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Abstract

In this thesis, we give a detailed construction of the crossed product of a C∗-

algebra by a locally compact group. In Chapter 1, we review some preliminary

results on locally compact groups and C∗-algebras. In Chapter 2, Haar measures

on locally compact groups are studied and a brief harmonic analysis is discussed.

In Chapter 3, we study vector-valued integration on groups and prove a version

of the Fubini theorem for vector-valued integrals. In Chapter 4, transformation

groups are considered, and C∗-dynamical systems and their covariant representa-

tions are investigated. Finally, we explore in Chapter 5 the construction of crossed

products of C∗-algebras and provide some examples of crossed products. Some

representations associated with crossed products are also briefly discussed.
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Introduction

This work is based on materials contained in Folland [7], Hewitt and Ross [8],

and Williams [17]. For many of the results, we give alternative proofs and add

lots of details. We also extend some constructions of crossed products given in

Williams [17], which we shall present in Section 5.2.

The crossed product AoαG of a C∗-algebra A by a locally compact group G is

a C∗-algebra built out of a continuous group action of G on A. In the special case

where the C∗-algebra A is trivial (that is, A = C), the crossed product reduces

to the group C∗-algebra C∗(G) of G. In the other special case where G = {e},

the crossed product is just the C∗-algebra A itself. Hence, both locally compact

groups and C∗-algebras are considered before we look into their crossed products.

Chapter 1 provides a brief overview of the theories of locally compact groups

and C∗-algebras as well as some preliminary results on topology.

In Chapter 2, we define Haar measure on a locally compact group and consider

some of its basic properties. In Section 2.2, we digress slightly into harmonic

analysis on locally compact abelian groups. This is to bridge the gap between the

constructions with abelian groups and the generalization to non-abelian groups.

In Chapter 3, we discuss vector-valued integration on groups, with particular

emphasis on integration of compactly supported continuous functions, and prove

a version of the Fubini theorem for vector-valued integrals.

In Chapter 4, we consider transformation groups which lead to the definition

of C∗-dynamical systems and their covariant representations. We show that all

C∗-dynamical systems (A,G, α) with A commutative arise from locally compact

transformation groups.

In Chapter 5, we construct crossed products of C∗-algebras and illustrate them

with some examples. We conclude the thesis with Section 5.3 by describing some

representations associated with crossed products.

1



CHAPTER 1

Preliminaries

Crossed products are built from locally compact group actions on C*-algebras

as we shall see later. Therefore, we need to have sufficient information about

C∗-algebras and locally compact groups. In this chapter, the first section gives

a brief introduction to C∗-algebras while the last three sections cover topological

considerations. In Sections 1.2 and 1.3, we give brief introductions to topological

groups and locally compact groups. For detailed study of these topics, we refer to

Folland [7] and Hewitt and Ross [8].

1.1. C∗-Algebras

C∗-algebras are special type of Banach algebras closely associated with the

theory of operators on Hilbert spaces. For instance, if H is a Hilbert space, then

the space B(H) of all bounded linear operators on H is a C∗-algebra. On the other

hand, every C∗-algebra A is isomorphic to a subalgebra of B(H) for some Hilbert

space H.

In this section, we give a sufficient information about C∗-algebras following

Conway [4]. Most results under this section will not be proved. A more thorough

treatment of C∗-algebras is available in Arveson [2].

Definition 1.1.1. If A is an algebra over C, an involution on A is a map

a 7→ a∗ on A such that the following properties hold for all a, b ∈ A and α ∈ C:

(1) (a∗)∗ = a;

(2) (ab)∗ = b∗a∗;

(3) (αa+ b)∗ = ᾱa∗ + b∗,

where ᾱ is the complex conjugate of α.

Note that if A is an involutive unital algebra, then 1∗ = 1. Indeed, we have

1∗ ·a = (a∗ · 1)∗ = (a∗)∗ = a, and, similarly, a · 1∗ = a. Since the identity is unique,

1∗ = 1. Also, when A = C, we have α∗ = ᾱ.

2



1.1. C∗-ALGEBRAS 3

Definition 1.1.2. A C∗-algebra is a Banach algebra A with an involution such

that for every a ∈ A,

‖a∗a‖ = ‖a‖2.

Example 1.1.3. If H is a Hilbert space, B(H) is a C∗-algebra, where for each

T ∈ B(H), T ∗ is the adjoint of T .

Example 1.1.4. If X is a compact topological space, then the space C(X)

of all continuous complex-valued functions on X is a unital C∗-algebra, where

f ∗(x) = f(x) for all f ∈ C(X) and x ∈ X.

Example 1.1.5. If a topological space X is locally compact but not compact,

then the space C0(X) of all continuous complex-valued functions on X varnishing

at infinity is a C∗-algebra without identity, where f ∗ is defined as in Example 1.1.4.

Example 1.1.6. Let (X,Ω, µ) be a σ-finite measure space, and let L∞(X,Ω, µ)

be the space of equivalent classes of µ-essentially bounded measurable functions

on X. Then L∞(X,Ω, µ) is a C∗-algebra, where the involution is defined as in

Example 1.1.4.

Example 1.1.7. Let Cmm denote the algebra of m×m matrices with entries

from C. By viewing elements of Cmm as operators on Cm,

‖A‖ := sup{‖Ax‖ : x ∈ Cm and ‖x‖ = 1}

is a norm on Cmm making it a C∗-algebra.

Proposition 1.1.8. If A is a C∗-algebra and a ∈ A, then ‖a∗‖ = ‖a‖.

Proof. Note that ‖a‖2 = ‖a∗a‖ ≤ ‖a∗‖‖a‖; so, ‖a‖ ≤ ‖a∗‖. Since a = a∗∗,

substituting a∗ for a in the above inequality gives ‖a∗‖ ≤ ‖a‖. �

Proposition 1.1.9. If A is a C∗-algebra and a ∈ A, then

‖a‖ = sup{‖ax‖ : x ∈ A, ‖x‖ ≤ 1} = sup{‖xa‖ : x ∈ A, ‖x‖ ≤ 1}.

Proof. Let α = sup{‖ax‖ : x ∈ A, ‖x‖ ≤ 1}. Then ‖ax‖ ≤ ‖a‖‖x‖ for any

x ∈ A, and hence α ≤ ‖a‖. The equality is obvious if a = 0.
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For a 6= 0, let x = a∗/‖a‖. Then ‖x‖ = 1 by the preceding proposition. For

this x, ‖a‖ = ‖ax‖ ≤ α, and so α = ‖a‖. The proof of the other equality is

similar. �

The last proposition has the following useful implication.

Corollary 1.1.10. Let A be a C∗-algebra. Then A is isometrically isomorphic

to a subalgebra of the space B(A) of all bounded linear operators on A.

Proof. For a ∈ A, define La : A → A by x 7→ ax. By Proposition 1.1.9,

La ∈ B(A) and ‖La‖ = ‖a‖. If λ : A → B(A) is defined by λ(a) = La, then λ is

an isometric homomorphism. �

The map λ in the above proof is called the left regular representation of A.

Definition 1.1.11. If A and C are involutive Banach algebras, then v : A→ C

is called a ∗-homomorphism when v is an algebraic homomorphism such that

v(a∗) = v(a)∗ for all a ∈ A.

Now, we give a brief overview of the multiplier algebra of a C∗-algebra A based

on materials from [3], [9] and [10].

Definition 1.1.12. Let A be a C∗-algebra. A double centralizer of A is a pair

(L,R) of bounded linear maps on A such that for all a, b ∈ A,

L(ab) = L(a)b, R(ab) = aR(b), and R(a)b = aL(b).

For example, if c ∈ A, then (Lc, Rc) is a double centralizer on A, where Rc(a) =

ac. It follows from Proposition 1.1.9 that ‖Lc‖ = ‖Rc‖ = ‖c‖.

Generally, for all double centralizers (L,R) of A, we have ‖L‖ = ‖R‖ (cf. [10,

Lemma 2.1.4]).

We denote the set of all double centralizers of A by M(A). Let the norm of

the double centralizer (L,R) be defined as ‖L‖ (= ‖R‖), and let

(L1, R1)(L2, R2) = (L1L2, R2R1)

for all (L1, R1), (L2, R2) ∈ M(A). It is easy to see that (L1L2, R2R1) is again a

double centralizer of A and that M(A) is an algebra under this multiplication. It

is also easy to check that M(A) is a closed subalgebra of B(A)⊕∞ B(A)op.
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For L ∈ B(A), define L∗ : A→ A by a 7→ (L(a∗))∗. Then L∗ ∈ B(A), and the

map L 7→ L∗ is an isometric conjugate-linear map on B(A) satisfying L = L∗∗ and

(L1L2)
∗ = L∗1L

∗
2. If (L,R) is a double centralizer of A, so is (L,R)∗ = (R∗, L∗) and

the map (L,R) 7→ (L,R)∗ is an involution on M(A).

In this way, as shown in [10, Theorem 2.1.5], M(A) is a unital C∗-algebra,

called the multiplier algebra of A, with (idA, idA) as unit.

The map A→M(A), a 7→ (La, Ra) is obviously an isometric ∗-homomorphism.

Therefore, we often identify A as a C∗-subalgebra of M(A).

Moreover, easy computations show that A is an ideal of M(A) and thus A =

M(A) if and only if A is unital.

Definition 1.1.13. If A is a C∗-algebra and a ∈ A, then

(1) a is called hermitian if a = a∗;

(2) a is called normal if a∗a = aa∗;

(3) a is called unitary if A is unital and a∗a = aa∗ = 1.

The next theorem on automatic continuity is proved in [4, Proposition 8.1.11].

Theorem 1.1.14. Let A be an involutive Banach algebra and let B be a C∗-

algebra. Then every ∗-homomorphism π : A→ B is contractive. That is, we have

‖π(a)‖ ≤ ‖a‖ for all a ∈ A.

Definition 1.1.15. Let A be a Banach algebra. A multiplicative functional

on A is a nonzero homomorphism from A to C. The set of all multiplicative

functionals on A is called the spectrum of A, and we denote it by σ(A).

The proof of the following result can be found in [7, Proposition 1.10].

Proposition 1.1.16. Let A be a Banach algebra. If h ∈ σ(A), then ‖h‖ ≤ 1.

Therefore, σ(A) ⊂ Ball (A∗), the unit ball of A∗.

Definition 1.1.17. Let A be a Banach algebra with σ(A) 6= ∅. The map

G : A → Cb(σ(A)), a 7→ â is called the Gelfand transform on A, where σ(A) is

equipped with the relative weak∗-topology from A∗ and â(ϕ) = ϕ(a) (ϕ ∈ σ(A)).

The next proposition is from [15, Proposition I.3.10].
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Proposition 1.1.18. The spectrum σ(A) of a Banach algebra A is locally

compact with respect to the weak*- topology of A∗. It is compact if A is unital.

Proof. Let σ′(A) = σ(A) ∪ {0}. Then σ′(A) ⊂ Ball(A∗). Let {ωi} be a net

in σ′(A) such that ωi → ω0 in the weak*-topology. For all x, y ∈ A, we have

ω0(xy) = limωi(xy) = limωi(x)ωi(y) = ω0(x)ω0(y).

Hence, ω0 ∈ σ′(A). Thus σ′(A) is a weak*-closed subset of Ball(A∗), and so it is

weak*-compact. Since {0} is closed in σ′(A), σ′(A) \ {0} = σ(A) is open in the

compact space σ′(A). It follows that σ(A) is locally compact.

Suppose that A is unital. Then ω(1A) = 1 for every ω ∈ σ(A). This implies

that (1̂A)−1({1}) = σ(A), and thus σ(A) is weak*-closed in σ′(A). Therefore, σ(A)

is compact. �

The next theorem (cf. [7, Theorems 1.20 and 1.31]) is the most fundamental

result in the Gelfand theory.

Theorem 1.1.19 (Gelfand-Naimark Representation Theorem). Let A

be a commutative C∗-algebra. Then the Gelfand transform G : A → C0(σ(A)) is

an isometric ∗-isomorphism.

The Gelfand-Naimark theorem says that every commutative C∗-algebra can

be identified with C0(X) for a suitable X. For general C∗-algebras, which are

not necessarily commutative, we have the following Gelfand-Naimark-Segal (GNS)

representation theorem (cf. [4, Theorem 8.5.17]).

Theorem 1.1.20 (Gelfand-Naimark-Segal Representation Theorem).

Let A be a C∗-algebra. Then there exist a Hilbert space H and an isometric ∗-

homomorphism π : A→ B(H).

1.2. Topological Groups

In this section, we study briefly the structure of topological groups.

Definition 1.2.1. A topological group is a group G together with a topology

τ such that

(a) points are closed in (G, τ);
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(b) the map G×G→ G, (s, r) 7→ sr−1 is continuous.

Condition (b) is equivalent to the condition below:

(c) the maps (s, r) 7→ sr and s 7→ s−1 are continuous.

Example 1.2.2. Any group G equipped with the discrete topology is a topo-

logical group.

Example 1.2.3. The groups Rn, Tm and Zd with their usual topologies are

topological abelian groups.

Example 1.2.4. If G and H are topological groups, then G × H with the

product topology is a topological group.

Example 1.2.5. Let H be a complex Hilbert space and let

U(H) = {U ∈ B(H) : U∗U = UU∗ = 1H}.

With the relative strong operator topology (SOT), i.e., the topology of pointwise

convergence, U(H) is a topological group, which is non-abelian if dim(H) ≥ 2.

Proof. Since B(H) is Hausdorff in the SOT, U(H) is Hausdorff and thus

points in U(H) are closed in the SOT.

Suppose that Uα → U and Vα → V in the SOT in U(H). To show that

UαVα → UV in the SOT, let h ∈ H. Then

‖UαVαh− UV h‖ = ‖UαVαh− UαV h+ UαV h− UV h‖

≤ ‖(Vα − V )h‖+ ‖(Uα − U)(V h)‖ → 0

and

‖U−1α h− U−1h‖ = ‖h− UαU−1h‖ = ‖(Uα − U)(U−1h)‖ → 0.

Therefore, (U(H), SOT ) is a topological group.

Now, suppose dim(H) = 2. Let T, S ∈ U(H) be defined by

T (h1, h2) = (h2, h1) and S(h1, h2) = (h2,−h1).
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We see easily that ST 6= TS. When dim(H) > 2, let H0 be a subspace of H with

dim(H0) = 2. In this case, we have H = H0 ⊕H⊥0 , and we define T̃ , S̃ ∈ U(H) by

T̃ (x⊕ y) = Tx⊕ y and S̃(x⊕ y) = Sx⊕ y,

where x ∈ H0 and y ∈ H⊥0 . Then S̃T̃ 6= T̃ S̃ since ST 6= TS. Therefore, U(H) is

non-abelian if dim(H) ≥ 2. �

Example 1.2.6. Let A be a C∗-algebra. Then the collection Aut(A) of all

∗-automorphisms of A is a group under composition. We equip Aut(A) with the

so-called point-norm topology ; that is, αi → α if and only if αi(a) → α(a) for all

a ∈ A. Then Aut(A) is a topological group.

Lemma 1.2.7. If G is a topological group and r ∈ G, then the maps s 7→ s−1,

s 7→ sr, and s 7→ rs are homeomorphisms on G.

Proof. The assertion holds as the inverse of t : s 7→ s−1 is itself, the inverse

of Rr : s 7→ sr is s 7→ sr−1, and the inverse of s 7→ rs is s 7→ r−1s, which is the

map t ◦Rr ◦ t and hence is continuous. �

One consequence of Lemma 1.2.7 is that the topology on a topological group G

is translation invariant : a set V in G is open if and only if each of its translates rV

is open. Thus the topology on G is completely determined by any neighborhood

basis of e. More precisely, we have the following corollary of Lemma 1.2.7.

Corollary 1.2.8. Let G be a topological group, and let N be a neighborhood

basis of e. Then for each r ∈ G, {Nr}N∈N and {rN}N∈N are both neighborhood

bases of r. In particular, if N consists of open neighborhoods of e, then

β = {V r : V ∈ N , r ∈ G} and β ′ = {rV : V ∈ N , r ∈ G}

are bases for the topology on G.

Lemma 1.2.9. Let V be a neighborhood of e in G. Then V ⊂ V ⊂ V 2.

Proof. It suffices to show that V ⊂ V 2. Suppose that s ∈ V . Then every

neighborhood of s meets V . Since sV −1 is a neighborhood of s, it follows that
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sV −1 ∩ V 6= ∅. Let t ∈ sV −1 ∩ V . Then t = sr−1 for some r ∈ V . It follows that

s = tr ∈ V 2. �

Lemma 1.2.10. Let G be a topological group and N be an open neighborhood

basis of e. Then for every V ∈ N , there is U ∈ N such that U2 ⊂ V and hence

U ⊂ V .

Proof. By the continuity of the multiplication, there are open neighborhoods

U1 and U2 of e such that U1U2 ⊂ V . Let U = U1 ∩U2. Then U2 ⊂ U1U2 ⊂ V , and

hence U ⊂ V by Lemma 1.2.9. �

Lemma 1.2.11. If G is a topological group, then G is regular and Hausdorff.

Proof. The regularity of G follows from Lemma 1.2.10, and therefore G is

Hausdorff as singletons in G are closed. �

1.3. Locally Compact Groups

Definition 1.3.1. A topological space is called locally compact if every point

has a neighborhood basis consisting of compact sets.

Lemma 1.3.2. If X is a Hausdorff space, then X is locally compact whenever

every point in X has a compact neighborhood.

Proof. Suppose that every point in X has a compact neighborhood. Let

x ∈ X and let U be a neighborhood of x. Let K be a compact neighborhood of

x ∈ X and let V be the interior of U ∩ K. Then V is compact and Hausdorff,

and therefore regular. Furthermore, V \V is a closed subset of V not containing x.

Thus there is an open set W in V such that x ∈ W ⊂ W ⊂ V . Thus W is open

in X and W is a compact neighborhood of x with W ⊂ U . �

Definition 1.3.3. A locally compact group is a topological group for which

the underlying topology is locally compact.

Remark 1.3.4. Since topological groups are Hausdorff, Corollary 1.2.8 implies

that a topological group G is locally compact if and only if there is a compact

neighborhood of e, which holds if and only if there is a nonempty open set in G

with compact closure.
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Example 1.3.5. Any discrete group G is a locally compact group.

Example 1.3.6. The groups Rn and Zd are locally compact, noncompact,

abelian groups, and Tm is a compact abelian group.

Proposition 1.3.7. Let X be a locally compact space, and let E be an open

or closed subspace of X. Then E is locally compact.

Proof. This assertion follows from Definition 1.3.1. �

Remark 1.3.8. Since the intersection of two locally compact subsets of a space

is also locally compact, Proposition 1.3.7 implies that the intersection of an open

set and a closed set in a locally compact space X is also locally compact.

Definition 1.3.9. A subset Y of a space X is called locally closed if each point

in Y has an open neighborhood P in X such that P ∩ Y is closed in P .

Lemma 1.3.10. If X is a topological space and Y ⊂ X, then the following are

equivalent:

(a) Y is locally closed in X;

(b) Y is open in Y ;

(c) Y = C ∩O, where C is closed in X and O is open in X.

Proof. (a)⇒ (b). Suppose Y is locally closed in X. Let y ∈ Y and let P be

an open neighborhood of y in X such that Y ∩ P is closed in P . We only have to

show that Y ∩P ⊂ Y since Y ∩P is open in Y . To this end, let x ∈ Y ∩P . Then

there is a net {xi} in Y such that xi → x. Since x ∈ P and P is open, we can

assume that xi ∈ P ∩ Y for all i. Since P ∩ Y is closed in P , x ∈ P ∩ Y ⊂ Y as

required.

(b)⇒ (c). This is obvious.

(c)⇒ (a). Let Y = C ∩ O be as above. Fix y ∈ Y and let P = O. Then P is

an open neighborhood of y in X and P ∩ Y = C ∩ P is closed in P . �

Proposition 1.3.11. Let Y be a subspace of a topological space X. If X is a

locally compact space and Y is locally closed in X, then Y is locally compact. If Y

is Hausdorff and locally compact, then Y is locally closed in X.
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Proof. The first assertion follows from Remark 1.3.8 and Lemma 1.3.10. To

prove the second assertion, fix y ∈ Y . Let U be an open neighborhood of y in

X such that U ∩ Y has compact closure B in Y , which is possible as Y is locally

compact and Hausdorff. It suffices to see that U ∩ Y is closed in U . So, we let

{xi} be a net in U ∩ Y such that xi → x ∈ U . Since B is compact and hence

closed, by passing to a subnet and by the uniqueness of limit, we have x ∈ B ⊂ Y .

Therefore, x ∈ U ∩ Y and hence U ∩ Y is closed in Y . �

We now digress slightly to describe the structure of Aut(A) for a commutative

C∗-algebra A, which is isomorphic to C0(X) for a suitable locally compact space X

by Gelfand-Naimark Theorem. We will show in Theorem 1.3.16 that Aut(C0(X))

is homeomorphic to Homeo(X) when Homeo(X) is given the topology described

in Definition 1.3.14.

Definition 1.3.12. Let X and Y be topological spaces and let C(X, Y ) be the

collection of continuous functions from X to Y . Then the compact-open topology

on C(X, Y ) is the topology with a subbasis consisting of all the sets of the form

U(K,V ) = {f ∈ C(X, Y ) : f(K) ⊂ V }, (1.3.1)

where K ⊂ X is compact and V ⊂ Y is open.

More information on compact-open topology can be seen in [5].

Lemma 1.3.13. Let X and Y be locally compact Hausdorff spaces and let

C(X, Y ) be equipped with the compact-open topology. Then fi → f in C(X, Y )

if and only if fi(xi)→ f(x) in Y whenever xi → x in X.

Proof. Suppose that fi → f and xi → x. Let V be an open neighborhood of

f(x) in Y and let K be a compact neighborhood of x in X such that f(K) ⊂ V .

Then f ∈ U(K,V ). Thus we eventually have both fi ∈ U(K,V ) and xi ∈ K. So,

we eventually have fi(xi) ∈ V . Therefore, fi(xi)→ f(x) in Y .

Conversely, suppose that xi → x implies fi(xi)→ f(x). To show that fi → f ,

we claim that fi is eventually in any U(K,V ) that contains f . Otherwise, by

passing to a subnet, we can assume that fi 6∈ U(K,V ) for all i. Then for each i,

there is xi ∈ K such that fi(xi) 6∈ V . Passing to another subnet, we can assume
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that xi → x ∈ K, which implies, by assumption, that fi(xi)→ f(x). Since Y \ V

is closed, we must have f(x) 6∈ V , contradicting that f ∈ U(K,V ). �

Definition 1.3.14. LetX be a locally compact Hausdorff space. Let Homeo(X)

be the set of all homeomorphisms on X. We give Homeo(X) the topology with a

subbasis consisting of all the sets of the form

U(K,K ′, V, V ′) = {h ∈ Homeo(X) : h(K) ⊂ V and h−1(K ′) ⊂ V ′},

where K and K ′ are compact in X, and V and V ′ are open in X.

Proposition 1.3.15. Let X be a locally compact Hausdorff space. For each

h ∈ Homeo(X) and f ∈ C0(X), let α(f)(x) = f(h(x)) (x ∈ X). Then we have

α ∈ Aut(C0(X)).

Proof. Let f ∈ C0(X). First note that α(f) = f ◦ h is a continuous function

on X, as h and f are both continuous.

To prove that α(f) is in C0(X), let ε > 0, and we will show that the set

{x ∈ X : |α(f)(x)| ≥ ε} is compact. This is indeed true since

{x ∈ X : |α(f)(x)| ≥ ε} = {x ∈ X : |f(h(x))| ≥ ε} = h−1({y ∈ X : |f(y)| ≥ ε})

and {y ∈ X : |f(y)| ≥ ε} is compact.

Clearly, α : C0(X) → C0(X) is an injective ∗-homomorphism. It is also onto

C0(X), since α(g ◦ h−1) = g for all g ∈ C0(X). Therefore, α ∈ Aut(C0(X)). �

Theorem 1.3.16. Let X be a locally compact Hausdorff space. Then for each

α ∈ Aut(C0(X)), there is h ∈ Homeo(X) such that α(f) = f ◦ h−1 for all

f ∈ C0(X).

Moreover, the map α 7→ h is a homeomorphic group isomorphism of Aut(C0(X))

onto Homeo(X), where Aut(C0(X)) is equipped with the point-norm topology and

Homeo(X) is equipped with the topology given in Definition 1.3.14.

Proof. Let4 = σ(C0(X)) be the spectrum of C0(X). Then4 ⊂ Ball(C0(X)∗).

Equipping 4 with the relative weak*-topology from C0(X)∗, we have X ∼= 4 via

the homeomorphism x 7→ e(x), where e(x)(f) = f(x) (x ∈ X, f ∈ C0(X)).
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Let α ∈ Aut(C0(X)). Then α∗ : C0(X)∗ → C0(X)∗ is an isometric weak*-

homeomorphism given by α∗(ϕ) = ϕ ◦ α. It is easy to see that α∗(4) = 4. Let

h = e−1 ◦ (α∗)−1 ◦ e : X → X. Then h ∈ Homeo(X) and α∗ ◦ e = e ◦ h−1. In

particular, we have

α(f)(x) = e(x)(α(f)) = α∗(e(x))(f) = e(h−1(x))(f) = f(h−1(x)) = (f ◦ h−1)(x)

for all f ∈ C0(X) and x ∈ X.

Combining with Proposition 1.3.15, we obtain that the above map

Γ : Aut(C0(X))→ Homeo(X), α 7→ h

is a surjection. It is also injective, since α(f) = f ◦ h−1 for all f ∈ C0(X).

Clearly, Γ : Aut(C0(X))→ Homeo(X) is a group isomorphism. Now we show

that Γ is a homeomorphism. That is, αi → α in Aut(C0(X)) if and only if hi → h

in Homeo(X), where hi = Γ(αi) and h = Γ(α).

Assume that αi → α but hi 6→ h in Homeo(X). Note that αi → α if and only

if α−1i → α−1, since Aut(C0(X)) is a topological group. So, we may assume that

h−1i 6→ h−1 in the compact-open topology (otherwise, we consider the case where

α−1i → α−1 but hi 6→ h in the compact-open topology). By Lemma 1.3.13, there

exists a net {xi} in X such that xi → x but h−1i (xi) 6→ h−1(x). Thus, we obtain

that f(h−1i (xi)) 6→ f(h−1(x)) for some f ∈ C0(X). That is, αi(f)(xi) 6→ α(f)(x).

However, we have

‖αi(f)(xi)− α(f)(x)‖ ≤ ‖αi(f)(xi)− α(f)(xi)‖+ ‖α(f)(xi)− α(f)(x)‖ → 0,

since ‖αi(f)− α(f)‖C0(X) → 0, a contradiction.

Conversely, assume that hi → h in Homeo(X) but αi(f) 6→ α(f) (i.e., we have

f ◦ h−1i 6→ f ◦ h−1) for some f ∈ C0(X). Passing to a subnet, we can assume that

for some ε0 > 0 and a net (xi) in X, we have

|f(h−1i (xi))− f(h−1(xi))| ≥ ε0 for all i. (1.3.2)

By passing to a subnet again, we have that either |f(h−1i (xi))| ≥ ε0
2

for all i or

|f(h−1(xi))| ≥ ε0
2

for all i.

Let K be the compact set {x ∈ X : |f(x)| ≥ ε0
2
} in X. Then we have either
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{h−1i (xi)} ⊂ K or {h−1(xi)} ⊂ K. Suppose first that {h−1i (xi)} ⊂ K. Then,

passing to a subnet, we can assume that h−1i (xi) → y ∈ K. Since hi → h in the

compact-open topology, Lemma 1.3.13 implies that xi → h(y); i.e., h−1(xi) → y.

Thus we obtain that |f(h−1i (xi))− f(h−1(xi))| → |f(y)− f(y)| = 0, contradicting

(1.3.2). Next, suppose that {h−1(xi)} ⊂ K. Again, passing to a subnet, we can

assume that h−1(xi) → y ∈ K; that is, xi → h(y). Since h−1i → h−1 in the

compact-open topology, we have h−1i (xi)→ y. As discussed above, we obtain that

|f(h−1i (xi))− f(h−1(xi))| → |f(y)− f(y)| = 0, a contradiction.

Therefore, we conclude that the map Γ : Aut(C0(X))→ Homeo(X), α 7→ h is

a homeomorphism. �

1.3.1. Subgroups of Locally Compact Groups. If G is a topological

group, then any subgroup H of G with the relative topology is also a topolog-

ical group. However, by Proposition 1.3.11, if G is locally compact, then H is

locally compact if and only if it is locally closed.

Remark 1.3.17. If H is a subgroup of a topological group G, so is H, since

the map (x, y) 7→ xy−1 is continuous.

Lemma 1.3.18. A locally closed subgroup of a topological group is closed.

Proof. Let H be a locally closed subgroup of a topological group G. Then

there is an open neighborhood W of e such that W ∩H is closed in W . Let U and

V be neighborhoods of e in G such that

V 2 ⊂ U ⊂ U2 ⊂ W .

Now let x ∈ H be fixed. Let {xi} be a net in H converging to x. Remark

1.3.17 implies that x−1 ∈ H as well. Since x−1V is a neighborhood of x−1, it must

meet H. Let y ∈ x−1V ∩H. Since xi is eventually in V x and xiy is eventually in

V 2 ∩H ⊂ U ∩H ⊂ W ∩H,

it follows from Lemma 1.2.9 that xy ∈ U ⊂ U2 ⊂ W . Since W ∩ H is closed in

W , we have xy ∈ W ∩H. Therefore, x = (xy)y−1 ∈ H. �

Corollary 1.3.19. Let H be a subgroup of a topological group G satisfying

one of the following conditions:
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(a) H is open;

(b) H is discrete;

(c) H is locally compact.

Then H is closed.

Proof. We only have to show that H is locally closed. This is trivial for case

(a), and is true for case (c) by Proposition 1.3.11. For case (b), the discreteness of

H implies that there is an open set W such that W ∩ H = {e}, which is clearly

closed in W , and hence H is locally closed. �

The fact that open subgroups are closed follows also from Lemma 1.2.9.

Definition 1.3.20. A locally compact Hausdorff space X is called σ-compact

if X =
⋃∞
i=1Ci for some sequence {Ci} of compact subsets of X.

Every second countable locally compact Hausdorff space is σ-compact, since

if {On} is a countable basis for the topology, then the family consisting of those

On with compact closure is still a basis. However, a topological disjoint union of

uncountably many locally compact spaces fails to be σ-compact. In particular,

uncountable discrete spaces are not σ-compact.

Lemma 1.3.21. Every locally compact group G has a σ-compact open subgroup.

Hence, every locally compact group is a topological disjoint union of σ-compact

spaces.

Proof. Let V be a symmetric open neighborhood of e in G with compact

closure. Let H =
⋃∞
n=1 V

n. Then H is an open subgroup of G. By Lemma

1.2.9, V
n ⊂ V 2n, which implies that

⋃
n V

n ⊂
⋃
n V

n ⊂
⋃
n V

2n ⊂
⋃
n V

n. Thus,

H =
⋃
V
n

is σ-compact since V
n

is compact for each n. It then follows that for

each s ∈ G, sH is a σ-compact subset of G, and thus G is the union of pairwise

disjoint cosets sH. �

Corollary 1.3.22. Every connected locally compact group is σ-compact.

Proof. Let G be a connected locally compact group. By Lemma 1.3.21, G

has a σ-compact open subgroup H which is also closed by Corollary 1.3.19. The

connectedness of G implies that G = H. �
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1.4. Some Preliminary Results on Topology

Let X be a Hausdorff topological space.

Definition 1.4.1. The space X is paracompact if every open cover of X has

a locally finite refinement. Recall that a cover of X is locally finite if each point in

X has a neighborhood that meets only finitely many elements of the cover.

Clearly, compact Hausdorff spaces are paracompact.

Remark 1.4.2. We would like to have Urysohn’s Lemma and the Tietze Ex-

tension Theorem for locally compact groups. This is only possible provided locally

compact groups are normal topological spaces. But all we know is that locally

compact groups are completely regular spaces (cf. [14, Corollary 4.1.5]), which

are not necessarily normal.

However, σ-compact locally compact Hausdorff spaces are always paracompact

(cf. [11, Proposition 1.7.11]). This will guarantee that all locally compact groups

are paracompact (cf. Lemma 1.3.21) and hence normal (cf. [8, Theorem 8.13]).

Without using this fact, we prove directly the following versions of Urysohn’s

Lemma and Tietze Extension Theorem.

Lemma 1.4.3 (Urysohn’s Lemma). Suppose that X is a locally compact

Hausdorff spaces and that V is an open set in X containing a compact set K.

Then there is f ∈ Cc(X) such that 0 ≤ f(x) ≤ 1 for all x, f(x) = 1 for all x ∈ K,

and f(x) = 0 if x 6∈ V .

Proof. Since X is locally compact, there is an open set W in X such that

W is compact and K ⊂ W ⊂ W ⊂ V . Since W is compact and therefore normal,

by the usual Urysohn Lemma for normal spaces, we can find h ∈ C(W ) such that

0 ≤ h(x) ≤ 1 for all x ∈ W , h(x) = 1 for all x ∈ K, and h(x) = 0 if x ∈ W \W .

Now define

f(x) =

 h(x) if x ∈ W ,

0 if x ∈ X \W.

Then f ∈ Cc(X) is the required function. �
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Lemma 1.4.4 (Tietze Extension Theorem). Suppose that X is a locally

compact Hausdorff space and K is a compact subset of X. If g ∈ C(K), then there

is f ∈ Cc(X) such that f(x) = g(x) for all x ∈ K.

Moreover, if g(K) ⊂ [0, 1], we can also have f(X) ⊂ [0, 1].

Proof. Let W be an open set in X containing K with compact closure. By the

usual Tietze Extension theorem for normal spaces, there is k ∈ C(W ) extending

g. By Lemma 1.4.3, there is a h ∈ Cc(X) such that h(x) = 1 for all x ∈ K and

h(x) = 0 if x 6∈ W . Now let

f(x) =

 k(x)h(x) if x ∈ W ,

0 if x ∈ X \W.

Then f ∈ Cc(X) extends g. The second assertion also holds by the above proof. �

Definition 1.4.5. Let X be a Hausdorff space and I = [0, 1]. A family of

continuous maps kα : X → I is called a partition of unity on X if

(i) the family {supp(kα)} forms a locally finite closed covering of X;

(ii)
∑

α kα(x) = 1 for each x ∈ X. (This sum is well-defined because each x

lies in supp(kα) for finitely many α)

Given an open covering {Uβ} of X, we say that a partition {kβ} of unity is

subordinated to {Uβ} if supp(kβ) ⊂ Uβ for each β.

The next result, cited from [5, Theorem 8.4.2], will be used in the proof of

Proposition 1.4.7 below.

Theorem 1.4.6. Let X be a paracompact Hausdorff space. Then for each open

covering {Uα} of X, there is a partition of unity subordinated to {Uα}.

Proposition 1.4.7 (Partitions of Unity). Suppose that X is a locally com-

pact Hausdorff space and that {Ui}ni=1 is a cover of a compact set K in X by open

sets with compact closures. Then for i = 1, · · · , n, there are ϕ1, · · · , ϕn ∈ Cc(X)

such that

(a) 0 ≤ ϕi(x) ≤ 1 for all x ∈ X;

(b) supp(ϕi) ⊂ Ui for all i;
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(c)
∑n

i=1 ϕi(x) = 1 if x ∈ K;

(d)
∑n

i=1 ϕi(x) ≤ 1 if x 6∈ K.

Proof. Let C = ∪ni=1Ui. Then C is a compact neighborhood of K. Since C

is compact, in particular, it is paracompact, Theorem 1.4.6 implies that there is

a partition of unity {ψi}ni=0 of C(C) subordinate to the cover {C\K,U1, · · · , Un}.

By Lemmas 1.4.3 and 1.4.4, each ψi (1 ≤ i ≤ n) can be extended to ϕi ∈ Cc(X)

satisfying (a) and (b). Clearly, now (c) and (d) are also satisfied. �

Suppose that H is a subgroup of a topological group G. Let G/H be the set

of all left cosets of H. Equip G/H with the quotient topology τ , which is the

strongest topology on G/H making the quotient map q : G → G/H, x 7→ xH

continuous. Then

τ = {U ⊂ G/H : q−1(U) is open in G}.

Lemma 1.4.8. If H is a subgroup of a topological group G, then the quotient

map q : G→ G/H is open and continuous.

Proof. It suffices to show that q is open. In fact, if V is open in G, then

q−1(q(V )) =
⋃
h∈H V h

is open in G as each V h is open; that is, q(V ) is open in G/H. �

Remark 1.4.9. Suppose that {Vα} is a basis for the topology on G. Let

sH ∈ G/H and W be an open set in G/H containing sH. Then s ∈ q−1(W ), and

q−1(W ) is open in G. Thus, there exists α such that s ∈ Vα ⊂ q−1(W ); that is,

sH ∈ q(Vα) ⊂ W . Therefore, {q(Vα)} is a basis for the quotient topology on G/H.

In particular, if G is second countable, then G/H is second countable.

The above argument shows that if {Vα} is a neighborhood basis at s ∈ G, then

{q(Vα)} is a neighborhood basis at sH ∈ G/H. Therefore, if G is first countable,

then so is G/H.

Proposition 1.4.10. Let H be a subgroup of a locally compact group G. Then

G/H is locally compact.

Proof. This is obvious by Remark 1.4.9 and Lemma 1.4.8. �



CHAPTER 2

Haar Measures and a Brief Harmonic Analysis

The main references for this chapter are Folland [7] and William [17].

2.1. Haar Measures

Any locally compact group has a uniquely defined measure class which respects

its group structure. We will study this measure class in this section. Let us begin

with some definitions.

Definition 2.1.1. Let G be a locally compact space. A measure µ on G is

called a Borel measure if each open set in G is measurable. In this case,

(i) µ is called compact inner regular if for each open set V in G,

µ(V ) = sup{µ(C) : C ⊂ V and C is compact};

(ii) µ is called open outer regular if for each measurable set A in G,

µ(A) = inf{µ(V ) : A ⊂ V and V is open};

(iii) µ is called a Radon measure if it is both compact inner and open outer

regular.

A Radon measure µ on G is called left invariant if for all s ∈ G and measurable

sets A in G, sA is measurable and µ(sA) = µ(A). Right invariance can be defined

similarly. If µ is both left and right invariant, we say that µ is bi-invariant.

Definition 2.1.2. A nonzero left (right) invariant Radon measure on a locally

compact group G is called a left (right) Haar measure.

Remark 2.1.3. If µ is a left Haar measure, then ν(E) := µ(E−1) is a right

Haar measure. For convenience, in the rest of the thesis, the term Haar measure

will be used for left Haar measures.

The following two results (cf. [7, Theorem 2.10]) and (cf. [12, Theorem 2.14],

respectively) are fundamental in this section.

19
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Theorem 2.1.4 (Riesz Representation Theorem). Let X be a locally com-

pact Hausdorff space, and let I be a positive linear functional on Cc(X). Then there

exist a σ-algebra M in X which contains all Borel sets in X and a unique positive

measure µ on M such that

(a) I(f) =
∫
X
fdµ for all f ∈ Cc(X);

(b) µ(K) <∞ for every compact set K ⊂ X;

(c) µ is outer-open regular and compact-inner regular;

(d) µ is complete in the sense that if A ⊂ E ∈M and µ(E) = 0, then A ∈M.

Theorem 2.1.5. Every locally compact group has a Haar measure which is

unique up to a strictly positive scalar multiple.

Thus, obtaining a Haar measure is equivalent to constructing a positive linear

functional with left invariance. In fact, if

I : Cc(G) −→ C (2.1.1)

is a positive linear functional satisfying

I(λ(r)f) = I(f) for all r ∈ G and f ∈ Cc(G), (2.1.2)

where

λ(r)f(s) = f(r−1s) (s ∈ G),

then the Riesz Representation Theorem guarantees that (2.1.1) gives a Radon

measure µ such that

I(f) =

∫
G

f(s)dµ(s). (2.1.3)

This Radon measure is left invariant by equation (2.1.2), and hence is a left Haar

measure of G. Such positive linear functional I is called a Haar functional on G.

The following result is cited from [7, Proposition 2.19].

Proposition 2.1.6. If µ is a Haar measure on a locally compact group G, then

µ(U) > 0 for every nonempty open set U in G, and
∫
fdµ > 0 for all f ∈ C+

c (G).
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Proof. We prove the first assertion by contradiction. Suppose U is open and

nonempty, and µ(U) = 0. Then µ(sU) = 0 for all s ∈ G and, since any compact

set K can be covered by finitely many translates of U , we have µ(K) = 0 for

every compact set K. But then µ(G) = 0 by the compact inner regularity of µ,

contradicting that µ 6= 0. Thus µ(U) > 0 for every nonempty open set U .

Now, for given f ∈ C+
c (G), let U = {s : f(s) > 1

2
‖f‖sup}. Then U is open, and

hence
∫
G
fdµ ≥

∫
U
fdµ ≥ 1

2
‖f‖supµ(U) > 0. �

The proposition above guarantees that

‖f‖1 :=

∫
G

|f(s)|dµ(s)

defines a norm on Cc(G). The completion of (Cc(G), ‖ · ‖1) is L1(G).

Let us illustrate Haar measure with some examples.

Example 2.1.7. If G is a discrete group, then the counting measure µ is a

Haar measure on G. In this case,∫
G

fdµ =
∑
x∈G

f(x)

for all functions f on G with finite supports, and L1(G) = `1(G).

Example 2.1.8. IfG is Rn or Tm, then the Lebesgue measure is a Haar measure

on G.

Note that a Haar measure on a locally compact abelian group is automatically

bi-invariant. This need not always be true for an arbitrary locally compact group

as seen in the next example.

Example 2.1.9. Let G = {(a, b) ∈ R2 : a > 0} with binary operations

(a, b)(c, d) := (ac, ad + b) and (a, b)−1 := ( 1
a
,− b

a
). Then, with relative topology

from R2, G is a locally compact group, called the ax + b group, as it is identified

with the group of affine transformations x 7→ ax+b of the real line. The functional

I : Cc(G)→ C defined by

I(f) =

∫ ∞
−∞

∫ ∞
0

f(x, y)
1

x2
dxdy (2.1.4)
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is a Haar functional on G, and the corresponding Haar measure on G is not right

invariant.

Proof. Clearly, I is a well-defined positive linear functional on Cc(G). To

verify the left invariance of I, let (a, b) ∈ G and f ∈ Cc(G). Then

I(λ(a, b)f) =

∫ ∞
−∞

∫ ∞
0

f((a, b)−1(x, y))
1

x2
dxdy

=

∫ ∞
−∞

∫ ∞
0

f

(
x

a
,
y

a
− b

a

)(a
x

)2 dx
a

dy

a

=

∫ ∞
−∞

∫ ∞
0

f

(
u, v − b

a

)
1

u2
dudv

=

∫ ∞
−∞

∫ ∞
0

f(u, t)
1

u2
dudt

= I(f).

Thus I is a Haar functional on G.

Note that if a, b > 0, R = {(x, y) ∈ G : a < x < b and c < y < d}, and µ is the

Haar measure determined by I, then

µ(R) =

∫ d

c

∫ b

a

1

x2
dx dy =

(
1

a
− 1

b

)
(d− c).

In particular, if a = 2, b = 3, c = 0 and d = 1, then µ(R) = 1
6
. However, since

R(2, 0) is the rectangle (4, 6)× (0, 1), we have µ(R(2, 0)) = 1
12
6= µ(R). Therefore,

µ is not right invariant. �

In the following, we consider a very important property of functions in C0(G),

called uniform continuity.

Proposition 2.1.10. Let f ∈ C0(G) and ε > 0. Then there is a neighborhood

V of e such that

|f(s)− f(r)| < ε (2.1.5)

for all s, r ∈ G satisfying s−1r ∈ V or sr−1 ∈ V .

Proof. Let K be a compact subset of G such that |f(s)| < ε
2

for all s ∈ G\K.

Choose a compact neighborhood U of e. Then F = KU is a compact neighborhood

of K. By Lemma 1.2.10 and the continuity of f , for each s ∈ F , there exists an
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open neighborhood Vs of e such that |f(s)− f(r)| < ε
2

for all r ∈ s(Vs)2. Since F

is compact and {sVs : s ∈ F} is an open cover of F , we have F ⊂ ∪ni=1siVsi for

some s1, · · · , sn ∈ F .

Let V be a symmetric neighborhood of e such that V ⊂ U ∩ (∩ni=1Vsi). If s ∈ F

and r ∈ sV , then s ∈ siVsi for some i and thus r ∈ si(Vsi)2, which implies that

|f(s)− f(r)| ≤ |f(s)− f(si)|+ |f(si)− f(r)| < ε.

If s 6∈ F and r ∈ sV , then s 6∈ K and r 6∈ K; in this case, we have

|f(s)− f(r)| ≤ |f(s)|+ |f(r)| < ε.

Therefore, for all s ∈ G and r ∈ sV , we have |f(s)− f(r)| < ε.

The case of sr−1 ∈ V can be proved similarly, and can also be obtained by

replacing the above f by f̌ , where f̌(s) = f(s−1). �

Remark 2.1.11. Let {fi} be a net in C0(G) such that fi → f pointwise on G

for some f ∈ C0(G) and supp(fi) ⊂ K for all i, where K is a fixed compact subset

of G. The proof of Proposition 2.1.10 shows that fi → f uniformly on G if the

family {fi} has an equi uniform continuity. That is, given ε > 0, there exists a

neighborhood U of e such that |fi(s)−fi(r)| < ε for all i and all s, r ∈ G satisfying

sr−1 ∈ U or r−1s ∈ U . Indeed, in this case, we have fi → f uniformly on G if and

only if {fi} has an equi uniform continuity.

In Example 2.1.9, we investigated a Haar measure that is not right invariant.

We want to investigate the extent to which a Haar measure on a locally compact

group G fails to be right invariant. A useful tool is a particular nonzero function

on G, called the modular function of G.

Definition 2.1.12. Let {fi} be a net in Cc(G) and f ∈ Cc(G). We say that

{fi} converges to f in the inductive limit topology if

(i) there exists a compact subset K of G such that supp(fi) ⊂ K eventually;

(ii) fi → f uniformly on G.

Remark 2.1.13. If fi → f in the inductive limit topology on Cc(G), then {fi}

has an equi uniform continuity (cf. Remark 2.1.11) and ‖fi − f‖1 → 0.
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For any r ∈ G and any function f on G, we write (ρ(r)f)(s) = f(sr) (s ∈ G).

Proposition 2.1.14. Let µ be a Haar measure on a locally compact group G.

Then there is a continuous homomorphism 4 : G→ R+ such that

4(r)

∫
G

f(sr)dµ(s) =

∫
G

f(s)dµ(s) (2.1.6)

for all f ∈ Cc(G) and r ∈ G. That is,

I(ρ(r)f) =
I(f)

4(r)
for all r ∈ G and f ∈ Cc(G).

This function 4 is independent of the choice of a Haar measure on G and is called

the modular function of G.

Proof. Let r ∈ G and let Jr : Cc(G)→ C be defined by

Jr(f) =

∫
G

f(sr)dµ(s) (f ∈ Cc(G)).

Then

Jr(λ(t)f) = Jr(f) for all f ∈ Cc(G) and t ∈ G.

The uniqueness of Haar measure (or Haar functional) implies that there exists a

positive scalar 4(r) such that (2.1.6) holds. Furthermore, for all r, s ∈ G and

open sets E in G, we have

4(rs)µ(E) = µ(Ers) = 4(s)µ(Er) = 4(r)4(s)µ(E).

It follows that 4(rs) = 4(r)4(s); that is, 4 : G→ R+ is a homomorphism.

Suppose that ri → r in G. Then ri is eventually in a compact neighborhood

N of r. Choose f ∈ Cc(G) such that
∫
G
fdµ 6= 0. Let gi = ρ(ri)f and g = ρ(r)f .

By Proposition 2.1.10, we have gi → g uniformly on G. Let K be the support of

f . Then KN−1 is compact and supp(gi) ⊂ KN−1 eventually. Thus, gi → g in the

inductive limit topology of Cc(G). By Remark 2.1.13, we have∫
G

gidµ→
∫
G

gdµ.
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That is, 4(ri)
−1 ∫

G
fdµ → 4(r)−1

∫
G
fdµ. It follows that 4(ri) → 4(r), since∫

G
fdµ 6= 0. Therefore, 4 : G→ R+ is continuous.

It is clear that 4 is independent of the choice of a Haar measure on G. �

Example 2.1.15. The modular function of the ax+ b group is given by

4((a, b)) =
1

a
.

In fact, for (a, b) ∈ G and f ∈ Cc(G), we have

I(ρ(a, b)f) =

∫ ∞
−∞

∫ ∞
0

f(ax, bx+ y)
1

x2
dx dy

=

∫ ∞
−∞

∫ ∞
0

f(u,
b

a
u+ y)

1

u2
du ady

= a

∫ ∞
−∞

∫ ∞
0

f(u, y +
b

a
u)

1

u2
du dy

= aI(f).

Choose f ∈ Cc(G) such that I(f) > 0. Then Proposition 2.1.14 implies that

4((a, b)) = I(f)
I(ρ(a,b)f)

= 1
a
.

Remark 2.1.16. It follows from Proposition 2.1.14 that

µ(Er) = 4(r)µ(E)

for all r ∈ G and measurable sets E in G. Therefore, a Haar measure µ is bi-

invariant if and only if 4 ≡ 1; in this case, the group G is called unimodular.

Obviously, every abelian group is unimodular, and so is any discrete group (cf.

Example 2.1.7). We show below that every compact group is also unimodular.

Proposition 2.1.17. If G is compact, then G is unimodular.

Proof. Since G is compact and 4 is a continuous homomorphism, 4(G) is

a compact subgroup of R+ = (0,∞). Assume that 4 is not identically one. Then

4(s) 6= 1 for some s ∈ G. Then we obtain that 4(sn) = 4(s)n →∞ if 4(s) > 1,

and 4(sn) = 4(s)n → 0 if 4(s) < 1, a contradiction. �

Proposition 2.1.18. For all f ∈ Cc(G), we have∫
G

f(s−1)4(s−1)dµ(s) =

∫
G

f(s)dµ(s). (2.1.7)



2.1. HAAR MEASURES 26

Therefore, a left Haar measure and a right Haar measure are mutually absolutely

continuous.

In particular, if ν is the right Haar measure defined by ν(E) = µ(E−1), then

dν

dµ
(s) = 4(s−1).

Proof. Define J : Cc(G)→ C by

J(f) =

∫
G

f(s−1)4(s−1)dµ(s).

Then J is a positive linear functional on Cc(G), and J(λ(r)f) = J(f) for all r ∈ G

and f ∈ Cc(G). Therefore, there exists c > 0 such that J(f) = c
∫
G
fdµ for all

f ∈ Cc(G). Choose g ∈ Cc(G)+ with
∫
G
gdµ > 0. Then

h(s) := g(s) +4(s−1)g(s−1)

defines a function in Cc(G) such that h(s) = 4(s−1)h(s−1). Now,
∫
G
hdµ = J(h) =

c
∫
G
h implies that c = 1, and thus (2.1.7) holds.

Let ν be a right Haar measure. By the uniqueness of Haar measure, we can

assume that ν is given by ν(E) = µ(E−1). Then we have∫
G

fdµ =

∫
G

f(s−1)4(s−1)dµ(s) =

∫
G

f(s)4(s)dν(s).

Suppose ν(E) = 0. Then µ(E) = 0, since for any compact K ⊂ E, we have

µ(K) =

∫
G

1K(s)dµ(s) =

∫
G

1K(s)4(s)dν(s) =

∫
K

4(s)dν(s) = 0.

Similarly, we have µ(E) = 0 ⇒ ν(E) = 0. Therefore, µ and ν are mutually

absolutely continuous.

Finally, the equality∫
G

1E(s)dµ(s) =

∫
G

1E(s)4(s)dν(s)

holds for all Borel sets E in G, which implies that dµ(s) = 4(s)dν(s). �

Note that the locally compact group G is not assumed to be σ-compact so that

the Haar measure µ ofG is not necessarily σ-finite. Thus the usual Radon-Nikodym

Theorem (cf. [12, Theorem 6.10]) can not be applied. However, Proposition 2.1.18
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shows that µ(A) =
∫
A
4(s)dν(s) for all measurable subsets A of G, and4 is indeed

the Radon-Nikodym derivative of µ with respect to ν.

2.2. Abelian Harmonic Analysis

In this section, G will always be a locally compact abelian group with a fixed

Haar measure µ, though many results in this section hold for all locally compact

groups.

Suppose that f and g are L1-functions onG. It follows that (s, r) 7→ f(r)g(r−1s)

is a measurable function with respect to the product measure µ×µ, and F (s, r) =

f(r)g(r−1s) defines a function in L1(G × G). For this, it suffices to note that

f and g have σ-finite supports, and thus F is supported on the σ-finite set

supp(f)× (supp(f) · supp(g)). Then we can apply the Fubini Theorem.

Proposition 2.2.1. Let G be a locally compact abelian group, and let f and g

be functions in L1(G).

(1) The function defined by

f ∗ g(s) =

∫
G

f(r)g(r−1s)dµ(r) (2.2.1)

is in L1(G), and ‖f ∗ g‖1 ≤ ‖f‖1‖g‖1.

(2) Proposition 2.1.18 guarantees that the function defined by

f ∗(s) = f(s−1) (2.2.2)

is in L1(G), and ‖f ∗‖1 = ‖f‖1.

(3) f ∗ g = g ∗ f and (f ∗ g)∗ = g∗ ∗ f ∗.

Corollary 2.2.2. L1(G) is an involutive commutative Banach algebra with

respect to the operations (2.2.1) and (2.2.2).

Proposition 2.2.3. The involutive Banach algebra L1(G) has an approximate

identity {ui} in Cc(G) such that for each i, u∗i = ui and ‖ui‖1 = 1.

Proof. Let D be the collection of all compact neighborhoods of e with the

direction V1 � V2 if and only if V2 ⊂ V1. For each V ∈ D, let uV ∈ Cc(G)+ be

such that supp(uV ) ⊂ V , u∗V = uV , and ‖uV ‖1 = 1. Then {uV } is a net in Cc(G),
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and we show below that {uV } is an approximate identity of L1(G).

Let f ∈ Cc(G) and ε > 0. Let K = supp(f). By Proposition 2.1.10, there

exists V1 ∈ D such that |f(s) − f(r)| < ε
(µ(K)+1)

whenever r−1s ∈ V1. Choose

V0 ∈ D such that V0 ⊂ V1 and µ(V0K) < µ(K) + 1. Then for all V ∈ D with

V ⊂ V0, we have

‖uV ∗ f − f‖ =

∫
G

∣∣∣ ∫
G

uV (r)(f(r−1s)− f(s))dµ(r)
∣∣∣dµ(s)

≤
∫
G

(∫
V

uV (r)|f(s)− f(r−1s)|dµ(r)
)
dµ(s)

=

∫
V K

∫
V

uV (r)|f(s)− f(r−1s)|dµ(r)dµ(s)

≤ εµ(V K)

(µ(K) + 1)
< ε.

Since Cc(G) is dense in L1(G), we have g ∗ uV = uV ∗ g → g for all g ∈ L1(G). �

Recall that the spectrum σ(L1(G)) of L1(G) is a locally compact Hausdorff

space with the relative weak*-topology from Ball(L1(G)∗). We will use 4(G) to

denote σ(L1(G)).

Definition 2.2.4. Let Ĝ denote the set of continuous homomorphisms from

G to the circle group T. Under pointwise multiplication, Ĝ is a group, called the

character group of G or the Pontryagin dual of G.

Lemma 2.2.5. If ω ∈ Ĝ and hω : L1(G)→ C is defined by

hω(f) =

∫
G

f(s)ω(s)dµ(s), (2.2.3)

then hω ∈ 4(G).

Proof. It is clear that the map hω : L1(G)→ C is a homomorphism. Choose

g ∈ L1(G) such that
∫
G
gdµ 6= 0. Let f(s) = g(s)ω(s−1). Then f ∈ L1(G) and

hω(f) =
∫
G
gdµ 6= 0. Therefore, hω ∈ 4(G). �

Proposition 2.2.6. The map ω 7→ hω is a bijection of Ĝ onto 4(G).

Proof. If hω = hω′ , then∫
G

f(s)(ω(s)− ω′(s))dµ(s) = 0 for all f ∈ L1(G).
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In particular, we get fω = fω′ for all f ∈ Cc(G). Thus, ω = ω′. This proves that

ω 7→ hω is one-to-one.

Next, we claim that

λ(r)u ∗ f = u ∗ λ(r)f (2.2.4)

for all u, f ∈ L1(G). Indeed, for any s ∈ G, we have

(λ(r)u ∗ f)(s) =

∫
G

λ(r)u(t)f(t−1s)dµ(t) =

∫
G

u(r−1t)f(t−1s)dµ(t)

=

∫
G

u(t)f(t−1r−1s)dµ(t) =

∫
G

u(t)(λ(r)f)(t−1s)dµ(t)

= (u ∗ λ(r)f)(s).

Now let h ∈ 4(G) and let {ui} ⊂ Cc(G) be an approximate identity for L1(G).

Then (2.2.4) implies that for all f ∈ L1(G), we have

h(λ(r)ui ∗ f) = h(ui ∗ λ(r)f) = h(ui)h(λ(r)f)→ h(λ(r)f).

If h(f) 6= 0, then there is ωh(r) ∈ C such that

h(λ(r)ui) → ωh(r) :=
h(λ(r)f)

h(f)
. (2.2.5)

Since the left hand side of (2.2.5) is independent of our choice of f , ωh(r) = h(λ(r)g)
h(g)

for all g ∈ L1(G) with h(g) 6= 0.

Notice that

|ωh(r)| =
∣∣∣h(λ(r)f)

h(f)

∣∣∣ ≤ ‖f‖1
|h(f)|

, (2.2.6)

and thus ‖ωh‖∞ <∞. Replacing g by λ(s)f in λ(r)f ∗ g = f ∗ λ(r)g, we get

(λ(r)f) ∗ (λ(s)f) = f ∗ λ(rs)f,

which, after applying h to both sides and dividing by h(f)2, gives

h(λ(r)f)

h(f)

h(λ(s)f)

h(f)
=

h(λ(rs)f)

h(f)
.
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Therefore, we have ωh(r)ωh(s) = ωh(rs) for all r, s ∈ G. In particular, ωh(s) 6= 0

for all s ∈ G as ωh(e) = 1. This shows that ωh is a homomorphism of G into

C \ {0}.

Since translation is continuous in L1(G) (by Proposition 2.1.10) and

|ωh(s)− ωh(r)| = 1
|h(f)| |h(λ(s)f − λ(r)f)| ≤ 1

|h(f)|‖λ(s)f − λ(r)f‖1,

it follows that ωh is continuous.

If |ωh(s)| 6= 1, we can assume that |ωh(s)| > 1 (otherwise replace s by s−1), and

obtain that |ωh(sn)| = |ωh(s)|n → ∞, contradicting that ‖ωh‖∞ < ∞. Therefore,

we must have ω(G) ⊂ T. Therefore, ωh is a character of G.

All that remain to show is that hωh
= h. As h ∈ 4(G) is a bounded linear

functional on L1(G), by [1, Theorem 31.16], there is an α ∈ L∞(G), such that

h(f) =

∫
G

f(s)α(s)dµ(s).

Fix g ∈ Cc(G) such that h(g) 6= 0. The proof of Lemma 2.2.3 shows that

‖ui ∗ λ(s)g − λ(s)g‖1 → 0

uniformly for s ∈ G. Thus, h(ui ∗ λ(s)g) → h(λ(s)g) uniformly for s ∈ G. That

is, h(λ(s)ui)→ ωh(s) uniformly for s ∈ G. Hence, for all f ∈ L1(G), we have

hωh
(f) =

∫
G

f(s)ωh(s)dµ(s) = lim
i

∫
G

f(s)h(λ(s)ui)dµ(s)

= lim
i

∫
G

∫
G

f(s)ui(s
−1r)α(r) dµ(r) dµ(s)

= lim
i

∫
G

(f ∗ ui)(r)α(r)dµ(r)

= lim
i
h(f ∗ ui) = h(f).

It follows that hωh
= h. �

Proposition 2.2.6 shows that 4(G) = {hω : ω ∈ Ĝ}, where hω is as in (2.2.3).

Lemma 2.2.7. The map (s, h) 7→ ωh(s) is continuous from G×4(G) to T.
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Proof. Let (ri, hi) → (r, h) in G × 4(G). Choose f ∈ L1(G) such that

h(f) 6= 0. Then we have

|h(f)| · |ωhi(ri)− ωh(r)|

≤ |ωhi(ri)(h(f)− hi(f))|+ |ωhi(ri)hi(f)− ωh(r)h(f)|

≤ |h(f)− hi(f)|+ |hi(λ(ri)f)− h(λ(r)f)|

≤ |h(f)− hi(f)|+ |hi(λ(ri)f)− hi(λ(r)f)|+ |hi(λ(r)f)− h(λ(r)f)|

≤ |h(f)− hi(f)|+ ‖λ(ri)f − λ(r)f‖1 + |hi(λ(r)f)− h(λ(r)f)|.

The assertion follows by the continuity of translation on L1(G) and the definition

of the topology on 4(G). �

In view of Proposition 2.2.6, we can identify Ĝ with 4(G) and give Ĝ the

topology obtained from the weak*-topology on 4(G).

Proposition 2.2.8. The weak*-topology on Ĝ coincides with the topology of

uniform convergence on compact sets in G.

Proof. Suppose ωhi → ωh uniformly on compacta. Let f ∈ Cc(G) and let

K = supp(f), which is compact. Then

|hi(f)− h(f)| =
∣∣∣ ∫

G

f(s)ωhi(s)dµ(s)−
∫
G

f(s)ωh(s)dµ(s)
∣∣∣

≤
∫
K

|f(s)||ωhi(s)− ωh(s)|dµ(s)→ 0.

Since Cc(G) is dense in L1(G), it follows that hi → h in the induced weak*-

topology on Ĝ.

Conversely, assume that hi → h in 4(G) and there is a compact set C in G on

which ωhi 6→ ωh uniformly. Passing to a subnet, we can assume that there exists

ε > 0 and a net {si} in C such that

|ωhi(si)− ωh(si)| ≥ ε
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for all i. Passing to another subnet, we can assume that si → s in C. Then Lemma

2.2.7 implies that |ωhi(si)− ωh(s)| → 0. Thus

|ωhi(si)− ωh(si)| ≤ |ωhi(si)− ωh(s)|+ |ωh(si)− ωh(s)| → 0,

a contradiction. �

Corollary 2.2.9. Suppose that G is a locally compact abelian group. Then

the character group Ĝ of G is a locally compact abelian group in the topology of

uniform convergence on compact sets in G.

Proof. By Lemma 2.2.8, Ĝ ∼= 4(G) is a locally compact Hausdorff space. It

is clear that Ĝ is a group under pointwise multiplication. Let ki → k and ti → t

in Ĝ, and let C be a compact set in G. Then for all g ∈ C, we have

|(kiti)(g)− (kt)(g)| = |ki(g)ti(g)− k(g)t(g)|

≤ |ki(g)ti(g)− ki(g)t(g)|+ |ki(g)t(g)− k(g)t(g)|

≤ |ti(g)− t(g)|+ |ki(g)− k(g)| → 0

and

|t−1i (g)− t−1(g)| =
∣∣∣ 1
ti(g)
− 1

t(g)

∣∣∣ =
∣∣∣ t(g)−ti(g)ti(g)t(g)

∣∣∣ = |t(g)− ti(g)| → 0.

Thus Ĝ is a topological group. �

Since Ĝ is a locally compact abelian group, Ĝ also has a dual. The next result,

cited from [7], establishes the relationship between a locally compact abelian group

G and the dual
̂̂
G of its character group Ĝ.

Theorem 2.2.10 (Pontryagin Duality Theorem). The map Φ : G → ̂̂
G,

defined by Φ(x)(ω) = ω(x), is an isomorphism of topological groups.

The Gelfand transform on a commutative Banach algebra A maps a ∈ A to

the function â ∈ C0(4(A)) defined by â(h) = h(a). When A = L1(G), under

the identification Ĝ ∼= 4(G) = 4(L1(G)), the Gelfand transform of f ∈ L1(G) is

given by the function f̂ ∈ C0(Ĝ) defined by

f̂(ω) =

∫
G

f(s)ω(s)dµ(s), (2.2.7)
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and f̂ is known as the Fourier transform of f .

2.3. Non-abelian Harmonic Analysis

In the abelian harmonic analysis, the Pontryagin Duality Theorem identifies

a locally compact abelian group G with its bidual
̂̂
G. It is natural to want to

generalize this result to all locally compact groups.

However, for a general locally compact group G, there may not be enough

characters to yield a substantial information on G. Therefore, we have to expand

the notion of characters. The natural analogue of characters will be the unitary

representations and irreducible representations which will be defined below.

Definition 2.3.1. A unitary representation of a locally compact group G is a

continuous homomorphism U : G→ U(H), where H is a Hilbert space and U(H)

is equipped with the SOT. The dimension dU of U is defined to be dim(H).

In this case, the representation U is said to be equivalent to another unitary

representation V : G → U(K) if there is a unitary W : H → K that satisfies

VsW = WUs for all s ∈ G.

Example 2.3.2. Let G be a locally compact group and H = L2(G). If r ∈ G,

then λ(r) and ρ(r) are unitary operators on L2(G), where

λ(r)f(s) = f(r−1s) and ρ(r)f(s) = 4(r)
1
2f(sr).

Since translation is continuous in L2(G), it follows that λ : G → U(L2(G))

and ρ : G → U(L2(G)) are unitary representations of G, called the left regular

representation and the right regular representation, respectively.

Definition 2.3.3. Let U : G → U(H) be a unitary representation. A closed

linear subspace X of H is invariant for U if UsX ⊂ X for all s ∈ G. If {0} and H

are the only invariant subspaces for U , then U is irreducible.

Definition 2.3.4. For a locally compact group G, the dual Ĝ of G is defined

to be the set of equivalent classes of irreducible representations of G.

If a locally compact group G is abelian, then all irreducible representations of G

are one-dimensional and correspond to characters of G (cf. [7, Corollary 3.6]). For
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compact groups G, the Peter-Weyl Theorem (cf. [7, Theorems 5.2 and 5.12]) shows

that every irreducible representation of G is finite dimensional. However, there are

locally compact groups with infinite dimensional irreducible representations.

To generalize the Fourier transform to accommodate non-abelian groups, we

have to replace ω in (2.2.7) with certain infinite-dimensional representation U on

a Hilbert space H. In this way, the integrand in (2.2.7) is taking values in B(H).

Vector-valued integrals will be discussed in the next chapter.

In Section 2.2, we see that if G is a locally compact abelian group, then the

character group Ĝ of G is isomorphically homeomorphic to the spectrum 4(G)

of L1(G). Now we consider general (non-abelian) locally compact groups. The

material used below is based on Folland [7].

First, any unitary representation U : G → U(H) of a locally compact group

G determines a representation of L1(G), still denoted by U , on the same Hilbert

space. In fact, if f ∈ L1(G), we can define the bounded operator U(f) on H by

U(f) =

∫
G

f(s)Usdµ(s).

This is the unique element of B(H) satisfying

(U(f)u | v) =

∫
G

f(s)(Usu | v)dµ(s) for all u, v ∈ H.

See Chapter 3 for more information on vector-valued integration.

Next, for f ∈ L1(G), we define

‖f‖∗ = sup
[U ]∈Ĝ

‖U(f)‖.

By [7, Corollary 7.2], ‖ · ‖∗ is a norm on L1(G). We also have

‖f ∗ g‖∗ = sup
[U ]∈Ĝ

‖U(f)U(g)‖ ≤ ‖f‖∗‖g‖∗,

‖f ∗‖∗ = sup
[U ]∈Ĝ

‖U(f)∗‖ = ‖f‖∗,

and

‖f ∗ ∗ f‖∗ = sup
[U ]∈Ĝ

‖U(f)∗U(f)‖ = sup
[U ]∈Ĝ

‖U(f)‖2 = ‖f‖2∗.
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Then the completion of L1(G) with respect to the norm ‖ · ‖∗ is a C∗-algebra,

which is called the group C∗-algebra of G and is denoted by C∗(G).

Example 2.3.5. Suppose G is abelian. Then (L1(G), ‖ · ‖∗)→ C0(Ĝ), f 7→ f̂

is an isometry, since

‖f‖∗ = sup
[U ]∈Ĝ

‖f̂(U)‖ = ‖f̂‖sup.

This extends to a ∗-isomorphism C∗(G)→ C0(Ĝ), so we have C∗(G) ∼= C0(Ĝ).



CHAPTER 3

Vector-Valued Integration

Although some proofs in this chapter are constructed by the author, materials

contained in this section are mainly based on William [17]. In order to make sense

of integrals where the integrand is a function taking values in a normed space, we

need a workable theory of what is referred to as vector-valued integration.

3.1. Vector-Valued Integration - the Norm Continuous Case

Let D be a Banach space. The idea is to assign to each function f ∈ Cc(G,D)

an element I(f) of D, which is meant to be the integral of f and denoted by∫
G

f(s)dµ(s).

Naturally, we want I to be linear and bounded in some sense.

Note that if f ∈ Cc(G,D), then s 7→ ‖f(s)‖ is in Cc(G) and

‖f‖1 :=

∫
G

‖f(s)‖dµ(s)

(
≤ ‖f‖∞ · µ(supp f) < ∞

)
defines a norm on Cc(G,D).

If z ∈ Cc(G) and a ∈ D, then the function s 7→ z(s)a in Cc(G,D) is called an

elementary tensor and will be denoted by z ⊗ a. Clearly, ‖z ⊗ a‖1 = ‖z‖1‖a‖.

We shall need the uniform continuity property of functions in Cc(G,D). This

is stated in the lemma below, and can be proved following the arguments given in

the proof of Proposition 2.1.10.

Proposition 3.1.1. Let f ∈ Cc(G,D) and ε > 0. Then there is a neighborhood

V of e in G such that

‖f(s)− f(r)‖ < ε

for all s, t ∈ G satisfying s−1r ∈ V or sr−1 ∈ V .

36
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Lemma 3.1.2. Suppose that D0 is a dense subset of a Banach space D. Then

Cc(G)�D0 := span{z ⊗ a : z ∈ Cc(G) and a ∈ D0} (3.1.1)

is dense in Cc(G,D) in the inductive limit topology, and therefore in the L1-norm

on Cc(G,D).

Proof. Let f ∈ Cc(G,D) with K = supp(f). Fix a compact neighborhood

W of e in G. Let ε > 0. Using Lemma 3.1.1, choose an open neighborhood V ⊂ W

of e such that sr−1 ∈ V implies that

‖f(s)− f(r)‖ < ε

2
.

Then there are ri ∈ K such that K ⊂
⋃n
i=1 V ri. By Proposition 1.4.7, there are

continuous zi : G→ [0, 1] such that supp(zi) ⊂ V ri (1 ≤ i ≤ n),
∑n

i=1 zi = 1 on K

and
∑n

i=1 zi ≤ 1 on G. Let xi ∈ D0 be such that ‖xi − f(ri)‖ < ε/2 (1 ≤ i ≤ n).

Let g =
∑n

i=1 zi ⊗ xi and let s ∈ G. Since for each i, 0 ≤ zi(s) ≤ 1 and

supp(zi) ⊂ V ri, and noticing that
∑n

i=1 zi(s) ≤ 1 and K = supp(f), we have

‖f(s)− g(s)‖ =
∥∥∥ n∑
i=1

zi(s)(f(s)− xi)
∥∥∥

=
∥∥∥ ∑
s∈V ri

zi(s)((f(s)− f(ri)) + (f(ri)− xi))
∥∥∥

≤
∑
s∈V ri

zi(s)(ε/2 + ε/2)

≤ ε.

For this gε = g, we have supp(gε) ⊂ WK, a fixed compact set depending on f

only, and ‖f − gε‖1 ≤ εµ(WK). Therefore, Cc(G)�D0 is dense in Cc(G,D) in the

inductive limit topology as well as in the L1-norm. �

For f ∈ Cc(G,D) and ϕ ∈ D∗, we define

L̂f (ϕ) =

∫
G

ϕ(f(s))dµ(s).

Since ϕ 7→ L̂f (ϕ) is linear and

|L̂f (ϕ)| ≤ ‖ϕ‖‖f‖1, (3.1.2)
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L̂f ∈ D∗∗ and ‖L̂f‖ ≤ ‖f‖1. Let ̂ : D → D∗∗ be the canonical isometric embedding

(that is, â(ϕ) = ϕ(a)). It is straightforward to check that

L̂z⊗a = câ, where c =

∫
G

z(s)dµ(s).

Notice that if fi → f in the inductive limit topology on Cc(G,D), then for all

ϕ ∈ D∗, ϕ ◦ fi → ϕ ◦ f in the inductive limit topology on Cc(G), and hence we

have L̂fi(ϕ)→ L̂f (ϕ); that is, L̂fi → L̂f in the weak*-topology in D∗∗.

We show below that f 7→ L̂f indeed maps Cc(G,D) into the canonical image

D̂ of D in D∗∗. The idea of the proof is from [13, §4.5].

Lemma 3.1.3. If f ∈ Cc(G,D), then L̂f ∈ D̂.

Proof. To show that L̂f is weak*-continuous, it suffices to show that if {ϕi} is

a net inD∗ such that ‖ϕi‖ ≤ 1 and ϕi → 0 in the weak*-topology, then L̂f (ϕi)→ 0.

To this end, let K be the compact support of f . We note that {ϕi ◦ f} is a net in

Cc(G), supp(ϕi ◦ f) ⊂ K for all i, and ϕi ◦ f → 0 pointwise. Also, {ϕi ◦ f} is equi

uniformly continuous; that is, in Proposition 2.1.10, V = Vε works for all ϕi ◦ f .

Thus, ϕi ◦ f → 0 uniformly on G. It easily follows that

|L̂f (ϕi)| =
∣∣∣ ∫

K

ϕi(f(s))dµ(s)
∣∣∣ ≤ ∫

K

|ϕi(f(s))|dµ(s)→ 0.

This shows that L̂f is weak*-continuous and thus L̂f ∈ D̂. �

For f ∈ Cc(G,D), due to Lemma 3.1.3, we will use Lf ∈ D to denote the

preimage of L̂f in D, and define
∫
G
f(s)dµ(s) = Lf .

Proposition 3.1.4. Suppose that D is Banach space and G is a locally compact

group with a fixed left Haar measure µ. Then

Cc(G,D)→ D, f 7→
∫
G

f(s)dµ(s)

is a linear map satisfying

ϕ
(∫

G

f(s)dµ(s)
)

=

∫
G

ϕ(f(s))dµ(s), (3.1.3)

∥∥∥∫
G

f(s)dµ(s)
∥∥∥ ≤ ‖f‖1, and

∫
G

(z ⊗ a)(s)dµ(s) = a

∫
G

z(s)dµ(s) (3.1.4)
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for all f ∈ Cc(G,D), ϕ ∈ D∗, z ∈ Cc(G), and a ∈ D.

Moreover, if Y is a Banach space, L : D → Y is a bounded linear operator and

f ∈ Cc(G,D), then

L
(∫

G

f(s)dµ(s)
)

=

∫
G

L(f(s))dµ(s). (3.1.5)

Proof. It is clear from the above discussions that the first assertion holds.

Now, let Y be a Banach space, L : D → Y be a bounded linear map, and

f ∈ Cc(G,D). Then L ◦ f ∈ Cc(G,Y) and Ψ ◦ L ∈ D∗ for all Ψ ∈ Y∗. Therefore,

by (3.1.3), for all Ψ ∈ Y∗, we have

Ψ
(
L
(∫

G

f(s)dµ(s)
))

=

∫
G

Ψ(L(f(s)))dµ(s) = Ψ
(∫

G

L(f(s))dµ(s)
)
,

and thus (3.1.5) follows. �

Remark 3.1.5. IfD is Banach space with an involution ∗ satisfying ‖x∗‖ = ‖x‖

(e.g., D is a C∗-algebra), then it follows from (3.1.3) that(∫
G

f(s)dµ(s)
)∗

=

∫
G

f(s)∗dµ(s) for all f ∈ Cc(G,D). (3.1.6)

For a C∗-algebra A, let M(A) denote the multiplier algebra of A.

Proposition 3.1.6. Let G be a locally compact group with a Haar measure µ,

let A be a C∗-algebra, and let π : A → B(H) be a representation. Then for all

f ∈ Cc(G,A), h, k ∈ H, and a, b ∈M(A), we have(
π
(∫

G

f(s)dµ(s)
)
h | k

)
=

∫
G

(π(f(s))h | k)dµ(s), (3.1.7)

π
(∫

G

f(s)dµ(s)
)

=

∫
G

π(f(s))dµ(s), (3.1.8)

and

a

∫
G

f(s)dµ(s) b =

∫
G

af(s)b dµ(s). (3.1.9)

Proof. Given h, k ∈ H and a, b ∈M(A), let

ϕ(x) = (π(x)h | k) and L(x) = axb (x ∈ A).
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Then ϕ ∈ A∗ and L ∈ B(A). Therefore, (3.1.7) follows from (3.1.3), and (3.1.6)

and (3.1.9) follow from (3.1.5). �

Corollary 3.1.7. Let G be a locally compact group and let H be a Hilbert

space. If f ∈ Cc(G,B(H)), then(∫
G

f(s)dµ(s)h | k
)

=

∫
G

(f(s)h | k)dµ(s)

for all h, k ∈ H.

3.2. Vector-Valued Integration - the Strictly Continuous Case

In Section 2.2, we mentioned the Fourier transforms over locally compact

abelian groups. In order to extend this notion to an arbitrary locally compact

group G, we need to consider integrals of this form∫
G

f(s)Usdµ(s), (3.2.1)

where f ∈ Cc(G) or f ∈ Cc(G,B(H)), and U : G → U(H) is a unitary represen-

tation of G. But the integrand in (3.2.1) is not necessarily a continuous function

when B(H) is equipped with the operator norm topology, and then Proposition

3.1.6 is not applicable. However, this integrand is indeed continuous when B(H)

is equipped with the strong operator topology. We will show that this is enough

to define a well behaved integral.

To do this in sufficient generality, we need to discuss a bit more about the

multiplier algebra M(A) of a C∗-algebra A.

Definition 3.2.1. Let A be a C∗-algebra. If a ∈ A, let ‖b‖a = ‖ba‖ + ‖ab‖

(b ∈M(A)). Then ‖ · ‖a is a seminorm on M(A). The strict topology on M(A) is

the topology generated by the seminorms {‖ · ‖a : a ∈ A}.

Example 3.2.2. A net {bi} in M(A) converges strictly to b if and only if

abi → ab and bia → ba for all a ∈ A. Since B(H) = M(K(H)), B(H) has

the strict topology, and Ti → T strictly in B(H) if and only if TiK → TK and

KTi → KT for all compact operators K on H.
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Definition 3.2.3. Let H be a Hilbert space. The ∗-strong operator topology

on B(H) has subbasic open sets

N(T, h, ε) := {S ∈ B(H) : ‖Sh− Th‖+ ‖S∗h− T ∗h‖ < ε},

where T ∈ B(H), h ∈ H and ε > 0.

Therefore, Ti → T ∗-strongly in B(H) if and only if both Ti → T strongly and

T ∗i → T ∗ strongly.

More generally, let X be a Hilbert A-module and let L(X) be the algebra of

all adjointable operators on X. Then, as L(X) ∼= M(K(X)), L(X) has the strict

topology. Since L(X) = M(K(X)), it also has the ∗-strong topology, in which a

net Ti → T if and only if Ti(x) → T (x) and T ∗i (x) → T ∗(x) for all x ∈ X. The

link between the strict topology and the ∗-strong topology is given below.

Proposition 3.2.4. Let X be a Hilbert A-module. Then strict convergence

implies ∗-strong convergence, and the strict and ∗-strong topologies coincide on

norm bounded subsets of L(X).

Since a Hilbert spaceH is a Hilbert C-module, we have the following immediate

corollary.

Corollary 3.2.5. On norm bounded subsets of B(H), the strict and ∗-strong

topologies coincide.

For a Hilbert A-module X, let U(L(X)) be the unitary group of L(X).

Corollary 3.2.6. Suppose that u : G → U(L(X)) is a homomorphism into

U(L(X)). Then u is strictly continuous if and only if it is strongly continuous.

Proof. Since U(L(X)) is a norm bounded subset of L(X), Proposition 3.2.4

shows that the strict and ∗-strong topologies coincide on U(L(X)). So, the strict

continuity of u implies the strong continuity of u.

Conversely, suppose u is strongly continuous. It suffices to show that for all
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x ∈ X, the map G→ X, s 7→ u∗s(x) is continuous. In fact, we have

‖u∗s(x)− u∗t (x)‖2X = ‖((us − ut)∗(x) | (us − ut)∗(x))‖A

= ‖(us(us − ut)∗x | x)A − (x | (us − ut)u∗t (x))‖A

= ‖((ut − us)u∗tx | x)A − (x | (us − ut)u∗t (x))‖A

≤ 2‖x‖‖(us − ut)u∗t (x)‖.

Therefore, s 7→ u∗s(x) is continuous since s 7→ us(x) is continuous. �

The Principle of Uniform Boundedness implies that a strongly convergent se-

quence is bounded. Therefore, a ∗-strong convergent sequence is bounded and also

strictly convergent by Proposition 3.2.4. Also, we note that any C∗-algebra A is

strictly dense in Ms(A) (cf. [3, Proposition 3.5]).

We will use Ms(A) to denote M(A) with the strict topology. Notice that if

f ∈ Cc(G,Ms(A)), then s 7→ f(s)a is in Cc(G,A) for each a ∈ A. In particular,

{f(s)a : s ∈ G} is bounded in A, since any compact subset of A is bounded. Then

the Uniform Boundedness Principle implies that

{‖f(s)‖ : s ∈ G} is bounded for all f ∈ Cc(G,Ms(A)).

Definition 3.2.7. A representation π : A→ B(H) is non-degenerate if

{π(a)h : a ∈ A and h ∈ H}

spans a norm dense subset of H. In this case, π can be uniquely extended to a

representation π̄ : M(A)→ B(H) (cf. [3, Propositions 3.7 and 3.8]).

More generally, suppose thatB is a C∗-algebra. We say that a ∗-homomorphism

L : A→M(B) is non-degenerate if

{L(a)b : a ∈ A and b ∈ B}

spans a norm dense subset of B. In this case, L can be uniquely extended to a

∗-homomorphism L̄ : M(A)→M(B), which is injective if L is injective.

Proposition 3.2.8. Let A be a C∗-algebra. Then there is a unique linear map

Cc(G,Ms(A))→M(A), f 7→
∫
G

f(s)dµ(s)
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such that for any non-degenerate representation π : A → B(Hπ), h, k ∈ Hπ, and

f ∈ Cc(G,Ms(A)), we have(
π̄
(∫

G

f(s)dµ(s)
)
h | k

)
=

∫
G

(π̄(f(s))h | k)dµ(s). (3.2.2)

Furthermore, the map f 7→
∫
G
f(s)dµ(s) satisfies∥∥∥∫

G

f(s)dµ(s)
∥∥∥ ≤ ‖f‖∞ · µ(supp f),

and equations (3.1.6) and (3.1.9) are valid in this context. In general, if B is a

C∗-algebra and L : A→M(B) is a non-degenerate ∗-homomorphism, then

L̄
(∫

G

f(s)dµ(s)
)

=

∫
G

L̄(f(s))dµ(s).

Proof. Let f ∈ Cc(G,Ms(A)). For each a ∈ A, the function s 7→ f(s)a is in

Cc(G,A) and thus
∫
G
f(s)a dµ(s) ∈ A is defined (cf. Lemma 3.1.4).

Define Lf : A → A by a 7→
∫
G
f(s)a dµ(s). Then for all a, b ∈ A, by (3.1.6)

and (3.1.9), we have

(Lf (a) | b)A = Lf (a)∗b =

∫
G

a∗f(s)∗bdµ(s) = a∗Lf∗(b) = (a | Lf∗(b))A,

noticing that f ∗ ∈ Cc(G,Ms(A)). Therefore, Lf ∈ L(A) = M(A).

We define
∫
G
f(s)dµ(s) = Lf . Clearly, the map

Cc(G,Ms(A))→M(A), f 7→
∫
G

f(s)dµ(s)

is linear. It is easy to see that (3.1.6) and (3.1.9) also hold in the present context.

Now, let π : A → B(Hπ) be a non-degenerate representation. By Proposition

3.1.6, for all h, k ∈ Hπ and a ∈ A, we have(
π̄
( ∫

G

f(s)dµ(s)
)
π(a)h | k

)
=

(
π
( ∫

G

f(s)adµ(s)
)
h | k

)
=

∫
G

(π(f(s)a)h | k)dµ(s)

=

∫
G

(π̄(f(s))π(a)h | k)dµ(s).

Then (3.2.2) follows from the non-degeneracy of π.

Note that if a representation π : A → B(Hπ) is injective, so is its extension
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π̄ : M(A) → B(Hπ). Therefore, the uniqueness follows from (3.2.2) by taking an

injective representation π.

For a ∈ A with ‖a‖ ≤ 1, since f(·)a ∈ Cc(G,A), by Proposition 3.1.6, we have∥∥∥∫
G

f(s)dµ(s)a
∥∥∥ =

∥∥∥∫
G

f(s)adµ(s)
∥∥∥ ≤ ‖f(·)a‖1

=

∫
supp f

‖f(s)a‖dµ(s) ≤ ‖f‖∞ · µ(supp f).

That is,
∥∥∥ ∫G f(s)dµ(s)

∥∥∥ ≤ ‖f‖∞ · µ(supp f).

Finally, let B be a C∗-algebra and L : A → M(B) be a non-degenerate ∗-

homomorphism. Let L̄ : M(A)→M(B) be the unique homomorphic extension of

L. Note that L̄ is strictly continuous and hence L̄ ◦ f(·) ∈ Cc(G,Ms(B)). For all

a ∈ A, by (3.1.5), we have

L̄
(∫

G

f(s)dµ(s)
)
L(a) = L

(∫
G

f(s)adµ(s)
)

=

∫
G

L(f(s)a)dµ(s)

=

∫
G

L̄(f(s))L(a)dµ(s) =

∫
G

L̄(f(s))dµ(s)L(a).

Therefore, L̄
( ∫

G
f(s)dµ(s)

)
=
∫
G
L̄(f(s))dµ(s), as L is non-degenerate. �

3.3. Fubini Theorem for Vector-Valued Integration

In this section, we consider a version of the Fubini Theorem for vector-valued

integrals. Since our integrands are continuous with compact support, this can

be achieved by applying certain bounded linear functionals and using the Fubini

Theorem for scalar-valued integrals.

Lemma 3.3.1. Let G be a locally compact group, let X is a locally compact

space, and let F ∈ Cc(X ×G,D). Then the function

x 7→
∫
G

F (x, s)dµ(s)

is an element of Cc(X,D).

Proof. It will clearly suffice to prove the continuity of the function.

Suppose that xi → x. Let K and C be compact sets in X and G, respectively,

such that supp(F ) ⊂ K×C. For each x ∈ X, let ϕ(x) be the element of Cc(G,D)
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defined by ϕ(x)(s) = F (x, s). We claim that ϕ(xi)→ ϕ(x) uniformly on G. If this

were not the case, then after passing to a subnet and relabeling, we can assume

that there exists ε0 > 0 and ri ∈ G for each i such that

‖F (xi, ri)− F (x, ri)‖ ≥ ε0 for all i. (3.3.1)

We certainly have {ri} ⊂ C, and since C is compact, we can assume that ri → r.

Taking the limit in (3.3.1), we obtain that 0 ≥ ε0, a contradiction.

Now we can assume that for large i, we have

‖ϕ(xi)− ϕ(x)‖∞ <
ε0

µ(C) + 1
.

Since supp(ϕ(xi)) ⊂ C for all i, we have∥∥∥∫
G

F (xi, s)dµ(s)−
∫
G

F (x, s)dµ(s)
∥∥∥ ≤ ∫

C

‖ϕ(xi)(s)− ϕ(x)(s)‖ dµ(s) ≤ ε0.

This completes the proof. �

The following corollary will be very useful in the sequel.

Corollary 3.3.2. Let G and G′ be locally compact groups, and let F be a

function in Cc(G×G
′
,D). Then the functions

s 7→
∫
G′
F (s, r)dµG′ (r) and r 7→

∫
G

F (s, r)dµG(s)

are in Cc(G,D) and Cc(G
′
,D), respectively.

Proposition 3.3.3. Let G be a locally compact space, let A be a C∗-algebra,

and let F ∈ Cc(G×G,Ms(A)). Then

s 7→
∫
G

F (s, r)dµ(r) and r 7→
∫
G

F (s, r)dµ(s)

are in Cc(G,Ms(A)), and the iterated integrals∫
G

∫
G

F (s, r)dµ(s)dµ(r) and

∫
G

∫
G

F (s, r)dµ(r)dµ(s)

are well defined in M(A) and equal.

A similar statement holds for F ∈ Cc(G×G,D) with D a Banach space.
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Proof. For any fixed s ∈ G, since F (s, ·) ∈ Cc(G,Ms(A)), the integral∫
G
F (s, r)dµ(r) ∈M(A) is well-defined by Lemma 3.2.8. Now the map

G→M(A), s 7→
∫
G

F (s, r)dµ(r)

has a compact support. To show that it is in Cc(G,Ms(A)), let a ∈ A. Then

aF (·, ·) and F (·, ·)a are in Cc(G×G,A). By Corollary 3.3.2, the maps

s 7→
∫
G

aF (s, r)dµ(r) = a

∫
G

F (s, r)dµ(r)

and

s 7→
∫
G

F (s, r)adµ(r) =

∫
G

F (s, r)dµ(r)a

are both in Cc(G,A). Therefore, the map s 7→
∫
G
F (s, r)dµ(r) is in Cc(G,Ms(A)),

and hence so is the map r 7→
∫
G
F (s, r)dµ(s).

It is clear from Lemma 3.2.8 that both iterated integrals in the proposition are

defined and take values in M(A). To see that they have the same value, let π be

an injective non-degenerate representation of A in B(H). Then π̄ : M(A)→ B(H)

is also injective. By (3.2.2) and the usual scalar-valued Fubini Theorem, we have(
π̄
(∫

G

∫
G

F (s, r)dµ(s)dµ(r)
)
h | k

)
=

∫
G

∫
G

(π̄(F (s, r))h | k)dµ(s)dµ(r)

=

∫
G

∫
G

(π̄(F (s, r))h | k)dµ(r)dµ(s)

=
(
π̄
(∫

G

∫
G

F (s, r)dµ(r)dµ(s)
)
h | k

)
for all h, k ∈ H. Therefore, the first assertion follows since π̄ is injective.

If D is a Banach space and F ∈ Cc(G×G,D), then the two iterated integrals

are well-defined in A by Corollary 3.3.2 and Lemma 3.1.4. In this case, the equality∫
G

∫
G

ϕ(F (s, r))dµ(s)dµ(r) =

∫
G

∫
G

ϕ(F (s, r))dµ(r)dµ(s)

holds for all ϕ ∈ D∗ due to (3.1.3) and the scalar-valued Fubini Theorem. Hence,

we conclude that the two iterated integrals in the proposition are equal. �



CHAPTER 4

Dynamical Systems and Their Covariant Representations

A C∗-dynamical system consists of a C∗-algebra A, a locally compact group

G and an action of G on A. In this chapter, we study C∗-dynamical systems and

their covariant representations.

Section 4.1 contains materials from Dummit and Foote [6], and the rest of this

chapter is mainly based on William [17].

4.1. Transformation Groups

Definition 4.1.1. A group G acts on the left on a set X if there is a map

G×X → X, (s, x) 7→ s · x (4.1.1)

such that for all s, r ∈ G and x ∈ X,

e · x = x and s · (r · x) = (sr) · x.

Definition 4.1.2. Let G and X be a group and a set, respectively, and let

τ : G ×X → X be an action of G on X. For each g ∈ G, define τg : X → X by

τg(x) = g ·x. Then each τg is a bijection on X, and the set {τg : g ∈ G} is a group

under composition of functions. This group is called a transformation group.

If G is a topological group, X is a topological space, and there is a continuous

action τ : G×X → X, then X is called a left G-space and we denote the resulting

transformation group by the pair (G,X).

In this case, each τg is a homeomorphism on X, and

ϕ : G→ Homeo(X), g 7→ τg

is a group homomorphism and hence

(G,X) = ϕ(G) ∼= G/Ker(ϕ)

47
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as groups by the first isomorphism theorem.

We shall equip (G,X) with the topology from G/Ker(ϕ), which is a locally

compact group when G is locally compact (cf. Proposition 1.4.10). Therefore,

when both G and X are locally compact and Hausdorff, we call (G,X) a locally

compact transformation group, and X is called a left locally compact G-space.

Right G-spaces can be defined analogously. Since we are most concerned with

left G-spaces, we will omit the word “left” in our discussions.

Example 4.1.3. Let X be a topological space and let h ∈ Homeo(X). Then Z

acts on X by n · x = hn(x), which is continuous. Thus (Z, X) is a transformation

group, and X is a Z-space.

Example 4.1.4. Suppose that G is a locally compact group and H is a closed

subgroup of G. Then H is a locally compact group and acts on G by left trans-

lation. Thus (H,G) is canonically a locally compact transformation group, and

G is a locally compact H-space. In particular, when H = G, the action for the

transformation group (G,G) is just the multiplication on G.

Let (G,X) be a locally compact transformation group with the action τ of

G on X. Note that for each s ∈ G and f ∈ C0(X), τs ∈ Homeo(X) and hence

f ◦ τs ∈ C0(X). If we let αs : C0(X)→ C0(X) be the map f 7→ f ◦ τs−1 , then it is

easy to see that αs ∈ Aut(C0(X)) and

α : G→ Aut(C0(X)), s 7→ αs

is a homomorphism.

It is natural to ask whether α is continuous when Aut(C0(X)) is equipped with

the point-norm topology. This is answered in the following result.

Lemma 4.1.5. Suppose that (G,X) is a locally compact transformation group

and that Aut(C0(X)) is given the point-norm topology. Then the above associated

homomorphism α : G→ Aut(C0(X)) is continuous.

Proof. It suffices to show that for each f ∈ C0(X), ‖αs(f) − f‖∞ → 0 as

s→ e. If this were to fail, then there would be an ε > 0 and nets {si} and {xi} in
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G and X, respectively, such that si → e and

|f(s−1i · xi)− f(xi)| ≥ ε for all i. (4.1.2)

Choose a compact neighborhood V of e and we can assume that si ∈ V for all i.

Since f varnishes at infinity, K = {x ∈ X : |f(x)| ≥ ε
2
} is compact. For each

i, (4.1.2) shows that either xi ∈ K or s−1i · xi ∈ K (i.e., xi ∈ si ·K ⊂ V ·K). Thus

xi ∈ V ·K for all i. By the compactness of V ·K, we can assume that xi → x0 for

some x0 ∈ V ·K, and hence

s−1i · xi → e · x0 = x0.

Taking the limit in (4.1.2), we obtain that 0 ≥ ε, a contradiction. �

4.2. Dynamical Systems

Definition 4.2.1. A C∗-dynamical system is a triple (A,G, α) consisting of a

C∗-algebra A, a locally compact group G, and a homomorphism α : G→ Aut(A),

which is continuous when Aut(A) is equipped with the point-norm topology.

We will shorten C∗-dynamical system to just dynamical system. Notice that

the continuity condition on α in Definition 4.2.1 is equivalent to s 7→ αs(a) being

continuous for all a ∈ A. Lemma 4.1.5 shows that a locally compact transformation

group (G,X) results in a dynamical system with A = C0(X) commutative.

It is natural to ask, when (A,G, α) is a dynamical system with A commutative

and X = σ(A), whether (G,X) is a locally compact transformation group so

that (A,G, α) can be canonically recovered from (G,X). The answer is in the

affirmative as the following proposition establishes.

Proposition 4.2.2. Suppose that (C0(X), G, α) is a dynamical system with X

a locally compact Hausdorff space. Then there is a locally compact transformation

group (G,X) such that

αs(f)(x) = f(s−1 · x) (4.2.1)

for all s ∈ G, f ∈ C0(X) and x ∈ X.
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Proof. For each s ∈ G, by Theorem 1.3.16, there exists hs ∈ Homeo(X) such

that

αs(f)(x) = f(hs(x)) (4.2.2)

for all f ∈ C0(X) and x ∈ X, and s 7→ hs is a continuous map from G to

Homeo(X), which is equipped with the topology described in Definition 1.3.14.

From (4.2.2), we have,

f(hsr(x)) = αsr(f)(x) = αs(αr(f))(x) = αr(f)(hs(x)) = f(hr(hs(x))).

It follows that hsr = hr ◦ hs and h−1s = hs−1 . Therefore,

G×X → X, (s, x) 7→ s · x = h−1s (x) = hs−1(x)

is an action of G on X. This action is clearly continuous by the definition of the

topology on Homeo(X) and Lemma 1.3.13. Therefore, (G,X) is a locally compact

transformation group such that (4.2.1) holds. �

Example 4.2.3. Groups and C∗-algebras give degenerate dynamical systems.

Indeed, every locally compact group G gives rise to the dynamical system (C, G, 1),

where 1 denotes the trivial homomorphism G → Aut(C) = {idC}, and every C∗-

algebra A is associated with the dynamical system (A, {e}, id).

4.3. Covariant Representations of Dynamical Systems

Definition 4.3.1. Let (A,G, α) be a dynamical system. A covariant repre-

sentation of (A,G, α) is a pair (π, U) consisting of a representation π : A→ B(H)

and a unitary representation U : G → U(H) on the same Hilbert space H such

that

π(αs(a)) = Usπ(a)U∗s (s ∈ G, a ∈ A). (4.3.1)

A covariant representation (π, U) is called non-degenerate if the representation π

is non-degenerate.

Example 4.3.2. Let A be a C∗-algebra and let G be a locally compact group.

We consider covariant representations of the degenerate dynamical systems given
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in Example 4.2.3.

(1) Let π : A → B(H) be a representation, and let U : {e} → U(H), e 7→ idH

be the trivial unitary representation. Then we have Ueπ(a)U∗e = π(a) = π(id(a)).

Thus (π, U) is a covariant representation of (A, {e}, id). Therefore, the covariant

representations of (A, {e}, id) correspond exactly to the representations of A.

(2) Let U : G → U(H) be any unitary representation of G on H, and let

π : C → B(H), c 7→ c idH be the trivial representation. Then for any s ∈ G and

c ∈ C, we have

Usπ(c)U∗s = c idH = π(c) = π(1s(c)).

Thus (π, U) is a covariant representation of (C, G, 1). Therefore, the covariant

representations of (C, G, 1) correspond exactly to the unitary representations of

G.

Example 4.3.3. LetG be a locally compact group, and let (C0(G), G, `t) be the

dynamical system associated with the transformation group (G,G) with G acting

on itself by left translation. Let M : C0(G)→ B(L2(G)) be the representation of

C0(G) given by pointwise multiplication; that is,

M(f) : h 7→ fh,

and let λ : G→ U(L2(G)) be the left regular representation of G.

We claim that (M,λ) is a covariant representation of (C0(G), G, `t). To see

this, it suffices to show that λsM(f) = M(`ts(f))λs for all s ∈ G and f ∈ C0(G).

This is certainly true, as for all h ∈ L2(G), we have

λsM(f)(h) = λs(fh) = `ts(f)λs(h) = M(`ts(f))(λs(h)).

Example 4.3.4. Let h ∈ Homeo(T) be the “rotation by θ” map; that is,

h(z) = e2πiθz.

Then (Z,T) is a transformation group (cf. Example 4.1.3). Let (C(T),Z, α) be

the dynamical system associated with (Z,T). That is, for n ∈ Z, f ∈ C(T), and
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z ∈ T, we have

αn(f)(z) = f(h−n(z)) = f(e−2πinθz).

(a) Let M : C(T) → B(L2(T)) be the representation given by pointwise mul-

tiplication, and let U : Z→ U(L2(T)) be the unitary representation given by

Unξ(z) = (ξ ◦ h−n)(z) = ξ(e−2πinθz).

Since UnM(f) = M(αn(f))Un for all n ∈ Z and f ∈ C(T), (M,U) is a covariant

representation of (C(T),Z, α).

(b) Now fix ω ∈ T. Define πω : C(T)→ B(L2(Z)) to be the representation

πω(f)ξ(n) = f(e2πinθω)ξ(n) = f(hn(ω))ξ(n).

Since λnπω(f) = πω(αn(f))λn for all n ∈ Z and f ∈ C(T), where λ is the left

regular representation of Z, (πω, λ) is a covariant representation of (C(T),Z, α).

Let G be a locally compact group and let H be a complex Hilbert space. We

will take a slight detour to describe the structure of the Hilbert space L2(G,H),

which will be needed in the subsequent examples. To begin with, we simply define

L2(G,H) to be the completion of Cc(G,H) with the ‖ · ‖2-norm coming from the

inner product

(ξ | η) =

∫
G

(ξ(s) | η(s))dµ(s) (ξ, η ∈ Cc(G,H)). (4.3.2)

The above definition clearly gives us the usual space L2(G) when H = C.

On the other hand, it was shown in [17, §I.4] (see also Lemma 3.1.2) that

L2(G,H) is naturally isomorphic to the Hilbert space tensor product L2(G)⊗H,

which is the completion of Cc(G) � H with the norm obtained from the inner

product on H and the inner product on Cc(G) given by

(ξ | η) =

∫
G

ξ(s)η(s)dµ(s).

In the next result, for any dynamical system, we define a very important class

of covariant representations, called regular representations.

Lemma 4.3.5. Let (A,G, α) be a dynamical system and let ρ : A → B(Hρ) be

any representation of A on a Hilbert space Hρ. Let ρ̃ : A → B(L2(G,Hρ)) and
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U : G→ U(L2(G,Hρ)) be representations of A and G defined respectively by

(ρ̃(a)h)(r) = ρ(α−1r (a))(h(r)) and (Ush)(r) = h(s−1r), (4.3.3)

where a ∈ A, r ∈ G and h ∈ L2(G,Hρ). Then the pair (ρ̃, U) of representations

on the Hilbert space L2(G,Hρ) is a covariant representation of (A,G, α).

Proof. Under the identification L2(G,Hρ) ∼= L2(G) ⊗ Hρ, it is clear that

U = λ ⊗ id, where λ is the regular representation of G on L2(G,Hρ). Now, we

have

(Usρ̃(a)U∗s h)(r) = (ρ̃(a)U∗s h)(s−1r) = ρ(α−1s−1r(a))(U∗s h(s−1r))

= ρ(α−1r (αs(a)))(h(r)) = ρ̃(αs(a))h(r).

Then (ρ̃, U) is a covariant representation of (A,G, α). �

The pair (ρ̃, U) is called a regular representation of (A,G, α) and is denoted

by IndGe ρ. Lemma 4.3.5 shows that for any given dynamical system, there always

exists a covariant representation.

Example 4.3.6. The covariant representation (πω, λ) of (C(T),Z, α) in Exam-

ple 4.3.4(b) is exactly the regular representation IndGe evω of (C(T),Z, α), where

evω : C(T)→ C ∼= B(C) and L2(Z)⊗ C ∼= L2(Z).

In fact, for ξ ∈ L2(Z), we have

(πω(f)ξ)(n) = α−1n (f)(ω)ξ(n) = evω(α−1n (f))ξ(n) = (ẽvω(f)ξ)(n).

This shows that πω = ẽvω. Clearly, the unitary representation U in IndGe evω is

just the left regular representation λ of Z. Therefore, (πω, λ) = IndGe evω.

In the regular representation IndGe ρ = (ρ̃, U) of a dynamical system (A,G, α),

the representation ρ̃ depends on the representation ρ of A. We may want to know

if ρ̃ inherits any property of ρ. The result below gives one important relationship

between ρ̃ and ρ.

Proposition 4.3.7. Let (A,G, α) be a dynamical system and let IndGe ρ =

(ρ̃, U) be a regular representation of (A,G, α). Then the representation ρ̃ defined

in Lemma 4.3.5 is non-degenerate if ρ is non-degenerate.
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Proof. Let {ei} be a bounded approximate identity of A. To show that ρ̃ is

non-degenerate, it suffices to prove that

ρ̃(ei)ξ → ξ in the ‖ · ‖2-norm (4.3.4)

for all ξ in the dense subset Cc(G)�Hρ of L2(G,Hρ). Since ρ is non-degenerate,

we can assume that ξ = f ⊗ (ρ(a)h) for some f ∈ Cc(G), a ∈ A and h ∈ Hρ.

Let K = supp(f) and let M = sup{|f(s)| : s ∈ K}. It follows that

‖ρ̃(ei)ξ − ξ‖22 = (ρ̃(ei)ξ − ξ | ρ̃(ei)ξ − ξ)

=

∫
G

(ρ̃(ei)ξ(s)− ξ(s) | ρ̃(ei)ξ(s)− ξ(s))dµ(s)

=

∫
G

‖ρ̃(ei)ξ(s)− ξ(s)‖2dµ(s)

=

∫
K

‖f(s)ρ(α−1s (ei)a)h− f(s)ρ(a)h‖2dµ(s)

≤
∫
K

|f(s)|2‖ρ(α−1s (ei)a− a))‖2‖h‖2dµ(s)

≤ M2‖h‖2
∫
K

‖α−1s (ei)a− a‖2dµ(s)

= M2‖h‖2
∫
K

‖eiαs(a)− αs(a)‖2dµ(s).

For any fixed s ∈ K, we have ‖eiαs(a)− αs(a)‖ → 0. Since K is compact, the set

E = {αs(a) : s ∈ K} is a compact set in A. Note that {ei} is bounded. Thus

‖eix− x‖ → 0 uniformly for x ∈ E.

Therefore, the integral
∫
K
‖eiαs(a)−αs(a)‖dµ(s) is convergent to 0, and the proof

is complete. �

Definition 4.3.8. Suppose that (A,G, α) is a dynamical system and that

(π, U) and (ρ, V ) are covariant representations of (A,G, α) on Hilbert spaces H

and K, respectively. The direct sum (π, U)⊕ (ρ, V ) is the covariant representation

(π ⊕ ρ, U ⊕ V ) of (A,G, α) on H⊕K given by

(π ⊕ ρ)(a) = π(a)⊕ ρ(a) and (U ⊕ V )s = Us ⊕ Vs.
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A closed linear subspace H′ of H is invariant for (π, U) if π(a)(H′) ⊂ H′ and

Us(H′) ⊂ H′ for all a ∈ A and s ∈ G. If H′ is invariant, π′ is the restriction of π to

H′ and U ′ is the restriction of U to H′, then (π′, U ′) is a covariant representation

of (A,G, α) on H′, called a subrepresentation of (π, U).

We call (π, U) irreducible if {0} and H are the only invariant subspaces of H.

Finally, we say that (π, U) and (ρ, V ) are equivalent if there is a unitary map

W : H → K such that

ρ(a) = Wπ(a)W ∗ and Vs = WUsW
∗ for all a ∈ A and s ∈ G.

Remark 4.3.9. If V ⊂ H is invariant for (π, U), then it is clear that V⊥ is

also invariant for (π, U). Thus if (π′, U ′) and (π′′, U ′′) are subrepresentations of

(π, U) on V and V⊥, respectively, then (π, U) = (π′, U ′)⊕ (π′′, U ′′). In particular,

(π, U) is irreducible if and only if (π, U) is not equivalent to the direct sum of two

nontrivial covariant representations of (A,G, α).



CHAPTER 5

Crossed Products of C∗-Algebras and Examples

This chapter is mainly based on William [17].

5.1. Crossed Products

In this section, for a given dynamical system (A,G, α), we want to construct a

∗-algebra structure on Cc(G,A), whose completion with respect to a norm defined

later - the universal norm - will be a C∗-algebra. This C∗-algebra is called the

Crossed Product of A by G, and is denoted by Aoα G.

5.1.1. ∗-Algebraic Structure on Cc(G,A). Let (A,G, α) be a dynamical

system. If f, g ∈ Cc(G,A), then (s, r) 7→ f(r)αr(g(r−1s)) is in Cc(G×G,A), and

Corollary 3.3.2 guarantees that

s 7→
∫
G

f(r)αr(g(r−1s))dµ(r)

defines an element of Cc(G,A). We define

f ∗ g(s) =

∫
G

f(r)αr(g(r−1s))dµ(r). (5.1.1)

For all f, g, h ∈ Cc(G,A) and s ∈ G, using the left invariance of the Haar

measure and equation (3.1.8) and applying the Fubini Theorem for vector-valued

integrals (cf. Proposition 3.3.3), we have

f ∗ (g ∗ h)(s) =

∫
G

f(r)αr(g ∗ h(r−1s))dµ(r)

=

∫
G

f(r)

∫
G

αr(g(t))αrt(h(t−1r−1s))dµ(t)dµ(r)

=

∫
G

f(r)

∫
G

αr(g(r−1t))αt(h(t−1s))dµ(t)dµ(r)

=

∫
G

(∫
G

f(r)αr(g(r−1t))dµ(r)
)
αt(h(t−1s))dµ(t)

= (f ∗ g) ∗ h(s).

56
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Thus the multiplication given by (5.1.1) is associative on Cc(G,A), and we call it

the convolution on Cc(G,A).

Next, for f ∈ Cc(G,A), we define

f ∗(s) = 4(s−1)αs(f(s−1)∗). (5.1.2)

Then f ∗ ∈ Cc(G,A).

Now, for all f, g ∈ Cc(G,A) and s ∈ G, we have

f ∗ ∗ g∗(s) =

∫
G

f ∗(r)αr(g
∗(r−1s))dµ(r)

=

∫
G

4(r−1)αr(f(r−1)∗)αr(4(s−1r)αr−1s(g(s−1r)∗))dµ(r)

= 4(s−1)

∫
G

αr(αr−1s(g(s−1r))f(r−1))∗dµ(r)

= 4(s−1)

∫
G

αsr(αr−1(g(r))f(r−1s−1))∗dµ(r)

= 4(s−1)

∫
G

αs(g(r)αr(f(r−1s−1)))∗dµ(r)

= 4(s−1)αs

(∫
G

g(r)αr(f(r−1s−1))dµ(r)
)∗

= 4(s−1)αs(g ∗ f(s−1))∗

= (g ∗ f)∗(s).

Therefore, f 7→ f ∗ is an involution on Cc(G,A).

Furthermore, if ‖ · ‖1 is the norm on Cc(G,A) given by

‖f‖1 =

∫
G

‖f(s)‖dµ(s), (5.1.3)

then by Proposition 2.1.18, we have

‖f ∗‖1 =

∫
G

‖4(s−1)αs(f(s−1)∗)‖dµ(s)

=

∫
G

4(s−1)‖f(s−1)‖dµ(s)

=

∫
G

‖f(s)‖dµ(s)

= ‖f‖1.
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Thus the involution f 7→ f ∗ on (Cc(G,A), ‖ · ‖1) is isometric.

Finally, for f, g ∈ Cc(G,A), we have

‖f ∗ g‖1 =

∫
G

‖f ∗ g(s)‖dµ(s)

=

∫
G

∥∥∥∫
G

f(r)αr(g(r−1s))dµ(r)
∥∥∥dµ(s)

≤
∫
G

∫
G

‖f(r)αr(g(r−1s))‖dµ(r)dµ(s)

≤
∫
G

∫
G

‖f(r)‖‖g(r−1s)‖dµ(r)dµ(s)

=

∫
G

‖f(r)‖
(∫

G

‖g(r−1s)‖dµ(s)
)
dµ(r)

=

∫
G

‖f(r)‖
(∫

G

‖g(s)‖dµ(s)
)
dµ(r)

= ‖f‖1‖g‖1.

Therefore, (Cc(G,A), ‖ · ‖1) is a normed associative algebra with the convolution

(5.1.1) satisfying ‖f ∗ g‖1 ≤ ‖f‖1‖g‖1 and the isometric involution (5.1.2).

Example 5.1.1. (1) Let A be a C∗-algebra. For the degenerate dynamical

system (A, {e}, id) (cf. Example 4.2.3), the normed ∗-algebra (Cc({e}, A), ‖ · ‖1)

is just the C∗-algebra A.

(2) Let G be a locally compact group. For the degenerate dynamical system

(C, G, 1) (cf. Example 4.2.3), the normed ∗-algebra (Cc(G,C), ‖ · ‖1) is the usual

space (Cc(G), ‖ · ‖1) with the convolution and the involution given by

f ∗ g(s) =

∫
G

f(r)g(r−1s)dµ(r) and f ∗(s) = 4(s−1)f(s−1).

Definition 5.1.2. Let A be a C∗-algebra and let H be a Hilbert space. A

∗-homomorphism π : Cc(G,A) → B(H) is called a ∗-representation of Cc(G,A).

If π satisfies ‖π(f)‖ ≤ ‖f‖1, then π is called L1-norm decreasing.

5.1.2. Integrated Form of a Covariant Representation. We will define

a very useful form for a covariant representation, called the integrated form, which

will be instrumental in defining the universal norm.
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Proposition 5.1.3. Let (π, U) be a covariant representation of a dynamical

system (A,G, α) on H. Then the map π o U : Cc(G,A)→ B(H) given by

π o U(f) =

∫
G

π(f(s))Usdµ(s) (5.1.4)

is a L1-norm decreasing ∗-representation of the convolution algebra Cc(G,A) on

H, called the integrated form of (π, U).

Furthermore, π o U is non-degenerate if π is non-degenerate.

Proof. Since s 7→ Us is strongly continuous, Corollary 3.2.6 implies that it

is strictly continuous. Consequently, the integrand in (5.1.4) is in Cc(G,Bs(H)).

By Proposition 3.2.8, the map π o U : Cc(G,A)→ B(H) is well-defined, which is

clearly linear. If h and k are unit vectors in H, then by Proposition 3.2.8, we have

|(π o U(f)h | k)| =
∣∣∣ ∫

G

(π(f(s))Ush | k)dµ(s)
∣∣∣

≤
∫
G

‖π(f(s))‖‖Us‖‖h‖‖k‖dµ(s)

≤
∫
G

‖f(s)‖dµ(s) = ‖f‖1.

It follows that ‖π o U(f)‖ ≤ ‖f‖1; that is, π o U : Cc(G,A)→ B(H) is L1-norm

decreasing.

To see that π o U is a ∗-homomorphism, we compute as follows by applying

Proposition 3.2.8 and Proposition 2.1.18: for f, g ∈ Cc(G,A), we have

π o U(f ∗ g) =

∫
G

π(f ∗ g(s))Usdµ(s)

=

∫
G

π
(∫

G

f(r)αr(g(r−1s))dµ(r)
)
Usdµ(s)

=

∫
G

∫
G

π(f(r)αr(g(r−1s)))Usdµ(r)dµ(s)

=

∫
G

∫
G

π(f(r))Urπ(g(r−1s))Ur−1sdµ(r)dµ(s)

=

∫
G

∫
G

π(f(r))Urπ(g(s))Usdµ(r)dµ(s)

=

∫
G

π(f(r))Urdµ(r)

∫
G

π(g(s))Usdµ(s)

= (π o U(f)) ◦ (π o U(g))
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and

π o U(f)∗ =

∫
G

Us−1π(f(s)∗)dµ(s)

=

∫
G

Us−1π(4(s−1)αs(f
∗(s−1)))dµ(s)

=

∫
G

Us−14(s−1)π(αs(f
∗(s−1)))dµ(s)

=

∫
G

Us−14(s−1)Usπ(f ∗(s−1))Us−1dµ(s)

=

∫
G

4(s−1)π(f ∗(s−1))Us−1dµ(s)

=

∫
G

π(f ∗(s))Usdµ(s) = π o U(f ∗).

Now assume that π is non-degenerate. We want to show that the set

{π o U(f)h : f ∈ Cc(G,A) and h ∈ H}

is norm dense inH. To this end, let h ∈ H and ε > 0. Note that if {ei} is a bounded

approximate identity of A, then, since π is non-degenerate, we have π(ei)h → h

in H. Thus we can choose u ∈ A of norm one such that ‖π(u)h − h‖ < ε/2. Let

V be a neighborhood of e in G such that ‖Ush − h‖ < ε/2 for all s ∈ V . Choose

ϕ ∈ Cc(G)+ such that supp(ϕ) ⊂ V and ‖ϕ‖1 = 1.

Let f = ϕ⊗ u ∈ Cc(G,A). If k is an element of H with norm one, then, using

Proposition 3.2.8 at some point, we have

|(π o U(f)h− h | k)|

=
∣∣∣( ∫

G

π(f(s))Usdµ(s)h− h | k
)∣∣∣

=
∣∣∣(( ∫

G

ϕ(s)π(u)Usdµ(s)−
∫
G

ϕ(s)dµ(s)
)
h | k

)∣∣∣
=

∣∣∣ ∫
G

(ϕ(s)(π(u)Ush− h) | k)dµ(s)
∣∣∣

≤
∫
G

ϕ(s)|(π(u)(Ush− h) | k)|dµ(s) +

∫
G

ϕ(s)|(π(u)h− h | k)|dµ(s)

≤ ε

2
+
ε

2
= ε.

Therefore, ‖π o U(f)h− h‖ ≤ ε. �
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Example 5.1.4. Let A be a C∗-algebra and let G be a locally compact group.

Let π : A → B(H) be any representation of A and let U : G → U(H) be any

unitary representation of G. It is known (cf. Example 4.3.2) that (π, id) and

(id, U) are covariant representations of ({e}, A, id) and (C, G, 1), respectively. In

this case,

(i) Cc({e}, A) = A and π o id = π;

(ii) Cc(G,C) = Cc(G) and ido U : Cc(G)→ B(H) is the restriction to Cc(G)

of the representation L1(G)→ B(H) associated with U (cf. Section 2.3). We will

always shorten ido U as just U .

Let (A,G, α) be a dynamical system. For each r ∈ G, let

iG(r) : Cc(G,A)→ Cc(G,A)

be defined by

iG(r)f(s) = αr(f(r−1s)). (5.1.5)

In particular, if u ∈ Cc(G) and a ∈ A, then

iG(r) : u⊗ a 7→ (λ(r)u)⊗ αr(a) = (λ(r)⊗ αr)(u⊗ a).

So, we can write iG(r) as λ(r)⊗ αr.

This map has the following property: if (π, U) is a covariant representation of

(A,G, α), then for all f ∈ Cc(G,A), we have

π o U(iG(r)f) =

∫
G

π(iG(r)f(s))Usdµ(s)

=

∫
G

π(αr(f(r−1s))Usdµ(s)

=

∫
G

Urπ(f(r−1s))Ur−1Usdµ(s)

=

∫
G

Urπ(f(s))Usdµ(s)

= (Ur · π) o U(f),

where (Ur · π)(a) = Urπ(a) for a ∈ A. That is, we have

(π o U) ◦ iG(r) = (π o U) ◦ (λ(r)⊗ αr) = (Ur · π) o U. (5.1.6)
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Recall that, for a representation ρ : A → B(H), the regular representation

IndGe ρ = (ρ̃, U) of (A,G, α) on L2(G,H) was defined in (4.3.3). Then we can

consider the integrated form ρ̃o U . We show below that ρ̃o U is injective if ρ is

injective.

Proposition 5.1.5. Let (A,G, α) be a dynamical system, let ρ : A → B(H)

be an injective representation of A, and let IndGe ρ = (ρ̃, U) be the corresponding

regular representation of (A,G, α). Then the integrated form

ρ̃o U : Cc(G,A)→ B(L2(G,H))

is an injective representation of the convolution algebra Cc(G,A).

Proof. Let f ∈ Cc(G,A) be such that f(x) 6= 0 for some x ∈ G. To get

‖ρ̃oU(f)‖ 6= 0, by (5.1.6), we only have to show that ‖ρ̃oU(iG(x−1)f)‖ 6= 0. So,

we let g = iG(x−1)f ∈ Cc(G,A) and show that ‖ρ̃o U(g)‖ 6= 0.

Since ρ is injective and g(e) 6= 0, there are vectors h, k ∈ H such that

(ρ(g(e))h | k) 6= 0.

We can find a neighborhood V of e such that for all s, r ∈ V , we have

|(ρ(α−1r (g(s)))h | k)− (ρ(g(e))h | k)| <
|(ρ(g(e))h | k)|

3
.

Choose ϕ ∈ C+
c (G) with ‖ϕ‖1 = 1 and satisfying ϕ(s−1) = ϕ(s). Then∫

G

∫
G

ϕ(s−1r)ϕ(r)dµ(s)dµ(r) = 1.

Let ξ, η ∈ L2(G,H) be given by ξ = ϕ⊗ h and η = ϕ⊗ k. Then

|(ρ̃o U(g)ξ | η)− (ρ(g(e))h | k)|

=
∣∣∣ ∫

G

(ρ̃o U(g)ξ(r) | η(r))dµ(r)− (ρ(g(e))h | k)
∣∣∣

=
∣∣∣ ∫

G

(∫
G

ρ̃(g(s))Usdµ(s)ξ(r) | η(r)
)
dµ(r)− (ρ(g(e))h | k)

∣∣∣
=

∣∣∣ ∫
G

∫
G

(ρ̃(g(s))Usξ(r) | η(r))dµ(s)dµ(r)− (ρ(g(e))h | k)
∣∣∣
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=
∣∣∣ ∫

G

∫
G

(ϕ(s−1r)ρ(α−1r (g(s)))h | ϕ(r)k)dµ(s)dµ(r)− (ρ(g(e))h | k)
∣∣∣

≤
∫
G

∫
G

ϕ(s−1r)ϕ(r)
∣∣∣(ρ(α−1r (g(s)))h | k)− (ρ(g(e))h | k)

∣∣∣dµ(s)dµ(r)

<
|(ρ(g(e))h | k)|

3
.

It follows that (ρ̃o U(g)ξ | η) 6= 0, and hence ρ̃o U(g) 6= 0. �

5.1.3. Crossed Products. We are ready now to define the crossed product

Aoα G associated with a dynamical system (A,G, α).

Proposition 5.1.6. Let (A,G, α) be a dynamical system. For each f in

Cc(G,A), define

‖f‖ = sup ‖π o U(f)‖, (5.1.7)

where the supremum is taking over all covariant representations (π, U) of (A,G, α).

Then ‖ · ‖ is a norm on Cc(G,A), called the universal norm, and is dominated by

the ‖ · ‖1- norm.

The completion of (Cc(G,A), ‖ · ‖) is a C∗-algebra and is denoted by A oα G,

called the crossed product of A by G.

Proof. By Proposition 5.1.3, we have ‖πoU(f)‖ ≤ ‖f‖1 for all f ∈ Cc(G,A).

Thus the function ‖ · ‖ given in (5.1.7) is well-defined on Cc(G,A) and satisfies

‖ · ‖ ≤ ‖ · ‖1.

Clearly, ‖f + g‖ ≤ ‖f‖ + ‖g‖ and ‖cf‖ = |c|‖f‖ for all f, g ∈ Cc(G,A) and

c ∈ C. Suppose now that ‖f‖ = 0. Pick an injective representation ρ of A. Since

‖ρ̃ o U(f)‖ = 0, by Proposition 5.1.5, we have f = 0. Therefore, ‖ · ‖ is a norm

on Cc(G,A) dominated by ‖ · ‖1.

For any covariant representation (π, U) of (A,G, α) on a Hilbert space H,

π o U(f) ∈ B(H) and hence we have

‖π o U(f ∗ ∗ f)‖ = ‖π o U(f)∗ ◦ π o U(f)‖ = ‖π o U(f)‖2.

Therefore, we have ‖f ∗ ∗f‖ = ‖f‖2 for all f ∈ Cc(G,A), and hence the completion

Aoα G of (Cc(G,A), ‖ · ‖) is a C∗-algebra. �
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Due to Proposition 5.1.6, we often view Cc(G,A) as a ∗-subalgebra of AoαG,

and we will not distinguish between an element of Cc(G,A) and its image in AoαG.

Example 5.1.7. Let A and G be the same as in Example 5.1.1.

Note that Cc({e}, A) = A. Therefore, for the degenerate dynamical system

(A, {e}, id), we have Aoid {e} = A.

For the degenerate dynamical system (C, G, 1), we have Cc(G,C) = Cc(G).

Let U : G→ U(H) be any unitary representation of G. Then

(ido U)(f) = U(f)

for all f ∈ Cc(G), where U on the right side is the associated representation

L1(G) → B(H) given in Section 2.3. In this case, we have ‖f‖∗ ≤ ‖f‖ for all

f ∈ Cc(G), where ‖ · ‖∗ is the norm on Cc(G) given in Section 2.3. It follows that

‖ · ‖∗ = ‖ · ‖ on Cc(G), and hence we have Co1 G = C∗(G).

5.2. Non-degenerate Examples of Crossed Products

We have degenerate examples of crossed products in Example 5.1.7. In this

section, we will construct a few illustrative examples other than the degenerate

ones.

The following result, based on the discussions in [17, Section 2.3], will be

fundamental in this section.

Proposition 5.2.1. Let G be a locally compact group, let X be a locally com-

pact Hausdorff space, and let (C0(X), G, α) be a dynamical system, which is as-

sociated with a locally compact transformation group (G,X) by Proposition 4.2.2.

Then Cc(G×X) can be canonically identified with a ∗-subalgebra of the convolution

algebra Cc(G,C0(X)) such that Cc(G×X) is dense in C0(X)oαG with respect to

the universal norm.

Proof. Clearly, we have the canonical embeddings

Cc(G)� Cc(X) ⊂ Cc(G×X) ↪→ Cc(G,Cc(X)) ⊂ Cc(G,C0(X)), (5.2.1)

where ↪→ is the embedding f 7→ f̃ given by f̃(s)(x) = f(s, x). We will identify

Cc(G×X) with its canonical image C̃c(G×X) in Cc(G,C0(X)).
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To show that Cc(G×X) is a ∗-subalgebra of the convolution algebra Cc(G,C0(X)),

we let f, g ∈ Cc(G × X), s ∈ G and x ∈ X. Note that evx is a bounded linear

functional on C0(X). Then, under the identifications f ↔ f̃ and g ↔ g̃, we have

f ∗ g(s)(x) = evx

(∫
G

f(r)αr(g(r−1s))dµ(r)
)

=

∫
G

f(r, x)g(r−1s)(r−1 · x)dµ(r)

=

∫
G

f(r, x)(g(r−1s, r−1 · x)dµ(r)

and

f ∗(s)(x) = 4(s−1)αs(f(s−1)∗)(x)

= 4(s−1)f(s−1)(s−1 · x)

= 4(s−1)f(s−1, s−1 · x).

Let F and H be functions on G×X given by

F (s, x) =

∫
G

f(r, x)g(r−1s, r−1 · x)dµ(r) and H(s, x) = 4(s−1)f(s−1, s−1 · x).

Clearly, H ∈ Cc(G×X), and we also have F ∈ Cc(G×X) by Lemma 3.3.1 (with

X there replaced by G×X). Therefore,

f ∗ g = F ∈ Cc(G×X) and f ∗ = H ∈ Cc(G×X).

This shows that Cc(G×X) is a ∗-subalgebra of the involutive convolution algebra

Cc(G,C0(X)).

Since Cc(X) is norm dense in C0(X), by (5.2.1) and Lemma 3.1.2, we have

that Cc(G) � Cc(X) and hence Cc(G ×X) is L1-norm dense in Cc(G,C0(X)). It

follows that

C0(X) oα G = Cc(G×X)
‖·‖
,

where ‖ · ‖ is the universal norm. �

The next result (cf. [17, §2.5]) will be useful for giving more examples of crossed

products.
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Lemma 5.2.2. Let (A,G, α) be a dynamical system with the group G finite and

let L : C(G,A) → D be a ∗-isomorphism of C(G,A) onto a C∗-algebra D. Then

Aoα G ∼= D.

Proof. Since G is finite, we have Cc(G,A) = C(G,A). By the assumption,

C(G,A) is also a C∗-algebra. That is, C(G,A) is complete with respect to the

universal norm. Therefore, Aoα G = C(G,A) ∼= D. �

When G = {e} in Lemma 5.2.2, we just get the degenerate crossed product

Aoid {e} = A as given in Example 5.1.7.

In [17, Section 2.5], it was shown that if G is the group Z2 equipped with the

discrete topology and (A,G, α) is a dynamical system, then Aoα G ∼= D2, where

D2 =

{ a b

α(b) α(a)

 ∈M2(A) : a, b ∈ A

}
.

Following the arguments given in [17] and using Lemma 5.2.2, we consider below

the case G = Z3 := Z/3Z.

Proposition 5.2.3. Let (A,Z3, α) be a dynamical system, and let

D3 =

{
a b c

α1(c) α1(a) α1(b)

α2(b) α2(c) α2(a)

 ∈M3(A) : a, b, c ∈ A

}
.

Then Aoα Z3
∼= D3.

Proof. It is clear that D3 is a C∗-subalgebra of M3(A). Note that each f in

C(Z3, A) is a function {0, 1, 2} → A, and thus the map L : C(Z3, A) → D3 given

by

L(f) =


f(0) f(1) f(2)

α1(f(2)) α1(f(0)) α1(f(1))

α2(f(1)) α2(f(2)) α2(f(0))


is a well-defined linear map.

Let f, g ∈ C(Z3, A). By the definition of the convolution and the involution on
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C(Z3, A) and noticing that Z3 is modular, we have

(f ∗ g)(0) = f(0)g(0) + f(1)α1(g(2)) + f(2)α2(g(1)),

(f ∗ g)(1) = f(0)g(1) + f(1)α1(g(0)) + f(2)α2(g(2)),

(f ∗ g)(2) = f(0)g(2) + f(1)α1(g(1)) + f(2)α2(g(0)),

f ∗(0) = f(0)∗, f ∗(1) = α1(f(2)∗), and f ∗(2) = α2(f(1)∗).

Since α1 ◦ α1 = α2, α2 ◦ α2 = α1, and α1 ◦ α2 = α2 ◦ α1 = id, we have

L(f ∗ g) = L(f)L(g) and L(f ∗) = L(f)∗.

That is, L : C(Z3, A)→ D3 is a ∗-homomorphism.

It is obvious that L is injective, and it is also onto D3 by the definition of D3.

Therefore, L is a ∗-isomorphism from C(Z3, A) onto D3. By Lemma 5.2.2, we

obtain that Aoα Z3
∼= D3. �

The arguments given in the proof of Proposition 5.2.3 can be applied to the

case G = Zn := Z/nZ (n ≥ 2), which yields the following proposition.

Proposition 5.2.4. Let (A,Zn, α) be a dynamical system with n ≥ 2, and let

Dn =

{


a1 a2 . . . an

α1(an) α1(a1) . . . α1(an−1)
...

...
...

...

αn−1(a2) αn−1(a3) . . . αn−1(a1)

 ∈Mn(A) : a1, . . . , an ∈ A

}
.

Then Aoα Zn ∼= Dn.

The following result, cited from [17], provides another important application

of Lemma 5.2.2.

Proposition 5.2.5. Suppose that G is a finite group with |G| = n. Then for

the canonical dynamical system (C(G), G, `t), we have

C(G) o`t G ∼= Mn,

where Mn denotes the C∗-algebra of n× n complex matrices.
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Proof. Let G = {si}ni=1. Then `2(G) is an n-dimensional Hilbert space with

an orthonormal basis {ei}ni=1, where each ei is the characteristic function of the

singleton {si}. In this case, `2(G) ∼= Cn and B(`2(G)) ∼= Mn canonically.

We take the counting measure as the Haar measure on G. Let (M,λ) be

the natural covariant representation of (C(G), G, `t). Since G is finite, we have

that C(G× G) ∼= C(G,C(G)) canonically. Under this identification, we have the

integrated form

M o`t λ : C(G×G)→ B(`2(G)).

Then for all f ∈ C(G×G) and h, k ∈ `2(G), we have

(M o`t λ(f)h | k) =

∫
G

(M(f(s))λsh | k)dµ(s)

=

∫
G

∫
G

f(s, t)h(s−1t)k(t)dµ(t)dµ(s)

=

∫
G

∫
G

f(ts−1, t)h(s)k(t)dµ(s)dµ(t)

=
n∑
i=1

( n∑
j=1

f(sis
−1
j , si)h(sj)

)
k(si).

Therefore,
(
(M o`t λ)(f)h

)
(s) =

∑n
j=1 f(ss−1j , s)h(sj).

With the identification B(`2(G)) ∼= Mn, we let

L = M o`t λ : C(G×G)→Mn.

Then L is a ∗-homomorphism such that for each f ∈ C(G×G), we have

L(f) = (f(sis
−1
j , si)),

the n× n matrix whose (i, j)-th entry is f(sis
−1
j , si).

Clearly, L : C(G×G)→Mn is injective and surjective. Therefore, by Lemma

5.2.2, we obtain that C(G) o`t G ∼= Mn. �

5.3. Representations Associated with Crossed Products

In the last two sections, we defined the crossed product of a dynamical system

and illustrated it with some non-degenerate examples. In this section, we shall

briefly study some representations associated with crossed products.



5.3. REPRESENTATIONS ASSOCIATED WITH CROSSED PRODUCTS 69

Notice that for any locally compact group G, the crossed product C∗(G) of

the trivial dynamical system (C, G, 1) contains a copy of C. However, we can not

convincingly affirm that it always contains a copy of G. Also, for any C∗-algebra

A, the crossed product A oα Zn of A by Zn contains a copy of Zn, whereas it

may not contain a copy of A (cf. Section 5.2). On the other hand, the degenerate

crossed product A oα {e} = A (for any C∗-algebra A) contains both a copy of A

and a copy of {e}.

Generally, the crossed product AoαG does not always contain a copy of A and

a copy of G. However, we will show below that the multiplier algebra M(AoαG)

of the crossed product Aoα G does contain a copy of A and a copy of G.

In the following, we will view Cc(G,A) as a ∗-subalgebra of M(Aoα G). Note

that if T is a bounded linear map on Cc(G,A) with respect to the universal norm,

then T can be extended to a bounded linear map on AoαG, which is also denoted

by T . In this case, T ∈ M(A oα G) if the adjoint T ∗ : A oα G → A oα G of T

exists. We will denote the unitary group of M(Aoα G) by UM(Aoα G).

Proposition 5.3.1. Let (A,G, α) be a dynamical system. Then there is an

injective non-degenerate ∗-homomorphism

iA : A→M(Aoα G)

such that

(iA(a)f)(s) = af(s) (f ∈ Cc(G,A), a ∈ A),

and there is an injective strictly continuous homomorphism

iG : G→ UM(Aoα G)

such that

(iG(r)f)(s) = αr(f(r−1s)) (r, s ∈ G, f ∈ Cc(G,A)).

Moreover, (iA, iG) is covariant in the sense that for all a ∈ A and r ∈ G,

iA(αr(a)) = iG(r)iA(a)iG(r)∗.
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Finally, for any non-degenerate covariant representation (π, U) of (A,G, α),

(π o U)−(iA(a)) = π(a) and (π o U)−(iG(s)) = Us,

where (πoU)− is the unique strictly continuous ∗-homomorphic extension of πoU

to M(Aoα G).

Proof. Let a ∈ A. Let iA(a) : Cc(G,A) → Cc(G,A) be the map f 7→ af(·).

Then for any covariant representation (π, U) of (A,G, α), we have

π o U(iA(a)f) = π(a)(π o U(f)) for all f ∈ Cc(G,A). (5.3.1)

Thus we have

‖iA(a)f‖ ≤ ‖a‖‖f‖ for all f ∈ Cc(G,A),

where ‖ ·‖ is the universal norm. So, iA(a) can be extended uniquely to a bounded

linear map

iA(a) : Aoα G→ Aoα G.

It is easy to see (from the definition of the convolution and the involution on

Cc(G,A)) that

(iA(a)f)∗ ∗ g = f ∗ ∗ (iA(a∗)g) for all f, g ∈ Cc(G,A).

This shows that iA(a) : A oα G → A oα G is adjointable with iA(a)∗ = iA(a∗).

Therefore, iA(a) ∈M(AoαG). Clearly, iA : A→M(AoαG) is a ∗-homomorphism.

To show that iA is injective, we suppose that a ∈ A and iA(a) = 0. Then for

all ϕ ∈ Cc(G), we have

0 = iA(a)(ϕ⊗ a∗) = ϕ⊗ (aa∗),

which implies that aa∗ = 0; that is, a = 0. Therefore, iA is injective.

To get that iA : A → M(A oα G) is non-degenerate, we observe that for all

ϕ ∈ Cc(G) and a, b ∈ A,

iA(a)(ϕ⊗ a) = ϕ⊗ (ab).

It follows that iA(A)(Cc(G) � A) = Cc(G) � A is dense in A oα G. Therefore,

iA : A→M(Aoα G) is an injective non-degenerate ∗-homomorphism.
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Now we turn to consider the second map iG. Let r ∈ G. Note that the map

iG(r) : Cc(G,A) → Cc(G,A), f 7→ αr(f(r−1·)) was considered in Section 5.1. For

any covariant representation (π, U) of (A,G, α), by (5.1.6), we have

π o U(iG(r)f) = ((Ur · π) o U)f for all f ∈ Cc(G,A).

Thus ‖iG(r)f‖ ≤ ‖f‖ for all f ∈ Cc(G,A), and hence iG(r) can be extended to a

contractive linear map iG(r) : AoαG→ AoαG. It is also easy to see that for all

f, g ∈ Cc(G,A), we have

(iG(r)f)∗ ∗ g = f ∗ ∗ (iG(r−1)g).

So, iG(r) : AoαG→ AoαG is adjointable with adjoint iG(r)∗ = iG(r−1) = iG(r)−1.

Therefore, iG(r) ∈ UM(A oα G). It is clear that iG : G → UM(A oα G) is a

homomorphism.

To see that iG : G → UM(A oα G) is injective, it suffices to show that if

t ∈ G \ {e}, then there exists f ∈ Cc(G,A) such that αt(f(t−1)) 6= f(e). Indeed,

this is true, since for a ∈ A \ {0} and ϕ ∈ Cc(G) with ϕ(e) = 1 and ϕ(t−1) = 0,

we have

αt((ϕ⊗ a)(t−1)) = αt(ϕ(t−1)a) = 0 6= a = (ϕ⊗ a)(e).

To prove that iG : G → UM(A oα G) is strictly continuous, which is equiv-

alent to iG being strongly continuous, we only have to show that if ri → e, then

‖iG(ri)(ϕ ⊗ a) − ϕ ⊗ a‖1 → 0 for all ϕ ∈ Cc(G) and a ∈ A. In fact, this is true,

since

‖iG(ri)(ϕ⊗ a)− ϕ⊗ a‖1 ≤ ‖ϕ(r−1·)− ϕ‖1‖a‖+ ‖ϕ‖1‖αri(a)− a‖,

Noticing that ϕ is uniformly continuous on G and αri → idA in the point-norm

topology. Consequently, iG : G→ UM(Aoα G) is an injective strictly continuous

homomorphism.

It is clear that (iA, iG) has the covariance with respect to (A,G, α).

Finally, let (π, U) be a non-degenerate covariant representation of (A,G, α).

Then π o U is a non-degenerate representation of Aoα G (cf. Proposition 5.1.3).

For a ∈ A and f ∈ Cc(G,A), by (5.3.1), we have

(π o U)−(iA(a))(π o U)(f) = (π o U)(iA(a)f) = π(a)((π o U)f).
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By the density of Cc(G,A) in Aoα G and the non-degeneracy of π o U , we have

(π o U)−(iA(a)) = π(a).

Similarly, for s ∈ G and f ∈ Cc(G,A), by (5.1.6), we have

(π o U)−(iG(s))(π o U(f)) = (π o U)(iG(s)f) = Us(π o U)(f).

For the same reason as given above, we can conclude that (πoU)−(iG(s)) = Us. �

As seen in Section 2.3, any unitary representation of G yields a representation

of L1(G) and hence a representation of C∗(G). We show below that this can be

extended to a unitary homomorphisms of G into the unitary group UM(B) of the

multiplier algebra of a C∗-algebra B.

Proposition 5.3.2. Let G be a locally compact group, let B be a C∗-algebra,

and let U : G → M(B) be a strictly continuous homomorphism. Then there is a

∗-homomorphism Ũ : C∗(G)→M(B) such that

Ũ(z) =

∫
G

z(s)Usdµ(s) for all z ∈ Cc(G).

Proof. Let z ∈ Cc(G). Then the map G → M(B), s 7→ z(s)Us is strictly

continuous with a compact support; that is, it is an element of Cc(G,Ms(B)). By

Proposition 3.2.8, Ũ(z) :=
∫
G
z(s)Usdµ(s) ∈M(B) is well defined, Ũ(z∗) = Ũ(z)∗,

and Ũ(z ∗ ω) = Ũ(z)Ũ(ω) for ω ∈ Cc(G). Also, the ∗-homomorphism Ũ on Cc(G)

is bounded with respect to the universal norm. Therefore, Ũ can be extended to

a ∗-homomorphism Ũ : C∗(G)→M(B). �

Corollary 5.3.3. Let (A,G, α) be a dynamical system. Let a ∈ A, z ∈ Cc(G),

and g, h ∈ Cc(G,A). Then

iA(a)̃iG(z) = z ⊗ a, (5.3.2)∫
G

iA(g(r))iG(r)(h)dµ(r) = g ∗ h, (5.3.3)∫
G

iA(g(r))iG(r)dµ(r) = g. (5.3.4)
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Proof. Let (π, U) be a covariant representation of (A,G, α) with π injective

and non-degenerate. Then, by Proposition 5.3.1, we have

(π o U)−
(∫

G

iA(g(r))iG(r)hdµ(r)
)

= (π o U)−
(∫

G

iA(g(r))iG(r)dµ(r)
)

(π o U)(h)

=

∫
G

(π o U)−(iA(g(r)))(π o U)−(iG(r))dµ(r) (π o U)(h)

=

∫
G

π(g(r))Urdµ(r) (π o U)(h)

= (π o U)(g)(π o U)(h)

= (π o U)(g ∗ h).

Since π o U is injective (cf. Proposition 5.1.5), so is (π o U)−. Thus (5.3.3) and

(5.3.4) hold, noticing that π o U is also non-degenerate.

Finally, taking g = z ⊗ a in (5.3.4), by Proposition 5.3.2, we have

z ⊗ a =

∫
G

z(r)iA(a)iG(r)dµ(r)

= iA(a)

∫
G

z(r)iG(r)dµ(r)

= iA(a)̃iG(z).

Therefore, we also have (5.3.4). �
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