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ABSTRACT 

Many manufacturing and assembly challenges emerged due to the increased demand 

for products variety. Increased product variety caused by product evolution, 

customization and changes in their manufacturing systems. Variety allows manufacturers 

to satisfy a wide range of customer requirements, but it can also be a major contributing 

factor to complexity of assembly. Complexity is generally believed to be one of the main 

causes of the present challenges in manufacturing systems. Complex assembly systems 

are costly to implement, run, control and maintain. Complexity of assembly is an 

important characteristic worth exploring and modeling in the early design stage. 

Assessing complexity of a product is essential in being able to predict the cost and time 

needed to implement it. There is a relationship between the complexity of assembled 

products and the complexity of their assembly equipment and systems. The main 

objective of this research is to the complexity of assembly by: (1) Assessing the 

complexity of assembled products, (2) Assessing the complexity of their assembly 

systems, and (3) Derive the relationship between products and assembly systems 

complexities. 

 First, a product complexity model has been developed by incorporating the 

information amount, content and diversity as well as the Design for Ease of Assembly 

(DFA) principles for assembled products. The new product complexity model assesses 

the total product assembly complexity using aggregated index for individual parts 

complexity. The new measure accounts for the different parts’ assembly attributes as well 

as their number and variety. Second, a structural classification coding (SCC) scheme has 

been extended to measure assembly systems complexity. It considers the inherent 

structural complexity of typical assembly equipment. The derived assembly system’s 

complexity accounts for the number, diversity and information content within each class 

of assembly system modules.  Third, a dependency matrix which represents the 

interactions between parts assembly attributes and assembly system functions has been 

developed. It is used to predict the complexity of corresponding assembly equipment 



 

 vi  

used for a certain product. A relationship between parts complexity and assembly 

equipment complexity has been developed using regression analysis.  

This research is applicable to the mechanical assembly of medium size products.  An 

automobile piston, a domestic appliance drive, a car fan motor and a family of three-pin 

electric power plugs and their assembly systems were used as case studies to demonstrate 

the proposed approach and complexity assessment tools.   

The significance and importance of these research contributions is that: the 

developed complexity metrics can be used as decision support tools for products and 

systems designers to compare and rationalize various alternatives and select the design 

that meets the requirements while reducing potential assembly complexity and associated 

cost. Assessing complexity of assembly helps and guides designers in creating assembly-

oriented product designs and following steps to reduce and manage sources of assembly 

complexity. On the other hand, reducing complexity of assembly helps lower assembly 

cost and time, improve productivity and quality, and increase profitability and 

competitiveness. 
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NOMENCLATURE 

A Total area of the radar plot 

Cequip. Average complexity of assembly equipment 

Cf Average complexity factor 

Ch average handling complexity factor 

Ch,f Relative handling complexity factor 

Ci Average insertion complexity factor 

Ci,f Relative insertion complexity factor 

Cpart Part assembly complexity 

CIpart Part assembly complexity index 

Cproduct Product assembly complexity 

CIproduct Product assembly complexity index 

Csystem Assembly system complexity 

CIsystem Assembly system complexity index 

I Complexity index  

̅ ܫ Average complexity index 

J Number of handling attributes 

K Number of insertion attributes 

N Total number of units 

xp Percentage of the x୲୦ dissimilar parts 

a Shaded area of the radar plot 

n Distinct number of  units 

w Relative weight 

 Alpha rotational symmetry angle of part 
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β Beta rotational symmetry angle of part 

 
 

Subscripts 

B Buffer 

M Machine 

MHS Material Handling System 

f factor 

i insertion 

h handling 

j Class type,  j = M, MHS, B 
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assembly; this indicates the potential savings that can be generated by improving 

assembly technology and systems (S.Y. Nof et al., 1997). Assembly process greatly 

affects a product’s final quality and cost. The continuously shortening product life cycle 

requires a faster response speed as well as a lower defect rate in assembly production. In 

this situation, assembly quality control is becoming one of the most demanding problems 

in the modern manufacturing.  (Q. Su et al., 2010). 

Designing individual components with ease of assembly in mind can reduce 

assembly time significantly. This leads to savings in both equipment and human 

resources (A. Mital et al., 2008). Assembly systems must be designed to be responsive to 

new needs for increased variety and changeability while at the same time achieving 

quality and productivity. Mixed-model assembly lines have been recognized as a major 

enabler for handling product variety. Variety affects product design and structure, process 

planning, production planning and control, and manufacturing systems layout and 

material flow patterns (H. ElMaraghy, 2009c). As a result, the manufacturing 

environment becomes more complex when the number of product variants is high, which 

in turn, may impact the system performance. The significance and benefits of an 

appropriate complexity measure is obvious. 

To design successfully requires complexity be recognised and understood. 

Understanding complexity allows designers and design managers to identify complexity 

as a root cause of some of their problems and take steps to reduce or manage it. This 

complexity can be understood and described through a number of formal approaches.  

1.2 Research Objectives 

Managing complexity is very important for both products and their assembly 

systems development. The main objective of this research is to help manage complexity 

through: 

• Defining assembly complexity for both products and systems. 

• Developing complexity metrics for products as well as for assembly systems. 

• Investigating the relationship between product and system complexities. 
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The expected benefits are: 

• Support decision makers to rationalize the various design alternatives. 

• Managing drivers or sources of complexity of assembly will help in reducing 

assembly cost and time, improving productivity and quality, and increasing 

profitability and competitiveness.  

1.3 Dissertation outline 

The dissertation consists of the following six chapters: 

• Chapter one: introduces the research motivation, objective, and the outline. 

• Chapter two: presents a detailed literature review of the research work related to 

complexity, product assembly complexity, assembly system complexity.  The 

chapter highlights the opportunities for contribution in assessing complexity of 

assembly. 

• Chapter three: presents a complexity metric for assessing product assembly 

complexity. The metric was illustrated with a case study. 

• Chapter four: presents a static complexity metric for assessing system assembly 

complexity. The metric was illustrated with a case study. 

• Chapter five: presents a developed model to map the relationship between product 

complexity and assembly system complexity. The model was developed using 

regression analysis to predict assembly equipment complexity due to individual 

part complexity.  

• Chapter six: presents the conclusions and contribution of this research work and 

gives recommendations for further research work. 

• Appendices include the handling and insertion complexity attributes of individual 

parts and the structural classification code analysis of assembly equipment of the 

presented case studies. 
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related parts" or "difficult to understand or find an answer to because of having many 

different parts". Similarly, the Oxford Dictionary defines something as "complex" if it is 

"made of (usually several) closely connected parts". This implies that complex entities 

will be difficult to model, that eventual models will be difficult to use for prediction or 

control, and that problems will be difficult to solve. This accounts for the implication of 

difficult, which the word "complex" has been associated with in later periods.  

Defining the meaning of complexity itself is difficult. The definitions that have 

been offered are either only applicable to a very restricted domain, or so vague as to be 

almost meaningless. There are many attempts to provide a universally admitted definition 

of complexity. However, a single and generally acceptable definition does not exist (T. 

Blecker and N. Abdelkafi, 2005). The question, “what is complexity” remains vague until 

the target of the question is specified. A metric that works very well for a certain subject 

may not be suitable at all for other subjects (T.-S. Lee, 2003). The definitions of 

Complexity are as diverse as the world that they involve (Table 2. 1).  

Table	2.	1	Various	complexity	measures	and	their	applications	ሺadapted	from	T.‐S.	
Lee,	2003ሻ	

Complexity definition/measure Object 

Information/entropy An object with information, e.g. pattern 

Size (size in many different context) General 

Variety, Irreducibility (Biological) System 

Dimension, Irreducibility System (as an object of modeling) 

Connectivity, Cyclomatic number, Ease of decomposition System with network characteristic  

Stochastic complexity Physical processes or data 

Size of rules (or grammars), Sophistication Pattern (rules in a language) 

Boltzmann-Gibson entropy (Thermodynamic) System or state 

 Logical complexity Statement, Language, (Theory) 

Cognitive complexity Personality, Cognitive/behavioral 

Time (processing/execution/preparation) A task 

Resources (time/memory/others), Ignorance Solving a problem 

Concepts of complexity have been considered in disciplines including 

psychology, physics, management, engineering, and biological and information sciences 

(T.-S. Lee, 2003, C. Rodriguez-Toro et al., 2002).   
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The aspects of distinction and connection determine two dimensions 

characterizing complexity. Distinction corresponds to variety, to heterogeneity, to the fact 

that different parts of the complex object behave differently. Connection corresponds to 

the fact that different parts are not independent, but that the knowledge of one part allows 

the determination of features of the other parts. Distinction leads in the limit to disorder, 

chaos or entropy. Connection leads to order, like in an array, where the position of an 

object is completely determined by the positions of the adjacent objects to which it is 

bound. Complexity can only exist if both aspects are present. It can be concluded that 

complexity increases when the variety (distinction) and dependency (connection) of parts 

or objects increase. The process of increase of variety may be called differentiation; the 

process of increase in the number of connections may be called integration.  

Empirical studies show that there is a strong positive correlation between the 

measured complexity and the number of errors found in the implemented system (M.J. 

Kinnunen, 2006, M.V. Martin and K. Ishii, 1996, H. Shibata et al., 2003). Sarkis (1997) 

showed in his empirical analysis of productivity and complexity for flexible 

manufacturing systems that there is a continuous drop in productivity as the systems 

becomes more complex.  

To manage complexity, one should make the distinction between three measures 

to be taken, which are: complexity reduction, complexity prevention and complexity 

control. Complexity reduction aims at simplifying structures. Complexity prevention 

targets e.g. developing methods capable of assessing complexity. Complexity control 

deals with the rest of complexity that cannot be reduced (T. Blecker et al., 2004).  

Having an accurate definition of complexity is a necessary condition for being 

able to discuss and measure complexity. In terms of manufacturing processes, assembly 

costs and quality of the end product, complexity plays a very important role in the 

achievement of the best product design that not only takes into account the assembly 

planning but also the selection of the most suitable manufacturing process (C. Rodriguez-

Toro et al., 2002). Measuring and understanding complexity is very important for the 
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product development activity. Reducing complexity almost always reduces direct and 

indirect costs. The more complex the product is the more complex the supporting system.  

In many approaches complexity is only considered as a negative concomitant of 

product design; consequently, such approaches aim at avoiding or at least minimizing 

complexity by suitable strategies. However, complexity does not represent axiomatically 

negative characteristics in product design. The enhancement of complexity may also 

allow more flexibility; if, for example, the implied complexity refers to the quantity of 

product variants offered, an increased product variety can better match different customer 

requests that arise. This demands effective possibilities for controlling this kind of 

complexity, which enable enterprises to benefit from a wider range of products offered. 

For this reason, the structural complexity management is not only focused on complexity 

reduction, but aims at the creation of competitive advantages due to the control of 

complexity (H. Wang et al., 2011). 

2.1.1 Complexity in an engineering context 

A helicopter rotor blade is complex not only in its form and manufacture, but also 

in its functions. Its design process is complex to the extent that it avoids conventional 

process modelling, with a large number of closely interdependent and related shape and 

material parameters which are determined iteratively.  Off-road diesel engine designs are 

customised for users and subject to environmental impact legislation. Their complexity 

lies in the interactions between product and users (and the logistical effort involved in 

designing and producing thousands of slightly different products). Power generation 

switchgears are customisations of standard products. Managing several different products 

through the design and manufacture process produces complex scheduling problems 

under constraints of uncertainty and finite capacity resources (H. Wang et al., 2009). 

A design may be structurally complex – an engine has many parts and specific 

functional relations between parts.  Parts and relations between parts form a hierarchical 

structure which is not necessarily tree-like but may display more connected network 

properties. A rotor shaft in a jet engine belongs to both the turbine and the compressor. 
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operational behaviour and the unpredictability in the behaviour of the system over a time 

period (A.V. Deshmukh et al., 1998, O. Kuzgunkaya and H. ElMaraghy, 2006, C. 

Rodriguez-Toro et al., 2004). When both complexities are low, then the system is simple. 

In the case of a high (or a low) structural complexity and a low (or a high) dynamic 

complexity, the system is considered to be relatively complex. When both complexities 

are high, then the system is said to be extremely complex. (T. Blecker et al., 2004). 

Despite the lack of formal definition of complexity, it is well accepted that 

modern engineering systems are becoming more and more complex. Typical examples of 

using the term complexity or complex would be Boeing-737 is a complex system; and an 

automobile is less complex than an aircraft. A large system has large complexity; a 

system with modular design has lower complexity (T.-S. Lee, 2003).   

The concept of complexity is relative to two dimensions: uncertainty and time (A. 

De Toni and S. Tonchia, 1998). Uncertainty may be informative (lack of information) 

and cognitive (subjective limits of the agents taking the decisions). Time intervenes in 

terms of sequence (for the irreversible nature of the decisions) and accumulation (for the 

increasing wealth of knowledge which can improve decision-making performances). For 

example, a manufacturing system may have thousands of part types during a year while 

the demand for these products arrives and varies almost randomly. There may be 

hundreds of machines in a plant that might fail at any time. At each moment, the 

managers are faced with hundreds of decisions, such as which part should loaded onto 

each machine next and must make decisions in spite of insufficient information. The 

sequences of each decision are hard to predict. 

2.1.3 Reasons for Measuring Complexity 

Modern manufacturing systems that are highly automated, many devices such as 

material processing, handling and transportation are integrated together to produce highly 

complicated products. These devices are integrated using information technology and this 

has increased the complexity in decision making under disruptive events, for example, 

machine break-downs (S. Cho et al., 2009). Complexity cannot increase indefinitely. For 
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any given system there exists a critical upper threshold of complexity beyond which it is 

impossible to evolve. At critical complexity, the system will experience loss of 

functionality and fitness. Critically complex systems are fragile. Once we’re close to such 

a threshold, the system becomes fragile and can suddenly transition to another state; it 

can run out of hand or even fail. It is evident, therefore, that if we wish to sustain the 

development of a system we must know to what limits this development may be safely 

pushed. Consequently, it becomes imperative to study complexity, its evolution, and to 

understand at what peak levels of complexity a manufacturing system becomes fragile 

and stay away from these upper complexity thresholds.  

Some Facts about Complexity:  

• Complexity is a natural property of every system. It is defined as a mix of 

interdependency and uncertainty. Humans instinctively try to stay away from 

highly complex scenarios because of one fundamental reason – high complexity 

implies a capacity to deliver surprising behaviour. 

• ‘Complex’ does not imply ‘complicated’. A highly complicated system may 

possess numerous components (e.g, a watch movement) and yet be unable to 

behave in an unexpected manner. Systems with very few components, on the 

other hand, may be extremely difficult to manage and without being complicated. 

• A more complex system is less responsive to change (Ontonix, 2010) the amount 

of functionality of a system is proportional to complexity, a complex system can 

perform more functions but at a price: they are not easy to manage and control. 

• You can’t make precise statements about a highly complex system (Ontonix, 

2010). 

• Clear definition of the complexity concept that properly addresses the causes of 

complexity leads to a systematic approach for complexity reduction (M.J. 

Kinnunen, 2006, T.-S. Lee, 2003).  

• An effective method for controlling complexity allows for the prediction of 

change impact extending to different domains, e.g. departments and people in 

charge (U. Lindemann and M. Maurer, 2007).  
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• The complexity is strongly correlated with manufacturing cost and performances 

and can be evaluated in cases where cost-based models fail (M.L. Fisher and C.D. 

Ittner, 1999, J.P. MacDuffie et al., 1996). 

• Complexity is often inherent in systems and cannot be eradicated. However, it is 

possible to take active steps to reduce complexity in the hope of reducing the risk 

of problems occurring in the design process (H. Wang et al., 2009). 

Measuring complexity for the sake of measurement would be worthy sincere 

academic interest but of no value for practicing systems architects. Measuring and 

understanding complexity of systems architecture models is, however, very important for 

the whole product development activity. The more complex a system, the more expensive 

and risky is the design and implementation effort. Any unnecessary complexity is a risk 

for the final result and lowers the overall efficiency. Given a measure of complexity, 

systems architects and product development managers should strive for even distribution 

of complexity. Such a distribution will help in managing and balancing their available 

resources and avoid bottle necks in their systems.  If this is not possible, they should 

assign extra resources and attention to the more complex subsystems. Measuring 

complexity of a product is essential in being able to predict the cost and time needed to 

implement it.  

Research has been done in the area of developing some sort of quantification as 

described in the following section. 

2.1.4 Complexity Measures 

Research has been done to measure and quantify complexity using either 

entropy/information content approach (A. Calinescu et al., 2000, A.V. Deshmukh et al., 

1998, O. Kuzgunkaya and H. ElMaraghy, 2006, N.P. Suh, 2005) or heuristics approaches 

and indices (W. ElMaraghy and R.J. Urbanic, 2003, W. ElMaraghy and R.J. Urbanic, 

2004, Y.-S. Kim, 1999, M.V. Martin and K. Ishii, 1996, H. Shibata et al., 2003). 

Complexity, uncertainty and information are linked to each other. One might suspect that 

the concept of complexity is not different from the information content: complexity is 
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defined as a measure of uncertainty, and the information content is defined in terms of 

probability of success for certain functional requirement(s) that is, in fact, uncertainty. As 

uncertainty grows, the system becomes more complex since more information is required 

to describe and monitor each state of the system (T.-S. Lee, 2003). 

2.1.4.1 Entropy / information approach 

The concept of information, originally developed by Shannon (C.E. Shannon, 

1948), which expresses uncertainty about an information source in terms of probability, is 

much used in literature. The basic idea behind most definitions of information entropy 

approaches is that the more information that an expression or a model contains the more 

complex it is (M.J. Kinnunen, 2006), i.e.,  

1ሻܯሺܫ ൐ 2ሻܯሺܫ → 1ሻܯሺܥ ൐  2ሻܯሺܥ

where M1 and M2 are models,	ܫሺ1ܯሻ, ܫሺ2ܯሻ	are the amount of information in M1 and 

M2 respectively, and ܥሺ1ܯሻ, ܥሺ2ܯሻ	are complexities of M1 and M2 respectively.  

The definitions differ in the way they measure the amount of information.  

Two basic assumptions in entropy approaches are: 

1. Complexity is a universal quantity that exists, to some degree in all objects, 

and there is a uniform metric for measuring the complexity of a system.  

2. Independence between components is usually assumed to make the metric 

simple. 

The advantage of the entropy/information approach is that it produces one number 

indicating the amount of complexity. This advantage facilitates the comparison between 

several systems options in terms of their level of complexity given by a single number. 

This is possible since the information is measured by the logarithm of probability 

function that has the same dimension while representing many different characteristics of 

a system.  
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Figure	2.	5	Common	range	as	a	fraction	of	system	range	ሺadapted	from	N.P.	Suh,	
2005ሻ	

The gained complexity of existing technical systems with time-independent ݏܴܨ 

consists of real complexity due to system ranges fail to meet design ranges for some FRs, 

and imaginary complexity due to lack of knowledge of system’s functional structures and 

operation sequences. The key to reduce or eliminate gained complexity for these systems 

to achieve design ideality is to achieve functional independence among multiple ݏܴܨ 

This can be done through new design or design modifications to ensure that system 

ranges are always inside design ranges for all ݏܴܨ at all times (Schleich H. et al., 2007). 

2.1.4.3 Heuristic approaches 

Heuristic approaches use metrics based on personal experiences. They are easy to 

apply to real systems, easy to collect data, interpret, and eventually improve systems. 

However, the extent to which certain metrics reflect the actual system complexity can be 

argued. Also, they are usually not universally applicable to different types of systems as 

for each system we may have different parameters or constants.  Calinescu et al. (2000) 

have proposed some formulae for the assessment of complexity. Their study is based on 

entropic measures of information, divided into static (structural) and dynamic 

(operational) aspects of complexity. They proposed a methodology for measuring the 

complexity of manufacturing systems and their supply chains. Their research is directed 

more at management of the manufacturing processes, rather than the details of the 

processes themselves.  Braha and Maimon (1998) introduced two definitions of design 

complexity; structural and functional complexities.  Structural Design Complexity states 

2

system range
I = log

common range

 
 
 

System Range  

P
ro

ba
bi

lit
y 

D
is

tr
ib

ut
io

n 

   Design Range 

Common Range 



th

in

d

in

sp

co

op

co

m

sy

b

in

ap

F

to

co

(2

m

pr

pr

id

hat design c

nformation in

irectly base

nformation i

pecification 

omplexity in

peration to s

ompared ba

methodology 

ystematic m

asic element

nformation, a

pplied to me

Figure	2.	6	E

This c

o consider co

ognitive com

2009) deve

manufacturin

robability d

rocessing tim

dentifies a 

complexity 

n the structu

ed on its i

s a distinct n

of what a

n the functi

satisfy the g

ased on the

to assess p

anner and d

ts of comple

and 3) the in

easure produ

Elements	of	

complexity m

omplexity in

mplexity rel

eloped an 

ng systems  

distribution 

mes, part m

manufactur

Quan
Inform

is a functi

ural way stat

internal stru

notion, inde

a structure 

ional way m

goals of the 

eir output. 

product and

derived produ

exity: 1) the 

nformation c

uct and proce

Complexity

model was a

n machining 

lated to the 

information

including a

of informa

mix ratios an

ing system

tity of 
mation 

17 

on of the d

tes that the q

ucture. Func

pendent of r

should be 

means inform

system. Alte

W. ElMara

d process co

uct and proc

absolute qu

content as ill

ess complexi

y	ሺadapted	fr

also extende

at the opera

operator’s 

n entropy 

ssembly and

ation regard

d process p

that has 

Complexit

Informatio
Content

design’s inf

quantity of in

ctional Des

representatio

able to do

mation can b

ernatively, t

aghy and U

omplexity a

cess complex

uantity of inf

lustrated in F

ity in machin

from	W.	ElM

d by W. ElM

ational level 

perception 

model to 

d disassemb

ding resourc

lans or rout

evenly dist

ty 

on 
t 

Div
Info

formation c

nformation m

sign Comple

on. Informat

o. Defining

be described

two design p

Urbanic (20

and their in

xity indices.

formation, 2

Figure 2. 6. 

ning.  

Maraghy	and

Maraghy and

by including

in manual t

assess the 

bly systems. 

ce allocation

tings. The c

tributed inte

versity of 
ormation 

content. Def

may be mea

exity states

tion serves a

g design pr

d in terms o

processes ma

003) present

nterrelations 

. They used 

2) the diversi

Their mode

d	Urbanic,	2

d Urbanic (2

g some aspec

tasks. Cho 

complexit

The model

ns such as 

omplexity m

eractions am

 

fining 

sured 

 that 

as the 

ocess 

of its 

ay be 

ted a 

in a 

three 

ity of 

el was 

 

003ሻ	

2004) 

cts of 

et al. 

ty of 

l uses 

part 

model 

mong 



re

id

2

C

co

co

tr

v

co

b

ac

T

m

an

m

E

st

d

in

esources as 

dentify sourc

.1.5 Struct

H. ElM

Classification

omplexity d

onfiguration

ransporters a

alue of whic

omplexity o

iological DN

ccounts for t

The use of the

Kuzgunk

metric for as

nd applied i

metric incorp

ElMaraghy e

tructural fea

evelop a c

ncorporates i

being more 

ce of the disr

tural System

araghy (20

n Code (SCC

due to the 

n.  It consists

and the type

ch depends o

of these enti

NA identifie

the complex

e SCC code 

kaya and H. 

ssessing the 

it to machin

porates the q

et al. (2010

atures of va

code-based 

information 

complex, b

ruption.  

ms Complexit

006) develo

C), which ca

characteristi

s of fields rep

e of system 

on the degre

ities. The re

r for the sy

xity inherent 

was illustrat

Figure	2.	7

ElMaraghy

structural c

ning systems

quantity of i

0) extended

arious assem

complexity 

content, div

18 

because in th

ty Code 

oped a nov

aptures the 

ics of manu

presenting e

layout.  Ea

ee of structu

esulting cod

stem charac

in the variou

ted for meta

Machine	ty

y (2006) use

complexity o

s for illustra

information 

d the origin

mbly equipm

metric (S.N

versity and qu

his case mor

vel manufa

inherent stru

ufacturing s

equipment, s

ach field con

ural, control,

de string (F

cteristics (H.

us modules 

al removal m

ype	code	str

ed that comp

of manufact

ation. This s

using an en

nal code to

ment and us

N. Samy a

uantity of in

re informati

acturing sys

uctural and 

system mod

such as mach

ntains a stri

, programmi

Figure 2. 7) 

. ElMaraghy

in the manu

machine tools

ring		

plexity code

turing system

structural sy

ntropy formu

o include a

sed the exte

and H. ElM

nformation. 

ion is requir

stems Struc

operation-re

dules and la

hines, buffer

ing of digits

ing and oper

 is similar 

y et al., 200

ufacturing sy

s.  

e in develop

m configura

ystem compl

ulation. Late

assembly-spe

ended versio

Maraghy, 20

 

red to 

ctural 

elated 

ayout 

rs and 

s, the 

ration 

to a 

05). It 

ystem. 

ping a 

ations 

lexity 

er, H. 

ecific 

on to 

010c) 



 

19 

2.1.6 Complexity and Variety 

Variety of products introduced in today’s market place has increased 

significantly. However, increase of variety does not mean necessarily mean increase of 

profit from increased sales. Initially, variety increases sales and profit as product 

offerings become more attractive. As variety keeps growing, the profit may decrease as a 

result of increased cost and complexity of manufacturing. In order to keep the maximal 

profit of the increased variety, manufacturing system cost and complexity should be 

considered with the introduced variety. 

It has been shown that increased product variety has a negative impact on the 

performance of the assembly process, such as quality and productivity. Such an impact 

can result from the assembly system design as well as people performance in the presence 

of high variety (X. Zhu et al., 2008). Product variety causes changes in the product 

structure. The impact of structural change of the product on the manufacturing processes 

may cause an increase in complexity.  The process complexity and equipment cost 

increase because of the required flexibility in handling components, or subassemblies of 

different shapes or configurations.  Additional equipment may need to be installed to 

assemble the parts of different types. Moreover, because of the differences in the number 

of components, additional assembly stations and floor space may also be required, 

resulting in low utilization of the facility. Increased product variety adds more 

complexity to the manufacturing system and will be followed by increased production 

cost (Y.-S. Kim, 1999). High product complexity can have a significant impact on many 

cost areas in manufacturing, inventory and distribution. The significance of an 

appropriate complexity measure that reflects the impact of variety on complexity is 

obvious.  

Recently, complexity has been defined in an analytical form for manufacturing 

systems as a measure of how product variety can complicate the process. MacDuffie et al. 

(1996) used multiple product complexity measures derived from the statistical analysis of 

the productivity of 70 auto assembly plants worldwide to test the impact of product 

variety on productivity and quality. Similar work was done by Fisher and Ittner (1999). 
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Their research was performed from a managerial perspective.  They used empirical tests 

of data from an automotive assembly plant and simulation analyses of a generic auto 

assembly line to examine the impact of product variety on automobile assembly plant 

performance. Their analyses indicated that greater day-to-day variability in option 

content has a significant adverse impact on total labour hours per car produced, overhead 

hours per car produced, assembly line downtime, minor repair and major rework, and 

inventory levels, but doesn’t have a significant short-run impact on total direct labour 

hours. Martin and Ishii (M.V. Martin and K. Ishii, 1996) developed metrics to measure 

and compare the costs of product variety. They developed three indices: commonality of 

the parts index, differentiation point in manufacturing processes index and the setup costs 

index. The costs related to the increased product variety can be decreased by increasing 

the commonality of parts, postponing the differentiation point, and decreasing setup 

costs. 

Shibata et al. (2003) developed a design-based complexity factor derived from the DFA 

method for evaluating product complexity. Fujimoto, et al. (2003) introduced a 

systematic information entropy-based methodology to strategically manage product 

variety by synthesizing product-based and process-based varieties measures.  Ding et al. 

(2010) and Sun and Ding  used Data Envelopment Analysis (DEA) models for comparing 

the relative product complexities related to product variety among similar products and to 

prioritize attributes for complexity reduction consideration related to product variety for 

an automobile assembly plant. Sarkis (1997) studied the productivity of flexible 

manufacturing systems as they become more complex. Complexity was measured by the 

number of numerically controlled machine tools and industrial robots in the system. In a 

flexible manufacturing system (FMS), a larger number of numerically controlled machine 

tools and industrial robots requires more operation and control efforts, including 

scheduling and transportation, which may lead to higher complexity. Productivity was 

analyzed by using data envelope analysis with the inputs consisting of complexity 

measures and the outputs consisting of process/inventory reduction, lead time reduction, 

unit cost reduction and personnel reduction measures. This complexity analysis may not 

be generally applicable to systems other than FMS. Wang et al. (2010) proposed a 
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complexity model to find the best combination of product variants to maximize market 

share and minimize manufacturing complexity in serial, manual, mixed-model assembly 

lines where operators have to make choices of parts, tools, fixtures. Their model is then 

extended by Wang and Hu (2010)  to include assembly systems with parallel and hybrid 

assembly lines. They showed that variety induced complexity impacts the reliability of 

the assembly line. H. ElMaraghy (2009a) introduced a hierarchy of variations from 

products features to products families, portfolios and platforms and illustrated the effect 

of these variations on several manufacturing support functions and enablers of change at 

the product design, process planning and product families definition. The concept of 

evolving families for varying parts and products was introduced and led to developing 

innovative perspectives on process planning in this environment (A. Azab and H. 

ElMaraghy, 2007). H. ElMaraghy et al. (2008) introduced for the first time a novel 

approach for studying the evolution of products and their manufacturing systems using a 

biological analogy. AlGeddawy and H. ElMaraghy (2009) used this biological metaphor 

and cladistics models to design assembly systems that effectively achieve delayed 

products differentiation while satisfying the desired products variations. 

Samy and H. ElMaraghy (2008) considered variety at three levels; product, process 

and system as shown in Figure 2. 8. Two types of variety were defined: 1) independent 

variety, 2) dependent variety. Independent variety is the variety introduced directly to 

each level. Dependent variety is the corresponding variety arising in other levels as a 

result of introducing the first type of variety. A mapping between the three different 

levels (Figure 2. 9) was also introduced as a matrix representation of the two types of 

variety in product, process and system levels. The shaded areas represent a dependency 

between the two types of variety in each level. The product level includes the variety of 

parts features, number of parts, number of modules, number of subassemblies; the 

process level includes variety of sequence, precedence relations; the system level 

includes variety in system type, handling, insertion, fixtures, feeders.  In order to quantify 

the impact of variety on the complexity of assembly, the impact of variation in each level 

on the complexity of all levels is considered.  The variety introduced at each level affects 

the complexity of that level and may affect the complexity of other levels. The result is 
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that, independent variety-based complexity components (ܥ	,ݐܿݑ݀݋ݎ݌	ܥ	ݏݏ݁ܿ݋ݎ݌, 

 representing product, process and system complexities resulting from (݉݁ݐݏݕݏ	ܥ

introducing variety directly to these levels respectively. Other dependent variety-based 

complexity components are:  

 ୱ୷ୱ୲ୣ୫” represent process and system	୅୒ୈ	୮୰୭ୢ୳ୡ୲ܥ ,୮୰୭ୡୣୱୱ	୅୒ୈ	୮୰୭ୢ୳ୡ୲ܥ“ •

complexities respectively due to the introduction of variety to the product level, 

,୮୰୭ୢ୳ୡ୲	୅୒ୈ	୮୰୭ୡୣୱୱܥ“ •  ୱ୷ୱ୲ୣ୫” represent product and system	୅୒ୈ	୮୰୭ୡୣୱୱܥ

complexities respectively due to the introduction of variety to the process level, 

 ୮୰୭ୡୣୱୱ” represent product and process	୅୒ୈ	ୱ୷ୱ୲ୣ୫ܥ	,୮୰୭ୢ୳ୡ୲	୅୒ୈ	ୱ୷ୱ୲ୣ୫ܥ“ •

complexities respectively due to the introduction of variety to the system level.  

 

 
Figure	2.	8	Independent	variety	ሺstraight	arrowsሻ	dependent	variety	ሺcurved	

arrowsሻ	and	resulting	complexity	ሺadapted	from	S.N.	Samy	and	H.	ElMaraghy,	2008ሻ	
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The total complexity is the summation of nine variety-based complexities as: 

௧௢௧௔௟ܥ ൌ 	෍෍ܥ௣௥௢ௗ௨௖௧ ൅

ே

௝ୀଵ

ெ

௜ୀଵ

	෍෍ܥ௣௥௢௖௘௦௦ ൅

௅

௝ୀଵ

௄

௜ୀଵ

	෍෍ܥ௦௬௦௧௘௠

௏

௝ୀଵ

௎

௜ୀଵ

 

(2. 1) 

where: ܥ௧, ݉݁ݐݏݕݏܥ ,ݏݏ݁ܿ݋ݎ݌ܥ ,ݐܿݑ݀݋ݎ݌ܥ are the total, product, process and system 

complexities respectively.(M, K, U) , (N, L, V) are the numbers of dependent and 

independent varieties in product, process and system levels respectively. 

 
 

  Dependent Variety 

   Product Process System 
   V1 V2 V3 VM V1 V2 V3 VK V1 V2 V3 VU 

In
d

ep
en

d
en

t 
V

ar
ie

ty
 

P
ro

du
ct

 V1 10 0 0 0 0 0 0 1 0 0 0 0 

V2 0 10 0 0 0 7 0 0 0 0 2 0 

V3 0 0 10 0 0 0 0 0 0 0 0 0 

VN 0 0  10 0 0 2 0 0 2 0 0 

P
ro

ce
ss

 V1 0 0 0 0 10 0 0 0 0 0 0 0 

V2 0 0 0 0 0 10 0 0 0 0 0 0 

V3 0 0 1 0 0 0 10 0 0 0 0 0 

VL 3 0 0 0 0 0 0 10 0 0 4 0 

S
ys

te
m

 V1 0 0 0 2 0 0 0 0 10 0 0 0 

V2 0 5 0 0 0 3 0 0 0 10 0 0 

V3 0 0 0 0 0 0 0 0 0 0 10 0 

VV 0 0 0 0 0 0 1 0 0 0 0 10 

Figure	2.	9	Matrix	representation	of	dependent	and	independent	varieties	and	their	
relationships	at	various	levels	ሺS.N.	Samy	and	H.	ElMaraghy,	2008ሻ	

2.2 Assembly 

A consumer product is an assemblage of individual components. Each component 

has been planned, designed, and manufactured separately. However, by themselves, there 

is very little use to component parts. Only after they are assembled into the final product 

they can effectively perform their planned function. Assembly of a product is a function 

of parameters such as, but are not limited to, shape, size, material compatibility, 

flexibility, and thermal conductivity. Assembly in the manufacturing process consists of 

putting together (joining) all the component parts and sub-assemblies of a given product, 

fastening, performing inspections and functional tests, labelling, and separating good 
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There are different possibilities for the spatial line-up of assembly systems  (G. Salvendy, 

2001) . One possibility is a line structure, which is characterized by: 

• Clear flow of materials 

• Simple accessibility of the subsystems (e.g., for maintenance) 

• Simple line-up of main and secondary lines 

• Used mainly for mass production. 

Alternatively, an assembly system can be arranged in a rectangular structure, which is 

characterized by: 

• Very compact design. 

• High flexibility. 

• Poor accessibility to the subsystems. 

• Used mainly for small and medium lot sizes. 

 Assembly is unique compared to the methods of manufacturing such as 

machining, grinding, and welding in that most of these non-assembly operations cannot 

be performed without the aid of equipment. Assembly is one of the highest areas of direct 

labour costs. It brings together all the upstream process of design, engineering, 

manufacturing, and logistics to create an object that performs a function. 

2.2.1 The economic significance of assembly 

In the automotive industry 50% of the direct labour costs are in the area of 

assembly, and in precision instruments it is between 20% and 70%. These statistics 

indicate the relative importance of assembly in terms of time and cost of assembled 

products. They also point to the potential savings that can be generated by efforts to 

understand and improve assembly technology and systems (S.Y. Nof et al., 1997). A 

typical assembly system is shown in Figure 2. 12. The Figure shows automated assembly 

line for wristwatches using robots with vision. The assembled product takes its shape 

gradually starting with one part (the base part), with the remaining parts being attached at 

the various stations visited by the product.  
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containers. The distances to be covered by the workers arms should be short and in the 

same direction. The intention is to shorten the cycle time and reduce the physical strain 

on the workers. This can be realized by arranging the grab containers in paternoster or on 

rotation plates. Further important criteria are glare-free lighting and adapted devices such 

as footrests or work chairs. 

When assembly at a workstation is impossible for technological or economical 

reasons, the assembly can be carried out with several chained manual assembly stations. 

Manual assembly systems consist of a multiplicity of components. The stations are 

chained by double-belt conveyors or transport rollers. The modules rest on carriers with 

adapted devices for fixing the modules. The carriers form a defined interface between the 

module and the super ordinate flow of material. Identification systems separate the 

different versions and help to transport them to the correct assembly stations. 

In manual assembly tasks, workers are confronted with multiple sources of 

information. Relevant information has to be selected, action planned and executed 

appropriately. Moreover, due to a growing demand for flexible and customized 

production, interfaces designed to optimally support workers in manufacturing become 

increasingly relevant (S. Stork and A. Schubo, 2010) 

2.2.2.2 Automatic assembly 

Automated assembly systems are used mainly for mass production. In the field of 

indexing machines, a distinction is made between rotary indexing turn tables and 

rectilinear transfer machines. The essential difference between the two systems is the 

spatial arrangement of the individual workstations. Rotary indexing turn tables are 

characterized by short transport distances. The disadvantage is the restricted number of 

assembly stations because of the limited place. Rectilinear transfer machines can be 

equipped with as many assembly stations as needed. However, the realizable cycle time 

deteriorates through the longer transport distances between the individual stations. 

Indexing machines are characterized by a rigid chain of stations. The construction design 

depends mostly on the complexity of the product to be mounted. The main transfer drives 
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are electrical motor via an adapted ratchet mechanism or cam and lever gears or can be 

implemented pneumatically and/or hydraulically. Secondary movements (clamping of 

parts, etc.) can be carried out mechanically, electromechanically, or pneumatically. The 

handling and assembly stations are often driven synchronously over cam disks. The total 

availability of the assembly system is influenced by the availability of the individual 

feeding devices. The number of stations needed depends on the extent of the single 

working cycles that have to be carried out (e.g., feeding, joining, processing, testing, and 

adjusting) (G. Salvendy, 2001). 

Automatic assembly often referred to as fixed or hard automation, use indexing 

tables and parts feeders. Soft automation incorporates the use of programmable assembly 

machines and robots in a single or a multi-station robotic assembly cell/system with all 

activities simultaneously controlled and coordinated by a programmable logic controller 

(PLC) or a computer  (A. Mital et al., 2008). Flexible automated assembly systems 

include the basic process elements and transfer modules. The  hardware modules used to 

conduct operations are inserted into the automated stations manually using a loading 

platform, or automatically, whereas data and energy is transferred via plug-in connections 

(B. Lotter and H.-P. Wiendahl, 2009). The mobility of the process modules is 

advantageous since system modifications can usually be completed in less than an hour 

or sometimes few minutes. Capital cost investment can be incremental and grow or 

shrink with the varying demand during the product life span. 

2.2.2.3 Hybrid assembly 

Hybrid assembly systems refer to combined automated and manual workstations. 

The cooperation between human operators and assembly equipment in such systems is 

motivated by the flexibility and changeability of assembly processes. Safety of the 

cooperation between human and machine should be managed. The efficiency of hybrid 

assembly systems depends on the intelligent feeding of workpieces to the cooperative 

workplace (J. Kruger et al., 2009, M. Morioka and S. Sakakibara, 2010).  
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Hybrid assembly systems are characterized by production rates and product 

variations between those for the manual and automated assembly systems. One advantage 

is their flexibility regarding the number of pieces, which can be controlled by changing 

the number of assembly workers on the manual workstations. Additionally, the initial 

degree of automation can be adapted to changes in the production rate during the entire 

service life using a number of extension stages (B. Lotter and H.-P. Wiendahl, 2009). 

Hybrid assembly systems offers increased efficiency of the assembly line (T.K. Lien, 

2001). Lien (2001) presented a theoretical model to predict the performance of the 

manual section in the assembly line. Parallel and sequential configurations were studied. 

The parallel configuration was approved as a better alternative because of the flexibility 

and the overall line efficiency. Assembly systems are complex technical structures 

consisting of a great number of individual units and integrating different technologies. It 

is complex at the micro level; it is complex at the macro level (D.E. Whitney, 2004). It is 

easy to see that, when individual components are manufactured with ease of assembly in 

mind, the result is a significant reduction in assembly lead limes. This leads to savings in 

resources (both equipment and human) (A. Mital et al., 2008) 

2.2.3 Complexity of Assembly 

Measuring the complexity of assembly supports assembly-oriented product design 

and guides designers in creating a product with low assembly complexity. It also supports 

systems designers to rationalize the choice of various processes, sequences, equipment 

and system layouts. The economic importance of assembly has led to extensive efforts to 

improve the efficiency and cost effectiveness of assembly operations. One way of 

achieving this is by managing the complexity of assembly and its drivers or sources. 

Researchers have attempted to measure the complexity of assembly. Boothroyd et 

al. (2002) proposed the Design for Assembly (DFA) method based on modelling 

assembly difficulty with data drawn from a large number of empirical observations of 

people and machines. This method does not include the actual assembly task complexity 

and is based on estimations of assembly time. Sturges and Kilani (1992) presented an 

index of difficulty to quantify the agility and time required to assemble a product but did 
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in a selection process. later, Wang and Hu (2010) extend that complexity measure by 

considering system configuration and assembly cycle time in addition to operator 

choices.  

Identifying global attributes that contribute to assembly difficulty will provide 

means for predicting assembly complexity more effectively.  Zaeh et al. (2009) proposed 

a multi-dimensional measure for determining the complexity of manual assembly 

operations. They suggested that the exposure of the human worker resulting from a 

certain task shall be based upon three interrelated factors: temporal factor, cognitive 

factor, and knowledge-based factor. Their experimental results demonstrated an influence 

of task difficulty and communication mode on commissioning as well as on joining tasks.  

Su et al. (2010) investigated the problem of assembly defects caused by mistakes of 

operators  by considering two complexity factors, namely, the design-based assembly 

complexity factor and the process-based assembly complexity factor, which are defined 

according to the structure and production characteristics of a copier machine.  

2.3 Summary of the Literature Survey 

The manufacturing environment becomes more complex and the significance and 

benefits of developing an appropriate complexity measure is obvious.  

In this chapter a review of complexity definitions and measures issues especially 

for assembly was presented. From the review of different measures we observed that the 

most widely used metric is the entropic/information approach. Although this approach 

has difficulties in applying and getting data in order to calculate probability but it has the 

advantage of producing one number indicating the amount of complexity. This advantage 

facilitates the comparison between several systems options in terms of their level of 

complexity.  

There is a need to describe and develop complexity measures capable of 

considering the impact of product (parts/sub-assemblies) assembly attributes on the 

product complexity. Design for Assembly-based complexity model is most appropriate. 
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The manufacturing environment consists of physical systems in which a series of 

sequential decisions need to be made in order to produce finished products. The sequence 

and nature of these decisions are not only dependent on the system capabilities but also 

on the products being manufactured in the system. Hence, developed measures of 

complexity should consider both the product and the related assembly system. The need 

is to map such a relation between product complexity and system complexity. 

Developing such a model will help manufacturers to design and assemble 

products with least complexity and rationalize the various alternatives. Managing drivers 

or sources of complexity of assembly will help in reducing assembly cost and time; 

improve productivity and quality, and increase profitability and competitiveness. 
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CHAPTER THREE 

MEASURING PRODUCTS ASSEMBLY COMPLEXITY 

In this chapter product assembly complexity is defined as the degree to which the 

individual parts/subassemblies contain physical attributes that cause difficulties during 

the handling and insertion processes in manual or automatic assembly.  A product 

complexity model has been developed by incorporating the information amount and 

content, as well as the Design for Assembly (DFA) principles for assembled products into 

an earlier model that was designed for measuring complexity of machined parts. The new 

model is used to assess the assembly complexity of individual parts using an index for 

measuring the complexity. Individual indices for parts are aggregated to obtain an overall 

measure for total product assembly complexity. The new measure accounts for the 

different parts’ assembly attributes as well as their number and variety. An automobile 

piston and a family of three-pin electric power plugs are used to demonstrate the 

proposed approach for automatic and manual assembly respectively. 

3.1 Product Assembly Complexity Model 

A manufacturing part complexity model, introduced originally by W. ElMaraghy 

and Urbanic (2003) to measure complexity of machining processes, has been modified 

and further developed for assembly to account for the various parts handling and 

insertion attributes and to consider the effect of fasteners on the product assembly 

complexity. A method has also been introduced to aggregate the complexity indices of 

the various parts to obtain an overall index that represents the whole product assembly 

complexity. The earlier model (ElMaraghy and Urbanic, 2003) was created to measure 

the complexity of machined parts as a function of material, design and special 

specifications of each part. The basic elements of complexity were assumed to consist of 

three factors: the absolute quantity of information, the diversity of information and the 

information content. The information content was defined as a relative measure of effort 

to achieve the required result. A matrix was used to determine relative complexity factors 
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and then capture the information content. The complexity model was originally expressed 

as:  

௣௔௥௧ܥ ൌ ቀ
݊
ܰ
൅ ௣௔௥௧ቁܫܥ ሾ݈݃݋ଶሺܰ ൅ 1ሻሿ	

(3. 1) 

where ܥ௣௔௥௧ is part complexity, N is the total quantity of information, n is the quantity of 

unique information, and ܫܥ௣௔௥௧ is the part complexity index. 

This model has been modified (S.N. Samy and H. ElMaraghy, 2010a, S.N. Samy and H. 

ElMaraghy, 2010c) for assembly as follows: 

௣௥௢ௗ௨௖௧ܥ ൌ ቆ
݊௣
௣ܰ
൅ ௣௥௢ௗ௨௖௧ቇܫܥ ଶ൫݃݋݈ൣ ௣ܰ ൅ 1൯൧ ൅ ൬

݊௦
௦ܰ
൰ ሾ݈݃݋ଶሺ ௦ܰ ൅ 1ሻሿ	

(3. 2) 

where ܥ௣௥௢ௗ௨௖௧ is product assembly complexity, Np, Ns are the total numbers of parts and 

fasteners respectively, np, ns are the number of unique parts and fasteners respectively, 

and ܫܥ௣௥௢ௗ௨௖௧ is the product assembly complexity index.  

The second term of Equation (3. 2) represents the diversity and quantity of information 

related to the used fasteners, Ns, ns ≥ 1  

3.1.1 Complexity factor 

Based on the DFA analysis, different assembly attributes can be classified into 

two groups: (1) assembly handling attributes and (2) assembly insertion attributes. In 

Table 3.1 and Table 3.2, average complexity factors have been calculated using the 

empirical values from the DFA data charts for both manual and automatic assemblies 

respectively.  
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Table 3. 1 Assembly attributes for manual assembly (S.N. Samy and H. ElMaraghy, 
2010c) 

Group Attribute  Description 
Average complexity  
factor, ࢌ࡯  

H
an

d
li

n
g 

at
tr

ib
u

te
s 

Symmetry 
( + ) 

 +  <360 
360   +  < 540 
540   +  < 720 
 +  = 720 

0.70 
0.84 
0.94 
1.00 

Size > 15 mm  
6 mm < size ≤ 15 mm  
< 6 mm  

0.74 
0.81 
1 

Thickness > 2 mm 
0.25 mm< size ≤ 2 mm 
≤ 0.25  mm 

0.27 
0.5 
1 

Weight < 10 lb (light) 
> 10 lb 

0.5 
1 

Grasping and 
manipulation 

Easy to grasp and manipulate 
Not easy to grasp and manipulate 

0.91 
1 

Assistance 
 

Using one hand 
Using one hand with grasping aids 
Using two hands 
Using two hands with assistance  

0.34 
1 
0.75 
0.57 

Nesting and 
tangling 

Parts do not severely nest or tangle and are not flexible. 
Parts severely nest or tangle or are flexible. 

0.58 
1 

Optical 
magnification 

Not necessary 
Necessary 

0.8 
1 

In
se

rt
io

n
 a

tt
ri

b
u

te
s 

Holding down Not required 
Required 

0.54 
1 

alignment Easy to align or position 
Not easy to align or position 

0.86 
1 

Insertion 
resistance 

No resistance 
Resistance to insertion 

0.87 
1 

Accessibility 
and vision 

No restrictions 
Obstructed access or restricted vision 
Obstructed access and restricted vision 

0.57 
0.81 
1 

Mechanical 
Fastening 
processes 

Bending  
Riveting  
Screw tightening 
Bulk plastic deformation 

0.34 
0.58 
0.42 
1 

Non-Mech. 
fastening 
processes: 

No additional material required 
Soldering processes 
chemical processes 

0.58 
0.67 
1 

Non fastening 
processes: 

Manipulation of parts or sub-assemblies(fitting or 
adjusting of parts, …) 
Other processes (liquid insertion,..) 

0.75 
 
1 
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Table 3. 2 Assembly attributes for automatic assembly (S.N. Samy and H. ElMaraghy, 
2010c) 

Group Attribute  Description 
Average complexity  
factor, ࢌ࡯  

H
an

d
li

n
g 

at
tr

ib
u

te
s 

Symmetry Rotational part 
 symmetric and  symmetric 
 symmetric only 
 symmetric only 
No symmetry 
 
Non-rotational part 
180o symmetry about three axes 
180o symmetry about one axis only 
No symmetry 

 
0.45 
0.66 
0.77 
1 
 
 
0.6 
0.77 
1 

Size > 15 mm  
6 mm < size ≤ 15 mm  
< 6 mm 

0.74 
0.81 
1 

Flexibility Non flexible 
Flexible  

0.67 
1 

Delicateness  Non delicate 
Delicate  

0.8 
1 

Stickiness  Not sticky 
Sticky 

0.8 
1 

Tangling / nesting Not tangle / nest 
Tangle / nest  

0.8 
1 

In
se

rt
io

n
 a

tt
ri

b
u

te
s 

Securing assembly  Not required 
Required  

0.75 
1 

Insertion resistance  Does not exist 
Exists 

0.67 
1 

Alignment and 
positioning  

Easy 
Not easy  

0.67 
1 

Mechanical Fastening 
methods  

Screwing or other processes  
Riveting or similar processes 
Bending or similar processes 

0.5 
0.56 
1 

Non-mechanical 
fastening methods 

Chemical processes  
Additional material required 
No addition of material (friction, …) 

0.67 
0.92 
1 

Insertion direction Straight line from above 
Straight line not from above 
Not straight line insertion 

0.5 
0.54 
1 

Table 3.3 shows an example of calculating the average manual handling 

complexity factors for part symmetry attribute in manual handling assembly. The average 

of the estimated time (from DFA analysis charts) values is first calculated then 

normalized by its maximum value (2.91 for this attribute).  
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• Construct a complexity matrix representing the average complexity factors for 

both handling and insertion attributes. Rows represent individual parts and 

columns represent their assembly attributes. 

• Calculate the average handling complexity factor, Ch ,  

௛ܥ ൌ
∑ ௛,௙ܥ
௃
ଵ

ܬ
 

(3. 3) 

where ܥ௛,௙ is the relative handling complexity factor  and J is the number of handling 

attributes of each part.  

• Calculate the average insertion complexity factor, ܥ௜, 

௜ܥ ൌ
∑ ௜,௙௞ܥ
ଵ

݇
 

(3. 4) 

where  ܥ௜,௙		is the average insertion complexity factor  and K is the number of insertion 

attributes of each part. 

• Calculate the weighted average values of the part complexity factors, C୮ୟ୰୲ 

௣௔௥௧ܥ ൌ
௛ܥ ∑ ௛,௙ܥ

௃
ଵ ൅ ௜ܥ ∑ ௜,௙௞ܥ

ଵ

∑ ௛,௙ܥ
௃
ଵ ൅ ∑ ௜,௙௞ܥ

ଵ

 

(3. 5) 

• Calculate the product complexity index, CI୮୰୭ୢ୳ୡ୲ 

௣௥௢ௗ௨௖௧ܫܥ ൌ ෍ ௣௔௥௧ܥ௣ݔ

௣ୀ௡

௣ୀଵ

 

(3. 6) 

where ݔ୮ is the percentage of the ݔ୲୦ dissimilar parts, n is number of unique parts. 
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Table 3. 

Part name

Compression 
Oil ring 
Piston 

Piston pin
Snap ring

onnecting rod
Connecting rod

Bearing 

Automobile	e

4 Parts hand

e 

N
u

m
b

er
 

ring 2 
1 
1 

n 1 
g 2 
d shaft 1 
d cap 1 

2 

engine	pisto

dling comple
El

S
ym

m
et

ry
 

S
iz

e 

0.77 0.81
0.77 0.81

1 0.74
0.66 0.74
0.77 1

1 0.74
1 0.74
1 0.81
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on	assembly

 

exity attribut
lMaraghy, 2

Handlin

F
le

xi
b
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it
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1 1 
1 1 
4 0.67 1
4 0.67 0
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4 0.67 0
4 0.67 0
1 0.67 0

 

y	ሺS.N.	Samy

tes matrix, p
010c) 

ng complexity 

D
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en
es

s 

S
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in

es
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y	and	H.	ElM

piston (S.N. S

factor, Ch,f 

N
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3.86 
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3.97 



 
 

44 

Table 3. 5 Parts insertion complexity attributes matrix, piston (S.N. Samy and H. 
ElMaraghy, 2010c) 

Part name 

Insertion complexity factor, Ci,f 

N
u

m
b

er
 

S
ec

u
re

 a
ss

em
b

ly
 

In
se

rt
io

n
 

re
si

st
an

ce
  

A
lig

n
m

en
t 

M
ec

ha
n

ic
al

 
F

as
te

n
in

g 
 

N
on

-m
ec

h
an

ic
al

 
fa

st
en

in
g 

 

In
se

rt
io

n
 

d
ir

ec
ti

on
  

K
 

SU
M

 

C
i 

S
U

M
 *

 C
i 

Compression ring 2 0.75 1 1 0 0 0.5 4 3.25 0.81 2.64 
Oil ring 1 0.75 1 1 0 0 0.5 4 3.25 0.81 2.64 
Piston 1 0.75 0.67 0.67 0 0 0.5 4 2.59 0.65 1.68 

Piston pin 1 0.75 1 1 0 0 0.54 4 3.29 0.82 2.71 
Snap ring 2 0.75 1 1 0 0 0.54 4 3.29 0.82 2.71 

Connecting rod shaft 1 1 0.67 1 0 0 0.5 4 3.17 0.79 2.51 
Connecting rod cap 1 1 0.67 1 0.5 0 0.5 5 3.67 0.73 2.69 

Bearing  2 1 1 1 0 0 0.5 4 3.5 0.88 3.06 

Product complexity index is then calculated as shown in Table 3.6.   

Table 3. 6 Calculation of product complexity index (CIproduct), piston  

Part Name ࢚࢘ࢇ࢖࡯ ൌ ሺࡹࢁࡿ ∗ ࢎ࡯ ൅ ࡹࢁࡿ ∗ ሻ࢏࡯ ሺࢎ࡯ ൅ ⁄ሻ࢏࡯  ࢚࢘ࢇ࢖࡯࢖࢞ ࢖࢞ 

Compression ring 0.86 0.182 0.16 
Oil ring 0.86 0.091 0.08 
Piston 0.87 0.091 0.08 

Piston pin 0.78 0.091 0.07 
Snap ring 0.83 0.182 0.15 

Connecting rod shaft 0.80 0.091 0.07 
Connecting rod cap 0.77 0.091 0.07 

Bearing 0.84 0.182 0.15 

࢚ࢉ࢛ࢊ࢕࢘࢖ࡵ࡯ ൌ෍࢚࢞࢘ࢇ࢖࡯࢖

࢖࢔

૚

 0.83 

The parts count is: total number of parts (Np) = 2 compression rings + 1 oil ring + 

1 piston + 1 piston pin + 2 snap rings + 1 connecting rod shaft + 1 connecting rod cap + 2 

bearings) =11, unique number of parts = (np) = 1 compression rings + 1 oil ring + 1 

piston + 1 piston pin + 1 snap rings + 1 connecting rod shaft + 1 connecting rod cap + 1 

bearings = 8. Fasteners count are		 ௦ܰ ൌ 2, ݊௦ ൌ 1 .  Thus the piston assembly complexity 

can be calculated using Equation (3. 2) as: 

௣௜௦௧௢௡ܥ ൌ ൬
8
11

൅ 0.83൰ ሾ݈݃݋ଶሺ11 ൅ 1ሻሿ ൅ ൬
1
2
൰ ሾ݈݃݋ଶሺ2 ൅ 1ሻሿ ൌ 6.38 
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The four power plugs are analyzed for manual assembly. Table 3.7 and Table 3. 8 

show the results of complexity analysis for plug # 1. Analyses of plug #2, plug #3, and 

plug #4 are shown in Tables (A.1 - A.6) of Appendix (A). Table 3.7 shows that the 

highest handling complexity factors are associated with symmetry, grasping and 

manipulation attributes and the lowest values are associated with the part weight and 

attributes calling for assistance during assembly. Table 3. 8 shows that the highest 

insertion complexity factors are associated with the alignment attribute and the lowest 

values are associated with the accessibility attribute.  

Table 3. 7 Parts handling complexity attributes matrix (plug #1) (S.N. Samy and H. 
ElMaraghy, 2010c) 

Part 
name 

Handling complexity factor, Ch,f 

N
u

m
b

er
 

S
ym

m
et

ry
 

si
ze

 

T
h

ic
k

n
es

s 

w
ei

gh
t 

G
ra

sp
in

g 
/ 

m
an

ip
u

la
ti

on
 

A
ss

is
ta

n
ce

 

N
es

ti
n

g 
/ t

an
gl

in
g 

O
p

ti
ca

l 
m

ag
n

if
ic

at
io

n
 

J 

SU
M

 

C
h
 

S
U

M
* 

C
h
 

Base sub. 1 1 0.74 0.27 0.5 0.91 0.34 0.58 0.8 8 5.14 0.64 3.30 
Fuse sub. 1 1 1 0.5 0.5 1 1 0.58 0.8 8 6.38 0.80 5.09 

Pin 1 1 1 0.81 0.5 0.5 0.91 0.34 0.58 0.8 8 5.44 0.68 3.70 
Fuse 1 0.7 1 1 0.5 1 1 0.58 0.8 8 6.58 0.82 5.41 
Pin 2 1 1 0.81 0.5 0.5 0.91 0.34 0.58 0.8 8 5.44 0.68 3.70 
Pin 3 1 1 0.81 0.5 0.5 0.91 0.34 0.58 0.8 8 5.44 0.68 3.70 
Cover 1 1 0.74 0.27 0.5 0.91 0.34 0.58 0.8 8 5.14 0.64 3.30 

Table 3. 8 Parts insertion complexity attributes matrix (plug #1) (S.N. Samy and H. 
ElMaraghy, 2010c) 

Part name 

Insertion complexity factor, Ci,f 

N
u

m
b

er
 

H
ol

d
in

g 
d

ow
n

 

A
lig

n
m

en
t 

In
se

rt
io

n
 

re
si

st
an

ce
 

A
cc

es
si

b
il

it
y 

F
as

te
n

in
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p
ro

ce
ss

 

N
on

-m
ec

h
an

ic
al

 

N
on

-f
as

te
n

in
g 

p
ro

ce
ss

 

K
 

SU
M

 

C
i 

S
U

M
 *

 C
i 

Base sub. 1 0.54 0.86 0.87 0.57 - - - 4 2.84 0.71 2.02 
Fuse sub. 1 0.54 1 0.87 0.57 - - - 4 2.98 0.75 2.22 

Pin 1 1 0.54 1 0.87 0.57 - - - 4 2.98 0.75 2.22 
Fuse 1 0.54 1 0.87 0.57 - - - 4 2.98 0.75 2.22 
Pin 2 1 0.54 1 0.87 0.57 - - - 4 2.98 0.75 2.22 
Pin 3 1 0.54 1 0.87 0.57 - -  - 4 2.98 0.75 2.22 
Cover 1 1 1 0.87 0.57 0.42 - - 5 3.86 0.77 2.98 
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of snap fits instead of screws.  These redesigned features affect the handling and insertion 

attributes of these components lead to a less complex product (4.70).  

Table 3. 9 Parts and fasteners counts for all plugs (S.N. Samy and H. ElMaraghy, 2010c) 

# of Parts  # of Fasteners  

Plug#1 Plug#2 Plug#3 Plug#4 Plug#1 Plug#2 Plug#3 Plug#4 

n N n N n N n N n N n N n N n N 

6 7 6 7 6 7 6 7 1 1 1 1 0 0 0 0 

Table 3. 10 Calculation of product complexity index (CIproduct) for all plugs (S.N. Samy 
and H. ElMaraghy, 2010c) 

Part 

Name 

Cpart = (SUM* Cp + 

SUM * Ca) / (Cp+ Ca) 
xp 

Part complexity index 

 = xp  * Cpart 

Plug 

#1 

Plug 

#2 

Plug 

#3 

Plug 

#4 

Plug 

#1 

Plug 

#2 

Plug 

#3 

Plug 

#4 

Plug 

#1 

Plug 

#2 

Plug 

#3 

Plug 

#4 

Base sub. 0.67 0.64 0.67 0.64 0.143 0.143 0.143 0.143 0.096 0.092 0.096 0.092 

Fuse sub. 0.78 0.78 0.78 0.78 0.143 0.143 0.143 0.143 0.112 0.112 0.112 0.112 

Pin 1 0.70 0.70 0.70 0.70 0.143 0.143 0.143 0.143 0.100 0.100 0.100 0.100 

Fuse 0.80 0.80 0.80 0.80 0.143 0.143 0.143 0.143 0.114 0.114 0.114 0.114 

Pin 2 0.70 0.70 0.70 0.70 0.143 0.143 0.143 0.143 0.100 0.100 0.100 0.100 

Pin 3 0.70 0.70 0.70 0.70 0.143 0.143 0.143 0.143 0.100 0.100 0.100 0.100 

Cover 0.70 0.64 0.65 0.63 0.143 0.143 0.143 0.143 0.100 0.092 0.093 0.090 

CI product = SUM (xp  * Cpart) 0.722 0.709 0.715 0.708 

Table 3. 11 Product assembly complexity of the power plug assortment (S.N. Samy and 
H. ElMaraghy, 2010c) 

Product Product complexity 
Total assembly time 

from DFA analysis (sec) 

Plug # 1 5.74 38.66 

Plug # 2 5.70 37.02 

Plug # 3 4.72 31.16 

Plug # 4 4.70 29.52 

Design for Assembly (DFA) has been done for the four plugs as shown in Tables 

(C.1 – C.4) of Appendix (C). The calculated complexities are also compared with the 

manual assembly time estimated by the analysis as shown in Table 3. 11. The results 

show that plug #1 (with highest complexity) requires longer assembly time compared 
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with other plugs which having lower complexity. Higher complexity leads to longer 

assembly time and increases cost of assembly equipment. 

Table 3. 12 shows the effect of changing assembly attributes on the product 

assembly complexity for the four plugs. Using snap fit fastening (plug # 3) instead of 

screws (plug # 1) will cause an assembly complexity reduction of 21.6 %. Not having to 

hold down plug # 4 during assembly reduced the assembly complexity, compared with 

plug # 2 where holding down is needed by 17.6 %. The symmetry of plug # 4 reduced the 

assembly complexity compared with plug # 3 (asymmetric) by 0.42%.  

Table 3. 12  Effect of redesign change on product assembly complexity (S.N. Samy and 
H. ElMaraghy, 2010c) 

Product Plugs # 1 & 3 Plugs # 2 & 4 Plugs # 3 & 4 

Redesigned attribute Fastening method Holding down Symmetry 

Complexity ratio Cplug#3 / Cplug#1 = 0.822 Cplug#4 / Cplug#2 = 0.824 Cplug#4 / Cplug#3 = 0.995 

Complexity reduction 21.6 % 17.54 % 00.42 % 

The differences between the total product assembly complexities of the four electric 

power plugs variants were small due to their similarity. The analysis, however, highlights 

the significant impact of the fasteners on assembly complexity and the need for holding 

parts due to lack of stability during assembly on manual product assembly complexity. 

The same is true in automated assembly where fixtures are used to secure and stabilize 

the parts. Hence, the proposed metric can be used at early design stages to guide 

designers in selecting parts features to reduce the total product assembly complexity. 
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CHAPTER FOUR 

MEASURING ASSEMBLY SYSTEM COMPLEXITY 

In this chapter, a static system complexity model is developed. A structural 

classification coding system is extended to capture the relevant characteristics of various 

entities within an assembly system.  The structural classification coding is then used to 

measure assembly system complexity. 

4.1 Coding and Classification 

Coding and classification were originally used for controlling design versions and 

material storage and retrieval. However, with the development of work statistics and 

group technology, the use of coding and classification has spread into production 

planning and control and the selection of components for group machining. Also, 

advances in the application of computers have extended the use of coding and 

classification especially for information storage and retrieval. Coding and classification is 

a method of organizing knowledge by sorting and analyzing information and grouping 

similar features, facts and elements. Coding refers to the process of assigning symbols to 

entities. The symbols in the code could be all numeric, all alphabetic or a combination of 

both types. For parts coding, the symbols represent the attributes of parts which may later 

be used to form families of parts with similar attributes. Classification refers to 

categorization of parts into part families (N. Singh, 1993). The process of coding is 

preceded by classification for each critical attribute. There are three basic code structures 

used in classification and coding schemes (M. Agarwali et al., 1994, H. ElMaraghy, 

2005).  

Hierarchical code structure (mono-code); where interpretation of each successive 

digit depends on the value of the preceding digit in the code string. The advantage of this 

approach is the relatively small number of digits of the code string. However this type of 

coding is very complicated and difficult to implement.  Chain-type code structure (poly-

code); where the meaning of each digit is constant regardless of any other digit within the 
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code string. This type of coding is simple to implement, however, a large number of 

digits may be required for representation depending on the amount of information to be 

captured. Hybrid code structure is a combination of hierarchical and chain-type 

structures, taking advantage of both the mono-code and the poly-code systems. The basic 

requirements to get a good classification and coding scheme are (C.T. Mosier and R.E. 

Janaro, 1990): 

• Comprehensive to include all existing items within a class. 

• Flexible to allow for expansion to include new items.  

• Using clear format and definition. 

• Having a consistent point of view. 

• Balanced distribution between the code classes. 

• Each digit should have a unique meaning within a group. 

 Most of the available coding systems are implemented using a Hybrid structure. An 

example of this coding type is the OPITZ coding (Figure 4. 1). It consists of nine basic 

digits which can be extended by adding four more digits. 

DIGIT 1 
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Figure	4.	1	Basic	Structure	of	Opitz	System	ሺadapted	fromM.P.	Groover,	2008ሻ	

4.1.1 Automated coding and classification 

Group Technology (GT) codes have been used in manufacturing and design 

applications for the retrieval of existing parts data and using it in downstream 

applications such as grouping and planning. Traditionally coding systems used manual 

methods. Development coding and classification systems automated this process to 

eliminate human errors and reduce coding time (M. Agarwali et al., 1994, J. Barton and 
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D. Love, 2005, C.T. Mosier and R.E. Janaro, 1990). Classification and coding systems 

were originally developed for manufactured parts. However, equivalent coding and 

classification systems for manufacturing systems did not exist until the development of 

the structural classification and coding system (SCC) by H. ElMaraghy (2006). The 

original classification system is described briefly in the following section followed by 

description of new extensions to include various entities typically found in assembly 

systems. 

4.1.2 Manufacturing systems structural classification code 

A manufacturing system consists of the following major classes of entities: 1) 

Machines to carry out the manufacturing processes, 2) buffers to ensure the continuous 

supply of parts, 3) material handling equipment to transfer parts between machines, and 

4) operators for complementary manual tasks, system operations, and supervisory tasks. 

There can be a large variation in the type of system entities to respond to changing 

production requirements (H. ElMaraghy, 2005). H. ElMaraghy (2006) developed a new 

manufacturing Systems Structural Classification Code (SCC) to classify the various types 

of equipment in a manufacturing system as well as their layout. The code represents 

equipment, such as machines, buffers and transporters, as well as their layout as shown in 

Figure 4. 2. The equipment Classification code (ECC) consists of three fields: (1) 

machines, (2) buffers, and (3) transporters. Fields representing their type and general 

structure, controls, programming, and operation are included in the code. 

Each field contains a string of digits; the value of each digit depends on the degree of 

complexity of the structure, control, programming and operation of these entities.  The 

generated code string is similar to a biological DNA identifier for the system 

characteristics (H. ElMaraghy, 2005). The potential implications and applications of this 

novel code for manufacturing systems parallel those of Group Technology codes for 

products and cellular manufacturing. Kuzgunkaya and H. ElMaraghy (2006) illustrated 

the use of this classification code in assessing the structural complexity of manufacturing 

system configurations as one of the candidate code applications.  
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Field #1 Field #2 Field #3 Field #4 

Machine Type CC Controls CC Programming CC Operation CC 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

(a) 

 

Field #1 Field #2 Field #3 Field #4 

Handling Equipment CC Controls CC Programming CC Operation CC 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

(b) 

 

Field #1 Field #2 Field #3 Field #4 

Buffer Equipment CC Controls CC Programming CC Operation CC 

1 2 3 4 5 6 7 8 9 10 11 12 13 

(c) 

Figure	4.	3	Equipment	code	string:	ሺaሻ	Machine,	ሺbሻ	Handling	Equipment	ሺcሻ	Buffers	
ሺadapted	from	H.	ElMaraghy	et	al.,	2010ሻ	

 

The various digits are described in Tables 4.1- 4.3 and annotated in Tables D.1 – D.6 

of Appendix (D). The bolded digits refer to new digits while the underlined digits refer to 

modified digits. Each digit position in each field represents a specific characteristic. 
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Table	4.	1	Machine	classification	code	

# Machine CC Description  Value 
Maximum 
value 

Normalized 
value 

1 Structure 

Fixed 1 

3 

1/3 

 Modular 2 2/3 

Changeable 3 3/3 

2 Axes of  motion N N 6 N/6 

3 Work heads  N N 2* N/2 

4 Spindles  N N 2** N/2 

5 Tools  
Fixed 1 

2 
1/2 

Changeable  2 2/2 

6 Tool magazine  

None  1 

3 

1/3 

Fixed  2 2/3 

Changeable  3 3/3 

7 Pin fixtures 
Fixed  1 

2 
1/2 

Moving  2 2/2 

# 
Controls CC Description  Value Maximum 

value 
Normalized 
value 

8 Mode  
Manual  1 

2 
1/2 

Programmable 2 2/2 

9 Type  
Non-adaptive 1 

2 
1/2 

Adaptive  2 2/2 

10 Access  

Open 1 

3 

1/3 

Limited 2 2/3 

Closed 3 3/3 

11 Structure  

Fixed 1 

3 

1/3 

Modular 2 2/3 

Reconfigurable 3 3/3 

# 
Programming CC Description  Value Maximum 

value 
Normalized 
value 

12 Mode  
Manual  1 

2 
1/2 

Programmable 2 2/2 

13 Difficulty  

Low 1 

3 

1/3 

Medium 2 2/3 

High 3 3/3 

# 
Operation CC Description Value Maximum 

value 
Normalized 
value 

14 Mode  

Manual 1 

3 

1/3 

Semi-automated 2 2/3 

Fully automated 3 3/3 

15 Power  
Un-powered 1 

2 
1/2 

Powered 2 2/2 

16 Fault detection 
Manual 1 

2 
1/2 

Automated 2 2/2 
* The maximum number of N is assumed as 2 workheads 
** The maximum number of N is assumed as 2 spindles 
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Table	4.	2	Handling	equipment	classification	code	

# MHS CC Description  Value 
Maximum 
value 

Normalized 
value 

1 Type 

Conveyor 1 

7 

1/7 

Monorail 2 2/7 

Forklift trucks 3 3/7 

AGV 4 4/7 

Cranes and Gantries 5 5/7 

Robot 6 6/7 

Feeder 7 7/7 

2 Structure 
Fixed 1 2 1/2 

Reconfigurable 2 2/2 

3 Motion  

Uni-directional, synchronized 1 

4 

1/4 

Uni-directional, asynchronized 2 2/4 

Bi-directional, synchronized 3 3/4 

Bi-directional, asynchronized 4 4/4 

4 Path 
Fixed 1 

2 
1/2 

Variable 2 2/2 

5 Parts holders 

None 1 

4 

1/4 

Pallet 2 2/4 

Fixture 3 3/4 

Gripper 4 3/4 

6 Part types 
Single 1 

2 
1/2 

Multiple 2 2/2 

7 Parts orientation 
Passive  1 

2 
1/2 

Active  2 1/3 
# Controls CC Description Value  Maximum 

value 
Normalized 
value 

8 Mode  Manual  1 2 1/2 

Programmable 2 2/2 

9 Type  Non-adaptive 1 2 1/2 

Adaptive  2 2/2 

10 Access  Open 1 3 1/3 

Limited 2 2/3 

Closed 3 3/3 

11 Structure  Fixed 1 3 1/3 

Modular 2 2/3 

Reconfigurable 3 3/3 

# Programming CC Description  Value Maximum 
value 

Normalized 
value 

12 Mode  Manual  1 2 1/2 

Programmable 2  2/2 
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Table	4.2	Handling	equipment	classification	code	ሺcont.ሻ	
13 Difficulty  Low 1 3 1/3 

Medium 2 2/3 

High 3 3/3 

# Operation CC Description  Value Maximum 
value 

Normalized 
value 

14 Mode  Manual 1 3 1/3 

Semi-automated 2 2/3 

Fully automated 3 3/3 

15 Power  Un-powered 1 2 1/2 

Powered 2 2/2 

16 Fault detection Manual 1 2 1/2 

Automated 2 2/2 

	
Table	4.	3	Buffer	classification	code	

# Buffers  CC Description Value  
Maximum 
value 

Normalized 
value 

1 Type 

Magazines  1 

4 

1/4 

Indexing  tables 2 2/4 

Carousels 3 3/4 

AS/RS 4 4/4 

2 Part types  
Single  1 

2 
1/2 

Multiple  2 2/2 

3 Access 

FIFO 1 

3 

1/3 

LIFO 2 2/3 

Random access 3 3/3 

4 Location 

With machine 1 

3 

1/3 

Separate 2 2/3 

Central 3 3/3 
# Controls CC Description  Value Maximum 

value 
Normalized 
value 

5 Mode  Manual  1 2 1/2 

Programmable 2 2/2 

6 Type  Non-adaptive 1 2 1/2 

Adaptive  2 2/2 

7 Access  Open 1 3 1/3 

Limited 2 2/3 

Closed 3 3/3 

8 Structure  Fixed 1 3 1/3 

Modular 2 2/3 

Reconfigurable 3 3/3 

# Programming CC Description Value  Maximum 
value 

Normalized 
value 

9 Mode  Manual  1 2 1/2 

Programmable 2  2/2 



 

10

# 

11

12

13

4

ty

co

eq

C
1.
2.
3.
4.
5.
6.
7.
P
12
13

1 

 

 

 

 

0 Difficul

Operati

1 Mode  

2 Power  

3 Fault de

.2.1 Illustr

The use 

ypically used

ode represen

quipment is 

Characteristics
. Structure: Fi
. N Axes of m
. N Work head
. N Spindles: 
. Tools: Chang
. Tool magazi
. Pin fixtures: 
rogramming 
2. Mode: Prog
3. Difficulty: H

6 1 

Ta
ty  

ion CC 

etection 

rative examp

of the class

d in assembl

ntation of an

shown in Ta

Table	4
s 
xed 

motion: 6 
ds: 1 
1 
geable 
ne: Fixed 
Fixed 

grammable 
High 

1 2 

able	4.3	Buff
Low 

Medium 

High 

Description

Manual 

Semi-automa

Fully automa

Un-powered

Powered 

Manual 

Automated

ple 

sification co

ly systems. E

n assembly m

able 4.4, Tab

4.	4	Assemb
Control 
8. Mode
9. Type
10. Acce
11. Stru

Operatio
14. Mod
15. Pow
16. Faul

2 1 

59 

fer	classifica

ated 

ated 

d 

ode is illust

Each piece o

machine, a m

ble 4.5 and T

bly	machine
 

e: Programmab
: Adaptive 
ess: Open 
cture: Fixed 

on 
de: Fully-autom

wer: Powered 
lt detection: Au

CODE STRI

2 2 

	

ation	code	ሺ
1 

2 

3 

Valu

1 

2 

3 

1 

2 

1 

2 

trated using 

of equipment

material hand

Table 4.6 res

e	code	repre

ble 

mated 

uto. 
ING

1 1 

ሺcont.ሻ	
3 

ue  Maximu
value 
3 

2 

2 

the exampl

t is analyzed

dling equipm

spectively. 

esentation	
Robot

2 3 

1/3 

2/3 

3/3 

um Normal
value 
1/3 

2/3 

3/3 

1/2 

2/2 

1/2 

2/2 

les of equip

d and the det

ment, and a b

tic Work Cell
 

3 2 

 

lized 

pment 

tailed 

buffer 

 

2 



 

C
1.
2.
3.
4.
5.
6.
7.
P
12
13

7 

C
1.
2.
3.
4.
P
9.
10

4 

co

fo

4

4

op

in

o

nu

in

Characteristics
. Type: Feeder
. Structure: Fi
. Motion: Uni
. Path: Fixed 
. Parts Holder
. Part Types: S
. Parts Orienta
rogramming 
2. Mode: Prog
3. Difficulty: H

1 2 

Characteristics
. Type: AS/RS
. Part Types: M
. Access: Ran
. Location: Ce
rogramming 
 Mode: Prog
0. Difficulty: M

2 

In additi

ode has oth

ollowing sec

.3 System

.3.1 Comp

The pres

peration and

ncorporate m

f digits for 

umber. The 

nformation c

Table	4
s 
r 
xed 
-dir, Synch. 

rs: None 
Single 
ation: Active 

grammable 
High 

1 1 

Table	
s 
S 
Multiple 
dom 
entral 

grammable 
Medium 

3 3 

on to group

her applicatio

ctions. 

m Complexi

plexity Index

ented code i

d control co

more factors 

each piece 

conversion

content of an

4.	5	Handling
Control  
8. Mode: P
9. Type: A
10. Access
11. Structu

Operation
14. Mode:
15. Power
16. Fault d

1 2 

4.	6	Buffer	
Control 
5. Mode:
6. Type: 
7. Acce
8. Struc
Operatio
11. Mode
12. Powe
13. Fault 

2 1

ping, standar

ons such as

ity Model 

x for Assemb

is indicative

omplexity. 

than those in

of equipme

n of the vari

n equipment

60 

g	equipmen

Programmable
Adaptive 
s: Open 
ure: Fixed 

n 
 Fully-automat

r: Powered 
detection: Auto

CODE STRI

2 2

	
	

equipment	

: Programmabl
Open Loop 
ss: Closed 

cture: Modular
on 
e: automated 
er: Powered 

detection: Aut
CODE STRI

3 

rdizing and 

s measuring 

bly System M

e of the inher

However, a

ncluded in t

ent in the a

ious code di

can be done

nt	code	repr

e 

ated 

o. 
ING

1 1 

code	repre

le 

to. 
ING

2 2 

information

system com

Modules 

rent structur

an index is 

the SCC cod

assembly sy

igits into a 

e by many m

resentation	
Bow

2 3 

sentation	

2 3 

n retrieval, t

mplexity as 

ral equipmen

proposed f

de. First, the

ystem is red

single num

methods such

wl Feeder 
 

3 2 

AS/RS 
 

2 

the classific

explained i

nt, programm

for each cla

 SCC code s

duced to a s

mber indicate

h as the arithm

 

 

2 

 

2 

cation 

n the 

ming, 

ass to 

string 

single 

es the 

metic 



 

m

ou

ra

to

d

eq

ar

p

mean, median

utliers.  A m

adar plot as 

o the design 

The vario

igit, are plo

quipment cla

Figure	4.	4

A compl

rea. Larger s

lot is the sum

n. Such met

more robust 

follows, tak

of the code 

ous code dig

otted in a r

asses, as sho

4	Radar	plot

lexity index 

shaded area 

mmation of i

ܽெ 					

AM 

aM 

thods are eas

method is t

king into con

structure. 

gits, normal

radar plot, f

own in Figur

t	SCC	Code	r
ሺS.N.	Samy	

is defined 

refers to hig

individual tr

ൌ
1
2
቎ሺܥଵ ∗ ܥ

61 

sy to apply 

to represent 

nsideration th

lized by the 

for each pie

re 4. 4.  

representat
and	H.	ElMa

as the ratio 

gher complex

riangles as: 

ଵ଺ሻܥ ൅ ෍ሺ
௜ୀଵହ

௜ୀଵ

a

but they are

t the code di

the fixed pos

correspond

ece of equip

tion	ሺaሻ	Mac
araghy,	201

between sh

xity index. T

ሺܥ௜ ∗ ௜ାଵሻ቏ܥ ݏ

AB 

aB

e greatly affe

igits values 

sitions of th

ding maximu

pment in e

chine,	ሺbሻ	M
10bሻ	

haded area a

The shaded a

݊݅ݏ ൬
360
16

൰ 

AM
aMHS 

fected by the

graphically 

e code digit

um value of 

ach of the 

MHS,	ሺcሻ	Buff

and the total

area of each 

MHS 

 

e data 

on a 

ts due 

f each 

three 

 
fer	

l plot 

radar 



 
 

62 

ܽெுௌ ൌ
1
2
቎ሺܥଵ ∗ ଵ଺ሻܥ ൅ ෍ሺܥ௜.∗ ௜ାଵሻܥ

௜ୀଵହ

௜ୀଵ

቏ ݊݅ݏ ൬
360
16

൰ 

ܽ஻ 					ൌ
1
2
቎ሺܥଵ ∗ ଵଷሻܥ ൅ ෍ሺܥ௜ ∗ ௜ାଵሻܥ

௜ୀଵଶ

௜ୀଵ

቏ ݊݅ݏ ൬
360
13

൰ 

(4. 1) 

where ܽெ, ܽெுௌ , ܽ஻ are the shaded radar plot areas of machine, material handling, and 

buffer equipment respectively. ܥ௜ is the normalized code value on the radial axis of digit i 

for each radar plot, e.g., in Figure 4. 4(a) for i = 2, C2 = 1.  

The total radar plot area are given by: 

ெܣ 				ൌ ሺ16 2⁄ ሻ݊݅ݏሺ360 16⁄ ሻ 

ெுௌܣ ൌ ሺ16 2⁄ ሻ݊݅ݏሺ360 16⁄ ሻ 

஻ܣ 				ൌ ሺ13 2⁄ ሻ݊݅ݏሺ360 13⁄ ሻ 

(4. 2) 

where ܣெ, ܣெுௌ, ܣ஻ are the total radar plot areas for machine, material handling, buffer 

equipment respectively. 

Then, the complexity index, I, for each class is calculated by dividing both shaded 

and radar plot areas. For example, for an assembly machine represented by a 16 digit 

code string: 

ெܫ ൌ
ܽெ
ெܣ

ൌ
1
16

቎ሺܥଵ ∗ ଵ଺ሻܥ ൅ ෍ሺܥ௜ ∗ ௜ାଵሻܥ
௜ୀଵହ

௜ୀଵ

቏ 

(4. 3) 
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Similarly, for material handling and buffer devices represented by a 16 and 13 digit code 

strings respectively: 

ெுௌܫ ൌ
ܽெுௌ
ெுௌܣ

ൌ
1
16

቎ሺܥଵ ∗ ଵ଺ሻܥ ൅ ෍ሺܥ௜ ∗ ௜ାଵሻܥ
௜ୀଵହ

௜ୀଵ

቏ 

஻ܫ 									ൌ
ܽ஻
஻ܣ

ൌ
1
13

቎ሺܥଵ ∗ ଵଷሻܥ ൅ ෍ሺܥ௜ ∗ ௜ାଵሻܥ
௜ୀଵଶ

௜ୀଵ

቏ 

(4. 4) 

  The calculated individual Complexity Index, I, represents the information content 

defined by its type, controls, programming, and operation fields and it is calculated for 

each piece of equipment within the assembly system. 

4.3.1.1 Illustrative example 

Figure 4. 5 shows a machine typically used in assembly systems. The machine is 

used to assemble the washer and screw together automatically. The Machine is equipped 

with safety movement and detective sensors, to protect the operator and machine from 

damage. The feeding and assembling points are equipped with sensors. The machine 

stops automatically if it runs out of the parts.  This example illustrates the use of the code 

to calculate the machine complexity index ܫெ. The code digit values for this machine are 

shown in Table 4. 7. Digits values normalized by their maximum possible values are then 

plotted as shown in Figure 4. 6. The radar plot shaded and maximum areas are then 

calculated as 1.228 and 3.061 respectively. 

The Complexity Index of this machine, ܫெ ൌ ௔ಾ
஺ಾ

ൌ ଵ.ଶଶ଼

ଷ.଴଺ଵ
ൌ 0.401. The calculated 

index represents the information content defined by the type, controls, programming, and 

operation fields. This index will be used together with the diversity and amount of 

information to obtain a metric for the whole assembly system complexity as described in 

next sections. 
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Figure	4.	6	Radar	plot	of	M‐type	Washer	assembly	machine		

4.3.2 Assembly System Complexity Metric 

Individual pieces of equipment, in all three classes, are analyzed to generate the 

corresponding SCC codes and a complexity index for each is calculated. The resulting 

indices are then used to calculate the complexity of each assembly equipment class. The 

resulting complexity values of the assembly equipment classes are then used to calculate 

total system complexity. 

In addition to the information content defined in the previous section and represented 

by the three complexity indices “ܫெ, ,ெுௌܫ  ஻”, the diversity of information and amount ofܫ

information are considered to calculate equipment complexity by adapting the complexity 

model proposed by W. ElMaraghy and Urbanic (2003). 

4.3.2.1 Assembly machine complexity metric 

The assembly machine complexity is represented by: 

ெܥ ൌ ൬
݊ெ
ܰெ

൅ ெ̅൰ܫ ሾ݈݃݋ଶሺܰெ ൅ 1ሻሿ 

(4. 5) 
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where ܥெ is the machine complexity, ܰெ is the total number of assembly machines, ݊ெ is 

the number of unique assembly machines (an indicator of diversity within a class of 

equipment), and ܫெ̅	is the average complexity index of the ܰெ assembly machines. 

4.3.2.2 Material handling complexity metric 

Similarly, the material handling equipment complexity is represented by: 

ெுௌܥ ൌ ൬
݊ெுௌ
ܰெுௌ

൅ ெ̅ுௌ൰ܫ ሾ݈݃݋ଶሺܰெுௌ ൅ 1ሻሿ 

(4. 6) 

where ܥெுௌ is the material handling complexity, ܰெுௌ is the total number of material 

handling equipment, ݊ெுௌ is the number of unique material handling equipment, and 

 .is the average complexity index of the ܰெுௌ material handling equipment	ெ̅ுௌܫ

4.3.2.3 Buffer complexity metric 

Similarly, the buffer equipment complexity is represented by: 

஻ܥ ൌ ൬
݊஻
஻ܰ
൅ ஻̅൰ܫ ሾ݈݃݋ଶሺ ஻ܰ ൅ 1ሻሿ 

(4. 7) 

where ܥ஻ is the buffer equipment complexity, ஻ܰ is the total number of buffer equipment, 

݊஻ is the number of unique buffer equipment, and ܫ஻̅ is the average complexity index of 

the ஻ܰ buffer equipment. 

The first terms of the right hand side of Equations (4. 5), (4. 6), and (4. 

7):	ቀ௡ಾ
ேಾ
ቁ , ቀ௡ಾಹೄ

ேಾಹೄ
ቁ, and ቀ௡ಳ

ேಳ
ቁ account for the diversity of information of machines, 

handling equipment, and buffers respectively. The second terms: ሺܫெ̅ሻ, ሺܫெ̅ுௌሻ, and 

ሺܫ஻̅ሻ	represent the information content of machines, handling equipment, and buffers 

respectively. The terms: ሾ݈݃݋ଶሺܰெ ൅ 1ሻሿ, ሾ݈݃݋ଶሺܰெுௌ ൅ 1ሻሿ, and ሾ݈݃݋ଶሺ ஻ܰ ൅ 1ሻሿ 
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represent the quantity of information of machines, handling equipment, and buffers 

respectively. The proposed metric for assembly systems complexity is different from the 

one developed by W. ElMaraghy and Urbanic (2003) in the method of calculating the 

information content index, and the aggregation of individual system component 

complexity indices to obtain an overall measure of assembly system complexity. 

4.3.2.4 Total system complexity 

After calculating the complexities of the assembly machines, material handling 

systems, and buffers equipment, the assembly system complexity is represented by: 

௦௬௦௧௘௠ܥ ൌ ெܥଵݓ ൅ ெுௌܥଶݓ ൅  ஻ܥଷݓ

(4. 8) 

where ܥ௦௬௦௧௘௠ is the assembly system complexity, ܥெ, ܥெுௌ, ܥ஻ are machine, material 

handling equipment, and buffer equipment complexities respectively.  The ݓଵ, ݓଶ, ݓଷ are 

weights representing the relative importance of the complexity of the three classes. These 

weights would be determined based on the users experience and desire to emphasize 

certain components of the system. They are set at 1 in the remainder of this work as an 

indication of equal importance of all three classes of equipment in the system.  

The methodology to calculate the assembly system complexity is described below: 

1. Decompose the system equipment into three classes: machines, handling 

equipment, and buffers equipment. 

2. Specify the characteristics of each piece of equipment in each class as described 

in Tables 4.1 - 4.3. 

3. Generate the code string of each piece of equipment. 

4. Calculate the complexity index of each piece of equipment as defined by Equation 

(4.3), i.e. IM, IMHS, IB. 

5. Calculate the average complexity index of the three classes of equipment, i.e. 

,ெ̅ܫ ,ெ̅ுௌܫ  .஻̅ܫ
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6. Count the total number of equipment within each class, i.e. NM, NMHS, NB. 

7. Count the unique number of equipment within each class, i.e. nM, nMHS, nB.. 

8. Calculate the complexity of each class of equipment as defined by Equations 4.5 – 

4.7, i.e. CM, CMHS, CB. respectively. 

9. Define the relative importance of each class , i.e. ݓଵ, ݓଶ, ݓଷ  

10. Calculate the assembly system complexity as defined by Equation (4.8). 

4.4 Case Study: Assembly of Domestic Appliance Drive 

This case study demonstrates the use of the proposed approach to determine the 

complexity of assembly systems. Figure 4. 7 shows the layout of the actual assembly 

equipment used for assembling the domestic appliance drive shown in Figure 4.8.  

A SCARA robot is placed in the centre of the assembly equipment for the 

completion of the automatic operations. Gripping points G1 to G9 are positioned within 

the working range of the robot. The cylindrical pins and spring nuts are passively 

oriented by small vibratory bowl feeders and delivered to the gripping points via 

discharge rails. A large bowl feeder with active orientation devices is used for the 

gearwheels. The bearing ring and thrust washer are drawn from chute magazines and then 

also fed to the gripping points. The drive shaft, drive, stepped shaft and fan wheel are 

placed manually on feed rails or double-belt systems and transported to the gripping 

points. A circular table with 18 work piece carriers is positioned upstream of the 

assembly robot. The arrangement makes 18 similar operations possible so that the gripper 

change times are distributed over 18 similar operations. The operator has the task of 

removing the housing manually from a compartmentalized crate and placing it in the 

assembly fixture. The different gripper systems required are placed in the immediate 

vicinity of the gripping point in order to achieve the shortest possible distances between 

gripper change actions and gripping (B. Lotter, 1989).  
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The following assembly operations sequence is used for this drive assembly: 

• Place pre-assembled drive shaft unit in the assembly fixture by SCARA robot. 

• Fit bearing ring over the drive shaft by SCARA robot. 

• Fit drive assembly over the drive shaft using SCARA robot. 

• Place thrust washer on drive by SCARA robot. 

• Place pre-assembled housing manually over the drive shaft in the assembly 

fixture. 

• Place stepped shaft, pre-assembled with plain bearings, over the drive shaft and fit 

in the housing by the SCARA robot. 

• Fit three cylindrical pins into stepped shaft by SCARA robot. 

• Fit three gear wheels onto cylindrical pins and, at the same time, engage the 

gearwheel teeth in the housing teeth by SCARA robot. 

• Fit fan wheel to drive shaft by SCARA robot. 

• Fit spring nut over drive shaft by SCARA robot. 

• Remove fully assembled units from assembly fixture and place to one side 

manually. 

Description of equipment in the hybrid manual/automated assembly cell 

• A SCARA robot is placed in the centre of the cell. Robot Gripping points G1 to 

G9 are positioned within the working area of the robot. The robot is used for both 

material handling and assembly. 

• The gearwheels, cylindrical pins and spring nuts are oriented by three vibratory 

bowl feeders and fed to the gripping points via discharge rails. 

• The bearing ring and thrust washer are picked from chute magazines and then 

placed by the robot at gripping points G4 and G5.  

• The drive shaft, drive, stepped shaft and fan wheel are placed and arranged 

manually on feed rails or double-belt conveyors and transported to the gripping 

points G6, G7, G8, and G9 respectively. 
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• A circular table with 18 work piece holders is positioned upstream of the SCARA 

robot. This arrangement makes 18 successive similar assembly operations 

possible to minimize the gripper change time. 

• The worker is in charge of placing the housing in the assembly fixture and 

observing the automatic feeding equipment and assembly operations and, if 

necessary, fix any faults or malfunction.  

• The different grippers required are placed in the immediate vicinity of the 

gripping points in order to minimize the robot travel distances between positions 

of gripper change and gripping. 

All equipment in the assembly system are analyzed and the classification code is 

generated for each piece of equipment. The various digit values and description of each 

field of the system equipment are listed in Table 4.8 – Table 4.13. The two feed rails used 

for feeding the drive and the drive shaft are assumed to have same characteristics hence 

they are having same complexity index. The two double belt feeders are similar to the 

two feed rails except that they do not have parts holders (digit#5) and they are having 

active orientation devices (digit#5). Their complexity index is calculated as IMHS = 0.396. 

The conveyor belt is similar to the feed rails except it has pallets to hold parts (digit#5). 

It’s complexity index is   calculated as IMHS = 0.365. 

Two of the three vibratory bowl feeders are similar (N = 3, n = 2), the two feed rails 

are similar (N = 2, n = 1), the two double belts are similar (N = 2, n = 1), plus one 

conveyor belt (N = 1, n=1). Therefore, the total number of the MHS equipment is N = 3 + 

2 + 2 + 1 = 8. The unique number of the MHS equipment is n = 2 + 1 + 1 + 1 = 5. 

Equation (4. 5), Equation (4. 6) and Equation (4. 7) are then used to calculate 

machine, material handling, and buffer equipment respectively. The calculated values and 

the number of pieces of equipment are listed in Table 4.14. 

Considering the amount and diversity of information and assuming that all three 

equipment classes contribute equally to total system complexity (i.e. ݓଵ ൌ ଶݓ ൌ ଷݓ ൌ
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1ሻ, then the complexity of the domestic appliance drive assembly cell/system can be 

calculated using Equation (4. 8) as: 

௦௬௦௧௘௠ܥ ൌ 1.536 ൅ 3.255 ൅ 2.069 ൌ 6.860 

Table	4.	8	Chute	magazine	ሺBuffer	Equipmentሻ		
# Buffer CC Description  Digit value Maximum Value Normalized value 

1 Type Magazine 1 4 0.250 

2 Part types Single  1  2 0.500 

3 Access FIFO 1 3 0.333 

4 Location Separate 2 3 0.667 

5 Mode Manual 1 2 0.500 

6 Type Non-adaptive 1 2 0.500 

7 Access Open 1 3 0.333 

8 Structure Fixed 1 3 0.333 

9 Mode Manual 1 2 0.500 

10 Difficulty Low 1 3 0.333 

11 Mode Semi- 2 3 0.667 

12 Power Powered 2 2 1.000 

13 Fault detection Manual 1 2 0.500 

IB = 0.248 

	
Table	4.	9	SCARA	robot	ሺMachine	Equipmentሻ	

# Machine CC Description Digit value Digit value Normalized value 
1 Structure Fixed* 1 3 0.333 
2 N Axes of motion N 4** 6 0.667 
3 N Workheads N 1 2 0.500 
4 N Spindles N 1 2 0.500 
5 Tools (Gripper) Changeable 2 2 1.000 
6 Tool magazine None 1 3 0.333 
7 Pin fixtures Fixed 1 2 0.500 
8 Mode Programmable 2 2 1.000 
9 Type Non-Adaptive 1 2 0.500 

10 Access Limited 2 3 0.667 
11 Structure Modular 2 3 0.667 
12 Mode Programmable 2 2 1.000 
13 Difficulty High 3 3 1.000 
14 Mode Fully-automated 3 3 1.000 
15 Power Powered 2 2 1.000 
16 Fault detection Auto 2 2 1.000 

IM = 0.536 

* SCARA robot generally has fixed structure, modular SCARA robots are also available (G. Yang, 1999) 
** SCARA robot generally has 4-DOF. However, higher DOF SCARA robots are also available (U. 
Claudio et al., 2011) 
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Table	4.	10	Circular	table	ሺBuffer	Equipmentሻ		
# Buffer CC Description  Digit value Maximum Value Normalized value 

1 Type Indexing tables 2 4 0.500 

2 Part types Multiple 2 2 1 

3 Access FIFO 1 3 0.333 

4 Location Separate 2 3 0.667 

5 Mode Programmable 2 2 1.000 

6 Type Non-adaptive 1 2 0.500 

7 Access Limited 2 3 0.667 

8 Structure Fixed 1 3 0.333 

9 Mode Manual 1 2 0.500 

10 Difficulty Medium 2 3 0.667 

11 Mode Semi- 2 3 0.667 

12 Power Powered 2 2 1.000 

13 Fault detection Manual 1 2 0.500 

IB = 0.363 

 

 

	
Table	4.	11	Vib.	bowl	feeder	ሺMHS	Equipmentሻ	for	cylindrical	pins	and	spring	nuts	
# MHS CC Description Digit value Maximum value Normalized value 
1 Type Feeder 7 7 1.000 
2 Structure Fixed 1 2 0.500 
3 Motion Uni-dir, synch. 1 4 0.250 
4 Path Fixed 1 2 0.500 
5 Parts holder None 1 4 0.250 
6 Part types Single 1 2 0.500 
7  Parts orientation Passive  1 2 0.500 
8 Mode Programmable 2 2 1.000 
9 Type Non-Adaptive 2 2 1.000 

10 Access Limited 2 3 0.667 
11 Structure Fixed 1 3 0.333 
12 Mode Programmable 2 2 1.000 
13 Difficulty Low 1 3 0.333 
14 Mode Semi-

d
2 3 0.667 

15 Power Powered 2 2 1.000 
16 Fault detection Manual 1 2 0.500 

IMHS = 0.387 
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Table	4.	12	Vib.	bowl	feeder	ሺMHS	Equipmentሻ	for	gear	wheels	
# MHS CC Description Digit value Maximum value Normalized value 
1 Type Feeder 7 7 1.000 
2 Structure Fixed 1 2 0.500 
3 Motion Uni-dir, synch. 1 4 0.250 
4 Path Fixed 1 2 0.500 
5 Parts holder None 1 4 0.250 
6 Part types Single 1 2 0.500 
7  Parts orientation Active  2 2 1.000 
8 Mode Programmable 2 2 1.000 
9 Type Non-Adaptive 2 2 1.000 

10 Access Limited 2 3 0.667 
11 Structure Fixed 1 3 0.333 
12 Mode Programmable 2 2 1.000 
13 Difficulty Low 1 3 0.333 
14 Mode Semi-

d
2 3 0.667 

15 Power Powered 2 2 1.000 
16 Fault detection Manual 1 2 0.500 

IMHS = 0.434 

	
 

 

Table	4.	13	Feed	rail	ሺMHS	Equipmentሻ	for	drive	and	drive	shaft	
# MHS CC Description Digit value Maximum value Normalized value 

1 Type Monorail 2 7 0.286 

2 Structure Fixed 1 2 0.500 

3 Motion Uni-dir, asynch. 2 4 0.500 

4 Path Fixed 1 2 0.500 

5 Parts holder Fixture 3 4 0.75 

6 Part types Single 1 2 0.500 

7 Parts Orientation Passive 1 2 0.500 

8 Mode Programmable 2 2 1.000 

9 Type Non-Adaptive 2 2 1.000 

10 Access Open 1 3 0.333 

11 Structure Modular 2 3 0.667 

12 Mode Programmable 2 2 1.000 

13 Difficulty Medium 2 3 0.667 

14 Mode Semi- 2 3 0.667 

15 Power Powered 2 2 1.000 

16 Fault detection Manual 1 2 0.500 

IMHS = 0.424 
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In this specific example, some equipment of the same type and characteristics (e.g. 

the two vibratory feeders, the two feed rails and the two double belt feeders) have the 

same complexity index. Sometimes different pieces of equipment in a class can end up 

having the same or very similar value of complexity index, although they have different 

collection of characteristics and are not interchangeable.    

Equipment of the same type/class, but with different characteristics, will result in 

different complexity code digit values, and these pieces of equipment will be considered 

as a unique variant within the class and hence adding to the complexity due to increased 

variety and information content. This will add to the total number of unique pieces of 

equipment. For example, if all pieces of equipment in the Table 4.13 were different (even 

if they were of the same type) this will result in n = 8 and the MHS complexity becomes 

4.443 which is higher than the earlier values of 3.255. The following two case studies 

further illustrate some similar type equipment with different complexity values due to 

their different characteristics. 

Table	4.	14	Domestic	appliance	drives	assembly	system		

Class Equipment I  I  n N C 

Machine SCARA 0.536  0.536  1 1 1.536 

MHS 

Vibratory feeder 0.387 

0.402  5 8 3.255 

Vibratory feeder 0.387 

Vibratory feeder 0.434 

Feed rail 0.424 

Feed rail 0.424 

Double belt 0.396 

Double belt 0.396 

Conveyor Belt 0.365 

Buffer 
Chute magazine 0.248 

0.306  2 2 2.069 
Circular table 0.363 

System complexity = 6.860 
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The first system consists of the following equipment: 

• Two vibratory bowl feeders stacked one on top of the other, making use of a 

vision-system to feed pin 2 and pin 3. 

• A linear vibratory feeder for feeding pin 1. 

• A pallet magazine to feed the fuse clip subassembly and the cover. 

• A vibratory bowl feeder for feeding the fuse. 

• An automatic screwdriver positioned under the fixture to assemble screw 5. 

• An index-transfer provided with pallets to remove the acceptable assemblies. 

• A SCARA robot provided with a gripper exchange system with grippers 

positioned in the work area of the robot.  

• The worker role in this assembly system includes the feeding and removal of the 

fixture, material supply (such as filling the parts magazines), removal of 

assemblies, repairing jams, system setup, and adjusting system components as 

needed. Hence, this is treated as an automatic assembly cell/system. 

The second system consists of the following equipment: 

The following operations correspond with the second assembly system components: 

• Three pallet magazines to feed base subassembly and the fuse clip, as well as the 

cover. 

• Four circular vibratory feeders to feed pin 1, pin 2, pin 3 and the fuse. 

• A screwdriver unit to be handled by the robot to assemble screw 5. 

• Power-and-free transport system for the automatic feeding and removing of 

fixtures. 

• The operator tasks consist of supplying material, remedying jams, system set-up, 

and if necessary the adjustment of system components. 

• The remaining system components are consistent with the first system structure 

described above.  

The numbers in Figure 4.9 and Figure 4.10 correspond to the numbering of the 

following assembly operations: 
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(1) Feed the subassembly base by a stack magazine (first system) or by a pallet 

magazine (second system). 

(2) Feed pin 2 by a vibratory bowl feeder. 

(3) Feed pin 3 by a vibratory bowl feeder. 

(4) Feed pin 1 by a linear vibratory feeder (first system) or by a vibratory bowl 

feeder (second system). 

(5) & (8) Feed fuse clip by a pallet magazine. 

(6) Feed cover by a vibratory bowl feeder. 

(7) Check the quality of the assembly with electrical measuring instrument. 

(9) Assemble screw 5 with automatic screw driver unit. 

(10) Remove acceptable assemblies by index-transfer system (first system) or by 

power and free transfer system (second system). 

All system components are analyzed and the classification code is generated for each 

field. The detailed code descriptions of the different pieces of equipment of the two 

systems are detailed in Tables (B.1 – B.9) of Appendix (B). Table 4.15 compares the 

equipment and complexity indices of the first and second systems.  

Table	4.	15	Equipment	and	complexity	indices	comparison	ሺS.N.	Samy	and	H.	
ElMaraghy,	2010bሻ	

Part name Process  # 
Equipment  

(first system) 
Equipment 

(second system) 

Base subassembly 1 Stack magazine Pallet magazine 

Pin 2 2 Stacked Vibratory 

Bowl feeder 

Vibratory bowl feeder 

Pin 3 3 Vibratory bowl feeder 

Pin1 4 Linear vibratory feeder Vibratory bowl feeder 

Fuse subassembly 5 Pallet magazine 

Fuse 6 Vibratory bowl feeder 

- 7 Electric measuring instrument 

Cover 8 Pallet magazine 

Screw 9 Automatic screw driver 

Finished product 10 Index-transfer table Power and free transfer conveyor 

- - SCARA robot SCARA robot 
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Complexity indices, number and complexity measures of all equipment in the three 

class types of first system and second systems are shown in Table 4.16 and Table 4.17 

respectively. Assuming all three class types (Machines, MHS, and Buffers) contribute 

equally to the total system complexity (i.e. the weights values are 1), then both system 

complexities can be calculated using Equation (4. 8) as:  

First system: 

Cୱ୷ୱ୲ୣ୫ଵ ൌ 1.460 ൅ 2.549 ൅ 2.340 ൌ 6.349 

Second system: 

௦௬௦௧௘௠ଶܥ ൌ 1.460 ൅ 2.378 ൅ 1.030 ൌ 4.868 

The second system complexity is 4.868 compared to 6.349 of the first system. 

Assembly machines are the same for both systems which gives same values of machine 

complexity “ܥெ”. Although the second system has a higher number of material handling 

equipment “ܰெுௌ”, it has less diversity “݊ெுௌ ܰெுௌ⁄ ” and less complexity index “ܫெுௌ” 

which results in less material handling equipment complexity “ܥெுௌ”. Similarly, buffer 

equipment analysis of the second system shows lower complexity index “ܫ஻”, lower 

diversity “݊஻ ஻ܰ⁄ ”, and a lower number of equipment “ ஻ܰ” than the first system. This 

results in less Buffer complexity “ܥ஻”. 

Table	4.	16		Complexity	indices,	number	and	complexity	of	the	first	system		

Class Equipment I  I  n N C 

Machine SCARA robot 0.460  0.460  1  1  1.460 

MHS 

Stacked vibratory feeder 0.438 

0.348  3  4  2.549 
Vibratory bowl feeder 0.318 

Vibratory bowl feeder 0.318 

Linear vibratory feeder 0.318 

Buffer 

Stack magazine 0.247 

0.258  3  4  2.340 
Pallet magazine 0.182 

Pallet magazine 0.182 

Indexing table 0.421 
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Table	4.	17			Complexity	indices,	number	and	complexity	of	the	second	system	
Class Equipment I  I  n N C 

Machine SCARA robot 0.460 0.460 1 1 1.460 

MHS 

Vibratory bowl feeder 0.434 

0.347 3 6 2.378 

Vibrator  bowl feeder 0.434 

Vibratory bowl feeder 0.434 

Vibrator  bowl feeder 0.434 

Vibratory bowl feeder with 
screw driver unit 

0.531 

Power-and free transfer 0.458 

Buffer 

Pallet magazine 0.182 

0.182 1 3 1.030 Pallet magazine 0.182 

pallet magazine 0.182 
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CHAPTER FIVE 

PRODUCT AND ASSEMBLY EQUIPMENT COMPLEXITY MAPPING 

Individual parts handling and insertion attributes, described in chapter three, are used 

in this chapter to map the relationship between part assembly complexity and its related 

equipment complexity. A dependency matrix is developed to represent the interactions 

between individual part attributes and the related assembly equipment functions. The 

dependency matrix is then used to predict the relevant equipment complexity for a certain 

product before its assembly system and its equipment are known. Using regression 

analysis, the relationship between part complexity and equipment complexity is 

developed and used to predict the assembly equipment complexity. 

5.1 Dependency Matrix 

As described in chapter three, assembly attributes for automatic assembly are 

classified into handling attributes (symmetry, size, flexibility, delicateness, stickiness, 

tangling/nesting) and insertion attributes (securing assembly, insertion resistance, 

alignment/positioning, joining method, insertion direction). On the other hand, Assembly 

equipment functions are classified into feeding, handling, joining, and transportation (G. 

Boothroyd et al., 2002, H.K. Rampersad, 1994, G. Salvendy, 2001). The various 

assembly functions are defined as: 

• Feeding: includes the separation, sorting, positioning, and orienting of parts for 

the handling equipment. 

• Handling: includes pick and place from the feeding position to the joining 

position and the insertion action. 

• Joining:  is combining  together more than one part by fastening, riveting, 

welding, 

• Transportation: is the moving process from one location to another 
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The [DM] is then used to predict the assembly equipment complexity as follows: 

5.2 Parts Complexity Attributes Matrix (PCAM) 

 Based on design for assembly (DFA) analysis, there are two matrices. The first one 

is the parts handling complexity attributes matrix. The second one is the parts insertion 

complexity attributes matrix. The two matrices are combined together here to give one 

single matrix named Parts Complexity Attributes Matrix (PCAM).   

ሿࡹ࡭࡯ࡼ] ൌ 

 Part#1 Part#2 Part#3 …….. Part#n 
Symmetry 

Ch,f 
Size 
Flexibility  
Delicateness  
Stickiness 
Nesting 
Secure assembly 

Ci,f 
Insertion resistance  
Alignment 
Joining 
Insertion direction 

where ܥ௛,௙	 and ܥ௜,௙	are the complexity factors for handling and insertion respectively. 

5.3 Assembly Equipment Complexity Matrix (AECM) 

The above parts complexity attributes matrix (PCAM) is then multiplied by the 

dependency matrix (DM). The result is a new matrix named Assembly Equipment 

Complexity Matrix (AECM) as: 

ሾܯܥܧܣሿ ൌ ሾܯܦሿሾܲܯܣܥሿ 

(5. 1) 

The [AECM] represents an estimation of the average assembly equipment 

complexity. The following example explains the generation and use of the described 

complexity mapping approach. 
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Using both [DM] and [PCAM] matrices would give the average assembly equipment 

complexity matrix [AECM] as: 
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[AECM] =  3.601 3.601 3.098 3.145 3.399 3.274 3.399 3.400 

These values represent the average complexity of the assembly equipment used during 

the assembly process of each part. 

5.4 Normalization 

To normalize the calculated average assembly equipment complexity matrix 

[AECM], another [PCAM] matrix with maximum part assembly attributes values is 

generated as: 

 

 

ሾࡹ࡭࡯ࡼሿ࢞ࢇ࢓ = 
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Symmetry 1 1 1 1 1 1 1 1 
Size 1 1 1 1 1 1 1 1 
Flexibility 1 1 1 1 1 1 1 1 
Delicateness 1 1 1 1 1 1 1 1 
Stickiness 1 1 1 1 1 1 1 1 
Nesting 1 1 1 1 1 1 1 1 
Secure assembly 1 1 1 1 1 1 1 1 
Insertion resistance 1 1 1 1 1 1 1 1 
Alignment 1 1 1 1 1 1 1 1 
Joining 0 0 0 0 0 0 1 0 
Insertion direction 1 1 1 1 1 1 1 1 

Multiplying ሾPCAMሿ୫ୟ୶	by ሾDMሿ would give the corresponding maximum ሾAECMሿ୫ୟ୶. 

In case of the automobile engine piston assembly the ሾAECMሿ୫ୟ୶ is: 
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ሾܯܥܧܣሿ௠௔௫ ൌ ሾܯܦሿሾܲܯܣܥሿ௠௔௫ 

(5. 2) 

i.e., 
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[AECM]max =  4.125 4.125 4.125 4.125 4.125 4.125 4.375 4.125

DividingሾAECMሿ by ሾAECMሿ୫ୟ୶ would give the normalized average assembly equipment 

complexity ሾAECMሿ୬୭୰୫	as: 

ሾܯܥܧܣሿ௡௢௥௠ ൌ ሾܯܥܧܣሿሾܯܥܧܣሿ௠௔௫
ିଵ  

(5. 3) 

i.e., 
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[AECM]norm =  0.873 0.873 0.751 0.762 0.824 0.794 0.777 0.824 

The following section presents the use of regression analysis to drive a general 

relationship between part complexity and assembly equipment. 

5.5 Regression Analysis 

In addition to the automobile piston, three other different mechanical products 

(Figure 5. 4) are considered. The products are: car fan motor, domestic appliance drive, 
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In addition to the 33 parts of the four products, two hypothetical parts are considered 

to represent two extreme points. The two extreme points define the limits of part 

complexity. One part has all minimum values of handling and insertion attributes, the 

other part has all maximum values of handling and insertion attributes. The procedure of 

generating the two extreme points is the same as the one described in the illustrative 

example (5.3.1). The only difference is the substitution of minimum values of handling 

and insertion attributes into the [PCAM] matrix to give the first extreme point. The 

substitution of maximum values of handling and insertion attributes into the [PCAM] 

matrix gives the second extreme point. These minimum and maximum attributes values 

yield 0.671 and 1 as minimum and maximum part complexities respectively. The 

corresponding minimum and maximum values of the [AECM]norm are 0.689 and 1 

respectively. 

Figure 5. 5 shows part complexity of all parts of the four products and the two 

hypothetical parts versus the predicted equipment complexity. Regression analysis is 

used to formulate the relationship between part complexity and assembly equipment 

complexity as follows: 

A relationship between part complexity and the mapped assembly equipment 

complexity would be a second degree polynomial regression model as given in Equation 

5.4 with 95% confidence and a coefficient of determination of 0.8708. 

.௘௤௨௜௣ܥ ൌ ௣௔௥௧ଶܥ	0.5622 െ ௣௔௥௧ܥ0.0311 ൅ 0.4633 

(5. 4) 

where Cୣ୯୳୧୮. is the average complexity of assembly equipment required to assemble 

individual part, C୮ୟ୰୲ is part complexity. 

The average assembly equipment complexity predicted by the proposed association 

mapping approach increases as part complexity increases.  
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Figure	5.	5	Part	complexity	versus	mapping‐based	equipment	complexity	

The above analysis gives the average complexity of the necessary assembly 

equipment knowing the complexity of the part to be assembled. Figure 5. 6 show the 

followed mapping procedure to predict the assembly equipment complexity starting with 

the assembled parts and ending with the assembly equipment complexity. 

The figure shows the procedure of predicting the assembly equipment complexity of 

new products or design variants. Thus, the proposed method of analysis and mapping 

would help product designers in analyzing products with respect to parts assembly 

complexity and predict the complexity of the required assembly equipment in the early 

design stages (stage I of Figure 5. 7 ) before detailing the whole system and determining 

its exact structure. At this stage, the only available data represent product and individual 

parts. Data about system structure and equipment characteristics are not available yet. 
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1b. a gantry robot Handles piston head to pallets on a belt conveyor by suction. 

1c. Conveyor feeds piston head pallets to a pick and place. 

1d. Pick and place piston head pallets to an indexing table. 

2a. Connecting rod comes pre-stacked horizontally as a rack of 10 in a pallet. 

2b. Pick and place connecting rods to a wave motion (cam) conveyor. 

2c. Wave motion conveyor Feeds connecting rod to a pick & place. 

2d. Pick and place connecting rod to the indexing table. 

3a. Piston pin is pre-stacked in a vertical gravity feeder (chute box). 

3b. A conveyor feeds pins from the gravity feeder to a pick and place. 

3c. Pick and place pins to the indexing table. 

3d. A press inserts the pins into the piston head with connecting rod. 

4a. Feeding snap rings by a vibratory bowel feeder. 

4b. A press Inserts the snap rings into the piston head. 

4c. Checking (inspection) the existence of the snap rings. 

5. Picking the finished subassembly and placing it on an overhead asynchronous 

conveyor. 

6a. Piston rings in vertical cylindrical magazine. 

6b. Handling the magazine manually to five indexing tables. 

6c. Inserting the piston rings into the piston head. 
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a handling unit equipped with a double gripper. Both cup bearings are 

automatically lubricated with grease in this position.  

• Station 3: is constructed with as a double station. The work piece carriers are also 

stopped and positioned. The retaining plates are arranged by a vibratory feeder, 

fed to the separating station via a discharge rail, grasped in pairs by a positioning 

unit and placed in bearing shells by a pneumatic press at the second station. 

• Station 4: is a manual work point for the fitting of the magnets in pairs in the 

work piece holder and placing brushes in a bearing plate. 

• Station 5: is also designed as a double station so that the work piece carriers can 

also be stopped and positioned at two points. The retaining spring is arranged by a 

vibratory feeder at the first feeder, fed to the separating station by a discharge rail 

and placed in the work piece holder by a handling unit. At the second position, the 

housing is placed on the work piece carrier by a conveyor and magnetized. 

• Station 6: the first pre-assembled bearing plate is transferred from the pre-

assembly fixture into the final assembly fixture; the housing is positioned on the 

bearing plate. 

• Station 7: the armature is removed from a column magazine by a conveyor belt 

and fed to a stopping station. The trust plate are then fed by a vibratory feeder and 

transported to a separating station by discharge rails and fitted to the armature 

spindle ends. Then, pre-assembled with the trust plates, the armature is fitted into 

the housing and the second bearings plate positioned. 

• Station 8: the form-locking connection of the bearing plates with the housing is 

made at the first stop point by a pneumatically operated preening tool.  

• Station 9: a test run is undertaken and the insulation strength of the motor tested. 

The finally assembled fan motors are placed in a slide by a positioning unit. 

Depending on the test results, bad motors are rejected and good motors are 

transported by a belt system to the packing station. The empty work piece carriers 

are transferred on to the return belt for transport to the first station.  
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Table	5.		2	Product	complexity	vs.	code‐based	system	complexity	

* Calculations are based on procedure described in chapter 3 
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Figure	5.	13	Product	complexity	versus	code‐based	system	complexity	
	

  

engine piston 

domestic 
appliance drive 

car fan motor 

power plug 

5.0

6.0

7.0

8.0

9.0

10.0

5.5 5.7 5.9 6.1 6.3 6.5

C
o
d
e
‐b
as
e
d
 s
ys
te
m
 c
o
m
p
le
xi
ty
 

Product complexity 



 

104 
 

CHAPTER SIX 

CONCLUSIONS  

In designing any assembly system a number of trade-offs are made considering 

function, cost as well as complexity, which is known to affect performance, quality and 

reliability. Complex assembly systems are costly to implement, run, control and maintain. 

Complexity of assembly is an important characteristic worth exploring and modelling for 

evaluating manufacturing systems at the early design stage. Attention should be paid to 

the assembly system complexity resulting from the complexity of products and their 

variants. The objective of this research was to manage the complexity of assembly. The 

complexity of assembly is managed through defining complexity, developing proper 

complexity measures, and considering both the complexity of products and their 

assembly systems in an integrated form. To achieve the research objective the following 

contributions has been made: 

6.1 Research Contributions 

6.1.1 Mathematical model of product assembly complexity 

A mathematical model of product complexity was developed. The model considers 

the information content defined by the assembly attributes of individual parts, the 

diversity of information defined by the diversity of parts and fasteners, and the amount of 

information defined by the total number of parts and fasteners. A DFA-based product 

assembly complexity index has been developed to represent the information content of 

individual parts. The model calculates complexity indices of the assembled individual 

parts. The individual indices were then aggregated in the product assembly complexity 

model. 

The developed product assembly complexity model is applicable to manual and 

automatic mechanical assembly of medium size products.  
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6.1.2 Mathematical model of assembly system complexity 

• A manufacturing system structural classification code has been extended to 

classify and code the various equipment typically found in assembly systems. The 

code characterizes the complexity of the various types of assembly equipment 

within the system.   

• A Code-based assembly system complexity model has been developed to measure 

the individual assembly equipment static complexity and the overall system static 

complexity as well. 

• In addition to the information content captured by the generated complexity 

indices, the equipment number and diversity were considered to measure the total 

assembly system static complexity. 

6.1.3 Mapping complexity of products and assembly systems 

• A dependency matrix has been developed to represent the relationship between 

parts attributes and system functions. The dependency matrix has been used to 

predict the average complexity of equipment required for the assembly of a 

certain product.  

• Regression analysis has been used to model the relationship between part 

complexity and assembly equipment complexity and predict the equipment 

complexity for new products or design variants.  

6.2 Conclusions 

• Integrating and aggregating individual complexities into an overall product or 

system complexity makes it easier to compare design alternatives. 

• The products complexity of a three-pin electric power plug product family 

assembled manually were calculated and compared. The high similarity between 

the product family variants resulted in small differences between the total product 

assembly complexities of the four variants. Using snap fit fastening instead of 

screws reduced assembly complexity by 21.6 %. Not having to hold down parts 
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during assembly reduced the assembly complexity by 17.6 %. The symmetry of 

parts reduced the assembly complexity by 0.42%.  

• The assembly of an automobile engine piston as a case study demonstrated the 

use of the proposed product complexity metric to measure the complexity of 

product automatic assembly. 

• Guidelines such as reducing the number and diversity of parts, reducing number 

of fasteners, reducing part diversity, increasing symmetry of parts, avoiding 

flexible parts, avoiding nesting and tangling of parts,…etc., used to make 

assembly easier are also recommended to reduce product complexity. 

•  The results show that higher product complexity are proportional to longer 

assembly time calculated by DFA analysis  in case of manual assembly 

• The developed SCC structural classification code helped in measuring the static 

complexity of the various assembly system entities as well as the whole assembly 

system. 

• The developed assembly system complexity model was demonstrated by 

measuring the static complexity of two alternate assembly systems. The 

complexity metric was able to identify the complexity of each class of equipment 

within the system and the total assembly system complexity as well. Reducing the 

complexity of material handling equipment by 6.71%, reducing the buffer 

equipment complexity by 55.98% and reducing diversity resulted in a reduction of 

the total assembly system complexity by 23.33%. 

• A methodology has been developed to predict the average complexity of the 

required assembly equipment complexity in the early design stages before 

detailing the exact system structure. Knowledge and experience affect the 

selection of values in the dependency matrix. However the methodology is sound 

and reasonable for extension and refinement. 

• The assembly equipment complexity increases as part complexity increases 

according to the developed nonlinear relationship between part complexity and 

equipment complexity. 

• After detailing the assembly system and its equipment, the SCC code would help 

designers to investigate the impact of product complexity on system complexity. 



 

107 
 

Compare alternatives and configurations based on their complexity and select the 

least complex one. 

• Analysis of four products and the corresponding assembly systems show an 

increase in system complexity as product complexity increases too.  

6.3 Future work 

• The developed product complexity metric is easy to apply for medium size 

products but it could be time consuming for products with large number of parts. 

This can be avoided in the future by automating the analysis process and linking 

the proposed model evaluation procedure with feature based CAD systems. 

• Extending the product complexity model to consider the precedence order of the 

various assembly processes. One suggestion is to use features of liaison 

graph (nodes and arcs) to consider the structural connectivity between parts. 

Furthermore, selecting the optimal assembly sequence that lead to least 

complexity should be considered. 

• Extending the scope of the research work to include other types of assembly such 

printed circuit board and welding processes. Parameters such as welding type, 

shape of joint, required heat and pressure, energy source could be considered as 

addition information of welding specific parameters and could affect the 

complexity of the process. 

• Using the system complexity model together with data base of available prices of 

assembly equipment to translate complexity into cost 

• Investigating the impact of complexity of both product and system on the 

performance of the assembly system (productivity, lead time, bottlenecks, ..) 

using simulation models. 

• Considering the inherent complexity of multi-disciplinarity and coupling of 

design objects. This will help to track the impact of design changes not only on 

the total complexity but also on the complexity of other entities within the system.  

• The values in the dependency matrix were subjectively chosen. Methods such as 

utility functions or fuzzy logic could be used to accurately estimate these values. 

Making use of agents maximizing/minimizing utility and the use of linguistic 
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APPENDICES 

APPENDIX A 

HANDLING AND INSERTION ATTRIBUTES FOR SELECTED PRODUCTS 

Appendix (A) presents the handling and insertion complexity attributes of individual 

parts of selected products: three-pin electric power plug (#2, #3, #4), car fan motor, and 

domestic appliance drive. Tables (A.1 – A.6) show the manual handling and insertion 

attributes for the three-pin electric power plugs.  

Table	A.	1	Parts	handling	complexity	attributes	matrix	for	electric	power	plug	#2	

Part name 

Handling complexity factor, Ch,f 
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Base sub. 1 0.7 0.74 0.27 0.5 0.91 0.34 0.58 0.8 8 4.84 0.61 2.93 
Fuse sub. 1 1 1 0.5 0.5 1 1 0.58 0.8 8 6.38 0.80 5.09 
Pin 1 1 1 0.81 0.5 0.5 0.91 0.34 0.58 0.8 8 5.44 0.68 3.70 
Fuse 1 0.7 1 1 0.5 1 1 0.58 0.8 8 6.58 0.82 5.41 
Pin 2 1 1 0.81 0.5 0.5 0.91 0.34 0.58 0.8 8 5.44 0.68 3.70 
Pin 3 1 1 0.81 0.5 0.5 0.91 0.34 0.58 0.8 8 5.44 0.68 3.70 
Cover 1 0.7 0.74 0.27 0.5 0.91 0.34 0.58 0.8 8 4.84 0.61 2.93 

 
	
	

Table	A.	2Parts	insertion	complexity	attributes	matrix	for	electric	power	plug	#2	

Part name 

Insertion complexity factor, Ci,f 
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Base sub. 1 0.54 0.86 0.87 0.57  - - - 4 2.84 0.71 2.02 
Fuse sub. 1 0.54 1 0.87 0.57  - - - 4 2.98 0.75 2.22 
Pin 1 1 0.54 1 0.87 0.57  - - - 4 2.98 0.75 2.22 
Fuse 1 0.54 1 0.87 0.57  - - - 4 2.98 0.75 2.22 
Pin 2 1 0.54 1 0.87 0.57  - - - 4 2.98 0.75 2.22 
Pin 3 1 0.54 1 0.87 0.57  - - - 4 2.98 0.75 2.22 
Cover 1 0.54 1 0.87 0.57 0.42 - - 5 3.4 0.68 2.31 
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Table	A.	3	Parts	handling	complexity	attributes	matrix	for	electric	power	plug	#3	

Part name 

Handling complexity factor, Ch,f 
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Base sub. 1 1 0.74 0.27 0.5 0.91 0.34 0.58 0.8 8 5.14 0.64 3.30 
Fuse sub. 1 1 1 0.5 0.5 1 1 0.58 0.8 8 6.38 0.80 5.09 
Pin 1 1 1 0.81 0.5 0.5 0.91 0.34 0.58 0.8 8 5.44 0.68 3.70 
Fuse 1 0.7 1 1 0.5 1 1 0.58 0.8 8 6.58 0.82 5.41 
Pin 2 1 1 0.81 0.5 0.5 0.91 0.34 0.58 0.8 8 5.44 0.68 3.70 
Pin 3 1 1 0.81 0.5 0.5 0.91 0.34 0.58 0.8 8 5.44 0.68 3.70 
Cover 1 1 0.74 0.27 0.5 0.91 0.34 0.58 0.8 8 5.14 0.64 3.30 

 
	
	

Table	A.	4	Parts	insertion	complexity	attributes	matrix	for	electric	power	plug	#3	

Part name 

Insertion complexity factor, Ci,f 
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Base sub. 1 0.54 0.86 0.87 0.57 - - - 4 2.84 0.71 2.02 
Fuse sub. 1 0.54 1 0.87 0.57 - - - 4 2.98 0.75 2.22 
Pin 1 1 0.54 1 0.87 0.57 - - - 4 2.98 0.75 2.22 
Fuse 1 0.54 1 0.87 0.57 - - - 4 2.98 0.75 2.22 
Pin 2 1 0.54 1 0.87 0.57 - - - 4 2.98 0.75 2.22 
Pin 3 1 0.54 1 0.87 0.57 - - - 4 2.98 0.75 2.22 
Cover 1 0.54 1 0.87 0.57 0.34 - - 5 3.32 0.66 2.20 

	
	

Table	A.	5	Parts	handling	complexity	attributes	matrix	for	electric	power	plug	#4	

Part name 

Handling complexity factor, Ch,f 
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Base sub. 1 0.7 0.74 0.27 0.5 0.91 0.34 0.58 0.8 8 4.84 0.61 2.93 
Fuse sub. 1 1 1 0.5 0.5 1 1 0.58 0.8 8 6.38 0.80 5.09 
Pin 1 1 1 0.81 0.5 0.5 0.91 0.34 0.58 0.8 8 5.44 0.68 3.70 
Fuse 1 0.7 1 1 0.5 1 1 0.58 0.8 8 6.58 0.82 5.41 
Pin 2 1 1 0.81 0.5 0.5 0.91 0.34 0.58 0.8 8 5.44 0.68 3.70 
Pin 3 1 1 0.81 0.5 0.5 0.91 0.34 0.58 0.8 8 5.44 0.68 3.70 
Cover 1 0.7 0.74 0.27 0.5 0.91 0.34 0.58 0.8 8 4.84 0.61 2.93 
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Table	A.	6	Parts	insertion	complexity	attributes	matrix	for	electric	power	plug	#4	

Part name 

Insertion complexity factor, Ci,f 
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Base sub. 1 0.54 0.86 0.87 0.57 - - - 4 2.84 0.71 2.02 
Fuse sub. 1 0.54 1 0.87 0.57 - - - 4 2.98 0.75 2.22 
Pin 1 1 0.54 1 0.87 0.57 - - - 4 2.98 0.75 2.22 
Fuse 1 0.54 1 0.87 0.57 - - - 4 2.98 0.75 2.22 
Pin 2 1 0.54 1 0.87 0.57 - - - 4 2.98 0.75 2.22 
Pin 3 1 0.54 1 0.87 0.57 - - - 4 2.98 0.75 2.22 
Cover 1 0.54 1 0.87 0.57 0.34 - - 5 3.32 0.66 2.20 

 

Tables (A.7 – A.8) present the automatic handling and insertion complexity 

attributes of individual parts of the car fan motor. 

Table	A.	7	Parts	handling	complexity	attributes	matrix	for	car	fan	motor	

Part name 

Handling complexity factor, Ch,f 
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Bearing plates 2 1 0.81 0.67 0.8 0.8 0.8 6 4.88 0.81 3.97 
Cup bearings 2 0.45 1 0.67 0.8 0.8 0.8 6 4.52 0.75 3.41 
Retaining plates 2 0.45 1 0.67 0.8 0.8 1 6 4.72 0.79 3.71 
Magnets 2 0.66 0.74 0.67 0.8 0.8 0.8 6 4.47 0.75 3.33 
Brushes 2 1 0.81 0.67 1 0.8 1 6 5.28 0.88 4.67 
Retaining springs 1 1 0.81 0.67 0.8 0.8 0.8 6 4.88 0.81 3.97 
Housing 1 0.66 0.74 0.67 0.8 0.8 0.8 6 4.47 0.75 3.33 
Armature 1 0.66 0.74 0.67 0.8 0.8 0.8 6 4.47 0.75 3.33 
Thrust washers 2 0.45 1 0.67 0.8 0.8 0.8 6 4.52 0.75 3.41 
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Table	A.	8	Parts	insertion	complexity	attributes	matrix	for	car	fan	motor	

Part name 

Insertion complexity factor, Ci,f 
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Bearing plates 2 0.75 0.67 1 0.56 0.5 5 3.48 0.70 2.72 
Cup bearings 2 1 0.67 1 0 0.5 4 3.17 0.79 2.51 
Retaining plates 2 1 0.67 1 0 0.5 4 3.17 0.79 2.51 
Magnets 2 1 0.67 1 0 0.5 4 3.17 0.79 2.51 
Brushes 2 1 0.67 1 0 0.5 4 3.17 0.79 2.51 
Retaining springs 1 0.75 0.67 1 0 0.5 4 2.92 0.73 2.13 
Housing 1 1 0.67 1 0 0.5 4 3.17 0.79 2.51 
Armature 1 1 0.67 1 0 0.5 4 3.17 0.79 2.51 
Thrust washers 2 1 0.67 1 0 0.5 4 3.17 0.79 2.51 
 

Tables (A.9 – A.10) present the automatic handling and insertion complexity 

attributes of individual parts of the domestic appliance drive. 

 
Table	A.	9	Parts	handling	complexity	attributes	matrix	for	domestic	appliance	drive	

Part name 

Handling complexity factor, Ch,f 
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Gear wheels 3 0.45 0.81 0.67 0.8 0.8 0.8 6 4.33 0.72 3.13 
Cylindrical pins 3 0.45 1 0.67 0.8 0.8 0.8 6 4.52 0.75 3.41 
Spring nut 1 0.66 1 0.67 0.8 0.8 1 6 4.93 0.82 4.10 
Drive shaft 1 0.66 0.74 0.67 0.8 0.8 0.8 6 4.47 0.75 3.33 
Drive 1 0.66 0.74 0.67 0.8 0.8 0.8 6 4.47 0.75 3.33 
Stepped shaft 1 0.66 0.74 0.67 0.8 0.8 0.8 6 4.47 0.75 3.33 
Fan wheel 1 0.66 0.74 0.67 0.8 0.8 0.8 6 4.47 0.75 3.33 
Bearing 1 0.45 0.81 0.67 0.8 0.8 0.8 6 4.33 0.72 3.13 
Trust washer 1 0.45 1 0.67 0.8 0.8 1 6 4.72 0.79 3.71 
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Table	A.	10	Parts	insertion	complexity	attributes	matrix	for	domestic	appliance	
drive	

Part name 

Insertion complexity factor, Ci,f 
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Gear wheels 3 1 0.6 1 0 0.5 4 3.17 0.79 2.51 
Cylindrical pins 3 0.75 1 1 0 0.5 4 3.25 0.81 2.64 
Spring nut 1 0.75 0.67 1 0.5 0.5 5 3.42 0.68 2.34 
Drive shaft 1 1 0.67 1 0 0.5 4 3.17 0.79 2.51 
Drive 1 1 0.67 1 0 0.5 4 3.17 0.79 2.51 
Stepped shaft 1 1 0.67 1 0 0.5 4 3.17 0.79 2.51 
Fan wheel 1 1 0.67 1 0.5 0.5 5 3.67 0.73 2.69 
Bearing 1 1 1 1 0 0.5 4 3.5 0.88 3.10 
Trust washer 1 1 0.67 1 0 0.5 4 3.17 0.79 2.51 
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APPENDIX B 

EQUIPMENT STRUCTURAL CLASSIFICATION CODE ANALYSIS FOR 

SELECTED ASSEMBLY SYSTEMS 

Appendix (B) presents the structural classification code analysis of the selected 

assembly system: three-pin electric power plug and automobile engine piston. Tables 

(B.1 – B.9) show the main characteristics, normalized digit value, and complexity index 

of individual equipment of the three-pin electric power plug assembly system. 

Table	B.	1	SCARA	robot,	three‐pin	electric	power	plug	assembly	system	
# Machine CC Description Digit value Max. value Normalized value IM 

1 Structure Fixed 1 3 0.333 

0.460 

2 N Axes of motion N 4 6 0.667 

3 N Work heads N 1 2 0.500 

4 N spindles N 1 2 0.500 

5 Tools Changeable 2 2 1.000 

6 Tool magazine None 1 3 0.333 

7 Pin fixtures Fixed 1 2 0.500 

8 Mode Programmable 2 2 1.000 

9 Type Non-Adaptive 1 2 0.500 

10 Access Limited 2 3 0.667 

11 Structure Fixed  1 3 0.333 

12 Mode Programmable 2 2 1.000 

13 Difficulty Medium 2 3 0.667 

14 Mode Fully-automated 3 3 1.000 

15 Power Powered 2 2 1.000 

16 Fault detection Auto 2 2 1.000 
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Table	B.	2		Bowl	feeder,	three‐pin	electric	power	plug	assembly	system	
# MHS CC Description Digit Max. value Normalized value IMHS 

1 Type Feeder 7 7 1 

0.318 

2 Structure Fixed 1 2 0.5 

3 Motion Uni-dir, synch. 1 4 0.25 

4 Path Fixed 1 2 0.5 

5 Parts holder None 1 4 0.25 

6 Part types Single 1 2 0.5 

7 Parts orientation Passive  1 2 0.5 

8 Mode Programmable 2 2 1.000 

9 Type Non-Adaptive 1 2 0.500 

10 Access Open 1 3 0.333 

11 Structure Fixed 1 3 0.333 

12 Mode Programmable 2 2 1.000 

13 Difficulty Low 1 3 0.333 

14 Mode Semi-
d

2 2 0.667 

15 Power Powered 2 2 1.000 

16 Fault detection Manual 1 2 0.500 

 

 

Table	B.	3		Stacked	Bowl	feeder,	three‐pin	electric	power	plug	assembly	system	
# MHS CC Description Digit Max. value Normalized value IMHS 
1 Type Feeder 7 7 1 

0.438 

2 Structure Fixed 1 2 0.5 
3 Motion Uni-dir, synch. 1 4 0.25 
4 Path Fixed 1 2 0.5 
5 Parts holder None 1 4 0.25 
6 Part types Multiple 2 2 1 
7 Parts orientation Active   2 2 1 

8 Mode Programmable 2 2 1.000 
9 Type Non-Adaptive 1 2 0.500 

10 Access Open 1 3 0.333 
11 Structure Fixed 1 3 0.333 
12 Mode Programmable 2 2 1.000 
13 Difficulty Medium  2 3 0.667 
14 Mode Semi-automated 2 2 0.667 
15 Power Powered 2 2 1.000 
16 Fault detection Automatic 2 2 1.000 
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Table	B.	4		Vibratory	bowl	feeder	with	screw	driver,	three‐pin	electric	power	plug	
assembly	system	

# MHS CC Description Digit Max. value Normalized value IMHS 
1 Type Feeder 7 7 1 

0.408 

2 Structure Fixed 1 2 0.5 
3 Motion Uni-dir, synch. 1 4 0.25 
4 Path Fixed 1 2 0.5 
5 Parts holder None 1 4 0.25 
6 Part types Single 1 2 0.5 
7 Parts orientation Passive   1 2 0.500 

8 Mode Programmable 2 2 1.000 
9 Type Adaptive 1 2 0.500 

10 Access Limited 1 3 0.333 
11 Structure Modular 2 3 0.667 
12 Mode Programmable 2 2 1.000 
13 Difficulty Low 1 3 0.333 
14 Mode Semi-

d
2 2 0.667 

15 Power Powered 2 2 1.000 
16 Fault detection Automatic 2 2 1.000 
 

 

Table	B.	5		Linear	vib.	feeder,	three‐pin	electric	power	plug	assembly	system	
# MHS CC Description Digit Max. value Normalized value IMHS 
1 Type Feeder 7 7 1 

0.318 

2 Structure Reconfigurable 2 2 1 
3 Motion Uni-dir, synch. 1 4 0.25 
4 Path Fixed 1 2 0.5 
5 Parts holder None 1 4 0.25 
6 Part types Single 1 2 0.5 
7 Parts orientation Passive 1 2 0.5 

8 Mode Programmable 2 2 1.000 
9 Type Non-Adaptive 1 2 0.500 

10 Access Limited 1 3 0.333 
11 Structure Fixed 1 3 0.333 
12 Mode Programmable 2 2 1.000 
13 Difficulty Low 1 3 0.333 
14 Mode Semi-automated 2 2 0.667 
15 Power Powered 2 2 1.000 
16 Fault detection Manual 1 2 0.500 
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Table	B.	6	Index	transfer,	three‐pin	electric	power	plug	assembly	system	
# Buffer CC Description  Digit value Max. value Normalized value IB 
1 Type Indexing tables 2 4 0.500 

0.421 

2 Part types Single  1 2 0.500 
3 Access FIFO 1 3 0.333 
4 Location Separate 2 3 0.667 
5 Mode Programmable 2 2 1.000 
6 Type Non-adaptive 1 2 0.500 
7 Access Limited 2 3 0.667 
8 Structure Fixed 1 3 0.333 
9 Mode Manual 1 2 0.500 

10 Difficulty Medium 2 3 0.667 
11 Mode Semi-automated 2 3 0.667 
12 Power Powered 2 2 1.000 
13 Fault detection Automatic 2 2 1.000 

	
 

Table	B.	7	Magazine,	three‐pin	electric	power	plug	assembly	system		
# Buffer CC Description  Digit value Max. value Normalized value IB 
1 Type Magazine 1 4 0.250 

0.182 

2 Part types Single  1 2 0.500 
3 Access FIFO 1 3 0.333 
4 Location Separate 2 3 0.667 
5 Mode Manual  1 2 0.500 
6 Type Non-adaptive 1 2 0.500 
7 Access Open  1 3 0.333 
8 Structure Fixed 1 3 0.333 
9 Mode Manual 1 2 0.500 

10 Difficulty Low  1 3 0.333 
11 Mode Manual  1 3 0.333 
12 Power Un-Powered 1 2 0.500 
13 Fault detection Manual 1 2 0.500 
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Table	B.	8	Stacked	Magazine,	three‐pin	electric	power	plug	assembly	system		
# Buffer CC Description  Digit value Max. value Normalized value IB 
1 Type Magazine 1 4 0.250 

0.247 

2 Part types Multiple  2 2 1.000 
3 Access LIFO 2 3 0.667 
4 Location Separate 2 3 0.667 
5 Mode Manual  1 2 0.500 
6 Type Non-adaptive 1 2 0.500 
7 Access Open  1 3 0.333 
8 Structure Fixed 1 3 0.333 
9 Mode Manual 1 2 0.500 

10 Difficulty Low  1 3 0.333 
11 Mode Manual  1 3 0.333 
12 Power Un-Powered 1 2 0.500 
13 Fault detection Manual 1 2 0.500 

	
 

Table	B.	9	Power‐and‐free	conveyor,	three‐pin	electric	power	plug	assembly	system	

 
  

# MHS CC Description Digit value Max. value Normalized value IMHS 
1 Type Conveyor 1 7 0.143 

0.403 

2 Structure Fixed 1 2 0.500 
3 Motion Uni-dir, asynch. 2 4 0.500 
4 Path Variable 2 2 1.000 
5 Parts holder Pallet  2 4 0.500 
6 Part types Single 1 2 0.500 
7 Parts orientation Passive   1 2 0.500 

8 Mode Programmable 2 2 1.000 
9 Type Non-Adaptive 1 2 0.500 

10 Access Limited 2 3 0.667 
11 Structure Modular 2 3 0.667 
12 Mode Programmable 2 2 1.000 
13 Difficulty Medium  2 3 0.667 
14 Mode Automated 2 2 0.833 
15 Power Powered 2 2 0.667 
16 Fault detection Manual 1 2 0.500 
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Tables (B.10 – B.21) show the main characteristics, normalized digit value, and 

complexity index of individual equipment of the engine piston assembly system. 

Table	B.	10	Press,	automobile	engine	piston	assembly	system	
# Machine CC Description Digit value Max. value Normalized value IM 
1 Structure Fixed 1 3 0.333 

0.262 

2 N Axes of motion N 4 6 0.167 
3 N Work heads N 1 2 0.500 
4 N spindles N 1 2 0.500 
5 Tools Fixed  1 2 0.500 
6 Tool magazine Fixed 1 3 0.333 
7 Pin fixtures Fixed 1 2 0.500 
8 Mode Programmable 2 2 0.500 
9 Type Non-Adaptive 1 2 0.500 

10 Access Closed 3 3 1.000 
11 Structure Fixed  1 3 0.333 
12 Mode Manual 1 2 0.500 
13 Difficulty Low  1 3 0.333 
14 Mode Semi-

d
2 3 0.667 

15 Power Powered 2 2 1.000 
16 Fault detection Manual 1 2 0.500 

	
	

Table	B.	11		Vibratory	feede,	automobile	engine	piston	assembly	system	
# MHS CC Description Digit value Max. value Normalized value IMHS 
1 Type Feeder  7 7 1.000 

0.547 

2 Structure Fixed 1 2 0.500 
3 Motion Uni-dir, asynch. 2 4 0.500 
4 Path Fixed 1 2 0.500 
5 Parts holder None  1 4 0.250 
6 Part types Single 1 2 0.500 
7  Parts orientation Active    2 2 1.000 
8 Mode Programmable 2 2 1.000 
9 Type Non-Adaptive 1 2 0.500 

10 Access Open  3 3 1.000 
11 Structure Fixed  1 3 0.333 
12 Mode Programmable 2 2 1.000 
13 Difficulty Medium  2 3 0.667 
14 Mode Automated 2 2 1.000 
15 Power Powered 2 2 1.000 
16 Fault detection Automatic  2 2 1.000 
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Table	B.	12	Conveyor	belt,	automobile	engine	piston	assembly	system	
# MHS CC Description Digit value Max. value Normalized value IMHS 
1 Type Conveyor 1 7 0.143 

0.396 

2 Structure Fixed 1 2 0.500 
3 Motion Uni-dir, asynch. 1 4 0.250 
4 Path Fixed  1 2 0.500 
5 Parts holder Pallet  2 4 0.500 
6 Part types Multiple  2 2 1.000 
7 Parts orientation Passive   1 2 1.000 
8 Mode Programmable 2 2 1.000 
9 Type Non-Adaptive 1 2 0.500 

10 Access Limited 1 3 0.333 
11 Structure Fixed  1 3 0.333 
12 Mode Programmable 2 2 1.000 
13 Difficulty Medium  2 3 0.667 
14 Mode Fully automated 3 3 1.000 
15 Power Powered 2 2 1.000 
16 Fault detection Manual 1 2 0.500 

	
	
	

Table	B.	13	Magazine,	automobile	engine	piston	assembly	system	
# Buffer CC Description Digit value Max. value Normalized value IB 

1 Type Magazine 1 4 0.250 

0.182 

2 Part types Single 1 2 0.500 

3 Access FIFO 1 3 0.333 

4 Location With machine 1 3 0.333 

5 Mode Manual 1 2 0.500 

6 Type Non-adaptive 1 2 0.500 

7 Access Open 1 3 0.333 

8 Structure Fixed 1 3 0.333 

9 Mode Manual 1 2 0.500 

10 Difficulty Low 1 3 0.333 

11 Mode Semi-automated 2 3 0.667 

12 Power Un-Powered 1 2 0.500 

13 Fault detection Manual 1 2 0.500 
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Table	B.	14		Main	indexing	table,	automobile	engine	piston	assembly	system	
# Buffer CC Description  Digit value Max. value Normalized value IB 

1 Type Indexing 2 4 0.500 

0.530 

2 Part types Single  1 2 1.000 

3 Access FIFO 1 3 0.333 

4 Location With machine 1 3 1.000 

5 Mode Manual  1 2 1.000 

6 Type Non-adaptive 1 2 0.500 

7 Access Limited   2 3 0.667 

8 Structure Fixed 1 3 0.333 

9 Mode Manual 1 2 0.500 

10 Difficulty Medium   2 3 0.667 

11 Mode Fully auto. 3 3 1.000 

12 Power Powered 2 2 1.000 

13 Fault detection Automatic  2 2 1.000 

	
	
	

Table	B.	15	Small	indexing	table,	automobile	engine	piston	assembly	system	
# Buffer CC Description  Digit value Max. value Normalized value IB 

1 Type Indexing  2 4 0.500 

0.404 

2 Part types Single   1 2 0.500 

3 Access FIFO 1 3 0.333 
4 Location Separate 2 3 0.667 
5 Mode Programmable  2 2 1.000 
6 Type Non-adaptive 1 2 0.500 
7 Access Open  1 3 0.333 
8 Structure Fixed 1 3 0.333 
9 Mode Manual 1 2 0.500 

10 Difficulty Low  1 3 0.333 
11 Mode Fully-auto.  3 3 1.000 
12 Power Powered 2 2 1.000 
13 Fault detection Automatic  2 2 1.000 
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Table	B.	16	Wave	motion	conveyor,	automobile	engine	piston	assembly	system	
# MHS CC Description Digit value Max. value Normalized value IMHS 

1 Type Conveyor 1 7 0.143 

0.440 

2 Structure Fixed 1 2 0.500 

3 Motion Uni-dir, synch. 1 4 0.250 

4 Path Fixed  1 2 0.500 

5 Parts holder Fixture  3 4 0.75 

6 Part types Multiple  2 2 1.000 

7 Parts orientation Passive   1 2 0.500 
8 Mode Programmable 2 2 1.000 

9 Type Non-Adaptive 1 2 0.500 

10 Access Limited 1 3 0.333 

11 Structure Fixed  1 3 0.333 

12 Mode Programmable 2 2 1.000 

13 Difficulty Medium  2 3 0.667 

14 Mode Fully automated  2 2 1.000 

15 Power Powered 2 2 1.000 

16 Fault detection Automatic  2 2 1.000 

	
	
	

Table	B.	17	Gantry	robot	with	suction	heads,	automobile	engine	piston	assembly	
system	

# MHS CC Description Digit value Max. value Normalized value IMHS 

1 Type Robot  5 7 0.714 

0.518 

2 Structure Fixed 1 2 0.500 
3 Motion Bi-dir, synch. 3 4 0.750 
4 Path Fixed  1 2 0.500 
5 Parts holder Gripper   4 4 1.000 
6 Part types Single   1 2 0.500 
7 Parts orientation Passive   1 2 0.500 
8 Mode Programmable 2 2 1.000 
9 Type Non-Adaptive 1 2 0.500 

10 Access Limited 2 3 0.667 
11 Structure Fixed  1 3 0.333 
12 Mode Programmable 2 2 1.000 
13 Difficulty Medium  2 3 0.667 
14 Mode Fully automated  2 2 1.000 
15 Power Powered 2 2 1.000 
16 Fault detection Automatic  2 2 1.000 

	
 

 



 

128 
 

Table	B.	18	Overhead	asynchronized	conveyor,	automobile	engine	piston	assembly	
system	

# MHS CC Description Digit value Max. value Normalized value IMHS 

1 Type Conveyor 1 7 0.143 

0.420 

2 Structure Fixed 1 2 0.500 
3 Motion Bi-dir, asynch. 4 4 0.500 
4 Path Variable  2 2 0.500 
5 Parts holder Fixture  3 4 0.750 
6 Part types Multiple  2 2 1.000 
7 Parts orientation Passive   1 2 0.500 
8 Mode Programmable 2 2 1.000 
9 Type Non-Adaptive 1 2 0.500 

10 Access Limited 2 3 0.333 
11 Structure Fixed  1 3 0.333 
12 Mode Programmable 2 2 1.000 
13 Difficulty Medium  2 3 0.667 
14 Mode Fully automated  2 2 1.000 
15 Power Powered 2 2 1.000 
16 Fault detection Automatic  2 2 0.500 

	
	

Table	B.	19	Nut	runner,	automobile	engine	piston	assembly	system	
# Machine CC Description Digit value Max. value Normalized value IM 

1 Structure Fixed 1 3 0.333 

0.271 

2 N Axes of motion N 2 6 0.333 
3 N Work heads N 1 2 0.500 
4 N spindles N 1 2 0.500 
5 Tools Fixed  1 2 0.500 
6 Tool magazine Fixed 1 3 0.333 
7 Pin fixtures Fixed 1 2 0.500 
8 Mode Programmable 2 2 1.000 
9 Type Non-Adaptive 1 2 0.500 

10 Access Closed 3 3 1.000 
11 Structure Fixed  1 3 0.333 
12 Mode Manual 1 2 0.500 
13 Difficulty Low  1 3 0.333 
14 Mode Semi-automated 2 3 0.667 
15 Power Powered 2 2 1.000 
16 Fault detection Manual 1 2 0.500 
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Table	B.	20	Pick	and	place,	automobile	engine	piston	assembly	system	
# MHS CC Description Digit value Max. value Normalized value IMHS 

1 Type Robot  6 7 0.857 

0.491 

2 Structure Fixed 1 2 0.500 
3 Motion Bi-dir, synch. 3 4 0.750 
4 Path Fixed  1 2 0.500 
5 Parts holder Gripper   4 4 1.000 
6 Part types Multiple  2 2 0.500 
7 Parts orientation Passive   1 2 0.500 
8 Mode Programmable 2 2 1.000 
9 Type Non-Adaptive 1 2 0.500 

10 Access Limited 2 3 0.333 
11 Structure Fixed  1 3 0.667 
12 Mode Programmable 2 2 1.000 
13 Difficulty Medium  2 3 0.667 
14 Mode Fully automated  2 3 0.667 
15 Power Powered 2 2 1.000 
16 Fault detection Manual  1 2 0.500 

	
	

Table	B.	21	Handling	robot,	automobile	engine	piston	assembly	system	
# MHS CC Description Digit value Max. value Normalized value IMHS 

1 Type Robot  6 7 0.857 

0.657 

2 Structure Fixed 1 2 0.500 
3 Motion Bi-dir, asynch. 4 4 1.000 
4 Path Variable  2 2 1.000 
5 Parts holder Gripper   4 4 1.000 
6 Part types Multiple  2 2 1.000 
7 Parts orientation Passive   1 2 0.500 
8 Mode Programmable 2 2 1.000 
9 Type Adaptive 2 2 1.000 

10 Access Limited 2 3 0.667 
11 Structure Fixed  1 3 0.333 
12 Mode Programmable 2 2 1.000 
13 Difficulty Medium  2 3 0.667 
14 Mode Fully automated  3 3 1.000 
15 Power Powered 2 2 1.000 
16 Fault detection Automatic  2 2 1.000 
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Tables (B.22 – B.27) show the main characteristics, normalized digit value, and 

complexity index of individual equipment of the car fan motor assembly system. 

Table	B.	22	Peening	unit,	car	fan	motor	assembly	system	
# Machine CC Description Digit value Max. value Normalized value IM 
1 Structure Fixed 1 3 0.667 

0.481 

2 N Axes of motion N 2 6 0.333 
3 N Work heads N 1 2 0.500 
4 N spindles N 1 2 0.500 
5 Tools Fixed  1 2 1.000 
6 Tool magazine Fixed 2 3 0.667 
7 Pin fixtures Moving 2 2 1.000 
8 Mode Programmable 2 2 1.000 
9 Type Non-Adaptive 1 2 0.500 

10 Access Closed 3 3 1.000 
11 Structure Fixed  1 3 0.333 
12 Mode Manual 1 2 0.500 
13 Difficulty Low  1 3 0.333 
14 Mode Semi-automated 2 3 0.667 
15 Power Powered 2 2 1.000 
16 Fault detection Manual 1 2 1.000 

	
Table	B.	23	Pneumatic	press,	car	fan	motor	assembly	system	

# Machine CC Description Digit value Max. value Normalized value IM 
1 Structure Modular 2 3 0.667 

0.417 

2 N Axes of motion N 1 6 0.167 
3 N Work heads N 1 2 0.500 
4 N spindles N 1 2 0.500 
5 Tools Fixed  1 2 1.000 
6 Tool magazine Fixed 2 3 0.667 
7 Pin fixtures Moving 1 2 0.500 
8 Mode Programmable 2 2 0.500 
9 Type Non-Adaptive 1 2 0.500 

10 Access Closed 3 3 1.000 
11 Structure Fixed  1 3 0.667 
12 Mode Manual 1 2 0.500 
13 Difficulty Low  1 3 0.333 
14 Mode Semi-automated 2 3 0.667 
15 Power Powered 2 2 1.000 
16 Fault detection Manual 1 2 1.000 
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Table	B.	24		Vibratory	feeder,	car	fan	motor	assembly	system	
# MHS CC Description Digit value Max. value Normalized value IMHS 
1 Type Feeder  7 7 1.000 

0.589 

2 Structure Fixed 1 2 0.500 
3 Motion Uni-dir, asynch. 2 4 0.500 
4 Path Fixed 1 2 0.500 
5 Parts holder None  1 4 0.250 
6 Part types Single 1 2 0.500 
7  Parts orientation Active    2 2 1.000 
8 Mode Programmable 2 2 1.000 
9 Type Non-Adaptive 1 2 0.500 

10 Access Open  3 3 1.000 
11 Structure Modular   2 3 0.667 
12 Mode Programmable 2 2 1.000 
13 Difficulty Medium  2 3 0.667 
14 Mode Automated 2 2 1.000 
15 Power Powered 2 2 1.000 
16 Fault detection Automatic  2 2 1.000 

	
	

Table	B.	25		Pick	and	place,	car	fan	motor	assembly	system	
# MHS CC Description Digit value Max. value Normalized value IMHS 
1 Type Feeder  7 7 0.857 

0.596 

2 Structure Fixed 1 2 0.500 
3 Motion Bi-dir, asynch. 3 4 0.750 
4 Path Fixed 1 2 0.500 
5 Parts holder None  1 4 1.000 
6 Part types Single 1 2 0.500 
7  Parts orientation Active    2 2 1.000 
8 Mode Programmable 2 2 1.000 
9 Type Non-Adaptive 1 2 1.000 

10 Access Open  3 3 0.333 
11 Structure Modular  2 3 0.667 
12 Mode Programmable 2 2 1.000 
13 Difficulty Medium  2 3 0.667 
14 Mode Automated 2 3 0.667 
15 Power Powered 2 2 1.000 
16 Fault detection Automatic  2 2 1.000 
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Table	B.	26		Conveyor	belt,	car	fan	motor	assembly	system	
# MHS CC Description Digit value Max. value Normalized value IMHS 
1 Type Feeder  7 7 0.333 

0.483 

2 Structure Fixed 1 2 0.500 
3 Motion Bi-dir, asynch. 3 4 0.750 
4 Path Fixed 1 2 0.500 
5 Parts holder Pallet   2 4 0.500 
6 Part types Multiple 2 2 1.000 
7  Parts orientation Passive    1 2 0.500 
8 Mode Programmable 2 2 1.000 
9 Type Non-Adaptive 1 2 0.500 

10 Access Limited  2 3 0.667 
11 Structure Fixed  1 3 0.333 
12 Mode Programmable 2 2 1.000 
13 Difficulty Medium  2 3 0.667 
14 Mode Automated 2 2 1.000 
15 Power Powered 2 2 1.000 
16 Fault detection Automatic  2 2 1.000 

	
	

Table	B.	27		Magazine,	car	fan	motor	assembly	system	
# Buffer CC Description  Digit value Max. value Normalized value IB 

1 Type Magazine  1 4 0.250 

0.311 

2 Part types Multiple  2 2 1.000 
3 Access Random 3 3 1.000 
4 Location Local machine 2 3 0.667 
5 Mode Manual  1 2 0.500 
6 Type Non-adaptive 1 2 0.500 
7 Access Limited   2 3 0.333 
8 Structure Fixed 1 3 0.333 
9 Mode Manual 1 2 0.500 

10 Difficulty Low    1 3 0.333 
11 Mode Semi - auto. 2 3 0.667 
12 Power Powered 2 2 0.500 
13 Fault detection Automatic  2 2 0.500 
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APPENDIX C 

HANDLING DESIGN FOR ASSEMBLY ANALYIS FOR THE THREE-PIN 

ELECTRIC POWER PLUG 

Appendix (C) presents the manual DFA analysis of the three-pin electric power plug 

manual assembly as shown in Tables (C.1 – C.4). 

Table	C.	1	Manual	DFA	analysis	of	plug#1	

Part name 
Handling 

code 
Handling 

time 
Insertion 

code 
Insertion 

time 
Total assembly 

time 

Base sub. 30 1.95 0.0 1.5 3.45 

Fuse clip sub. 35 2.73 0.0 1.5 4.23 

Pin 1 20 1.8 0.0 1.5 3.3 

Fuse 0.0 1.13 31 5 6.13 

Pin 2 20 1.8 0.0 1.5 3.3 

Pin 3 20 1.8 0.0 1.5 3.3 

Cover 30 1.95 0.6 5.5 7.45 

Cover screw 10 1.5 38 6 7.5 

    Sum = 38.66 

	
	

Table	C.	2	Manual	DFA	analysis	of	plug#2	

Part name 
Handling 

code 
Handling 

time 
Insertion 

code 
Insertion 

time 
Total assembly 

time 

Base sub. 10 1.13 0.0 1.5 2.63 

Fuse clip sub. 35 2.73 0.0 1.5 4.23 

Pin 1 20 1.8 0.0 1.5 3.3 

Fuse 0.0 1.13 31 5 6.13 

Pin 2 20 1.8 0.0 1.5 3.3 

Pin 3 20 1.8 0.0 1.5 3.3 

Cover 10 1.13 0.6 5.5 6.63 

Cover screw 10 1.5 38 6 7.5 

    Sum =  37.02 
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Table	C.	3		Manual	DFA	analysis	of	plug#3	

Part name 
Handling 

code 
Handling 

time 
Insertion 

code 
Insertion 

time 
Total assembly 

time 

Base sub. 30 1.95 0.0 1.5 3.45 

Fuse clip sub. 35 2.73 0.0 1.5 4.23 

Pin 1 20 1.8 0.0 1.5 3.3 

Fuse 0.0 1.13 31 5 6.13 

Pin 2 20 1.8 0.0 1.5 3.3 

Pin 3 20 1.8 0.0 1.5 3.3 

Cover 30 1.95 0.6 5.5 7.45 

    Sum =  31.16 
 

	
Table	C.	4	Manual	DFA	analysis	of	plug#4	

Part name 
Handling 

code 
Handling 

time 
Insertion 

code 
Insertion 

time 
Total assembly 

time 

Base sub. 10 1.13 0.0 1.5 2.63 

Fuse clip sub. 35 2.73 0.0 1.5 4.23 

Pin 1 20 1.8 0.0 1.5 3.3 

Fuse 0.0 1.13 31 5 6.13 

Pin 2 20 1.8 0.0 1.5 3.3 

Pin 3 20 1.8 0.0 1.5 3.3 

Cover 10 1.13 0.6 5.5 6.63 

    Sum =  29.52 
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APPENDIX D 

STRUCTURAL CLASSIFICATION CODE (SCC) ANNOTATIONS 

Appendix (D) presents the annotations of the various digits of the Structural 

Classification Code (SCC) as shown in Tables (D.1 – D.6). 

Table	D.	1	Machine	Type	CC	Annotations	
Digit number Description Explanation 
1 Fixed structure Machine components  cannot be changed or replaced 

Modular structure Structure modular design allows the possibility of 
replacing some modules of the machine. 

Changeable structure Both hard (add or remove some components of the 
machine structure) and soft (operation and control 
software) are changeable. 

2 N Axes of motion Axes of motion are all axes which are controlled and 
moved during the assembly process. 
N is the total number of axes of motion - it ranges from 1 
to 6. 

3 N Work heads A workhead performs the actual attachment of the 
component. Typical workheads include automatic 
screwdrivers, staking or riveting machines, welding heads, 
and other joining devices. 
N is the total number of workheads. A robot has one 
workhead, other assembly machines could have more than 
one workhead. 

4 N Spindles Spindles are very specific to some machines; it rotates 
about a rotary axis and is independent from it in direction 
of the rotary axis (translation). 
N is the total number of spindles. A robot is considered to 
have one spindle, other machines could have more than 
one spindle. 

5 Fixed tools Tools cannot be adjusted, changed or removed. 
Changeable tools Tools can be modified, changed or adjusted. 

6 No Tool magazine Tool magazine is an arrangement of multiple tools that 
allows a machine to rapidly change from one operation to 
the next. 
Some machines have no tool magazine. 

Fixed tool magazine The magazine cannot be replaced or removed. 
Replaceable tool magazine The magazine cannot be replaced or removed. 

7 Fixed pin fixtures A fixture that securely holds a part for a certain operation. 
The fixed fixture is part specific and cannot be changed or 
expanded. 

Moving pin fixtures Moving fixtures is the opposite of fixed fixtures. 
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Table	D.	2	Handling	Equipment	CC	Annotations	
Digit number Description Explanation 
1 Conveyor  

 
A conveyor is a horizontal, inclined, or vertical device for 
moving or transporting bulk material, packages, or objects 
in a path pre-determined by the design of the device, and 
having points of loading and unloading.  
Many kinds of conveyors are available such as conveyor 
belts, chain conveyor, and roller conveyor. 

Monorail 
 

A monorail is a single run of overhead track on 
which carriers (trolleys) travel 

Forklift trucks A forklift truck is a material handling vehicle designed to 
move loads by means of steel fingers or forks inserted 
under a load. Also known as a lift truck. 

AGV An automatic guided vehicle system (AGV) consists of 
one or more computer controlled, wheel-
based load carriers  that run on the plant floor without the 
need for a driver.  AGVs have defined paths or areas 
within which they can navigate.  

Cranes and gantries A crane is handling equipment used for lifting and 
lowering a load, and moving it horizontally.  
A gantry crane is similar to an overhead crane except that 
the bridge for carrying the trolley is floor supported rather 
than overhead supported (wall-mounted). 

Robot An industrial robot is used in positioning to provide 
variable programmed motions of loads. Industrial robots 
also used for parts fabrication, inspection and assembly 
tasks. 
An industrial robot consists of a chain of several rigid 
links connected in series by revolute or prismatic joints 
with one end of the chain attached to a supporting base and 
the other end free and equipped with an end effector. The 
robot’s end effector can be equipped with mechanical 
grippers, vacuum grippers, welding heads, paint spray 
heads or any other tooling. 

Feeder A common feeder is the vibratory feeder. It is a device that 
uses vibration to feed small parts to a 
machine. Vibratory feeders use both vibration 
and gravity to move material. Gravity is used to determine 
the direction, either down, or down and to a side, and then 
vibration is used to move the parts.  
A common vibratory feeder is bowl shaped. 

2 Fixed structure The structure the MHS equipment cannot be changed. 
Reconfigurable structure The structure can be expanded (shortened) by adding 

(removing) components. 
3 Uni-directional motion Operating or moving or allowing movement in one 

direction only 
Bi- directional motion Operating or moving or allowing movement in two usually 

opposite directions 
Synchronized motion Make motion exactly simultaneous with the action. 
Asynchronized motion Is the opposite of synchronized motion 
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Table	D.2	Handling	Equipment	CC	Annotations	ሺcont.ሻ	
4 Fixed path Some equipment has defined paths which they can 

navigate. Fixed path guidance refers to a physical 
guide path (e.g., wire, tape, paint, rail) on the floor 
that is used for guidance. 

Variable path Variable or Free-ranging guidance has no physical 
guide path (e.g., Optical-guided 
Laser-guided) 

5 Parts  holders A device used to hold and secure parts. It could be a 
pallet, a fixture, or a gripper. 

6 Part types A single or multiple types of parts can be handled 
by the equipment.  

7 Parts orientation Passive orientation, e.g. gravity feeders, and active 
orientation feeders such as bowel feeders with 
specific orientation devices  

 
 
 

Table	D.	3	Buffers	Equipment	CC	Annotations	
Digit number Description Explanation 
1 Indexing tables Mechanical device by which the assembly part is 

transferred from work point to work point in the 
sequence of assembly operations. 

Magazine With this type of equipment, parts are stacked into a 
container that constraints the parts in the desired 
orientation. Magazines can be subdivided into flat 
and chute magazines. 

Carousel Equipment used to store items for 
eventual picking or retrieval. There are two types of 
carousels horizontal and vertical carousel.  

ASRS Automatic storage & retrieval system (AS/RS) refers 
to a variety of means under computer control for 
automatically depositing and retrieving loads from 
defined storage locations.  

2 Part Types A single or multiple types of parts can be stored or 
retrieved. 

3 FIFO Access The way of organizing and manipulation of parts is 
First in, First out. 

LIFO Access The way of organizing and manipulation of parts is 
First out, First in. 

Random Access No specific order of organizing and manipulation of 
parts. 

4 Location  A buffer could be integrated with machine, or next to 
machine, or could be a central buffer that serves 
more than one machine. 
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Table	D.	4	Controls	CC	Annotations	
Digit number Description Explanation 
1 Mode Assembly equipment can be controlled manually or 

automatically. 
2 None-adaptive control Also known as open loop control.  It does not 

use feedback to determine if its output has achieved 
the desired goal of the input.  

Adaptive control Also known as closed loop control.   It feeds the 
output of the system back to the inputs of the 
controller 

3 Access The way that user interacts with controller. Three 
types exist: open, limited, closed access. 

4 Fixed structure  No change is allowed in the control software 
Modular structure Limited hooks are provided for replacing some 

modules of the controller. 
Reconfigurable structure Total plug and play type of control system that 

allows adding or removing some components of the 
controller. 

 
Table	D.	5	Programming	CC	Annotations	

Digit number Description Explanation 
1 Mode An assembly equipment can be manual or 

programmable.  
2 Difficulty The effort and time of programming by user. It 

ranges from low to high difficulty. 
 

Table	D.	6	Operation	CC	Annotations	
Digit number Description Explanation 
1 Mode Is the level of automation of the operation. It can be 

manual, semi-automated, or fully automated 
operations. 

2 Power  Some equipment require power to operate, some are 
operated manually. 

3 Fault detection Faults and errors can be detected manually by 
operator, or automatically by sensors. 
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