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Abstract

In this dissertation, we study the asymptotic properties of pretest and shrinkage
estimators of the large-scale effect in some spatial regression models, and compare
their relative performance with respect to the classical maximum likelihood estima-
tor (MLE) analytically and numerically through Monte Carlo experiments and real
data examples. The shrinkage estimators were also numerically compared with three
penalty estimators, namely, the LASSO, adaptive LASSO, and the SCAD penalty
functions.

A linear model with conditional autoregressive errors was studied in Chapter 2.
The asymptotic properties of the shrinkage estimators, under local alternatives, were
established, including the derivations of the asymptotic distributional bias, asymp-
totic mean squared error matrix, and the asymptotic quadratic risk. These results
showed the effectiveness of the suggested estimation technique. Monte Carlo experi-
ments with two real data examples were conducted to demonstrate the superiority of
the proposed shrinkage estimators over the MLE and the penalty estimators.

In Chapter 3, we consider another spatial case of a linear model with simultaneous
autoregressive errors. We study the properties of the shrinkage estimators and com-
pare their performance with the penalty estimators numerically through simulation
studies and real data examples.

Chapter 4 contains a study of a general linear model with spatial moving average
error terms. Asymptotic properties of the shrinkage estimators for the mean param-
eter vector are investigated. A numerical comparison is carried out and the relative
performance of estimators is investigated.

Finally, we summarize the findings of the thesis in Chapter 5. Also, some problems
for future research are outlined in Chapter 5.
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Chapter 1

Introduction and Literature

Review

1.1 Introduction

In real life, we often need to make inferences about the dynamics of natural phenom-

ena. In order to carry out a sensible inference, one would collect sample data, which

we can call objective information, as well as subjective non-sample information about

the natural phenomena of interest. A statistician’s job is to find a model that is best

consistent with the information provided and utilize the model for making inferences

and predictions about the behavior of the phenomena. The subjective non-sample

information is often called uncertain prior information (UPI). It is well known that

Bayesian statistical methods were originated from the need of injecting UPIs into

models fitted to the objective sample data and hence, account for the uncertainty

brought in by both streams of information.

1
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In the frequentist (non-Bayesian) literature, one of the earliest attempts to incorpo-

rate UPIs into the estimation of regression coefficients was made by Bancroft (1944)

who proposed an estimation technique known as the pretest estimation method. Ban-

croft’s idea was that, if the UPI states that some of the regression coefficients should

be zero, then we can incorporate such information into the estimation procedure by

testing the null hypothesis, implicit in the UPI, and according to the results of the

test we choose either the full model containing all coefficients or the reduced model

stated by the null hypothesis. Such a method, obviously, combines the data model

(full model) and the UPI-based model (reduced) via binary weights.

Stein (1956) improved Bancroft’s idea by suggesting the use of smooth weights in

combining the two models, instead of the binary weights of Bancroft. The method

of Stein was labeled as a shrinkage approach in the sense that one shrinks the least

squares regression coefficient estimators towards a target value dictated by the UPI.

The seminal work of Stein was then followed by Stein (1966) who proposed an im-

proved version of Stein’s estimator, known as positive part shrinkage estimator. These

fundamental works opened the way to a large body of literature and development of

shrinkage estimation in many diverse areas of statistical analysis.

Ahmed (1997b) developed the asymptotic properties of the positive part shrinkage,

improved preliminary test, and shrinkage preliminary test R-estimators of regression

coefficients when the errors are not necessarily normally distributed. Ahmed (1998)

investigated the pretest estimators in nonparametric multivariate regression models.

Khan and Ahmed (2003) considered the estimation of the regression coefficient vector

when it is suspected that it may belong to a subspace given by a set of consistent

equations. Ahmed et al. (2006) considered shrinkage M-estimators in linear models.

For more details about the shrinkage estimators, the reader is referred to Ahmed
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(1997a), Ahmed (2001), Saleh (2006), Ahmed et al. (2007), Nkurunziza and Ahmed

(2011), Nkurunziza (2011), Raheem et al. (2012), Nkurunziza (2012b) and Fallahpour

et al. (2012), among others.

Shrinkage estimation procedures are closely related to the so called model selection

procedures. Recently, there has been a growing interest in a class of model selection

and estimation procedures known as penalty estimation methods. These methods are

based on constrained maximization of an objective function such as the log-likelihood

function where the constraint is defined through a penalty function on the absolute

value of the model parameters. These methods have become popular because of

their ability to estimate parameters in high dimensional models where the number of

parameters exceeds the available number of observations. Model selection procedures

can thus serve as tools to find UPIs which then can be incorporated into the estimation

procedure through shrinkage procedures.

The main objective of this dissertation is to propose shrinkage and penalty esti-

mators in the context of spatial regression models. Therefore, in this chapter, we

will give a brief review of shrinkage and penalty estimation procedures as well as an

account of the spatial regression models to be considered in the thesis.

1.2 Efficient Estimation Strategies

To have a clear picture of the shrinkage estimation technique, we illustrate the case

of a multiple linear regression model with identically and independently distributed
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(iid) errors. The model in a matrix format can be written as:

Y = Xβ + ε, (1.1)

where Y = (Y1, . . . , Yn)′ is a (n × 1) response vector, X =
(
X1, . . . , Xp

)′
is a full

rank (n × p) non-random design matrix consisting of the predictors
(
X1, . . . , Xp

)
,

β = (β1, . . . , βp)
′ is a (p × 1) unknown vector of regression coefficients without an

intercept, and ε =
(
ε1, . . . , εn

)′
is a (n×1) vector of random errors with εi

iid∼ N(0, σ2).

1.2.1 Full Model Estimation

The least squares and the maximum likelihood estimators of the parameter vector β

for the model in (1.1) coincide and have the following form:

β̂ = (X ′X)−1X ′Y . (1.2)

It is well known that the maximum likelihood estimator MLE of β is the best linear

unbiased estimator (BLUE), and it is normally distributed with mean β and variance-

covariance matrix σ2(X ′X)−1. The MLE represents the unrestricted estimator (UE)

of β, in the sense that all possible and available predictors are included in the model,

and the corresponding model is labeled as the full regression model. On the other

hand, if a UPI is available, say in the form of a hypothesis stating that there is a

set of linear restrictions on these coefficients, then the resulting estimated coefficients

under such UPI are known as restricted estimators (RE) of the regression coefficients.
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1.2.2 Uncertain Prior Information

Suppose that the restriction is formulated in the form of the null hypothesis:

H0 : Hβ = h, (1.3)

where H is a (q × p) known matrix of rank (q) with (q ≤ p), h is a (q × 1) vector of

known constants. For instance, if an investigator contemplated a UPI that the vector

of regression coefficients can be partitioned into two parts, β = (β1,β2), and that it

is safe to conjecture H0 : β2 = 0, then in this case h = 0 while H is chosen as block

matrix with zero everywhere except an identity matrix in the block corresponding to

the component β2.

1.2.3 Submodel Estimation

Based on the restriction given by (1.3), the restricted estimator of β, denoted by β̂R,

is given by:

β̂R = β̂ − (X ′X)−1H ′
(
H(X ′X)−1H ′

)−1
(Hβ̂ − h). (1.4)

Obviously, the quality of β̂R depends on the quality of the UPI presented in (1.3).

If UPI is correct then β̂R has better performance than the unrestricted estimator β̂,

while such relative performance deteriorates as the quality of the UPI deteriorates.
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1.2.4 Pretest Estimator

The pretest estimator, denoted by β̂PT , is produced by combining the unrestricted

with the restricted estimators as follows:

β̂PT = β̂ − (β̂ − β̂R)I(Υ ≤ Υn,α). (1.5)

Here, Υ is an appropriate test statistic for testing the null hypothesis in (1.3),

I(.) is an indicator function such that I(A) = 1 if the statement A is true and zero

otherwise, and Υn,α is the α−level critical value of the exact distribution of the test

statistics Υ.

The pretest estimator depends on the level of significance, and by the definition

of the indicator function, it chooses the unrestricted estimator for large values of the

test statistic, and the restricted estimator for small values. The performance of this

estimator is considerable when the information provided by the null hypothesis is

true, or approximately true.

1.2.5 Shrinkage Estimators

The pretest estimator produces either the unrestricted or the restricted estimator

depending on whether the test statistic is above or below the α−level critical value.

A smoother weighting can be achieved via the James-Stein estimator, defined as

follows:

β̂JS = β̂R +
(
β̂ − β̂R

){
1− (q − 2)Υ−1

}
, q ≥ 3. (1.6)
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Thus, β̂JS overcomes the problem of binary choice inherent in the pretest estima-

tor. However, β̂JS may suffer from a phenomenon known as over-shrinkage, whereby

negative coordinates of β̂ are obtained whenever (Υ < q− 2). This problem is solved

by excluding the following modified version of the original Stein estimator,

β̂JS+ = β̂ +
(
β̂ − β̂R

){
1− (q − 2)Υ−1

}+
, (1.7)

where a+ = max{0, a}. This estimator is known as the positive part James-Stein

estimator.

Therefore, it is hopefully clear that the pretest and shrinkage methodologies provide

a middle way between these two options, by combining β̂ and β̂R through appropri-

ately chosen weights that are functions of the quality of the UPI.

1.3 Auxiliary Information

As we have seen in the previous sections, the class of shrinkage estimators is useful in

incorporating UPIs into the estimation process. These estimators have demonstrated

superior performance in large classes of statistical models which go beyond the usual

regression model considered in the past section. Although the general restriction

in (1.3), known also as candidate subspace restriction, accommodates a variety of

prior non-sample information, it is sometimes possible that such subjective UPI is

not available. In these cases, one could still resort to model selection procedures such

as Akaike’s Information Criterion (AIC), Bayesian Information Criterion (BIC) and

penalty model selection approaches in order to formulate a candidate submodel which

could then be formulated in the form of the restriction (1.3). It is well-known that
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in addition to giving biased estimators, model selection procedures cannot be taken

as gold standard, since the resulting final models also have uncertainty inherited

from the selection procedure. That is, the final model selected by a model selection

procedure need not be the true data generating model. Therefore, it is still safer to

resort to estimation methods which take into account the linear restriction induced

by the model selection criteria along with the full model. Thus, here we clearly state

that model selection criteria and shrinkage estimation procedures are not rivals, but

rather complementary to each other.

Recently, there has been a growing literature on new model selection methods

known as penalty estimation or selection methods. These methods are based on

imposing a penalty on the model parameters. In the next few sections, we will review

some of these penalty methods which are key in this thesis.

1.4 Penalty Estimators

Penalty estimators result from simultaneous model selection and parameter estima-

tion procedures via imposition of penalty on the estimating equation used. There-

fore, penalty methods are both estimation and model selection procedures. The first

such method, known as least absolute selection and shrinkage operator (LASSO) was

proposed by Tibshirani (1996) to overcome the problem of large dimensional data re-

gressions where the number of parameters in the model exceeds the available number

of independent observations, i.e., n < p. Such situations arise in many applications

including micro-array data analysis in which the LASSO has demonstrated to give

reasonably well-behaved estimators. A large body of literature following the work

of Tibshirani was dedicated to improving the LASSO procedure. Among others, we
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mention here the adaptive LASSO (A.LASSO) of Zou (2006), and the smoothly clipped

absolute deviation (SCAD) method of Fan and Li (2001). These three methods will

be described in the next few sections.

1.4.1 LASSO

Tibshirani (1996) proposed a method for variable selection and parameter estimation

in linear models known as LASSO. The LASSO algorithm uses the L1− norm of the

β vector in order to define a penalty term in the usual least squares estimation of

regression coefficients. The LASSO estimators are defined as:

β̂Lasso = arg min
β

[
(Y −Xβ)′(Y −Xβ) + λ

p∑
j=1

|βj|

]
, (1.8)

where β is assumed as a (p×1) vector of regression coefficients, and λ ≥ 0 is a tuning

parameter. Here, arg min
β

[.], stands for the argument of the minimum, that is the

set of all points β for which the expression [.] attains minimum value. An efficient

algorithm for calculating the LASSO estimators and computing an optimal value of

the tuning parameter, known as the least angle regression (LARS), was introduced

by Efron et al. (2004). Although the LASSO method was appealing, it had several

shortcomings, one of which is that it does not enjoy a desirable property called the

Oracle property. A variable selection procedure is said to have oracle property if it

identifies the right subset of zero coefficients in the regression model under consid-

eration and furthermore, the estimators of the remaining non-zero coefficients are

consistent and asymptotically normal (Zou (2006)). Two procedures which enjoy the

oracle property were introduced by Fan and Li (2001) and Zou (2006). In the next

two sections, we define these procedures.
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1.4.2 SCAD

The smoothly clipped absolute deviation (SCAD) estimator of Fan and Li (2001),

which is an improved version of the LASSO, is defined by

β̂SCAD = arg min
β

[
1

2
(Y −Xβ)′(Y −Xβ) + n

p∑
j=1

PλS(|βj|)

]
, (1.9)

where,

PλS(t) =


λS|t| , |t| ≤ λS

− (t2−2aλS |t|+λ2S)

2(a−1)
, λS < |t| < aλS

(a+1)λ2S
2

, |t| > aλS

, (1.10)

for some a > 0 and λS, a tuning parameter. Detailed discussions about the SCAD

can be found in Leeb and Poetscher (2008) who also studied the distribution of the

LASSO and SCAD estimators in both finite and large sample cases.

1.4.3 Adaptive LASSO

The idea behind the adaptive LASSO of Zou (2006) is to incorporate data driven

tuning parameters in the original LASSO procedure. The adaptive LASSO estimator

of the vector β is defined by

β̂A.LASSO = arg min
β

[
1

2
(Y −Xβ)′(Y −Xβ) + n

p∑
j=1

λj|βj|

]
, (1.11)

where {λj, j = 1, . . . , p} are coefficient-specific tuning parameters.

Adaptive LASSO estimators have been shown to posses the oracle property and
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they have been widely discussed, used and extended. Among others, Zhang and Lu

(2007) studied adaptive LASSO for the Cox’s proportional hazards model. They

studied the consistency and rate of convergence of the estimators obtained. Huang

et al. (2008) studied the asymptotic properties of the adaptive LASSO estimators

in sparse, high-dimensional, linear regression models when the number of regression

coefficients may increase with the sample size, and showed that it has the oracle

property. Pötscher and Schneider (2009) considered the distribution of the adaptive

LASSO in finite samples. Further, we refer to some recent work in this case, Kamar-

ianakis et al. (2012), Guo et al. (2013), Evans and Forcina (2013), Ren and Zhang

(2013), Qian and Yang (2013) and Lin et al. (2013).

1.4.4 Penalty and Shrinkage Estimators

Ahmed and Raheem (2012) compared shrinkage estimators in linear regression models

to the LASSO, SCAD, and the adaptive LASSO estimators. Their comparison showed

a superiority of the shrinkage over the penalty estimators in the sense of giving smaller

average prediction errors. They also noted that the penalty estimators outperform

shrinkage estimators as the dimension of zero coefficients becomes very large relative

to the sample size.

An extension of the LASSO method for the semiparametric partially linear regres-

sion model was proposed by Ahmed et al. (2007). This class of LASSO estimators

was compared with shrinkage estimators through prediction errors. Fallahpour et al.

(2012) studied the LASSO and shrinkage estimation strategies in partially linear mod-

els with random coefficient autoregressive errors. Recent literature studying shrinkage

and penalty methods and comparing them include Hossain et al. (2009), Raheem et al.
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(2012), Ahmed and Fallahpour (2012) and Hossain and Ahmed (2012).

1.5 Spatial Data Regression Models

“We believe that in order to answer the “why” question, Science should address the

“where” and “when” questions...” . Cressie and Wikle (2011).

The era of isolated marginal analysis of data is almost passing away as we move into

a world of complex and massive data, collected in real-time over space and time. The

era of conditional thinking has begun and at the frontier of this era is the analysis of

spatio-temporal data.

In general, data collected over geographical space may exhibit some sort of depen-

dence in the sense that closer observations are more alike than those far apart. Such

behavior is modeled by including a covariance structure into the classical statistical

models. In particular, spatial regression models which accommodate various types of

spatial dependencies have been increasingly applied in epidemiology, geology, disease

surveillance, urban planning, analysis and mapping of poverty indicators and others.

In this section, we will give a brief introduction and literature review on three spatial

regression models which will be the subject of study in this thesis. These models are:

the conditional autoregressive (CAR) model, the simultaneous autoregressive (SAR)

model and the spatial moving average (SMA) model.

1.5.1 Conditional Autoregressive Model

In time series analysis, autoregressive models represent the current data at time t (in

temporally evolving data) as a linear combination of the most recent observations.
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Likewise, in spatial framework, autoregressive models represent the data from a given

spatial location as a function of data in neighboring locations. A geographical location

on which data are collected is often called a site and the concept of neighborhood

among sites is defined through a distance metric. That is, two sites are neighbors if

they are close to each other according to a pre-specified closeness metric.

An important class of spatial regression models known as conditional autoregres-

sive CAR, introduced by Besag (1974), exploits neighborhood structures. In order

to describe the CAR model, suppose we have a set of n spatial sites denoted by

s = {s1, . . . , sn} forming a lattice, and suppose that a set of continuous measurements

Y (s) = (Y (s1), ..., Y (sn)) is collected at these sites. Also, denote N(si) a set of neigh-

boring sites to the ith site. That is N(si) = {sj : ∀j = 1, ..., n|sj is neighbor to si}.

Assuming that the Y (si) are Gaussian random processes, we have

f
(
y(si)|{y(sj), j 6= i}

)
=

1√
2πσ2

i

exp
{(y(si)− µi)2

2σ2
i

}
, (1.12)

where µi and σ2
i are respectively, the conditional mean and variance, given by

µi = E
(
Y (si)|{Y (sj) : j 6= i}

)
= µ(si) +

∑
sj∈N(si)

cij(Y (sj)− µ(sj)) (1.13)

σ2
i = var

(
Y (si)|{Y (sj) : j 6= i}

)
, (1.14)

provided that cijσ
2
j = cjiσ

2
i , cii = 0 and cij = 0 if j /∈ N(si), i, j = 1, . . . , n.

Besag (1974) proved that, the Gaussian conditional densities in (1.12) have Gaus-
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sian joint distribution given by

Y ∼ N(µ, (I −C)−1M ), (1.15)

provided that (I −C)−1M is symmetric and positive definite, where I is the (n×n)

identity matrix, C = {cij}ni,j=1, M = diag{σ2
i }ni=1 and µ =

(
µ1, . . . , µn

)′
. Usually, C,

M and µ are all unknown, and hence estimated from the data. In spatial regression

context, the mean of the joint Gaussian distribution, µ is called large-scale effect and

often modeled as:

µ = Xβ, (1.16)

whereX is an (n×p) matrix of explanatory variables, β is a (p×1) vector of unknown

parameters. The columns of the design matrix X are site-specific covariates. Using

(1.15) and (1.16), we can write the conditional autoregressive CAR regression model

as:

Y = Xβ + ε, (1.17)

with ε ∼ N(0, (I −C)−1M ).

In practice, a simplified version of this model has been effectively employed

by setting the covariance structure of this model to be σ2(I − ρW ∗)−1D, where

W ∗ = { wij

wi+
}ni,j=1 with wi+ =

n∑
j=1

wij, is a known standardized proximity (neigh-

borhood) matrix, D = diag{ 1
w1+

, 1
w2+

, . . . , 1
wn+
} and σ2 > 0. The proximity matrix

often consists of elements wij = 1 if location j is neighbor to location i and wij = 0

otherwise.
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1.5.2 Simultaneous Autoregressive Model

A second spatial regression model that will be studied in this thesis is the simultaneous

autoregressive SAR model, proposed by Whittle (1954). To understand the idea

behind this model, let s = {s1, . . . , sn}′ denote as before a lattice of spatial locations

with associated responses Y (s) =
(
Y (s1), . . . , Y (sn)

)′
and associated (n×p) covariate

matrix X(s) = (X(s1), . . . ,X(sn))′. The SAR approach models the response at the

sith location as, (Waller and Gotway, 2004)

Y (si) = X ′(si)β + ε(si), i = 1, . . . , n, (1.18)

where

ε(si) =
n∑
j 6=i

γijε(sj) + e(si), i = 1, . . . , n, (1.19)

where β is a (p × 1) unknown regression coefficients, e(s) =
(
e(s1), . . . , e(sn)

)′
are

Gaussian errors with mean 0 and variance covariance matrix Λ = diag{σ2
i }ni=1. The

parameters γij with γii = 0 are to model the spatial dependencies of the errors.

Ignoring the spatial indices si, this model can be re-written in a matrix format as

follows

Y = Xβ +R(Y −Xβ) + e, (1.20)

or, simply

(I −R)(Y −Xβ) = e, (1.21)



1.5 Spatial Data Regression Models 16

where R = {γij}ni,j=1 and I is an (n×n) identity matrix. Yet, assuming that (I−R)

is invertible, the SAR model can be re-written as

Y = Xβ + u,

u ∼ N
(
0, (I −R)−1Λ(I −R′)−1

)
.

In many situations, nature exhibits sparsity, meaning that a small number of fac-

tors could capture most of the variability observed. This sparsity implies that we can

express natural phenomena in the form of models with a relatively small number of

parameters. Spatial regression models often exploit sparsity to imply simpler covari-

ance structures and hence, less computational complexity. In the context of the SAR

model, one of the most used covariance structures is obtained by setting Λ = σ2I

and R = ρW , where σ2 is the variability of the pure noise component and W is a

sparse and known proximity matrix as was described in the previous section.

The MLE estimators of the SAR model parameters have been extensively studied

in the literature. A detailed treatment of the SAR model and its theoretical under-

pinning can be found in Kazar and Celik (2012). Durban et al. (2012) proposed a

nonparamteric version of the SAR model whereby spline functions were used to model

the large-scale spatial effects. Interpretations of the meaning of the SAR and CAR

covariance structures can be found in Wall (2004). A review of spatial regression

models in the context of ecology is found in Beale et al. (2010).
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1.5.3 Spatial Moving Average Model

Yet another spatial regression model on lattices is the spatial moving average (SMA)

model. As the name shows, this model imposes a moving average specification on the

noise term as is the case in temporal time series processes. Let s = {s1, . . . , sn} be a

lattice of sites as before and e(si) be the random error associated with site (si). The

SMA model error specification is given by:

e(si) = ε(si) +
n∑
j 6=i

gijε(sj), i, j = 1, . . . , n, (1.22)

where, {gij}ni,j=1 are unknown spatial dependence parameters with gii = 0, {ε(si)}ni=1

are iid mean zero Gaussian errors. Thus, the SMA compiles the spatial regression

model’s error, associated with site si, as a linear combination of the random noises in

the neighboring sites. Using matrix notation, the model in (1.22) can be written as:

e(s) = ε(s) +Gε(s) = (I +G)ε(s), (1.23)

whereG = {gij}ni,j=1, with gii = 0, e(s) = (e(s1), . . . , e(sn))′, ε(s) = (ε(s1), . . . , ε(sn))′

and I is an (n× n) identity matrix.

By dropping the site index s, the spatial response model can be formulated in terms

of the joint Gaussian distribution

Y = Xβ + (I +G)ε, (1.24)

where Y = Y (s) = (Y (s1), . . . , Y (sn))′ is the (n× 1) observed response vector at the

lattice sites (s), X = X(s) the (n × p) fixed matrix of p explanatory variables and
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β is a (p× 1) vector of unknown regression parameters.

Again, sparsity can be exploited in the context of SMA by choosing the spatial

dependence matrix G as ρW , where W is a sparse and known neighborhood matrix

as before.

Assuming that the error term ε follows a multivariate Gaussian distribution with

mean 0, and variance covariance matrix σ2I, then the response vector Y is distributed

as:

Y ∼ N(Xβ, σ2(I +G)(I +G′)). (1.25)

1.5.4 Model Selection in Spatial Regressions

Most of the model selection methods in regression deal with independent data, while,

in spatial regression it is a matter of challenge because the data are highly depen-

dent. To be quite pessimistic, one could state that in spatial regressions we are basing

our inferences on a single observation. Therefore, the literature on model selection

procedures for the spatial regression models has been quite negligible. For example,

Kashyap and Chellappa (1983) used the BIC selection criterion to choose the param-

eter of the SAR and CAR models. Florax et al. (2003) considered various search

strategies in spatial econometric modeling by using the classical forward, stepwise,

robust, hybrid, and Hendry’s strategies, and compared these methods numerically.

They observed that Hendry’s strategy is dominated by other approaches with respect

to detecting the spatial dependence. Hoeting et al. (2006) compared the selection

performance of the independent AIC, which ignores the spatial correlation, with the

AIC approach in spatial regressions. Their simulation results had shown the supe-
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riority of the spatial AIC in model selection as compared to the independence AIC.

Kissling and Carl (2008) used various model selection procedures to select the best

SAR model from a range of model specifications. They considered the spatial error

model, spatial lagged model, and spatial mixed model. Their procedure was based

on minimum residual spatial autocorrelation, maximum model fit R2, and the AIC.

Song and De Oliveira (2012) explained a Bayesian approach for model selection in

Gaussian CAR and SAR models.

In the context of penalty selection and estimation methods, Wang and Zhu (2009)

considered various penalty functions for variable selection and parameter estima-

tion in spatial linear regressions. They considered Lq, hard thresholding and SCAD

penalty functions, and established the oracle property of these methods under some

regularity conditions, and conducted a numerical study to compare the estimators.

These authors found that, the SCAD estimator outperformed the thresholding and

the LASSO estimators in many cases. Zhu and Liu (2009) proposed a penalized like-

lihood to estimate the covariance matrix of spatial Gaussian Markov random field

models with unspecified neighborhood structure. They used weighted L1 regulariza-

tion and showed that the LASSO type approach gives improved covariance estimators,

measured by different criteria. Also, they derived the asymptotic properties of their

proposed estimators. Zhu et al. (2010) developed a new methodology for simultane-

ous model selection and parameter estimation of spatial linear models via adaptive

LASSO. The treatment of Zhu et al. (2010) was for general spatial linear models while

the CAR and SAR models were studied as two special cases. The authors provided

an efficient algorithm for obtaining an approximation of the penalized maximum like-

lihood and established the asymptotic properties.

Huang et al. (2010) considered a raster-based geographic information systems
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(GIS), that organizes the spatial data in layers, and built a high-dimensional spatial

regression model with unknown layers and neighborhoods. They proposed the use of

LASSO that simultaneously selects variables, chooses neighborhoods and estimates

the parameters via a generalized version of the LARS algorithm.

1.6 Thesis Organization and Highlights of Contri-

butions

The problem of finding efficient estimators is of a central importance in all statistical

models. When a large number of variables is to be related to a given set of responses,

regression models are often the wise choice to pursue.

An important aspect of statistical inference is to select the correct set of variables

that explain variations in the response. This leads us to model selection problem,

which has been intensively studied in the context of regression models. Model selec-

tion procedures in the literature include the classical AIC, BIC procedures and the

more recent penalty procedures. After a model is selected, we are still not completely

certain of the validity of the selected model as including all important explanatory

variables. Therefore, even after applying modern model selection procedures, the

resulting submodel (often known as reduced or restricted model) can be considered

as an uncertain information. Similarly, an investigator could have prior non-sample

uncertain information concerning which of the predictor variables are important. In

both cases, the resulting full and restricted models have their risks that are functions

of the reliability of the information provided. In such a situation, investigators would

like to take a middle way that protects them uniformly against high inefficiency at
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the expense of less efficiency in some subsets of the parameter space.

The class of shrinkage and pretest estimators provides such protection by combining

the full and reduced model estimators, resulting in uniformly low risk estimators in the

context of regression models. Therefore, in this dissertation, we propose the pretest,

James-Stein, positive James-Stein estimators for the large-scale effects β in three

spatial regression models. Namely, we propose these estimators for the conditional

autoregressive CAR, simultaneous autoregressive SAR, and spatial moving average

SMA models. In addition, we devise a simple procedure for computing penalty esti-

mators, for the large-scale effects of these three regression models. Specifically, we will

construct LASSO, Adaptive LASSO and SCAD estimators for regression parameters

in the CAR, SAR and SMA models.

The proposed pretest and shrinkage estimators will be based on a general linear

candidate subspace of the large-scale effects space, stemming from uncertain prior

information. We will derive the asymptotic risks and biases of the proposed pretest

and shrinkage estimators and compare them to those associated with the full space

and candidate subspace parameter estimates. Also, we conduct numerical studies

using simulated and real data examples to compare the performance of the proposed

estimators with the absolute penalty estimators.

In Chapter 2, we consider the application of the pretest, shrinkage and penalty

estimators in the conditional autoregressive CAR model. At the beginning of the

chapter, we discuss the CAR model specifications, the maximum likelihood estimator

MLE of the model parameters, and display the Mardia-Marshall Theorem, (Mardia

and Marshall (1984)), which is at the core of the asymptotics in spatial lattice re-

gression models. Based on the Mardia-Marshall Theorem, we derive the asymptotic
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distributional bias, mean squared error matrices and quadratic risk of the proposed

estimators. We carry out analytical performance comparisons among these estimators

and with respect to the restricted and unrestricted estimators. We propose a simple

procedure for constructing penalty estimators and apply it in constructing LASSO,

Adaptive LASSO and SCAD estimators for β in the CAR model. Numerical studies

are then carried out to compare restricted and shrinkage estimators with the penalty

estimators based on simulated as well as real data examples.

In Chapter 3, we propose pretest, shrinkage and penalty estimators for the large-

scale effects of the SAR model and, following the structure of Chapter 2, we study

numerically their relative performances. Finally, we consider in Chapter 4 the problem

of constructing pretest, shrinkage and penalty estimators for the SMA model. The

contributions in this dissertation are summarized as follows:

1. We propose the restricted, pretest, and shrinkage estimators for estimating the

large-scale effect in the conditional autoregressive CAR, simultaneous autore-

gressive SAR and spatial moving average SMA models. This class of estimators

is new for these spatial models and has never been considered in the literature.

We indicate the importance of using the prior information in producing a sub-

model, which carefully represents the data, and reduces the model complexity.

2. Analytical results on the risks and biases of the restricted, pretest, shrinkage

and full model estimators are derived based on the concept of distributional

biases and risks. Also, mean squared error matrices of these estimators are

derived and compared analytically, taking the full model MLEs as a benchmark

estimator for the comparison.

3. We introduce a simple algorithm for computing penalty estimators for the large-
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scale effect parameters in the three spatial regression models, CAR, SAR and

SMA. This algorithm exploits matrix decomposition and existing LARS algo-

rithm for computing the LASSO, Adaptive LASSO and SCAD estimators of

the large-scale effects in these three spatial models.

4. We carry out intensive empirical assessment of the above array of proposed es-

timators through two real data examples and Monte Carlo simulations. Specif-

ically, we run large scale Monte Carlo simulations comparing the mean squared

errors of the restricted, pretest, and shrinkage estimators proposed for the three

spatial models with respect to the unrestricted MLEs. We also compare these

estimators to the LASSO, Adaptive LASSO and SCAD estimators by using the

mean squared prediction error (MSPE) as a measure of relative performance

with respect to the benchmark estimator. Finally, we apply these estimation

procedures to two data sets on housing prices and data on crime distribution.

In this application to a real data set, we device a bootstrapping procedure for

obtaining the mean squared prediction errors of the various estimators.

5. Finally, we appreciate the performance of the proposed estimators and give

recommendations on which ones are safer to use in which situation and we

propose important research topics for extending the results of this dissertation.



Chapter 2

Efficient Estimation for the

Conditional Autoregressive Model

2.1 Introduction

In this chapter we will consider the CAR model and construct pretest, James-Stein

and positive James-Stein shrinkage estimators for the so called, large-scale effects

vector of parameters, β. We postulate a general candidate subspace, Hβ = h, where

H is a known q× p real-valued matrix and h is a known q-dimensional vector of real

numbers. Such a general restriction accommodates a variety of prior non-sample in-

formation about the parameters put forward by the investigator as well as restrictions

stemming from model selection procedures such as AIC, BIC and penalty model selec-

tion approaches. For instance, if based on prior knowledge, the investigator believes

that some of the large-scale effects are irrelevant, then H will be an appropriately

defined contrast matrix and h could be set to zero. On the other hand, when there

24
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is no prior non-sample information, one could resort to model selection procedures

and identify some of the components of β as being practically zero. In this latter

situation, as the final model selected need not be the true model, it is still safer to

resort to estimation methods which take into account the linear restriction induced

by the model selection criteria.

Based on the postulated candidate subspace, we build restricted MLE estimators

for the effects of the model reduced to the candidate subspace β̂R. Consequently, we

show that this vector is jointly and asymptotically multivariate normal with the vector

of unrestricted MLE estimator of the large-scale effects, β̂. For completeness, we re-

iterate the marginal asymptotic normality of β̂ result due to Mardia and Marshall

(1984). At this point, we define the shrinkage estimators as combinations of β̂ and

β̂R and provide theoretical analysis of their risks and biases by comparing to the

benchmark β̂ as well as to the restricted estimator β̂R. A Monte Carlo simulation

study is then undertaken in order to compare the small sample performance of this

array of estimators.

The second objective of the chapter is to construct penalty estimators for β based

on the LASSO, adaptive LASSO and SCAD penalty estimators. We devise a second

Monte Carlo simulation to compare the shrinkage to penalized estimators in terms of

risks and prediction errors. Finally, we apply the estimators to real data on Boston

Housing Prices.

2.1.1 Chapter Organization

Section 2.2 discusses the conditional autoregressive (CAR) model and preliminar-

ies. The unrestricted maximum likelihood estimation is discussed in detail in Section
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2.3. In Section 2.4, we present estimation strategies based on shrinkage techniques.

Asymptotic results are provided in Section 2.5. We present the asymptotic risk anal-

ysis in Section 2.6. In Section 2.7, we consider estimation of the parameter vector β

using three penalty functions. Numerical studies to compare the performance of all

estimators are illustrated in Section 2.8. We present a conclusion in Section 2.9.

2.2 The model and preliminaries

Following Cressie (1993), assume that there are n spatial sites (reference locations

such as small geographical areas, pixels, etc..), the collection of which forms what is

known as a lattice, denoted by s = {s1, s2, . . . , sn}. For each one of these sites, a set

of neighboring sites is defined by

N(si) = {sj : j = 1, . . . , n is a neighbor of i}, i = 1, . . . , n,

where a site is neighbor to another if they are close to each other under a cer-

tain metric. The collection of observations at these sites is denoted by Yn(s) =

{Y (s1), Y (s2), . . . , Y (sn)}, while the set of covariates that comes with it, is denoted

by X(s) = Xi = (X1i, X2i, . . . , Xpi)
′. The effect of these covariates on Yn(s) is a

vector β = (β1, β2, . . . , βp)
′, known also as the large-scale effects of the spatial model.

When Y (si) is continuous, it is often modeled as a Gaussian process with mean

X(si)
′β and covariance matrix allowing for the spatial dependence among responses

in a neighborhood. For simplicity of notation, we shall compact the covariate vectors

for all sites into a design matrix Xn(s). The subscript n and the spatial location

index s will be omitted sometimes, unless we need to display them explicitly. That
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is, we will simply refer to the data on the lattice s as (Y,X).

In this chapter we shall concentrate on a class of spatial models known as CAR

(conditional autoregressive) models introduced by Besag et al. (1991). Dropping the

index s referring to the site, the CAR model of Besag et al. (1991) can be defined as

Y ∼ N
(
Xβ, σ2(I − ρW ∗)−1D

)
,

where W ∗ = { wij

wi+
}ni,j=1 with wi+ =

n∑
j=1

wij is a known standardized proximity (close-

ness) matrix, D = diag{ 1
w1+

, 1
w2+

, . . . , 1
wn+
} and σ2 > 0. The proximity matrix often

consists of elements wij = 1 if location j is neighbor to location i and wij = 0

otherwise. Essentially, this model is a multivariate Gaussian model with only one

observation, Y (s). The name conditional autoregressive comes from the fact that

this model can be re-written in the following conditional form,

E{Y (si) | Y (sj), j 6= i} = X ′(si)β + ρ
n∑
j=1

Wij(Y (sj)−X ′(sj)β)

var{Y (si) | Y (sj), j 6= i} = σ2
i =

σ2

Wi+

.

2.3 Unrestricted Maximum Likelihood Estimation

The maximum likelihood estimators (MLEs) of β, σ2, and ρ for the CAR model are

usually obtained from the log-likelihood function given by

l = log(L(β, σ2, ρ)) = −n
2

log(2π)− n

2
log(σ2)− 1

2
log(|(I − ρW ∗)−1D|)

− 1

2σ2
(Y −Xβ)′D−1(I − ρW ∗)(Y −Xβ), (2.1)
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where |A| denotes the determinant of the matrix A, through the following simple

profiling approach (Cressie, 1993):

i) For a fixed ρ, solve the likelihood equations

∂l

∂β
=

1

2σ2

{
X ′D−1(I − ρW ∗)(Y −Xβ)

+(Y −Xβ)′D−1(I − ρW ∗)(X)
}

= 0

∂l

∂σ2
= − n

2σ2
− 1

2
(Y −Xβ)′D−1(I − ρW ∗)(Y −Xβ) = 0

to obtain

β̂(ρ) =
(
X ′D−1(I − ρW ∗)X

)−1
X ′D−1(I − ρW ∗)Y (2.2)

σ̂2(ρ) =
(Y −Xβ̂(ρ))′D−1(I − ρW ∗)(Y −Xβ̂(ρ))

n

ii) Plug β̂ and σ̂2 back in the log-likelihood function, and maximize the profile

log-likelihood function

l∗(ρ) = −n
2

log

(
(Y −Xβ̂(ρ))′D−1(I − ρW ∗)(Y −Xβ̂(ρ))

n

)
− 1

2
log(|(I − ρW ∗)−1D|),

with respect to ρ to obtain a maximum profile likelihood estimator, ρ̂.

iii) Finally, replace ρ̂ back into (2.2) to obtain the final estimators, which we shall

call the unrestricted maximum likelihood estimators (UMLE) of β and σ2, de-

noted by β̂, and σ̂2, respectively.
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The consistency and the asymptotic normality of the vector θ̂ = (β̂, σ̂2, ρ̂) follow

directly from a general result due to Mardia and Marshall (1984) via an increasing

domain asymptotic method. Generally, in increasing domain asymptotics, it is as-

sumed that the number of sites is approaching infinity while number of observations

at each site is held fixed. The asymptotic normality of the large-scale effects β̂ is a

straightforward consequence of the Mardia-Marshall result.

Theorem 2.3.1. (Mardia and Marshall (1984)) As n −→∞, and under the conditions

in the Appendix A, β̂
P−→ β,

√
n(β̂ − β)

D−→ N
(
0, σ2C−1

0

)
.

2.4 Improved Estimation Strategies

In this section, we propose four estimators for the large-scale effects of the CAR model.

The first is an estimator restricted to a candidate subspace of the form Hβ = h, as

discussed in the introduction of this chapter. The candidate subspace could come

from uncertain prior information or from model selection methodologies such as the

penalty estimation methods to be discussed in this chapter. The remaining estimators

which will be proposed in this section are the pretest and shrinkage estimators.
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2.4.1 Restricted Estimator

Here we are interested in estimating the vector β when it is suspected that β may be

restricted to a subspace defined by

A0 : Hβ = h (2.3)

where H is a q × p known matrix of rank q(q ≤ p), and h is a q × 1 vector of known

constants. By using Lagrange multipliers, it is straight forward to show that the MLE

of β, restricted to the candidate subspace Hβ = h, is

β̂R = β̂ − (X ′nĈ
−1
n Xn)−1H ′(H(X ′nĈ

−1
n Xn)−1H ′)−1(Hβ̂ − h), (2.4)

while the version with known ρ is

β̂R(ρ) = β̂(ρ)− (X ′nC
−1
n Xn)−1H ′(H(X ′nC

−1
n Xn)−1H ′)−1(Hβ̂(ρ)− h). (2.5)

It is obvious that β̂R is a biased estimator unless the restriction induced by the

candidate subspace is correct. On the other hand, the UMLE of β obtained in

the previous section is unbiased and more efficient than the restricted estimator if

the true parameter vector β lives in its natural space, free of restrictions. This

comparative analysis as well as the joint asymptotic normality of the vector (β̂R, β̂)

will be discussed in Section 2.5. Since the prior information leading to β̂R is uncertain,

so is the quality of this estimator. Therefore, a way out of this dilemma is to construct

pretest and shrinkage-type estimators which combine β̂R and β̂ in such a way that

the uncertainty in the prior information is incorporated in the estimation process.
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2.4.2 Pretest Estimator

The pretest estimator denoted by β̂PT is defined as follows

β̂PT = β̂I(Ln > χ2
q,α) + β̂RI(Ln ≤ χ2

q,α)

where I(A) is an indicator function for the event A, Ln is the test statistic for testing

the null hypothesis (2.3) and given by

Ln =
(Hβ̂ − h)′(H(X ′nĈ

−1
n Xn)−1H ′)−1(Hβ̂ − h)

s2
e

, (2.6)

s2
e =

(Yn −Xnβ̂)′Ĉ−1
n (Yn −Xnβ̂)

n− p
, (2.7)

and Ĉn = (I− ρ̂W ∗)−1D. Here, χq,α, is the αth upper quantile of a central chi-square

distribution with q degrees of freedom. This estimator can also be rewritten as

β̂PT = β̂ − (β̂ − β̂R)I(Ln ≤ χ2
q,α). (2.8)

If we look at the candidate subspace as the linear hypothesis, A0 : Hβ = h, it is

obvious that the pretest estimator depends on whether or not the candidate subspace

restriction is accepted at level α. Accordingly, the pretest estimator yields only two

possibilities: either β̂R or β̂. Therefore, the statistic Ln serves as test statistic for A0

with associated level of significance α.
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2.4.3 Shrinkage Estimators

Following Ahmed (2001), the James-Stein estimator of β can be defined as

β̂JS = β̂R + (β̂ − β̂R){1− (q − 2)L−1
n }. (2.9)

Sometimes, the James-Stein estimator defined above suffers from a phenomenon

known as over-shrinkage, whereby negative coordinates of β̂ are obtained whenever

(q − 2)L−1
n > 1. In order to avoid such eventuality, we consider the positive rule

James-Stein estimator,

β̂JS+ = β̂R + (β̂ − β̂R){1− (q − 2)L−1
n }+, (2.10)

where u+ = max(0, u). Alternatively, β̂JS+ can be written as

β̂JS+ = β̂R + {1− (q − 2)L−1
n }I(Ln > (q − 2))(β̂ − β̂R), (2.11)

= β̂JS − (1− (q − 2)L−1
n )I(Ln < (q − 2))(β̂ − β̂R). (2.12)

2.5 Asymptotic Results

In this section we study the asymptotic behavior of the various estimators,

β̂, β̂R, β̂JS, β̂JS+. Specifically, we show that the restricted and unrestricted estima-

tors are jointly asymptotically normal. Secondly, we define and derive expressions for

the asymptotic distributional bias (ADB), the asymptotic mean squared error matrix

(AMSEM), and the asymptotic quadratic risk (AQR) of the estimators by using the

joint normality of β̂ and β̂R. In particular, the AQR is a measure of the risk of the
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estimators based on quadratic loss function and hence, it can be used to compare the

various estimators discussed in the previous sections. Such comparative study will be

detailed in Section 2.6 below.

2.5.1 Joint Normality

In this section we prove a technical result which shows that the estimators β̂ and β̂R

are asymptotically jointly normal under the sequence of local alternatives,

A(n) : Hβ = h+
ξ√
n
, (2.13)

where ξ is a q×1 fixed vector in Rq. If we set ξ = 0, then the local alternative becomes

Hβ = h, which is the linear hypothesis representing the candidate subspace. The

main result of this subsection is in the following theorem.

Theorem 2.5.1. Under the local alternatives in (2.13) and the regularity conditions

(i)-(v) in the Appendix A, we have

(i) T
(1)
n =

√
n(β̂ − β)

D−→ T (1) ∼ Np(0, σ
2C−1

0 )

(ii) T
(2)
n =

√
n(β̂R − β)

D−→ T (2) ∼ Np(−δ, σ2A0),

(iii) T
(3)
n =

√
n(β̂ − β̂R)

D−→ T (3) ∼ Np(δ, σ
2(C−1

0 −A0))

(iv)

 T
(1)
n

T
(3)
n

 D−→

 T (1)

T (3)

 ∼ N2p


 0

δ

 , σ2

 C−1
0 C−1

0 −A0

C−1
0 −A0 C−1

0 −A0




(v)

 T
(2)
n

T
(3)
n

 D−→

 T (2)

T (3)

 ∼ N2p


 −δ

δ

 , σ2

 A0 0

0 C−1
0 −A0


,
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where, A0 = C−1
0 −C−1

0 H ′(HC−1
0 H ′)−1HC−1

0 , δ = C−1
0 H ′(HC−1

0 H ′)−1ξ.

Proof:

(i) The proof follows from Mardia and Marshall (1984).

(ii)

T (2)
n =

√
n(β̂R − β)

=
√
n
{
β̂ − (X ′nĈ

−1
n Xn)−1H ′(H(X ′nĈ

−1
n Xn)−1H ′)−1

(Hβ̂ − h)− β
}

=
√
n(β̂ − β)−

√
n(X ′nĈ

−1
n Xn)−1H ′(H(X ′nĈ

−1
n Xn)−1H ′)−1

H(β̂ − β)−
√
n(X ′nĈ

−1
n Xn)−1H ′(H(X ′nĈ

−1
n Xn)−1H ′)−1

(Hβ − h)

=
√
n(β̂ − β)− (X ′nĈ

−1
n Xn)−1H ′(H(X ′nĈ

−1
n Xn)−1H ′)−1

√
nH(β̂ − β)

− (X ′nĈ
−1
n Xn)−1H ′(H(X ′nĈ

−1
n Xn)−1H ′)−1ξ

=
[
Ip − (X ′nĈ

−1
n Xn)−1H ′(H(X ′nĈ

−1
n Xn)−1H ′)−1H

]
√
n(β̂ − β)− (X ′nĈ

−1
n Xn)−1H ′(H(X ′nĈ

−1
n Xn)−1H ′)−1ξ,

which is a linear function of T
(1)
n , so as n→∞,T (2)

n
D−→ T (2) ∼ Np(µ

(R),Σ(R)),

where

µ(R) = −C−1
0 H ′(HC−1

0 H ′)−1ξ

= −δ, and
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Σ(R) =
[
Ip −C−1

0 H ′(HC−1
0 H ′)−1H

]
σ2C−1

0

[
Ip −C−1

0 H ′(HC−1
0 H ′)−1

H
]

= σ2
{

(C−1
0 −C−1

0 H ′(HC−1
0 H ′)−1HC−1

0 )(Ip −H ′(HC−1
0 H ′)−1

HC−1
0 )
}

= σ2
{
C−1

0 −C−1
0 H ′(HC−1

0 H ′)−1HC−1
0 −C−1

0 H ′(HC−1
0 H ′)−1

HC−1
0 +C−1

0 H ′(HC−1
0 H ′)−1HC−1

0 H ′(HC−1
0 H ′)−1HC−1

0

}
= σ2{C−1

0 −C−1
0 H ′(HC−1

0 H ′)−1HC−1
0 }

= σ2A0.

(iii)

T (3)
n =

√
n(β̂ − β̂R)

=
√
n
{

(X ′nĈ
−1
n Xn)−1H ′(H(X ′nĈ

−1
n Xn)−1H ′)−1(Hβ̂ − h)

}
=
√
n
{

(X ′nĈ
−1
n Xn)−1H ′(H(X ′nĈ

−1
n Xn)−1H ′)−1

(
H(β̂ − β)

+ Hβ − h
)}

= (X ′nĈ
−1
n Xn)−1H ′(H(X ′nĈ

−1
n Xn)−1H ′)−1H

√
n(β̂ − β)

+ (X ′nĈ
−1
n Xn)−1H ′(H(X ′nĈ

−1
n Xn)−1H ′)−1ξ,

which is also a linear function of T
(1)
n . Therefore, as n→∞, we have:

T
(3)
n

D−→ T (3) ∼ Np(µ
(3),Σ(3)), where

µ(3) = C−1
0 H ′(HC−1

0 H ′)−1ξ

= δ,
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Σ(3) =
(
C−1

0 H ′(HC−1
0 H ′)−1H

)
σ2C−1

0

(
H ′(HC−1

0 H ′)−1HC−1
0

)
= σ2C−1

0 H ′(HC−1
0 H ′)−1HC−1

0 H ′(HC−1
0 H ′)−1HC−1

0

= σ2C−1
0 H ′(HC−1

0 H ′)−1HC−1
0

= σ2
(
C−1

0 −A0

)
.

(iv) From (iii) T
(3)
n can be written as

T (3)
n = (X ′nĈ

−1
n Xn)−1H ′(H(X ′nĈ

−1
n Xn)−1H ′)−1HT (1)

n

+ (X ′nĈ
−1
n Xn)−1H ′(H(X ′nĈ

−1
n Xn)−1H ′)−1ξ.

Thus,

 T
(1)
n

T
(3)
n

 =

 Ip

Fn

T (1)
n +

 0p

Gn


= QnT

(1)
n +Un,

where Ip is a p× p identity matrix, 0p is a p× 1 vector of zeros,

Fn = (X ′nĈ
−1
n Xn)−1H ′(H(X ′nĈ

−1
n Xn)−1H ′)−1H ,

Gn = (X ′nĈ
−1
n Xn)−1H ′(H(X ′nĈ

−1
n Xn)−1H ′)−1ξ,

Qn =

 Ip

Fn

 and Un =

 0p

Gn

 .

As n → ∞, Fn
P→ F0 = C−1

0 H ′(HC−1
0 H ′)−1H and Gn

P→ δ. Therfore,
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 T
(1)
n

T
(3)
n

 D−→

 T (1)

T (3)

 ∼ N2p(µ
(4),Σ(4)), where

µ(4) =

 0

δ

 ,

Σ(4) =

 Ip

F0

σ2C−1
0

[
Ip F ′0

]

= σ2

 C−1
0 C−1

0 F ′0

F0C
−1
0 F0C

−1
0 F ′0


= σ2

 C−1
0 C−1

0 −A0

C−1
0 −A0 C−1

0 −A0

 .

(v) Also, note that

 T
(2)
n

T
(3)
n

 is a linear combination of T
(1)
n , and can be written as

 T
(2)
n

T
(3)
n

 =

 Ip − Fn

Fn

T (1)
n +

 −Ip
Ip

Gn.

So, the proof follows using the same procedure as in (iv). 2

2.5.2 Asymptotic Distributional Bias

In this section we define a measure of an estimator’s bias known as the asymptotic

distributional bias (ADB). In general, it is not easy to obtain the finite sample risk

and bias of estimators in many practical situations. It is often resorted to asymptotic



2.5 Asymptotic Results 38

methods which essentially exploit convergence in distribution. However, convergence

in distribution does not guarantee convergence in quadratic risk, needed for the anal-

ysis of risk and bias in the case of the shrinkage estimators. This difficulty has

been overcome largely by introducing the concept of asymptotic distributional bias

and risk, which, in turn, is based on the concept of local alternatives defined in the

previous section.

For any given estimator β̂∗ of β, let G(x) be the asymptotic distribution function

of
√
n(β̂∗ − β),

G(x) = lim
n→∞

PA(n)
(
√
n(β̂∗ − β) ≤ x). (2.14)

We define the ADB as

ADB(β̂∗) =

∫
xdG(x). (2.15)

The following result, cited also in (Saleh, 2006, p32), whose proof can be found in

Judge and Bock (1978), and has been generalized in Nkurunziza (2012a), is necessary

for deriving ADB expressions for our estimators.

Theorem 2.5.2. Let y = (y1, y2, . . . , yq)
′ be a q−dimensional normal vector distributed

as Nq(µy, Iq). Then for any measurable function ϕ, we have

E[yϕ(yy′)] = µyE{ϕ(χ2
q+2(∆2))}, where ∆2 =

µ′yµy

2
.

The ADB expressions of our estimators of β are given in the following Theorem.

Theorem 2.5.3. Under the assumptions of Theorem (2.5.1), we have

(i) ADB(β̂) = 0
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(ii) ADB(β̂R) = −δ

(iii) ADB(β̂PT ) = −δHq+2(χ2
q(α); ∆2)

(iv) ADB(β̂JS) = −(q − 2)δE(χ−2
q+2(∆2))

(v) ADB(β̂JS+) = ADB(β̂JS)− δE{(1− (q − 2)χ−2
q+2(∆2))I(χ2

q+2(∆2) < (q − 2))}

= −δ
[
(q − 2)E(χ−2

q+2(∆2)) + E{(1− (q − 2)χ−2
q+2(∆2))I(χ2

q+2(∆2) < (q − 2))}
]

where Hr(.) is the cumulative distribution function of non-central χ2 random variable

with r degrees of freedom and non centrality parameter ∆2 = 1
σ2ξ
′(HC−1

0 H ′)−1ξ =

1
σ2δ

′C0δ.

Proof:

(i) ADB(β̂) = E{T (1)} = 0, by Theorem 2.5.1(i).

(ii) ADB(β̂R) = E{T (2)} = −δ, by Theorem 2.5.1(ii).

(iii) Note that,

√
n
(
β̂PT − β

)
=
√
n
(
β̂ − (β̂ − β̂R)I(Ln ≤ Ln,α)− β

)
=
√
n(β̂ − β)−

√
n(β̂ − β̂R)I(Ln ≤ Ln,α)

= T (1)
n −

{√
n(X ′nĈ

−1
n Xn)−1H ′(H(X ′nĈ

−1
n Xn)−1H ′)−1

(Hβ̂ − h)I(Ln ≤ Ln,α)
}
.

Now, as n → ∞, with Slutsky’s Theorem, we have Ln
D−→ L ∼ χ2

q, and

Ln,α
D−→ χ2

q;α, the upper α−quantile of the χ2
q, and

√
n(Hβ̂ − h)

D→ Nq(ξ, σ
2(HC−1

0 H ′)).
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Thus, using Theorem 2.5.2,

ABD(β̂PT ) = −C−1
0 H ′(HC−1

0 H ′)−1ξHq+2(χ2
q(α); ∆2)

= −δHq+2(χ2
q(α); ∆2).

(iv) Note that,

√
n
(
β̂JS − β

)
=
√
n
(
β̂ − (q − 2)(β̂ − β̂R)L−1

n − β
)

=
√
n(β̂ − β)− (q − 2)

√
n(β̂ − β̂R)L−1

n

= T (1)
n − (q − 2)

(
T (3)
n L−1

n ).

Thus, ADB(β̂JS) = −(q − 2)E{T (3)L−1}

= −(q − 2)δE(χ−2
q+2(∆2)), using Theorem 2.5.2.

(v) Note that,

√
n
(
β̂JS+ − β

)
=
√
n
(
β̂JS − (1− (q − 2)L−1

n )I(Ln < (q − 2))

(β̂ − β̂R)− β
)

=
√
n
(
β̂JS − β

)
−
{√

n((β̂ − β̂R)(1− (q − 2)L−1
n )

I(Ln < (q − 2)))
}

=
√
n
(
β̂JS − β

)
−
{
T (3)
n (1− (q − 2)L−1

n )I(Ln < (q − 2))
}
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Therefore,

ADB(β̂JS+) = ADB(β̂JS)− E
{
T (3)(1− (q − 2)L−1)I(L < (q − 2))

}
= −(q − 2)δE(χ−2

q+2(∆2))− δE
{

(1− (q − 2)χ−2
q+2(∆2))

I(χ2
q+2(∆2) < (q − 2))

}
= −δ

[
(q − 2)E(χ−2

q+2(∆2)) + E
{

(1− (q − 2)χ−2
q+2(∆2))

I(χ2
q+2(∆2) < (q − 2))

}]
.

2

2.5.3 Asymptotic Quadratic Risk

For any estimator β̂∗ of β, define the quadratic loss as

L(β̂∗,β) = n(β̂∗ − β)′M (β̂∗ − β)

= tr

{
M
(
n(β̂∗ − β)(β̂∗ − β)′

)}
, (2.16)

where M is a p × p positive definite matrix. If
√
n(β̂∗ − β)

D−→ T ∗, then the

asymptotic mean squared error matrix of β̂∗ is defined by

AMSEM(β̂∗) = E{T ∗T ∗′}

=

∫
xx′dG(x), (2.17)

where G(x) is defined in (2.14).
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Finally, define the asymptotic quadratic risk (AQR) as

AQR(β̂∗,M ) = E{T ∗′MT ∗}

=

∫
(x′Mx) dG(x)

= tr
{
MAMSEM(β̂∗)

}
. (2.18)

Again, the following result cited in (Saleh, 2006, p32), whose proof can be found in

Judge and Bock (1978), and has been generalized in Nkurunziza (2012a), is necessary

for deriving AMSEM and AQR expressions for our estimators.

Theorem 2.5.4. Let y = (y1, y2, . . . , yq)
′ be a q−dimensional normal vector distributed

as Nq(µy, Iq). Then for any measurable function ϕ, we have

E[yy′ϕ(yy′)] = IqE{ϕ(χ2
q+2(∆2))}+ µyµ

′
yE{ϕ(χ2

q+4(∆2))}.

Theorem 2.5.5. Under the assumptions of Theorem (2.5.1) and for M defined above,

we have

(i) AMSEM(β̂) = σ2C−1
0 ,

AQR(β̂,M) = σ2tr(MC−1
0 ),

(ii) AMSEM(β̂R) = σ2A0 + δδ′,

AQR(β̂R,M) = σ2tr
(
MC−1

0

)
− σ2tr(V11) + η′1V11η1,
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(iii)

AMSEM(β̂PT ) = σ2C−1
0 − σ2C−1

0 H ′(HC−1
0 H ′)−1HC−1

0

Hq+2(χ2
q(α); ∆2) + δδ′{2Hq+2(χ2

q(α); ∆2)

− Hq+4(χ2
q(α); ∆2)},

AQR(β̂PT ,M) = σ2tr(MC−1
0 )− σ2tr(V11)Hq+2(χ2

q(α); ∆2)

+ η′1V11η1{2Hq+2(χ2
q(α); ∆2)−Hq+4(χ2

q(α); ∆2)},

(iv)

AMSEM(β̂JS) = σ2C−1
0 − (q − 2)σ2(C−1

0 −A0)
{

2E(χ−2
q+2(∆2))−

(q − 2)E(χ−4
q+2(∆2))

}
+ (q − 2)(q + 2)δδ′E(χ−4

q+4(∆2)),

AQR(β̂JS,M) = σ2tr(MC−1
0 )− σ2(q − 2)

{
2E(χ−2

q+2(∆2))

− (q − 2)E(χ−4
q+2(∆2))

}
tr(V11)

+ (q − 2)(q + 2)E(χ−4
q+4(∆2))η′1V11η1,

(v)

AMSEM(β̂JS+) = AMSEM(β̂JS)− σ2(C−1
0 −A0)

E
{

(1− (q − 2)χ−2
q+2(∆2))2I(χ2

q+2(∆2) ≤ (q − 2))
}

− δδ′E
{

(1− (q − 2)χ−2
q+4(∆2))2I(χ2

q+4(∆2) < (q − 2))
}

+ 2δδ′E
{

(1− (q − 2)χ−2
q+2(∆2))I(χ2

q+2(∆2) < (q − 2))
}
,

AQR(β̂JS+,M ) = AQR(β̂JS,M)
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− σ2
{
E
(
(1− (q − 2)χ−2

q+2(∆2))2I(χ2
q+2(∆2) < (q − 2))

) }
tr(V11)

− E
{

(1− (q − 2)χ−2
q+4(∆2))2I(χ2

q+4(∆2) < (q − 2))
}
η′1V11η1

+ 2E
{

(1− (q − 2)χ−2
q+2(∆2))I(χ2

q+2(∆2) < (q − 2))
}
η′1V11η1,

where A0 = C−1
0 −C−1

0 H ′(HC−1
0 H ′)−1HC−1

0 , η =

 η1

η2

 = ΓC
−1/2
0 H ′

(HC−1
0 H ′)−1ξ and Γ a p× p orthogonal matrix such that

ΓC
−1/2
0 H ′(HC−1

0 H ′)−1HC
−1/2
0 Γ′ =

 Iq 0q×(p−q)

0(p−q)×q 0(p−q)×(p−q)

 ,

and ΓC
−1/2
0 MC

−1/2
0 Γ′ =

 V11 V12

V ′12 V22

.

Proof:

(i) Note that,

n(β̂ − β)(β̂ − β)′ = T (1)
n T (1)

n
′. Therefore by Theorem 2.5.1(i), we have

AMSEM(β̂) = E{T (1)T (1)′} = σ2C−1
0 ,

AQR(β̂,M ) = tr{MAMSEM(β̂)} = tr{M(σ2C−1
0 )} = σ2tr(MC−1

0 ).
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(ii) Note that,

n(β̂R − β)(β̂R − β)′ = T (2)
n T (2)

n
′. Therefore by Theorem 2.5.1(ii), we have

AMSEM(β̂R) = E
{
T (2)T (2)′}

= σ2A0 + (−δ)(−δ′) = σ2A0 + δδ′,

AQR(β̂R,M ) = tr{MAMSEM(β̂R)}

= tr
{
M (σ2A0 + δδ′)

}
= tr

{
M
[
σ2(C−1

0 −C−1
0 H ′(HC−1

0 H ′)−1HC−1
0 )

+ δδ′
]}

= σ2tr(MC−1
0 )− σ2tr

(
MC−1

0 H ′(HC−1
0 H ′)−1

HC−1
0

)
+ δ′Mδ.

Note that the matrix C
−1/2
0 H ′(HC−1

0 H ′)−1HC
−1/2
0 is symmetric and idem-

potent of rank q(q ≤ p), thus, there exists an orthogonal p×p matrix Γ such that

ΓC
−1/2
0 H ′(HC−1

0 H ′)−1HC
−1/2
0 Γ′ =

 Iq 0q×(p−q)

0(p−q)×q 0(p−q)×(p−q)

 , (2.19)

and

ΓC
−1/2
0 MC

−1/2
0 Γ′ =

 V11 V12

V ′12 V22

 .

where V11 and V22 are square matrices of orders q and (p− q), respectively.
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Further, δ′Mδ can be written as

δ′Mδ =
[
ξ′(HC−1

0 H ′)−1HC−1
0

]
M
[
C−1

0 H ′(HC−1
0 H ′)−1ξ

]
=

[
ξ′(HC−1

0 H ′)−1(HC−1
0 H ′)(HC−1

0 H ′)−1HC−1
0

]
M[

C−1
0 H ′(HC−1

0 H ′)−1(HC−1
0 H ′)(HC−1

0 H ′)−1ξ
]

=
[
ξ′(HC−1

0 H ′)−1HC
−1/2
0 Γ′ΓC

−1/2
0 H ′(HC−1

0 H ′)−1

HC
−1/2
0 Γ′ΓC

−1/2
0

]
M
[
C
−1/2
0 Γ′ΓC

−1/2
0 H ′

(HC−1
0 H ′)−1HC

−1/2
0 Γ′ΓC

−1/2
0 H ′(HC−1

0 H ′)−1ξ
]

=
[
ξ′(HC−1

0 H ′)−1HC
−1/2
0 Γ′

][
ΓC

−1/2
0 H ′(HC−1

0 H ′)−1

HC
−1/2
0 Γ′

][
ΓC

−1/2
0 MC

−1/2
0 Γ′

][
ΓC

−1/2
0 H ′(HC−1

0 H ′)−1

HC
−1/2
0 Γ′

][
ΓC

−1/2
0 H ′(HC−1

0 H ′)−1ξ
]
.

By letting η = ΓC
−1/2
0 H ′(HC−1

0 H ′)−1ξ, δ′Mδ can be written as

δ′Mδ = η′

 Iq 0

0 0


 V11 V12

V ′12 V22


 Iq 0

0 0

η
= η′

 V11 0

0 0

η
= η′1V11η1.
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Also,

tr
[
MC−1

0 (HC−1
0 H ′)−1HC−1

0

]
= tr

[
MΓ′ΓC

−1/2
0 C

−1/2
0 H ′

(HC−1
0 H ′)−1HC

−1/2
0 C

−1/2
0 Γ′Γ

]
= tr

[(
ΓC

−1/2
0 MC

−1/2
0 Γ′

)(
ΓC

−1/2
0 H ′

(HC−1
0 H ′)−1HC

−1/2
0 Γ′

)]

= tr


 V11 V12

V ′12 V22


 Iq 0

0 0




= tr(V11).

Thus,

AQR(β̂R,M ) = σ2tr(MC−1
0 )− σ2tr(V11) + η′1V11η1.

(iii) Note that,

n(β̂PT − β)(β̂PT − β)′ = n
[
β̂ − (β̂ − β̂R)I(Ln ≤ Ln,α)− β

][
β̂ −

(β̂ − β̂R)I(Ln ≤ Ln,α)− β
]′

= n(β̂ − β)(β̂ − β)′ + n
[
(β̂ − β̂R)

(β̂ − β̂R)′I2(Ln ≤ Ln,α)
]

− 2n
[
(β̂ − β)(β̂ − β̂R)′I(Ln ≤ Ln,α)

]
= T (1)

n T (1)
n
′ + T (3)

n T (3)
n
′I2(Ln ≤ Ln,α)

− 2T (1)
n T (3)

n
′I(Ln ≤ Ln,α).
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Note that,

T (3)
n T (3)

n
′I2(Ln ≤ Ln,α) = s2

e(X
′
nĈ
−1
n Xn)−1H ′(H(X ′nĈ

−1
n Xn)−1H ′)−1/2[

s2
e(H(X ′nĈ

−1
n Xn)−1H ′)

]−1/2√
n(Hβ̂ − h)[

s2
e(H(X ′nĈ

−1
n Xn)−1H ′)

]−1/2√
n(Hβ̂ − h)′

I(Ln ≤ Ln,α)(H(X ′nĈ
−1
n Xn)−1H ′)−1/2H

(X ′nĈ
−1
n Xn)−1.

Now as n −→∞, we have
√
n(Hβ̂ − h)

D→ Nq(ξ, σ
2(HC−1

0 H ′)),

[
s2
e(H(X ′nĈ

−1
n Xn)−1H ′)

]−1/2
.
√
n(Hβ̂ − h)

D−→ Nq

(
(σ2(HC−1

0 H ′)−1)−1/2ξ, Iq
)
.

Also, T (1) | T (3) D−→ Np(T
(3) − δ, σ2A0). Therefore,

AMSEM(β̂PT ) = E1 + E2 + E3,

where, by Theorem 2.5.1(i) E1 is given by:,

E1 = E{T (1)T (1)′} = σ2C−1
0 ,

E2 = E
{
T (3)T (3)′I2(L ≤ χ2

q(α); ∆2)
}
.
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By using Theorem 2.5.4 E2 is given by:

E2 = σ2C−1
0 H ′(HC−1

0 H ′)−1HC−1
0 Hq+2(χ2

q(α); ∆2)

+ C−1
0 H ′(HC−1

0 H ′)−1ξ

ξ′(HC−1
0 H ′)−1HC−1

0 Hq+4(χ2
q(α); ∆2),

= σ2(C−1
0 −A0)Hq+2(χ2

q(α); ∆2) + δδ′Hq+4(χ2
q(α); ∆2),

E3 = −2E
{
T (1)T (3)′I(L ≤ χ2

q(α); ∆2)
}
,

by using Theorem 2.5.3(iii) E3 is given by

E3 = −2E
{
E
{
T (1)T (3)′I(L ≤ χ2

q(α); ∆2) | T (3)
}}

= −2E
{(
T (3) − δ

)
T (3)′I(L ≤ χ2

q(α); ∆2)
}

= −2× (Second term) + 2δδ′Hq+2(χ2
q(α); ∆2).

Finally,

AMSEM(β̂PT ) = E1 + E2 + E3

= σ2C−1
0 − σ2(C−1

0 −A0)Hq+2(χ2
q(α); ∆2)

− δδ′Hq+4(χ2
q(α); ∆2) + 2δδ′Hq+2(χ2

q(α); ∆2)

= σ2C−1
0 − σ2C−1

0 H ′(HC−1
0 H ′)−1HC−1

0

Hq+2(χ2
q(α); ∆2) + δδ′

{
2Hq+2(χ2

q(α); ∆2)

− Hq+4(χ2
q(α); ∆2)

}
.
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Following the same procedure as in part (ii), the AQR(β̂PT ,M ) will be

AQR(β̂PT ,M ) = tr(MAMSEM(β̂PT ))

= tr
{
Mσ2C−1

0 − σ2C−1
0 H ′(HC−1

0 H ′)−1HC−1
0

Hq+2(χ2
q(α); ∆2) + δδ′

{
2Hq+2(χ2

q(α); ∆2)

− Hq+4(χ2
q(α); ∆2)

}}
= σ2tr(MC−1

0 )− σ2tr(MC−1
0 H ′(HC−1

0 H ′)−1HC−1
0 )

Hq+2(χ2
q(α); ∆2) + δ′Mδ

{
2Hq+2(χ2

q(α); ∆2)

− Hq+4(χ2
q(α); ∆2)

}
= σ2tr(MC−1

0 )− σ2tr(V11)Hq+2(χ2
q(α); ∆2)

+ η′1V11η1

{
2Hq+2(χ2

q(α); ∆2)−Hq+4(χ2
q(α); ∆2)

}
.

(iv) Note that,

n(β̂JS − β)(β̂JS − β)′ = n(β̂JS − β)(β̂JS − β)′

= n
(
β̂ − (q − 2)(β̂ − β̂R)L−1

n − β
)

(
β̂ − (q − 2)(β̂ − β̂R)L−1

n − β
)′

= n(β̂ − β)(β̂ − β)′

+ n(q − 2)2(β̂ − β̂R)(β̂ − β̂R)′L−2
n

− 2n(q − 2)(β̂ − β)(β̂ − β̂R)′L−1
n

= T (1)
n T (1)

n
′ + (q − 2)2T (3)

n T (3)
n
′L−2
n

− 2(q − 2)T (1)
n T (3)

n
′L−1
n .
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Therefore,

AMSEM(β̂JS) = E1 + E2 + E3,

where E1, E2 and E3 are, respectively

E1 = E{T (1)T (1)′} = σ2C−1
0 ,

E2 = (q − 2)2E
{
T (3)T (3)′L−2

}
= (q − 2)2σ2(C−1

0 −A0)E(χ−4
q+2(∆2)) + (q − 2)2δδ′E(χ−4

q+4(∆2)),

using the same technique as in the previous part, and

E3 = −2(q − 2)E
{
T (1)T (3)′L−1

}
= −2(q − 2)E

{
E
{
T (1)T (3)′L−1 | T (3)

}}
= −2(q − 2)E

{(
T (3) − δ

)
T (3)′L−1

}
= −2(q − 2)

{
E
{
T (3)T (3)′L−1

}
− δE

{
T (3)′L−1

}}
= −2(q − 2)

{[
σ2(C−1

0 −A0)E(χ−2
q+2(∆2)) + δδ′E(χ−2

q+4(∆2))
]

− δδ′E(χ−2
q+2(∆2))

}
= −2(q − 2)σ2(C−1

0 −A0)E(χ−2
q+2(∆2))− 2(q − 2)δδ′

{
E(χ−2

q+4(∆2))

− E(χ−2
q+2(∆2))

}
.

By using the following result (Saleh, 2006, p33)

E(χ−2
q+4(∆2)) = E(χ−2

q+2(∆2))− 2E(χ−4
q+4(∆2)), (2.20)

E3 can be simplified to
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E3 = −2(q − 2)σ2(C−1
0 −A0)E(χ−2

q+2(∆2)) + 4(q − 2)δδ′E(χ−4
q+4(∆2)).

By combining E1, E2, and E3 we have

AMSEM(β̂JS) = σ2C−1
0 − (q − 2)σ2(C−1

0 −A0)
{

2E(χ−2
q+2(∆2))

− (q − 2)E(χ−4
q+2(∆2))

}
+ (q − 2)(q + 2)δδ′E(χ−4

q+4(∆2)),

AQR((β̂JS,M ) = tr(MAMSEM(β̂JS))

= tr
{
M
[
σ2C−1

0 − (q − 2)σ2(C−1
0 −A0)

{
2E(χ−2

q+2(∆2))

− (q − 2)E(χ−4
q+2(∆2))

}
+ (q − 2)(q + 2)δδ′E(χ−4

q+4(∆2))
]}

= tr(MC−1
0 )− (q − 2)σ2tr

(
MC−1

0 H ′(HC−1
0 H ′)−1

HC−1
0

)
{2E(χ−2

q+2(∆2))− (q − 2)E(χ−4
q+2(∆2))}

+ (q − 2)(q + 2)E(χ−4
q+4(∆2))tr(δ′Mδ)

= σ2tr(MC−1
0 )− (q − 2)σ2

{
2E(χ−2

q+2(∆2))

− (q − 2)E(χ−4
q+2(∆2))

}
tr(V11) + (q − 2)(q + 2)E(χ−4

q+4(∆2))

η′1V11η1.

(v) Note that,

n(β̂JS+ − β)(β̂JS+ − β)′ = n
[
β̂JS − (1− (q − 2)L−1

n )I(Ln < (q − 2))

(β̂ − β̂R)− β
][
β̂JS − (1− (q − 2)L−1

n )

I(Ln < (q − 2))(β̂ − β̂R)− β
]′



2.5 Asymptotic Results 53

= n(β̂JS − β)(β̂JS − β)′

+ n(β̂ − β̂R)(β̂ − β̂R)′(1− (q − 2)L−1
n )2I(Ln < (q − 2))

− 2n(β̂JS − β)(β̂ − β̂R)′(1− (q − 2)L−1
n )I(Ln < (q − 2)). (2.21)

Note that, the last term of (2.21) can be written as follows:

Last term = −2n(β̂JS − β)(β̂ − β̂R)′(1− (q − 2)L−1
n )I(Ln < (q − 2))

= −2n
(
β̂R + (β̂ − β̂R)(1− (q − 2)L−1

n )I(Ln < (q − 2))

− β
)

(β̂ − β̂R)′(1− (q − 2)L−1
n )I(Ln < (q − 2))

= −2n(β̂R − β)(β̂ − β̂R)′(1− (q − 2)L−1
n )I(Ln < (q − 2))

− 2n(β̂ − β̂R)(β̂ − β̂R)′(1− (q − 2)L−1
n )2I(Ln < (q − 2))

= −2T (2)
n T (3)

n
′(1− (q − 2)L−1

n )I(Ln < (q − 2))

− 2T (3)
n T (3)

n
′(1− (q − 2)L−1

n )2I(Ln < (q − 2)).

Therefore, the AMSEM(β̂JS+) = E1 + E2 + E3, where

E1 = AMSEM(β̂JS),

E2 = E
{
T (3)T (3)′(1− (q − 2)L−1)2I(L < (q − 2))

}
= σ2(C−1

0 −A0)E
{

(1− (q − 2)χ−2
q+2(∆2))2I(χ2

q+2(∆2) < (q − 2))
}

+ δδ′E
{

(1− (q − 2)χ−2
q+4(∆2))2I(χ2

q+4(∆2) < (q − 2))
}
,
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using the same procedure as in part (iii), and

E3 = −2E(T (2))E
(
T (3)′(1− (q − 2)L−1)I(L < (q − 2))

)
− 2E

(
T (3)T (3)′(1− (q − 2)L−1)2I(L < (q − 2))

)
= 2δδ′E

{
(1− (q − 2)χ−2

q+2(∆2))I(χ2
q+2(∆2) < (q − 2))

}
− 2σ2(C−1

0 −A0)E
{

(1− (q − 2)χ−2
q+2(∆2))2I(χ2

q+2(∆2) < (q − 2))
}

− 2δδ′E
{

(1− (q − 2)χ−2
q+4(∆2))2I(χ2

q+4(∆2) < (q − 2))
}
,

where the last equality follows from Theorem 2.5.1(v). By combining E1, E2

and E3, we have

AMSEM(β̂JS+) = AMSEM(β̂JS)− σ2(C−1
0 −A0)

E
{

(1− (q − 2)χ−2
q+2(∆2))2I(χ2

q+2(∆2) < (q − 2))
}

− δδ′E
{

(1− (q − 2)χ−2
q+4(∆2))2I(χ2

q+4(∆2) < (q − 2))
}

+ 2δδ′E
{

(1− (q − 2)χ−2
q+2(∆2))I(χ2

q+2(∆2) < (q − 2))
}
,

AQR(β̂JS+,M) = tr(MAMSEM(β̂JS+))

= AQR(β̂JS)

− σ2E
{

(1− (q − 2)χ−2
q+2(∆2))2I(χ2

q+2(∆2) < (q − 2))
}

tr(V11)

− E
{

(1− (q − 2)χ−2
q+4(∆2))2I(χ2

q+4(∆2) < (q − 2))
}

η′1V11η1

+ 2E
{

(1− (q − 2)χ−2
q+2(∆2))I(χ2

q+2(∆2) < (q − 2))
}

η′1V11η1.
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2.6 Risk Analysis

In this section, we will use the AQR measure constructed in the previous section

in order to compare the estimators β̂, β̂R, β̂JS, β̂JS+. As the AQR is a measure

combining bias and variance of the estimators, we will limit ourself to comparisons in

terms of AQR only and will not discuss comparisons in terms of ADB of the proposed

estimators.

Definition 1. Let B be the parameter space of β. If two estimators β̂∗, β̂∗∗ are such

that AQR(β̂∗,M ) ≤ AQR(β̂∗∗,M ) for all values of β ∈ B, with strict inequality for

some values of β, we say that β̂∗ dominates β̂∗∗.

2.6.1 Comparing β̂ and β̂R

It is obvious from the expressions in Theorem 2.5.5 that the AQR of β̂ is a constant,

while the AQR of β̂R can be re-written as

AQR(β̂R,M) = AQR(β̂,M )− σ2tr(V11) + η′1V11η1.

By using Courant Theorem (Saleh, 2006, p.39), we have

σ2∆2chmin(V11) ≤ η′1V11η1 ≤ σ2∆2chmax(V11),
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where chmin(V11) and chmax(V11) are, respectively, the smallest and largest charac-

teristic roots (eigenvalues) of the matrix V11, and ∆2σ2 = η′1η1. It follows that

AQR(β̂,M )− σ2tr(V11) + σ2∆2chmin(V11) ≤ AQR(β̂R,M )

≤ AQR(β̂,M )− σ2tr(V11) + σ2∆2chmax(V11). (2.22)

When ∆2 = 0, the lower and upper bounds on the AQR(β̂R,M ) in this latter

expression are equal and hence β̂R dominates β̂. Also, when 0 < ∆2 ≤ tr(V11)
chmax(V11)

,

from the second part of (2.22), we get

AQR(β̂R,M ) ≤ AQR(β̂,M) − σ2tr(V11) + σ2∆2chmax(V11)

AQR(β̂R,M)− AQR(β̂,M) ≤ −σ2tr(V11) + σ2∆2chmax(V11)

≤ 0,

which means that also in the above interval β̂R dominates β̂. Finally, if ∆2 ≥
tr(V11)

chmin(V11)
, then from the first part of the inequality (2.22), we get

AQR(β̂R,M ) ≥ AQR(β̂,M) − σ2tr(V11) + σ2∆2chmin(V11)

AQR(β̂R,M)− AQR(β̂,M) ≥ −σ2tr(V11) + σ2∆2chmin(V11),

and hence, β̂ performs better than β̂R. In fact, the risk of β̂R becomes unbounded

beyond tr(V11)
chmin(V11)

.
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2.6.2 Comparing β̂ and β̂PT

The asymptotic quadratic risk of β̂PT can be re-written in terms of AQR(β̂,M ) as

AQR(β̂PT ,M ) = AQR(β̂,M )− σ2tr(V11)Hq+2(χ2
q(α); ∆2)

+ η′1V11η1{2Hq+2(χ2
q(α); ∆2)−Hq+4(χ2

q(α); ∆2)}.

Again, by using Courant’s Theorem, we get

AQR(β̂,M) − σ2tr(V11)Hq+2(χ2
q(α); ∆2)

+ σ2∆2chmin(V11)
{

2Hq+2(χ2
q(α); ∆2)−Hq+4(χ2

q(α); ∆2)
}

≤ AQR(β̂PT ,M ) ≤ AQR(β̂,M)− σ2tr(V11)Hq+2(χ2
q(α); ∆2)

+ σ2∆2chmax(V11)
{

2Hq+2(χ2
q(α); ∆2)−Hq+4(χ2

q(α); ∆2)
}
. (2.23)

Now, from the second part of (2.23), we have

AQR(β̂PT ,M )− AQR(β̂,M ) ≤ σ2
(

∆2chmax(V11)
{

2Hq+2(χ2
q(α); ∆2)

− Hq+4(χ2
q(α); ∆2)

}
− tr(V11)

Hq+2(χ2
q(α); ∆2)

)
≤ 0,

whenever ∆2 ≤ tr(V11)Hq+2(χ2
q(α);∆2)

chmax(V11)
{

2Hq+2(χ2
q(α);∆2)−Hq+4(χ2

q(α);∆2)
} . This means that β̂PT per-

forms better than β̂ for all ∆2 ∈

[
0,

tr(V11)Hq+2(χ2
q(α);∆2)

chmax(V11)
{

2Hq+2(χ2
q(α);∆2)−Hq+4(χ2

q(α);∆2)
}).
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On the other hand, from the first part of (2.23), we have

AQR(β̂PT ,M)− AQR(β̂,M ) ≥ σ2
(

∆2Chmin(V11){
2Hq+2(χ2

q(α); ∆2)−Hq+4(χ2
q(α); ∆2)

}
− tr(V11)Hq+2(χ2

q(α); ∆2)
)

≥ 0,

whenever ∆2 ≥ tr(V11)Hq+2(χ2
q(α);∆2)

chmin(V11)
{

2Hq+2(χ2
q(α);∆2)−Hq+4(χ2

q(α);∆2)
} . That is β̂ performs better

than β̂PT for ∆2 ∈

[
tr(V11)Hq+2(χ2

q(α);∆2)

chmin(V11)
{

2Hq+2(χ2
q(α);∆2)−Hq+4(χ2

q(α);∆2)
} ,∞).

When ∆2 = 0, the lower and the upper bounds of AQR(β̂PT ,M) are equal, hence

we get,

AQR(β̂,M )− AQR(β̂PT ,M ) = σ2tr(V11)Hq+2(χ2
q(α); ∆2) ≥ 0.

Therefore, β̂PT performs better than β̂ at ∆2 = 0.

2.6.3 Comparing β̂ and β̂JS

In order to compare the AQR(β̂JS,M ) with the AQR(β̂,M ) we use the following

identity

∆2E(χ−4
q+4(∆2)) = E(χ−2

q+2(∆2))− (q − 2)E(χ−4
q+2(∆2)). (2.24)
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Now, let us re-write the asymptotic quadratic risk of β̂JS in terms of AQR(β̂,M ),

AQR(β̂JS,M) = AQR(β̂,M)− σ2tr(V11)(q − 2)
{

2E(χ−2
q+2(∆2))

− (q − 2)E(χ−4
q+2(∆2))

}
+ (q − 2)(q + 2)E(χ−4

q+4(∆2))η′1V11η1.

Using (2.24), we get

AQR(β̂JS,M ) = AQR(β̂,M )− σ2tr(V11)(q − 2){
(q − 2)E(χ−4

q+2(∆2)) + 2∆2E(χ−4
q+4(∆2))

}
+ (q − 2)(q + 2)E(χ−4

q+2(∆2))η′1V11η1

= AQR(β̂,M)− σ2tr(V11)(q − 2)

{
(q − 2)E(χ−4

q+2(∆2))

+ 2∆2E(χ−4
q+4(∆2))− (q + 2)E(χ−4

q+4(∆2))
η′1V11η1

σ2tr(V11)

}

= AQR(β̂,M)− σ2tr(V11)(q − 2)

{
(q − 2)E(χ−4

q+2(∆2))

+ 2∆2E(χ−4
q+4(∆2))

[
1− (q + 2)η′1V11η1

2∆2σ2tr(V11)

]}
.

From these inequalities and from Courant’s Theorem, we see that AQR(β̂JS,M) ≤

AQR(β̂,M ) for all ∆2,M if

1− (q + 2)η′1V11η1

2∆2σ2tr(V11)
≥ 0, (2.25)

tr(V11)

chmax(V11)
≥ q + 2

2
, q ≥ 3. (2.26)
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Therefore, AQR(β̂JS,M) is less than or equal to AQR(β̂,M ) in the whole pa-

rameter space, provided that the inequality (2.26) holds.

2.6.4 Comparing β̂JS and β̂JS+

From part (v) of Theorem 2.5.5, we can re-write the asymptotic risk difference between

β̂JS+ and β̂JS as

AQR(β̂JS,M)− AQR(β̂JS+,M) = σ2tr(V11)

E
(

(1− (q − 2)χ−2
q+2(∆2))2I(χ2

q+2(∆2) <

(q − 2))
)

+ E
(

(1− (q − 2)χ−2
q+4(∆2))2I(χ2

q+4(∆2) <

(q − 2))
)
η′1V11η1

− 2E
(

(1− (q − 2)χ−2
q+2(∆2))I(χ2

q+2(∆2) <

(q − 2))
)
η′1V11η1.
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Therefore,

AQR(β̂JS,M)− AQR(β̂JS+,M) = σ2

{
tr(V11)E

[
(1− (q − 2)χ−2

q+2(∆2))2

I(χ2
q+2(∆2) < q − 2)

]
+

1

σ2
E
[
(1− (q − 2)χ−2

q+4(∆2))2

I(χ2
q+4(∆2) < q − 2)

]
η′1V11η1

− 2

σ2
E
[
(1− (q − 2)χ−2

q+2(∆2))

I(χ2
q+2(∆2) < q − 2)

]
η′1V11η1

}
. (2.27)

Since,

(
(1− (q − 2)χ−2

q+2(∆2))I(χ2
q+2(∆2) < q − 2)

)
≤ 0, and(

(1− (q − 2)χ−2
q+4(∆2))2I(χ2

q+4(∆2) < q − 2)
)
≥ 0,

the expected values appearing in (2.27) are always nonnegative. Therefore, for all

∆2,M and q ≥ 3, the risk of β̂JS+ is less than or equal to that of β̂JS which, in turn,

is less than or equal to the risk of β̂ in the whole parameter space. Thus for all ∆2,

the following result holds

AQR(β̂JS+,M ) ≤ AQR(β̂JS,M ) ≤ AQR(β̂,M ).
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2.7 Penalty Estimators

In this section we will construct estimators of β by using three penalty functions,

namely, the LASSO, the adaptive LASSO and the SCAD penalty functions for the

CAR model.

Recall that the log-likelihood of the CAR model is

l = log(L(β, σ2, ρ)) = −n
2

log(2π)− n

2
log(σ2)− 1

2
log(C)

− 1

2σ2
(Y −Xβ)′C−1(Y −Xβ), (2.28)

where C = (I − ρW ∗)−1D.

Since neither σ2 nor ρ is subject to any penalty in our study, maximizing the

log-likelihood in (2.28) is equivalent to maximizing

l∗∗(β, σ2, ρ) ∝ −1

2
(Y −Xβ)′C−1(Y −Xβ)

or simply, min
β

1

2
(Y −Xβ)′(Y −Xβ).

A general form of the objective function based on a penalty f(λ,β) in which λ

serves as a regularization parameter is given by

Q(β) = (Y −Xβ)′C−1(Y −Xβ) + f(λ,β).

In general, algorithms for computing penalized estimators for non-spatial regres-

sion models are based on the assumption of independent errors. However, the CAR

model does not enjoy the condition of independent errors. In order to overcome this
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difficulty, for fixed σ2 and ρ, we propose the use of transformation of the CAR model

to obtain independent errors. In a related topic, Cressie (1993) discussed the use of

transformations in bootstrapping or jackknifing spatial lattice models.

Since

C = (I − ρW ∗)−1D, (2.29)

is a n × n positive definite matrix, there exists an n × n upper triangular matrix

U with positive diagonal elements such that C = U ′U see (Seber, 2008, p.338).

Multiplying both sides of (1.17) by (U−1)′ we have

(U−1)′Y = (U−1)′Xβ + (U−1)′ε (2.30)

Y ∗ = X∗β + ε∗,

where Y ∗ = (U−1)′Y , X∗ = (U−1)′X and ε∗ = (U−1)′ε, which yields ε∗ ∼

N(0, σ2I). This transformed model will be used to construct penalty estimators

in the next three subsections.

2.7.1 LASSO

As described in Chapter 1, the LASSO method uses L1-type of penalty function and

hence, for the CAR,

β̂LASSO = arg min
β

[
(Y ∗ −X∗β)′(Y ∗ −X∗β) + λ

p∑
j=1

|βj|

]
(2.31)
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where λ ≥ 0 is a tuning parameter which can be obtained through cross-validation

techniques. Computationally, β̂LASSO can be calculated via the numerical algorithm

known as the least angle regression (LARS) algorithm proposed in Efron et al. (2004).

The absolute penalty estimators were, originally, designed for high dimensional

cases where p ≥ n, but they also work well in the classical cases where n > p. The

LASSO method does not satisfy a desirable property known as Oracle Property. A

variable selection procedure is said to have oracle property if it identifies the right sub-

set of zero coefficients in the regression model under consideration and furthermore,

the estimators of the remaining non-zero coefficients are consistent and asymptot-

ically normal, Zou (2006). Two procedures which posess the oracle property were

introduced by Fan and Li (2001) and Zou (2006), in the next two sections, we define

these two procedures.

2.7.2 SCAD

The smoothly clipped absolute deviation penalty (SCAD) variable selection procedure

was originally introduced in Fan and Li (2001) in order to overcome the lack of oracle

property in the LASSO method. For our CAR model, we define the SCAD estimator

as

β̂SCAD = arg min
β

[
(Y ∗ −X∗β)′(Y ∗ −X∗β) +

p∑
j=1

PλS(|βj|)

]
(2.32)

where PλS(|βj|) is the SCAD penalty function as defined in equation (1.10).
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2.7.3 Adaptive LASSO

Another selection procedure which enjoys the oracle property is the adaptive LASSO

of Zou (2006). For the CAR model, we define the adaptive LASSO estimator as

β̂A.LASSO = arg min
β

[
(Y ∗ −X∗β)′(Y ∗ −X∗β) + n

p∑
j=1

λj|βj|

]
(2.33)

where {λj : j = 1, 2, . . . , p} are coefficient specific tuning parameters. Zou (2006)

suggested that λj =
1

β̂j
, where β̂j is an initial estimator, such as the least squares

estimator in the case of linear regression. In the current CAR model, we will set β̂j

to be the unrestricted MLE of βj for j = 1, . . . , p.

2.8 Numerical Studies

In this section we will carry out two sets of Monte Carlo simulations. The first set of

simulations aims at examining the relative performance of the restricted, pretest and

shrinkage estimators, while appointing the unrestricted estimator as a benchmark.

The results of this set of Monte Carlo simulations turned out to be consistent with

our analytical comparisons in Section 2.6. Thus, the positive James-Stein estimator

stands out in terms of overall risk performance. This leads us to the second set

of Monte Carlo simulations which will restrict attention to the comparison between

the positive James-Stein, restricted estimator and the class of penalty estimators of

Section 2.7. Finally, we conclude the section by applying the proposed estimators to

real data sets.
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2.8.1 Simulated Efficiency Analysis

We use the Monte Carlo simulation experiments to compare the restricted, pretest

and shrinkage estimators via their simulated mean squared errors. We consider N×N

square lattices for N = 6 and 9 and corresponding sample sizes of n = 36 and 81,

respectively. In this experiment, we simulate the response variable Y (s) from a multi-

variate normal distribution with mean Xβ, where the design matrix X is generated

from standard multivariate normal distribution, and the error term has the CAR

model covariance, ΣCAR = σ2(I − ρW ∗)−1D, with mean 0 and σ2 = 1. We em-

ployed queen-based contiguity to define our neighborhood matrix, W ∗. Two sites are

queen-based neighbors if they have common boundaries and common corners. For the

spatial dependence parameter we considered five values, ρ = (−0.9,−0.5, 0.0, 0.5, 0.9).

The vector of regression coefficients β was partitioned as β = (β1,β2), where β1

and β2 are respectively, (p − q) × 1 and q × 1 vectors. The candidate subspace was

chosen to be A0 : βj = 0 for j = p− q+ 1, p− q+ 2, . . . , p. We chose, β = (β1,β2) =

(1p−q,0q), where 1p−q is a (p− q)×1 vector of ones, and 0q is a q×1 vector of zeroes.

For simplicity, we defined the non-centrality parameter ∆2, which is essentially a

measure of how far away we go from the candidate subspace, as ∆2 =‖ β − β0 ‖,

where β0 = (β1,0), β = (β1,0 + δ) and ‖ . ‖ denotes the Euclidian norm. Thus,

essentially, our ∆2 =‖ δ ‖, where this vector of alternative values was chosen to vary

from 0 to 2 with steps of 0.1. Various choices of (p, q) were used in combination with

configurations of ρ, n,∆2 and 2000 Monte Carlo runs. In each of these Monte Carlo

runs, the restricted, unrestricted, pretest, shrinkage and positive shrinkage estimators

were computed and their simulated mean squared errors (SMSE) were obtained from



2.8 Numerical Studies 67

the empirical formula

SMSE(β̂∗) =

p∑
i=1

(β̂∗i − βi)2, (2.34)

where β̂∗ denotes any one of β̂, β̂R, β̂PT , β̂JS, β̂JS+. The simulated relative efficiency

(SRE) was defined as

SRE(β̂, β̂∗) =
SMSE(β̂)

SMSE(β̂∗)
, (2.35)

where β̂ is the unrestricted estimator, appointed as benchmark. A value greater than

one of the SRE(β̂, β̂∗) indicates that β̂∗ performs better than β̂, and vice versa.

Results of these simulations are reported in Figures 2.1 to 2.5 and in Tables 2.1 to

2.20.
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Figure 2.1: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, 81 and ρ = −0.90 for different values of (p, q)
based on the CAR model
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Figure 2.2: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, 81 and ρ = −0.50 for different values of (p, q)
based on the CAR model



2.8 Numerical Studies 70

Figure 2.3: Simulated relative efficiency of the restricted, pretest and shrinkage es-
timators with respect to β̂ when n = 36, 81 and ρ = 0 for different values of (p, q)
based on the CAR model
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Figure 2.4: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, 81 and ρ = 0.50 for different values of (p, q)
based on the CAR model
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Figure 2.5: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, 81 and ρ = 0.90 for different values of (p, q)
based on the CAR model
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Table 2.1: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, (p, q) = (6, 3) and ρ = −0.90 based on the
CAR model

∆2 β̂R β̂PT β̂JS β̂JS+

0.0 2.1807 1.6427 1.1777 1.2634
0.1 1.3753 1.1168 1.0938 1.1496
0.3 0.3661 0.8759 1.0185 1.0185
0.5 0.1478 0.9956 1.0064 1.0064
0.7 0.0767 1.0000 1.0042 1.0042
0.9 0.0480 1.0000 1.0022 1.0022
1.1 0.0329 1.0000 1.0009 1.0009
1.3 0.0235 1.0000 1.0005 1.0005
1.5 0.0177 1.0000 1.0010 1.0010
1.7 0.0140 1.0000 1.0007 1.0007
2.0 0.0098 1.0000 1.0002 1.0002

Table 2.2: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, (p, q) = (9, 6) and ρ = −0.90 based on the
CAR model

∆2 β̂R β̂PT β̂JS β̂JS+

0.0 3.6576 2.1784 1.7707 1.9939
0.1 2.3076 1.4826 1.5875 1.6548
0.3 0.6129 0.9108 1.1585 1.1600
0.5 0.2410 0.9860 1.0508 1.0508
0.7 0.1282 1.0000 1.0286 1.0286
0.9 0.0792 1.0000 1.0215 1.0215
1.1 0.0544 1.0000 1.0128 1.0128
1.3 0.0389 1.0000 1.0092 1.0092
1.5 0.0288 1.0000 1.0082 1.0082
1.7 0.0222 1.0000 1.0036 1.0036
2.0 0.0159 1.0000 1.0038 1.0038
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Table 2.3: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, (p, q) = (6, 3) and ρ = −0.50 based on the
CAR model

∆2 β̂R β̂PT β̂JS β̂JS+

0.0 2.1923 1.6142 1.1226 1.2580
0.1 1.3800 1.1153 1.0815 1.1463
0.3 0.3541 0.8845 1.0131 1.0143
0.5 0.1412 0.9964 1.0051 1.0051
0.7 0.0741 1.0000 1.0035 1.0035
0.9 0.0458 1.0000 1.0012 1.0012
1.1 0.0306 1.0000 1.0010 1.0010
1.3 0.0216 1.0000 1.0007 1.0007
1.5 0.0163 1.0000 1.0007 1.0007
1.7 0.0126 1.0000 1.0003 1.0003
2.0 0.0090 1.0000 0.9997 0.9997

Table 2.4: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, (p, q) = (9, 6) and ρ = −0.50 based on the
CAR model

∆2 β̂R β̂PT β̂JS β̂JS+

0.0 3.5402 2.1290 1.7893 1.9649
0.1 2.2816 1.5303 1.5680 1.6713
0.3 0.5812 0.8996 1.1428 1.1445
0.5 0.2321 0.9952 1.0573 1.0573
0.7 0.1188 1.0000 1.0289 1.0289
0.9 0.0740 1.0000 1.0186 1.0186
1.1 0.0493 1.0000 1.0102 1.0102
1.3 0.0358 1.0000 1.0079 1.0079
1.5 0.0267 1.0000 1.0057 1.0057
1.7 0.0206 1.0000 1.0045 1.0045
2.0 0.0153 1.0000 1.0044 1.0044
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Table 2.5: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, (p, q) = (6, 3) and ρ = 0 based on the CAR
model

∆2 β̂R β̂PT β̂JS β̂JS+

0.0 2.1623 1.5912 1.1173 1.2620
0.1 1.3419 1.1133 1.1179 1.1457
0.3 0.3378 0.8901 1.0145 1.0147
0.5 0.1364 0.9937 1.0050 1.0050
0.7 0.0720 1.0000 1.0027 1.0027
0.9 0.0444 1.0000 1.0018 1.0018
1.1 0.0288 1.0000 1.0003 1.0003
1.3 0.0212 1.0000 1.0007 1.0007
1.5 0.0161 1.0000 1.0004 1.0004
1.7 0.0125 1.0000 1.0006 1.0006
2.0 0.0090 1.0000 1.0004 1.0004

Table 2.6: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, (p, q) = (9, 6) and ρ = 0 based on the CAR
model

∆2 β̂R β̂PT β̂JS β̂JS+

0.0 3.6198 2.1612 1.7695 1.9737
0.1 2.2361 1.4418 1.5440 1.6225
0.3 0.5591 0.9005 1.1413 1.1440
0.5 0.2206 0.9944 1.0449 1.0449
0.7 0.1175 1.0000 1.0274 1.0274
0.9 0.0716 1.0000 1.0171 1.0171
1.1 0.0478 1.0000 1.0124 1.0124
1.3 0.0344 1.0000 1.0065 1.0065
1.5 0.0254 1.0000 1.0065 1.0065
1.7 0.0205 1.0000 1.0076 1.0076
2.0 0.0144 1.0000 1.0039 1.0039
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Table 2.7: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, (p, q) = (6, 3) and ρ = 0.50 based on the CAR
model

∆2 β̂R β̂PT β̂JS β̂JS+

0.0 2.2368 1.6431 1.1647 1.2663
0.1 1.4014 1.1189 1.0850 1.1486
0.3 0.3592 0.8671 1.0135 1.0135
0.5 0.1398 0.9912 1.0032 1.0032
0.7 0.0756 1.0000 1.0028 1.0028
0.9 0.0462 1.0000 1.0016 1.0016
1.1 0.0329 1.0000 1.0008 1.0008
1.3 0.0221 1.0000 1.0007 1.0007
1.5 0.0167 1.0000 0.9999 0.9999
1.7 0.0130 1.0000 1.0006 1.0006
2.0 0.0092 1.0000 1.0004 1.0004

Table 2.8: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, (p, q) = (9, 6) and ρ = 0.50 based on the CAR
model

∆2 β̂R β̂PT β̂JS β̂JS+

0.0 3.6138 2.1441 1.8068 1.9621
0.1 2.3468 1.4987 1.5688 1.6508
0.3 0.5854 0.8985 1.1477 1.1485
0.5 0.2312 0.9835 1.0541 1.0541
0.7 0.1246 1.0000 1.0281 1.0281
0.9 0.0769 1.0000 1.0166 1.0166
1.1 0.0499 1.0000 1.0146 1.0146
1.3 0.0372 1.0000 1.0099 1.0099
1.5 0.0270 1.0000 1.0061 1.0061
1.7 0.0216 1.0000 1.0051 1.0051
2.0 0.0156 1.0000 1.0035 1.0035
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Table 2.9: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, (p, q) = (6, 3) and ρ = 0.90 based on the CAR
model

∆2 β̂R β̂PT β̂JS β̂JS+

0.0 2.3014 1.6343 1.1914 1.2661
0.1 1.5034 1.1654 1.1370 1.1622
0.3 0.4150 0.8835 1.0249 1.0266
0.5 0.1699 0.9904 1.0076 1.0076
0.7 0.0889 1.0000 1.0032 1.0032
0.9 0.0567 1.0000 1.0032 1.0032
1.1 0.0386 1.0000 1.0014 1.0014
1.3 0.0279 1.0000 1.0015 1.0015
1.5 0.0218 1.0000 1.0012 1.0012
1.7 0.0174 1.0000 1.0009 1.0009
2.0 0.0127 1.0000 1.0008 1.0008

Table 2.10: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, (p, q) = (9, 6) and ρ = 0.90 based on the CAR
model

∆2 β̂R β̂PT β̂JS β̂JS+

0.0 4.0530 2.2871 1.8593 2.0070
0.1 2.6353 1.5693 1.6359 1.7093
0.3 0.7077 0.9103 1.1854 1.1882
0.5 0.2918 0.9846 1.0693 1.0693
0.7 0.1511 1.0000 1.0364 1.0364
0.9 0.0948 1.0000 1.0206 1.0206
1.1 0.0674 1.0000 1.0163 1.0163
1.3 0.0460 1.0000 1.0111 1.0111
1.5 0.0356 1.0000 1.0065 1.0065
1.7 0.0273 1.0000 1.0065 1.0065
2.0 0.0208 1.0000 1.0038 1.0038
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Table 2.11: Simulated relative efficiency of the restricted, pretest and shrinkage es-
timators with respect to β̂ when n = 81, (p, q) = (6, 3) and ρ = −0.90 based on the
CAR model

∆2 β̂R β̂PT β̂JS β̂JS+

0.0 2.0914 1.6038 1.1226 1.2651
0.1 0.8604 0.8651 1.0665 1.0708
0.3 0.1542 0.9978 1.0072 1.0072
0.5 0.0559 1.0000 1.0021 1.0021
0.7 0.0292 1.0000 1.0016 1.0016
0.9 0.0184 1.0000 1.0008 1.0008
1.1 0.0123 1.0000 1.0009 1.0009
1.3 0.0086 1.0000 1.0002 1.0002
1.5 0.0068 1.0000 1.0003 1.0003
1.7 0.0052 1.0000 1.0005 1.0005
2.0 0.0037 1.0000 1.0001 1.0001

Table 2.12: Simulated relative efficiency of the restricted, pretest and shrinkage es-
timators with respect to β̂ when n = 81, (p, q) = (9, 6) and ρ = −0.90 based on the
CAR model

∆2 β̂R β̂PT β̂JS β̂JS+

0.0 3.2840 2.0852 1.8013 1.9475
0.1 1.3388 1.0591 1.3451 1.3690
0.3 0.2314 0.9937 1.0515 1.0515
0.5 0.0872 1.0000 1.0165 1.0165
0.7 0.0462 1.0000 1.0113 1.0113
0.9 0.0274 1.0000 1.0078 1.0078
1.1 0.0191 1.0000 1.0043 1.0043
1.3 0.0137 1.0000 1.0037 1.0037
1.5 0.0101 1.0000 1.0024 1.0024
1.7 0.0079 1.0000 1.0019 1.0019
2.0 0.0058 1.0000 1.0007 1.0007
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Table 2.13: Simulated relative efficiency of the restricted, pretest and shrinkage es-
timators with respect to β̂ when n = 81, (p, q) = (6, 3) and ρ = −0.50 based on the
CAR model

∆2 β̂R β̂PT β̂JS β̂JS+

0.0 2.0675 1.5987 1.1866 1.2599
0.1 0.8227 0.8566 1.0568 1.0652
0.3 0.1452 0.9974 1.0068 1.0068
0.5 0.0543 1.0000 1.0014 1.0014
0.7 0.0283 1.0000 1.0009 1.0009
0.9 0.0172 1.0000 1.0006 1.0006
1.1 0.0113 1.0000 1.0008 1.0008
1.3 0.0083 1.0000 1.0001 1.0001
1.5 0.0062 1.0000 1.0001 1.0001
1.7 0.0049 1.0000 1.0002 1.0002
2.0 0.0034 1.0000 1.0002 1.0002

Table 2.14: Simulated relative efficiency of the restricted, pretest and shrinkage es-
timators with respect to β̂ when n = 81, (p, q) = (9, 6) and ρ = −0.50 based on the
CAR model

∆2 β̂R β̂PT β̂JS β̂JS+

0.0 3.2516 2.1524 1.7774 1.9516
0.1 1.3018 1.0356 1.3337 1.3608
0.3 0.2194 0.9975 1.0514 1.0514
0.5 0.0835 1.0000 1.0184 1.0184
0.7 0.0420 1.0000 1.0080 1.0080
0.9 0.0258 1.0000 1.0050 1.0050
1.1 0.0175 1.0000 1.0033 1.0033
1.3 0.0126 1.0000 1.0016 1.0016
1.5 0.0094 1.0000 1.0027 1.0027
1.7 0.0074 1.0000 1.0013 1.0013
2.0 0.0053 1.0000 1.0004 1.0004
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Table 2.15: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 81, (p, q) = (6, 3) and ρ = 0 based on the CAR
model

∆2 β̂R β̂PT β̂JS β̂JS+

0.0 2.0551 1.6457 1.2294 1.2761
0.1 0.7990 0.8460 1.0576 1.0648
0.3 0.1359 0.9970 1.0051 1.0051
0.5 0.0515 1.0000 1.0025 1.0025
0.7 0.0265 1.0000 0.9999 0.9999
0.9 0.0158 1.0000 1.0010 1.0010
1.1 0.0107 1.0000 1.0001 1.0001
1.3 0.0076 1.0000 1.0005 1.0005
1.5 0.0060 1.0000 1.0001 1.0001
1.7 0.0046 1.0000 1.0001 1.0001
2.0 0.0034 1.0000 1.0001 1.0001

Table 2.16: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 81, (p, q) = (9, 6) and ρ = 0 based on the CAR
model

∆2 β̂R β̂PT β̂JS β̂JS+

0.0 3.2795 2.2142 1.8308 1.9880
0.1 1.2556 1.0310 1.3286 1.3608
0.3 0.2127 0.9964 1.0464 1.0464
0.5 0.0793 1.0000 1.0174 1.0174
0.7 0.0412 1.0000 1.0068 1.0068
0.9 0.0246 1.0000 1.0059 1.0059
1.1 0.0168 1.0000 1.0034 1.0034
1.3 0.0116 1.0000 1.0017 1.0017
1.5 0.0090 1.0000 1.0025 1.0025
1.7 0.0071 1.0000 1.0023 1.0023
2.0 0.0051 1.0000 1.0014 1.0014
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Table 2.17: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 81, (p, q) = (6, 3) and ρ = 0.50 based on the CAR
model

∆2 β̂R β̂PT β̂JS β̂JS+

0.0 2.1598 1.6506 1.1568 1.2796
0.1 0.8182 0.8449 1.0574 1.0664
0.3 0.1432 1.0000 1.0054 1.0054
0.5 0.0534 1.0000 1.0034 1.0034
0.7 0.0273 1.0000 1.0011 1.0011
0.9 0.0166 1.0000 1.0007 1.0007
1.1 0.0113 1.0000 1.0005 1.0005
1.3 0.0084 1.0000 1.0003 1.0003
1.5 0.0064 1.0000 1.0002 1.0002
1.7 0.0049 1.0000 1.0002 1.0002
2.0 0.0035 1.0000 1.0004 1.0004

Table 2.18: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 81, (p, q) = (9, 6) and ρ = 0.50 based on the CAR
model

∆2 β̂R β̂PT β̂JS β̂JS+

0.0 3.3184 2.1979 1.8256 1.9856
0.1 1.2898 1.0414 1.3299 1.3600
0.3 0.2218 0.9989 1.0512 1.0512
0.5 0.0819 1.0000 1.0224 1.0224
0.7 0.0430 1.0000 1.0092 1.0092
0.9 0.0262 1.0000 1.0054 1.0054
1.1 0.0175 1.0000 1.0031 1.0031
1.3 0.0124 1.0000 1.0023 1.0023
1.5 0.0095 1.0000 1.0021 1.0021
1.7 0.0075 1.0000 1.0015 1.0015
2.0 0.0054 1.0000 1.0018 1.0018
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Table 2.19: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 81, (p, q) = (6, 3) and ρ = 0.90 based on the CAR
model

∆2 β̂R β̂PT β̂JS β̂JS+

0.0 2.1553 1.6339 1.2068 1.2686
0.1 0.8987 0.8725 1.0523 1.0750
0.3 0.1591 1.0000 1.0079 1.0079
0.5 0.0621 1.0000 1.0014 1.0014
0.7 0.0315 1.0000 1.0008 1.0008
0.9 0.0199 1.0000 1.0007 1.0007
1.1 0.0133 1.0000 1.0009 1.0009
1.3 0.0100 1.0000 1.0003 1.0003
1.5 0.0074 1.0000 1.0008 1.0008
1.7 0.0062 1.0000 1.0000 1.0000
2.0 0.0045 1.0000 1.0003 1.0003

Table 2.20: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 81, (p, q) = (9, 6) and ρ = 0.90 based on the CAR
model

∆2 β̂R β̂PT β̂JS β̂JS+

0.0 3.5315 2.1117 1.8328 1.9691
0.1 1.4154 1.0792 1.3553 1.3930
0.3 0.2494 0.9952 1.0605 1.0605
0.5 0.0972 1.0000 1.0203 1.0203
0.7 0.0504 1.0000 1.0128 1.0128
0.9 0.0315 1.0000 1.0058 1.0058
1.1 0.0214 1.0000 1.0056 1.0056
1.3 0.0154 1.0000 1.0042 1.0042
1.5 0.0118 1.0000 1.0033 1.0033
1.7 0.0096 1.0000 1.0016 1.0016
2.0 0.0071 1.0000 1.0014 1.0014

The following conclusions can be drawn from the SRE results.

1. In general, for fixed n, p, q, varying the value of ρ does not affect much the SRE of

the estimators, thus agreeing with Mardia and Marshall (1984) Theorem about

the asymptotic independence of the large-scale variation β and the small-scale
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variation ρ, σ2.

2. For all values of n and (p, q), the restricted estimator β̂R is the best in terms of

SRE when the candidate subspace is true ( ∆2 = 0), but as ∆2 moves away from

0, the SRE of β̂R approaches 0. That is, the SMSE of β̂R becomes unbounded

while the SMSE of the remaining estimators approach that of the unrestricted

estimator. This obviously agrees with the theoretical results of Section 2.5.

3. The positive shrinkage estimator always dominates the shrinkage estimator, and

it dominates the pretest for all ∆2 values that are away from 0.

These conclusions for the small sample performance of the proposed estimator are

therefore, in line with the theoretical results obtained in Section 2.5.

Application to Columbus Crime Data

The Columbus crime data set was collected in 1980 and originally reported in Anselin

(1988). The data set consists of observations for 49 contiguous planning neighbor-

hoods in Columbus, Ohio. Neighborhoods correspond to census tracts, or aggregates

of small number of census tracts. The outcome of interest was CRIME, the combined

total of residential burglaries and vehicle thefts per thousand households. A num-

ber of covariates were also collected: income INC, housing values HOVAL in thousands

of dollars, the variable DISCBD measuring the distance to the cental business dis-

trict (CBD), open space in neighborhood OPEN, percentage of housing units without

plumbing PLUMB. The data is also available in spdep R-package (Bivand et al., 2012).

Several authors used these data as an illustrative application example. Among

others, Anselin (1988) fitted two separate regression curves to illustrate the presence
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of separate level of spatial dependence for the east and west sides of Columbus city

using SAR spatial model (see Chapter 3 of this thesis). Kyung and Ghosh (2009)

used these data to fit three different regression curves using a Bayesian version of the

CAR model.

We apply our suggested estimation strategies to this data set. Following Kyung and

Ghosh (2010) we first apply a variance stabilizing log-transformation to the response

variable, CRIME. The transformed variable is denoted by log(CRIME) and a CAR

model is fitted to this variable along with the complete set of covariates explained

above via the spdep package, thus obtaining unrestricted estimators, β̂. A candidate

subspace is then obtained by the AIC and BIC model selection criteria via the R-

function spautolm in the spdep package. Consequently, the selected reduced model

is used to compute the restricted, the pretest, and James-Stein estimators, according

to the formulae given in this Chapter. The candidate subspace model and the full

model are both listed in the following Table (2.21).

Table 2.21: Full and reduced models for the Columbus crime data

Selection Criterion Model
Full log(CRIME) ~ HOVAL+PLUMB+INC+DISCBD+OPEN

AIC/BIC log(CRIME)~ HOVAL+PLUMB

In the above table, we have used the R-notation (~) to write the models.

To asses the performance of the estimators, we use mean squared prediction er-

ror based on a bootstrap method suggested by Hall (1985). The procedure can be

summarized as follows:

1. For k = 1, ..., B sample Y ∗k1, ..., Y
∗
kn with replacement from the original data

Y1, ..., Yn.
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2. For the kth bootstrap sample, compute the estimator of interest, β̂∗, (which

could be either of β̂, β̂R, β̂PT , β̂JS, β̂JS+).

3. Compute the mean squared prediction error (MSPE) for the bootstrap sample

as follows:

MSPEk =
1

n

n∑
i=1

(Yi − Ŷ ∗ki)2, (2.36)

where

Ŷ ∗ki = Xiβ̂
∗ + ρ̂∗

n∑
j=1

W ∗
ij(Y

∗
kj −Xjβ̂

∗). (2.37)

4. Compute the average of the MSPE for β̂∗ over the B bootstrap samples as

follows:

MSPE(β̂∗) =
B∑
k=1

MSPE(k)/B.

The relative efficiency of the mean squared prediction error (RMSPE) with respect

to the benchmark β̂ is then computed for each one of the shrinkage type estimators

as follows:

RMSPE(β̂�) =
MSPE(β̂)

MSPE(β̂�)
, (2.38)

where β̂� belongs to the set {β̂R, β̂PT , β̂JS, β̂JS+}. The results of the RMSPEs based

on B = 2000 are reported in Table 2.22.

From this table we can clearly see that all estimators are better than the benchmark

and the best among them is the β̂R, followed by β̂PT , β̂JS+. However, the main

purpose of the shrinkage estimators is to provide a safe ground on which we do not
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Table 2.22: RMSPE with respect to β̂ for Columbus crime data

Estimator RMSPE

β̂R 1.0905

β̂PT 1.0619

β̂JS+ 1.0356

β̂JS 1.0208

rely completely on the selected reduced model nor on the full unrestricted model,

while keeping much of the efficiency of both. Overall, this is what we see from this

data set, as the shrinkage estimators are not much less efficient than the restricted

estimators.

2.8.2 Comparison of Non-Penalty and Penalty Estimators

Now we run the second set of Monte Carlo simulations aiming at comparing per-

formances of the positive James-Stein estimator, the restricted, unrestricted and the

class of penalty estimators of Section 2.7.

We consider an N×N square lattice where N = 7, 8, 10, with corresponding sample

sizes of n = 49, 64, 100, respectively. We fix σ2 = 1 and p−q = 4 , q = 5, 10, 15, 20, 25

and ρ = (−0.95,−0.50, 0.00, 0.50, 0.90), and the nonzero coefficients are set to 1 as

before.

To obtain the penalty estimators, we first fit a full CAR model using the spautolm

R-function. From the full CAR model we extract the (MLEs) of β, σ2, and ρ. The

MLE of ρ, which is ρ̂, is then used in the C matrix in (2.29) to obtain the U matrix

used in transforming the response vector to independent data Y ∗, with the corre-

sponding transformed design matrix X∗. Consequently, a 10−fold cross-validation

was applied to the transformed data in order to select the optimal value of the tuning
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parameter λ̂LASSO for the LASSO fit while the initial weights for the adaptive LASSO

are computed based on the LASSO estimators. Thus, we used the LASSO as an initial

starter for the adaptive LASSO procedure. This procedure can be performed using

the adalasso R-function in parcor package; Kraemer and Schaefer (2010). For the

SCAD penalty, a was fixed to be 3.7 as suggested by Fan and Li (2001). We used

the function cv.ncvreg in the ncvreg R-package Breheny and Huang (2011) which

performs a k−fold cross-validation to choose λ̂SCAD.

In order to carry out a fair comparison, we examine the relative performances of

the estimators under the candidate subspace, that is when ∆2 = 0, as the penalty

estimators do not depend on ∆2. The simulated relative efficiency (SRE) based on

the simulated mean squared error (SMSE) with respect to the benchmark estimator,

β̂ as defined in the previous sections, are used as a performance measure.
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Table 2.23: Simulated relative efficiency of the restricted, positive James-Stein and
penalty estimators with respect to β̂ when n = 49, p− q = 4 and ∆2 = 0 for different
values of ρ and q based on the CAR model

ρ q β̂R β̂JS+ β̂LASSO β̂A.LASSO β̂SCAD

-0.95 5 2.4002 1.5982 1.0864 1.6371 1.5031
10 4.1852 2.6458 1.2954 2.2081 1.9820
15 6.4118 3.8246 1.6270 2.9278 2.7034
20 9.9443 5.2107 2.0789 4.0984 3.6696
25 15.0526 6.6719 2.6802 5.5746 5.2168

-0.50 5 2.3952 1.5985 1.0552 1.5947 1.4093
10 4.3488 2.6457 1.2706 2.1924 1.9635
15 6.6751 3.8193 1.5424 2.6884 2.4109
20 10.1787 5.2720 1.9885 3.7958 3.4674
25 15.3874 6.4454 2.6031 5.3502 5.0465

0.00 5 2.4100 1.6268 1.0379 1.5510 1.3778
10 4.1541 2.6407 1.2359 2.1134 1.8351
15 6.7886 3.8420 1.5645 2.8345 2.4847
20 10.6979 5.3261 1.9821 3.8377 3.5279
25 15.2230 6.2243 2.5674 5.3302 4.9059

0.50 5 2.5776 1.6288 1.1143 1.7013 1.4849
10 4.5038 2.6927 1.3454 2.3413 2.0163
15 6.7291 3.8123 1.6303 3.0033 2.6881
20 10.5470 5.1218 2.0692 4.0855 3.6945
25 15.7147 6.4360 2.7148 5.5084 4.9614

0.90 5 2.6527 1.6015 1.3852 2.0997 1.8752
10 4.5794 2.6185 1.6216 2.7549 2.3694
15 7.4124 3.9009 2.0960 3.7669 3.1920
20 11.8901 5.6427 2.7095 5.2586 4.6352
25 17.9607 7.8400 3.4701 7.2633 6.5204
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Table 2.24: Simulated relative efficiency of the restricted, positive James-Stein and
penalty estimators with respect to β̂ when n = 64, p− q = 4 and ∆2 = 0 for different
values of ρ and q based on the CAR model

ρ q β̂R β̂JS+ β̂LASSO β̂A.LASSO β̂SCAD

-0.95 5 2.3051 1.5708 1.0321 1.5953 1.3179
10 3.9968 2.5347 1.1520 1.9103 1.5586
15 5.6321 3.6063 1.3659 2.4380 2.0657
20 8.1514 4.7615 1.6130 2.8766 2.5115
25 11.1813 6.2885 1.9185 3.6213 3.1771

-0.50 5 2.3977 1.6040 0.9747 1.5406 1.2412
10 4.0781 2.6297 1.1176 1.8802 1.5021
15 6.0539 3.7408 1.3007 2.2584 1.8705
20 8.2454 4.9361 1.5322 2.7780 2.4834
25 11.6291 6.2906 1.8528 3.4227 2.9380

0.00 5 2.3458 1.6039 0.9522 1.4717 1.1944
10 4.0894 2.6258 1.1002 1.8999 1.5222
15 6.2356 3.7018 1.2697 2.2091 1.7539
20 8.6303 4.8372 1.5232 2.6897 2.2732
25 11.8719 6.2049 1.8590 3.4116 2.8723

0.50 5 2.4049 1.6084 0.9919 1.5660 1.2424
10 4.1553 2.6344 1.1459 1.9113 1.5602
15 6.1165 3.6585 1.3780 2.4287 1.9693
20 8.5591 4.9969 1.5892 2.8705 2.4049
25 11.9753 6.2183 1.9364 3.6719 3.2230

0.90 5 2.5291 1.5772 1.2217 1.8797 1.5486
10 4.3628 2.5360 1.4292 2.4108 1.9368
15 6.5771 3.6803 1.6983 2.9371 2.4058
20 9.7069 4.9972 1.9792 3.6229 2.9859
25 13.0738 6.6616 2.4282 4.4767 3.9300
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Table 2.25: Simulated relative efficiency of the restricted, positive James-Stein and
penalty estimators with respect to β̂ when n = 100, p−q = 4 and ∆2 = 0 for different
values of ρ and q based on the CAR model

ρ q β̂R β̂JS+ β̂LASSO β̂A.LASSO β̂SCAD

-0.95 5 2.2926 1.5660 1.1005 1.9881 1.4249
10 3.6788 2.4935 1.2294 2.4862 1.7530
15 5.1634 3.4215 1.4210 2.9173 2.2110
20 6.9769 4.4252 1.5951 3.2607 2.5834
25 8.6824 5.4691 1.8464 3.8328 3.2033

-0.50 5 2.3140 1.5954 1.0149 1.8302 1.2990
10 3.8221 2.5749 1.1532 2.2980 1.6740
15 5.3100 3.5021 1.3272 2.7467 2.0227
20 7.4015 4.6831 1.5501 3.3110 2.5712
25 9.1404 5.6321 1.7262 3.6417 2.8883

0.00 5 2.3644 1.6311 0.9697 1.7683 1.2337
10 3.8354 2.5439 1.1289 2.2868 1.5971
15 5.5753 3.5968 1.2846 2.6278 1.9286
20 7.6565 4.7442 1.5067 3.0660 2.4247
25 9.2551 5.6831 1.6990 3.5944 2.8202

0.50 5 2.3718 1.6121 1.0110 1.8383 1.2803
10 3.9038 2.5516 1.1875 2.4234 1.6732
15 5.7310 3.5972 1.3417 2.7847 1.9492
20 7.6471 4.6469 1.5613 3.2695 2.4980
25 9.5247 5.5812 1.7615 3.7110 2.9541

0.90 5 2.4853 1.6025 1.2358 2.2698 1.6019
10 3.9386 2.4547 1.4382 2.8938 2.0401
15 5.8313 3.4234 1.6395 3.4570 2.5209
20 7.8693 4.3889 1.8978 3.9747 3.0520
25 10.4245 5.5692 2.1638 4.5160 3.7376
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From the results summarized in Tables 2.23-2.25, we can conclude the following:

1. The restricted estimator, β̂R, outperforms all other estimators for all the cases

that are considered in this simulation. This is expected, since we are working

completely under the candidate true subspace. That is, the data generating

model is under ∆2 = 0.

2. Changing the value of ρ does not have much impact on the SRE values for a

fixed n and q.

3. In general, the positive James-Stein estimator, β̂JS+, outperforms all the

penalty estimators.

Application to Boston Housing Prices Data

Harrison and Rubinfeld (1978) studied several practical issues related to the use of

housing market data for census tracts in the Boston Standard Metropolitan Statistical

Area (SMSA) in 1970. Among others, Breiman and Friedman (1985), Lange and Ryan

(1989), Pace (1993), Stine (2004) have used this data for illustration purposes. The

major objective in all these works was to identify the relationship between a set of

over 13 covariates and the median value of owner-occupied houses in Boston.

The data consist of 506 observations, each relating to one census tract. The

data contain the following variables, the tract id number (TRACT), the median values

of owner-occupied housing in (USD 1000’s) (MEDV), the corrected median values of

owner-occupied housing in (USD 1000’s) (CMEDV), the proportions of residential land

zoned for lots over 2500 sq.ft per town (constant for all Boston tracts) (ZN), the pro-

portions of non-retail business areas per town (INDUS), average numbers of rooms per
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dwelling (RM), proportions of owner-occupied units built prior to 1940 (AGE), a dummy

variable with two levels, 1 if tract border to Charles River; 0 otherwise (CHAS), levels

of nitrogen oxides concentration (parts per 10 million) per town (NOX), crime rate per

capita (CRIM), weighted distance to five employment centers (DIS), an index of acces-

sibility to radial highway per town (constant for all Boston tracts) (RAD), percentage

of lower status population (LSTAT), property tax rate per (USD 10,000) per town

(constant for all Boston tracts) (TAX), pupil-teacher ratios per town (constant for all

Boston tracts) (PTRATIO), the variable 1000(b − 0.63)2, where b is the proportion of

blacks (B), the location of each tract in latitude (LAT) and longitude (LON), where the

last two variables were added by Pace and Gilley (1997).

Following Pace and Gilley (1997), we predict the response variable log(CMEDV)

using the available predictors assuming a Gaussian CAR. We fit a full CAR model,

then three submodels are selected using a forward selection method based on AIC

and BIC selection procedures. The first submodel contains the most important two

predictors that have the smallest AIC and BIC values among all possible groups of

two predictors, the second submodel contains the best three predictors that have the

smallest values of AIC and BIC values among all possible groups of three predictors

including the previous two in the first submodel. The third submodel was the final

one selected by the AIC and BIC selection methods for which including any other pre-

dictors would not decrease the values of the AIC or BIC. Each of the selected models

is considered as a candidate subspace model and the various proposed estimators are

obtained based on such candidate submodel. The full and candidate submodels are

summarized in Table 2.26.
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Table 2.26: Full and submodels for the Boston Housing data.

Selection Criterion Model
Full log(CMEDV) ~CRIM + I(RM^2) + log(LSTAT)+ TAX

+ CHAS + I(NOX^2)+ log(DIS) + log(RAD)+ B

+ PTRATIO + ZN + INDUS + AGE+LAT + LON

Model 1 log(CMEDV) ~ I(RM^2) + log(LSTAT)

Model 2 log(CMEDV) ~ CRIM + I(RM^2) + log(LSTAT)

Model 3 log(CMEDV) ~CRIM + I(RM^2) + log(LSTAT)+ TAX

The LASSO, adaptive LASSO and SCAD estimators, are computed as in the pre-

vious data example using a 10−fold cross-validation procedure. We used the same

bootstrap procedure explained in the data example of Section 2.8.1 to compute the

relative mean squared prediction error (RMSPE) with respect to the full model es-

timator, defined in (2.38). The bootstrap sample size was set to B = 1000. Our

findings are summarized in Table 2.27.

Table 2.27: RMSPE with respect to β̂ for Boston Housing data based on the CAR
model

Model βR β̂JS+

Model 1 1.1112 1.0980
Model 2 1.1054 1.0914
Model 3 1.0982 1.0839

Penalty Estimators

β̂LASSO β̂A.LASSO β̂SCAD

0.9737 1.0606 1.0532

The following conclusions can be drawn from Table 2.27

1. The restricted estimator, β̂R, outperforms all estimators regardless of the sub-

model chosen. Therefore, if the restriction given by the submodel is correct,

then β̂R is optimum.

2. The positive James-Stein estimator dominates all penalty estimators in all can-
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didate submodels.

3. The adaptive LASSO and the SCAD estimators have similar performance and

both are better than the LASSO as expected.

4. The first submodel is recommended, because it gives the highest RMSPE with

respect to β̂.

2.9 Conclusion

In this chapter, we suggested the pretest and James-Stein shrinkage estimators for the

large-scale effects β in the conditional autoregressive model CAR. These estimators

were based on uncertain prior information (UPI) in the form of a linear hypothesis

Hβ = h whereby a restricted estimator under this hypothesis and an unrestricted

MLE were combined. Analytical formulae were derived to calculate the risks and

biases of these estimators and their relative performances were examined via these

formulae.

An algorithm for obtaining penalty estimators for the large-scale effects of the CAR

model was also proposed and applied in computing LASSO, Adaptive LASSO and

SCAD estimators. These arrays of estimators were then compared through Monte

Carlo simulations and by means of real data sets on housing prices and crime distri-

bution.

Our analytical and numerical studies showed that, in general, the class of the

proposed shrinkage estimators, safeguard against the high risks associated with sub-

models when the validity of such submodels is questionable, while providing a higher

efficiency than the full models. Also, the positive James-Stein estimator proved to be
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superior to the the class of penalty estimators in many of the situations considered

in our simulations.

In any case, completely relying on models obtained through subjective information

or through model selection procedures such the LASSO family of procedures is not

a wise choice, given the risks attached to the validity of this information. Therefore,

we recommend the use of the James-Stein estimators for the large-scale effects of the

CAR model while model selection methods can be used to provide the prior uncertain

information. For instance, β̂JS+, will always result in a reasonably good performance

relative to the estimators obtained via the reduced and full models as well as the

penalty estimators regardless of the accuracy of the given restriction.



Chapter 3

Efficient estimation for the

Simultaneous Autoregressive

Spatial Model

3.1 Introduction

In this chapter we will consider the spatial regression model known as SAR which

was introduced in Section 1.5.2. Following the structure laid down in Chapter 2, we

will first review the existing results on the maximum likelihood estimators, β̂, for

the large-effect parameters β of the SAR model in (1.18). Secondly, we will compute

the restricted MLE, β̂R, of these parameters under the general candidate subspace

Hβ = h representing the uncertain prior information obtained either by subjective

opinion or through model selection methodologies. Thirdly, we will construct pretest

and shrinkage estimators for these large-effect parameters. Monte Carlo simulations

96
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are conducted to confirm these asymptotic relative risk performances. Finally, we

apply these estimators to a real data set.

The second objective of the chapter is to reappraise three penalty estimators,

namely, LASSO, Adaptive LASSO and SCAD estimators for the large-effect coef-

ficients of the SAR model. The performance of these estimators are then compared

with the restricted and positive shrinkage estimators by using Monte Carlo simula-

tions via their simulated relative efficiency, and using a real data example via their

relative mean squared prediction error as was done in Chapter 2 for the CAR model.

3.1.1 Chapter Organization

In Section 3.2, we discuss the model and preliminaries. The proposed estimation

strategies using the unrestricted, restricted, pretest, and James-Stein estimators was

discussed in 3.3. Numerical studies using simulation experiments and a real data

example to confirm theoretical results are illustrated in Section 3.4. In Section 3.5,

we consider estimating the mean vector β of the SAR model using penalty estimators,

and illustrate numerical studies to compare their performance with both the restricted

and positive James-Stein estimators. Conclusions are presented in Section 3.6.

3.2 The model and preliminaries

Recall the simultaneous autoregressive spatial model (SAR) introduced in Section

1.5.2 where R = ρW ∗ and Λ = σ2I so that the vector of observations over a regular
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lattice has the following joint distribution

Y ∼ N(Xβ, σ2(I − ρW ∗)−1(I − ρW ∗′)−1). (3.1)

As in Chapters 1& 2, Y = Y (s) = (Y (s1), ..., Y (sn)) are observations at the

spatial locations si which form a regular lattice, W = {wij}ni,j=1 is a spatial proximity

weight matrix, ρ is a parameter controlling the spatial dependence and chosen so that

(I−ρW ) is nonsingular matrix. The quantityX = X(s) is an n×pmatrix containing

location specific covariates and β is a p-dimensional unknown vector of large-effect

parameters.

The SAR model was first introduced by Whittle (1954) who showed that the least

squares estimator of β is inconsistent while Ord (1975) showed that the MLEs for

such parameters are consistent estimators. Statistical inference of the SAR model

appears mostly in economics literature. For example, Bell and Bockstael (2000) used

the generalized-moments estimation technique for the SAR model in the context of

micro level spatially correlated data. Lee and Yu (2010) established the asymptotic

properties of the quasi-maximum likelihood estimator in economic panel data with

fixed effects and SAR errors. Su (2012) proposed generalized method of moments

(GMM) estimators for a semiparametric SAR model and derived their limiting distri-

butions. Su and Jin (2010) proposed a profile quasi-maximum likelihood estimation

of a partially linear SAR model and showed that such estimators are consistent at the

usual
√
n rate of convergence. An overview of the statistical inference for the SAR

model and its variants can be found in Anselin (1988), Cressie (1993), Wall (2004)

and Kazar and Celik (2012)

On the other hand, the literature on model selection and penalized estimation for
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the SAR model is in its infancy. For instance, Song and De Oliveira (2012) used

Bayesian approach for model selection in Gaussian conditional autoregressive CAR

and simultaneous autoregressive SAR models for spatial lattice data. More details

about model selection for spatial regression models can be found in Chapter 2 of

this thesis. Zhu and Liu (2009) proposed a penalized likelihood to estimate the

covariance matrix of spatial Gaussian Markov random field models with unspecified

neighborhood structure. They used weighted L1 regularization, and showed that the

LASSO type approach gives improved covariance estimators measured by different

criteria. They also derived the asymptotic properties of their proposed estimator.

3.2.1 Unrestricted Maximum Likelihood Estimation

Often, a large model containing all available covariates is called full model or unre-

stricted model. The unrestricted maximum likelihood estimators of the SAR model

parameters, (β, σ2, ρ), can be obtained by following the procedure described in (i)-

(iii) of Section 2.3. The only difference is that we replace the CAR covariance matrix

in the log-likelihood function given (2.1) by the covariance matrix of the SAR model

ΣSAR = σ2Q = σ2(I − ρW ∗)−1(I − ρW ∗′)−1,

to obtain

β̂(ρ) = (X ′(I − ρW ∗′)(I − ρW ∗′)X)−1X(I − ρW ∗′)(I − ρW ∗′)Y , (3.2)

σ̂2(ρ) =
(Y −Xβ̂(ρ))′(I − ρW ∗′)(I − ρW ∗)(Y −Xβ̂(ρ))

n
. (3.3)
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By plugging these estimators of β and σ2 into the log-likelihood, the maximum

likelihood estimator of ρ can be obtained by maximizing the profile log-likelihood

l∗(ρ) = −n
2

log

(
(Y −Xβ̂(ρ))′(I − ρW ∗)−1(I − ρW ∗′)−1(Y −Xβ̂(ρ))

n

)
− 1

2
log(|(I − ρW ∗)−1(I − ρW ∗′)−1|).

Finally, the unrestricted MLEs of β and σ2 are computed by plugging ρ̂ in (3.2) and

(3.3), respectively. Similar to Section 2.5.1, the consistence and asymptotic normality

of the unrestricted MLEs of the SAR model will follow directly from the general result

of Mardia and Marshall (1984). In order to adapt Theorem 2.3.1 for the SAR case,

all we need is to replace Ĉ therein by Q̂ = (I − ρ̂W ∗)−1(I − ρ̂W ∗′)−1.

3.3 The Proposed Estimation Strategies

Following the steps of Chapter 2, we consider again the UPI presented in the form of

a general linear hypothesis,

A0 : Hβ = h, (3.4)

whereH is a p×q known matrix of rank (q), and h is a q×1 known vector of constants.

The construction of the restricted β̂R, the pretest β̂PT , the James-Stein β̂JS and the

positive James-Stein β̂JS+ estimators in SAR model is similar, mutatis mutandis, to

that of the CAR model in Section 2.4. All that is needed to be changed is to replace

the matrix Ĉ in the expressions of Section 2.4 by Q̂ = (I − ρ̂W ∗)−1(I − ρ̂W ∗′)−1

and β̂ therein by the one described above in Section 3.2.1. Therefore, here, we only
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re-iterate these expressions for the SAR model.

The pretest estimator:

β̂PT = β̂I
(
Ψn > χ2

q,α

)
+ β̂RI(Ψn ≤ χ2

q,α) (3.5)

where I(A) denotes the indicator function for the event A,

Ψn =
(Hβ̂ − h)′(H(X ′nQ

−1
n Xn)−1H ′)−1(Hβ̂ − h)

s2
e

, (3.6)

s2
e =

(Yn −Xnβ̂)′Q̂−1(Yn −Xnβ̂)

n− p
, (3.7)

and Q̂ = (I − ρ̂W ∗)−1(I − ρ̂W ∗′)−1, χ2
q,α is the αth upper quantile of a central

chi-square distribution with q degrees of freedom.

The James-Stein estimator:

β̂JS = β̂R + (β̂ − β̂R){1− (q − 2)Ψ−1
n }. (3.8)

The positive rule James-Stein estimator:

β̂JS+ = β̂R + (β̂ − β̂R){1− (q − 2)Ψ−1
n }+, (3.9)

where u+ = max(0, u).

Also, the asymptotic distributional quadratic risk (AQR), mean squared error ma-

trix (AMSEM) and bias results and performance conclusions are also same, mutatis
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mutandis. Therefore, we will not repeat risk expressions and performance analysis

here, but rather, we will proceed directly to the numerical studies using Monte Carlo

simulations as well as application to real data.

Similarly, the construction of penalty estimators for the SAR model parameters,

β, follows the same lines as in Section 2.7 with replacement of C in (2.28) by Q =

(I − ρW ∗)−1(I − ρW ∗′)−1.

3.4 Numerical Studies

As in Chapter 2, in this section we carry out two sets of Monte Carlo simulations.

The first is to compare the performances of the restricted, pretest, James-Stein and

positive James-Stein estimators relative to the unrestricted estimator as a benchmark.

The second set of simulations restricts attention to comparisons between the positive

James-Stein estimator, the restricted estimator and the class of penalty estimators.

We apply the methods to the Boston housing and Columbus crime data sets as was

done in Chapter 2 and prescribe a bootstrap procedure for estimating the prediction

errors of the estimators.

3.4.1 Comparing the Unrestricted with Shrinkage Estima-

tors

In this simulation study, we used σ2 = 1, a queen-based proximity matrix W ∗ with

the rest of the parameters being exactly the same as in Chapter 2. The results of the

simulations are reported in Tables 3.1- 3.20 and Figures 3.1-3.5.
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Figure 3.1: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, 81 and ρ = −0.90 for different values of (p, q)
based on the SAR model.
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Figure 3.2: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, 81 and ρ = −0.50 for different values of (p, q)
based on the SAR model.
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Figure 3.3: Simulated relative efficiency of the restricted, pretest and shrinkage es-
timators with respect to β̂ when n = 36, 81 and ρ = 0 for different values of (p, q)
based on the SAR model.
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Figure 3.4: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, 81 and ρ = 0.50 for different values of (p, q)
based on the SAR model.
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Figure 3.5: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, 81 and ρ = 0.90 for different values of (p, q)
based on the SAR model.
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Table 3.1: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, (p, q) = (6, 3) and ρ = −0.90 based on the
SAR model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 2.3946 1.7614 1.2359 1.3132
0.1 2.1520 1.5739 1.2083 1.2658
0.3 1.0803 0.9711 1.0971 1.1171
0.5 0.5820 0.7929 1.0387 1.0426
0.7 0.3317 0.8601 1.0130 1.0143
0.9 0.2134 0.9572 1.0127 1.0127
1.1 0.1482 0.9875 1.0057 1.0057
1.3 0.1103 0.9968 1.0043 1.0043
1.5 0.0811 1.0000 1.0026 1.0026
1.7 0.0639 1.0000 1.0025 1.0025
2.0 0.0462 1.0000 1.0029 1.0029

Table 3.2: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, (p, q) = (9, 6) and ρ = −0.90 based on the
SAR model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 4.2391 2.1070 1.7579 1.9932
0.1 3.7940 1.9111 1.7416 1.9170
0.3 1.9690 1.2743 1.4703 1.5264
0.5 1.0421 0.9568 1.2506 1.2648
0.7 0.6035 0.9226 1.1493 1.1521
0.9 0.3875 0.9464 1.0947 1.0949
1.1 0.2668 0.9769 1.0600 1.0600
1.3 0.1945 0.9977 1.0471 1.0471
1.5 0.1464 0.9972 1.0347 1.0347
1.7 0.1179 1.0000 1.0268 1.0268
2.0 0.0856 1.0000 1.0214 1.0214
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Table 3.3: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, (p, q) = (6, 3) and ρ = −0.50 based on the
SAR model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 2.3180 1.7109 1.1769 1.2892
0.1 2.0006 1.4879 1.2001 1.2526
0.3 1.1336 0.9834 1.0820 1.1116
0.5 0.5975 0.8119 1.0322 1.0364
0.7 0.3544 0.8922 1.0203 1.0211
0.9 0.2252 0.9511 1.0098 1.0098
1.1 0.1563 0.9955 1.0088 1.0088
1.3 0.1133 1.0000 1.0054 1.0054
1.5 0.0861 1.0000 1.0045 1.0045
1.7 0.0679 1.0000 1.0027 1.0027
2.0 0.0503 1.0000 1.0026 1.0026

Table 3.4: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, (p, q) = (9, 6) and ρ = −0.50 based on the
SAR model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 4.0927 2.0340 1.7804 1.9039
0.1 3.4740 1.8928 1.7210 1.8381
0.3 1.9874 1.2511 1.4621 1.5083
0.5 1.0401 0.9586 1.2559 1.2650
0.7 0.6192 0.9197 1.1491 1.1492
0.9 0.3982 0.9602 1.0978 1.0978
1.1 0.2786 0.9916 1.0649 1.0649
1.3 0.1956 0.9939 1.0457 1.0457
1.5 0.1548 1.0000 1.0381 1.0381
1.7 0.1181 1.0000 1.0285 1.0285
2.0 0.0863 1.0000 1.0185 1.0185
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Table 3.5: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, (p, q) = (6, 3) and ρ = 0 based on the SAR
model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 2.2733 1.6644 1.1967 1.2761
0.1 2.0276 1.4776 1.2010 1.2436
0.3 1.1396 0.9876 1.0912 1.1123
0.5 0.5986 0.8084 1.0359 1.0392
0.7 0.3621 0.8757 1.0195 1.0197
0.9 0.2259 0.9575 1.0099 1.0099
1.1 0.1540 0.9930 1.0067 1.0067
1.3 0.1140 0.9907 1.0063 1.0063
1.5 0.0869 1.0000 1.0027 1.0027
1.7 0.0690 1.0000 1.0044 1.0044
2.0 0.0504 1.0000 1.0020 1.0020

Table 3.6: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, (p, q) = (9, 6) and ρ = 0 based on the SAR
model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 3.8909 1.9435 1.7887 1.8923
0.1 3.6014 1.7993 1.6810 1.8138
0.3 1.9699 1.2525 1.4413 1.4955
0.5 1.0375 0.9586 1.2582 1.2712
0.7 0.6208 0.9128 1.1506 1.1511
0.9 0.3978 0.9498 1.0891 1.0891
1.1 0.2796 0.9848 1.0624 1.0628
1.3 0.2018 0.9974 1.0459 1.0459
1.5 0.1504 1.0000 1.0340 1.0340
1.7 0.1203 1.0000 1.0281 1.0281
2.0 0.0893 1.0000 1.0183 1.0183
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Table 3.7: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, (p, q) = (6, 3) and ρ = 0.50 based on the SAR
model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 2.2625 1.7122 1.2177 1.3017
0.1 2.0114 1.5412 1.2109 1.2680
0.3 1.0903 0.9772 1.0982 1.1174
0.5 0.5758 0.7826 1.0317 1.0359
0.7 0.3322 0.8782 1.0152 1.0176
0.9 0.2126 0.9513 1.0083 1.0083
1.1 0.1478 0.9941 1.0066 1.0066
1.3 0.1092 1.0000 1.0019 1.0019
1.5 0.0827 1.0000 1.0031 1.0031
1.7 0.0641 1.0000 1.0050 1.0050
2.0 0.0466 1.0000 1.0031 1.0031

Table 3.8: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, (p, q) = (9, 6) and ρ = 0.50 based on the SAR
model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 4.0745 2.2484 1.8266 2.0504
0.1 3.4015 2.0832 1.7438 1.9394
0.3 1.8984 1.2966 1.4385 1.5215
0.5 0.9988 0.9445 1.2606 1.2725
0.7 0.5826 0.8946 1.1421 1.1442
0.9 0.3727 0.9371 1.0901 1.0902
1.1 0.2582 0.9762 1.0594 1.0594
1.3 0.1898 0.9923 1.0402 1.0402
1.5 0.1433 0.9979 1.0334 1.0334
1.7 0.1121 1.0000 1.0278 1.0278
2.0 0.0810 1.0000 1.0205 1.0205
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Table 3.9: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, (p, q) = (6, 3) and ρ = 0.90 based on the SAR
model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 2.2404 1.8612 1.2720 1.3543
0.1 2.0145 1.6023 1.2149 1.2984
0.3 1.0518 0.9451 1.0533 1.1173
0.5 0.5142 0.7649 1.0301 1.0341
0.7 0.3101 0.8323 1.0067 1.0113
0.9 0.1948 0.9474 1.0094 1.0094
1.1 0.1333 0.9890 1.0041 1.0041
1.3 0.1003 1.0000 1.0038 1.0038
1.5 0.0744 1.0000 1.0031 1.0031
1.7 0.0575 1.0000 1.0031 1.0031
2.0 0.0417 1.0000 1.0017 1.0017

Table 3.10: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, (p, q) = (9, 6) and ρ = 0.90 based on the SAR
model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 3.9870 2.5775 1.7814 2.2395
0.1 3.3952 2.3104 1.7250 2.0933
0.3 1.8755 1.3083 1.4283 1.5517
0.5 0.9204 0.9126 1.2561 1.2689
0.7 0.5276 0.8484 1.1281 1.1348
0.9 0.3482 0.9494 1.0908 1.0908
1.1 0.2387 0.9778 1.0642 1.0642
1.3 0.1729 0.9925 1.0406 1.0406
1.5 0.1274 1.0000 1.0300 1.0300
1.7 0.1025 1.0000 1.0217 1.0217
2.0 0.0726 1.0000 1.0204 1.0204
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Table 3.11: Simulated relative efficiency of the restricted, pretest and shrinkage es-
timators with respect to β̂ when n = 81, (p, q) = (6, 3) and ρ = −0.90 based on the
SAR model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 2.1239 1.8077 1.2162 1.3241
0.1 1.6552 1.3894 1.1622 1.2406
0.3 0.5767 0.7600 1.0353 1.0401
0.5 0.2576 0.9238 1.0108 1.0110
0.7 0.1412 0.9975 1.0048 1.0048
0.9 0.0886 1.0000 1.0032 1.0032
1.1 0.0601 1.0000 1.0018 1.0018
1.3 0.0433 1.0000 1.0014 1.0014
1.5 0.0332 1.0000 1.0015 1.0015
1.7 0.0255 1.0000 1.0004 1.0004
2.0 0.0182 1.0000 1.0004 1.0004

Table 3.12: Simulated relative efficiency of the restricted, pretest and shrinkage es-
timators with respect to β̂ when n = 81, (p, q) = (9, 6) and ρ = −0.90 based on the
SAR model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 3.3544 2.5017 1.7997 2.1403
0.1 2.6386 1.9034 1.7011 1.8933
0.3 0.9378 0.9002 1.2404 1.2638
0.5 0.4117 0.8910 1.0856 1.0867
0.7 0.2230 0.9943 1.0511 1.0511
0.9 0.1393 1.0000 1.0322 1.0322
1.1 0.0946 1.0000 1.0222 1.0222
1.3 0.0678 1.0000 1.0142 1.0142
1.5 0.0522 1.0000 1.0090 1.0090
1.7 0.0399 1.0000 1.0086 1.0086
2.0 0.0289 1.0000 1.0088 1.0088
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Table 3.13: Simulated relative efficiency of the restricted, pretest and shrinkage es-
timators with respect to β̂ when n = 81, (p, q) = (6, 3) and ρ = −0.50 based on the
SAR model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 2.0973 1.7649 1.2278 1.3071
0.1 1.6931 1.3781 1.1724 1.2237
0.3 0.6107 0.7720 1.0362 1.0412
0.5 0.2691 0.9120 1.0110 1.0110
0.7 0.1500 0.9979 1.0061 1.0061
0.9 0.0924 1.0000 1.0042 1.0042
1.1 0.0616 1.0000 1.0021 1.0021
1.3 0.0458 1.0000 1.0003 1.0003
1.5 0.0342 1.0000 1.0004 1.0004
1.7 0.0270 1.0000 1.0017 1.0017
2.0 0.0197 1.0000 1.0010 1.0010

Table 3.14: Simulated relative efficiency of the restricted, pretest and shrinkage es-
timators with respect to β̂ when n = 81, (p, q) = (9, 6) and ρ = −0.50 based on the
SAR model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 3.2932 2.3870 1.8402 2.0741
0.1 2.6815 1.8723 1.6772 1.8604
0.3 0.9589 0.9081 1.2479 1.2705
0.5 0.4260 0.9129 1.1013 1.1020
0.7 0.2314 0.9874 1.0502 1.0502
0.9 0.1460 1.0000 1.0317 1.0317
1.1 0.0988 1.0000 1.0193 1.0193
1.3 0.0715 1.0000 1.0132 1.0132
1.5 0.0550 1.0000 1.0126 1.0126
1.7 0.0421 1.0000 1.0109 1.0109
2.0 0.0306 1.0000 1.0062 1.0062
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Table 3.15: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 81, (p, q) = (6, 3) and ρ = 0 based on the SAR
model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 2.0200 1.6994 1.2038 1.2911
0.1 1.6470 1.3478 1.1729 1.2156
0.3 0.6169 0.7860 1.0354 1.0409
0.5 0.2746 0.9272 1.0097 1.0100
0.7 0.1499 0.9983 1.0056 1.0056
0.9 0.0923 1.0000 1.0045 1.0045
1.1 0.0636 1.0000 1.0022 1.0022
1.3 0.0463 1.0000 1.0012 1.0012
1.5 0.0357 1.0000 1.0017 1.0017
1.7 0.0271 1.0000 1.0004 1.0004
2.0 0.0196 1.0000 1.0014 1.0014

Table 3.16: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 81, (p, q) = (9, 6) and ρ = 0 based on the SAR
model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 3.2799 2.3262 1.8065 2.0342
0.1 2.5585 1.9189 1.6530 1.8446
0.3 0.9934 0.9239 1.2559 1.2680
0.5 0.4357 0.8912 1.0929 1.0956
0.7 0.2373 0.9856 1.0543 1.0543
0.9 0.1452 1.0000 1.0344 1.0344
1.1 0.1028 1.0000 1.0238 1.0238
1.3 0.0728 1.0000 1.0178 1.0178
1.5 0.0552 1.0000 1.0125 1.0125
1.7 0.0437 1.0000 1.0088 1.0088
2.0 0.0319 1.0000 1.0061 1.0061



3.4 Numerical Studies 116

Table 3.17: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 81, (p, q) = (6, 3) and ρ = 0.50 based on the SAR
model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 2.1258 1.7604 1.1915 1.3107
0.1 1.6204 1.3493 1.1318 1.2209
0.3 0.6149 0.7734 1.0332 1.0377
0.5 0.2644 0.9308 1.0114 1.0114
0.7 0.1459 0.9960 1.0050 1.0050
0.9 0.0911 1.0000 1.0038 1.0038
1.1 0.0612 1.0000 1.0026 1.0026
1.3 0.0434 1.0000 1.0012 1.0012
1.5 0.0346 1.0000 1.0009 1.0009
1.7 0.0261 1.0000 1.0011 1.0011
2.0 0.0186 1.0000 1.0009 1.0009

Table 3.18: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 81, (p, q) = (9, 6) and ρ = 0.50 based on the SAR
model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 3.3500 2.4012 1.8522 2.1197
0.1 2.5436 1.9451 1.6674 1.8657
0.3 0.9623 0.9058 1.2489 1.2695
0.5 0.4196 0.9021 1.1006 1.1009
0.7 0.2297 0.9987 1.0487 1.0487
0.9 0.1417 1.0000 1.0377 1.0377
1.1 0.0996 1.0000 1.0191 1.0191
1.3 0.0696 1.0000 1.0151 1.0151
1.5 0.0524 1.0000 1.0104 1.0104
1.7 0.0414 1.0000 1.0069 1.0069
2.0 0.0297 1.0000 1.0056 1.0056
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Table 3.19: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 81, (p, q) = (6, 3) and ρ = 0.90 based on the SAR
model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 2.1127 1.7931 1.2216 1.3393
0.1 1.6130 1.3735 1.1696 1.2384
0.3 0.5735 0.7445 1.0304 1.0378
0.5 0.2471 0.9145 1.0085 1.0085
0.7 0.1318 0.9923 1.0032 1.0032
0.9 0.0840 1.0000 1.0030 1.0030
1.1 0.0563 1.0000 1.0023 1.0023
1.3 0.0401 1.0000 1.0026 1.0026
1.5 0.0300 1.0000 1.0005 1.0005
1.7 0.0237 1.0000 0.9998 0.9998
2.0 0.0170 1.0000 1.0006 1.0006

Table 3.20: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 81, (p, q) = (9, 6) and ρ = 0.90 based on the SAR
model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 3.3427 2.7123 1.7904 2.2242
0.1 2.5278 2.0246 1.6523 1.9299
0.3 0.9002 0.8894 1.2328 1.2568
0.5 0.3952 0.8933 1.0988 1.1007
0.7 0.2109 0.9936 1.0499 1.0499
0.9 0.1332 1.0000 1.0324 1.0324
1.1 0.0888 1.0000 1.0214 1.0214
1.3 0.0652 1.0000 1.0120 1.0120
1.5 0.0496 1.0000 1.0087 1.0087
1.7 0.0386 1.0000 1.0083 1.0083
2.0 0.0277 1.0000 1.0049 1.0049

The findings from these simulations results can be summarized as follows:

1. In general, changing the value of ρ does not have a significant effect in the SRE

results for the same n and (p, q).

2. In all cases, the restricted estimator, β̂R, dominates all other estimators when
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∆2 = 0, but the SMSE of β̂R decreases as ∆2 moves away from 0, and becomes

unbounded, while the SRE of other estimators becomes closer and closer to 1;

that is, the SMSE values of the other estimators approaches the value of SMSE

of the unrestricted estimator.

3. The SRE of β̂JS+ increases from 1.31 to more than 2 when n = 36, and from

1.30 to more than 4 when n = 81 keeping p − q = 3 and ∆2 = 0, that is β̂JS+

performs better for n = 81, while β̂R performs much better for n = 36 than

n = 81.

3.4.2 Columbus Crime Data Analysis

This data set was described in Chapter 2 in the context of CAR model. Anselin (1988)

fitted two separate regression models to illustrate the presence of separate levels of

spatial dependence for the east and west sides of Columbus city by using SAR model.

Also, Griffith (2000) and Lee and Yu (2013) used SAR models to fit this data set.

Recently, Li et al. (2012) considered a one-step estimation of spatial dependence

parameter as an alternative method for the maximum likelihood estimation. The

authors solved a one-step approximate profile likelihood (APLE) estimating equation

which had a closed form. They explored the finite sample and asymptotic properties

of the APLE for the SAR model and developed exploratory spatial data analysis

tools. They illustrated their methods by using the Columbus crime data set.

Here, we fit a full SAR model based on all the available covariates to predict the

log-transformed response variable log(CRIME). A reduced model is then searched for,

based on AIC and BIC selection criteria. The resulting models are reported in Table
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3.21.

Table 3.21: Full and reduced SAR models for the Columbus crime data

Selection Criterion Model
Full log(CRIME) ~ HOVAL+PLUMB+INC+DISCBD+OPEN

AIC/BIC log(CRIME)~ HOVAL+PLUMB

Using these models, we then compute the pretest, James-Stein and positive James-

Stein estimators. We then compare the performance of the estimators via their rel-

ative mean squared prediction errors (RMSPE) based on 2000 bootstrap samples

according to the procedure laid down in Section 2.8.1. The results are reported in

Table 3.22.

Table 3.22: RMSPE with respect to β̂ based on SAR model for Columbus crime data

Estimator RMSPE

β̂R 1.0895

β̂PT 1.0557

β̂JS+ 1.0306

β̂JS 1.0279

It is clear that β̂R outperforms all other estimators, which indicates that it is

optimum if the null hypothesis is correct. β̂PT comes the second, then β̂JS+. β̂JS

performs better than β̂, even though it was the worst among the other estimators.

3.5 Comparison of Penalty and Non-Penalty Esti-

mators

Again, we carry out Monte Carlo simulations with the same exact parameter values

as in Section 2.8.2 to compare the performance of β̂R, β̂JS+, β̂Lasso, β̂A.Lasso, β̂SCAD
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relative to the benchmark unrestricted estimator, β̂.

The penalty estimators are computed according to the same procedure given in

Section 2.8.2 by using k = 10-fold cross validation. In each configuration of the

parameters, we used 2000 Monte Carlo runs. The simulated relative efficiency results

are reported in Tables 3.23 to 3.25.

Table 3.23: Simulated relative efficiency of the restricted, positive James-Stein and
penalty estimators with respect to β̂ when n = 49, p− q = 4 and ∆2 = 0 for different
values of ρ and q based on the SAR model

ρ q β̂R β̂JS+ β̂LassoSAR β̂A.LassoSAR β̂SCADSAR

-0.95 5 2.6961 1.7635 1.1101 1.4154 1.4488
10 5.0142 2.9690 1.5131 2.1855 2.2423
15 8.5343 4.4283 2.1137 3.2113 3.2295
20 13.9370 5.8915 2.9065 4.7969 4.8001
25 23.6113 7.6766 4.3543 7.4049 7.1793

-0.50 5 2.6573 1.7179 1.1872 1.5104 1.6164
10 4.9192 2.9392 1.6464 2.3813 2.5808
15 8.3743 4.2474 2.3668 3.7411 3.9014
20 14.2132 6.3728 3.4287 5.7566 6.1516
25 23.6329 9.5879 5.1867 8.9466 9.4595

0.00 5 2.5972 1.7141 1.2208 1.5477 1.6194
10 4.9956 2.8972 1.7200 2.5342 2.6841
15 8.2686 4.2256 2.3359 3.6658 3.9478
20 14.0684 6.2427 3.3935 5.6686 5.8585
25 22.8300 10.6935 5.2689 9.1042 9.6564

0.50 5 2.5450 1.6893 1.1688 1.5036 1.5874
10 4.9849 2.8858 1.6079 2.3830 2.4979
15 8.4155 4.2560 2.3768 3.7448 4.1170
20 14.4793 6.2687 3.6147 6.0404 6.3423
25 26.4566 10.5100 5.6806 9.9734 10.2143

0.90 5 2.6502 1.7506 1.1509 1.5047 1.5768
10 5.0335 2.9900 1.6019 2.4123 2.5467
15 8.3611 4.3084 2.2035 3.6471 3.7998
20 15.5653 6.2167 3.5210 6.0747 6.4696
25 37.2105 12.2344 7.7071 13.2181 14.3314
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Table 3.24: Simulated relative efficiency of the restricted, positive James-Stein and
penalty estimators with respect to β̂ when n = 64, p− q = 4 and ∆2 = 0 for different
values of ρ and q based on the SAR model

ρ q β̂R β̂JS+ β̂LassoSAR β̂A.LassoSAR β̂SCADSAR

-0.95 5 2.5967 1.7408 1.0772 1.4350 1.5061
10 4.5948 2.9071 1.4447 2.1362 2.2062
15 7.0526 4.2472 1.8764 3.0749 3.1289
20 10.7990 5.5033 2.4188 4.2171 4.2667
25 16.1002 7.1381 3.1748 5.6535 5.6840

-0.50 5 2.5820 1.7027 1.1417 1.5166 1.6063
10 4.4099 2.7699 1.4996 2.2228 2.3738
15 7.1507 4.0023 2.0028 3.2589 3.5616
20 10.5353 5.3575 2.6682 4.7114 5.0499
25 15.7094 7.1851 3.4982 6.5778 7.1995

0.00 5 2.4686 1.7025 1.1405 1.5403 1.6501
10 4.4121 2.7949 1.5177 2.2674 2.4649
15 6.9735 3.9630 2.0186 3.2686 3.7296
20 10.3991 5.3797 2.6849 4.7350 5.3797
25 15.4484 7.0098 3.6614 6.5008 7.4750

0.50 5 2.4746 1.7126 1.1309 1.5196 1.6207
10 4.4069 2.8610 1.5070 2.2847 2.4922
15 6.5812 4.0144 1.9357 3.2566 3.4348
20 10.3217 5.4170 2.5610 4.5374 4.9922
25 14.7141 7.0012 3.3408 6.1540 6.6966

0.90 5 2.5870 1.7556 1.1340 1.5400 1.6070
10 4.4620 2.9350 1.4774 2.3120 2.4252
15 7.0513 4.2196 1.9145 3.1973 3.4121
20 10.4262 5.6425 2.4925 4.4396 5.1000
25 15.0268 7.1556 3.3193 6.2766 7.0547
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Table 3.25: Simulated relative efficiency of the restricted, positive James-Stein and
penalty estimators with respect to β̂ when n = 100, p−q = 4 and ∆2 = 0 for different
values of ρ and q based on the SAR model

ρ q β̂R β̂JS+ β̂LassoSAR β̂A.LassoSAR β̂SCADSAR

-0.95 5 2.5197 1.7422 1.0302 1.4576 1.4735
10 4.2305 2.8889 1.3364 2.1179 2.1763
15 6.0886 4.0556 1.6254 2.7140 2.9463
20 8.3070 5.3419 1.9756 3.4896 3.8036
25 11.5286 6.8243 2.3902 4.5449 4.8465

-0.50 5 2.3917 1.6949 1.0716 1.5072 1.5555
10 4.0523 2.7865 1.3773 2.1536 2.3292
15 5.9626 3.9636 1.7102 2.9255 3.3385
20 8.0740 4.9426 2.0705 3.6349 4.0654
25 10.6174 6.1888 2.4797 4.6703 5.5258

0.00 5 2.4094 1.6815 1.0978 1.5326 1.6060
10 3.9606 2.7516 1.3878 2.1697 2.3621
15 5.9571 3.9193 1.6976 2.8780 3.3908
20 7.9465 5.0605 2.0366 3.7062 4.2954
25 10.1456 6.0192 2.4881 4.6022 5.4337

0.50 5 2.3837 1.6869 1.0798 1.5145 1.5308
10 4.0483 2.7496 1.3480 2.1382 2.2856
15 5.8140 3.9090 1.6754 2.8278 3.1710
20 8.1139 5.1800 2.0277 3.7030 4.1931
25 10.5099 6.2243 2.4103 4.5004 5.1981

0.90 5 2.4133 1.7118 1.0670 1.5159 1.5341
10 4.0890 2.8350 1.3305 2.1380 2.2401
15 5.8289 4.0125 1.6717 2.8759 3.0660
20 8.1820 5.2785 2.0037 3.6655 4.1478
25 10.8982 6.6536 2.4162 4.5709 5.2662
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The following conclusions can be drawn:

1. For all the cases, the restricted estimator, β̂R, outperforms all other estimators

in this simulation study.

2. The performance of β̂R increases as the number of zero parameters (q) increases

regardless of the values of ρ and n.

3. For a fixed ρ, β̂R performs much better when n = 49 than n = 64 or 100.

4. The value of ρ does not have a significant effect on the SRE results for a fixed

n and q.

5. In general, the positive rule James-Stein estimator, β̂JS+, dominates all penalty

estimators, and its performance improves as q increases.

3.5.1 Application to Boston Housing Prices Data

Here we use the Boston housing prices data described in Section 2.8.2. The fitted

model is considered as a full SAR model. The MLE of ρ is used in the variance

covariance matrix of the SAR model to transform the response and the design matrix

data that will be used for the penalty estimator algorithms.

Several selection methods were employed on these data to choose the submodel

on which the restricted and the positive James-Stein estimators were based. We use

forward selection, backward elimination, and the adaptive LASSO algorithm to select

four different submodels. Both the forward and backward methods selected the same

set of three predictors. Then a second model was selected using forward selection,
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a third model was selected by backward elimination, and finally a fourth model was

obtained by adaptive LASSO. The full and submodels are reported in Table 3.26.

Table 3.26: Full and Submodels for the Boston Housing data based on SAR model

Selection Criterion Model
Full log(CMEDV) ~ log(LSTAT) +I(RM^2) + TAX +B

+CRIM + PTRATIO +log(RAD)+ CHAS

+ I(NOX^2) + log(DIS) + ZN+ INDUS

+ AGE + LAT+ LON

Forward/Backward log(CMEDV) ~ log(LSTAT)+ I(RM^2)+ LON

Forward log(CMEDV) ~ log(LSTAT)+ I(RM^2)+ LON+ CRIM

Backward log(CMEDV) ~ log(LSTAT)+ I(RM^2)+ LON + TAX

Adaptive LASSO log(CMEDV) ~ log(LSTAT)+ I(RM^2)+ TAX+ B

+ CRIM+ PTRATIO

To compare the restricted and positive James-Stein with the penalty estimators,

we use the relative mean squared prediction error (RMSPE) in (2.38) as an evaluation

method. In each case, we select 1000 samples of size 506 each with replacement using

Hall’s (1985) method. Table 3.27 summarizes the results.

Table 3.27: RMSPE with respect to β̂ for Boston Housing data based on the SAR
model

Model βR β̂JS+

Forward/Backword 1.0864 1.0741
Forward 1.0844 1.0713

Backward 1.0841 1.0702
Adaptive LASSO 1.0782 1.0629

Penalty Estimators

β̂Lasso β̂A.Lasso β̂SCAD

0.9046 1.0409 1.0437

The following conclusions can be drawn from the above Table.

1. The restricted estimator, β̂R, outperforms all estimators, which indicates that

if the restriction is correct, then β̂R is optimum.
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2. The positive rule James-Stein estimator dominates all penalty estimators in all

suggested submodels.

3. Both SCAD and adaptive LASSO perform better than LASSO.

4. The LASSO estimator has less MSPE than the unrestricted estimator, but this

is not true in general.

5. The variable LON, the longitude location of each tract, was the most important

variable in explaining the logarithm of the corrected median values of the owner-

occupied housing CMEDV. This indicates that the study made by Harrison and

Rubinfeld (1978) that measured the demand for clean air was affected more by

LON than the levels of nitrogen oxides concentration NOX variable, as this variable

did not appear in any submodel selected using the three selection criteria applied

to this data example. In addition, LON was the first one included in the forward

selection, and the last one left in the backward elimination method.

3.6 Conclusion

In this chapter, we considered shrinkage and penalty estimation for a regression model

with simultaneous autoregressive SAR error specification. All the estimators were

compared numerically by using simulated and real data examples. The simulation

results were similar to those in Chapter 2 for the CAR model.

We used the Boston housing prices data to study the performance of the β̂R, β̂JS+

and the penalty estimators. Four submodels were selected using forward selection,

backward elimination, and the adaptive LASSO algorithm. In all the cases, β̂R out-

performed all others, β̂JS+ dominated all the penalty estimators in terms of relative
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mean squared prediction error.



Chapter 4

Spatial Moving Average Model

4.1 Introduction

In this chapter we consider another spatial regression model known as spatial moving

average (SMA) model. This model was studied in Huang (1984) who analyzed spatial

interaction by using a two-dimensional autoregressive moving average model. He

extended the familiar ARMA(p, q) model to accommodate spatial autocorrelations

and called it SARMA(p, q). Haining (1978) considered a two-dimensional moving

average model to study spatial interactions, and derived the likelihood ratio statistic

for the model to test the moving average parameters.

Mur (1999) studied the problem of testing the spatial autocorrelation parameters

and clarified the difference between a spatial autoregressive and a spatial moving

average, which in fact differ in their variance structure. Anselin and Florax (1995)

used eight tests for testing the spatial dependence parameter using Monte Carlo

experiments in regression models for both regular and irregular lattices based on small

127
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sample sizes. More information about SMA model can be found in Anselin (1988),

Bailey and Gatrell (1995), Cliff and Ord (1981) and Cressie and Wikle (2011).

Following the layout of the previous two chapters, here we establish pretest and

shrinkage estimators of the large-scale effects, β, in SMA. Furthermore, we provide

algorithms for computing penalty estimators for β.

The chapter is organized as follows. In Section 4.2, we discuss the spatial moving

average model, and describe the maximum likelihood estimator of the large-scale

effects vector β. Estimation strategies using the restricted, pretest, shrinkage and

penalty estimators are presented in Section 4.3. Some asymptotic results of the

restricted and unrestricted estimators are provided in Section 4.4. The asymptotic

distributional bias, mean squared error matrix, and quadratic risk of the pretest and

shrinkage estimators are derived in Section 4.5. Some analytical risk comparisons are

made in Section 4.6. In Section 4.7, we use Monte Carlo experiments and a real data

example to study the performance of the proposed pretest and shrinkage estimators.

We develop a technique to obtain the penalty estimators in Section 4.8, and provide

numerical comparison results of the relative performance of the restricted, positive

James-Stein and penalty estimators through Monte Carlo experiments and a real data

example.

4.2 The SMA Model and Preliminaries

Recall that in Chapter 1, the spatial moving average model, SMA, was defined as

Y (s) = X(s)β + (I +G(s))ε(s), (4.1)
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where Y (s) = (Y (s1), . . . , Y (sn))′ is the (n × 1) observed response vector at the

lattice sites s, X(s) the (n×p) fixed matrix of p explanatory variables, β is a (p×1)

vector of unknown regression parameters and G = {gij}ni,j=1, is a matrix of spatial

dependence parameters, with gii = 0, ε(s) = (ε(s1), . . . , ε(sn))′ and I is an (n × n)

identity matrix.

If the spatial dependence matrix G is completely unstructured, the model becomes

computationally cumbersome. Fortunately, nature is often sparse, a fact that can be

exploited in the context of SMA by choosing the spatial dependence matrix G as

ρW , where W is a sparse and known proximity matrix as before.

Dropping the lattice symbol s, and assuming that the error vector term ε follows a

multivariate Gaussian distribution with mean 0, and variance covariance matrix σ2I,

then the response vector Y will be distributed as (Cressie and Wikle, 2011):

Y ∼N(Xβ,σ2(I + ρW )(I + ρW ′)). (4.2)

4.2.1 Unrestricted Maximum Likelihood Estimation

Following Huang (1984), the log-likelihood of the SMA model parameters is written

as

l = log(L(β, σ2, ρ))

= −n
2

log 2π − n

2
log σ2 − log |I + ρW |

− 1

2σ2
(Y −Xβ)′ ((I + ρW )(I + ρW ′))

−1
(Y −Xβ). (4.3)



4.2 The SMA Model and Preliminaries 130

Since W is symmetric, there exists an orthogonal matrix, say T , such that W =

T ′ΛT , where Λ = diag{λi}ni=1, and {λi : i = 1, . . . , n} are the eigenvalues with

corresponding eigenvectors T . Accordingly, transforming the responses, Y as well

as the covariate matrix, X in the SMA model, the log-likelihood function in (4.3)

becomes

l = −n
2

log 2π − n

2
log σ2 −

n∑
i=1

log(1 + ρλi)

− 1

2σ2
(Z −X0β)′V −1

n (Z −X0β), (4.4)

where Z = TY , X0 = TX, and var(Z) = σ2Vn = σ2(I + ρΛ)(I + ρΛ′).

By maximizing this log-likelihood function with respect to β, σ2, we obtain the

following estimators of β and σ2, respectively

β̂(ρ) =
(
X ′0V

−1
n (ρ)X0

)−1
X ′0V

−1
n (ρ)Z (4.5)

σ̂2(ρ) =
(Z −X0β̂(ρ))′V −1

n (ρ)(Z −X0β̂(ρ))

n
.

Now, plugging these expressions back into the the log-likelihood function, we get

the profile log-likelihood, a function of ρ only,

l∗(ρ) ≈ −n
2

log
{

(Z −X0β̂(ρ))′V −1
n (Z −X0β̂(ρ))

}
−

n∑
i=1

log(1 + ρλi),

which can be maximized to obtain ρ̂, the (MLE) of ρ. Finally, plugging ρ̂ in (4.5), we

obtain the final MLEs β̂ and σ̂2 of β, σ2, respectively. In the sequel, these estimators

will be called the unrestricted MLEs.
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The consistency and asymptotic normality of β̂ follow from results in Huang (1984).

Here we summarize such results in the following theorem.

Theorem 4.2.1. (Huang (1984)) As n→∞, and under the assumption

(
X ′0V̂n

−1
X0

)
n

P−→ V0, (4.6)

where V̂n = (I+ ρ̂W )(I+ ρ̂W ′), and V0 is a p×p finite and positive definite matrix,

we have:

β̂
P−→ β, and

√
n
(
β̂ − β

)
D−→ N

(
0, σ2V −1

0

)
.

4.3 Improved Estimation Strategies

In the following subsections, we present the restricted, pretest, and positive shrinkage

estimators for the SMA model’s large-scale effect parameters.

4.3.1 Restricted Estimator

Here, we are interested in estimating the large-scale effect parameter β in the SMA

model

Y = Xβ + (I + ρW )ε, (4.7)

subject to the restriction given in a form of null hypothesis by:

A0 : Hβ = h, (4.8)
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where X is a n× p fixed design matrix of rank p, H is a p× q known matrix of rank

(q ≤ p), and h is a q × 1 vector of known constants.

By using Lagrange multipliers, it is easy to show that the estimator β̂R(ρ) of β

under the above null hypothesis is given by

β̂R(ρ) = β̂(ρ)− (X ′0V
−1
n (ρ)X0)−1H ′

(H(X ′0V
−1
n (ρ)X0)−1H ′)−1(Hβ̂(ρ)− h), (4.9)

while the plug-in version of it, which we will call the restricted MLE, is given by

β̂R = β̂(ρ̂)− (X ′0V
−1
n (ρ̂)X0)−1H ′

(H(X ′0V
−1
n (ρ̂)X0)−1H ′)−1(Hβ̂(ρ̂)− h). (4.10)

The restricted estimator is a biased estimator of β unless the restriction given by

(4.8) is correct.

4.3.2 Pretest Estimator

The pretest estimator is obtained by combining the unrestricted, β̂, and the restricted

estimator, β̂R, as follows:

β̂PT = β̂I(Φn > Φn,α) + β̂RI(Φn ≤ Φn,α)

= β̂ − (β̂ − β̂R)I(Φn ≤ Φn,α), (4.11)
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where

Φn =
(Hβ̂ − h)′(H(X ′0V̂n

−1
X0)−1H ′)−1(Hβ̂ − h)

s2
e

,

and

s2
e =

(Z −X0β̂)′V̂n
−1

(Z −X0β̂)

n− p
,

is a consistent estimator of σ2. The quantity Φn,α is the α−level critical value of the

exact distribution of the test statistic Φn, and I(.) is an indicator function.

The statistic Φn given above follows asymptotically a central chi-square distribution

as n→∞ with q−degrees of freedom under the null hypothesis A0 : Hβ = h

It is clear that if the null hypothesis is rejected at level α, then the pretest estimator

will be β̂PT = β̂, and β̂PT = β̂R otherwise. That is, β̂PT is a discrete function of the

unrestricted and restricted estimators, and when it picks β̂R, we may fall in a type

II error.

As was explained in earlier chapters, it may be better in many cases to consider

a smooth function of the test statistic Φn as opposed to the binary choice function.

Answers to this desire are the James-Stein, Stein (1956), and the positive James-Stein

estimators, which will be defined in the next subsection.
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4.3.3 Shrinkage Estimators

Following Ahmed (2001) the shrinkage estimator of β is given by

β̂JS = β̂R + (β̂ − β̂R){1− (q − 2)Φ−1
n }

= β̂ − (q − 2)(β̂ − β̂R)Φ−1
n , q ≥ 3. (4.12)

On the other hand, to avoid over shrinkage phenomena, (see Chapter 2, p.32),

which could happen in the James-Stein estimator whenever (q−2)Φ−1
n > 1, we define

the positive shrinkage estimator as follows:

β̂JS+ = β̂R + (β̂ − β̂R){1− (q − 2)Φ−1
n }+

= β̂JS − (1− (q − 2)Φ−1
n )I(Φn < (q − 2))(β̂ − β̂R), (4.13)

where a+ = max{0, a}.

In the following, we estimate the regression parameter vector β for the spatial

moving average SMA model using three penalty estimators. Further computational

details will be given in the numerical studies section at the end of the chapter.



4.3 Improved Estimation Strategies 135

4.3.4 Penalty Estimators

By dropping the subscript n from the variance matrix Vn, the log-likelihood function

for the transformed SMA model is

l = log(L(β, σ2, ρ)) = −n
2

log 2π − n

2
log σ2 −

n∑
i=1

log(1 + ρλi)

− 1

2σ2
(Z −X0β)′V −1(Z −X0β). (4.14)

As our interest has been in the estimation of large-scale effects, neither σ2 nor ρ will

be subjected to any penalty. Therefore, we consider the following objective function:

F (λ,β) = (Z −X0β)′V −1(Z −X0β) + f(λ,β),

where λ is a tuning (regularization) parameter. However, in order for us to use

the existing computational algorithms, such as LARS, for computing the penalty

estimators, we need to bring the SMA model errors into an iid setup. Therefore, we

employ a transformation of the form Y ∗ = (I + ρΛ)−1Z, X∗ = (I + ρΛ)−1X0.

The log-likelihood function of the model in (4.14) now becomes

l = log(L
(
β, σ2, ρ

)
) = −n

2
log 2π − n

2
log σ2 − 1

2σ2

(Y ∗−X∗β)′(Y ∗−X∗β). (4.15)

Now the objective function for computing the penalty estimators is

F (β) = (Y ∗−X∗β)′(Y ∗−X∗β) + f(λ,β).
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In the following, we re-iterate the definitions of the LASSO, SCAD, and adaptive

LASSO estimators of the parameter vector β.

LASSO

The LASSO estimator of β for the SMA model, denoted by β̂Lasso, is defined as

arg min
β

[
(Y ∗−X∗β)′(Y ∗−X∗β) + λ

p∑
j=1

|βj|
]
,

where λ ≥ 0 is a tuning parameter to be estimated. β̂Lasso can be computed using

the LARS algorithm of Efron et al. (2004).

SCAD

For the SMA model, the SCAD estimator of β, denoted by β̂SCAD, is defined as

arg min
β

[
(Y ∗−X∗β)′(Y ∗−X∗β) + n

p∑
j=1

Pλs(|βj|)
]
,

where λs is the regularization parameter for the SCAD penalty function Pλs(|.|).

Adaptive LASSO

For the SMA model, the Adaptive LASSO estimator, denoted by β̂A.Lasso, is defined

as

arg min
β

[
(Y ∗−X∗β)′(Y ∗−X∗β) + n

p∑
j=1

λj|βj|
]
,

where {λj : j = 1, . . . , p} are the coefficient specific regularization parameters.
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4.4 Asymptotic Results

In this section we study the asymptotic behavior of the estimators proposed ear-

lier, namely β̂, β̂R, β̂JS, β̂JS+. Specifically, we will prove that the restricted and

unrestricted, β̂ and β̂R are jointly asymptotically normal. We define and derive ex-

pressions for the asymptotic distributional bias (ADB), the asymptotic mean squared

error matrix (AMSEM), and the asymptotic quadratic risk (AQR) of the estimators

β̂, β̂R, β̂JS, β̂JS+ by using the joint normality of β̂ and β̂R.

As explained in Chapter 2, the AQR is a measure of the risk of estimators based

on quadratic loss function and it can be used to compare the relative performance of

the various estimators proposed.

4.4.1 Joint Asymptotic Normality of Unrestricted and Re-

stricted Estimators

To study the asymptotic properties of the shrinkage estimators we need the asymp-

totic distribution of β̂ and β̂R, since all other estimators are represented as functions

of these two. To this end, let us define a sequence of local alternatives,

A(n) : Hβ = h+
ξ√
n
, (4.16)

where ξ is a q×1 fixed vector in Rq. If we set ξ = 0, then the local alternative becomes

Hβ = h, which is the linear hypothesis representing the candidate subspace. The

main result of this subsection is the following theorem.

Theorem 4.4.1. Under the assumptions of Theorem 4.2.1, and local alternatives given
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by (4.16), we have

(i) I
(1)
n =

√
n(β̂ − β)

D−→ I(1) ∼ Np(0, σ
2V −1

0 )

(ii) I
(2)
n =

√
n(β̂R − β)

D−→ I(2) ∼ Np(−ν, σ2E0),

(iii) I
(3)
n =

√
n(β̂ − β̂R)

D−→ I(3) ∼ Np

(
ν, σ2(V −1

0 −E0)
)

(iv)

 I
(1)
n

I
(3)
n

 D−→

 I(1)

I(3)

 ∼ N2p


 0

ν

 , σ2

 V −1
0 V −1

0 −E0

V −1
0 −E0 V −1

0 −E0




(v)

 I
(2)
n

I
(3)
n

 D−→

 I(2)

I(3)

 ∼ N2p


 −ν

ν

 , σ2

 E0 0

0 V −1
0 −E0


 ,

where

E0 = V −1
0 − V −1

0 H ′(HV −1
0 H ′)−1HV −1

0 , ν = V −1
0 H ′(HV −1

0 H ′)−1ξ.

Proof:

(i) The proof follows from Theorem 4.2.1.

(ii) Note that I
(2)
n =

√
n(β̂R − β) can be written as follows:

I(2)
n =

√
n
{
β̂ − (X ′0V̂n

−1
X0)−1H ′(H(X ′0V̂n

−1
X0)−1H ′)−1

(Hβ̂ − h)− β
}

=
√
n(β̂ − β)−

{
(X ′0V̂n

−1
X0)−1H ′(H(X ′0V̂n

−1
X0)−1H ′)−1[

H(β̂ − β) +Hβ − h
]}
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=
√
n(β̂ − β)−

√
n
{

(X ′0V̂n
−1
X0)−1H ′(H(X ′0V̂n

−1
X0)−1H ′)−1

H(β̂ − β)
}
− (X ′0V̂n

−1
X0)−1H ′(H(X ′0V̂n

−1
X0)−1H ′)−1ξ

=
[
Ip − (X ′0V̂n

−1
X0)−1H ′(H(X ′0V̂n

−1
X0)−1H ′)−1H

]
√
n(β̂ − β)− (X ′0V̂n

−1
X0)−1H ′(H(X ′0V̂n

−1
X0)−1H ′)−1ξ,

which is a linear combination of I
(1)
n . Therefore, as n −→∞,

I(2)
n

D−→ I(2) ∼ NP (µ(2),Σ(2)),

where

µ(2) = −V −1
0 H ′(HV −1

0 H ′)−1ξ

= −ν,

Σ(2) =
[
Ip − V −1

0 H ′(HV −1
0 H ′)−1H

]
.σ2V −1

0[
Ip −H ′(HV −1

0 H ′)−1HV −1
0

]
= σ2

{
V −1

0 − V −1
0 H ′(HV −1

0 H ′)−1HV −1
0

}
= σ2E0, with E0 = V −1

0 − V −1
0 H ′(HV −1

0 H ′)−1HV −1
0 .

(iii) I
(3)
n can be rewritten as

I(3)
n =

√
n
{

(X ′0V̂n
−1
X0)−1H ′(H(X ′0V̂n

−1
X0)−1H ′)−1(Hβ̂ − h)

}
=
√
n
{

(X ′0V̂n
−1
X0)−1H ′(H(X ′0V̂n

−1
X0)−1H ′)−1

[
H(β̂ − β)

+Hβ − h
]}

= (X ′0V̂n
−1
X0)−1H ′(H(X ′0V̂n

−1
X0)−1H ′)−1H

√
n(β̂ − β)

+ (X ′0V̂n
−1
X0)−1H ′(H(X ′0V̂n

−1
X0)−1H ′)−1ξ,
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which is also a linear combination of I
(1)
n . So, as n −→∞,

I(3)
n

D−→ I(3) ∼ Np(µ(3),Σ(3)),

where

µ(3) = V −1
0 H ′(HV −1

0 H ′)−1ξ

= ν,

Σ(3) =
[
V −1

0 H ′(HV −1
0 H ′)−1H

]
.σ2V −1

0

[
H ′(HV −1

0 H ′)−1HV −1
0

]
= σ2V −1

0 H ′(HV −1
0 H ′)−1HV −1

0

= σ2
(
V −1

0 −E0

)
.

(iv) By using (iii),

 I
(1)
n

I
(3)
n

 =

 Ip

Fn(1)

 I(1)
n +

 0p

Gn(1)


= Qn(1)I

(1)
n +Un(1),

where Ip is a p× p identity matrix, 0p is a p× 1 vector of zeros,

Fn(1) = (X ′0V̂n
−1
X0)−1H ′(H(X ′0V̂n

−1
X0)−1H ′)−1H ,

Gn(1) = (X ′0V̂n
−1
X0)−1H ′(H(X ′0V̂n

−1
X0)−1H ′)−1ξ.
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Therefore, as n −→∞, we have

Fn(1)
P−→ F0 = V −1

0 H ′(HV −1
0 H ′)−1H

Gn(1)
P−→ V −1

0 H ′(HV −1
0 H ′)−1ξ = ν.

Hence,

 I
(1)
n

I
(3)
n

 D−→

 I(1)

I(3)

 ∼ N2p

(
µ(4),Σ(4)

)
, where

µ(4) =

 0

ν

 ,

Σ(4) =

 Ip

F0

σ2V −1
0

(
Ip F ′0

)

= σ2

 V −1
0 V −1

0 F ′0

F0V
−1

0 F0V
−1

0 F ′0


= σ2

 V −1
0 V −1

0 −E0

V −1
0 −E0 V −1

0 −E0

 .

(v) Similarly, I
(2)
n and I

(3)
n can be rewritten in terms of I

(1)
n , Fn(1), and Gn(1) as

follows

I(2)
n =

(
Ip − Fn(1)

)
I(1)
n −Gn(1)

I(3)
n = Fn(1)I

(1)
n +Gn(1).



4.5 Asymptotic Results 142

Alternatively,

 I
(2)
n

I
(3)
n

 =

 Ip − Fn(1)

Fn(1)

 I(1)
n +

 −Ip
Ip

Gn(1)

= Qn(2)I
(1)
n +U(2)Gn(1),

Qn(2) =

 Ip − Fn(1)

Fn(1)

 ,U(2) =

 −Ip
Ip

 .

Therefore, as n −→∞, Fn(1)
P−→ F0, and Gn(1)

P−→ ν. So

 I
(2)
n

I
(3)
n

 D−→

 I(2)

I(3)

 ∼ N2p

(
µ(5),Σ(5)

)
,

where

µ(5) =

 −ν
ν

 ,

Σ(5) =

 Ip − F0

F0

σ2V −1
0

(
Ip − F ′0 F ′0

)

= σ2

 E0 0

0 V −1
0 −E0

 .

2
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4.5 Asymptotic Analysis of Bias and Risk

In the following subsections, the performance of the restricted, pretest, James-Stein

and positive James-Stein estimators will be examined asymptotically under local al-

ternatives given by (4.16).

4.5.1 Asymptotic Distributional Bias (ADB)

The concept of asymptotic distributional bias is defined in Chapter 2. The ADBs are

convenient tools for deriving comparative picture of the listed estimators in terms of

their estimation biases. For the purpose of completeness, we recall here the definition

of the ADB as follows. Let G(x) be the asymptotic distribution of
√
n(β̂∗−β), where

β̂∗ is any of the listed estimators, and

G(x) = lim
n→∞

PA(n)

{√
n(β̂∗ − β) ≤ x

}
.

If and when the limit exists. If
√
n(β̂∗ − β)

D−→ I∗, then the asymptotic distribu-

tional bias of β̂∗ is defined by

ADB(β̂∗) = E
{
I∗
}

=

∫
xdG(x). (4.17)

The following theorem gives us expressions for the ADBs of β̂, β̂R, β̂JS, β̂JS+.

Theorem 4.5.1. Under local alternatives given in (4.16), we have

(i) ADB(β̂) = 0.
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(ii) ADB(β̂R) = −ν.

(iii) ADB(β̂PT ) = −νHq+2(χ2
q(α); ∆2).

(iv) ADB(β̂JS) = −(q − 2)νE(χ−2
q+2(∆2)).

(v) ADB(β̂JS+) = ADB(β̂JS)− νE{(1− (q − 2)χ−2
q+2(∆2))I(χ2

q+2(∆2) < (q − 2))}

= −ν
[
(q − 2)E(χ−2

q+2(∆2)) + E{(1− (q − 2)χ−2
q+2(∆2))I(χ2

q+2(∆2) < (q − 2))}
]
,

where ∆2 = 1
σ2ξ
′(HV −1

0 H ′)−1ξ = 1
σ2ν

′V0ν.

Proof:

(i) By Theorem 4.4.1(i), we have

ADB(β̂) = E{I(1)} = 0.

(ii) Also, by Theorem 4.4.1(ii), we have

ADB(β̂R) = E{I(2)} = −ν.

(iii) Note that,

√
n(β̂PT − β) =

√
n
(

(β̂ − (β̂ − β̂R)I(Φn ≤ Φn,α))− β
)

=
√
n(β̂ − β)−

√
n(β̂ − β̂R)I(Φn ≤ Φn,α)

= I(1)
n −

√
n(X ′0V̂n

−1
X0)−1H ′(H(X ′0V̂n

−1
X0)−1H ′)−1

(Hβ̂ − h)I(Φn ≤ Φn,α)).

Now, as n −→ ∞, and by Slutsky’s Theorem, we get Φn
D−→ Φ ∼ χ2

q, and

Φn,α
D−→ χ2

q;α, where χ2
q;α is the upper α−quantile of χ2

q random variable, and
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furthermore,

√
n(Hβ̂ − h) =

√
n
(
H(β̂ − β + β)− h

)
=
√
nH(β̂ − β) + ξ, under local alternatives,

= HI(1)
n + ξ.

Therefore,
√
n(Hβ̂ − h)

D−→ Nq

(
ξ, σ2(HV −1

0 H ′)−1
)
.

Therefore, by using Theorem 2.5.2, we have

ADB(β̂PT ) = −V −1
0 H ′(HV −1

0 H ′)−1ξHq+2(χ2
q(α); ∆2)

= −νHq+2(χ2
q(α); ∆2).

(iv) Note that,

√
n(β̂JS − β) =

√
n
(
β̂ − (q − 2)(β̂ − β̂R)Φ−1

n − β
)

=
√
n(β̂ − β)− (q − 2)

√
n(β̂ − β̂R)Φ−1

n

= I(1)
n − (q − 2)I(3)

n Φ−1
n

Therefore, by using Theorem 2.5.2, we have

ADB(β̂JS) = 0− (q − 2)νE
(
χ−2
q+2(∆2)

)
= −(q − 2)νE

(
χ−2
q+2(∆2)

)
.
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(v) Similar to (iv),

√
n(β̂JS+ − β) =

√
n
{
β̂JS − (1− (q − 2)Φ−1

n )I(Φn < (q − 2))(β̂ − β̂R)− β
}

=
√
n(β̂JS − β)−

√
n(β̂ − β̂R)(1− (q − 2)Φ−1

n )

I(Φn < (q − 2))

=
√
n(β̂JS − β)−

{
I(3)
n (1− (q − 2)Φ−1

n )I(Φn < (q − 2))
}
. So,

ADB(β̂JS+) = ADB(β̂JS)

− νE
{

(1− (q − 2)χ−2
q+2(∆2))I(χ2

q+2(∆2) < (q − 2))
}

= −(q − 2)νE
(
χ−2
q+2(∆2)

)
− νE

{
(1− (q − 2)χ−2

q+2(∆2))I(χ2
q+2(∆2) < (q − 2))

}
= −ν

{
(q − 2)E

(
χ−2
q+2(∆2)

)
+ E

{
(1− (q − 2)χ−2

q+2(∆2))I(χ2
q+2(∆2) < (q − 2))

}}
.

2

4.5.2 Risk Analysis

Following the AMSEM and AQR concepts introduced in Chapter 2, we have for any

estimator β̂∗, if
√
n
(
β̂∗ − β

)
D−→ I∗, then the AMSEM(β̂∗) is defined as:

AMSEM(β̂∗) = E
{
I∗I∗′

}
=

∫
xx′dG(x),
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and the asymptotic quadratic risk (AQR) of β̂∗ is defined as:

AQR(β̂∗,M ) = E
{
I∗′MI∗

}
=

∫
(x′Mx)dG(x)

= tr
{
MAMSEM(β̂∗)

}
,

where M is a p×p positive definite matrix, and tr(M ) is the trace of the matrix M .

The AMSEM and AQR expressions for β̂, β̂R, β̂JS, β̂JS+ are driven in the following

theorem.

Theorem 4.5.2. Suppose that M is a p × p positive definite matrix, then under the

assumption (4.6) and local alternatives (4.16), we have

(i) AMSEM(β̂) = σ2V −1
0 ,

AQR(β̂,M ) = σ2tr(MV −1
0 ),

(ii) AMSEM(β̂R) = σ2E0 + νν ′,

AQR(β̂R,M) = σ2tr(MV −1
0 )− σ2tr(U11) + u′1U11u1,

(iii)

AMSEM(β̂PT ) = σ2V −1
0

− σ2V −1
0 H ′(HV −1

0 H ′)−1HV −1
0 Hq+2(χ2

q(α); ∆2)

+ νν ′
{

2Hq+2(χ2
q(α); ∆2)−Hq+4(χ2

q(α); ∆2)
}
,

AQR(β̂PT ,M ) = σ2tr(MV −1
0 )

− σ2tr(U11)Hq+2(χ2
q(α); ∆2)

+ u′1U11u1

{
2Hq+2(χ2

q(α); ∆2)−Hq+4(χ2
q(α); ∆2)

}
,
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(iv)

AMSEM(β̂JS) = σ2V −1
0

− (q − 2)σ2
(
V −1

0 −E0

)
{

2E(χ−2
q+2(∆2))− (q − 2)E(χ−4

q+2(∆2))
}

+ (q − 2)(q + 2)νν ′E(χ−4
q+4(∆2)),

AQR(β̂JS,M ) = σ2tr(MV −1
0 )

− σ2(q − 2)
{

2E(χ−2
q+2(∆2))− (q − 2)E(χ−4

q+2(∆2))
}
tr(U11)

+ (q − 2)(q + 2)E(χ−4
q+4(∆2))u′1U11u1,

(v)

AMSEM(β̂JS+) = AMSEM(β̂JS)

− σ2
(
V −1

0 −E0

)
E
{

(1− (q − 2)χ−2
q+2(∆2))2I(χ2

q+2(∆2) < (q − 2))
}

− νν ′E
{

(1− (q − 2)χ−2
q+4(∆2))2I(χ2

q+4(∆2) < (q − 2))
}

+ 2νν ′E
{

(1− (q − 2)χ−2
q+2(∆2))I(χ2

q+2(∆2) < (q − 2))
}
,

AQR(β̂JS+,M ) = AQR(β̂JS,M)

− σ2E
{

(1− (q − 2)χ−2
q+2(∆2))2I(χ2

q+2(∆2) < (q − 2))
}

tr(U11)
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− E
{

(1− (q − 2)χ−2
q+4(∆2))2I(χ2

q+4(∆2) < (q − 2))
}

u′1U11u1

+ 2E
{

(1− (q − 2)χ−2
q+2(∆2))I(χ2

q+2(∆2) < (q − 2))
}

u′1U11u1,

where E0 is defined as in Theorem 4.4.1,

tr(U11) = tr
(
MV −1

0 H ′(HV −1
0 H ′)−1HV −1

0

)
,

u = ΓV
−1/2

0 H ′(HV −1
0 H ′)−1ξ,

and Γ is a p× p orthogonal matrix such that

ΓV
−1/2

0 H ′(HV −1
0 H ′)−1HV

−1/2
0 Γ′ = Iq 0q×(p−q)

0(p−q)×q 0(p−q)×(p−q)

 , (4.18)

and

ΓV
−1/2

0 MV
−1/2

0 Γ′ =

 U11 U12

U ′12 U22

 ,u =

 u1

u2

 .
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Proof:

(i) Note that,

n(β̂ − β)(β̂ − β)′ = I(1)
n I

(1)
n
′. Therefore,

AMSEM(β̂) = E
{
I(1)I(1)′}

= σ2V −1
0 , by Theorem 4.4.1(i),

AQR(β̂,M ) = tr
(
M{AMSEM(β̂)}

)
= tr(Mσ2V −1

0 )

= σ2tr(MV −1
0 ).

(ii) Similarly,

n(β̂R − β)(β̂R − β)′ = I(2)
n I

(2)
n
′. Therefore,

AMSEM(β̂R) = E
{
I(2)I(2)′}

= σ2E0 + (−ν)(−ν ′)

= σ2E0 + νν ′, using Theorem 4.4.1(ii),

AQR(β̂R,M ) = tr
(
M{AMSEM(β̂R)}

)
= tr

{
M
[
σ2E0 + νν ′

]}
= tr

{
M
[
σ2
(
V −1

0 − V −1
0 H ′(HV −1

0 H ′)−1
)

+ νν ′
]}

= tr
(
MV −1

0

)
− σ2tr

{
MV −1

0 H ′(HV −1
0 H ′)−1HV −1

0

}
+ ν ′Mν.
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The p×p matrix V
−1/2

0 H ′(HV −1
0 H ′)−1HV

−1/2
0 is symmetric and idempotent

of rank q(q ≤ p), therefore, there exists an orthogonal p× p matrix Γ such that

ΓV
−1/2

0 H ′(HV −1
0 H ′)−1HV

−1/2
0 Γ′ =

 Iq 0q×(p−q)

0(p−q)×q 0(p−q)×(p−q)

, and

ΓV
−1/2

0 MV
−1/2

0 Γ′ =

 U11 U12

U ′12 U22

, where U11 and U22 are square matrices

of orders q and (p− q), respectively. Thus,

tr
{
MV −1

0 H ′(HV −1
0 H ′)−1HV −1

0

}
=

tr
{

(ΓV
−1/2

0 MV
−1/2

0 Γ′)(ΓV
−1/2

0 H ′

(HV −1
0 H ′)−1HV

−1/2
0 Γ′)

}
= tr


 U11 U12

U ′12 U22


 Iq 0

0 0




= tr (U11) .

Moreover, ν ′Mν can be written as follows

ν ′Mν =
[
ξ′(HV −1

0 H ′)−1HV −1
0

]
M
[
V −1

0 H ′(HV −1
0 H ′)−1ξ

]
=

[
ξ′(HV −1

0 H ′)−1(HV −1
0 H ′)(HV −1

0 H ′)−1HV −1
0

]
M[

V −1
0 H ′(HV −1

0 H ′)−1(HV −1
0 H ′)(HV −1

0 H ′)−1ξ
]

=
[
ξ′(HV −1

0 H ′)−1HV
−1/2

0 Γ′
][

ΓV
−1/2

0 H ′(HV −1
0 H ′)−1

HV
−1/2

0 Γ′
][

ΓV
−1/2

0 MV
−1/2

0 Γ′
][

ΓV
−1/2

0 H ′

(HV −1
0 H ′)−1HV

−1/2
0 Γ′

][
ΓV
−1/2

0 H ′(HV −1
0 H ′)−1ξ

]
.
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Let u = ΓV
−1/2

0 H ′(HV −1
0 H ′)−1ξ, then we have

ν ′Mν = u′

 Iq 0

0 0


 U11 U12

U ′12 U22


 Iq 0

0 0

u
= u′

 U11 0

0 0

u
= u′1U11u1, where u =

 u1

u2

 .

Therefore,

AQR(β̂R,M ) = σ2tr
(
MV −1

0

)
− σ2tr(U11) + u′1U11u1.

(iii) Also, note that

n(β̂PT − β)(β̂PT − β)′ = n
(
β̂ − (β̂ − β̂R)I(Φn ≤ Φn,α)− β

)
(
β̂ − (β̂ − β̂R)I(Φn ≤ Φn,α)− β

)′
= n(β̂ − β)(β̂ − β)′

+ n(β̂ − β̂R)(β̂ − β̂R)′I2(Φn ≤ Φn,α)

− 2n(β̂ − β̂R)(β̂ − β)′I(Φn ≤ Φn,α)

= I(1)
n I

(1)
n
′ + I(3)

n I
(3)
n
′I2(Φn ≤ Φn,α)

− 2I(3)
n I

(1)
n
′I(Φn ≤ Φn,α).
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Now, the second term of the last equality can be written as:

I(3)
n I

(3)
n
′I2(Φn ≤ Φn,α) = n(β̂ − β̂R)(β̂ − β̂R)′I2(Φn ≤ Φn,α)

= n
[
(X ′0V̂n

−1
X0)−1H ′(H(X ′0V̂n

−1
X0)−1H ′)−1

(Hβ̂ − h)
][

(X ′0V̂n
−1
X0)−1H ′

(H(X ′0V̂n
−1
X0)−1H ′)−1(Hβ̂ − h)

]′
I(Φn ≤ Φn,α).

By Theorem 4.5.1(iii) we have

√
n(Hβ̂ − h)

D−→ Nq

(
ξ, σ2(HV −1

0 H ′)−1
)
.

Therefore,

[
s2
e(H(X ′0V̂n

−1
X0)−1H ′)−1

]−1/2√
n(Hβ̂ − h)

D−→ Nq

(
(σ2(HV −1

0 H ′)−1)−1/2ξ, Iq
)
.

So,

AMSEM(β̂PT ) = E1 + E2 + E3,

where the three terms in the right-hand side of the last equality can be manip-

ulated as follows:

E1 = E
{
I(1)I(1)′}

= σ2V −1
0 by Theorem 4.4.1(i).

E2 = E
{
I(3)I(3)′I2(Φ ≤ χ2

q(α); ∆2)
}

E3 = −2E
{
I(3)I(1)′I(Φ ≤ χ2

q(α); ∆2)
}
.
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Hence, by Theorem 4.4.1(i), Theorem 2.5.2, and Theorem 2.5.4 E2 is given by

E2 = σ2V −1
0 H ′(HV −1

0 H ′)−1HV −1
0 Hq+2(χ2

q(α); ∆2)

+ V −1
0 H ′(HV −1

0 H ′)−1ξξ′(HV −1
0 H ′)−1HV −1

0

Hq+4(χ2
q(α); ∆2)

= σ2
(
V −1

0 −E0

)
Hq+2(χ2

q(α); ∆2) + νν ′Hq+4(χ2
q(α); ∆2), and

E3 = −2E
{
E
[
I(3)I(1)′I(Φ ≤ χ2

q(α); ∆2)|I(3)
]}

= −2E
{
I(3)E

[
I(1) + (V −1

0 −E0)(V −1
0 −E0)−1

(I(3) − ν)
]′
I(Φ ≤ χ2

q(α); ∆2)
}

= −2E
{
I(3)

(
I(3) − ν

)′
I(Φ ≤ χ2

q(α); ∆2)
}

= −2× (Second term) + 2νν ′Hq+2(χ2
q(α); ∆2), using 2.5.2.

By combining the three terms, we have

AMSEM(β̂PT ) = E1 + E2 + E3

= σ2V −1
0

− σ2(V −1
0 −E0)Hq+2(χ2

q(α); ∆2)

− νν ′Hq+4(χ2
q(α); ∆2) + 2νν ′Hq+2(χ2

q(α); ∆2)

= σ2V −1
0

− σ2V −1
0 H ′(HV −1

0 H ′)−1H ′V −1
0 Hq+2(χ2

q(α); ∆2)

+ νν ′
{

2Hq+2(χ2
q(α); ∆2)−Hq+4(χ2

q(α); ∆2)
}
,
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AQR(β̂PT ,M ) = tr
(
M
{
AMSEM(β̂PT )

})
= tr

{
M
[
σ2V −1

0 − σ2V −1
0 H ′(HV −1

0 H ′)−1HV −1
0

Hq+2(χ2
q(α); ∆2) + νν ′

{
2Hq+2(χ2

q(α); ∆2)

−Hq+4(χ2
q(α); ∆2)

}]}
= σ2tr(MV −1

0 )

− σ2tr
(
MV −1

0 H ′(HV −1
0 H ′)−1HV −1

0

)
Hq+2(χ2

q(α); ∆2)

+ ν ′Mν
{

2Hq+2(χ2
q(α); ∆2)−Hq+4(χ2

q(α); ∆2)
}

= σ2tr(MV −1
0 )

− σ2tr(U11)Hq+2(χ2
q(α); ∆2)

+ u′1U11u1

{
2Hq+2(χ2

q(α); ∆2)−Hq+4(χ2
q(α); ∆2)

}
,

as in part (ii).

(iv) Also, note that

n(β̂JS − β)(β̂JS − β)′ = n
[
β̂ − (q − 2)(β̂ − β̂R)Φ−1

n − β
]

[
β̂ − (q − 2)(β̂ − β̂R)Φ−1

n − β
]′

= n(β̂ − β)(β̂ − β)′

+ n(q − 2)2(β̂ − β̂R)(β̂ − β̂R)′Φ−2
n

− 2n(q − 2)(β̂ − β̂R)(β̂ − β)′Φ−1
n

= I(1)
n I

(1)
n
′ + (q − 2)2I(3)

n I
(3)
n
′Φ−2

n

− 2(q − 2)I(3)
n I

(1)
n
′Φ−1

n .

Therefore, the AMSEM(β̂JS) = E1 +E2 +E3, where these three terms can be

manipulated as follows:
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By Theorem 4.4.1(i),

E1 = E
{
I(1)I(1)′}

= σ2V −1
0 ,

by Theorem 2.5.4, the second term can be simplified to

E2 = (q − 2)2E
{
I(3)I(3)′Φ−2

}
= (q − 2)2σ2

(
V −1

0 −E0

)
E
(
χ−4
q+2(∆2)

)
+ (q − 2)2νν ′E

(
χ−4
q+4(∆2)

)
,

E3 = −2(q − 2)E
{
I(3)I(1)′Φ−1

}
= −2(q − 2)E

{
E
{
I(3)I(1)′Φ−1|I(3)

}}
= −2(q − 2)E

{(
I(3) − ν

)
I(3)′Φ−1

}
= −2(q − 2)

{
E
{
I(3)I(3)′Φ−1

}
− νE

{
I(3)′Φ−1

}}
= −2(q − 2)

{
σ2
(
V −1

0 −E0

)
E(χ−2

q+2(∆2)) + νν ′E(χ−2
q+4(∆2))

− νν ′E(χ−2
q+2(∆2))

}
= −2(q − 2)σ2

(
V −1

0 −E0

)
E(χ−2

q+2(∆2))

− 2(q − 2)νν ′
{
E(χ−2

q+4(∆2))− E(χ−2
q+2(∆2))

}
.
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By (2.20), the third term becomes

E3 = −2(q − 2)σ2
(
V −1

0 −E0

)
E(χ−2

q+2(∆2))

− 2(q − 2)νν ′
{
E(χ−2

q+2(∆2))− 2E(χ−4
q+4(∆2))− E(χ−2

q+2(∆2))
}

= −2(q − 2)σ2
(
V −1

0 −E0

)
E(χ−2

q+2(∆2)) + 4(q − 2)νν ′E(χ−4
q+4(∆2)).

Now, combining the three terms, we have

AMSEM(β̂JS) = σ2V −1
0

− (q − 2)σ2
(
V −1

0 −E0

){
2E(χ−2

q+2(∆2))− (q − 2)

E(χ−4
q+2(∆2))

}
+ (q − 2)(q + 2)νν ′E(χ−4

q+4(∆2)), and

AQR(β̂JS,M) = tr
(
M
{
AMSEM(β̂JS)

})
= tr

{
M
[
σ2V −1

0 − (q − 2)σ2
(
V −1

0 −E0

) {
2E(χ−2

q+2(∆2))

−(q − 2)E(χ−4
q+2(∆2))

}
+ (q − 2)(q + 2)νν ′E(χ−4

q+4(∆2))
]}

= σ2tr
(
MV −1

0

)
− (q − 2)σ2

{
2E(χ−2

q+2(∆2))− (q − 2)E(χ−4
q+2(∆2))

}
tr(U11)

+ (q − 2)(q + 2)E(χ−4
q+4(∆2))u′1U11u1.
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(v) Finally,

n(β̂JS+ − β)(β̂JS+ − β)′ = n
[
β̂JS − (1− (q − 2)Φ−1

n )I(Φn < (q − 2))

(β̂ − β̂R)− β
][
β̂JS − (1− (q − 2)Φ−1

n )

I(Φn < (q − 2))(β̂ − β̂R)− β
]′

= n(β̂JS − β)(β̂JS − β)′

+ n(β̂ − β̂R)(β̂ − β̂R)′(1− (q − 2)Φ−1
n )2

I2(Φn < (q − 2))− 2n(β̂JS − β)(β̂ − β̂R)′

(1− (q − 2)Φ−1
n )I(Φn < (q − 2))

= n(β̂JS − β)(β̂JS − β)′

+ I(3)
n I

(3)
n
′(1− (q − 2)Φ−1

n )2I2(Φn < (q − 2))

− 2
√
n(β̂JS − β)I(3)

n
′(1− (q − 2)Φ−1

n )

I(Φn < (q − 2)). (4.19)

Note that the third term of (4.19) can be written as:

Third term = −2n(β̂JS − β)(β̂ − β̂R)′(1− (q − 2)Φ−1
n )I(Φn < (q − 2))

= −2n
(
β̂R + (β̂ − β̂R)(1− (q − 2)Φ−1

n )− β
)

(β̂ − β̂R)′

(1− (q − 2)Φ−1
n )I(Φn < (q − 2))

= −2n(β̂R − β)(β̂ − β̂R)′(1− (q − 2)Φ−1
n )I(Φn < (q − 2))

− 2n(β̂ − β̂R)(β̂ − β̂R)′(1− (q − 2)Φ−1
n )2I(Φn < (q − 2))

= −2I(2)
n I

(3)
n
′(1− (q − 2)Φ−1

n )I(Φn < (q − 2))

− 2I(3)
n I

(3)
n
′(1− (q − 2)Φ−1

n )2I(Φn < (q − 2)).
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Therefore, AMSEM(β̂JS+) = E1 + E2 + E3, where the three terms of the

AMSEM(β̂JS+) can be worked out as follows:

E1 = AMSEM(β̂JS),

E2 = E
{
I(3)I(3)′(1− (q − 2)Φ−1)2I2(Φ < (q − 2))

}
= σ2

(
V −1

0 −E0

)
E
{(

1− χ−2
q+2(∆2)

)2
I(χ2

q+2(∆2) < (q − 2))
}

+ 2νν ′E
{(

1− (q − 2)χ−2
q+4(∆2)

)2
I(χ2

q+4(∆2) < (q − 2))
}
,

Using Theorem 4.4.1(v), we have

E3 = −2E
{
I(2)I(3)′(1− (q − 2)Φ−1)I(Φ < (q − 2))

}
− 2E

{
I(3)I(3)′(1− (q − 2)Φ−1)2I(Φ < (q − 2))

}
= 2νν ′E

{
(1− (q − 2)χ−2

q+2(∆2))I(χ2
q+2(∆2) < (q − 2))

}
− 2× (Second term).

Therefore,

AMSEM(β̂JS+) = AMSEM(β̂JS)

− σ2
(
V −1

0 −E0

)
E
{(

1− χ−2
q+2(∆2)

)2
I(χ2

q+2(∆2) < (q − 2))
}

− νν ′E
{(

1− χ−2
q+4(∆2)

)2
I(χ2

q+4(∆2) < (q − 2))
}

+ 2νν ′E
{(

1− χ−2
q+2(∆2)

)
I(χ2

q+2(∆2) < (q − 2))
}
,
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AQR(β̂JS+,M) = tr
(
M
{
AMSEM(β̂JS+)

})
= AQR(β̂JS,M)

− σ2E
{(

1− (q − 2)χ−2
q+2(∆2)

)2
I(χ2

q+2(∆2) < (q − 2))
}

tr(U11)− E
{(

1− (q − 2)χ−2
q+4(∆2)

)2

I(χ2
q+4(∆2) < (q − 2))

}
u′1U11u1

+ 2E
{(

1− (q − 2)χ−2
q+2(∆2)

)
I(χ2

q+2(∆2) < (q − 2))
}

u′1U11u1.

2

4.6 Risk Comparisons

In the following, we compare analytically the asymptotic quadratic risk for the listed

estimators with respect to the unrestricted as a benchmark estimator.

4.6.1 Comparing β̂ and β̂R

It is clear from Theorem 4.5.2 that the asymptotic quadratic risk of the β̂ is a con-

stant. In the contrary, the AQR of the restricted estimator depends on u′1U11u1,

and performs better than β̂ at and near the null hypothesis, A0.

For a given p× p positive definite matrix M , the asymptotic quadratic risk of β̂R

can be rewritten as

AQR(β̂R,M) = AQR(β̂,M)− σ2tr(U11) + u′1U11u1.
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Using Courant Theorem (Saleh, 2006, p.39), we have

chmin(U11) ≤ u
′
1U11u1

u′1u1

≤ chmax(U11), (4.20)

where chmin(U11), and chmax(U11) are the smallest and largest characteristic roots of

U11, respectively. With u′1u1 = σ2∆2, the inequality given by (4.20) becomes

σ2∆2chmin(U11) ≤ u′1U11u1 ≤ σ2∆2chmax(U11),

and hence

AQR(β̂,M)− σ2tr(U11) + σ2∆2chmin(U11)

≤ AQR(β̂R,M ) ≤

AQR(β̂,M)− σ2tr(U11) + σ2∆2chmax(U11). (4.21)

We can conclude the following results:

1. If ∆2 = 0, the lower and upper bounds of AQR(β̂R,M ) are equal, the local

alternatives (4.16) reduce to (4.8), and thus, β̂R has asymptotic quadratic risk

less than or equal to that of β̂. That is, if the restriction given by (4.8) is

correct, the restricted estimator, β̂R, always dominates β̂.

2. When ∆2 > 0, then from the first part of the inequality (4.21), we have

AQR(β̂R,M)− AQR(β̂,M) ≥ −σ2tr(U11) + σ2chmin(U11).

The difference in the left hand side of the above inequality is non-negative

whenever ∆2 ≥ tr(U11)
chmin(U11)

. That is, β̂ performs better than β̂R for all ∆2 ∈
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[
tr(U11)

chmin(U11)
,∞
)

. In fact, the asymptotic quadratic risk of β̂R increases without

bound beyond tr(U11)
chmin(U11)

.

Further, from the last part of the inequality (4.21), we have

AQR(β̂R,M)− AQR(β̂,M ) ≤ −σ2tr(U11) + σ2∆2chmax(U11).

The difference in the left hand side of the above inequality is negative whenever

∆2 ≤ tr(U11)
chmax(U11)

, thus β̂R performs better than β̂ for all ∆2 ∈
[
0, tr(U11)

chmax(U11)

]
.

Moreover, the asymptotic quadratic risk of both estimators are equal when

chmin(U11) = chmax(U11) regardless of σ2 and ∆2, one possible case for such

equality occurs when U11 = Iq.

4.6.2 Comparing β̂ and β̂PT

Note that,

AQR(β̂PT ,M) = AQR(β̂,M )− σ2tr(U11)Hq+2(χ2
q(α); ∆2)

+
{

2Hq+2(χ2
q(α); ∆2)−Hq+4(χ2

q(α); ∆2)
}
u′1U11u1.

Now, by Courant Theorem (Saleh, 2006, p.39),

AQR(β̂,M)− σ2tr(U11)Hq+2(χ2
q(α); ∆2)

+ σ2∆2chmin(U11)
{

2Hq+2(χ2
q(α); ∆2)−Hq+4(χ2

q(α); ∆2)
}

≤ AQR(β̂PT ,M ) ≤

AQR(β̂,M)− σ2tr(U11)Hq+2(χ2
q(α); ∆2)

+ σ2∆2chmax(U11)
{

2Hq+2(χ2
q(α); ∆2)−Hq+4(χ2

q(α); ∆2)
}
. (4.22)
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From the above inequality, and following the same procedure in the previous sub-

section, we can conclude the following.

1. When ∆2 = 0, the lower and upper bounds of the inequality (4.22) are equal

with

AQR(β̂,M )− AQR(β̂PT ,M ) = σ2tr(U11)Hq+2(χ2
q(α); ∆2) ≥ 0,

which indicates that β̂PT has less risk than β̂.

2. When ∆2 > 0, there are two cases

a. From the first part of the inequality (4.22) we have,

AQR(β̂PT ,M)− AQR(β̂,M ) ≤ −σ2tr(U11)

+ σ2∆2chmin(U11)
{

2Hq+2(χ2
q(α); ∆2)−Hq+4(χ2

q(α); ∆2)
}
.

This difference is greater than or equal to zero whenever

∆2 ≥ tr(U11)Hq+2(χ2
q(α);∆2)

chmin(U11)
{

2Hq+2(χ2
q(α);∆2)−Hq+4(χ2

q(α);∆2)
} ,

and hence, β̂ performs better than β̂PT for all

∆2 ∈

[
tr(U11)Hq+2(χ2

q(α);∆2)

chmin(U11)
{

2Hq+2(χ2
q(α);∆2)−Hq+4(χ2

q(α);∆2)
} ,∞).

b. From the last part of the inequality (4.22) we have,

AQR(β̂PT ,M )− AQR(β̂,M) ≤ −σ2tr(U11)

+ σ2∆2chmax(U11)
{

2Hq+2(χ2
q(α); ∆2)−Hq+4(χ2

q(α); ∆2)
}
.
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The above difference is less than or equal to zero whenever

∆2 ≤ tr(U11)Hq+2(χ2
q(α);∆2)

chmax(U11)
{

2Hq+2(χ2
q(α);∆2)−Hq+4(χ2

q(α);∆2)
} ,

that is, β̂PT performs better than β̂R for all

∆2 ∈

[
0,

tr(U11)Hq+2(χ2
q(α);∆2)

chmax(U11)
{

2Hq+2(χ2
q(α);∆2)−Hq+4(χ2

q(α);∆2)
}].

Moreover, the asymptotic quadratic risk of the two estimators are equal for all

∆2 in the interval
[
L,U

]
, where L and U are, respectively,

L =
tr(U11)Hq+2(χ2

q(α); ∆2)

chmax(U11)
{

2Hq+2(χ2
q(α); ∆2)−Hq+4(χ2

q(α); ∆2)
} ,

U =
tr(U11)Hq+2(χ2

q(α); ∆2)

chmin(U11)
{

2Hq+2(χ2
q(α); ∆2)−Hq+4(χ2

q(α); ∆2)
} .

Also, the lower and upper limits of the above interval may be equal when U11 =

Iq. So if the test statistic fails to reject the null hypothesis, then β̂PT = β̂R,

and hence, the equality of the asymptotic quadratic risks holds when U11 = Iq.

4.6.3 Comparing β̂ and β̂JS

Note that,

AQR(β̂JS,M) = AQR(β̂,M )− σ2(q − 2)
{

2E(χ−2
q+2(∆2))− (q − 2)E(χ−4

q+2(∆2))
}

tr(U11) + (q − 2)(q + 2)E(χ−4
q+4(∆2))u′1U11u1.
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By using the results in (Saleh, 2006, p.32), we get

AQR(β̂JS,M) = AQR(β̂,M)

− σ2(q − 2)tr(U11)
{

(q − 2)E
(
χ−4
q+2(∆2)

)
+ 2∆2E

(
χ−4
q+4(∆2)

)}
+(q − 2)(q + 2)E

(
χ−4
q+4(∆2)

)
u′1U11u1

AQR(β̂JS,M ) = AQR(β̂,M )

− σ2tr(U11)(q − 2)

{
(q − 2)E

(
χ−4
q+2(∆2)

)
+ 2∆2E

(
χ−4
q+4(∆2)

)
−(q + 2)E

(
χ−4
q+4(∆2)

) u′1U11u1

σ2tr(U11)

}
= AQR(β̂,M)

− σ2tr(U11)(q − 2)

{
(q − 2)E

(
χ−4
q+2(∆2)

)
+ 2∆2E

(
χ−4
q+4(∆2)

) [
1− (q + 2)u′1U11u1

2∆2σ2tr(U11)

]}
.

Therefore, AQR(β̂JS,M ) ≤ AQR(β̂,M ) for all ∆2, M , and q ≥ 3 when

1− (q + 2)u′1U11u1

2∆2σ2tr(U11)
≥ 0

or
(q + 2)u′1U11u1

2∆2σ2tr(U11)
≤ 1.
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Using Courant Theorem (Saleh, 2006, p.32), the above inequality holds whenever

(q + 2)chmax(U11)

2tr(U11)
≤ 1

tr(U11)

chmax(U11)
≥ q + 2

2
, q ≥ 3. (4.23)

That is, the AQR(β̂JS,M) is less than AQR(β̂,M ) in the whole parameter space

provided (4.23) holds, with an upper limit achieved when ∆2 −→∞.

4.6.4 Comparing β̂JS and β̂JS+

From Theorem 4.5.2(v), we get:

AQR(β̂JS,M )− AQR(β̂JS+,M ) =

σ2

{
E
{

(1− (q − 2)χ−2
q+2(∆2))2I(χ2

q+2(∆2) < (q − 2))
}
tr(U11)

+
1

σ2
E
{

(1− (q − 2)χ−2
q+4(∆2))2I(χ2

q+4(∆2) < (q − 2))
}
u′1U11u1

− 2

σ2
E
{

(1− (q − 2)χ−2
q+2(∆2))I(χ2

q+2(∆2) < (q − 2))
}
u′1U11u1

}
.

All the expected value expressions in the above risk difference are nonnegative,

since {
(1− (q − 2)χ−2

q+2(∆2))2I(χ2
q+2(∆2) < (q − 2))

}
≥ 0,{

(1− (q − 2)χ−2
q+4(∆2))2I(χ2

q+4(∆2) < (q − 2))
}
≥ 0,{

(1− (q − 2)χ−2
q+2(∆2))I(χ2

q+2(∆2) < (q − 2))
}
≤ 0.
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Therefore, for all values of ∆2, positive definite matrix M , with q ≥ 3, the

AQR(β̂JS+,M ) is smaller than the AQR(β̂JS,M ), with an upper limit achieved

as ∆2 −→∞. Consequently, we have the following result,

AQR(β̂JS+,M ) ≤ AQR(β̂JS,M ) ≤ AQR(β̂,M), for all values of ∆2.

4.7 Numerical Studies

In this section, we use Monte Carlo experiments and two real examples to compare

the array of estimators proposed in the past sections. In the first part we will com-

pare the restricted, pretest, and shrinkage estimators with respect to the benchmark

unrestricted estimator. These results have shown clearly that for the SMA model,

the positive shrinkage estimator has the best performance among the non-penalty

competitors. Therefore, in the second part of the numerical studies we will restrict

attention to the comparison of the penalty, the restricted and positive shrinkage es-

timators only with respect to the unrestricted estimator.

4.7.1 Relative Performance of the Estimators

In this simulation study, we consider N × N regular lattices with N = 6 and 9,

with corresponding sample sizes of n = 36 and 81, respectively. For the spatial

moving average SMA regression model given by (4.7), we generate design matrixX of

dimension n×p from a standard multivariate normal distribution. We fix σ2 = 1, and

consider different values of ρ ∈ {−0.90,−0.50, 0, 0.50, 0.90}. The regression coefficient

β is partitioned as β =
(
β1,β2

)
, where β1 is a (p− q)× 1 vector of ones, and β2 is
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a q × 1 vector of zeros in order to test the null hypothesis

A0 : βj = 0, forj = p− q + 1, . . . , p.

Finally, the spatial response is generated from the SMA model in (4.2) with a

rook based contiguity matrix W . Accordingly, β = (β1,0), and hence the response

variable is obtained as in (4.7), that is

Y = Xβ+ (I + ρW )ε.

As in Chapter 2, we used α = 0.05 as our level of significance for the test statistic,

and for simplicity, we defined the non-centrality parameter ∆2, which is essentially a

measure of how far away we go from the candidate subspace, as ∆2 =‖ β − β(0) ‖,

where β(0) = (β1,0), β = (β1,0 + δ) and ‖ . ‖ denotes the Euclidian norm. Thus,

∆2 =‖ δ ‖, where this vector of alternative values was chosen to vary from 0 to 2 with

steps of 0.1. Various choices of (p, q) were used in combination with configurations

of ρ ∈ {−0.90,−0.50, 0, 0.50, 0.90}, n = 36, 81 and 2000 Monte Carlo runs for each

scenario. In each of these Monte Carlo runs, the restricted, unrestricted, pretest and

shrinkage estimators were computed and their simulated relative efficiency (SRE)

with respect to the benchmark estimator were computed as follows:

SRE(β̂, β̂∗) =
SMSE(β̂)

SMSE(β̂∗)
, (4.24)
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where

SMSE(β̂∗) =

p∑
i=1

(β̂∗i − βi)2,

is the simulated mean squared errors of β∗, representing any of the estimators of

interest. The SRE results are reported in Tables 4.1 to 4.20 for (p, q) ∈ {(6, 3), (9, 6)},

and in Figures 4.1 to 4.5 for (p, q) ∈ {(12, 9), (15, 12), (18, 15)}.
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Figure 4.1: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, 81 and ρ = −0.90 for different values of (p, q)
based on the SMA model.
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Figure 4.2: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, 81 and ρ = −0.50 for different values of (p, q)
based on SMA model.
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Figure 4.3: Simulated relative efficiency of the restricted, pretest and shrinkage es-
timators with respect to β̂ when n = 36, 81 and ρ = 0 for different values of (p, q)
based on SMA model.
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Figure 4.4: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, 81 and ρ = 0.50 for different values of (p, q)
based on SMA model.
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Figure 4.5: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, 81 and ρ = 0.90 for different values of (p, q)
based on SMA model.
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Table 4.1: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, (p, q) = (6, 3) and ρ = −0.90 based on SMA
model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 2.6179 1.4234 1.1784 1.2007
0.1 2.4983 1.3886 1.1851 1.1995
0.3 1.9078 1.2182 1.1418 1.1540
0.5 1.3234 1.1096 1.1081 1.1134
0.7 0.9141 0.9979 1.0780 1.0803
0.9 0.6435 0.9691 1.0465 1.0540
1.1 0.4773 0.9565 1.0256 1.0381
1.3 0.3657 0.9662 1.0297 1.0297
1.5 0.2804 0.9644 1.0208 1.0208
1.7 0.2183 0.9626 1.0156 1.0156
2.0 0.1630 0.9780 1.0125 1.0125

Table 4.2: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, (p, q) = (9, 6) and ρ = −0.90 based on SMA
model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 4.6106 2.2575 1.9267 2.0102
0.1 4.4516 2.1731 1.9177 1.9874
0.3 3.4899 1.7728 1.7613 1.8145
0.5 2.4386 1.3729 1.5580 1.6153
0.7 1.6174 1.1904 1.4207 1.4499
0.9 1.1946 1.0868 1.3390 1.3551
1.1 0.8490 1.0045 1.2350 1.2430
1.3 0.6390 0.9814 1.1842 1.1923
1.5 0.4991 0.9725 1.1408 1.1499
1.7 0.3909 0.9636 1.1135 1.1136
2.0 0.2991 0.9660 1.0952 1.0952
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Table 4.3: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, (p, q) = (6, 3) and ρ = −0.50 based on SMA
model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 2.1959 1.5027 1.1600 1.2562
0.1 2.1494 1.4815 1.1368 1.2541
0.3 1.1810 1.0699 1.0623 1.1358
0.5 0.6568 0.9195 1.0543 1.0671
0.7 0.3798 0.9301 1.0372 1.0439
0.9 0.2488 0.9300 1.0235 1.0235
1.1 0.1787 0.9663 1.0193 1.0193
1.3 0.1282 0.9791 1.0116 1.0116
1.5 0.0957 0.9922 1.0102 1.0102
1.7 0.0769 1.0000 1.0070 1.0070
2.0 0.0546 1.0000 1.0070 1.0070

Table 4.4: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, (p, q) = (9, 6) and ρ = −0.50 based on SMA
model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 3.3869 2.4671 1.7663 2.1485
0.1 3.1151 2.0463 1.6588 1.9691
0.3 1.7085 1.2227 1.4724 1.5243
0.5 0.9521 0.9873 1.2606 1.2848
0.7 0.5588 0.9492 1.1693 1.1719
0.9 0.3580 0.9504 1.0976 1.0990
1.1 0.2480 0.9646 1.0767 1.0767
1.3 0.1824 0.9862 1.0512 1.0512
1.5 0.1376 0.9934 1.0400 1.0400
1.7 0.1111 1.0000 1.0306 1.0306
2.0 0.0788 0.9950 1.0238 1.0238
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Table 4.5: Simulated relative efficiency of the restricted, pretest and shrinkage es-
timators with respect to β̂ when n = 36, (p, q) = (6, 3) and ρ = 0 based on SMA
model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 2.4696 1.5562 1.2042 1.2564
0.1 2.2344 1.4784 1.1762 1.2344
0.3 1.2649 1.0031 1.1056 1.1189
0.5 0.6740 0.8480 1.0167 1.0499
0.7 0.3980 0.9080 1.0258 1.0268
0.9 0.2561 0.9597 1.0156 1.0156
1.1 0.1745 0.9926 1.0080 1.0082
1.3 0.1292 0.9973 1.0062 1.0062
1.5 0.0975 1.0000 1.0057 1.0057
1.7 0.0741 1.0000 1.0035 1.0035
2.0 0.0554 1.0000 1.0025 1.0025

Table 4.6: Simulated relative efficiency of the restricted, pretest and shrinkage es-
timators with respect to β̂ when n = 36, (p, q) = (9, 6) and ρ = 0 based on SMA
model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 4.6928 1.6689 1.6440 1.7585
0.1 4.1720 1.5606 1.6122 1.7014
0.3 2.4152 1.2053 1.4254 1.4708
0.5 1.3114 0.9845 1.2752 1.2796
0.7 0.7485 0.9409 1.1733 1.1734
0.9 0.4813 0.9625 1.1086 1.1086
1.1 0.3408 0.9912 1.0777 1.0777
1.3 0.2463 0.9973 1.0538 1.0538
1.5 0.1851 1.0000 1.0448 1.0448
1.7 0.1521 1.0000 1.0365 1.0365
2.0 0.1080 1.0000 1.0238 1.0238
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Table 4.7: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, (p, q) = (6, 3) and ρ = 0.50 based on SMA
model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 2.3508 1.5665 1.2382 1.2730
0.1 2.0759 1.4302 1.1562 1.2312
0.3 1.1988 1.0420 1.0932 1.1343
0.5 0.6481 0.9273 1.0640 1.0677
0.7 0.3787 0.9132 1.0303 1.0382
0.9 0.2473 0.9465 1.0255 1.0255
1.1 0.1683 0.9672 1.0157 1.0157
1.3 0.1257 0.9865 1.0112 1.0121
1.5 0.0958 1.0000 1.0100 1.0100
1.7 0.0756 0.9960 1.0088 1.0088
2.0 0.0545 1.0000 1.0046 1.0046

Table 4.8: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, (p, q) = (9, 6) and ρ = 0.50 based on SMA
model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 3.4139 2.5328 1.7761 2.1420
0.1 2.9762 2.0615 1.7119 1.9733
0.3 1.7274 1.2671 1.4482 1.5389
0.5 0.9209 0.9897 1.2499 1.2789
0.7 0.5494 0.9557 1.1540 1.1607
0.9 0.3546 0.9544 1.1087 1.1094
1.1 0.2489 0.9797 1.0749 1.0749
1.3 0.1818 0.9830 1.0494 1.0495
1.5 0.1370 0.9878 1.0368 1.0368
1.7 0.1072 0.9967 1.0300 1.0300
2.0 0.0798 1.0000 1.0232 1.0232
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Table 4.9: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 36, (p, q) = (6, 3) and ρ = 0.90 based on SMA
model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 2.6254 1.3802 1.1835 1.1971
0.1 2.5114 1.3566 1.1783 1.1908
0.3 1.9867 1.2303 1.1469 1.1631
0.5 1.3491 1.0931 1.1046 1.1163
0.7 0.9230 1.0066 1.0752 1.0801
0.9 0.6291 0.9595 1.0447 1.0489
1.1 0.4662 0.9475 1.0331 1.0341
1.3 0.3609 0.9658 1.0285 1.0301
1.5 0.2784 0.9676 1.0228 1.0228
1.7 0.2156 0.9785 1.0167 1.0167
2.0 0.1649 0.9768 1.0127 1.0127

Table 4.10: Simulated relative efficiency of the restricted, pretest and shrinkage es-
timators with respect to β̂ when n = 36, (p, q) = (9, 6) and ρ = 0.90 based on SMA
model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 4.8694 2.1639 1.9283 2.0065
0.1 4.3093 2.1085 1.8832 1.9688
0.3 3.6889 1.7719 1.7743 1.8380
0.5 2.4021 1.4083 1.5873 1.6194
0.7 1.6629 1.1903 1.4231 1.4661
0.9 1.1743 1.0738 1.3296 1.3421
1.1 0.8740 1.0174 1.2461 1.2549
1.3 0.6256 0.9762 1.1790 1.1858
1.5 0.5027 0.9604 1.1441 1.1454
1.7 0.3953 0.9609 1.1178 1.1221
2.0 0.2982 0.9630 1.0886 1.0889
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Table 4.11: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 81, (p, q) = (6, 3) and ρ = −0.90 based on SMA
model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 2.1539 1.0962 1.0891 1.0907
0.1 1.9227 1.0859 1.0787 1.0831
0.3 1.2013 1.0160 1.0479 1.0497
0.5 0.6725 0.9761 1.0232 1.0239
0.7 0.4074 0.9812 1.0129 1.0129
0.9 0.2664 0.9869 1.0056 1.0056
1.1 0.1843 0.9936 1.0030 1.0030
1.3 0.1357 0.9951 1.0025 1.0025
1.5 0.1056 1.0000 1.0029 1.0029
1.7 0.0805 1.0000 1.0023 1.0023
2.0 0.0604 1.0000 1.0016 1.0016

Table 4.12: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 81, (p, q) = (9, 6) and ρ = −0.90 based on SMA
model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 3.3459 1.1821 1.3668 1.3896
0.1 3.2387 1.1554 1.3591 1.3686
0.3 1.9297 1.0758 1.2476 1.2602
0.5 1.1012 1.0078 1.1546 1.1638
0.7 0.6692 0.9872 1.1059 1.1060
0.9 0.4237 0.9828 1.0679 1.0679
1.1 0.2970 0.9833 1.0430 1.0439
1.3 0.2194 0.9878 1.0308 1.0312
1.5 0.1726 0.9948 1.0277 1.0277
1.7 0.1340 1.0000 1.0216 1.0216
2.0 0.0966 1.0000 1.0150 1.0150
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Table 4.13: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 81, (p, q) = (6, 3) and ρ = −0.50 based on SMA
model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 2.3302 1.2378 1.1461 1.1493
0.1 1.8596 1.1556 1.1117 1.1268
0.3 0.7054 0.9764 1.0343 1.0447
0.5 0.3065 0.9777 1.0127 1.0162
0.7 0.1671 0.9878 1.0073 1.0073
0.9 0.1071 1.0000 1.0065 1.0065
1.1 0.0732 1.0000 1.0043 1.0043
1.3 0.0513 1.0000 1.0015 1.0015
1.5 0.0393 1.0000 1.0013 1.0013
1.7 0.0309 1.0000 1.0025 1.0025
1.9 0.0251 1.0000 1.0013 1.0013
2.0 0.0222 1.0000 1.0010 1.0010

Table 4.14: Simulated relative efficiency of the restricted, pretest and shrinkage esti-
mators with respect to β̂ when n = 81, (p, q) = (9, 6) and ρ = −0.50 based on SMA
model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 4.2996 1.4525 1.6412 1.6701
0.1 3.4034 1.3577 1.5523 1.5723
0.3 1.2638 1.0660 1.2770 1.2865
0.5 0.5670 0.9827 1.1359 1.1376
0.7 0.3112 0.9792 1.0781 1.0793
0.9 0.1925 0.9865 1.0495 1.0495
1.1 0.1337 0.9912 1.0338 1.0338
1.3 0.0955 1.0000 1.0247 1.0247
1.5 0.0716 1.0000 1.0195 1.0195
1.7 0.0565 1.0000 1.0148 1.0148
2.0 0.0402 1.0000 1.0089 1.0089
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Table 4.15: Simulated relative efficiency of the restricted, pretest and shrinkage es-
timators with respect to β̂ when n = 81, (p, q) = (6, 3) and ρ = 0 based on SMA
model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 2.1077 1.6699 0.9155 1.2970
0.1 1.6563 1.3586 1.1529 1.2181
0.3 0.6344 0.7868 1.0357 1.0406
0.5 0.2778 0.9281 1.0108 1.0109
0.7 0.1537 0.9946 1.0071 1.0071
0.9 0.0939 1.0000 1.0053 1.0053
1.1 0.0640 1.0000 1.0027 1.0027
1.3 0.0468 1.0000 1.0021 1.0021
1.5 0.0353 1.0000 1.0016 1.0016
1.7 0.0280 1.0000 1.0005 1.0005
1.9 0.0221 1.0000 1.0006 1.0006
2.0 0.0203 1.0000 1.0012 1.0012

Table 4.16: Simulated relative efficiency of the restricted, pretest and shrinkage es-
timators with respect to β̂ when n = 81, (p, q) = (9, 6) and ρ = 0 based on SMA
model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 3.3134 2.3122 1.8473 2.0484
0.1 2.6916 1.8830 1.6932 1.8451
0.3 0.9893 0.9160 1.2486 1.2668
0.5 0.4495 0.9149 1.1106 1.1106
0.7 0.2407 0.9869 1.0551 1.0551
0.9 0.1497 1.0000 1.0290 1.0290
1.1 0.1017 1.0000 1.0166 1.0166
1.3 0.0736 1.0000 1.0170 1.0170
1.5 0.0565 1.0000 1.0132 1.0132
1.7 0.0435 1.0000 1.0092 1.0092
2.0 0.0317 1.0000 1.0076 1.0076
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Table 4.17: Simulated relative efficiency of the restricted, pretest and shrinkage es-
timators with respect to β̂ when n = 81, (p, q) = (6, 3) and ρ = 0.50 based on SMA
model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 2.3345 1.2232 1.1361 1.1454
0.1 1.7755 1.1393 1.1202 1.1248
0.3 0.6973 0.9710 1.0420 1.0438
0.5 0.3113 0.9681 1.0173 1.0174
0.7 0.1659 0.9914 1.0091 1.0091
0.9 0.1062 1.0000 1.0064 1.0064
1.1 0.0728 1.0000 1.0046 1.0046
1.3 0.0536 1.0000 1.0033 1.0033
1.5 0.0393 1.0000 1.0025 1.0025
1.7 0.0314 1.0000 1.0020 1.0020
2.0 0.0219 1.0000 1.0007 1.0007

Table 4.18: Simulated relative efficiency of the restricted, pretest and shrinkage es-
timators with respect to β̂ when n = 81, (p, q) = (9, 6) and ρ = 0.50 based on SMA
model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 4.4010 1.4545 1.6401 1.6678
0.1 3.4652 1.3641 1.5642 1.6067
0.3 1.2837 1.0653 1.2681 1.2902
0.5 0.5661 0.9815 1.1244 1.1356
0.7 0.3238 0.9814 1.0768 1.0839
0.9 0.1906 0.9909 1.0509 1.0509
1.1 0.1292 0.9887 1.0291 1.0291
1.3 0.0948 0.9963 1.0270 1.0270
1.5 0.0727 1.0000 1.0211 1.0211
1.7 0.0569 1.0000 1.0170 1.0170
2.0 0.0415 1.0000 1.0124 1.0124
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Table 4.19: Simulated relative efficiency of the restricted, pretest and shrinkage es-
timators with respect to β̂ when n = 81, (p, q) = (6, 3) and ρ = 0.90 based on SMA
model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 2.1122 1.0829 1.0818 1.0854
0.1 1.9677 1.0841 1.0815 1.0844
0.3 1.1984 1.0135 1.0455 1.0516
0.5 0.6629 0.9715 1.0191 1.0234
0.7 0.4058 0.9795 1.0111 1.0111
0.9 0.2681 0.9906 1.0068 1.0068
1.1 0.1867 0.9975 1.0043 1.0043
1.3 0.1356 1.0000 1.0034 1.0034
1.5 0.1050 1.0000 1.0031 1.0031
1.7 0.0835 1.0000 1.0017 1.0017
1.9 0.0658 1.0000 1.0009 1.0009
2.0 0.0585 1.0000 1.0012 1.0012

Table 4.20: Simulated relative efficiency of the restricted, pretest and shrinkage es-
timators with respect to β̂ when n = 81, (p, q) = (9, 6) and ρ = 0.90 based on SMA
model.

∆2 βR β̂PT β̂JS β̂JS+

0.0 3.4038 1.1787 1.3686 1.3862
0.1 3.1443 1.1600 1.3621 1.3707
0.3 1.9271 1.0816 1.2554 1.2656
0.5 1.0800 1.0180 1.1637 1.1671
0.7 0.6714 0.9936 1.1142 1.1146
0.9 0.4318 0.9796 1.0662 1.0662
1.1 0.3000 0.9887 1.0483 1.0484
1.3 0.2264 0.9919 1.0313 1.0313
1.5 0.1696 0.9968 1.0252 1.0252
1.7 0.1323 0.9976 1.0196 1.0198
2.0 0.0950 1.0000 1.0140 1.0140

From these results, we can draw the following conclusions:

1. For fixed n and (p, q), varying ρ, the spatial dependence parameter does not

affect much the SRE.
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2. When the null hypothesis is true, ∆2 = 0, the restricted estimator β̂R out-

performs all other estimators, but as we move away from the null hypothesis,

that is, as ∆2 moves away from zero, the SRE of β̂R approaches zero. In other

words, the SMSE(β̂R) becomes unbounded. The SRE of all other estimators

gets closer to one as ∆2 moves away from zero.

3. For fixed value of p− q = 3, and when ∆2 = 0, the SRE of β̂JS+ increases from

1.26 to more than 4 as q increases from 3 to 15, in addition, it performs better

when n = 36 than 81.

4. The pretest estimator performs better than the shrinkage estimators near ∆2 =

0.

Thus, as ∆2 moves away from zero, the performance of the positive James-Stein

estimator is uniformly better than all other estimators. This leads us again to the

conclusion that the positive James-Stein shrinkage estimator is a safer way to go when

there are full and candidate competing submodels.

4.7.2 Application to Columbus Crime Data

The data was explained in Chapter 2. Here, we will follow Kyung and Ghosh (2010)

and will use the log-transformation to restore some normality and to stabilize the

variance. We assume a SMA error model with a Gaussian distribution, then we fit a

full SMA model using the available regressors to predict the log(CRIME). A reduced

model is then selected and fitted based on AIC and BIC selection criteria. Conse-

quently, the pretest, James-Stein, and positive James-Stein estimators are computed

based on full and reduced models. The reduced model obtained through the AIC/BIC
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selection criteria is reported in Table 4.21.

Table 4.21: Full and reduced SMA models for the Columbus crime data

Selection Criterion Model
Full log(CRIME) ~ HOVAL+PLUMB+INC+DISCBD+OPEN

AIC/BIC log(CRIME)~ HOVAL+PLUMB

To compare the performance of the estimators on the crime data, we use their

relative mean squared prediction error (RMSPE) with respect to the benchmark, β̂,

following the same bootstrap procedure as laid down in Section 2.8.1.

Table 4.22: RMSPE with respect to β̂ based on SMA model for Columbus crime data

Estimator RMSPE

β̂R 1.1006

β̂PT 1.0552

β̂JS+ 1.0301

β̂JS 1.0297

From Table 4.22, we can see that the restricted estimator β̂R performs the best

in terms of RMSPE followed by the pretest estimator β̂PT and then by the positive

James-Stein. This may be an indication that the AIC/BIC selection criteria worked

quite well on this data set.

4.8 Numerical Study For the Penalty Estimators

In this section, we present empirical studies to compare the penalty estimators with

the restricted and positive James-Stein estimators via Monte Carlo simulations as

well as through application to housing prices data.
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4.8.1 Monte Carlo Simulations

Here we restrict attention to the comparison of the penalty, the restricted and the

positive James-Stein estimators with respect to the benchmark unrestricted estimator.

We use the simulated relative efficiency as measure of relative performance, as was

done in Section 4.7.1, but under the candidate subspace, i.e., when ∆2 = 0. This will

make the comparison fair as the penalty estimators do not depend on the value of

∆2. In this simulation, we will consider square lattices with N = 7, 8, and 10, with

corresponding sample sizes of n = 49, 64, and 100, respectively.

We fix σ2 = 1, p − q = 4 (number of non zero parameters) with q =

{5, 10, 15, 20, 25}, and ρ = {−0.95,−0.50, 0, 0.50, 0.95}. First, we fit a full and re-

duced SMA models to obtain β̂ and β̂R estimators, then β̂JS+ is obtained as in the

previous section.

For computing the penalty estimators, we first extract the MLEs of ρ, σ2, say ρ̂, σ̂2

and use them to obtain the transformation in equation (4.15).

A 10−fold cross validation is used for (Y ∗,X∗) to select the optimum value of

λ̂LASSO for the LASSO fit, which is then used as initial weights (coefficient-specific

regularization parameters) for the adaptive LASSO to obtain β̂A.Lasso via the R-

function adalasso in parcor package (Kraemer and Schaefer, 2010). For the SCAD

penalty function, we choose a = 3.7, as suggested by Fan and Li (2001), and perform

a 10−fold cross-validation to obtain λ̂SCAD using the R-function cv.ncvreg in the

ncvreg package (Breheny and Huang, 2011). The SRE results are reported in Tables

4.23 to 4.25.
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Table 4.23: Simulated relative efficiency of the restricted, positive James-Stein and
penalty estimators with respect to β̂ when n = 49, p− q = 4 and ∆2 = 0 for different
values of ρ and q based on SMA model

ρ q β̂R β̂JS+ β̂Lasso β̂A.Lasso β̂SCAD

-0.95 5 4.0341 2.1241 1.0225 1.4432 1.2668
10 9.1573 4.0540 1.5010 2.4868 2.0378
15 16.5486 6.2364 2.1149 3.8801 3.0838
20 33.4581 9.1395 3.3557 6.5302 4.4450
25 67.7421 14.3414 5.4929 11.7382 7.3205

-0.50 5 2.9100 1.6757 1.4019 1.7656 1.7741
10 4.7298 2.7099 1.7886 2.4884 2.4777
15 8.1725 4.1547 2.4638 3.7706 3.8323
20 13.1909 6.6220 3.6637 5.9903 5.9967
25 22.5393 11.1292 5.4823 9.3836 9.5000

0.00 5 2.8231 1.6937 1.2603 1.5980 1.6545
10 5.7844 2.8170 1.8699 2.6523 2.7520
15 9.3916 4.1679 2.5667 3.8871 3.7748
20 15.0166 6.6661 3.6596 5.8485 5.8570
25 24.4345 10.8120 4.9206 8.0107 8.0193

0.50 5 2.7494 1.7050 1.2083 1.5338 1.5980
10 5.8748 2.9235 1.8203 2.5913 2.6465
15 9.9913 4.3876 2.6152 3.9519 4.1164
20 15.6802 6.7174 3.5104 5.7011 5.9531
25 24.2069 10.2452 4.7149 7.8391 7.6848

0.95 5 3.0027 1.7335 1.3668 1.7653 1.8184
10 6.2542 2.9614 2.0345 2.9753 2.9840
15 10.1222 4.4995 2.6253 4.0560 4.0376
20 15.6824 6.3323 3.4726 5.6246 5.3575
25 24.2740 8.4491 4.5684 8.0935 7.9708
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Table 4.24: Simulated relative efficiency of the restricted, positive James-Stein and
penalty estimators with respect to β̂ when n = 64, p− q = 4 and ∆2 = 0 for different
values of ρ and q based on SMA model

ρ q β̂R β̂JS+ β̂Lasso β̂A.Lasso β̂SCAD

-0.95 5 3.8106 2.0981 0.9647 1.4036 1.1468
10 8.1229 4.1367 1.3452 2.2232 1.7111
15 14.4330 5.9722 1.8258 3.1479 2.3049
20 22.7448 8.0071 2.3616 4.4297 3.2192
25 35.9866 10.2039 3.2867 6.3208 4.4977

-0.50 5 2.9438 1.6717 1.3238 1.7003 1.7159
10 5.0695 2.7208 1.7489 2.5163 2.5784
15 7.3697 3.8841 2.1492 3.2323 3.3386
20 10.3082 5.3604 2.7011 4.4072 4.5905
25 15.4137 7.2617 3.4376 5.9378 5.9148

0.00 5 2.6039 1.7033 1.1621 1.5015 1.5841
10 4.8030 2.7239 1.5243 2.2290 2.3628
15 7.9032 3.8728 2.1522 3.3954 3.6596
20 11.8012 5.2703 2.7699 4.6025 4.7678
25 17.9109 7.5420 3.7548 6.2601 6.7438

0.50 5 2.5603 1.7020 1.0928 1.4451 1.4947
10 4.7799 2.7513 1.4939 2.1496 2.2221
15 8.1815 3.9406 2.0517 3.2786 3.3743
20 12.9093 5.3899 2.8185 4.6167 4.9842
25 19.0960 7.3974 3.7405 6.3002 6.6010

0.95 5 2.7048 1.7104 1.1194 1.4574 1.4055
10 5.4470 2.7735 1.5608 2.2104 2.2317
15 9.0122 4.0444 2.1269 3.2458 3.1851
20 13.4988 5.6737 2.6441 4.0898 3.9078
25 18.6272 7.6109 3.1868 5.1346 5.0891
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Table 4.25: Simulated relative efficiency of the restricted, positive James-Stein and
penalty estimators with respect to β̂ when n = 100, p−q = 4 and ∆2 = 0 for different
values of ρ and q based on SMA model

ρ q β̂R β̂JS+ β̂Lasso β̂A.Lasso β̂SCAD

-0.95 5 3.2393 2.0064 1.0271 1.6210 1.1831
10 6.6126 3.8175 1.4364 2.7623 1.8455
15 11.4987 5.8604 1.8727 3.9771 2.4442
20 17.9655 8.1352 2.3439 5.3015 3.5426
25 24.9062 9.9798 2.9342 6.7137 4.4651

-0.50 5 2.6876 1.6746 1.0385 1.3825 1.3209
10 5.0449 2.5740 1.4030 2.0519 1.9109
15 7.4354 3.5389 1.7282 2.5437 2.5155
20 10.1443 4.7061 1.9594 2.9805 2.8748
25 12.1422 5.9156 2.2092 3.4301 3.4859

0.00 5 2.3561 1.6744 0.9701 1.3222 1.3221
10 4.0476 2.6876 1.2040 1.8044 1.8201
15 6.1059 3.8248 1.5082 2.3632 2.4735
20 8.7330 4.7064 1.9052 3.1921 3.3944
25 11.6248 5.6481 2.2859 3.8072 4.1446

0.50 5 2.4333 1.7104 0.9746 1.3355 1.3270
10 4.0514 2.7560 1.1578 1.7483 1.7270
15 5.9224 3.7835 1.3911 2.1793 2.1643
20 8.2712 4.7700 1.7798 2.8456 2.9118
25 11.8818 5.9175 2.2144 3.7751 3.9972

0.95 5 2.4257 1.6717 0.9531 1.2987 1.2276
10 4.3794 2.7497 1.1850 1.7623 1.6904
15 6.7940 3.7312 1.4937 2.2603 2.1188
20 10.2289 4.7003 1.9014 2.9551 2.8791
25 13.8147 5.9497 2.2698 3.6787 3.5552

The following conclusions may be drawn from these Tables.

1. In this simulation, the restricted estimator, β̂R, outperforms all other estimators

for all the cases, and more so for small sample sizes. This is expected as we are

working under H0.

2. As q increases, the relative efficiency of β̂R increases regardless of the values of

ρ and n.



4.8 Numerical Study For the Penalty Estimators 191

3. The positive rule James-Stein estimator, β̂JS+, dominates all the penalty esti-

mators.

4. The performance of the adaptive LASSO and the SCAD estimators is compa-

rable, and both performed better than the LASSO estimator.

5. The performance of all penalty estimators increases as q increases, and in gen-

eral, it does not depend on the value of ρ.

4.8.2 Application to Baltimore House Sale Prices Data

The Baltimore housing sale prices data was used, for instance, in Dubin (1992) in

the context of hedonic regression, (Dunse and Jones (1998)). The authors proposed

a method which excludes the variables that represent the neighborhood and acces-

sibility, and then modeled the autocorrelation of the residuals, taking the spatial

relationship explicitly into account.

The Baltimore housing prices data consist of 211 observations of each of the follow-

ing variables, the selling price of houses in (USD 1000’s) as the dependent variable

(PRICE); a dummy variable with 1 if the unit is detached, and 0 otherwise (DWELL);

number of bathrooms (NBATH); a dummy variable with 1 if the dwelling is located

in Baltimore, 0 otherwise (CITCOU); number of rooms in a house (NROOM), a dummy

variable with 1 if there is a basement, 0 otherwise (BMENT); the lot size in hundreds of

square feet (LOTSZ); a dummy variable with 1 if fireplace, 0 otherwise (FIREPL); the

age of dwelling in years (AGE); a dummy variable with 1 if a house contains air con-

ditioning, 0 otherwise (AC); the living area in hundreds of square feet (SQFT); number

of stories (NSTOR); a dummy variable with 1 if patio, 0 otherwise (PATIO); the X- and
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Y-coordinates of the house (X) and (Y), respectively. In our analysis, we set the age

of the house as one year if it is less than a year.

We use the available explanatory variables to predict the log(PRICE) assuming

the errors follow a spatial moving average SMA structure to fit a full model. To

set up a submodel, we apply the forward and backward selection methods on the

available predictor variables. If the number of variables allowed in the model is set to

two, the forward selection chooses the Y coordinate and the (DWELL) variables, while

the backward elimination ends with the number of bathrooms (NBATH), and (CITCOU)

variables. The two models are considered as the first and second candidate submodels

in our study. When the number of important variables is restricted to only three, both

forward and backward methods selected (DWELL), the number of bathrooms (NBATH),

and the dummy variable (CITCOU). This model is considered as the third submodel.

The full and suggested candidate submodels are reported in Table 4.26.

Table 4.26: Full and submodels for the Baltimore House prices data based on SMA
error structure Model

Selection Criterion Model
Full log(PRICE) ~ NBATH + CITCOU+ DWELL + Y

+ BMENT + FIREPL + AC + NROOM

+ LOTSZ + PATIO + log(AGE)+ X

+ log(SQFT) + NSTOR + GAR

Forward log(PRICE) ~ DWELL + Y

Backward log(PRICE) ~ NBATH + CITCOU

Forward/Backward log(PRICE) ~ NBATH + CITCOU + DWELL

To obtain the penalty estimators, we firstly extract the MLE of the spatial depen-

dence parameter ρ from the full SMA model, and use it in constructing the necessary

transformation matrix explained in Section 2.8.1. We compute the penalty estimators

using 10-fold cross validation as detailed in the previous sections.
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The restricted, positive James-Stein, and penalty estimators were compared by

using the relative mean squared prediction error (RMSPE) criteria. This quantity

was computed as described in Chapter 2 via a bootstrapping approach with 2000

bootstrap samples. The RMSPE results are summarized in Table 4.27.

Table 4.27: RMSPE with respect to β̂ for Baltimore House prices data based on SMA
model

Model βR β̂JS+

Forward 1.1033 1.0856
Backward 1.0999 1.0843

Forward/Backward 1.0870 1.0728
Penalty Estimators

β̂LASSO β̂A.LASSO β̂SCAD

1.0391 1.0607 1.0315

We may draw the following conclusions from Table 4.27:

1. As expected, the restricted estimator β̂R has the highest RMSPE values among

all estimators. So, if the suggested submodel is correct, then β̂R is optimum.

2. The RMSPE values of the positive James-Stein estimator β̂JS+ are better than

those of the penalty estimators.

3. All penalty estimators performed better than the classical estimator. In addi-

tion, for this data set, the adaptive LASSO performs better than the LASSO

and the SCAD estimators.

4. The first submodel is recommended since it contains only two predictors in

addition to the intercept and produces the highest values of the RMSPE for the

restricted and positive James-Stein estimators.
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4.9 Conclusion

In this chapter, we proposed shrinkage and pretest estimators in the context of the

spatial moving average regression. We have shown that the full model MLE (unre-

stricted) and the restricted (candidate submodel) estimators are jointly multivariate

normal. Using this key result, we presented some analytical results to compare the

asymptotic biases and quadratic risks of the pretest, the shrinkage, the restricted and

the unrestricted estimators. Consequently, we came to the conclusion that the posi-

tive James-Stein estimator followed by the pretest should be a safer way of estimating

the SMA large-scale effects when uncertain prior information is available. We used

Monte carlo simulations to confirm these findings and applied these methods to real

data set for illustration purposes.

Also, in this Chapter, we developed a numerical technique for computing penalty

estimators in general, and applied to the special cases of computing LASSO, Adaptive

LASSO, and the SCAD estimators for the SMA model’s large-scale effect parameter β.

This was followed by Monte Carlo comparative study and an application to Baltimore

housing price data. These numerical studies confirmed the dominance property of the

restricted estimator over all penalty estimators when the submodel is correct as well

as when the submodel comes from the usual AIC/BIC selection criteria. Moreover,

the study confirms that the positive James-Stein estimator outperforms all penalty

estimators in terms of simulated relative efficiency SRE.



Chapter 5

Conclusions and Future Research

In this dissertation, we have studied three important spatial regression models and

developed efficient estimation strategies. More specifically, we considered the condi-

tional autoregressive, simultaneous autoregressive and moving average spatial regres-

sion models, respectively. We constructed pretest (β̂PT ), James-Stein shrinkage (β̂JS)

and positive James-Stein shrinkage (β̂JS+) estimators for the regression coefficients of

these models. These three estimators are well-known to be efficient in incorporating

prior uncertain information (UPI) into the estimation of model parameters. UPIs

accommodate a wide range of possibilities such as an expert’s opinion that some of

the regression coefficients are irrelevant as well as information in the form of submod-

els selected by model selection procedures. For that reason, we formulated a very

general UPI in the form of linear restriction on the regression coefficients and thence,

we obtained restricted (to the sub-space defined by the linear restriction) estimator,

β̂R.

The asymptotic distribution of the restricted and the unrestricted estimators were

195
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derived and used in obtaining expressions for the risks and biases of our proposed

estimators. Analytical comparisons were undertaken based on the risk and bias ex-

pressions of the pretest, James-Stein, positive James-Stein, and the restricted esti-

mators of the regression coefficients for the conditional autoregressive, simultaneous

autoregressive and spatial moving average models with respect to the unrestricted es-

timator. We also devised procedures for obtaining penalty estimators for these three

spatial models. The proposed penalty estimators exploit existing penalty estimation

algorithms such as LARS algorithm of Efron et al. (2004).

Overall, the following topics have been discussed in this dissertation in the context

of three spatial regression models, CAR, SAR and SMA:

(1) Unrestricted, restricted, pretest and shrinkage estimators.

(2) A class of penalty estimators: LASSO, Adaptive LASSO and SCAD.

(3) Analytical and numerical comparisons of the pretest, shrinkage, restricted and

unrestricted estimators.

(4) Numerical comparisons of the restricted and positive shrinkage with the penalty

estimators through simulation experiments and real data examples.

We summarize the findings as follows: In Chapter 2, we proposed the restricted,

the pretest and the shrinkage estimators of the large-scale effect parameter vector,

β, in the CAR model under a general linear restriction, Hβ = h. We derived the

joint asymptotic distribution of the unrestricted and restricted via Mardia-Marshall

(Mardia and Marshall (1984)) Theorem and consequently, obtained the asymptotic

quadratic risks and biases of the proposed estimators. We examined analytically the

relative dominance picture of these four estimators with respect to the unrestricted
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estimator of β. We also carried out an intensive Monte Carlo simulation study to

compare these estimators in terms of their relative mean squared errors. Real data

set on Boston crime statistics were employed to illustrate the actual implementation

of these estimators. We indicated that the submodel, required for building the pretest

and shrinkage estimators, can be practically obtained via any model selection proce-

dure. In the application to Boston crime data, we selected submodels via stepwise

selection procedures based on the AIC and BIC criteria. We concluded that among

the proposed estimators, the positive shrinkage estimator performs the best in the

sense of giving the smallest mean squared prediction error in most of the parameter

configurations considered.

The second important contribution of Chapter 2 was the construction of penalty

estimators via model transformations along with the existing penalty estimation algo-

rithms. Intensive numerical comparisons were undertaken to contrast the restricted,

positive shrinkage and the penalty estimators via Monte Carlo simulations as well

as application to real data set. When discussing the practical implementation of the

penalty estimators through the real data set, we also illustrated how prediction er-

rors of these estimators as well as those of the restricted, unrestricted and positive

shrinkage can be computed by using a bootstrapping procedure. This strengthens

the viewpoint that these estimators are not just for mathematical exercise but rather

implementable efficient choices of estimation in spatial regression models.

In a nutshell, in the CAR spatial model, the large-scale effect, β can be efficiently

estimated using the positive shrinkage which outperforms all other estimators con-

sidered in the chapter by giving the smallest mean squared error. Such estimator can

be based, in practice, on submodels chosen through model selection criteria.
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In Chapters 3 and 4, the ideas and the milestones of Chapter 2 were then extended

to other spatial regression models. Specifically, in Chapter 3 we considered the es-

timation of β in the simultaneous autoregressive regression model. We proposed

the restricted, pretest, shrinkage as well as the penalty estimators for estimating the

large-scale effects, β, of the SAR model under a linear candidate submodel. The

estimators were compared via their relative risks and biases by using Monte Carlo

simulations and applications to the Boston housing prices data. The final conclusions

in this Chapter were essentially same as those reached in Chapter 2. A similar study

was undertaken in Chapter 4 by constructing the restricted, pretest, shrinkage as well

as the penalty estimators for a spatial regression model known as the spatial moving

average model. The conclusions in Chapter 4 were in line with those of Chapters 2

and 3.

5.1 Future Research

The topic of spatial regressions, which was the focus of this dissertation, is surely one

that has been gaining momentum in the past few years due to the availability of large

and complex spatio-temporal data and due to the need of Governments to utilize such

data for policy making. The areas of application for spatio-temporal methodologies

are ever widening and include, but not limited to, epidemiology and disease mapping,

estimation and mapping of geographically distributed resources such as water, oil etc,

climate related issues and much more.

This dissertation proposed and studied some efficient estimation strategies for three

spatial regression models. This is just a scratch on the surface of the spatial regres-

sion models. There are endless opportunities of extending the efficient estimation
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strategies developed in this dissertation to many other spatial regression models.

For instance, our estimation strategies can be extended to conditional autoregres-

sive models for discrete spatial data types. The generalized linear models with co-

variances structured as in the CAR model can serve as a vehicle for the analysis of

discrete spatial data (Gotway and Stroup, 1997). On the other hand, Banerjee et al.

(2003), introduced and studied a Bayesian version of the Cox’s proportional hazards

(PH) model for spatial survival data and illustrated the methodology by estimating

and mapping infant mortality in the state of Minnesota. These authors introduced

a multivariate frailty in the PH model and imposed CAR, SAR and geostatistical

covariance structures on the frailties.

Based on reviewed literature, there has not been any study investigating frequen-

tist’s estimation approaches for such spatial PH models. That is, there is a need

for constructing MLEs for the spatial PH model under various covariance structures

and then applying the efficient estimation procedures developed in this dissertation.

Aalen’s additive survival models are flexible alternatives to the PH model. Spatial

accelerated failure time models similar to the models of Banerjee et al. (2003) have

been studied and applied to mapping of prostate cancer survival by Zhang and Lawson

(2011). Hussein et al. (2013) studied shrinkage estimation strategies for non-spatial

Aalen’s model. There is an opportunity in incorporating spatial covariance structures

into the Aalen’s additive model and proposing efficient estimation strategies.



Appendix A

Mardia and Marshall Theorem

Based on increasing-domain asymptotic, Mardia and Marshall (1984) proved the

asymptotic normality of the MLEs for spatial regression models. The authors con-

sidered a real valued Gaussian process {Y (s) : s ∈ S}, where S is an index set that

satisfies for all s ∈ S, E (Y (s)) = X(s)′β, where X(s) = {X1(s), X2(s), . . . , Xp(s)}′

is a p× 1 vector of fixed regressors, and β = (β1, β2, . . . , βp)
′ is a parameter vector in

Rp. As an example, S = Zk describes a k-dimensional lattice process, and S = Rk

describes a continuous parameter process or S may be a collection of spatial counties

or regions. They assumed that cov(Y (si),Y (sj)) = Σ(si, sj;γ) is twice differentiable

with respect to γ ∈ Rk and si, sj ∈ S is a positive definite matrix in the sense that

for every finite subset, Sn = {s1, s2, . . . , sn} of S, the variance covariance matrix

Σn = {Σ(si, sj;γ)}, i, j = 1, . . . , n is positive definite. The vector γ is to model the

spatial dependence structure.

In our case γ is a 2 × 1 vector where γ1 = σ2 and γ2 = ρ. Suppose that Y =

{Y (s1), Y (s2), . . . , Y (sn)}′ is the data at each point in Sn = {s1, s2, . . . , sn} ⊂ S,
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and Xn is an n × p matrix of regressors of rank p where the ithcolumn of Xn is

Xi(s) ≡Xi = {Xi(s1), Xi(s2), . . . , Xi(sn)} for i = 1, 2, . . . , p. For simplicity, we drop

the indices s and n, and let θ = (β′,γ ′)′ denote the (p+ 2)× 1 parameter vector, the

variance covariance matrix by Σ. The log-likelihood for θ is given by:

L(θ) = −n
2

log(2π)− 1

2
log(|Σ|)− 1

2
(Y −Xβ)′Σ−1(Y −Xβ), (A.1)

with the first order partial derivatives,

L(1) =
∂L(θ)

∂θ

=
(
L′β, L

′
γ

)′
, (A.2)

L′β =
∂L(θ)

∂β

= −X ′Σ−1Xβ +X ′Σ−1Y , (A.3)

and the ith element of Lγ is

(Lγ)i =
∂L(θ)

∂γi

=
1

2
tr
(
Σ−1Σi

)
+

1

2
e′Σie, i = 1, 2 (A.4)

where tr(A) means the trace of the matrix A, e = Y −Xβ,Σi = ∂Σ
∂γi

, and Σi =

∂Σ−1

∂γi
= −Σ−1ΣiΣ

−1 for i = 1, 2.
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The second order partial derivative of L is given by:

L(2) =
∂(2)L(θ)

∂θ∂θ′

=

 Lββ Lβγ

L′βγ Lγγ

 , (A.5)

where

Lββ = −X ′Σ−1X, (A.6)

the ith column of Lβγ is

−X ′ΣiXβ +X ′ΣiY , i = 1, 2, (A.7)

and the (i, j)th element of Lγγ is

(Lγγ)ij =
1

2
{tr(Σ−1Σij + ΣiΣj) + e′Σije, (A.8)

where Σij = ∂2Σ
∂γi∂γj

, and Σij = ∂2Σ−1

∂γi∂γj
= Σ−1 (ΣiΣ

−1Σj + ΣjΣ
−1Σi −Σij) Σ−1. The

expected information matrix −(E(L(2))) is given by:

−E(L(2)) = J =

 Jβ 0

0 Jγ

 , (A.9)

where Jβ = X ′Σ−1X, and the (i, j)th element of Jγ is 1
2
bij with

bij = tr
(
Σ−1ΣiΣ

−1Σj

)
= tr

(
ΣΣiΣΣj

)
i, j = 1, 2. (A.10)
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General results of the MLEs β̂ and γ̂ are given by Magnus (1978) and Sweeting

(1980), and based on Sweeting’s result, Mardia and Marshall proved the following

theorem.

Theorem A.0.1. (Mardia and Marshall, 1984): Suppose that Y ∼ N(Xβ,Σ), where

β is a p×1 vector of fixed but unknown mean parameters, and Σ is a function of γ, a

k× 1 vector of unknown spatial-dependence parameters. Let λ1 ≤ λ2 ≤ . . . λn be the

eigenvalues of Σ, and let those for Σi and Σij be {λil : l = 1, 2, . . . , n} and {λijl : l =

1, 2, . . . , n} respectively, with |λi1| ≤ |λi2| ≤ · · · ≤ |λin| and |λij1 | ≤ |λ
ij
2 | ≤ · · · ≤ |λijn |

for i, j = 1, 2, . . . , k. Suppose that

(i) lim
n→∞

λn = e < ∞, lim
n→∞

|λin| = ei < ∞, lim
n→∞

|λijn | = eij < ∞ for all i, j =

1, 2, . . . , k

(ii) ‖Σi‖−2 = O
(
n−

1
2
−δ
)

, for some δ > 0, i = 1, 2, . . . , k where ‖.‖ denotes the

Euclidean matrix norm.

(iii) For all i, j = 1, 2, . . . , k, lim
n→∞

{
bij√
biibjj

}
= aij, where bij are given in (A.10)

and A = {aij}ni,j=1 is nonsingular matrix.

(iv) lim
n→∞

(X ′X)−1 = 0.

Then the maximum likelihood estimator θ̂ of θ = (β′,γ ′)′ satisfies the following:

1. θ̂n
P−→ θ, where

P−→ means convergence in probability.

2. J1/2(θ̂n − θ)
D−→ N(0, I), where

D−→ means convergence in distribution, and

J is the expected information matrix given in (A.9).
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From the above theorem, it is clear that β̂ and γ̂ are asymptotically independent,

therefore:

J
1/2
β (β̂ − β)

D−→ N(0, Ip).

(v)
(X′nĈ−1

n Xn)
n

P−→ C0, and Ĉn = (I − ρ̂W ∗)−1D, where C0 is a p × p positive

definite matrix.
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