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ABSTRACT 

Austempering was examined as a replacement for the current quench-and-

tempering process as a method of heat treating carburized low alloy steel automotive 

components. Three carburizing grade steels, SAE 8620, 4320, and 8822, were carburized 

and heat treated by both processes. Twelve austempering and three quench-and-

tempering parameters were used. The effect of heat treatment on the case and core 

microstructures was examined. Distortion was characterized using Navy C-ring samples, 

which were measured before and after the carburizing and heat treatment process. X-ray 

diffraction was used to measure residual stress and retained austenite. Charpy impact and 

Rockwell C hardness testing were performed. Austempering produced improved 

distortion and residual stress characteristics over quench-and-tempering, while 

maintaining similar or improved mechanical properties. Full data sets for distortion and 

mechanical properties were developed. Wear and fatigue testing are identified as 

necessary next steps to fully examine the viability replacing the quench-and-tempering 

process with austempering.
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I. INTRODUCTION 

Carburizing is a method of case-hardening low carbon steel to improve its wear 

and friction characteristics. In this process low carbon steel is placed in a high carbon 

atmosphere, or packed in a carbon rich material; the temperature is raised into the 

austenitic phase region; and carbon diffuses into the surface layer of the material. This 

carburized surface layer influences the microstructural transformations that occur upon 

cooling. Typically, carburized steels are quenched to room temperature, forming a hard, 

high carbon martensitic surface while maintaining a more ductile, low carbon content 

core. The steel is then commonly tempered at intermediate temperature to increase the 

toughness of the material.  

Associated with the carburization and subsequent heat treatment processes, 

dimensional changes occur in the part due to both phase transformations, as well as 

thermal expansion and contraction. This distortion can cause parts to deviate from the 

desired dimensions, which necessitates corrective measures, and hence another step in the 

manufacturing process. Distortion is closely related to residual stresses, which are also 

formed during transformation and non-uniform cooling. Typically compressive residual 

stresses are formed in the case of carburized steel, which increase the fatigue life of a 

component.  

In the present study, austempering was considered as a possible replacement for 

the quench-and-tempering of carburized steels. It has the potential to lower distortion, 

which could eliminate the costly reworking step associated with traditional quench-and-

temper processes for carburized components.  
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1.1 Driving Force for Research 

 The purpose of this research project was to examine the viability of austempering 

replacing quench-and-tempering as a method of producing carburized automotive parts. It 

examined three common carburizing-grade steels currently used for roller bearings, gears, 

and camshafts as well as the heat treatments used to produce them. 

 The effects of heat treatment on the case and core microstructures of carburized 

SAE 8620, 8822, and 4320 steels were examined. A total of 12 austempering and 3 

quench-and-tempering conditions were examined. Hardness for both case and core were 

measured. Charpy V-notch testing was used to determine the toughness of the heat 

treated steels.  

 Navy C-rings were machined and heat treated to examine distortion, residual 

stress, and retained austenite levels during heat treatment. Distortion was measured using 

a coordinate measurement machine (CMM). X-ray diffraction was used to measure the 

residual stress and retained austenite levels in the heat treated samples.  

  The ability to remove processing steps such as distortion correction and 

tempering provides an opportunity to reduce production cost for parts. For the 

austempering process to be considered, it would be necessary for the mechanical 

properties, distortion levels, and microstructural characteristics of the austempered 

conditions to be comparable to those found for the current quench-and-tempered process.  
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II. LITERATURE REVIEW 

The following literature review addresses the important aspects of this thesis 

topic. Included are discussions on microstructure, heat treatment, and mechanical 

properties of carburized heat treated steels, as well as a discussion of the austempering 

and quench-and-tempering processes. Distortion, residual stress, retained austenite, and 

the measurement of these factors, is also presented.  

2.1 Steel Microstructure 

Steel is a high strength iron-carbon alloy. It sees a wide variety of uses in the 

automotive industry, where it is used for panels, structural members and driveline parts 

[1]. The mechanical properties of steel can be affected by both its chemistry and the heat 

treatments which are applied during manufacturing. Figure 2.1 shows the iron-carbon 

phase diagram; where the weight percentage of carbon in the steel is on the horizontal 

axis, ranging from 0% to 6.67%, while temperature on the vertical axis. Steels typically 

have below 1% carbon, although steels with higher carbon contents up to 2% do see use 

[2].  

There are 4 phases which are shown on the phase diagram: α-ferrite, body-

centered-cubic structured iron which has low solubility for carbon; δ-ferrite, a high 

temperature ferrite phase which has slightly higher solubility for carbon; austenite, a 

face-centered-cubic structure that has much greater solubility carbon than ferrite; and 

cementite, an intermetallic compound which is 6.67 weight% carbon and 93.3 weight% 

iron. The eutectoid temperature, noted on the diagram at 727 °C, is the lowest 

temperature at which it is possible to maintain austenite. Heating above this temperature 
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and holding will cause the steel microstructure to begin transform to austenite. The 

eutectoid temperature is associated with the eutectoid composition, 0.77 weight% carbon. 

Steels with greater than eutectoid carbon content are referred to as hyper-eutectoid, while 

those with less than eutectoid carbon content are hypo-eutectoid.  

At equilibrium cooling rates, the austenite formed at high temperature will 

transform to α ferrite and cementite. For non-eutectoid steels, the austenite will begin to 

transform above the eutectoid temperature. A hyper-eutectoid steel will begin forming 

proeutectoid cementite during cooling, and will have a resultant structure of pearlite and 

cementite. Hypo-eutectoid steels will form pro-eutectoid ferrite, and result in a structure 

of ferrite and pearlite. As cooling rates increase the time for diffusion will decrease, 

resulting in finer pearlite, and because of this the hardness, toughness, and strength of the 

material will rise. Fine and coarse pearlite can be seen in Figure 2.2. With increased 

cooling rates there is a method to predict the resultant microstructure. Time-Temperature 

Transformation (TTT) curves and Continuous Cooling Transformation (CCT) curves 

show how holding at temperature and cooling rate can affect final microstructure. Figure 

2.3 shows the TTT curve for eutectoid steel. The lines on the graph represent 

microstructural transformation points. There are start lines for the transformation to 

pearlite, bainite, and martensite, as well as lines which show when complete 

transformation of austenite to another phase can be expected. 
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Figure 2.1: The Iron-Carbon Phase Diagram [3]. 
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Figure 2.2: (A) Coarse pearlite and (B) Fine pearlite. The darker portions of the diagram 

are cementite, the lighter portions are ferrite [4]. 

 
Figure 2.3: TTT Curve for a eutectoid steel [4]. 
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When the steel crosses a start line on the TTT graph the austenite formed at the 

high temperature will begin to transform. Depending on the cooling rate, any of the start 

lines can be crossed, and the respective microstructures will begin to form. Quenching 

quickly below the martensite start temperature will result in the transformation 

martensite, resulting in a strong and hard structure that is brittle [5]. Figure 2.4 shows a 

martensitic structure. The martensitic transformation involves the changing of the crystal 

structure to body centered tetragonal, which stretches the vertical axis of the unit cell in a 

shear process, going from a face-centered cubic structure to a body-centered tetragonal 

structure [6]. This stretching effect results in stresses formed in the material, and in 

severe cases can lead to what is known as “quench cracking” [2, 5]. Two main types of 

martensite form, based on carbon content. Lath martensite forms in steels of composition 

up to 0.6 weight% carbon, while plate martensite forms in steels over 1 weight% carbon. 

It is possible to form mixes of lath and plate martensite in steels between 0.6 wt% and 1 

wt% carbon [2]. 

 Several equations have been produced to calculate the martensite start 

temperatures based on the specific effect that each alloying element has on the start 

temperature [7, 8]. Equation 2.1 is the formula for martensite start temperature, first 

presented in 1965 by Andrews [9]. It is of particular use for steels which have low carbon 

content. Other equations have been determined for use with steels with lower carbon 

contents, or alloyed with different alloying elements [7, 8]. One such equation, for carbon 

contents up to 0.02 wt%, proposed by Liu et al, is given in Equation 2.2 [8]. 

                                             Equation 2.1 
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Equation 2.2 

 

 
Figure 2.4: Martensite formed in core of 4320 steel carburized and austempered at 500 

°F for 2 hours 

 

Bainite is a non-lamellar mix of ferrite and cementite formed at intermediate 

cooling rates. There are two types of bainite, upper and lower bainite, which form 

depending on the temperature ranges used. They can be identified by their different 

appearances, Figure 2.5. Lower bainite has a more needle like appearance, and forms 

with a shearing mechanism similar to martensite, although there are some diffusion 

effects present as well [2, 10]. Upper bainite has a more feathery appearance, and is 

produced predominantly by diffusion mechanisms. Lower bainite is formed upon cooling 

to a temperature just above the Ms temperature and holding, while upper bainite can be 

formed by cooling past the pearlite shelf of the TTT curve and holding at temperature. 
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Lower bainite tends to have a higher tensile strength and hardness than upper bainite 

[11].  

Much like martensite there have been attempts to characterize the bainite start 

temperature. Work by Zhao et al. produced Equation 2.3, a bainite start temperature 

equation for low alloy steels [12, 13].  It is assumed that the bainite start temperature 

marks the “knee” of the cooling curve that has to be passed before bainite can be formed. 

This equation does not take into effect the necessary cooling rate required to avoid 

pearlite formation. Using bainite start temperature equations as a guide it is possible to 

approximate the TTT curve for a given steel using empirical testing to find the times 

required for transformation [14]. Upon crossing the bainite start line on the TTT curve, 

bainite will begin to form. If the transformation process is interrupted by a quench it is 

possible to only partially transform the austenite to bainite. The austenite which has yet to 

transform will transform to martensite upon quenching; any untransformed austenite will 

remain trapped in the bainite matrix as retained austenite at room temperature. 

                                          
                     

Equation 2.3 
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Figure 2.5: (A) Lower bainite, with a needle like appearance. (B) Upper bainite, with a 

more feathery appearance 

 

2.2 Alloying Effect on the TTT Curve 

It is not possible with a plain carbon steel to design a heat-treatment schedule to 

form bainite and martensite from austenite. The proeutectoid and pearlite start lines on 

the TTT curve do not allow enough time to quench to an austempering temperature or the 

martensite start temperature before the proeutectoid and eutectoid reactions begin. Hence 

any microstructure would contain a finite amount of pearlite and a proeutectoid phase. 

The hardenability, or ease of forming martensite, of steel can be increased by adding 

alloying elements to the steel [15, 16]. These alloying elements shift the pearlite start line 

to longer times, allowing sufficient cooling time to allow the formation of bainite and 

martensite. Figure 2.6 shows a TTT curve for 4340 steel, an alloy steel of nickel and 

chrome. 
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 Figure 2.6: TTT curve for 4340 steel showing the bainite shelf [4]  

 

2.3 Case Hardening 

Case hardening describes a series of processes where in the outer layer of a 

component is provided increased hardness. It is desirable where components will be 

subject to friction and wear. There are several methods of case hardening steel; such as 

carburizing, carbonitriding, nitriding, laser surface hardening, and induction hardening 

[17, 18]. Carburizing is most often performed using a two stage gas carburizing process 

known as boost diffuse processing; it requires less time than the traditional single stage 

carburizing [19]. The first stage, the boost, is carried out by placing the component into a 

high temperature furnace, typically between 1550 °F and 1750 °F [2, 5, 20], with a high 

carbon potential atmosphere. The carbon potential is higher than the final desired carbon 
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content of the material, which “boosts” the carbon content in the surface layer of the 

material to close to the desired amount. In the second stage, the carbon potential of the 

atmosphere is lowered to the desired carbon potential and held at a slightly lower 

temperature [21, 22]. The higher carbon content at the surface then diffuses farther into 

the lower carbon content areas of the case [2, 20]. The carburized layer offers additional 

hardness on the surface, while maintaining for a tougher, lower-carbon, core [16].  

Of all the alloying elements in steel, carbon has the largest effect on hardenability. 

Hence it is possible to form a different microstructure at the surface of a case carburized 

component compared to the microstructure found in the core. Hardenability can also be 

affected by prior austenite grain size. Grain size can be increased by using a higher 

temperature for austenitizing, or, in case hardening, a higher carburizing temperature 

[23].  

2.4 Heat Treatment Processes 

The heat treatment process used to bring the component from the high furnace 

temperature to room temperature can affect the final properties of the material. After 

carburizing, a steel can be slow cooled, then reheated to austenitize it before performing a 

final heat treatment [24]. Quench and tempering (Q&T) is currently the most common 

method of heat treating case carburized parts [25]. In the quench and temper process the 

parts are directly oil quenched from the carburizing process to form martensite in both the 

case and core, and then reheated to temper the martensite, thereby increasing the ductility 

and toughness. Typical tempering temperatures are in the range of 300 to 400 °F (149 to 

205 °C), although these can be considerably higher depending on what type of tempering 
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is being undertaken [17, 26]. A TTT curve showing the quench and tempering process is 

shown in Figure 2.7. Upon full transformation to martensite, any subsequent tempering 

will not result in the transformation to bainite or pearlite. The tempering reaction allows 

carbon from the super saturated martensite lattice to form cementite particles at the prior 

austenite grain boundaries or between the martensite laths and plates. It is the lowering of 

the carbon content in the martensite that results in the increase in ductility and toughness. 

 

Figure 2.7: Quench-and-temper process on a TTT curve [4]. 

 

The tempering process generally allows for an increase of ductility and toughness. 

However, depending on the temperature ranges selected, it is possible to make the 

material more brittle. Tempered martensite embrittlement is a phenomenon where at 

certain ranges of temperature, generally between 500 and 700 °F. It is possible for 
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alloying elements to not only reduce the effectiveness of a temper, but make the material 

more brittle [2]. 

Austempering is a different heat treatment process. After carburizing, the part is 

quenched to an intermediate temperature and held to allow the formation of bainite 

within the carburized case of the sample [27]. Bainite is able to form in the carburized 

case because its high carbon content has lowered the    temperature to below the hold 

temperature. Typically, salt baths are employed as a quenchant for austempering, and the 

part is washed with water afterwards. Reclamation of both salt and water can allow for 

austempering to produce nearly no waste, although there are costs associated with the 

reclamation process [28]. As well, austempering can remove the need for additional 

distortion-correcting treatments, associated with quenched parts, to prepare the material 

for service; as well it reduces the chance of hydrogen embrittlement [29, 30]. Figure 2.8 

shows an austempering process on a TTT curve. Line A shows an interrupted 

transformation and would result in a mostly martensitic and retained austenite structure 

with some bainite, line B shows an interrupted transformation which would result in a 

mostly bainitic structure with some martensite and retained austenite, and line C shows a 

transformation which would yield an entirely bainitic microstructure.  
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Figure 2.8: TTT Curve showing three austempering heat treatments to produce different 

amounts of bainite [4]. 

 

2.5 Distortion Effects 

Distortion, or non uniform volume change, occurs during the quenching of parts 

as a result of both phase transformations, as well as thermal expansion and contraction. 

Distortion is divided into two main categories, size and shape distortion. Size distortion is 

most commonly associated with thermal expansion and contraction, while shape 

distortions tend to arise due to local temperature differences and differences in section 

size during cooling [31]. Although it is possible to predict with some accuracy the size 

distortion that will take place during heat treatment, it is difficult to predict the shape 

distortions which will occur, because they depend on local variations in cooling rate. 

Distortion results in a need for post-heat-treatment grinding to restore the part 
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dimensions. If distortion is severe enough, parts have to be scrapped [32]. Dimensional 

correction can cause weakening of a case carburized material, as well as increase 

production times and costs [33, 34]. As such reduction in distortion becomes an 

important aspect of part design. By changing the heat treatment method, distortion can be 

reduced. In this study, distortion is measured with a coordinate measurement machine 

(CMM) by comparing dimensions of a Navy C-ring sample both before and after case 

carburizing and heat treatment. 

2.5.1 The Navy C-Ring 

The Navy C-ring has both thick and thin sections, which allows for the shape of 

the sample to change during heat treatment. It is a standard shape used to measure the 

effects of distortion during processing; its use has been well documented to measure the 

distortion effects associated with heat treatments [31, 35, 36, 37, 38]. A modified Navy 

C-ring is shown in Figure 2.9. 

 

 
Figure 2.9: A Modified Navy C-ring [31, 35]. 
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There are seven standard measurements made on the Navy C-ring, divided into 

size and shape distortions. Size distortions relate to the changing of major dimensions. 

They include the inner and outer diameters, thickness of the sample, and are most often 

caused by volume changes associated with phase transformations. The quenching of 

austenite to form martensite results in a positive volume change of 4.63% for a 0.02 wt% 

C steel [39]. Table 2.1 shows volume change resulting from steel phase transformations 

as a function of carbon content. Shape transformations are most often associated with 

both heat treatment variables, as well as thermal expansion and contraction through parts 

of varying thickness. The result is a deviation from the desired angles and shapes of the 

part. Shape distortions are quantified on the Navy C-ring by using the flatness, roundness, 

cylindricity, and gap width measurements. 

Table 2.1 - Volume change associated with phase transformations [39]. 

Transformation Volume Change % 

Pearlite -> Austenite -4.64 + 2.21x(C%) 

Austenite -> Martensite 4.64 - 0.53x(C%) 

Austenite -> Lower Bainite 4.64 - 1.43x(C%) 

Austenite -> Upper Bainite 4.64 - 2.21x(C%) 

 

2.6 Residual Stress 

Similar to distortion, residual stress is caused by both phase transformations, as 

well as thermal expansion and contraction; it can be affected by the heat treatment 

conditions placed upon a material [35, 40]. As steel is cooled, different sections of the 

material will transform at different temperatures, most often due to variances in 

composition [41]. Residual stresses are formed as sections of the material change size at 
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different rates. Typically with carburized steels, the residual stress is compressive at the 

surface, and increases in magnitude immediately below the surface. Farther into the 

material, the stress returns to surface levels, becomes tensile, then approaches zero [39, 

42, 43]. A typical distribution of residual stress into the carburized case of a steel is 

shown in Figure 2.10 [44]. 

 
Figure 2.10: Typical residual stress depth profile found in carburized steel. Reproduced 

from [44]. 

 

 Residual stresses can be beneficial or detrimental to performance depending on 

their nature. Compressive residual stresses are preferred over tensile ones, because they 

can help improve wear and fatigue resistance [45, 46]. Should any cracks form in the 

material, the compressive stresses have the ability to relax and prevent crack growth. 

Attempts have been made to correlate the exact effect of residual stress on fatigue life; 

however, no studies have been able to do so conclusively [47]. Fatigue life is of particular 

importance in the production of gears, and austempering has been shown to increase the 

fatigue life of a material over traditional quench-and-tempering processes [48].  
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There are several methods of measuring residual stress: destructive methods such 

as inferometric strain rosettes with hole drilling; and non-destructive methods, including 

x-ray diffraction [49]. X-ray diffraction measures the stresses within a material by 

measuring the crystallographic lattice spacings and comparing them to an unstressed 

sample [50]. Typically, this unstressed sample is a powder which has been furnace 

annealed to allow the stresses present in the material to relax [40]. The strain is calculated 

using Equation 2.4, where    is the lattice spacing of the unstressed powder. 

             Equation 2.4 

The lattice planes diffract the x-ray beam when the beam hits the material, which 

causes a change in the peak intensity of the diffracted beam [40, 51]. It is through the use 

of the wavelength, angle of refraction, and a constant near unity that the lattice spacing, 

d, is calculated. This is shown in Equation 2.5, known as Bragg’s Law [51]. It is 

demonstrated visually in Figure 2.11, where the X-ray beams are the dashed lines, and 

the horizontal dotted lines are the lattice.  

           Equation 2.5 

 

Figure 2.11: Bragg’s law demonstrated visually [52]. 
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The       method involves taking a larger number of d spacing measurements 

and accounting for the angle of the hkl Miller index planes found in the lattice.  In 

Equation 2.6 the 
 

 
   and 

 

 
   terms are x-ray elastic parameters of the material,    is the 

stress in the direction of measurement, ψ is the angle subtended by the bisector of the 

incident and diffracted beam and the surface normal, and     is the strain associated with 

a particular ψ angle [53]. 

     
 

 
             

   
 

 
                      

 

 
           

Equation 2.6 

 

This equation allows for the calculation of stress within a material without having 

to use the annealed powder method to get the zero strain value [40]. Figure 2.12 shows 

the orientation of the various stress components. The       method allows for more 

accuracy in measurement with increased collection time and more ψ angles. For 

examination of residual stresses at greater depths, material must be removed, because x-

ray diffraction is not able to penetrate deeply into a material [54]. One method used to 

remove material is electro polishing; however, corrections must be made to the 

measurements to account for the material removed by the electropolishing process [55]. 
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Figure 2.12: Axes and Directions Used in X-Ray Diffraction [40, 53]. 

2.7 Retained Austenite 

Retained austenite occurs when there is an incomplete transformation to a new 

structure during the quenching of a steel. It is a common occurrence in case hardened 

steels, as the additional carbon content in the case of the part lowers the martensite finish 

temperature to such a point that complete transformation is difficult to achieve [46, 56].  

The low    temperature, combined with a rapid quench can result in even more retained 

austenite at the end of the quenching process. It is often seen that there can be between 

20% and 30% retained austenite in carburized steel at the surface [24]. Retained austenite 

levels increase with carbon content [10].  

Retained austenite levels are also commonly measured using X-ray diffraction 

techniques, although other measurement techniques exist [57]. When using X-ray 

diffraction to measure retained austenite levels the “four peak method” is most commonly 

used. This method measures the intensities of the {211} and {200} families of planes in 
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the martensite, and compares them to the {200} and {220} families of planes in the 

austenite [58].  

Retained austenite can be further transformed by the application of either strain or 

heat treatment. Strain application allows the shear process to take place, and results in a 

martensitic microstructure. Heat treatment, such as the tempering process used in the 

production of quench-and-tempered parts, will result in the retained austenite 

decomposing into bainite, either upper or lower bainite depending on the temperature. 

Retained austenite can also allow for benefits in the fatigue life of a carburized steel, as 

the retained austenite is associated with compressive residual stress, and in higher strain 

cases, the transformation of retained austenite through deformation accommodates some 

of the strain [59].  

2.8 Mechanical Properties 

2.8.1 Hardness 

Hardness is measured using a variety of scales depending on material and 

expected hardness. It can be measured on both the micro and macro level, with separate 

scales existing for each. Case hardness can be used to get a rough estimate of both 

strength and wear resistance of a case hardened material [29]. Core hardness can give an 

indication of the toughness that can be expected for a material. Hardness testing on the 

Rockwell scale is outlined in ASTM [60]. 
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2.8.2 Toughness 

Toughness is a measure of the energy absorbed by a material before fracture. 

ASTM Standard E23-12c, Standard Test Methods for Notched Bar Impact Testing of 

Metallic Materials, outlines two types of impact tests, the Charpy and Izod tests. Most 

commonly used in North America is the Charpy V-notch test [61], which uses a notched 

specimen. Other notch geometries are available, as outlined in the ASTM standard. 

Charpy testing is performed by using a weighted pendulum to break notched sample. 

When the pendulum swings and breaks the sample, the height to which it swings on the 

opposite side is recorded, and the energy absorbed by the sample is measured.   

For carburized parts, Charpy toughness is often recognized as a function of the 

core microstructure.  In steels that had not been carburized, it was demonstrated that 

austempering to form a lower bainitic structure produced better toughness than quench-

and-tempering [25].  

Impact energy can be heavily influenced by temperature as well as heat treatment. 

The ductile-to-brittle transformation temperature (DBTT) is a temperature at which a 

steel will go from having lower-energy fracture to higher-energy fracture [2, 61]. Ideally, 

a material will have a lower DBTT than the temperature at which it will be in service. 

Nickel and molybdenum have the ability to increase toughness and lower the DBTT. An 

increase in carbon content can greatly lower toughness and increase the DBTT [62]. With 

Charpy impact tests, it is possible to examine the method of failure, similar to the way a 

tensile test failure mode can be determined. Ductile fracture is associated with increased 

toughness; brittle fracture is associated with decreased toughness. 



 

24 
 

III. EXPERIMENTAL DETAILS 

Austempering and quench-and-tempering processes were compared in three 

different carburizing grades of steel by means of microstructural, mechanical properties, 

and distortion properties testing. Twelve initial austempering parameters were reduced to 

7 after microstructural examination of the case. Further micrographs were produced for 

both the case and core of the quench-and-tempered conditions, as well as the remaining 

austempering conditions. Hardness measurements were recorded for both the case and the 

core of both conditions. Charpy impact testing was used to determine the fracture energy 

of the materials. Distortion resulting from heat treatment was measured using a 

coordinate measurement machine (CMM). Residual stress and retained austenite 

measurements were made using X-ray diffraction. 

3.1 Material Selection 

 Three steels were examined in this study, SAE 8620, 8822, and 4320. Their 

chemical compositions are shown in Table 3.1. They were selected for testing based on 

their current, frequent use in the carburized state. All three steels are common carburizing 

grades, varying in hardenability, strength, and toughness, and seeing use for gears, roller 

bearings, and piston pins. 8620 steel features good hardenability, medium strength, and, 

when case hardened, good wear resistance. It is the most commonly used of the three 

steels examined. 8822 steel has good case hardenability and core hardness, as well as 

higher strength than 8620 steel due to its higher carbon content [1]. 4320 steel is a nickel-

chrome-molybdenum steel; it has a higher nickel content compared to the other two 

materials, and generally higher toughness. Martensite start temperatures were calculated 

using the formula of K.W. Andrews, Equation 3.1, and converted into Fahrenheit for both 
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the case and core.    temperatures for the carburized cases were calculated based on 0.9 

wt% carbon [9]. 

Table 3.1 - Compositions of Tested Steels 

Steel wt% C wt% Mn wt% Si wt% Cr wt% Ni wt% Mo 
   

Core 

   

Case 

8822 0.22 0.96 0.17 0.56 0.34 0.33 754 °F 236 °F 

8620 0.2 0.91 0.23 0.5 0.56 0.16 769 °F 236 °F 

4320 0.19 0.64 0.2 0.47 1.74 0.22 753 °F 213 °F 

 

  

                                             Equation 3.1  

 

3.2 Heat treatment 

 Carburization was performed using gas carburizing at a temperature of 1650 °F 

for five hours, with a carbon potential of 0.9. Salt baths were used to austemper the 

samples, at one of three temperatures: 500, 550, or 580 °F; for one of four times: 30, 60, 

120, or 240 minutes. There were twelve time-temperature combinations. Quench and 

tempered samples were oil quenched to room temperature, then reheated and tempered at 

either 650 or 750 °F for one hour. These temperatures were selected to demonstrate the 

upper range of tempering. Table 3.2 provides an overview of the heat treatment 

parameters.  
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Table 3.2 - Initial Heat Treatment Conditions 

Treatment 

Method 
Temperature (°F) Time (min) 

Austemper 

500 

30 

60 

120 

240 

550 

30 

60 

120 

240 

580 

30 

60 

120 

240 

 Quench & 

Temper 

650 60 

750 60 

 

 

3.3 Optical Microscopy 

Optical microscopy was used to examine the amount of bainite in the case of the 

austempered samples. Samples were mounted in diallyl pthalate using a Buehler 

Simplimet mounting press. Grinding was performed using a Buehler Handimet 2 with 

silicon carbide papers of 240, 320, 400, and 600 grit. After grinding, the samples were 

rough polished with a 9-micrometer diamond paste, followed by fine polishing with 1.0- 

and 0.05- micrometer aluminium suspensions. Etching was accomplished using a 2% 

nital solution. Austempered microstructures showed a mixture of bainite and martensite 

in the case and martensite in the core. Quench-and-tempered samples show martensite in 

both the case and core. A minimum limit of 50% bainite in the case was set to determine 
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the austempering conditions for further study. Figure 3.1 shows an example of sufficient 

and insufficient bainite in a microstructure. Table 3.3 identifies the final selected heat 

treatments. 

 
Figure 3.1: 4320 steel carburized then austempered at 500 °F for (A) 30 minutes and (B) 

120 minutes. The darker phase is identified as bainite. The lighter phase is martensite. 

There was less than 50% bainite in (A) so further testing was not warranted. 

 

Table 3.3 - Heat Treatment Parameters Selected for Further Study 

Treatment 

Method 
Temperature (°F) Time (min) 

Parameter 

ID 

Austemper 

500 
120 500/2 

240 500/4 

550 
120 550/2 

240 550/4 

580 

60 580/1 

120 580/2 

240 580/4 

  
 

 

Quench & 

Temper 

650 60 QT650 

750 60 QT750 

  



 

28 
 

3.4 Distortion Analysis 

Navy C-ring samples were employed to characterize distortion. Two C-rings were 

machined for each austempering condition as well as for each quench-and-temper 

condition. Identification numbers can be found in Table 3.4.  

Table 3.4 - Identification numbers of Navy C-Rings 

Material 8620 8822 4320 
 

Code A B C 

    
 

Heat Treatment 
Temperature 

(F) 
Time (h) Number 

Parameter 

ID 

Austemper 

500 2 
13 

14 
500/2 

500 4 
3 

4 
500/4 

550 2 
11 

12 
550/2 

550 4 
5 

6 
550/4 

580 1 
7 

8 
580/1 

580 2 
9 

10 
580/2 

580 4 
1 

2 
580/4 

Quench & 

Temper 

650 1 
17 

18 
QT650 

750 1 
15 

16 
QT750 

 

Distortion analysis was performed using a coordinate measurement machine 

(CMM). Measurements of the C-ring specimens were made both before the carburizing + 

heat treating process, as well as after. The equation used to calculate the distortion 

amount is shown in Equation 3.2, where    is the measured value before carburizing+ 

heat treating, and    is the measured value after carburizing + heat treatment. Averages 
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were calculated, and standard deviation was calculated using Equation 3.3 where σ is the 

standard deviation. 

               
     

  
        Equation 3.2 

 

                       
       

     
 Equation 3.3 

 Seven types of distortion were measured, four size and three shape distortions. 

Size distortions are inner diameter (ID), outer diameter (OD), thickness, and gap width. 

Shape distortions are flatness, roundness, and cylindricity. A diagram of the Navy C-ring 

showing nominal dimensioning values, as well as measurement locations for the different 

distortion types, is given in Figure 3.2.  

Size distortion measurements were taken as follows. Diameters were measured 

using diametrically opposed points on the inner and outer circumferences at both of the 

flat surfaces of the C-ring, as well as on the plane midway between the two. Thickness 

was measured at five points on the outer diameter, as the distance between the two flat 

surfaces of the C-ring. Each of the five measurements is reported. Gap width is a 

measurement of the distance between the two surfaces at the gap cut at the thinnest 

section; it was measured along both vertical edges as well as at the centre of the gap.  

Shape distortion measurements were taken as follows. Approximately 2400 

flatness measurements were performed along the edges of the surface of the C-ring which 

was marked with the specimen identification code. The difference between the highest 

and lowest points was the reported flatness value. A sample test plot from the CMM 
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machine is shown in Figure 3.3. The small circles on the test plot indicate the highest and 

lowest points on the edges of the surface  

Cylindricity measures both the inner and outer diameters for their consistency in 

the axial direction. 2800 points were used to measure the ID; 4500 points were used to 

measure the OD. ID and OD were measured at both flat surfaces as well as the sample 

mid-height. The difference between the innermost and outermost points gives the 

cylindricity measurement. Figure 3.4 shows the output plot from a CMM machine for 

inner cylindricity. The small circles on the plot indicate the innermost and outermost 

points relative to the black dot, which marks the central axis of the circle being measured.  

Roundness measurements were made on the inner and outer diameters at the flat 

surfaces and mid-height. The largest and smallest radii were recorded, and then the 

difference reported as the roundness value for that plane of measurement. As a result, 6 

measurements are reported, one for each plane measured for both the inner and outer 

diameter. A test plot from the CMM is shown in Figure 3.5. The plot for roundness 

shows the three measurements, scaled so as to not overlap. The blue circles indicate the 

actual measurement, with the red marks on them noting the innermost and outermost 

points.  
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 Figure 3.2: C-Ring Dimensioning Diagram [31, 35]. 
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Figure 3.3: Flatness Test Plot Produced by CMM – Circles indicate the highest and 

lowest points of deviation from the ideal plane. 

 

 

Figure 3.4: Inner Cylindricity Test Plot Produced by CMM – Circles indicate the 

innermost and outermost points relative to the central axis. 
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Figure 3.5: Roundness Test Plot Produced by CMM – Plot displays all three planes of 

measurement. Measurements are scaled to display all 3 measurements without 

overlapping. 
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3.5 Residual Stress 

Residual stress measurement was carried out using X-ray diffraction techniques. 

CrKα radiation of wavelength 2.291 Angstroms was used, at a power of 30.00 kV, 25.00 

mA. The 211 family of planes were measured, with the Bragg angle held at 156.4°. 

Eleven psi angles (ψ) were used, at 0, ±25.00, ±20.59, ±15.83, ±11.84, and ±3.71 

degrees. An aperture of 1 mm was used. Calibration was performed in accordance with 

ASTM E915, using iron powder for both surface and depth testing [50]. 

Figure 3.6 shows a C-ring positioned for residual stress measurement on the 

surface, and subsurface at the “R” point identified in Figure 3.2. Residual stress 

measurements were made on one C-ring from each austempered condition, and one from 

each quench-and-tempered condition for the 4320 steel. 4320 steel was selected for 

testing based on its distortion and mechanical properties performance, the results of 

which are covered in chapter 4. Additionally, residual stress depth profile testing was 

performed on two of the 4320 steel C-rings; one austempered at 500 °F for 4 hours; the 

other quench-and-tempered at 750 °F for one hour. For depth testing, electro polishing 

was used to remove surface layers to reach the desired depths. Measurements were taken 

at 10 depths, with a maximum depth of 0.1 inches. Exact measurement depths for both C-

rings are shown in Table 3.5. 
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Figure 3.6: C-Ring positioned for surface residual stress measurement (left) and after 

electropolishing (right). 

 

Table 3.5 - Residual Stress Measurement Depths for 4320 Steel 

Condition 500/4 QT750 

Measurement 

Depths (in) 

0.0000 0.0000 

0.0006 0.0060 

0.0011 0.0012 

0.0030 0.0028 

0.0052 0.0048 

0.0103 0.0107 

0.0200 0.0235 

0.0454 0.0403 

0.0666 0.0686 

0.1016 0.0997 

 

3.6 Retained Austenite 

Similar to the residual stress profile, a depth profile of retained austenite levels 

was produced for one of the two 4320 steel 500/4 samples, and one of the two QT750 

samples. Samples were chosen based on their distortion and residual stress results. X-ray 

diffraction was used to determine the amount of retained austenite to a depth of 1/16
th
 of 

an inch. Exact measurement depths are shown in Table 3.6. A beam of CrKα radiation 

was used with a wavelength of 2.291 Angstroms. Power levels were 30.00 kV, 25.00 mA. 
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The four peak method was used to measure the retained austenite. Electro polishing was 

used to remove surface material to expose the surface underneath. Retained austenite 

measurements were carried out at certain depths in conjunction with residual stress 

measurement. 

Table 3.6 - Retained Austenite Measurement Depths for 4320 Steel 

Condition 500/4 QT750 

Measurement 

Depth (in) 

0.0000 0.0000 

0.0011 0.0012 

0.0052 0.0048 

0.0103 0.0107 

0.0200 0.0235 

0.0666 0.0686 

 

3.7 Mechanical Properties 

Mechanical properties testing consisted of hardness testing and Charpy impact 

testing. 

3.7.1 Hardness 

 Case and core hardness were tested on all samples using a Wilson Rockwell 

hardness tester, verified in accordance with ASTM E18, Standard Test Methods for 

Rockwell Hardness of Metallic Materials [60]. Five measurements were taken for both 

the case and core using a diamond cone with a 150 kilogram load. For each measurement, 

the highest and lowest results were eliminated, and the average of the remaining three 

measurements was recorded. 
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3.7.2 Charpy Impact Testing 

 Charpy impact testing was performed on all samples using Type A Charpy 

(simple beam) impact test specimens, machined in accordance with the dimensions in 

ASTM E23. Specimens were machined, then carburized and heat treated. A diagram of 

the Type A Charpy test specimen is given in Figure 3.7 [61]. Three Charpy test 

specimens were produced for each austempering condition, as well as for the two quench 

and tempered conditions. Additionally two Charpy specimens were produced which were 

carburized, oil quenched, then tempered at 350 °F for one hour to simulate the currently 

used carburization with quench-and-temper process. The fracture surfaces of selected 

samples were examined using a scanning electron microscope (SEM).  

 

Figure 3.7: Dimensions of Type A Charpy Test Specimen from ASTM E23 [61]. 
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IV. RESULTS & DISCUSSION 

A comparison of the austempering process with the quench and tempering process 

was accomplished for three carburized steel compositions. Microstructural analysis of the 

effects of tempering time and temperature was undertaken to explain the effect on 

mechanical properties. Distortion is quantified by an examination of Navy C-Ring 

dimensions taken before carburizing and after the subsequent carburizing and heat 

treatment processes. X-ray diffraction was employed to quantify residual stress and 

retained austenite both at as well as beneath the surface of the Navy C-Rings. While the 

austempering process was generally found to be equivalent or better than the traditional 

quench-and-tempering process, the issues of wear performance and a more quantitative 

focus on the economics of process substitution remain. 

4.1 Microstructure 

The case microstructures found in 8620 steel after the initial carburizing and 

austempering heat treatment processes are documented in Figure 4.1. For each 

temperature-time combination, Table 3.2, bainite was noted to form.  For the 30-minute 

processes, complete transformation to bainite did not occur; the remainder of the 

microstructure was martensite.   

A level of 50% bainite was identified as being necessary to obtain the similar or 

improved mechanical properties compared to the current quench-and-temper condition.  

As such, the initial austempering trials were able to eliminate all of the 30-minute 

austempering conditions for all three steels: 8620, 4320, and 8822, as well as the 60-

minute conditions for 500 and 550 °F.  Figures 4.2 and 4.3 document the microstructures 
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for the 4320 and 8822 steels, respectively, that were noted to contain a minimum 50% 

bainite.   

For the 8620 steel, the type of bainite formed depended on the temperature.  The 

more feathery appearing upper bainite was noted at 580°F; acicular lower bainite was 

noted at 500°F.  Hence, the TTT curve for this steel would exhibit a bainite curve with its 

nose between 580 and 500°F.  Longer times at lower temperatures resulted in carbide 

precipitation at the edges of the bainite needles, Figures 4.1.G and 4.1.J. 

The microstructures of the austempered 4320 steel, Figure 4.2, exhibited upper 

bainite across the temperature range.  As such, the TTT curve for this steel would have its 

bainite nose situated below 500°F.   For the 8822 steel, the situation was similar to the 

8620 steel, with upper bainite present at 580°F and lower bainite at 500°F.  The effect of 

microstructure on mechanical properties is discussed in section 4.4.  
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Figure 4.1: Austempered 8620 steel case microstructures. 
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Figure 4.2: Austempered 4320 steel case microstructures. 
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Figure 4.3: Austempered 8822 steel case microstructures 

 

 

Both case and core microstructures are documented in Figure 4.4 for the quench-

and-temper processes in 4320 steel.  At both the 650 and 750°F tempering temperatures, 

the case and core microstructures exhibit tempered martensite.  The 0.19 weight % 

carbon core shows lath martensite, which is formed at compositions below 0.6 weight % 

carbon [2].  The transition between plate and lath martensite occurs between 0.6 and 1- 

weight % carbon.   At 0.9 weight % carbon, the case microstructure exhibits a mix of 

both lath and plate martensite.  The lower carbon content martensite at the core is 
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expected to be less brittle than the case martensite.  For toughness testing, the core 

microstructure represents the majority of the fracture surface and most affects the 

absorbed energy value. Included in Figure 4.4 are the case and core microstructures for 

4320 steel austempered at 500°F for four hours.  The case microstructure shows nearly 

100% bainite.  The core microstructure is martensite.  Lath martensite is expected due to 

the low carbon content.  The 500°F temperature is below the    temperature; therefore 

any marteniste present at 500°F would be tempered for 4 hours at 500°F.  No data was 

found on the    temperature for 8822 steel.  As such, any remaining austenite at 500°F 

could either decompose to bainite or quench to martensite at the end of the 4-hour 

process.  The resulting hardness values of the core microstructure are presented in section 

4.5.1. 

 

 
Figure 4.4: Case and core microstructures for 4320 steel. 
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4.2 Distortion 

The results of the Navy C-ring distortion testing are given in section 4.2.1 for size 

distortion, and 4.2.2 for shape distortion. For each measurement parameter the 

dimensions used to calculate the distortion are given. All distortion measurements are 

given as a percentage change regardless of whether the change was positive or negative, 

in order to highlight the magnitude of change in dimension. The small number of C-rings, 

two per heat treatment condition, limited any statistical analysis of the data. Nonetheless, 

an average of the two C-rings is provided for the distortion results; and a standard 

deviation is calculated using Equation 3.3. The small sample size is based on the 

preliminary nature of this study, which is meant to provide a proof of concept for future 

work. Multiple measurement points on each C-ring for the different distortion parameters 

helped increase the statistical significance of the results. 

4.2.1 Size Distortion 

C-ring size distortion results are given in Tables 4.1 - 4.4, and Figures 4.5 - 4.8. 

The distortion values were calculated by averaging the values of distortion measured for 

the two C-ring samples heat treated by the same condition. For the inner (ID) and outer 

(OD) diameter measurements the percentage change of the maximum values is presented, 

along with the average change of the three measured values.  Thickness distortion is 

presented as a single value for distortion, calculated by averaging the change in thickness 

at the 5 measurement locations on the C-ring. Gap width distortion is presented as an 

average of the change in gap at the three measurement locations. 
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Inner Diameter: 

Inner diameter results for the 4320 show that the austempering heat treatments 

resulted in lower values that the quench-and-temper heat treatment.  The same is true of 

the 8822 results; indeed the 8822 steel exhibited the lowest inner diameter distortion 

among the steels tested. For the 8620 steel, the inner diameter distortion values varied 

within the austempering conditions. 

The most consistent results for inner diameter distortion occurred for the 580°F 

heat treatments.  At this temperature, the distortion decreases monotonically with time for 

all three steels.  For all three steels, the microstructure exhibited was upper bainite.  This 

consistency is not noted for the other temperatures.  In relation to the metallurgy of steels, 

upper bainite is formed more by a diffusion process than a shear transformation. As such, 

the greater amount of diffusional transformation product with increasing time would 

correlate to lower distortion. For all materials, the middle-location measurement for inner 

diameter exhibited less distortion than the top and bottom surface measurements.  This 

lower measurement may demonstrate a possible lack of freedom for expansion and 

contraction compared to the free surfaces.  
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Table 4.1a - Inner Diameter Distortion for 8620 Steel 

Condition Sample # 
Inner Diameter Distortion % Condition 

Distortion Top Middle Bottom Average 

500/2 
A13 0.2898 0.2119 0.2927 0.2648 

0.2855 
A14 0.3342 0.2575 0.3270 0.3063 

500/4 
A3 0.3127 0.2309 0.3026 0.2821 

0.2727 
A4 0.2792 0.2237 0.2869 0.2633 

550/2 
A11 0.1809 0.1048 0.1623 0.1493 

0.1591 
A12 0.1861 0.1243 0.1962 0.1689 

550/4 
A5 0.2529 0.1948 0.2696 0.2391 

0.2443 
A6 0.2609 0.2084 0.2791 0.2495 

580/1 
A7 0.3251 0.2614 0.3301 0.3055 

0.2861 
A8 0.2953 0.2221 0.2827 0.2667 

580/2 
A9 0.1823 0.1431 0.1895 0.1716 

0.2040 
A10 0.2645 0.1938 0.2510 0.2364 

580/4 
A1 0.2240 0.1575 0.2294 0.2036 

0.1863 
A2 0.1940 0.1318 0.1810 0.1689 

QT650 
A17 0.1401 0.0356 0.1568 0.1108 

0.1362 
A18 0.2362 0.1022 0.1464 0.1616 

QT750 
A15 0.2321 0.1234 0.2358 0.1971 

0.2741 
A16 0.3473 0.2889 0.4173 0.3512 
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Table 4.1b - Inner Distortion for 8822 Steel 

Condition Sample # 
Inner Diameter Distortion % Condition 

Distortion Top Middle Bottom Average 

500/2 
B13 0.1927 0.1552 0.1971 0.1817 

0.1970 
B14 0.2213 0.1816 0.2339 0.2123 

500/4 
B3 0.1807 0.1508 0.1822 0.1712 

0.1603 
B4 0.1543 0.1303 0.1634 0.1493 

550/2 
B11 0.2405 0.1873 0.2289 0.2189 

0.2087 
B12 0.2148 0.1710 0.2094 0.1984 

550/4 
B5 0.1942 0.1587 0.2084 0.1871 

0.1921 
B6 0.1952 0.1719 0.2239 0.1970 

580/1 
B7 0.2317 0.1898 0.2294 0.2170 

0.2570 
B8 0.2062 0.1854 0.4992 0.2970 

580/2 
B9 0.2059 0.1659 0.1930 0.1883 

0.1849 
B10 0.1898 0.1587 0.1961 0.1816 

580/4 
B1 0.1376 0.1020 0.1615 0.1337 

0.1350 
B2 0.1558 0.1092 0.1438 0.1363 

QT650 
B17 0.4530 0.2464 0.3959 0.3651 

0.3377 
B18 0.3967 0.2371 0.2969 0.3102 

QT750 
B15 0.2889 0.1904 0.3169 0.2654 

0.3078 
B16 0.3772 0.2673 0.4058 0.3501 

 

Table 4.1c - Inner Distortion for 4320 Steel 

Condition Sample # 
Inner Diameter Distortion % Condition 

Distortion Top Middle Bottom Average 

500/2 
C13 0.0545 0.0009 0.0648 0.0401 

0.0951 
C14 0.1746 0.1145 0.1611 0.1501 

500/4 
C3 0.1130 0.0690 0.1153 0.0991 

0.0867 
C4 0.0986 0.0384 0.0860 0.0744 

550/2 
C11 0.0867 0.0589 0.0889 0.0782 

0.0881 
C12 0.1170 0.0668 0.1103 0.0980 

550/4 
C5 0.1100 0.0920 0.1333 0.1118 

0.0916 
C6 0.0929 0.0400 0.0813 0.0714 

580/1 
C7 0.1383 0.1012 0.1404 0.1266 

0.0846 
C8 0.0674 0.0148 0.0457 0.0426 

580/2 
C9 0.0812 0.0415 0.0941 0.0723 

0.0727 
C10 0.0949 0.0343 0.0902 0.0731 

580/4 
C1 0.0833 0.0139 0.0731 0.0568 

0.0464 
C2 0.0434 0.0003 0.0642 0.0360 

QT650 
C17 0.2835 0.1355 0.1900 0.2030 

0.1589 
C18 0.1587 0.0236 0.1622 0.1149 

QT750 
C15 0.2328 0.0762 0.2558 0.1882 

0.2106 
C16 0.3290 0.1267 0.2435 0.2330 
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Figure 4.5: Inner diameter distortion. 

Outer Diameter: 

Outer diameter distortion measurements for both 4320 and 8822 steel showed 

austempering resulted in less distortion than quench-and-tempering. At 550 °F, 8620 steel 

had austempered distortion values which were similar to those found in quench and 

tempering. For other temperatures, the 8620 distortion values for austempering were 

lower than those of the quench-and-tempering processes. For all temperatures, 8620 steel 

exhibited less distortion with increased time. This trend was not seen with the other two 

materials. As such, the argument for diffusional versus shear transformation would 

appear incomplete. The change from a 650 °F to 750 °F temper decreased the outer 

diameter distortion in the 4320 and 8822 steels; it increased the distortion in the 8620 

steel. 
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Table 4.2a - Outer Distortion for 8620 Steel 

Condition Sample # 
Outer Diameter Distortion % Condition 

Distortion Top Middle Bottom Average 

500/2 
A13 0.1813 0.1909 0.1835 0.1852 

0.1909 
A14 0.1991 0.1940 0.1963 0.1965 

500/4 
A3 0.1848 0.1747 0.1810 0.1802 

0.1746 
A4 0.1689 0.1676 0.1707 0.1690 

550/2 
A11 0.1890 0.1793 0.1743 0.1809 

0.2420 
A12 0.2051 0.3414 0.3631 0.3032 

550/4 
A5 0.2076 0.4133 0.2330 0.2847 

0.2332 
A6 0.1860 0.1794 0.1799 0.1818 

580/1 
A7 0.1927 0.1925 0.2030 0.1961 

0.2048 
A8 0.2092 0.2171 0.2143 0.2135 

580/2 
A9 0.1550 0.1556 0.1853 0.1653 

0.1829 
A10 0.1994 0.1925 0.2096 0.2005 

580/4 
A1 0.1531 0.1521 0.1670 0.1574 

0.1551 
A2 0.1524 0.1524 0.1536 0.1528 

QT650 
A17 0.1831 0.2031 0.2123 0.1995 

0.2073 
A18 0.2111 0.2126 0.2215 0.2150 

QT750 
A15 0.2341 0.2390 0.2394 0.2375 

0.2563 
A16 0.2516 0.2718 0.3018 0.2751 

 

Table 4.2b - Outer Distortion for 8822 Steel 

Condition Sample # 
Outer Diameter Distortion % Condition 

Distortion Top Middle Bottom Average 

500/2 
B13 0.1626 0.1669 0.1445 0.1580 

0.1627 
B14 0.1600 0.1781 0.1643 0.1675 

500/4 
B3 0.1401 0.1464 0.1425 0.1430 

0.1435 
B4 0.1340 0.1502 0.1476 0.1439 

550/2 
B11 0.1678 0.1755 0.1556 0.1663 

0.1652 
B12 0.1566 0.1767 0.1588 0.1641 

550/4 
B5 0.1474 0.1570 0.1476 0.1507 

0.1658 
B6 0.1810 0.1773 0.1846 0.1810 

580/1 
B7 0.2188 0.2161 0.2098 0.2149 

0.1868 
B8 0.1641 0.1650 0.1471 0.1587 

580/2 
B9 0.1423 0.1419 0.1287 0.1376 

0.1343 
B10 0.1289 0.1360 0.1279 0.1309 

580/4 
B1 0.1242 0.1442 0.1269 0.1318 

0.1350 
B2 0.1381 0.1511 0.1259 0.1383 

QT650 
B17 0.2471 0.2348 0.2682 0.2500 

0.2301 
B18 0.2104 0.2068 0.2135 0.2102 

QT750 
B15 0.1701 0.1797 0.1622 0.1707 

0.2026 
B16 0.2367 0.2194 0.2476 0.2346 
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Table 4.2c - Outer Distortion for 4320 Steel 

Condition Sample # 
Outer Diameter Distortion % Condition 

Distortion Top Middle Bottom Average 

500/2 
C13 0.0811 0.0849 0.0880 0.0847 

0.1085 
C14 0.1303 0.1391 0.1277 0.1324 

500/4 
C3 0.1161 0.1151 0.1165 0.1159 

0.1096 
C4 0.0792 0.0882 0.1423 0.1032 

550/2 
C11 0.1257 0.1475 0.1275 0.1336 

0.1267 
C12 0.1156 0.1272 0.1168 0.1199 

550/4 
C5 0.1682 0.1736 0.1829 0.1749 

0.1810 
C6 0.1959 0.1787 0.1869 0.1872 

580/1 
C7 0.1365 0.1403 0.1311 0.1360 

0.1093 
C8 0.0865 0.0860 0.0754 0.0826 

580/2 
C9 0.1087 0.1138 0.1058 0.1094 

0.1003 
C10 0.0885 0.0945 0.0905 0.0912 

580/4 
C1 0.1097 0.1125 0.1133 0.1118 

0.1078 
C2 0.0949 0.1046 0.1121 0.1039 

QT650 
C17 0.1884 0.2005 0.1744 0.1878 

0.2037 
C18 0.2172 0.2366 0.2052 0.2197 

QT750 
C15 0.1574 0.1944 0.2154 0.1891 

0.1921 
C16 0.1975 0.2024 0.1853 0.1951 

 

 
Figure 4.6: Outer diameter distortion. 
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Thickness: 

Thickness results for all three materials revealed that austempering produced less 

distortion than quench-and-tempering. For all three steels the 500 °F and 550 °F 

austempering temperatures exhibited decreased the distortion levels with increasing time. 

The opposite was true with the 580 °F temperature, where distortion increased with 

increased austempering time regardless of material.  

Table 4.3a - Thickness Distortion for 8620 Steel 

Sample # 
Distortion 

Average σ/2 
% 

500/2 
A13 0.0471 

0.0721 0.0177 
A14 0.097 

500/4 
A3 0.0203 

0.0314 0.0078 
A4 0.0425 

550/2 
A11 0.1295 

0.1220 0.0053 
A12 0.1144 

550/4 
A5 0.073 

0.0560 0.0120 
A6 0.039 

580/1 
A7 0.0712 

0.0395 0.0224 
A8 0.0079 

580/2 
A9 0.099 

0.0732 0.0182 
A10 0.0474 

580/4 
A1 0.1102 

0.0803 0.0212 
A2 0.0503 

QT650 
A17 0.1099 

0.1557 0.0324 
A18 0.2015 

QT750 
A15 0.094 

0.1841 0.0637 
A16 0.2742 
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Table 4.3b - Thickness Distortion for 8822 Steel 

Sample # 
Distortion 

% 
Average σ/2 

500/2 
B13 0.0499 

0.0480 0.0171 
B14 0.0462 

500/4 
B3 0.0098 

0.0326 0.0160 
B4 0.0554 

550/2 
B11 0.0663 

0.0701 0.0272 
B12 0.0740 

550/4 
B5 0.0461 

0.0534 0.0188 
B6 0.0607 

580/1 
B7 0.0331 

0.0372 0.0431 
B8 0.0413 

580/2 
B9 0.0504 

0.0431 0.0233 
B10 0.0358 

580/4 
B1 0.0882 

0.0576 0.0089 
B2 0.0271 

QT650 
B17 0.1267 

0.1727 0.0246 
B18 0.2188 

QT750 
B15 0.1195 

0.1712 0.0261 
B16 0.2229 

 

Table 4.3c - Thickness Distortion for 4320 Steel 

Sample # 
Distortion 

Average σ/2 
% 

500/2 
A13 0.0964 

0.0922 0.0030 
A14 0.0879 

500/4 
A3 0.0793 

0.0641 0.0107 
A4 0.0490 

550/2 
A11 0.1015 

0.1022 0.0005 
A12 0.1028 

550/4 
A5 0.0685 

0.0717 0.0023 
A6 0.0750 

580/1 
A7 0.0078 

0.0267 0.0133 
A8 0.0455 

580/2 
A9 0.0693 

0.0828 0.0096 
A10 0.0963 

580/4 
A1 0.0863 

0.0959 0.0068 
A2 0.1056 

QT650 
A17 0.1952 

0.1909 0.0031 
A18 0.1865 

QT750 
A15 0.2443 

0.2100 0.0243 
A16 0.1757 
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Figure 4.7: Thickness distortion. 

Gap Width: 

Gap width measurements for all three materials showed that the quench-and-

tempered samples produced larger distortion than the austempered conditions. The 8620 

had the largest gap width distortion and 4320 the least for all austempering conditions 

except for 500/4, where 8822 steel had the least distortion. The 500/4 condition for 8822, 

however, exhibited the largest variation about the mean within the austempered 

conditions. All materials exhibited lower distortion with increased austempering time at 

500 °F and 580 °F. This trend was not noted at 500 °F. 
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Table 4.4a - Gap Width Distortion for 8620 Steel 

Sample # 
Top  

Distortion 

Middle  

Distortion 

Bottom 

Distortion 

Specimen  

%Change 

Parameter 

%Change 
σ/2 

500/2 
A13 5.2783 5.4663 5.3809 5.3752 

5.4663 0.0617 
A14 5.5990 5.5909 5.4825 5.5575 

500/4 
A3 4.9797 4.9888 4.9868 4.9851 

5.0160 0.0855 
A4 5.3518 4.8713 4.9176 5.0469 

550/2 
A11 4.1155 4.0753 3.9605 4.0504 

4.0731 0.0318 
A12 4.1178 4.0427 4.1267 4.0957 

550/4 
A5 4.7492 4.7920 4.9908 4.8440 

4.7122 0.0883 
A6 4.5184 4.5316 4.6913 4.5804 

580/1 
A7 5.8248 5.7672 5.7362 5.7761 

5.6184 0.0880 
A8 5.4494 5.4376 5.4953 5.4608 

580/2 
A9 3.4316 3.4220 3.5096 3.4544 

4.0194 0.3099 
A10 4.5563 4.5915 4.6054 4.5844 

580/4 
A1 4.2255 4.1898 4.2416 4.2189 

4.0238 0.1114 
A2 3.8106 3.7431 3.9321 3.8286 

QT650 
A17 5.1698 5.3723 5.3305 5.2909 

5.8267 0.3137 
A18 6.6248 6.4756 5.9873 6.3626 

QT750 
A15 6.4891 6.6753 6.4525 6.5390 

7.1803 0.3675 
A16 7.4820 7.8652 8.1178 7.8217 
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Table 4.4b - Gap Width Distortion for 8822 Steel 

 

Table 4.4c - Gap Width Distortion for 4320 Steel 

Sample # 
Top  

Distortion 

Middle  

Distortion 

Bottom 

Distortion 

Specimen 

%Change 

Parameter 

%Change 
σ/2 

500/2 
A13 2.3964 2.5279 2.4518 2.4587 

3.0825 0.3433 
A14 3.7439 3.7635 3.6115 3.7063 

500/4 
A3 3.0861 3.2283 3.0530 3.1224 

2.7320 0.2219 
A4 2.1985 2.3071 2.5190 2.3415 

550/2 
A11 3.2849 3.5859 3.3159 3.3956 

3.3185 0.0701 
A12 3.2581 3.2940 3.1722 3.2415 

550/4 
A5 3.3717 3.5120 3.4298 3.4379 

3.3149 0.0731 
A6 3.1288 3.2318 3.2153 3.1920 

580/1 
A7 3.5101 3.6569 3.5254 3.5641 

3.0353 0.2930 
A8 2.4928 2.6270 2.3997 2.5065 

580/2 
A9 2.5551 2.7220 2.5890 2.6220 

2.7245 0.0666 
A10 2.8371 2.8926 2.7509 2.8269 

580/4 
A1 2.5976 2.6812 2.5304 2.6031 

2.4926 0.0699 
A2 2.2922 2.4491 2.4051 2.3821 

QT650 
A17 7.4044 7.2238 6.6471 7.0918 

7.0565 0.1292 
A18 6.9716 7.1166 6.9758 7.0213 

QT750 
A15 7.4744 7.4564 7.5246 7.4851 

7.5319 0.0974 
A16 7.8119 7.6772 7.2467 7.5786 

Sample # 
Top  

Distortion 

Middle  

Distortion 

Bottom 

Distortion 

Specimen 

%Change 

Parameter 

%Change 
σ/2 

500/2 
A13 3.3740 3.3824 3.2721 3.3428 

3.4669 0.0815 
A14 3.5088 3.7393 3.5245 3.5909 

500/4 
A3 3.4656 3.0444 3.4249 3.3117 

2.8763 0.6616 
A4 1.6535 2.9167 2.7525 2.4409 

550/2 
A11 4.0776 4.0211 3.7667 3.9551 

3.7818 0.1110 
A12 3.6207 3.6766 3.5280 3.6084 

550/4 
A5 3.5841 3.6916 3.5783 3.6180 

3.8730 0.1423 
A6 4.0896 4.1941 4.1001 4.1279 

580/1 
A7 3.9677 3.9850 3.9196 3.9574 

3.8773 0.0610 
A8 3.7772 3.9358 3.6785 3.7971 

580/2 
A9 3.4698 3.5327 3.4199 3.4741 

3.3562 0.0700 
A10 3.1895 3.3111 3.2143 3.2383 

580/4 
A1 3.1468 3.0865 2.9720 3.0684 

3.1796 0.0694 
A2 3.2485 3.3553 3.2685 3.2908 

QT650 
A17 7.3694 7.4491 7.2680 7.3622 

6.9373 0.2583 
A18 6.7679 6.6465 6.1227 6.5124 

QT750 
A15 6.6669 6.8680 6.7232 6.7527 

6.9621 0.1259 
A16 7.1716 7.2984 7.0448 7.1716 
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Figure 4.8: Gap width distortion. 

Summary of Size Distortion: 

Size distortions results can be summarized as follows. 1) For ID, OD, and gap 

width size distortions, 4320 steel had the least distortion for nearly all austempering 

conditions. For thickness distortion, it was often associated with the highest distortion 

among the three steels. 8822 consistently had less distortion that 8620 when austempered. 

2) The austempering heat treatments consistently produced less distortion than the 

quench-and-tempering heat treatments. This decreased distortion was attributed to the 

phase change to bainite being a smaller volume change than the transformation to 

martensite.  
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4.2.2 Shape Distortion 

Shape distortion results, flatness, cylindricity, and roundness, are given as a 

percentage in Tables 4.5 - 4.7a and Figures 4.9 -4.11, while measurement values are 

given in Tables 4.5 – 4.7b. Shape distortions showed a larger percentage change 

compared to the size distortion measurements. This increased change occurs because the 

initial measurement for shape distortions are small compared to the initial measurements 

found in the size distortions. Therefore, any change in shape will be reflected as a larger 

percentage change. 

Flatness: 

The 8822 steel results had flatness values several times lower than the values for 

8620 and 4320 steel. These results were consistent for both austemper and quench-and-

temper processes. 8822 steel also had little error distribution relative to the other two 

materials. The 8620 and 4320 yielded similar flatness results. The quench-and-tempering 

processes produced considerably more than two times the flatness distortion of the 

austempering conditions. There was no pattern observed in terms of the effects of time 

and temperature on distortion.  
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Table 4.5a - Flatness Distortion 

Flatness % Change 

Condition 8620 4320 8822 

500/2 75.6  ±  15 101.7 ± 45 28.2 ± 2 

500/4 52.4  ± 25 83.7 ± 28 26.2 ± 3 

550/2 87.2 ± 33 88.0 ± 2 24.7 ± 7 

550/4 34.6 ± 18 84.3 ± 8 25.3 ± 8 

580/1 82.9 ± 1 72.9 ± 6 13.0 ± 0 

580/2 77.6 ± 17 32.0 ± 0 14.7 ± 2 

580/4 59.1 ± 4 57.3 ± 7 4.3 ± 1 

QT650/1 223.2 ± 69 233.6 ± 12 84.7 ± 12 

QT750/1 184.7 ± 17 251.8 ± 46 81.9 ± 34 

 

Table 4.5b - Flatness Distortion 

Flatness Change (mm) 

Condition 8620 4320 8822 

500/2 0.0076 0.0065 0.0064 

500/4 0.0053 0.0088 0.0069 

550/2 0.0069 0.0061 0.0051 

550/4 0.0034 0.0060 0.0047 

580/1 0.0080 0.0062 0.0042 

580/2 0.0063 0.0040 0.0037 

580/4 0.0057 0.0041 0.0015 

QT650 0.0207 0.0196 0.0148 

QT750 0.0189 0.0214 0.0147 

 



 

59 
 

 
Figure 4.9: Flatness distortion. 

Roundness: 

Roundness data exhibits the opposite behaviour of flatness. For each heat 

treatment parameter, the 8822 steel had the largest distortion. The quenched and 

tempered samples had, interestingly, distortions that fell in the middle range when 

compared to the austempered conditions. The 8822 results showed that with increased 

time at a given temperature the roundness distortion is reduced. The reported error for 

roundness was relatively small compared to the magnitudes of change found.  
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Table 4.6a - Roundness Distortion 

Roundness % Change 

 
8620 4320 8822 

500/2 4.74 ± 2.0 11.64 ± 1.7 229.89 ± 9.7 

500/4 11.44 ± 7.2 26.38 ± 3.0 128.65 ± 13.7 

550/2 7.76 ± 0.9 19.74 ± 2.2 212.62 ± 8.5 

550/4 1.43 ± 1.8 20.86 ± 5.2 63.53 ± 6.2 

580/1 7.86 ± 3.7 7.70 ± 3.0 248.56 ± 7.2 

580/2 1.59 ± 2.7 1.72 ± 4.2 144.75 ± 13.1 

580/4 12.21 ± 3.0 5.46 ± 7.1 81.58 ± 5.0 

QT650 13.59 ± 2.8 19.81 ± 3.6 150.77 ± 10.4 

QT750 10.57 ± 3.0 3.35 ± 4.7 200.25 ± 6.8 

 

Table 4.6b - Roundness Distortion 

Roundness Change (mm) 

Condition 8620 4320 8822 

500/2 0.0050 0.0098 0.0284 

500/4 0.0113 0.0166 0.0188 

550/2 0.0075 0.0105 0.0267 

550/4 0.0015 0.0115 0.0070 

580/1 0.0081 0.0060 0.0327 

580/2 0.0014 0.0014 0.0143 

580/4 0.0084 0.0043 0.0132 

QT650 0.0125 0.0146 0.0225 

QT750 0.0097 0.0028 0.0210 
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Figure 4.10: Roundness distortion. 

Cylindricity: 

As with roundness, the cylindricity results showed that the 8822 again had the 

largest distortions. However, the 580/2 and 580/4 conditions for the 8822 steel are in line 

with the other two steels. Unlike the roundness measurements, the error associated with 

cylindricity could be relatively large. With the exception of the 550/4 condition for 4320 

and the 580/2 condition for 8620, the distortion values for austempered conditions were 

lower than those found for the quenched-and-tempered conditions.  

Table 4.7a - Cylindricity Distortion 

Cylindricity % Change 

 
8620 4320 8822 

500/2 4.85 8.66 181.66 

500/4 0.82 6.96 123.94 

550/2 6.09 7.22 145.45 

550/4 10.59 48.90 77.45 

580/1 5.62 13.98 229.52 

580/2 38.67 2.39 17.51 

580/4 6.75 3.82 27.23 

QT650 27.98 22.05 216.88 

QT750 44.42 11.85 141.01 
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Table 4.7b - Cylindricity Distortion 

Cylindricity Change (mm) 

Condition 8620 4320 8822 

500/2 0.0019 0.0005 0.0277 

500/4 0.0014 0.0049 0.0201 

550/2 0.0014 0.0019 0.0254 

550/4 0.0017 0.0057 0.0123 

580/1 0.0015 0.0060 0.0341 

580/2 0.0086 0.0036 0.0115 

580/4 0.0041 0.0024 0.0131 

QT650 0.0148 0.0117 0.0281 

QT750 0.0171 0.0067 0.0277 

 

 
Figure 4.11: Cylindricity distortion. 

 

Summary of Shape Distortion: 

The primary shape distortion results can be summarized as follows. 1) For both 

the cylindricity and roundness measurements, the 8822 steel distortion values were 

considerably larger than the other materials for nearly all parameters. 8822 steel exhibits 

comparable or superior distortion characteristics for the flatness. Of note is that both 

cylindricity and roundness pertain to deviations on the inner and outer curved surfaces, in 
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essence a hoop direction. The flatness measurements, where 8822 steel produced much 

less distortion, relates to an axial direction. 2) The quench-and-temper results exhibited 

significantly higher distortion values for flatness. The cylindricity and roundness values 

were in the mid-range of the austempered conditions. 

4.3 Residual Stress 

Surface residual stress measurement values are provided in Table 4.8; those 

values are presented in graphical form in Figure 4.12. Calibration results, as detailed in 

chapter 3, were in accordance with the acceptable limits put forth by ASTM Standard 

E915. 

The direction of measurement (hoop or axial) did not significantly affect the 

magnitude of exhibited surface residual stress. The greatest magnitude change was 4 MPa 

for the 580/1 austempered candidate. The austempered samples exhibited higher 

compressive residual stress than the quench and tempered samples. This is the expected 

result because the tempering process is designed to relax the residual stresses, which 

forum due to the transformation associated with the quenching process. 
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Table 4.8 - Surface Residual Stress Results for 4320 Steel 

 

Surface Residual Stress (ksi) 

Hoop Axial 

500/2 -73 ± 0.9 -75 ± 0.4 

500/4 -86 ± 0.9 -86 ± 0.4 

550/2 -64 ± 0.7 -67 ± 0.6 

550/4 -81 ± 0.6 -83 ± 0.5 

580/1 -84 ± 0.9 -80 ± 0.3 

580/2 -85 ± 0.9 -85 ± 0.5 

580/4 -72 ± 0.9 -71 ± 0.3 

QT650/1 -44 ± 0.9 -47 ± 0.5 

QT750/1 -59 ± 0.6 -60 ± 0.4 

 
 

Figure 4.12: Surface residual stress for 4320 steel. 

 

Figure 4.13 plots residual stress versus the outer diameter change. No significant 

trend is noted for the austempered samples, only that a higher surface compressive 

residual stress appears to be associated with smaller OD changes. This association would 

hold for most of the size distortion, and with flatness, where the austempered samples 

exhibited lower distortion. 
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Figure 4.13: Surface residual stress and outer diameter distortion. 

The data from residual stress depth profile measurements in one 4320 

austempered sample, 500/4 and one QT750 4320 sample are provided in Table 4.9; and 

plots of residual stress vs depth can be seen in Figure 4.14a. The initial region is provided 

in greater detail in Figure 4.15b. 

Table 4.9 - Residual Stress Depth Measurements for 4320 Steel 

500/4 QT750 

Depth 

(inches) 
Axial Hoop 

Depth 

(inches) 
Axial Hoop 

0.0000 -74 ± 0.7 -76 ± 0.8 0.0000 -59 ± 0.8 -58 ± 0.9 

0.0006 -102 ± 1.3 -100 ± 1.0 0.0006 -53 ± 1.2 -52 ± 0.9 

0.0011 -116 ± 1.4 -118 ± 1.3 0.0012 -53 ± 1.0 -54 ± 1.0 

0.0030 -71 ± 2.0 -69 ± 1.8 0.0028 -30 ± 1.0 -29 ± 0.8 

0.0052 -50 ± 1.9 -49 ± 1.5 0.0048 -9 ± 1.0 -5 ± 1.3 

0.0103 -59 ± 1.5 -55 ± 2.2 0.0107 -2 ± 1.2 -3 ± 0.9 

0.0200 -52 ± 1.4 -51 ± 2.2 0.0235 -8 ± 0.6 -6 ± 0.8 

0.0454 +4 ± 1.2 -1 ± 1.0 0.0403 +4 ± 1.2 +3 ± 1.0 

0.0666 +22 ± 1.1 +24 ± 0.8 0.0686 +13 ± 0.8 +12 ± 1.1 

0.1016 +12 ± 1.1 +12 ± 1.4 0.0997 +6 ± 0.9 +4 ± 1.5 
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Figure 4.14a: Residual stress and depth for austempered and quench-and-tempered 4320 

steel. 

 

 
Figure 4.14b: Residual stress and depth for austempered and quench-and-tempered 4320 

steel. 
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Consistent with the work of other investigators [29, 39, 42], it was noted that both 

the austempered and quench-and-tempered conditions had compressive residual stress at 

the surface. However, differences were noted in the subsurface residual stress pattern.  As 

noted in Figure 4.14a, quench-and-tempered sample decreased in its magnitude of 

compressive stress to nearly a non-stressed state at 0.012 inches. A small compressive 

region continued to about 0.3 inches, after which, it maintained a low tensile residual 

stress deeper into the material. The austempered sample increased its magnitude of 

compressive stress below the surface, reaching a peak of 116 ksi of compressive stress, 

before stress levels dropped off to a magnitude of 50 ksi. Compressive residual stresses 

extended to 0.045 inches into the material, before becoming tensile.  

Residual stress depth testing showed that the compressive region for the 

austempered condition extended deeper into the material than that of the quenched-and-

tempered condition. As well, the largest magnitude of compressive residual stress was 

larger for the austempered condition. Although the benefits of these characteristics have 

been laid out in the literature [29, 39, 42], wear and fatigue testing should be carried out 

to correlate higher levels and deeper penetration of compressive residual stress to wear 

and fatigue life. 

4.4 Retained Austenite 

Retained austenite values are shown in Table 4.10, and are plotted on Figure 4.15. 

Retained austenite measurements showed that, for the quench and tempered sample, the 

retained austenite amounts were all below 1.5%; the austempered sample peaked at 8%. 

The retained austenite levels found in the quench-and-tempered condition can be 
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explained by the high temperature tempering process, which allows for the 

decomposition of the retained austenite into bainite. The retained austenite peak found in 

the austempered sample is worth noting, primarily, any further decomposition of the 

retained austenite during service, could result in additional distortion. While additional 

testing would provide a more complete retained austenite profile, the general shape is 

identified. There was no correlation between the level of retained austenite found at a 

certain depth and the associated residual stress at that depth.  

Table 4.10 - Retained Austenite Measurement 

500/4 QT750 

Depth 

(inches) 

% 

Retained 

Austenite 

Depth 

(inches) 

% 

Retained 

Austenite 

0.0000 1.6 ± 0.9 0.0000 1.1 ± 0.3 

0.0011 1.9 ± 0.3 0.0012 1.4 ± 0.9 

0.0052 8.0 ± 1.4 0.0048 1.2 ± 0.6 

0.0103 2.0 ± 0.4 0.0107 0.8 ± 0.5 

0.0200 0.9 ± 0.5 0.0235 1.0 ± 0.4 

0.0666 1.0 ± 0.2 0.0686 1.0 ± 0.4 
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Figure 4.15: Retained austenite with depth. 

 

4.5 Mechanical Properties 

4.5.1 Hardness 

Hardness measurements for core and case are shown in Tables 4.11 and 4.12, and 

Figures 4.16 and 4.17. Core hardness values were found to be fairly similar between the 

austempering process and the quench-and-tempering process. Across materials, the 8822 

samples had higher hardness compared to the other materials. This is attributed to the 

higher carbon content of 8822 steel. 4320 steel tended to be harder than 8620 for the 

same condition. It was noted that with additional time and temperature there was a trend 

towards softer cores. This is explained in the austempered samples by the fact that with 

higher temperatures there is more energy available for diffusion and softening, while 

higher temperature allows for tempering of the martensite formed in the core crossing the 
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tempered samples and the higher core hardness it is assumed that the elevated 

temperature is offset by the short amount of tempering time.  

Table 4.11 - Core Hardness 

Parameter 

Material 

8620 4320 8822 

500/2 31.2 ± 0.4 38.2 ± 0.4 43.2 ± 0.6 

500/4 31.5 ± 0.3 38.4 ± 0.1 42.1 ± 0.2 

550/2 33.9 ± 0.5 34.5 ± 0.2 42.9 ± 0.3 

550/4 26.3 ± 1.7 34.8 ± 0.2 41.6 ± 0.1 

580/1 29.7 ± 0.3 34.8 ± 0.2 36.6 ± 0.2 

580/2 26.9 ± 0.1 33.4 ± 0.6 35.4 ± 0.4 

580/4 27.3 ± 0.2 32.9 ± 0.2 36.6 ± 0.2 

QT650/1 36.3 ± 2.0 41.6 ± 0.9 44.0 ± 0.0 

QT750/1 39.8 ± 0.2 39.2 ± 0.1 42.4 ± 0.2 

 

 
Figure 4.16: Core hardness. 
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Table 4.12 - Case Hardness 

Parameter 

Material 

8620 4320 8822 

500/2 58.1 ± 0.2 59.1 ± 0.6 59.1 ± 0.1 

500/4 58.6 ± 0.4 59.0 ± 0.9 58.5 ± 0.2 

550/2 58.2 ± 0.4 57.2 ± 0.7 57.7 ± 0.2 

550/4 54.5 ± 0.2 55.0 ± 0.1 57.8 ± 0.3 

580/1 54.2 ± 0.1 53.5 ± 0.1 54.8 ± 0.6 

580/2 52.9 ± 0.4 52.6 ± 0.3 54.7 ± 0.2 

580/4 54.4 ± 0.1 53.1 ± 0.2 54.2 ± 0.3 

QT650 55.7 ± 0.1 55.2 ± 0.4 56.0 ± 0.1 

QT750 52.4 ± 0.1 51.0 ± 0.1 53.1 ± 0.1 

 

 

 
Figure 4.17: Case hardness. 
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the core hardness measurements, it was noted that with increased time and temperature 

combinations the hardness values decreased. There was not a large difference between 

materials in terms of case hardness. All of the samples were carburized at the same 
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carbon potential, and thusly have the same carbon content.  The differences in hardness in 

the austempered conditions can be associated in part to the type of bainite formed during 

austempering. As mentioned, upper bainite is a softer microstructure than that of lower 

bainite. Since the bainite formation at 500 °F will be closer to lower bainite, and thusly, 

martensite, it will have a higher hardness. The quench-and-temper samples exhibit the 

same pattern, where higher temperature results in a lower hardness. This is due to the 

higher temperature allowing for more softening of the material. 

4.5.2 Toughness 

Charpy impact toughness values are shown in Table 4.13. Averages of three 

samples are presented for all conditions, along with standard deviation. Full data sets 

were not available for all samples. The samples which were quench-and-tempered at 350 

°F only had 2 samples prepared for each material. Impact values are compared in Figure 

4.18.  

Table 4.13a - Charpy Impact Toughness for 8620 Steel 

Material Parameter 1 2 3 Average (ft-lbs) 

8620 

500/2 4.07 4.59 4.44 4.37 ± 0.27 

500/4 4.18 3.90 4.23 4.10 ± 0.18 

550/2 2.57 2.53 3.21 2.77 ± 0.38 

550/4 5.68 6.19 6.70 6.19 ± 0.51 

580/1 8.69 7.33 7.50 7.84 ± 0.74 

580/2 8.33 7.00 6.97 7.43 ± 0.78 

580/4 - - - 9.30 

QT350 5.92 5.81 - 5.87 ± 0.04 

QT650 2.93 2.81 2.49 2.74 ± 0.23 

QT750 7.06 8.55 7.25 7.62 ± 0.81 
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Table 4.13b - Charpy Impact Toughness for 8822 Steel 

Material Parameter 1 2 3 Average (ft-lbs) 

8822 

500/2 2.33 2.52 2.37 2.41 ± 0.10 

500/4 2.41 2.21 1.95 2.19 ± 0.23 

550/2 2.42 2.27 2.25 2.31 ± 0.09 

550/4 2.22 2.24 2.20 2.22 ± 0.02 

580/1 3.58 3.06 2.90 3.18 ± 0.36 

580/2 3.56 3.43 2.96 3.32 ± 0.32 

580/4 - - - 2.68 

QT350 1.96 2.27 - 2.12 ± 0.11 

QT650 1.79 1.82 1.79 1.80 ± 0.02 

QT750 2.35 2.43 2.34 2.37 ± 0.05 

 

Table 4.13c - Charpy Impact Toughness for 4320 Steel 

Material Parameter 1 2 3 Average (ft-lbs) 

4320 

500/2 11.43 12.52 12.12 12.02 ± 0.55 

500/4 11.98 11.46 11.81 11.75 ± 0.27 

550/2 7.94 9.93 8.54 8.80 ± 1.02 

550/4 10.37 11.65 12.91 11.64 ± 1.27 

580/1 7.56 5.94 8.31 7.27 ± 1.21 

580/2 11.60 10.65 11.18 11.14 ± 0.48 

580/4 - - - 11.82 

QT350 11.48 10.45 - 10.97 ± 0.36 

QT650 11.62 10.87 12.80 11.76 ± 0.97 

QT750 19.95 21.58 20.75 20.76 ± 0.82 
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Figure 4.18: Charpy toughness results. 

 

Austempering time and temperature did not seem to have an effect on the impact 

toughness of the three steels. As previously noted, toughness is primarily indicative of the 

low-carbon content core microstructure, the    temperature of which is well above the 

austempering temperature, and therefore not as affected by time as the case 

microstructures. The 4320 samples which were quench-and-tempered at 750 °F showed 

considerably more Charpy toughness than the rest of the samples which were tested. This 

highest tempering temperature allows for a softening of the core microstructure. 

When the austempered results were compared to those of the 350 °F temper it was 

found that austempering was generally able to provide toughness similar to the currently 

used process. A comparison of the materials showed that the 4320 steels gave the highest 

results for impact toughness overall across all of its austempering and quench-and-

tempering temperatures, which is expected due to its increased nickel content. 8822 steel 
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was not able to achieve any toughness value greater than 3.3 ft/lbs. 8620 had the widest 

spread of values within the austempered condition, 2.7 to 9.3 ft-lbs. 

Fracture surfaces were examined for selected samples to examine the fracture 

mode. Samples were selected based on having high and low impact toughness, as well as 

to represent the three materials. Images are shown in Figure 4.19. 

 

Figure 4.19: SEM fracture surface images. 

Fracture surfaces for 4320 steel showed a majority of ductile fracture, while 8620 

and 8822 steel had mostly brittle and mixed modes of fracture. This correlates with the 

general expectation that lower impact toughness samples trend towards brittle rather than 

ductile.  
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4.6 Economic Discussion 

Comparable or improved mechanical and distortion properties are not by 

themselves sufficient to proceed with the substitution of the austempering process for the 

traditional quench-and-temper process. As has been noted, assessment of the tribological 

behaviour of the austempered carburized case is a vital factor for components subject to 

friction and wear. Additionally, the economics of the substitution must be considered. A 

primary benefit of the austempering process is its low distortion, which may remove the 

manufacturing step associated with distortion correction for the quench-and-temper 

process. The time, machining, and materials handling costs associated with distortion 

correction need to be compared to the increased time and energy costs associated with the 

austempering thermal process.  

The microstructure, mechanical properties, and distortion results of this study 

indicate that the austempering process shows improvement over the traditional quench-

and-temper process for carburized steel components. A particularly strong argument can 

be made for the 4320 steel to continue on to the next logical step of wear testing. The 

8620 steel shows improvement in many areas for austempering compared to the quench-

and-temper process. The argument is perhaps not as strong for the 8822 material. 

However, each material has a specific purpose with respect to carburizing: 4320 for 

toughness with its nickel content; 8822 for higher hardness with its increased carbon 

content; 8620 for general purpose carburizing. Should wear testing reveal comparable or 

improved behaviour, the following and final step would be a full economic analysis. 

  



 

77 
 

V. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

The effects of austempering were compared to those of quench-and-tempering 

when applied to a carburized low alloy steel. Three materials were tested, SAE 8620, 

8822, and 4320 steel. Samples were carburized, then either austempered or quench-and-

tempered. Microstructures were observed for all conditions. Distortion due to the 

carburizing and heat treatment process was measured. Residual stress and retained 

austenite levels were measured for 4320 steel samples. Core and case hardness, as well as 

toughness were determined.  

 5.1 Conclusions 

The following conclusions were drawn based on the results of the experiment. 

1. Austempering produced bainite in the case of carburized samples. With increased 

time it was possible to form a greater percentage of bainite. Higher temperatures 

resulted in the formation of more feathery upper bainite, while lower temperatures 

resulted in more acicular, needle-like bainite. For the same temperature, 8822 

tended to form lower bainite, while 4320 and 8620 would form upper bainite. 

Incomplete transformations led to retained austenite and martensite being found in 

the case. The case microstructure for all quench-and-tempered samples was 

tempered martensite. 

2. Core microstructures revealed martensite in the core of all samples. For the 

austempered samples the low carbon content of the core, relative to the case, 

resulted in the    temperature being high enough that martensite transformation 
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occurred during the quench to the austempering temperature. For the quench-and-

tempered samples, the martensite core was subsequently tempered. 

3. Size distortion was generally lower for austempered samples than quench-and-

tempered samples. 4320 showed less distortion across most of the size distortions 

(ID, OD, gap width) than 8620 and 8822. Austempering produced similar or 

better distortion characteristics than quench-and-tempering. 

4. Austempering produced less shape distortion than quench and tempering, 

although the differences were not significant. Roundness distortion was reduced 

with increasing austempering time. 8822 steel exhibited large shape distortions, 

and would require more correction than the other two materials. 

5. Compressive surface residual stress was found in all tested Navy C-rings. 

Austempered samples produced higher compressive residual stress than those 

which had been quench-and-tempered. The tempering process allowed for the 

relaxation of the residual stresses formed during the initial quenching process. 

Residual stresses in the axial and longitudinal were with 4 ksi of each other. 

6. Residual stress depth profiles revealed that the compressive layer in the 

austempered material extended to a greater depth than that of the quench-and-

tempered material. Austempering peaked at a compressive residual stress of -118 

ksi in the hoop direction at a depth of 0.0011 inches, while the quench-and-

tempered sample had its highest compressive stress at the surface. The quench-

and-tempered sample had near-neutral stress found around 0.01 inches 

subsurface, before a slight increase in compressive stress. Tensile stresses were 

found deeper 0.04 inches and deeper. The austempered sample maintained 
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complete compressive stress until 0.04 inches into the material before tensile 

stress became present.  

7. Retained austenite was present in greater amounts in the austempered sample; 

however, at depths greater than 0.02 inches the retained austenite levels were 

similar. Decomposition of retained austenite during tempering led to the lower 

retained austenite levels in the quench-and-tempered sample.  

8. Case hardness decreased with increased times and temperatures. The highest case 

hardness was noted for the lowest austempering temperatures. Core hardness was 

higher for quench-and-tempered samples for both 8620 and 4320 steel, and 

similar for 8822. 

9. 4320 steel was considerably tougher than the other materials, and is designed to 

be such. For all steels, austempering produced a sample with toughness similar to 

the 350 °F tempered samples. Although the 750 °F temper for 4320 steel 

produced a high toughness relative to all the other conditions for all materials, it is 

neither commonly used in production, nor is it under consideration for use. For 

this study, the 750 °F temper was used as an upper limit of tempering. 

5.2 Summary of Conclusions 

The conclusions drawn from this study support the potential for austempering to 

replace quench-and-tempering as a method of heat treating carburized low-alloy steels. 

Austempering was able to reduce shape distortion, and limit size distortion for three low-

alloy steels, while maintaining mechanical properties similar to the currently used 

process. Of some concern is the retained austenite level in the case of the austempered 

conditions, as it can decompose and result in further distortion during service. Residual 
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stress values indicate that wear and fatigue properties could be improved with 

austempering; actual wear and fatigue testing test data is currently lacking. 

5.3 Recommendations for Future Work 

Recommendations are provided below for further testing to determine the potential 

for austempering to replace the quench-and-tempering process for carburized steels. 

Suggestions for improving the accuracy of test results are also provided. 

1. Larger samples populations are recommended for distortion testing. In this study 

only two Navy C-rings were produced for each condition, led to a large statistical 

variation in certain cases. Additional samples for each condition would help to 

give a more definite value for expected distortion from heat treatment. 

2.  X-Ray diffraction should be performed on additional C-ring samples. The 

increased sample size would limit the effects of localized peaks in stress and 

retained austenite in individual specimens on the results. It is also recommended 

that additional measurements be taken during depth testing to develop a more 

complete profile of residual stress and retained austenite levels.  

3. Carbon content depth profiles and case depth measurements would be useful to 

relate to residual stress and retained austenite depth profiles, as well as 

microstructural observations. 

4. Production of quench-and-tempered C-rings tempered at 350 °F for one hour 

would allow a full comparison between the current process and the austempering 

heat treatment for distortion, residual stress, and retained austenite.  
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5. A more quantitative comparison of the economics of producing austempered parts 

and quench-and-tempered parts should be performed. The differences in 

production time, material selection, and equipment running costs should be 

included. It will provide a more complete picture than just a physical properties 

comparison 

6. Wear and fatigue testing should be performed to further compare the 

austempering and quench-and-tempering processes. Wear and fatigue testing 

would allow for prediction of the in-service life of austempered parts compared to 

quench-and-tempered ones. 

7. A comparison of austempering to austempering-and-tempering would allow the 

measurement of the effect of tempering the untempered martensite formed in the 

core resulting from austempering alone. In particular, toughness would be 

expected to increase. 

5.4 Unique Contribution of the Work 

The unique contribution of this study to the field was a quantitative examination 

of the effects of austempering and quench-and-tempering on carburized low alloy steels. 

Previous literature, while extolling the benefits of austempering as a heat treatment for 

carburized parts [5, 9, 35, 56], had not made quantitative comparisons of distortion and 

residual stress characteristics of the heat treatment processes. This study generated 

quantitative measurements of distortion and residual stress for both the austempering and 

quench-and-tempering processes. 
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