate (from NAART35) did not correlate with reaction time.  
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Table 2 
 
Experiment 2: Means and Standard Deviations of Participant Characteristics by Age. 

 
 

                                     Young Adults                 Older Adults 
Measure                   (n = 39)        (n = 24) 

 
Age in years    21 (1.7)   68.25 (4.6) 
Education in years   14 (1.4)   16.6 (2.64) 
WRAT-II Reading T-Score  52.48 (5.55)   56.79 (3.72) 
NAART-35 score   15.51 (4.67)   24.79 (5.28) 
NAART estimated FSIQ  105.39 (4.67)   114.67 (5.28) 
MoCA         27.5 (1.22) 

 
 

Reaction Time Analyses            

Reaction times below 350 ms or above 2500 ms were removed from the data set. 

The outliers comprised less than 1% of the data set.  The remaining reaction times for all 

correct responses for the 47 participants were averaged across participants and stimuli. 

Mean lexical decision latencies and percentage error rates are listed in Table 3.  

Results (in figure 1) were analyzed using a 2 (Semantic neighbourhood size: Large vs. 

Small) X 2 (Age: Young vs. Older) mixed design analysis of variance (ANOVA). Data 

were analyzed through participant and item analyses. In a participant analysis (which is 

the main focus of the experiment), mean reaction times for each participant are used as a 

depended variable. Alternatively, the data may also be examined through an item 

analysis. In an item analysis mean reaction times for each item (i.e., each word) are 

analyzed as dependent variables thus allowing another approach to measuring the effects 

of the independent variables (age and neighbourhood size). For the participants analysis 

(F1), semantic neighbourhood size was the within subjects variable while age was the 
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between subjects variable. In the items analysis (F2), semantic neighbourhood size was 

the between item variable while age was the within item variable. There was an 

advantage for words with many semantic neighbours over words with few neighbours 

[F1(1, 61) = 36.28, p < .01; F2(1, 78) = 14.2, p < .01]. Age also had an effect [F1(1, 61) = 

10.92 p < .01; F2(1, 78) = 102.59, p < .01] with younger adults responding faster than 

older adults. These two factors did not interact [F1(1, 61) = 2.59, p = .61; F2 (1, 78) = 

1.07, p = .30). 

Table 3 
 
Mean reaction time (RT) in milliseconds (ms), standard deviations (SD), and error rates  
 
as a function of semantic neighbourhood size and age in a lexical decision task. 

 
 

Age and Semantic                 RT (ms)                   SD   % Error 
Neighbourhood Size 

 
Young Adults          
 Small Semantic Neighb.  688.32                 129.89    10.06 

 
 Large Semantic Neighb.  644.41              98.51    5.57 
   
 
Older Adults 
  

Small Semantic Neighb.  775.69             100.1    1.77 
  

Large Semantic Neighb.   738.61            94.68    1.46 
 

 
Error Analyses 

There was an overall mean accuracy rating of 95% for young and older 

participants. Analysis of percent errors revealed a main effect of neighbourhood size with 

fewer errors for words with many semantic neighbours compared to words with few 

semantic neighbours [F1(1, 61) = 18.66, p < .01; F2(1, 78) = 4.32. p < .05]. Older adults 
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produced fewer errors than younger adults [F1 (1, 61) = 28.4, p < .01; F2 (1, 78) = 61.82, 

p < .01]. However, these main effects were qualified by an age x semantic neighbourhood 

size interaction, [F1 (1, 61) = 14.11, p < .01; F2 (1, 78) = 5.09, p < .05]. Paired samples t-

tests reveal that young adults made more errors for words from smaller neighbourhoods 

compared to larger neighbourhoods t1(38) = -5.83, p < .001; t2(78) = 2.19, p < .05. 

However, older adults showed no difference in error rates for words from large compared 

to small semantic neighbourhoods t1(23) = -.47, p = .64; t2(78) = .5, p = .62. 

 

Figure 1. Mean reaction time latencies as a function of neighbourhood size and age. 

Discussion 

The results reveal an effect of semantic neighbourhood size on word recognition. Words 

with richer semantic representations are processed more quickly than words with less rich 

semantic representations as defined by the WINDSORS model (Durda & Buchanan, 

2008). This effect holds for both younger and older adults. This finding adds to the 
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growing body of work that reveals and elaborates the role of semantics in word reading 

and word recognition processes (e.g., Balota et al., 2004; Buchanan et al., 2001; Pexman 

et al., 2008; Siakaluk et al., 2003; Yap et al., 2011; 2012; Yates et al., 2001). The current 

findings are  consistent with a study by Pexman et al. (2008) who found that number of 

semantic neighbours (as defined by the WINDSORS model) was related to lexical 

decision reaction time.  

 Younger adults had faster overall responses than did older adults but both groups 

processed words with more semantic neighbours faster than words with few.  Similar 

sensitivity to semantic richness in these two groups suggests that the older adults may 

have an intact semantic system that operates in much the same way as the younger adults 

despite an overall slowing.  Indeed a reduction in processing speed is a well-known 

cognitive consequence of successful aging (e.g., Myerson et al., 2000; Salthouse, 1996). 

The overall finding of slower response times for older adults compared to younger adults 

may be accounted for by general slowing theories that postulate equally slowed cognitive 

processes across domains (e.g., Salthouse, 1996). Interestingly, older adults showed 

overall lower error rates than younger adults and while younger adults made more errors 

to words from small neighbourhoods compared to large neighbourhoods, older adults 

showed a consistently low error rate across these two groups. One possible explanation 

may be a speed accuracy trade-off. Older adults may be more cautious and take more 

time to ensure a correct response thereby negatively impacting their speed relative to the 

young adult condition. It is also possible that older adults have greater experience with 

language and have a more extensive vocabulary leading to fewer errors as they would 

have encountered fewer unfamiliar words.  
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The present findings suggest a facilitative role of semantics in a lexical decision 

task for both young and older adults using metrics from the WINDSORS lexical co-

occurrence model. Results from experiment 1 allowed for a direct manipulation of 

neighbourhood size in the current experiment. These results demonstrated that semantics 

relationships are well represented by the WINDSORS model and that semantics is an 

influential part of word recognition. In terms of aging, older adults are intact in their 

processing of semantics. The next two experiments move beyond semantic 

neighbourhood size to provide a more in-depth picture of the properties of semantic 

neighbourhoods and possible age –related effects of those properties on word recognition.  

Experiment 3: The Effect of Semantic Density 

The previous study revealed that semantic neighbourhood size does indeed impact how 

quickly people process written words. This finding is an important consideration in the 

design of study three as this study will control for semantic neighbourhood size when 

examining density in order to reduce the confounding effect of this variable. Investigation 

into the properties of semantic neighbourhoods has found a difference in reaction times 

based on the distribution of neighbours (or density) throughout a neighbourhood (Mirman 

& Magnuson, 2008). More neighbours clustered around a target produce an inhibitory 

effect while neighbours spread throughout the neighbourhood create a facilitatory effect. 

According to Mirman and Magnuson (2008), words with many close neighbours are 

inhibitory while many neighbours spread out throughout the neighbourhood are 

facilitatory. As a result, a similar finding may be expected for this experiment. Recall 

also that Burgess and Conley’s (2002) examination of text produced by younger versus 

older adults showed that older adults produced denser semantic neighbourhoods than 
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younger adults.  Therefore, density is an informative variable for semantic 

neighbourhoods that may be more influential for older adults than their younger 

counterparts.  

According to the inhibition deficit hypothesis (Hasher & Zacks, 1988; 1997) older 

adults may show greater inhibition with many close neighbours, or denser 

neighbourhoods, as compared to younger adults because older adults have difficulty 

inhibiting close distracters. Thus, older adults may have larger differences in mean 

reaction times comparing dense versus sparse neighbourhoods. In contrast, the 

transmission deficits hypothesis would predict relatively enhanced facilitation for words 

with many close semantic neighbours for older adults compared to younger controls. This 

would be predicted on the basis that facilitation is due to a more extensive semantic 

network developed through years of experience with language. In contrast, the general 

slowing hypothesis would predict equivalent rates of slowing across all cognitive 

processes resulting in longer response latencies for older adults but with generally similar 

priming patterns for young and older adults. 

Experiment 3: Methods  

Stimuli 

 Seventy low frequency words with word counts of less than six per million 

according to the Wordmine database were used as target words. These words all had 

large semantic neighbourhoods as defined by the WINDSORS model and had the highest 

30% of neighbours for all words in the model. Words with large semantic 

neighbourhoods were used exclusively in order to control for neighbourhood size. These 

words were then divided into two groups based on a semantic density measure. Words 
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that had more dense semantic neighbourhoods had clustered groups of neighbours around 

the target word whereas words from more dispersed neighbourhoods had a greater spread 

of neighbours with more distance between the target word and each of its neighbours 

(See figures 2 & 3). Density was calculated as the mean distance between the target word 

and every other word in its semantic neighbourhood. Words with many close neighbours 

result in an overall smaller mean and more clustered neighbourhood. Words with more 

distant neighbours result in a larger mean distance between a target and its neighbours 

and greater spread of neighbours throughout the neighbourhood.  

 

Figure 2. Representation of a sparse semantic neighbourhood using the 15 closest neighbours to 

the word creek. 
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Figure 3. Representation of a dense semantic neighbourhood using the closest 15 neighbours for 

the word sail. 

Words with large semantic neighbourhoods were divided into two word lists of 35 

words each. These two semantic density lists represent the clustered and dispersed 

neighbourhoods. The dispersed list had a mean similarity rating between neighbours of 

.26 while the clustered list had similarity ratings between neighbours of .3. Every 

participant saw each word. The two word lists were balanced for word length, 

orthographic neighbourhood size, number of phonemes, and phonological neighbourhood 

size. Additionally, 70 pronounceable non-words were created and matched for number of 

letters and orthographic neighbourhood size. Procedures were the same as those listed in 

experiment 2. 
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Results 

A total of 79 participants completed the experiment; 47 in the young adult condition and 

32 in the older adult condition. Data from eight participants in the young adult condition 

were removed because they revealed during testing that they did not meet the 

inclusionary criteria for age or English as a first language. Data from seven of the older 

adults were removed: Three participants chose to discontinue during testing due to 

arthritis or vision related difficulties and four participants had MoCA scores below the 

cut-off for inclusion in the experiment. The remaining 39 participants in the young adult 

condition and 25 participants in the older adult conditions were included in the analyses.  

Demographics 

In the young adult condition there were 5 men and 34 women and the average age of 

participants was 21 years (SD = 2.2 years).  The average education level was 13.5 years 

of schooling. In the older adult condition there were 6 men and 19 women and the 

average age of participants was 73.5 years (SD = 9.6 years).  The average education level 

was 14.9 years for older adults and the mean score on the MoCA was 27.1. 

As the complete listing of demographic information in Table 4 indicates, older adults 

had higher scores on the NAART35, WRAT-3 Reading, and education level [t(62) = -

5.76, p < .01; t(62) = -3.01, p < .01; t(62) = -2.38, p < .01, respectively]. However, as in 

the previous experiment, these variables were not significantly correlated with reaction 

time. 

Reaction times below 350 ms or above 2500 ms were removed from the data set. The 

outliers consisted of less than 1% of the data set.  Mean lexical decision latencies and 

percentage error rates are listed in Table 5.  
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Table 4 
 
Experiment 3: Means and Standard Deviations of Participant Characteristics by Age. 

 
 

                                     Young Adults                 Older Adults 
Measure                   (n = 39)        (n = 25) 

 
Age in years    21 (2.2)   73.5 (9.6) 
Education in years   13.5 (1.18)   14.9 (2.76) 
WRAT-II Reading T-Score  50.92 (6.21)   55.16 (4.08) 
NAART-35 score   12.46 (6.18)   22.28 (7.33) 
NAART estimated FSIQ  102.34 (6.18)   112.16 (7.33) 
MoCA         27.1 (1.11) 

 
 

Reaction Time Analyses 

Results were submitted to a 2 (semantic neighbourhood density: many near neighbours 

vs. dispersed neighbours) X 2 (age: young vs. older) mixed design analysis of variance 

(ANOVA) for all correct reaction times to word items. For the participant analysis (F1), 

semantic density was the within subjects variable while age was the between subjects 

variable. In the items analysis (F2), semantic density was the between items variable 

while age was the within items variable. There was an advantage for words with 

dispersed neighbourhoods over words with dense neighbourhoods for participants [F1(1, 

62) = 9.82, p < .01] but not items [F2(1,68) = .56 p = .45](see figure 4). There was a main 

effect of age [F1(1, 62) = 17.49, p < .01; F2(1,68) = 148.96, p < .01] with younger adults 

responding faster than older adults. Age and neighbourhood density did not interact 

[F1(1,62) = .37, p = .54; F2(1, 68) = .31, p = .58].  

Error Analyses 

There was an overall mean accuracy rating of 95% for young and older 

participants. There was a main effect of age, with older adults producing fewer errors 
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than younger adults [F1(1, 62) = 12.34, p < .01; F2(1,68) = 26.59, p < .01]. However, 

there was no main effect of density [F1(1, 62) = 2.3, p = .13; F2(1,68) = .13, p = .72]. 

These factors did not interact [F1(1, 62) = .37, p = .55; F2(1,68) = .03, p = .86]. 

Table 5 
 

Mean reaction time (RT) in milliseconds (ms), standard deviations (SD), and error rates  
 
as a function of semantic density and age in a lexical decision task. 

 
 

Age and Semantic                 RT (ms)                SD           % Error 
Density 

 
Young Adults         
 
 Dense Semantic Neighb.      656.98             82.09    6.23 
 
 Dispersed Semantic Neighb.       638.01              77.57    5.64 
   
 
Older Adults 
  

Dense Semantic Neighb.      751.99             122.48    3.08 
  

Dispersed Semantic Neighb.      731.86             89.41    1.71 
 

 
Discussion 

As expected, words with dense (or more clustered) semantic neighbourhoods produce 

longer reaction time latencies than words with more dispersed semantic neighbourhoods. 

These findings are consistent with prior research by Mirman and Magnuson (2008) who 

found an inhibitory effect for words with many close semantic neighbours and facilitation 

for words with many distant neighbours in a semantic categorization task. These effects 

of density in semantic neighborhoods mimic those found in manipulations of phonemic 

density: Spoken words from dense phonological neighbourhoods take longer to be 
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identified than words from sparse phonological neighbourhoods (e.g., Luce & Pisoni, 

1998).  

 

Figure 4. Mean reaction time latencies as a function of neighbourhood density and age. 
 

The second major finding of this experiment is the impact of aging on semantic 

density. Similar to the findings in experiment one, older adults showed a slower but 

otherwise similar response pattern to younger adults. Specifically, they produced slower 

reaction times to words with denser semantic neighbourhoods than words with more 

dispersed neighbourhoods. The finding that older adults were generally slower in their 

reaction times than younger adults is in keeping with the general slowing hypothesis 

(Salthouse, 1996). 

Semantic neighbourhood size and density play a role in word recognition and this 

appears true for both older and younger adults. Experiment 2 results established that 

semantic neighbourhood size was an important variable in word recognition. This effect 

was then controlled in the current study in order to gain a greater understanding of how 
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the spread of neighbours throughout a neighourhood may influence reaction times. The 

results underscore the fact that not only does neighbourhood size matter, but distribution 

matters as well. This adds to our knowledge of how neighbourhood variables contribute 

to word recognition. In terms of aging, again older adults appear to have intact semantic 

processing with similar patterns compared to young adults of inhibition and facilitation in 

response to density variables. To further explore age-related changes in semantic 

processing the next experiment uses a semantic priming paradigm where variations in 

prime-target relatedness will be used to uncover any subtle age-related changes in 

semantic sensitivity.  

Experiment Four: Semantic Priming with Close versus Distant Neighbours 

Previous research has found overall slowed response times for older adults but generally 

equivalent semantic priming effects (e.g., Burke et al., 1986; Chiarello et al., 1985; White 

& Abrams, 2004), with some findings of increased semantic priming effects for older 

adults (e.g., Cerella, 1985; Laver & Burke, 1993; Lima et al., 1991; Madden et al., 1993; 

Myerson et al., 1992). According to the transmission deficit hypothesis (Burke & Shafto, 

2008) equivalent or increased semantic priming effects would be expected for older 

adults compared to younger adults due to their greater experience with language and 

accumulation of linguistic knowledge over time. A methodological account (Myerson et 

al., 1997) may also be possible based on slower processing speed in older adults. In this 

case, a larger priming effect is due to slowed overall response times for older adults. 

Priming effects are derived by subtracting related from unrelated mean reaction times. In 

other words, with longer response latencies produced by older adults, reducing the 

difference by a constant amount leads to larger priming effects. The third possibility is 
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one based on the inhibition deficit model, which would predict less priming for closer 

semantic neighbours in older compared to younger adults due to poor inhibition of words 

with very similar meanings leading to greater competition during word recognition.  

Experiment 4: Methods 

Stimuli 

 Target words consisted of English words with frequency counts of less than six 

per million as obtained through the Wordmine database (Durda & Buchanan, 2006) and 

were from large semantic neighbourhoods (top 30% in terms of neighbourhood size). 

Prime-target word pairs were selected as stimuli. Three types of prime-target pairs were 

created based on their level of semantic similarity as obtained through the WINDSORS 

model database. Using all words in the model, word pairs that had the highest amount of 

similarity (i.e., those that are closest neighbours in semantic space) were used to create 

the close neighbour pairs. Forty-eight close neighbour pairs were selected due to their 

high degree of semantic similarity (average similarity ratings of .3). Forty-eight distant 

neighbour pairs were selected due to their more distant semantic similarity rating 

(average similarity ratings of .27). Forty-eight unrelated pairs were created with semantic 

similarity ratings below zero indicating no semantic relationship. Forty-eight 

pronounceable non-word targets were created and were matched for word length, number 

of syllables, and number of orthographic neighbours.    

      Participants were randomly assigned to one of three conditions. The prime-target 

pairs were rotated across the three priming conditions such that participants saw targets 

and primes only once but received all three conditions. Each participant also saw each 

target word in one of the three priming conditions described above. Therefore, each 
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participant saw 16 close semantic pairs, 16 distant pairs, 16 unrelated pairs, and 48 word-

nonword target word pairs. In order to minimize expectancy effects, for each trial, 

participants had a 50% chance of viewing a non-word target.  

Procedure 

All stimuli were presented in the center of the computer screen. Participants 

engaged in five practice trials before beginning the experiment and received feedback on 

their performance. After the final practice trial they were again presented with the 

instructions on screen and asked to press any key to begin. Each trial consisted of four 

consecutive processes. A cross symbol (+) was presented centrally on the screen for 500 

ms to orient participants. The cross was then replaced by the prime for 150 ms. The prime 

was immediately replaced by the target word which remained on the screen until 

participants made a decision. All primes were presented in lower case and all targets in 

upper case in order to minimize the amount of orthographic overlap between them. Right-

handed participants were to press the “N” key if it was a real word and the “V” key if it 

was a nonsense word or not a real word. Left-handed participants pressed the “V” key if 

it was a real word and the “N” key if it was a nonsense word. 

Results 

A total of 100 participants completed the fourth experiment; 66 in the young adult 

condition and 34 in the older adult condition. Data from thirteen participants in the young 

adult condition were removed because they were above the age limit, five revealed during 

testing that they did not meet the inclusionary criteria for English as a first language, and 

one participant’s data were lost due to computer malfunction. Data from four of the older 

adults were removed: Three participants had MoCA scores below the cut-off for 
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inclusion in the experiment and one indicated that English was not his first language. The 

remaining 46 participants in the young adult condition and 30 participants in the older 

adult conditions were included in the analyses.  

Demographics 

In the young adult condition there were 7 men and 39 women and the average age of 

participants was 21 years (SD = 2.2 years).  The average education level was 14.2 years 

of schooling for young adults. In the older adult condition there were 10 men and 20 

women and the average age of participants was 67.2 years (SD = 5.6 years).  The average 

education level was 16.6 years for older adults and the mean score on the MoCA was 

27.4.  

The demographic variables listed in table 6 reveal that older adults had significantly 

higher scores on the NAART35, WRAT-3 Reading, and education level [t(74) = -10.24, 

p < .01; t(74) = -6.027, p < .01; t(74) = -6.02, p < .01, respectively]. However, as with 

the previous experiments, these variables were not significantly correlated with reaction 

time.  

Table 6 
 
Experiment 4: Means and Standard Deviations of Participant Characteristics by Age. 

 
 

                                     Young Adults                 Older Adults 
Measure                   (n = 46)        (n = 30) 

 
Age in years    21 (2.2)   67.2 (5.6) 
Education in years   14.2 (1.27)   16.6 (2.20) 
WRAT-II Reading T-Score  51.32 (4.67)   57.03 (2.77) 
NAART-35 score   14.13 (4.86)   26.3 (5.83) 
NAART estimated FSIQ  104.01 (4.86)   116.18 (5.38) 
MoCA         27.4 (1.33) 
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Reaction Time Analyses 

Reaction times below 350 ms or above 2500 ms were removed from the data set. The 

outliers consisted of less than 1% of the data set and the cut-off points were used in order 

to remove only the minimal amount of valid reaction times. No list effects emerged 

[F(2,73) = .52, p = .59]. In other words, there was no significant difference in reaction 

times across the three experiment lists. As no list effects emerged, it was removed from 

the remaining analyses. 

Priming Effects 

Because we were interested in the possible facilitatory effects of semantic 

distance between prime-target pairs, results were analyzed using priming effects1. These 

scores are derived by taking each participant’s mean RT in the semantically close and 

distant pairs and subtracting it from their mean RT in the control (i.e., no semantic 

similarity) condition. The result is a difference score and this difference score represents 

the priming effect. A positive score indicates facilitation. A negative score indicates 

inhibition.  

  These priming effects were submitted to a 2 (close vs. distant pairs) x 2 (age: 

young vs. older) mixed design analysis of variance (ANOVA) for participants (F1) where 

priming effects was the within subjects variable and age was between subject. The item 

analysis (F2) was a 2 (close vs. distant pairs) x 2 (young vs. older) repeated measures 

ANOVA (for a summary of mean priming effects see Figure 5 and Table 8).  

                                                
1 As priming effects was our primary focus in the analysis, results from a secondary 

analysis of overall mean RTs are not described in detail. Mean reaction times, standard 

deviations, and error percentages are listed in Table 7.  
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Table 7 
 

Mean reaction time (RT), standard deviations (SD), and mean error rates as a  
 

function of semantic distance in prime target pairs and age in a lexical decision task. 
 

 
Age and Semantic                     RT                   SD   % Error 
Distance 

 
Young Adults         
 
 Close Semantic Pairs       696.73            188.78    1.76 
 
 Distant Semantic Pairs             732.92            206.07    3.26 
   
 Unrelated Pairs       727.40     201.65    2.58 
 
Older Adults 
  

Close Semantic Pairs       742.04            131.17     .42 
  

Distant Semantic Pairs             769.35            163.44    1.45 
 
Unrelated Pairs       783.25     157.24    1.04 

 

 
Figure 5. Mean priming effects as a function of semantic similarity in prime-target pairs 
and age. 
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The results reveal a main effect of prime type [F1(1, 74) = 11.72, p < .01; F2(1,47) = 

13.19 p < .01] indicating that close semantic pairs show a greater priming effect than 

distant semantic pairs. No main effects emerged for age [F1(1, 74) = .97, p = .33; 

F2(1,47) = .72 p = .39]; thus older adults did not show greater priming effects compared 

to younger adults.   

Older adults therefore show equivalent priming effects compared to young adults. 

Interestingly, although prior experiments demonstrated significantly slower overall 

response times for older adults compared to young adults, this difference did not reach 

significance in the participant analysis [t1(74) = -1.11, p = .27]. Nonetheless, in the items 

analysis it was significant, with older adults responding slower than younger adults 

[t2(47) = -5.75, p < .01]. 

Table 8 
 

Mean priming effects in milliseconds and standard deviations (SD) as a function  
 

of semantic distance of prime target pairs and age in a lexical decision task. 
 

 
Age and Semantic          Priming Effect              SD    
Distance 

 
Young Adults         
 
 Close Semantic Pairs            30.66            85.40   
 
 Distant Semantic Pairs              -5.5              73.79     
   
 
Older Adults 
  

Close Semantic Pairs            41.21                       71.01     
  

Distant Semantic Pairs            13.95                       68.45     
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Error Analyses 

Older adults had lower error rates than younger adults [F1(1, 74) = 8.67, p < .01; 

F2(1, 47) = 15.52, p < .01]. However, there were no differences in errors across prime 

types [F1(2, 148) = 2.31, p = .1; F2(2, 94) = 2.17, p = .12]. The prime x age interaction for 

errors did not reach significance [F1(2, 148) = .07, p = .93; F2(2, 94) = .34, p = .72]. 

Discussion 

The priming paradigm allows for a potentially more naturalistic experience of language 

to compliment the findings of semantic impact on single word reading. In this study close 

semantic neighbours were more effective primes than distant semantic neighbours. This 

finding provides evidence that even subtle changes in semantic relatedness (from a close 

to more distant prime) impact word recognition and thus highlights the important 

contribution of semantics. Similar to past results, older adults were more accurate in their 

lexical decisions compared to young adults.  

The goal of this experiment was to examine subtle differences in the use of 

semantic information with aging. Although prior research has shown, in some cases, 

larger semantic priming effects with older adults (e.g., Laver & Burke, 1993 & Myerson 

et al., 1992; 1997), this was not found in the present experiment. In fact, these results are 

more in line with prior research demonstrated equivalent priming effects for young and 

older adults (e.g., Burke, White & Diaz, 1987; Chiarello, Church, & Hoyer, 1985; White 

& Abrams, 2004). The findings are also consistent with results of Experiments 1-3 

demonstrating intact semantic processing for older adults.  
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CHAPTER 3: 

GENERAL DISCUSSION 

There were two main objectives in this series of experiments. The first was to examine 

the influence of semantic neighbourhood characteristics in visual word recognition. 

Using a lexical co-occurrence model, this was done by first defining what constitutes a 

semantic neighbourhood. The second and third experiments examined the influence of 

semantic neighbourhood size and density. Finally, the fourth experiment involved 

priming with either a close or more distant semantic neighbour. The results of this series 

of experiments serve to underscore the importance of the role of semantics in word 

recognition. 

The second goal of the experimental series was to examine how aging may affect 

semantic processing by comparing young and older adults. The results provide an 

indication of the impact of neighbourhood effects and semantics in healthy aging. The 

present study is one of few experiments that involves an in depth exploration of semantic 

neighbourhood characteristics and their impact of word reading alongside an examination 

of aging and semantics.  

In order to understand the impact of semantic neighbourhood size and density, 

neighbourhoods first needed to be defined within the WINDSORS model. As the model 

is composed of a very large number of words, at some point semantic relatedness 

between words becomes quite minimal. Although words that are located close to a target 

word in semantic space reflect much shared semantic similarity, words that are very 

distantly related may ultimately reflect loose or weak semantic associations. Defining 

neighbourhood size provides a means to discriminate between a true semantic neighbour 
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and non-neighbour. By testing various neighbourhood sizes, the results from Experiment 

1 provided evidence using behavioural data that neighbourhood size does impact lexical 

decision times. This finding is consistent with findings from other lexical occurrence 

models (e.g., HAL; Lund & Burgess, 1996) as they have been found to capture multiple 

forms of semantic relatedness including associative and categorical information as well 

as behavioural data. Thus this experiment provides evidence that the WINDSORS model, 

which has been shown to previously capture many aspects of semantic memory (Durda & 

Buchanan, 2008), also using behavioural data is able to define semantic neighbourhood 

size. 

The results from experiment 1 formed the basis for further exploration of the 

effects of neighbourhoods by defining the boundaries of neighbourhood size. The goal of 

the second experiment was to experimentally manipulate the size of the neighbourhoods 

in order to examine the effect on lexical decision reaction times. The outcome of 

experiment 2 revealed that words with many semantic neighbours were responded to 

more quickly in a lexical decision task than words with few semantic neighbours. This is 

similar to research findings of a facilitative effect for words with greater semantic 

richness, denser semantic neighbourhoods, and words with more lexical associates (e.g., 

Balota et al., 2004; Buchanan et al., 2001; Pexman et al., 2008; Siakaluk et al., 2003; Yap 

et al., 2011; 2012; Yates et al., 2003). However, the finding of facilitative effects of large 

semantic neighbourhoods does not take into account the spread or distribution of 

neighbours throughout the neighbourhood.  To address this, the third experiment 

involved experimentally manipulating semantic density (that is, whether a word had 

many near neighbours versus a more distributed semantic neighbourhood). Indeed 
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density effects were found as words with dense neighbourhoods resulting in slower 

lexical decisions than words with dispersed neighbourhoods.  

Current findings and models of visual word recognition 

The results from experiment 2 can be interpreted within several different models 

including interactive activation models using top-down/bottom-up processing and PDP 

models. For example, the modified IAC model proposed by Balota et al. (1991) suggests 

that semantics is activated pre-lexically and can influence reaction time through feedback 

connections. For the current results, increased semantic activation is fed back to the 

orthographic level, which allows for faster reaction times, as the orthographic level is that 

which is responsible for making lexical decisions. Words with more neighbours create 

stronger activation at the semantic level that causes greater activation and quicker 

response in a lexical decision task. In other words, stronger meaning representations 

provide for greater facilitation for word recognition.  

Alternatively, the present results could be accounted for using an interactive 

distributed feedback model (Hino & Lupker, 1996, Pexman & Lupker, 1999; Yates et al., 

2003). In a fully distributed model of this type, there are bidirectional links between 

orthographic, phonological, and semantic units. Lexical decisions are assumed to be 

made based on settling within the orthographic units. Once there is sufficient settling and 

stability, the system is able to make a “yes” response to a real word. The amount of 

settling that is required to indicate that a letter string is a word will vary based on a 

number of factors (Yates et al., 2003). In the case of semantics, neighbourhood effects 

occur due to enhanced feedback from the semantic to orthographic level. Larger semantic 

neighbourhoods are thought to have richer representations at the semantic level and, as a 
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result, enhance feedback. Strong feedback will lead to rapid settling within orthographic 

units (Pexman & Lupker, 1999). Therefore, the larger semantic neigbourhoods lead to 

faster settling and quicker response times in experiment 2 due to being more richly 

represented.  

 However, results from experiment 3 indicate that neighbourhood effects are not 

always purely facilitative. In fact, through a manipulation of the spread of neighbours, it 

was discovered that density slows reaction time. This is not entirely unexpected, 

however, if one considers results from neighbourhood effects in orthography and 

phonology that have been shown to be facilitative and competitive, respectively.  

Overall, there is well-established consensus on what determines a phonological or 

orthographic neighbourhood. In visual word recognition, low frequency words with many 

orthographic neighbours generally result in faster lexical decision times than words with 

few neighbours (e.g., see Andrews, 1997).  In contrast, for phonology, Luce and Pisoni 

(1989) found that words with many phonological neighbours (they termed this density) 

led to an inhibitory effect for spoken word recognition.  

Less is known, however, regarding semantic neighbourhood effects. With a 

multitude of ways to define semantic associations (i.e., features, associations, lexical co-

occurrence etc.) there continue to be quite disparate views of how to define semantic 

relationships and, in turn, semantic neighbourhoods. Additionally, it is important to note 

that in many cases density and neighbourhood size are used interchangeably in research 

of orthographic and phonological effects. However, in the present experiments they 

represent separate constructs: density is defined as the closeness of semantic neighbours 

to a target word while neighbouhood size is defined as the total number of semantic 
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neighbours. This has allowed for a more detailed examination of neighbourhood effects 

by looking at these areas separately. As the definitions of orthographic and phonological 

neighbourhoods’ generally does not allow for these separate distinctions, less is known 

regarding the size x density effects.  In the case of orthography, perhaps closest to the 

present experiments in density is the effect of letter transposition confusability. These 

experiments allow for a manipulation of lexical similarity as word pairs differ only in the 

order of two adjacent letters (e.g., silt/slit & trail/trial; Andrews, 1996). These may 

represent “closer” neighbours in that the letter is not completely replaced (as in the case 

of spit and slit) but is simply transposed thus preserving more of the overall orthography 

than a letter replacement but still differing slightly. In lexical decision and naming tasks, 

Andrews (1996) found that words that differed from another word by the order of two 

adjacent letters (transposition confusable words) were responded to more slowly than 

control words. Thus, transposition confusable words have an inhibitory effect on word 

recognition. This was further supported in a priming experiment where neighbour primes 

(e.g., sant - SAND) facilitated priming while the transposed letter prime (e.g., snad - 

SAND) led to inhibition. This is in contrast to facilitatory effects that are generally found 

with large orthographic neighbourhoods (Andrews, 1997). It was proposed that general 

similarity may help word identification, such as sharing all but one letter; however, 

increased similarity hinders identification (Andrews, 1996).  Similar to the findings in 

orthography, in the area of spoken word recognition, when words have a high amount of 

phonotactic similarity (defined as shared phonetic segments such as morphemes, 

syllables, and words) this appears to facilitate processing; however, words with large 

phonological neighbourhoods (words that sound similar to many other words) show an 
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inhibitory effect (Luce & Large, 2001; Vitevich & Luce, 1999). Therefore, in the area of 

phonology this may represent a similar neighbourhood effect of having many near 

neighbours creating a competition effect while having much phonotactic similarity is akin 

to more distant neighbours.  

Within an interactive activation model (IAC; McClelland and Rumelhart, 1981) 

these results may be explained through lateral inhibition and competition. In the lexical 

inhibition hypothesis, there are inhibitory connections between letter and word strings 

that compete for identification in a “best matching” strategy leading to word 

identification. As a result, semantically related words would automatically be activated 

upon viewing of a semantic associate. Thus words with many close neighbours may 

cause a delay in word identification as very similar associates are inhibited prior to the 

identification of the word and “yes” response.  

The results may also be explained in terms of connectionist modeling. For 

example, Mirman and Magnuson (2008) tested an attractor based model of semantics 

using semantic features. Results from the model were similar to behavioural data in that 

the model’s settling rate was faster for words with few near neighbours and words with 

more distant neighbours. Thus distant neighbours created settling to the correct attractor 

and near neighbours behaved as competitor attractors, which resulted in increased 

processing time. They proposed that these are the effects of “familiarity facilitation” and 

“competitor inhibition” (Mirman & Magnuson, 2008). This may also account for similar 

results obtained in the present experiments. Large neighbourhoods produce facilitation 

because in this overall continuum of settling, more familiar words enhance settling rates 

while in the case of denser semantic neighbourhoods, many near neighbours may delay 
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the identification as their high degree of shared semantic similarity may create 

competition and inhibition amongst neighbours. Thus, interestingly, within the same level 

and task demands, different results are obtained due to varying neighbourhood 

characteristics.  

The final experiment provided an extension using a priming experiment. This 

allowed for an indication of how semantic information might be used when presented 

within a context. It also provides information on the relationship between neighbouring 

words. The findings, as expected, indicate that a close semantic associate facilitates 

reaction time to a target word compared to both a more distant word. The effects of 

semantics appear to be most effective for close associates, which show a strong 

facilitation effect. The priming experiment further validates the lexical co-occurrence 

model by going beyond the single word and examining how contextual information, 

which might be more closely associated to procedures used during typical word reading, 

is impacted. 

Aging and Semantics 

The second major goal of the experiment series was to further elaborate on the 

role of aging in neighbourhood effects. As described in the introduction, despite age-

related documented declines in many areas of cognitive functioning, verbal abilities 

appear to be one of the few areas that remain intact during healthy aging (Schum & 

Sivan, 1997; Verhaeghen, 2003). The current research compared young and older adults’ 

in each experiment. The findings indicate that older and younger adults had identical 

neighbourhood effects including cut-offs for semantic neighbourhood inclusion in 
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experiment 1, facilitation of large semantic neighbourhoods in experiment 2, and 

competition for words with dense semantic neighbourhoods in experiment 3.  

Not surprisingly, experiments 2 & 3 found that older adults generally have longer 

reaction times than younger adults. These slowed reaction times for older adults are 

consistent with declines in processing speed with aging. Indeed, speed of information 

processing has been shown to steadily decline during adulthood with an onset occurring 

as early as early adulthood (Salthouse, 2010).  

Experiment 4 extended these findings through a priming experiment and 

examined subtle influences in how older adults use semantics when there is a context. 

Previous research has shown that older adults show larger priming effects (e.g., Cerella, 

1985; Laver & Burke, 1993; Lima et al., 1991; Madden et al., 1993; Myerson et al., 

1992). Alternatively, researchers have also found generally equivalent priming rates 

between older and younger adults (e.g., Burke et al., 1987; Chiarello et al., 1985; White 

& Abrams, 2004) and others have shown that when cognitive slowing and attention are 

controlled (e.g., Giffard et al., 2003; Laver, 2009) age related differences in priming 

disappear. The current findings are consistent with this research and show no significant 

differences in priming effects with age. This therefore suggests that young and older 

adults are similarly impacted by semantic information in a priming context.  

Several theoretical models were proposed to account for age differences in 

performance on semantic tasks. For example, the transmission deficit hypothesis (e.g., 

Burke et al, 2000), proposes that healthy older adults not only have intact semantic 

systems but have more elaborated interconnected semantic networks. Proponents of this 

model would predict that older adults are more sensitive to semantic manipulations than 
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their younger participants. According to this theory, a more richly represented semantic 

system may have created facilitation by distant semantic associates in older but not 

younger adults. However, the current results are not consistent with this theory. Greater 

priming effects for older adults were not seen compared to young adults.  

According to the inhibition deficit hypothesis (Hasher & Zacks, 1988; 1997), 

older adults have a more difficult time inhibiting irrelevant stimuli such as semantic 

information. For example, Hamm and Hasher (1992) found that older adults maintained 

possible interpretations of stories longer than younger adults. Thus it is possible that older 

adults are more sensitive to semantic information due to their inability to inhibit its 

activation during priming. This may result in greater facilitation for more distant 

neighbours as semantic information is kept “on-line” for a longer duration of time 

creating an advantage for semantic processing. Though this offers an advantage in an 

experimental manipulation, it may not translate into an everyday advantage for older 

adults. With decreases in processing speed that accompany aging, coupled with difficulty 

inhibiting irrelevant or unnecessary information, older adults may struggle with 

increasing demands on working memory which, in turn, impacts their ability to process 

information. However, the prediction of enhanced priming for a distant semantic 

associate leading to similar priming effects for close and distant neighbours due to a lack 

of inhibition was not seen in the context of experiment 4. Furthermore, older adults 

displayed an identical pattern to young adults in experiment 3 of inhibition for words 

with dense neighbourhoods and facilitation for more distributed neighbourhoods. A lack 

of inhibition in this experiment would suggest greater competition for older (compared 
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with younger) adults with close and distant neighbours, but this finding was not 

supported.  

According to Salthouse’s (1996) general slowing hypothesis, speed of information 

processing decreases with age affecting a variety of cognitive functions. Although not all 

abilities are affected equally, the theory posits that within a particular domain, cognitive 

processes are equally slowed. Despite the fact that older adults had slower reaction times 

than younger adults in experiments 2 & 3, experiment 4 showed no age related 

differences in reaction times. The reason for this finding is unclear but it may be possible 

that this equivalence in reaction times may be the root of equivalent priming effects. Prior 

research has shown that once cognitive slowing has been controlled age related 

differences in priming effects disappear, as longer reaction time latencies appear to 

provide additional time for the build-up of semantic activation within the lexical system 

(Giffard et al., 2003; Laver, 2009). Thus, in experiment 4, the lack of age related 

differences in RT may have served to control for general slowness with the result of 

equivalent priming rates for young and older adults. Equivalent priming effects in 

experiment 4 support the notion that automatic spreading of activation across the 

semantic system (with the eventual accumulation on a target node) does not slow with the 

aging process despite other slowed cognitive abilities such as processing speed.  

Additionally, older adults were superior in their accuracy ratings compared to 

younger adults showing overall lower error rates throughout the experiment series. This 

may be indicative of a speed-accuracy trade-off in which older adults take longer to 

respond to ensure their accuracy. However, in experiment 4 there were no age differences 

in RT and there continued to nonetheless be superior accuracy rates for older adults. One 
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possible explanation for overall greater accuracy in older adults may due to enhanced 

knowledge of lexical status through experience with language. Older adults consistently 

showed higher estimated IQ, education levels, and reading levels. Although these 

variables were not correlated with response times they may have had an impact on error 

rates as this group of more highly educated older adults likely has more familiarity and 

experience with language.   

 Taken together, these results indicate that older adults demonstrate intact 

neighbourhood effects. At a general level, these findings appear to support the 

proposition that semantic processing is preserved with aging and adds to growing 

literature suggesting, at a more global level, intact semantic memory with aging. 

Information on semantic abilities and aging provides an important opportunity for 

comparing healthy versus pathological aging, especially given that semantic degradation 

is a prominent feature of several forms of dementias. 

Reading level, Education, and IQ 

When examining scores of reading level through the WRAT-3 reading subtest, 

NAART35 estimated IQ, and education level, older adults scored significantly higher on 

the reading and IQ scores and had a higher level of education. Though prior research has 

demonstrated that reader skill is an important variable for examining during word 

recognition tasks (e.g. Chateau & Jared, 2000; Jared, Levy, & Rayner, 1999; Lewellen, 

Goldinger, Pisoni, & Greene, 1993; Sears et al., 2008; Stanovich & West, 1989; 

Unsworth & Pexman, 2003), the present experiments did not demonstrate this effect. 

More specifically, reading level, estimated IQ (based on the NAART – 35), and 

education did not relate to reaction time latencies. Interestingly, upon examination of 
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scores on the NAART35 for younger adults the results reveal that mean score for all the 

young adults participating in these experiments is 14 while normative data collected by 

Uttl (2002) reports a higher mean score of 20.6 for 20 year-old adults. Nonetheless, 

NAART scores were not correlated with response time latencies. 

Conclusions and Future Experiments  

This series of experiments has added to knowledge regarding semantic 

neighbourhood effects in visual word recognition. It has also added to our understanding 

of how these effects are impacted by aging. One area for extension of this work may be to 

examine these effects in different tasks. For example, in a semantic categorization task 

participants may be asked whether an item is a living or non-living item. By using a task 

like this performance is clearly dependent on a participant processing semantics and 

completing semantic coding (Hino, Pexman, & Lupker, 2006). Therefore, examining 

tasks in which explicit semantic processing is necessary may further add to our 

understanding of neighbourhood effects.  

Another interesting extension of this work on neighbourhood characteristics is to 

further break down the structure of semantic neighbourhoods. It is likely the case, 

especially with large neighbourhoods, that there are separate clusters of related words 

within a neighbourhood. These clusters may be part of a word’s neighbourhood, but the 

words in the cluster would also be highly related to one another. How the influence of 

semantic interrelatedness of clusters would impact word reading is unknown. The 

distribution of neighbours throughout a neighbourhood may be an important variable in 

semantics as clusters may exert inhibitory or facilitatory influences. Examining the 
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effects of these clusters on processing a target word would add another dimension to the 

study of density and size.  

Altogether, the role of semantics is an integral part of word reading. How 

semantics influences reading and how we come to represent similarity between words is 

an exciting area of research that adds tremendously to our knowledge of how we perform 

the amazingly complex task of translating print into meaning. This research serves to also 

deepen our understanding of neighbourhood effects by comparing reaction times from 

young and older adults. The addition of a healthy older adult group therefore provides a 

small glimpse into semantics in healthy older adults. Though the overall result is positive 

in that older adults’ responses were similar to young adults it also adds to our 

understanding of aging effects in semantics and provides a comparison group for those 

suffering from pathological forms of aging such as dementia. Though extraordinarily 

complex, the search for meaning in language can provide us with invaluable knowledge 

regarding cognitive abilities throughout the lifespan.  
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APPENDIX A 

 

Participant ID:_______________  Years of Schooling Completed:__________ 

Gender:  M F Age:________  Date of Birth:_______________________ 

Please Answer the Following Questions: 

What is your native language?__________________________________ 

Do you speak any language, other than English, fluently?    Y        N 

Have you ever been diagnosed with a learning disorder or speech disorder?     Y          N 

Have you ever received speech, language, or reading therapy?   Y        N 

If yes, did this therapy focus on a single speech sound such as a lisp 

Or difficulty pronouncing “r”?      Y            N 

Do you have a learning disability?    Y         N      If yes, what area does this disability effect: 

Reading     Y   N Writing  Y N Math  Y       N 

Do you have dyslexia?  Y N 

Does anyone in your family have any of the above learning difficulties?  Y            N 

Do you have ADHD/ADD?  Y          N 

Do you have normal (or corrected to normal) vision?  Y N 

Are you colour blind?  Y N 

Which hand do you use to hold a pencil when you write?      Left           Right   Both 

Which hand do you use to hold scissors?           Left           Right   Both 

Which hand do you use to throw a baseball?    Left           Right   Both 

Which hand do you use to brush your teeth?     Left           Right   Both 

Do you have anyone in your immediate family who is left-handed?    Y        N 

Have you ever had a head trauma resulting in a loss of consciousness?     Y       N 
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Have you ever had or do you have any neurological conditions such as Multiple Sclerosis, 

Parkinson’s or tumour? Y          N 
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APPENDIX B 

 

Participant ID:_______________  Years of Schooling Completed:__________ 

Gender:  M F Age:________  Date of Birth:_______________________ 

Please Answer the Following Questions: 

What is your native language?__________________________________ 

Do you speak any language, other than English, fluently?    Y        N 

Have you ever been diagnosed with a learning disorder or speech disorder?     Y          N 

Have you ever received speech, language, or reading therapy?   Y        N 

 If yes, did this therapy focus on a single speech sound such as a lisp 

 Or difficulty pronouncing “r”?      Y            N 

Do you have a learning disability?    Y         N      If yes, what area does this disability effect: 

 Reading     Y   N Writing  Y N Math  Y       N 

Do you have dyslexia?  Y N 

Does anyone in your family have any of the above learning difficulties?  Y            N 

Do you have ADHD/ADD?  Y          N 

Do you have normal (or corrected to normal) vision?  Y N 

Are you colour blind?  Y N 

Which hand do you use to hold a pencil when you write?      Left           Right   Both 

Which hand do you use to hold scissors?           Left           Right   Both 

Which hand do you use to throw a baseball?    Left           Right   Both  

Which hand do you use to brush your teeth?     Left           Right   Both  

Do you have anyone in your immediate family who is left-handed?    Y        N 

Have you ever had a head trauma resulting in a loss of consciousness?     Y       N 

Have you ever had a stroke or any other neurological conditions?   Y N 
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Do you have (or have you ever had) any of the following medical conditions? (Please Circle) 

Multiple Sclerosis  Brain Tumour    

Parkinson’s Disease  Alzheimer’s Disease 

High Blood Pressure  Diabetes 
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APPENDIX C 

Written instructions for lexical decision experiments: 

 
In this experiment you will be shown a series of letter strings. Each letter string will be 
presented one at a time at approximately the center of the screen. 
 
Your task is to decide whether the letter string is an English word (e.g., lake) or a 
nonword (e.g., laje). To indicate your decision press one of two keys. Press the "Z" key if 
the letter string is a word or the "?" key if the letter string is a nonword. Before each 
word a cross (+) will appear briefly in the middle of the screen  
 
Both speed and accuracy are important. Therefore, please try to make your decisions as 
quickly and as accurately as possible. 
 
We will begin with a set of practice trials. 
 
 Please press the "Enter" key when you are ready to continue. 
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APPENDIX D  

Large SN words used in Experiment 2 with their length in letters (L), orthographic 

frequencies, orthographic neighbourhood sizes (ON), phonological frequency and 

semantic neighbourhood sizes (SN) 

 
Large SNs                  Letters        OFreq                ONs         PFreq                     SNs  
 
TWIG 4 3.64 3 1.5969 612 
SLICK 5 3.48 7 2.1292 237 
RAMP 4 1.99 10 1.70336 283 
HERB 4 3.94 7 0.958139 235 
GASH 4 1.93 12 0.42584 278 
COPS 4 2.17 24 1.17106 264 
WAND 4 3.51 11 1.49044 393 
GRAM 4 1.4 8 2.55504 264 
CRYPT 5 2.6 1 0.21292 279 
BREW 4 2.48 7 3.51318 358 
LEAK 4 4.08 11 3.93902 383 
FLAIR 5 1.59 1 0.5323 356 
SLIME 5 2.4 5 0.42584 282 
NUDE 4 4.49 3 1.17106 329 
SIFT 4 1.22 5 0.21292 296 
STALE 5 5.17 13 1.91628 594 
PULP 4 2.81 4 1.17106 261 
RINSE 5 1.71 0 2.23566 357 
COLT 4 4.17 13 0.63876 241 
CRANK 5 2.9 6 0.74522 325 
GLAND 5 1.82 3 0.958139 338 
SHACK 5 2.71 9 1.80982 235 
PANE 4 3.6 20 0.5323 386 
BLINK 5 3.22 5 1.38398 244 
SPICE 5 3.77 7 3.08734 302 
MOOSE 5 3.91 6 1.17106 261 
VEST 4 4.31 11 3.30026 314 
FLAX 4 2.13 9 0.10646 291 
DODGE 5 4.6 2 0.958139 301 
FREAK 5 3.79 3 1.38398 229 
BOOZE 5 2.04 1 4.57778 306 
LISP 4 1.42 3 0.21292 434 
LARD 4 1.54 12 0.958139 282 
JAZZ 4 5.19 0 3.93902 436 
QUART 5 2.69 1 1.27752 436 
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SNACK 5 1.94 6 2.23566 342 
LEASH 5 2.27 3 0.42584 315 
MATH 4 1.01 11 0.31938 440 
BROTH 5 3.31 4 0.42584 380 
GROIN 5 2.38 3 1.5969 369 
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Small SN words used in Experiment 2 with their length in letters (L), orthographic 

frequencies, orthographic neighbourhood sizes (ON), phonological frequency and 

semantic neighbourhood sizes (SN) 

 

Small SNs                  Letters        OFreq                ONs         PFreq                SNs 

SHRUB 5 2.74 2 2.1292 52 
PLANK 5 5.79 9 2.23566 24 
BRIM 4 4.72 6 0.42584 43 
WHACK 5 1.65 2 2.87442 41 
QUITS 5 1.9 5 0.10646 44 
SCANT 5 5.46 3 0.21292 54 
FLUFF 5 1.09 1 0.958139 35 
CHIME 5 1.71 7 0.42584 43 
CHUM 4 3.44 3 0.85168 39 
RIFT 4 2.97 8 1.0646 50 
SPECK 5 4.3 2 0.74522 25 
WISP 4 2.07 4 0.31938 40 
PECK 4 4.34 11 0.74522 46 
CUSS 4 1.8 9 0.74522 42 
STORK 5 1.26 5 0.21292 47 
VOGUE 5 3.91 2 0.958139 39 
SKIP 4 4.75 9 7.87804 34 
GROPE 5 1.49 4 0.21292 51 
PAVE 4 1.17 14 1.5969 26 
CHUMP 5 1.57 6 0.42584 66 
STEED 5 4.25 5 0.31938 34 
LASH 4 4.66 14 0.5323 31 
SLUNG 5 4.26 7 0.958139 43 
FANG 4 3.13 10 0.74522 37 
SCAB 4 1.18 6 1.0646 26 
FRAY 4 4.54 7 0.958139 24 
SNOB 4 2.06 6 0.85168 56 
WICK 4 2.43 12 1.91628 33 
FLAKE 5 1.77 5 1.5969 28 
HOOF 4 3.67 8 0.5323 48 
DAZE 4 1.51 13 0.21292 55 
SPADE 5 5.1 6 3.83256 52 
GULL 4 1.84 13 0.31938 46 
MULL 4 1.38 13 0.63876 63 
SLUSH 5 1.36 6 0.31938 62 
DUNE 4 1.75 14 0.21292 46 
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CRAM 4 1.19 8 0.74522 16 
REIN 4 5.87 3 0.42584 57 
SPOOK 5 1.39 6 0.21292 31 
CLAP 4 3.29 11 3.08734 53 
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APPENDIX E 

Stimulus Set: Words from distributed semantic neighbourhoods used in experiment 3 

with their length in letters, orthographic frequencies (OFreq), semantic neighbourhood 

sizes (SN), and semantic similarity (SemSim). 

 

Distributed SNs                  Letters          OFreq                  SNs              SemSim 

TRAY 4 1.942 317 0.24 
FAINT 5 2.694 300 0.245 
CREEK 5 4.101 333 0.247 
MICE 4 4.712 356 0.248 
BRASS 5 5.035 305 0.252 
FOIL 4 4.503 315 0.256 
MOIST 5 2.265 409 0.258 
GRAPH 5 3.893 347 0.26 
SPINE 5 3.304 339 0.261 
PINE 4 4.442 336 0.262 
CLOTH 5 5.089 372 0.262 
CHAMP 5 1.952 403 0.262 
WELSH 5 2.467 326 0.265 
HOSE 4 4.842 424 0.265 
SHADE 5 3.125 326 0.266 
TIRE 4 5.602 377 0.266 
CRUST 5 3.255 391 0.267 
TREK 4 5.195 310 0.268 
GRILL 5 2.518 353 0.268 
STOVE 5 3.632 397 0.268 
WAIST 5 4.455 442 0.269 
PIER 4 1.069 302 0.27 
SPICE 5 2.144 302 0.27 
CHILL 5 3.565 320 0.27 
GLUE 4 3.655 357 0.27 
THIGH 5 3.669 393 0.27 
BEAN 4 4.087 311 0.271 
ROBE 4 3.17 473 0.271 
SWIM 4 4.142 332 0.274 
NODE 4 3.522 362 0.274 
QUART 5 1.12 436 0.274 
BLOND 5 2.372 316 0.276 
COIL 4 3.187 433 0.276 
NIECE 5 2.043 332 0.277 
SNACK 5 2.309 342 0.277 
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Stimulus Set: Words from dense semantic neighbourhoods used in experiment 3 with 

their length in letters, orthographic frequencies (OFreq), semantic neighbourhood sizes 

(SN), and semantic similarity (SemSim). 

 

Dense SNs                          Letters          OFreq                   SNs              SemSim 

BRAKE 5 5.399 399 0.284 
PORK 4 5.364 344 0.285 
SCENT 5 2.285 306 0.286 
SPEAR 5 1.918 322 0.287 
GLAND 5 1.972 338 0.288 
PEEL 4 2.563 303 0.289 
ROAST 5 2.651 420 0.289 
LOON 4 3.311 338 0.29 
HERD 4 3.902 304 0.291 
YACHT 5 2.311 349 0.292 
ZOOM 4 1.914 338 0.295 
PILL 4 5.586 315 0.296 
LACE 4 1.498 369 0.299 
BAKE 4 5.36 394 0.3 
CLOAK 5 3.132 322 0.303 
ZINC 4 1.44 323 0.303 
SCARF 5 1.459 340 0.303 
SILK 4 2.567 403 0.303 
BROTH 5 1.527 380 0.304 
DOUGH 5 4.106 359 0.307 
LIME 4 2.309 368 0.307 
NOUN 4 4.428 406 0.308 
BRIBE 5 5.728 363 0.309 
CHORD 5 3.391 341 0.31 
PSALM 5 4.774 362 0.31 
SAIL 4 4.806 378 0.311 
BREW 4 3.25 358 0.312 
STEAK 5 1.978 380 0.312 
PERM 4 4.2 312 0.318 
SKIRT 5 5.361 343 0.32 
WAND 4 3.252 393 0.32 
VERB 4 3.898 363 0.322 
VOLT 4 2.488 393 0.322 
FLUTE 5 1.076 303 0.333 
HOUND 5 3.229 347 0.339 
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APPENDIX F 

Stimulus Set: Target words and three prime types used in experiment 4.  

 

 Target                 Close Prime      Distant Prime      Unrelated Prime 

BAKE        loaf  bun   winch 
BRAKE   clutch  winch   heat 
BROTH boil  heat   theme 
CHORD  bass  theme  drape 
CLOAK  wand  drape  waltz 
FLUTE harp  waltz   brood 
HERD  sheep  brood   brake 
HOUND  breed  brake     wool 
LACE  blouse  wool  fruit 
LIME pulp  fruit  pun 
NOUN verb pun  glue 
PEEL rind glue  nurse 
PILL dose nurse lard 
PORK       beef lard  dose 
ROAST      steak steam  knot 
SAIL boat knot  bath 
SCENT  smell bath slip 
SILK  gown slip  smell 
SKIRT       hem sleeve  pierce 
SPEAR axe pierce hem 
STEAK pork lean ship 
VOLT watt prong bay 
YACHT ship bay shoot 
ZOOM lens shoot mint 
BEAN pea mint tool 
BRASS drum tool chess 
CHAMP match chess ice 
CHILL cool          ice shirt 
CLOTH gauze shirt bolt 
COIL fuse bolt duck 
CREEK lake duck fuse 
CRUST pie  mousse lake 
GLUE foam wire  sphere 
GRAPH curve sphere spray 
HOSE valve spray geese 
MICE rat geese heir 
NIECE aunt heir  bridge 
PIER  wharf  bridge root 
PINE oak root milk 
QUART pint milk blush 
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SHADE hue blush drink 
SNACK meal drink hue 
SPICE blend mix brain 
SPINE bone brain blend 
SWIM dive sport meal 
THIGH knee brace steer 
TIRE  wheel steer knee 
WAIST skirt sheer bun 
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