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ABSTRACT

The surface-enhanced Raman scattering (SERS) and surface-enhanced resonance
Raman scattering (SERRS) phenomena can be observed when molecules are close to
metallic nanoparticles that sustain localized surface plasmon resonances (LSPR). There is
a broad spectrum of metallic nanostructures (mainly silver and gold) that may be used to
improve the efficiency of Raman signals. Here, we used silver island films (SIFs) to
enhance the scattering from tagged phospholipids coating the SIFs, and fabricated using
Langmuir-Blodgett (LB) technique. Single molecule detection (SMD) can be approached
using LB-SERRS technique and using mixed LB monolayer, containing about one target

molecule per 1 um?of surface area.

Fluorescence enhancement is achieved with shell-isolated nanoparticles (SHINs)
synthesized and delivered to the LB substrate, a technique we term SHINEF. Simply, a
drop of SHINS is delivered to quartz slide covered by LB of tag-phospholipid to produce

surface-enhanced florescence.
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Chapter 1

INTRODUCTION



1.1 Introduction

The interaction of electromagnetic radiation or light with matter leads to a wide
range of optical processes. Here we deal with a very narrow field where the
electromagnetic radiation is in the ultraviolet-visible range and molecules that absorb
light in the visible range. The linear optical processes we consider are then the absorption,
the emission and the inelastic scattering of light or the Raman effect[1-3]. The main
focus of the work is on the amplification of fluorescence emission and Raman scattering
using gold and silver nanostructures[4, 5].

Raman spectroscopy is a widely used spectroscopic technique in material
science[6]. It gives specific molecular structure fingerprints through the measuring of
inelastic light scattering that is related to molecular vibration[7]. However, the Raman
cross-section is about 102’ cm” per molecule, in the common case when there is no
resonance excitation; but fluorescence could be as high as 10" cm? per molecule [8, 9].
Surface-enhanced spectroscopy (SES) is based on the used of plasmonics[10] to enhanced
optical signals, in particular; surface enhanced Raman scattering (SERS) and surface
enhanced fluorescence (SEF)[11, 12].

Surface enhanced Raman scattering provides signal amplifications for incident
light far from resonance with an internal molecular electronic state (NR-normal Raman
effect). Surface enhanced Resonance Raman scattering (SERRS), on the other hand, is
achieved when the laser excitation frequency is in resonance with a molecular electronic
state[13]. The plasmon enhancement or electromagnetic (EM) enhancement[14, 15] is
attained mainly with nanostructures of gold, silver, and copper with an average

enhancement factor (EF) of ca. 10° when performing routine SERS experiments. The



molecular-plasmon coupling is essential for the amplification of signals in this type of
spectroscopy[16]. Therefore, good control of shape, space between nanoparticles,
dielectric environment, and functionalization of nanoparticles are important in obtaining
optimized SERS[17].

SERS and, in particular, SERRS allow for single molecule detection (SMD)[18,
19].  On the other hand, the high cross section of fluorescence is an important
consideration in the application of SMD, that has grown over the years and it is finding
applications in cell signalling, enzyme reactions, protein dynamics, molecular motors, and
sequencing of DNA[20]. Raman vibrational spectra have vibrational fingerprints, which
help to show the molecules’ structural information. With the use of SERRS molecular and
plasmon resonance conditions are easily fulfilled, and thus make it very easy when
detecting single molecules. Preparation of substrates that are SERS- active poses great
challenge because of their non-uniformity in their activity.

Using SERRS/SERS in detection of single molecules was found to be only
possible in gold or silver nanoparticles at sites of the greatest enhancement, this highly
concentrated EM fields are called hot spots[21]. In our group, the Langmuir-Blodgett
(LB) approach is used to control the target molecules within a single monolayer, for their
detection via SERRS/ SERS or SEF. Fabrication of enhancing structures is faced with a
number of challenges, which makes difficult to correlate SERS signals to specific hot
spots [22]. In addition, there are several complexities that may arise in SERS, which
include; interaction of nanostructure with the molecule to be tested, photoreactions
induced by electromagnetic incident radiation. [23]

Efforts have been made in chapter 2 to cover fundamental elements of Raman

scattering and fluorescence phenomena, the enhancement fluorescence in localized



surface Plasmon resonance (LSPR) through the use of a dipolar model and the origin of
surface enhanced Raman scattering (SERS) and surface enhanced resonance Raman
scattering (SERRS). Discussion of mechanisms used in PEF enhancement will also be
covered and the introduction of shell-isolated nanoparticle (SHIN).

Chapter 3 reviews the instruments used in this work. The preparation of Ag island
films by vacuum evaporation technique and the Langmuir-Blodgett (LB) technique are
discussed. The characterization using UV-Vis absorption spectroscopy and Raman and
fluorescence spectroscopy is described. Also the morphological techniques including
atomic force microscopy (AFM) and scanning electron microscopy (SEM) are presented.
The synthesis of Au and Ag SHINSs is given.

In chapter 4, we describe the method of preparation of SHINEF active substrate
by using a surface silanization technique, and deposit Ag SHINs by self-assembly with
different period of time to control the surface coverage. The LB technique is used to coat
the substrates with Rhodamine B dye.

Chapter 5 presents the averaged LB-SERRS of tag-phospholipid, and
characteristics are discussed. Also the fluorescence spectrum using Au SHINs is
presented. Therefore the plasmon enhancement of the tag-phospholipid fluorescence can
be measured.

In chapter 6, we extend the work to a tagged phospholipid commonly used in bio-
spectroscopy to demonstrate the feasibility of enhanced fluorescence (SHINEF), and also
surface-enhanced resonance Raman scattering (SERRS) on SIF.

Finally, chapter 7 contains the conclusions of this work and the future work.



Chapter 2

BACKGROUND



2.1 Introduction

Within the Born-Oppenheimer approximation, the molecular energy levels can be
classified as: electronic, vibrational and rotational states[1]. The interaction of a molecule
with electromagnetic (EM) radiation may lead to absorption or scattering of EM
radiation. The high energy electronic states lead to absorption of EM radiation in the
ultraviolet and visible spectral region (UV-visible spectroscopy)[2]. Vibrational energy
levels may absorb light in the infrared region of the EM spectrum[7]. Rotational energy
levels are detected in the microwave region, or in the fine structure of the vibrational or
electronic spectra. Under standard conditions of pressure and temperature most molecules
are found in their ground electronic state, and also in their ground vibrational state. The
population of vibrational states, as a function of temperature, is easily explained by the
Boltzmann distribution function[1]. In this work, we focus on the emission of EM
radiation, in particular fluorescence[24], and the inelastic scattering of EM radiation , or
Raman scattering; and the amplification of these optical signals using metallic

nanostructures[4, 5].

2.2 Emission and scattering

When a material interacts with monochromatic light of wavenumber ,, apart from the

fact that most of the incident light may be transmitted without change, a fraction of it is
either absorbed or scattered. Spectral analysis of the scattered light shows that, in
addition to scattering without change of wavenumber of the incident light (Rayleigh
scattering), one photon in ten millions of photons is detected with a different wavenumber

(Raman scattering). In practise, pairs of new Raman lines are observed in the spectrum at



wavenumbers to be found symmetrically with respect to the unchanged Rayleigh line[3,
6]. The observed wavenumber differences correspond to transitions between vibrational
(and rotational) energy levels of the molecule. This inelastic scattering of light is known
as Raman effect or Raman scattering/3]. A molecule must have polarizability to Raman
scatter also it is symmetry must be even to have this polarizability. Using classical theory,
the magnitude of the induced electric dipole p is proportional to the magnitude of the
polarizability as well as the incident electric field E, expressed by this equation:
p =akE [2.1]

Polarizability is a measured of particles response to the outside eclectic field and
represents the molecular electronic cloud volume. When an incident radiation at
frequency near the frequency of the electronic transition of he molecule a resonance will
occur. This provides enough energy to excite the electrons to the higher energy state,
achieving Resonance Raman Scattering (RRS).

Absorption of light may lead to fluorescence (and/or phosphorescence), a photon
emission process that occurs during molecular relaxation from the lowest electronic
excited state[24]. Fluorescence involves transitions between electronic and vibrational
states of polyatomic molecules (fluorophores). The Jablonski diagram[25] (Figure 2.1)
offers a convenient representation of the excited state structure and the relevant
transitions. Each electronic state contains multiple sublevels representing the vibrational
modes of the molecule. Since electronic energies are much higher than vibrational
energies, light with energies in the ultraviolet to the blue-green region of the spectrum are
needed to trigger an electronic transition. Under standard conditions, a molecule,

predominantly resides in the electronic ground state. The main parameters of



experimentally measured fluorescence are: the radiative decay, the non-radiative decay

and the quantum yield measure at a particular set of experimental conditions[26].
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Figure 2.1 Jablonski diagram

(Jablonski, A., Uber den Mechanisms des Photolumineszenz von Farbstoffphosphoren. Z.. Phys., 1935,
94: p. 38-46)

The Quantum Yield defines the efficiency of the entire fluorescence emission process.
Quantum yield is described as the ration of photons emitted and absorbed and is

calculated with following formula.

number of emitted photons

Q= [2.2]

number of absorbed photons
The quantum yield is also given in terms of the radiative [}.,4 and non-radiative decay

ratesl z:

— _Trad [2.3]

Frada+Tnr

In case of 100% efficiency, the Quantum yield will be 1.0 i.e. each and every photon that

was absorbed by the substance will be emitted.



Fluorescence is an efficient process compared to inelastic scattering of the Raman
effect. For high quantum yield fluorophores the optical cross section can be of the order
of 107 cm?, while normal Raman scattering cross section are ca. 10% cm?[4, 5]. The
discovery of surface enhanced Raman scattering[11] and its plasmonic origin[12, 27],
brought to the forefront the role of certain metallic nanoparticles in the enhancement of
optical signals. This new analytical technique may enhance the optical cross sections by
several orders of magnitude. In the case of Raman scattering enhancement factor of 10'°
or even higher have been reported allowing the detection of a single molecule[18, 19].
The fluorescence enhancement is much modest; but the enhancement of an already strong
optical signal is significant for many applications. In this work we investigate the
scattering and fluorescence enhancement in tag-phospholipids using silver and gold
nanostructures. The plasmonic origin of the enhancement requires the presence of
nanostructures that can sustain localized surface plasmon resonances (LSPR).[10]
Metallic nanoparticles, in particular silver and gold, can strongly scatter and absorb
incident light through localized surface plasmon resonances. For particles whose sizes are
small compared to the incident wavelength, a simple quasi-static point dipole
approximation can be employed to describe their interaction with light. The physical
interaction with light of small and large nanoparticles can be best described using Mie
scattering theory[28], allowing the computation of scattering and absorption cross-
sections which can be much larger than their geometrical sizes. For example, the

absorption cross section of Rhodamine 6G is 10~ 16cm?.

Therefore: 10716 cm? = 10~2nm? = 14°~. However, the cross section for the absorption

(or scattering) of a 40 nm diameter silver sphere is about 1071% cm? = 10*nm?, that



corresponds to a geometrical size of 56 nm in diameter. Absorption and scattering cross

sections solution are shown below, respectively:

Oups = 4kadIm [% [2.4]
_ 8_”k4 6 [S_Em 2 25
Osca = 3 a £+2em [ ’ ]

Where k equals to 2771, a is the Radius of the sphere, € is the Dielectric constant of the

spherical particle and &, is the Dielectric constant of the medium.

Plasmon resonances of the two nanoparticles can coupled together leading to new
resonances and amplified near electric fields as recently shown for silver island films
(SIF)[29]. The results of the latter work are important for the present applications, since
we also use SIF for SERS and surface enhanced resonance Raman of tag-phospholipids.
The properties of the coupling and the effect on the plasmon resonances are illustrated in
Figure 2.2 taken from reference[29]. The results of computations shown in Figure 2.2
help to understand the observation of red shifted plasmons in SIF fabricated by vacuum
evaporation on glass substrates, where the best model is that of hemispherical dimers. The
hemispherical dimers provide a plasmon around 500 nm as it is observed in the
experimental work. The SIF are coated with a single Langmuir-Blodgett monolayer for

SERS/SERRS spectroscopy.

10
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Figure 2.2 The properties of the coupling and the effect on the plasmon resonances

(Moula, G., et al., Plasmonics and single-molecule detection in evaporated silver-island films. Annalen
Der Physik, 2012. 524(11): p. 697-704)

The properties of SERS spectra, can be discussed using a working definition of plasmon

enhanced Raman scattering by Moskovits[4]:

"As it is currently understood SERS is primarily a phenomenon associated
with the enhancement of the electromagnetic field surrounding small metal
(or other) objects optically excited near an intense and sharp (high Q),
dipolar resonance such as a surface-plasmon polariton. The enhanced re-
radiated dipolar fields excite the adsorbate, and, if the resulting molecular
radiation remains at or near resonance with the enhancing object, the

scattered radiation will again be enhanced (hence the most intense SERS

is really frequency-shifted elastic scattering by the metal).

appropriate circumstances the field enhancement will scale as E*, where E

is the local optical field."

11



This definition can be used to help the planning of experiments and interpretation of

results.

The phenomenon of surface enhanced fluorescence requires an especial discussion due to
the competing effects of the enhancement with the energy transfer or quenching. A
complete classical treatment of the energy transfer of exited molecules on metal surface
can be found in the review by Chance et al.[30] The subject have been revisited and
discussed very recently in the literature.[31, 32] The authors of the latter work develop a
model that confirms the quenching effect is observed in fluorescence but not in normal
Raman. As it was already known, the quenching establishes limits for attainable
enhancement, of the two processes. For a discussion of quenching in fluorescence see the

book by Lakowicz[24].

Therefore, when a chromophore is too close to metallic nanoparticles that supports
Localized Surface Plasmon Resonance LSPR strong quenched will appear[33]. As a
result of the direct energy transfer to the metal, a new non-radiative decay channel is

created IRt

Q — Trad [26]

- metal | rInt
Trada+Thr ~ +Inr

Where, I,4q is the radiative decay rate and I7eta!

is the non-radiative decay rate. SEF
and quenching are the two opposed outcome, which can be controlled by the separation
and the distance between the metal and molecule. (18-19) A transition from quenching to
enhancement should be noticed with the increasing of the distance between the molecule

and the metal (14,20,21). Experimentally, using shell-isolated nanoparticles (SHINs) with

different distance separations, SEF can be clearly demonstrated, and this technique has

12



been named SHINEF. SHINs particles can be delivered to target by different methods.
The enhancement factor is multivariate function, including the shape and size of
nanoparticles of mainly silver or gold. Also the dielectric constant of the surrounding

medium can be a factor.

SHINs were synthesized by following method described by Li et al. (23) Gold core in the
first stage was synthesized by reducing gold in tetrachloroauric acid (HAuCls). A 50 ml
of 0.01% HAuCly solution was brought to a boil over a hot sand bath then a solution of
reducing agent (1 % sodium citrate) was added. The boiling was continued for 15 minutes
and then was removed from heat and keeps stirring for another 15 minutes.at this stage
the Au core was coated with silane coupling agent (3 mL of a 1 mM of 3-
aminopropyltrimethoxysilane (APTMS), at vigorous stirring). The solution was heated in
sand bath until reached 90-95°C then the coating with SiO; shell which comes from
activated 0.54 % sodium silicate solution (9 mL). The solution then was allowed to stand
for 3 hours with keeping the temperature at 90-95°C. Figure 2.3 provides sketch of the

surface reactions involved in the formation of the thin silica shell on citrate.

13



clt- NRSI(OH),0"
Au cit- <4 NH,RS|(OH)y —= Au NRSI(OH),0" + cit”

cit” RSI(OH),

NRSI(OH), 0"
Au NRSI(OH),0" 4 SioZ”

RSIOH),

Figure 2.3 Sketch of the surface reactions involved in the formation of the thin silica shell on citrate
stabilized gold particles (Liz-Marzan et al. Langmuir, Vol. 12, No. 18, 1996)

The silica shell has been chose as a shell around the gold core for many reasons. It can
produce the strength, the inertness and even the possibility for conjugation with other
materials, it can be delivered easily as smart dust, and make it stable by protecting the
gold core. The SHINs solution can be delivered by drop coating on the tag-phospholipid
monolayer fabricated on quartz slide and then let it to dry. In this thesis, we also explored
the fabrication of SHIN films, with particles over silanized glass slide. The two delivering

methods are used for Shell Isolated Nanoparticles Enhanced Fluorescence.
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Chapter 3

Instrumentation Reviews
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3.1 Langmuir Blodgett System

Thin organic films with thickness of a few nanometres are used in a wide range of
scientific and commercial applications. These films of single or multilayers find their use
in applications like sensors, displays, detectors and electronic circuit components.
Various techniques have evolved which enables the synthesis of organic molecules of any
required functionality combined with the more sophisticated technology of thin film
technology. Some of the techniques used to deposit an organic thin film on a solid
substrate are: thermal evaporation, sputtering, electrodeposition, molecular beam epitaxy,
adsorption from solution, Langmuir-Blodgett (LB) technique[34, 35], self assembly,
Layer-by-Layer (LbL). The films, allows the production of electrically, optically and

biologically active components on a nanometre scale[36].

Among the various techniques used to deposit an ultrathin organic film on a solid
substrate, the Langmuir-Blodgett technique is the most favourable since it allows (i)
control over the monolayer thickness, (ii) uniform monolayer deposition over large areas
and (iii) production of multilayer structures that can have altering layer composition.
Another advantage of Langmuir-Blodgett technique is that it allows deposition of

monolayers on almost all types of solid substrates[35].

3.1.1 History of Langmuir Blodgett System

In the year 1774, American statesman, Benjamin Franklin, dropped about a teaspoonful
of oil in the water of a local pond and watched the droplet spread out rapidly and extend

itself and it the process make the area within look crystal clear.
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More than hundred years later Lord Rayleigh speculated that an oil film on water spreads
and extends until the thickness of its layer becomes that of a molecule. At around the
same time a German scientist; Agnes Pockles, established the surface contamination as
function of area of the surface for the different types of oil, by using her own kitchen sink
as fundamental surface balance. This work of Pockles was published in the year 1891 and
served as the very basis of the quantitative work of Langmuir on alcohol, fatty acids and
ester monolayers in the late 1910’s and early 1920’s. Irwing Langmuir was the first
person to conduct systematic studies on monolayers floating on water and went on to win
the Nobel Prize for his work. In the early 1920’s Langmuir also reported the transfer of
monolayers of fatty acid from the surfaces of water on to the solid substrates. But a more
elaborate definition of such monolayer transfer (sequential monolayer transfer) was given
later by Katherine Blodgett. Hence these built-up monolayer assemblies are called
Langmuir-Blodgett (LB) films and the floating monolayers are referred to as Langmuir

films.

It was still years later that scientific communities around the world realized the
importance of the Langmuir-Blodgett technique. The year 1979 saw the first International
Conference on the Langmuir-Blodgett technique being held. This was followed by the
ever-increasing use of this technique by scientists and researchers working on different
fields. Although the ultrathin organic films produced by the Langmuir-Blodgett (LB)
technique has found feasible practical applications today, where LB films are used as
model systems. A review of the LB work in surface enhanced spectroscopy has also been

published.[37]
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3.1.2 Definitions

a) Surface Tension

In a liquid, there exists a force of attraction between the molecules. This force of
attraction is called cohesion and depends on the properties of the substance. When a
liquid is present in bulk this interaction between the molecules is balanced as the each
molecule in the bulk experiences equal force of attraction in all the directions. But for the
molecules at the surface of the liquid these forces are not balanced as at the gas (air)-
liquid (water) interface the force of attraction of the liquid is higher than that of the gas
(air). Hence there will be a net force of attraction acting towards the liquid and under the

action of this force the air-water will contract resulting in a reduction in its area.

This condition results in free energy that is present on the surface of the liquid and is
known as the surface free energy. We can also define surface energy as the cohesive
energy (resulting from the imbalance in the cohesive force) that exists on the surface of

the liquid. Units for surface tension are dynes/cm or mN/m.

The molecular interactions for a polar liquid, like water, are stronger and hence such
liquids have high surface tension. Decrease in the strength of the molecular interactions
will automatically lower the surface tension. Some the factors that affect surface tension

arc:

(1) Temperature: Increase in temperature of a system will lower the surface
tension.
(i1) Contamination: Contamination of any types, especially by surfactants, will

bring about a reduction in surface tension.
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(b) Surfactants

Surfactants are surface-active agents. These molecules usually consist of both hydrophilic
and hydrophobic parts. The hydrophobic part usually contains hydrocarbon and
fluorocarbon chains and the hydrophilic part contains the polar groups like -OH, -COOH,
-NH;", -PO4(CH,),NH3".

In solutions the association behaviour of the surface-active agents (surfactants) results
from their amphiphilic nature.

(c¢) Insoluble Monolayers

There are many surfactants that are amphiphiles and highly reduce the surface tension of
water and form a monolayer at the interface. There are also many more molecular
systems, insoluble in water, and with aid of a solvent, can be spread on the surface of
water to form a monolayer at the air-water interface. Floating monolayers are called
Langmuir films. The orientation of the molecules at the air-water or oil-water interface is
controlled by the amphiphilic nature of the surfactants. It is always in a way that polar
head group is pointed towards water and the hydrocarbon tail points away from water and
towards air. Now, to form an insoluble monolayer the hydrocarbon chain of the substance
should be long enough. If the water insoluble hydrocarbon chain falls short of the
required length, micelles are formed on the surface of the water. Micelles are soluble in
water and because of their presence the formation of monolayer is hampered.
Furthermore formation of monolayer is also prevented if the water insoluble hydrocarbon
chain is too long, as it tends to crystallize on the surface of the water. The thumb rule for
the adequate length is that the chain should have more than 12 hydrocarbons or groups in

the chain ((CHz) », n>12). But as the ability of forming a film of the hydrocarbon chain is
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highly dependent on the polar part of the amphiphile it is still not easy to predict the ideal
length of the hydrocarbon chain. Also the amphiphile must be soluble in some volatile
and water soluble organic solvent. The most commonly used organic solvents are:

chloroform and hexane.

3.1.3 Langmuir film balance

The Langmuir film balance consists of a trough, generally made of Teflon, which holds
the subphase and prevents its leakage over the edges. Water is circulated in channels that
are placed underneath the trough and thermostats the trough. There are barriers, made of
Delrin, over the trough surface that can be moved to change its surface area. Delrin is a
hydrophilic material, which is heavy and hence can easily hinder any leakage of

monolayer underneath the barrier.

3.1.4 Surface Pressure- Area Isotherm

The measurement of surface pressure as a function of the surface area of water that is
available to each molecule provides us with the two-dimensional thermodynamic
monolayer properties. The measured surface pressure m is the difference between the
surface pressure of pure water and that of the water covered with the monolayer, in
Newton/meter. This is considered as the most important indicator of the monolayer
properties. These measurements are performed at a constant temperature. This is known
as a surface pressure-area isotherm which is rich in information on the stability of the

monolayer[35].
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3.2 Metal Deposition Vacuum System

Metal deposition vacuum system is widely used to fabricate SERS substrates. As the
name suggests, it is used to create an metal island film by vacuum deposition.[38] The
system consists of a tungsten boat that has a grip on the metal. Vacuum deposition is
carried out by allowing high current pass through the tungsten boat. The passing of high
current results is thermal evaporation of the Ag or Au metal. The entire process is

performed at about 10 Torr.

The process, which is undergone for the generation of the metal film, can be divided into

several physical stages. These are:

= Thermal evaporation, which is responsible for the change of the solid metal into
the gaseous phase.

= The substrate plate, which is kept in the vacuum chamber, at a set temperature,
allows the formation of metal clusters on the surface.

= [f the conditions necessary for surface diffusion are maintained, which is usually
the temperature of the substrate; nanoparticles are formed on the surface of the

substrate.

Metal deposition vacuum system can be applied to any solid substrate when films of a

particular mass thickness and high purity are desired.

The metal film morphology determines the degree of surface enhancement caused in
surface-enhanced Raman scattering (SERS). The thickness and rate of deposition,

roughness of the substrate, its temperature during deposition and annealing for initiation
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of the growth of the grain after deposition are the factors which have a direct control on

the structure of the film.

Figure 3.1 The Total System for Metal Evaporation (taken by author)

3.3 Synthetics procedure for Gold and Silver Shell Isolated

Surface-enhanced Raman spectroscopy is as a very powerful analytical technique. It is
capable of generating non-destructive and extremely sensitive characterization down to
single molecular level. In order to achieve the proper SERS effect substrates based on
metals like Ag, Au and Cu are needed. These metals will have to be in the form of

nanoparticles or roughened surfaces.

Recently, shell-isolated nanoparticle-enhanced Raman scattering approach was
developed, where the Raman scattered signals are amplified using of gold nanoparticles
with an ultrathin silica or alumina shell.[39]. The surface to be probed is covered with a

monolayer of the nanoparticles called ‘smart dust’. The ultrathin coating:
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= Prevents the nanoparticles from aggregating and becoming a lump,
= Prevents direct contact between the nanoparticles and the probed material, and

= Permits the nanoparticles to probe any surface.

In the approach of shell-isolated nanoparticle-enhanced Raman spectroscopy an Au
coated nanoparticle is used instead of an Au tip. Each nanoparticle is covered with an
ultrathin layer of silica or alumina and is similar to the situation of Au tips used in the
TERS experiment[14]. The technique can be described as combining hundreds of Au tips
together to form the nanoparticles, which are brought to the substrate surface to be
probed. Also as the chemically inert shell coating prevents the nanoparticles from coming
in direct contact with the substance to be probed, the shell-isolated mode is thus
generated. The advantages of such isolation are the increased versatility and the wide
range of practical applications. This technique is, thus, called the shell-isolated

nanoparticle-enhanced Raman scattering (SHINERS).[39]

SHINs were synthesized by following method described by Li et al. (23) as discussed in

chapter 2.

3.4 Surface and morphology characterization instruments

3.4.1 Scanning Electron Microscopy (SEM)

In scanning electron microscopy, different types of signals are produced at the solid
surface by using a highly concentrated beam of high-energy electrons. The signals thus

produced carry information about the specimen under scrutiny. Scanning electron
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microscopy helps us determine the external morphology (texture), chemical composition,

crystalline structure and the orientation of the materials that make up the specimen.

Fundamental Principle: The electrons that form the concentrated beam in scanning

electron microscopy are accelerated, i.e., they posses large amount of kinetic energy. On
coming in contact with the solid sample these electrons decelerate and there occurs a
transfer of energy from the electrons to those emanating from the surface of the solid.
Thus the signals produced are comprised of secondary electrons, backscattered electrons,

diffracted backscattered electrons, photons, visible light and heat.

SEM is a non-destructive, which basically means that the X-rays generated by the
electrons do not cause a loss in the volume of the sample. Hence the same sample can be
used more than once for the analysis. The infrastructures required are: Power supply,
Vacuum system, Cooling system, and Vibration free floor and at room temperature,

which is free of any magnetic or electric field in the environment.

SEM is widely used in the development of high-resolution images of the shapes of
different objects. It is also useful in the determination of spatial change in the chemical
composition of the sample. It can also provide very accurate measurement of small

object, in the range of 50nm as shown in Figure 3.2.
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Figure 3.2 The accuracy in SEM images

Advantages

SEM is arguably the only instrument, which has such wide range of applications
in the examination and study of solids.

SEMs are generally have user-friendly ‘intuitive’ interface and can be operated
easily.

In most of the applications there is minimal preparation required for the sample.
Also in many applications the acquiring of data is simple and hence can be done

rapidly.

Disadvantages

SEMs have a microscopic chamber where in the sample are placed. So it is
mandatory that the samples fit into this microscopic chamber. Maximum
horizontal dimension is 10cm and the vertical dimensions should not exceed

40mm.
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= Samples that are prone to decrepitation or likely to outgas at low pressure are not
suited for the typical SEM.
= The EDS detectors with which the SEMs are equipped fail when very light

elements are involved.

3.4.2 ATOMIC FORCE MICROSCOPY (AFM)

Scanning probe microscopes (SPMs) are used to measure morphology of surfaces[40].
These instruments are capable of carrying out the measurements with nanometric
accuracy. The scanning probe microscopes involve both scanning tunnelling microscope

and atomic force microscope.

The principle of the atomic force microscope technique is that when a tip, connected to a
cantilever end, is brought within the inter-atomic separations of a surface, it leads to the
development of inter-atomic potential between the atoms of the tip and the surface. This
inter-atomic potential will cause the tip to move up and down complying with the surface
profile as it travels across the surface. Thus, in order to be able to determine the
topographical characteristics of the surface it is only required to measure the deflection of
the cantilever. A laser and detector monitor the movement of the cantilever and also help
in measurements of the forces between the sample and the tip. Also in order to limit the
force of interaction to a preselected level, called the Reference Force, the sample is
moved up and down with the negative feedback loop via a piezoelectric scanning tube.
By recording the movement of the cantilever in the direction of the Z-axis expressed as a

function of X and Y, a three dimensional image can be composed.
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There are a variety of AFM imaging modes that are available. But the most common of

them all are the contact and the non-contact (tapping) mode.

Contact Mode AFM: In this mode a sharp tip is connected to the end of a micro-

fabricated cantilever. The tip along with a split photodiode detector scrutinizes and
inspects the deflection in the cantilever while being in continual contact with the sample
surface. The tip is regularly adjusted so that it keeps on maintaining the same deflection
(or the same height above the sample surface). This helps in creating images, which
displays the changes in height, friction and deflection. A feedback loop is used to
maintain the constant deflection. This is done by vertical motion of the scanner at each of
the data point so as to keep a set point deflection. Contact mode AFM cannot be used for
soft sample as the tip, when moved while in contact with the surface, can cause harm to

the surface by scratching it.

Tapping Mode AFM: In the tapping mode, the cantilever is oscillated close to the

resonance frequency by the use of piezoelectric actuators. As a result, the tip, connected
to the cantilever, touches the sample surface only at intervals. Thus, the tapping mode
AFM can scan the sample surface without scratching it. Even in the tapping mode a
feedback loop is used to maintain the amplitude of oscillation of the cantilever. Hence, as
the tip moves over a rise on the surface of the sample the amplitude decreases due of
space for movement of the cantilever. Similarly as the tip moves over a depression on the
surface there is an increase in the amplitude since the cantilever gets enough space for
movement. Thus, on the basis of the tip and the surface interaction there occurs a
continual change in the amplitude, frequency and phase of the oscillation shift. Tapping

mode AFM has proved to be ideal in the study of soft, easily damaged, nanoscale
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structures due to its ability to bring about a noticeable reduction in the lateral forces
couple with scanning. Figure 3.3 shows Tapping mode AFM image of Typical Silver

Island Film

Figure 3.3 Tapping mode AFM image of Typical Silver Island Film
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3.5 Spectroscopic characterization instruments

3.5.1 UV-Visible spectroscopy

The ultraviolet and visible spectroscopy is a technique, which has become an integral part
of the modern day laboratory. This technique is probes the electronic absorption using
ultraviolet and visible light for the analysis of materials, including complex metal ion in

solution and organic compounds.

Ultraviolet and visible have ample amount of energy to be able to excite the electrons that
occupy the levels of higher energy in a complex ion. So when visible radiation passes
through a sample with full extent of its wavelength it produces an absorption spectrum.
There is a characteristic absorption corresponding to each electronic transition.
Substances appear coloured because they absorb the wavelengths of light in the visible

region of the electromagnetic spectrum.

Radiation in the ultraviolet and visible spectrum can be used for generation of electronic
transition in organic molecules. The only requirement in this case is a broadband light
source with wavelength between 200-800 nm. This method is used as the first step in

spectroscopic characterization of molecules and nanoparticles.

Ultraviolet and visible spectroscopy is useful in analysis and the identification of various

substances and groups with multiple applications.

= In order to figure out the amount of trace metal in an alloy the metal sample is
first reacted to make it into a solution as ion. The ion is then made further
complex to get into a form, which can be easily measured. The spectrum of the

complex ion is then recorded using which the absorbance (absorption coefficient)
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is found. From the absorption coefficient the concentration of solution and hence
mass of the metal in the sample can be calculated.

= Almost the same process is applied to drug metabolites.

= Ultraviolet and visible spectroscopy is used in optical fibres, which are added to
toothpastes and detergent powders.

= For watermarks to show up under an ultraviolet lamp, ultraviolet absorbing inks

are added to the watermarks.

Figure 3.4 Cary UV-Vis Spectrometer (Adapted from EVISA)

3.5.2 Raman and Fluorescence spectroscopy

* Raman Spectroscopy

Raman Effect, as the name suggests, was discovered by an Indian physicist named
Chandra shekhar Venkata Raman[3]. Raman Effect is basically the phenomena of

inelastic scattering of light. The Raman effect describes the shift in wavelength for a
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small fraction of radiation, which has been inelastically scattered by molecules, whose
frequency differs from that of the incident beam. This shift in wavelength is dependent on
the chemical composition and structure of the molecules that cause the scattering of the
radiation. The scattered radiation is used in Raman spectroscopy to understand molecular
vibrations, which, in turn, help throw light on the structure, symmetry, electronic
environment and bonding of the molecule. And thus the quantitative and qualitative

analyses of the individual compounds become possible[6].

There are two types of scattering, which results from the irradiation of a molecule with
monochromatic light: elastic and inelastic. In the case of elastic scattering, there is no
shift in wavelength and also change in photon frequency does not occur. In inelastic
scattering there is a shift in wavelength and change in photon frequency. This happens
because of the excitation or deactivation of molecular vibration in the process of which

the photon may lose or gain energy[3].

Raman Spectrometer: Raman spectrometer consists of a source of light, monochromator,

sample holder and a detector. There are two different techniques that are used to collect

the Raman spectra. They are:

= Dispersive Raman spectroscopy, and

= Fourier transforms Raman spectroscopy.

They differ from each other in their laser sources and also in the way in which Raman
scattering in detected and analysed. The methods have their own unique advantages and
disadvantages and hence the choice of the type of method is solely dependent on the

sample. Effective FT Raman spectrometers were developed using red excitation lasers.
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This helped overcome the issue of preventing fluorescence that affects the Raman signals
in strongly absorbing molecules. Moreover, the capacity of analysis was highly improved
with the invention of extremely sensitive detectors combined with coupling of optical

fibres and microscopes.

There are different types of lasers that can be used for the purpose of excitation, such as:
argon ion (488.0 and 514.5 nm), krypton ion (530.9 and 647.1 nm), He: Ne (632.8 nm),
Nd: YAG (1064 nm and 532 nm) and diode laser (630 and 780 nm). Fundamentally,
during vibration if there is a change in polarizability of a molecule, it is said to be Raman
active.

Raman spectroscopy is also used in combination with a lot of hyphenated analytical
techniques. Some of these techniques are: high-performance liquid chromatography,
micro chromatography, scanning tunnelling microscopy, atomic force microscopy.

Advanced Raman Techniques

(1) Surface Enhanced Raman Spectroscopy (SERS): SERS is a great improvement to
the Raman scattering signal. It is a tool used for the detecting adsorbate molecules
on rough metal surfaces. This technique was discovered by R. Van Duyne[11].

(i1) Resonance Raman spectroscopy (RRS): For resonance Raman spectroscopy the
energy of photon of an exciting laser and the energy required for electronic
transition should match each other. Enhancement in Raman bands is particularly
high for specific molecular vibration. The most common is the Frank-Condon
enhancement. In this category the normal coordinate of vibration has one of its
component in the molecule’s direction, which expands during electronic

excitation.
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*  Fluorescence Spectroscopy
All fluorescence measurements in our work are carried out using the Invia micro-Raman
system.
Fluorescence occurs when a molecule absorbs light of the proper wavelength, it is excited
to one of the excited electronic states.[24] These excited electronic states have many
vibrational levels. Once the molecule has moved from the ground state to the excited
electronic state, relaxation occurs, as explained in chapter 1.
Fluorescence and its various applications have highly improved in the past decade.
Development in time resolution, data analysis methods and better instrumentation in the
past decade has led to a rise in the level of interest in fluorescence. In addition to these the
recent development in laser and detector technology also has an important part to play in
creating added interest in fluorescence.
Fluorescence spectroscopy has proven to be a promising technique in the field of
diagnosis as it has the ability to carry out quick and rapid diagnosis. In the field of
medical microbiology fluorescence spectroscopy has been termed as the ultimate
diagnostic tool. Studies are being carried which suggest that fluorescence spectroscopy

may prove to be an impeccable technique in the detection of viruses.
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Chapter 4

Self-assembly of shell isolated silver nanoparticles on silanized

glass surfaces
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The objective of this chapter was the preparation of enhancing substrates through
self-assembling of shell isolated nanoparticles of Ag on silanized glass. The coupling
agent or linker used is 3-amino propyl triethoxysilane. The surface density of
nanoparticles increases with the immersion time of the silanized glass in the SHINs
solution. Their self-assembly on glass that had been silanized is determined for several
deposition time intervals: from three to sixteen hours. The surface coverage was

monitored by AFM imaging.

The role of localized surface plasmon resonances in isolated metallic
nanoparticles provide simple models for the observed SERS and SEF and for the design
of practical applications.[5, 17] However, it has become evident that plasmon coupling
plays fundamental role, particularly at spatial locations known as hot spots[41]. The basic
idea is to fabricate reproducible enhancing substrates with controlled performances that
might give rise to high factors of amplification. Xu et al[42] presents calculations that
show that 10'" electromagnetic improvements exist between any nanospheres that have a
space of up to 1 nm between them. In practice, findings forecast that in applications of
SERS, aggregates form more efficient enhancing substrates compared to separate
nanoparticles. Large enhancements are detected at “hot spots” in aggregates of
nanoparticles.

Molecular emission is represented by the following equation:

Iy = IoxcXEXQy [4.1]

Wherelis the fluorescence intensity, I, is the excitation intensity, € is the absorption

extinction coefficient, and @, is the intrinsic quantum yield. While the quantum yield is

expressed in terms of lifetime or decay rates as follows:
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Qo = — 19— [4.2]

Frad+Tnar

Where I, 41s the radiative decay rate, and [}, is the non-radiative decay rate.

Several changes will occur when the chromophore near metallic nanoparticles that
support LSPR. The absorption profile will intensify due to the new local electric field
near the nanoparticles when its surface plasmon is excited, and then the fluorescence will

modify.

Coupling between two local electric fields occurs in neighboring nanoparticles (hot
spots). This produces large enhancement values due to the highly localized area between

the nanoparticles.

Wide-range of nanostructures that are confined to surfaces and that facilitate the
regulation of plasmonic characteristics as well as the enhancement of optical signals may
be generated by many fabrication strategies which include electron beam and nanospheres
lithographies.[43] The latter applies to both enhancement off light scattering and
emission.[44] In this work we present the immobilization of Ag SHINs through
nanoparticles’ self-assemblage. =~ An attempt is made to fabricate substrates for
SHINERS[39] and SHINEF[45] through the self-assembling of metal-coated
nanoparticles, a bottom-up method. The constituent blocks in this regard are shell isolated
silver nanoparticles. The immobilization of NPs in a glass slide can be achieved with the
help of linkers. The overall selections of linkers of self-assembly that are non-covalent are
often polymers as well as polymeric dendrimers along with proteins. For the self-

assembling involving covalent linkers the characteristic selections are dithiols and organic
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type of silane. Bottom up methods, unfortunately, are limited and cannot offer spatial
reproducibility when compared with nanolithographic approaches.

In this chapter, shell isolated nanoparticles of silver citrate are utilized for self-
assembly. The coupling agent or linker used is 3-amino propyl triethoxysilane. It is used
for coupling the NPs to microscopic slides of glass. Glass surfaces are silanized and Ag-
SHIN nanoparticles are adsorbed onto the surface.

Electrostatic forms of interactions using the dipping strategy facilitate both the
silanization as well as deposition. Controlling the deposition time regulate the degree of
the aggregation of the nanoparticles. Particles come quite close to one another with
increased of surface particle concentration through long deposition times. Increasing

nanoparticles concentration per unit area brings about more junctions between particles.
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4.1 Experimental

Silver nitrate, nitric acid, sulfuric acid, trisodium citrate, hydrochloric acid, 3-
amino propyl triethoxysilane, anhydrous acetone, chloroform as well as sodium silicate
were purchased from Aldrich. There was no additional purification of any of them prior
to their use. Ag SHINs at about 55 nm were synthesized according to the standard sodium
citrate reduction method. In a round bottom flask equipped with condenser, a 36 mg of
AgNOs into 200 mL milli-Q water was brought to boil with vigorous magnetic stirring. In
typical procedure, 4 mL of 1% sodium citrate (Na3C¢Hs07) was added. The solution left
for 1 hour at high temperature and vigorous stirring. As initial step of coating, 12 mL of a
freshly prepared ImM APTEMS (3-aminopropyltriethoxysilane) to the resulting solution
under vigorous stirring for 15 min. The coating then was performed by adding 36 mL of
activated 0.54% aqueous sodium silicate solution (pH 10.5). The solution then was
allowed to stand for 3 hours in sand bath (220°C) and vigorous stirring. All the glass
apparatus that were utilized were cleaned using aqua regia. Notably, aqua regia is a
mixture of HCI together with HNOs in a 3:1 ratio. The water that was utilized in the entire
experiment was doubly distilled and adding a system of Milli Q from a Millipore for its
purification. The resistivity of the water at 25°C was in excess of 18.2 MQ cm. For
silanization, the surface of Corning 2048 glass slides, measuring 25 cm by 75 cm, were
cleaned in a solution containing 50v/v sulfuric acid for about three hours. Thereafter, they
were severally rinsed using Milli-Q water through sonication, then, they were placed in
ambient temperature settings, free from dust, to dry. The slides that had been cleaned
were immersed, for eight minutes, in a 2% 3-amino propyl triethoxysilane solution in

acetone. Following the silanization, the slides were cleaned using Milli-Q water so as to
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get rid of the extra silanes on the surface. After the silanizationof the slides they were put
into a solution of SHIN nanoparticles to commence deposition through self-assembling.
The latter is possible via linkages of amine molecules that bore positive charges from the
surface of the slides and Ag SHINs that bore negative charges. The SHINs particles that

were not bound were eliminated using Milli-Q water.

N

9
—”«ESi— CsHz NH,—3 Ag SHINs

-

Figure 4.1 A schematic cartoon showing the deposition of the particles

A schematic cartoon showing the deposition of the particles is presented in Figure
4.1. The time spent immersing the substrates that had been silanized in a solution of Ag
SHINSs allows for the regulation of the density of the nanoparticles per unit area. Through
trial-and-error, several immersion times were tested. In this chapter, the results are
presented for the slides that had been silanized, after six, twelve and sixteen hours of the

deposition of SHINS.
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Figure 4.2 AFM images using tapping mode of silanized glass of 16 hours deposition time of Ag
SHINs

Chloroform of pure grade was utilized to prepare solutions of Octadecyl
Rhodamine B chloride R18, for the formation of Langmuir monolayer. Drop-wise, the
solution was cautiously spread on the surface. This was done through dropping the
solution through a microsyringe that was held quite close to it. We let the solvent to
evaporate for close to half an hour. The subphase comprised of 18.2 MQ cm of Milli-Q
water, at a constant 25°C temperature. This was followed by the compression of the
monolayer at a constant barrier velocity of 6 cm’min™ to document the pressure at the

surface.

The pressure is determined using a Wilhelmy sensor. The monolayer film was transferred
using Z-deposition with a dipping device controlled electronically. The transfer was

conducted at a constant pressure of 25 mN.m™', and the transfer ratio was near unity. LB
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monolayers of Octadecyl Rhodamine B chloride R18 were therefore transferred onto
films made of silver SHIN.

UV-Vis absorption type of spectra was used to monitor the Octadecyl Rhodamine
B chloride R18’s solution, the dispersions of silver silicate as well as the films made of
silver with the help of a Cary 50 Scan UV-Vis type of spectrometer. The Ag-SHIN films
had been generated through self-assembly on surfaces that had been silanized. The AFM
(atomic-force microscopy) images were obtained using Digital Instruments Nanoscope
IV, was operated in a non-contact tapping mode using an n° tip of silicon. The
fluorescence spectra of the monolayers films made from LB were measured in the
Renishaw Invia system equipped with a 514.5 nm laser excitation, applying 10 to 20 pW
power on samples so as to avoid any possible photodegradation. Every measurement was
in a backscattering geometry using a 50x objective on the microscope, which provided

ca.lum?® of probed surface area.
4.2 Results and Discussions

Surface coverage and morphology was monitored using AFM images for 16 hours
time deposition indicating the generation of Ag SHINs aggregations, as shown in Figure
4.2. Figure 4.3 shows the plasmon absorption spectra of silver SHINs in solution. The
reference absorption spectrum of the 1.34x10™* M Octadecyl Rhodamine B chloride R18
solution, and the reference fluorescence spectrum of R18 LB monolayer. The absorption
of the plasmon indicates a broad spectrum that covers the range of the emission. The
latter hints the existence of broad distribution of sizes of nanoparticles. The absorption
spectra of the molecule with the broad maximum at 557 nm resonated well with the

wavelength of laser excitation at 514 nm.
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Figure 4.3 The plasmon absorption spectra of silver SHINs in solution, Octadecyl Rhodamine B
chloride R18 solution and LB emission spectrum of R18

The Ag-SHINs films were produced through self-assembly on surfaces of glass
that had been silanized using varied periods of immersion: six, twelve and sixteen hours
(Figure 4.4). This provides an insight into the growth of nanoparticles on surfaces that are
silanized. The nanoparticles’ density goes up with increasing periods of deposition. Thus,
the shape along with intensity of the absorption of plasmon is varying partly owing to
supplementary coupling. The figure also show that the surface of glass were completely
silanized, allowing for the increase in the attachment of Ag-SHIN particles with the

immersion time.
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Figure 4.4 The Ag-SHINS films on surfaces of glass that had been silanized using varied periods of
immersion: six, twelve and sixteen hours and reference

Fluorescence enhancement is observed for the target molecules of R18 in all cases
and SHINEF is observed. Notably, in the literature, SEF is also referred to as MEF
(metal-enhanced fluorescence)[46]. The Ag-SHINs are an experimental demonstration of
the SEF distance the dependence shown by Wokaun[47] in mid 1983, and numerous other
teams have confirmed similar trends. Additionally, within SEF the only field that is
enhanced is the incident one providing an E* dependence, while enhancements of SERS
attain amplification (E* dependence) from incident and scattered fields [48].

SHINEF spectra from the monolayer of R18 on the substrate made of Ag-SHINs
after six and sixteen hours of immersion time are depicted in Figure 4.5. The R18’s

inherent quantum yield is ca. 0.7, and the attained mean factor of enhancement was forty.
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The image obtained through AFM for a sixteen-hour long deposition depicted within the

inset indicates the generation of aggregates
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Figure 4.5 The monolayer of R18 on the Ag SHINs and spectra of SHINEF after six and sixteen hours

4.3 Conclusions

In this project, the preparation of enhancing substrates through self-assembling coated

colloidal nanoparticles of Ag is presented. The approach is a bottom up method, where

Ag-SHIN nanoparticles are the constituent blocks. The coupling agent or linker used was

amino functional silane or 3-amino propyl triethoxysilane. The nanoparticle density goes

up with increasing periods of deposition. Thus, the shape along with intensity of the
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absorption of plasmon is varying partly owing to supplementary coupling. The outcomes
shows that the best SHINEF enhancement (enhancement factor of ca.40) is attained on
surfaces where the Ag-SHINs form aggregates, similarly to what is normally observed on

SERS experiments on colloidal silver.
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Chapter 5

Plasmon enhanced scattering and fluorescence of

phospholipids in Langmuir-Blodgett monolayers
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In this chapter we present the results of the investigation of N- (Fluorescein-5-
Thiocarbamoyl)-1,2-Dihexadecanoyl-sn-Glycero-3-Phosphoethanolamine,
Triethylammonium Salt (fluorescein DHPE) exposed to Au-SHINs to attain SHINEEF,
and vacuum evaporated silver island films employed as SERS/SERRS substrate for

enhanced scattering.

While lipid bilayers underpin the structure of biological membranes universally,
the lipid fractions of the biological membranes are fused with phosphate group, forming
phospholipids bilayers. Langmuir-Blodgett (LB) films can be formed of mono- or bi-
layers of organic material deposited on a solid surface, therefore useful for mimicking
biological membranes. The artificial bilayer structures of lipids and phospholipids can be
fabricated using the LB technique[34, 35]. LBs have been extensively used for the
analytical and structural studies of single monolayers, bilayers and multilayers[49]. Ideal
lipid membrane models have remained pivotal in the field of chemical biology and
pharmacology, for effective molecular recognition trying to understand the architecture of
biological assemblies and biological functions. Thus, physical and chemical interactions
between immobilized biomolecules and drugs or biopharmaceuticals (proteins), can be
studied using artificial lipid membranes such as LB. In such studies, diffusion, protein-
folding membrane interactions, and DNA sequencing of the probed molecules can be
examined by single-molecule spectroscopy, which allows tracking behavior of individual
molecules, through the attached chromophores[50]. In terms of ultrasensitive detection
and molecular characterization, the advantages of SERS/SERRS spectroscopy are
obvious, since they provide molecular fingerprints and identification of functional groups

observed as narrow lines in the inelastic scattering spectra.[4, 5]. Fluorescence
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spectroscopy and SEF can be considered complementary, providing ultra sensitivity of
probed molecules through broadband emissions[51, 52]. SERRS spectroscopy utilizes the
vibrational Raman spectrum, which is rich in molecular behavior information in contrast
to fluorescence. However, Raman spectral cross-sections of phospholipids are very small,
therefore attaching chromophore is a necessary condition to approach single molecules
detection using SERRS[53, 54]. Furthermore, SERRS confers two resonance
enhancements, per se. The resonance Raman scattering effect can be achieved by fine-
tuning the excitation frequency to match the electronic absorption band of the attached
chromophore, with RRS cross-sections that can be up to 10 cm?®/molecule[55]. In
addition, local field enhancements can be attained through excitation of surface plasmons
in metal nanostructures with an approximate E* plasmon enhancement[56]. In the present
wok, a dye-tagged phospholipid fluorescein DHPE (structure shown in Figure 5.1) is used

for ultrasensitive detection experiments.

fluorescein

Figure 5.1 Illustration for chemical structures of the tagged phospholipid
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5.1 Experimental details

N- (Fluorescein-5-Thiocarbamoyl)-1,2-Dihexadecanoyl-sn-Glycero-3-
Phosphoethanolamine, Triethylammonium Salt (fluorescein DHPE) was obtained from

Invitrogen and used as received. Arachidic acid (AA- the saturated fatty acid with a 20
carbon chain- CH, (CH, ) . COOH ), chloroform, and ultrapure (99.9%) Ag shot (1-3

mm) were purchased from Aldrich, and used without further purification. All solutions
were prepared using spectroscopic-grade chloroform as the solvent. Silver island films
(SIF) of 6 nm mass thickness were vacuum evaporated onto Corning glass microscope
slides at a pressure of 10 Torr while keeping a substrate temperature of 200° C (that was
maintained for 1 hour after evaporation). Langmuir monolayers containing mixed
monolayers of fluorescein DHPE and Arachidic acid at different concentrations were
prepared and added drop wise at the air-water interface of a Mina Langmuir trough to
form a monolayer to be transferred onto silver island film (for SERS/SERRS) and quartz

slides (for SHINEF).

The area per molecule in mixed AA: fluorescein DHPE LB films is about 25 A2, so for 1
pum? there is ca. 4x10° molecules required to cover that area. One target molecule in
4x10° molecules is required to reach one molecule of the chromophore per 1 um?2. The

concentration of fluorescein DHPE in the stock solutions was 10™*M.

Langmuir monolayer is formed after adding 200 pL of the AA: fluorescein DHPE
solution mixture onto a pure water subphase (18.2 MQ.cm) at room temperature of 23° C
(surface pressure ca. 73.5 mN/M), after allowing the solvent to evaporate the film was

ready to transfer. Nima Langmuir trough model 302M electronically controlled dipping
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devices were used to transfer film. The compressing was at 6 mm/min until reached 25
mN/m. Transferring the monolayers onto immersed glass side covered by 6nm silver
island film and quartz slides at a rate of 2 mm/min using Z deposition.

UV-visible absorption spectra were recorded with a Cary 50 scans UV-visible
spectrophotometer for all solutions, Au SHINs solutions and 6 nm mass thickness silver
island films. Atomic force microscopy (AFM) images were recorded through a Digital
Instruments Nano-Scope IV operating in tapping mode with an n' silicon tip. The
plasmon and molecular absorption spectra and the AFM image of a typical silver SIF are
shown in Figure 5.2. Gold nanoparticles coated by SiO, were synthesized using the

procedure reported by Li et al.[39] as discussed in chapter 2.

Absorbance

\ 514.5 nm .

T T T T T
300 400 500 600 700 800 900
Nanometers

Figure 5.2 Extinction spectrum of a typical Ag-SIF on glass and AFM phase image of 1um’
surface area
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Raman scattering and fluorescence were recorded in micro-Raman system in a
backscattering geometry. The microscope is equipped with a 50x objective with a
numerical value of the aperture of 0.75. The latter provides a field of view of ca.lpm® of
surface area. The mixed LB monolayers on SIF films were probed using a 514.5 nm laser
excitation and that applying 10 to 20 uW of power at the samples so as to avoid
photodegradation. Spectra were recorded with a 4 cm™ resolution, and 10 seconds

accumulation, unless otherwise indicated.

5.2 Results and Discussions

5.2.1 Langmuir and LB films

The Langmuir technique was employed to obtain surface pressure area per molecule, (7-
A) isotherm of fluorescein DHPE monolayers[34, 35]. A typical isotherm is shown in
Figure 5.3. Gaseous phase is observed at molecular area larger than 150 A%, the
monolayer then shifts to a liquid- condensed phase with additional compression, until the
monolayers collapsed at pressure around 40mN/m. the isotherm exhibits typical liquid
expanded behavior which is related to the reorientation of phospholipid chain. The

monolayer was transferred to silver island films at pressure of 25 mN/m.
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Figure 5.3 Surface pressures vs. mean molecular area (mn-A) isotherm

5.2.2 Electronic absorption

Figure 5.4 shows the absorption spectra of 10° M solutions of fluorescein DHPE
in chloroform with band maxima at around 451 and 492nm. For reference, the fluorescein
absorption in chloroform with band maxima at around 430 and 450nm is also included.
The extinction spectrum of the LB monolayer of fluorescein DHPE also shows broad
absorption around 490nm. The absorption maximum is likely the result from the n-m*

electronic transitions of the chromophore.

52



Fluorescein-DHPE

HO O o)

Absorbance (a.u.)
//

N SR T TN e

Fluorescein in CHCI

I I

I 1
350 450

T T T
550 650

Nanometers

Figure 5.4 Extinction spectrum of fluorescein and fluorescein-DHPE in chloroform

Comparing the spectra shown in Figures 5.2 and 5.4, it can be seen that SIF
exhibit a broad plasmon excitation in the visible range with a maximum around 420 nm,
indicating a relatively large distribution of particle geometries and particle-particle
interactions. Using the 514.5 nm laser excitation, it can be seen that it is in resonance with
the localized surface plasmon resonance (LSPR) absorption of the SIF, (necessary
condition for SERRS), and also with molecular electronic absorption of fluorescein
DHPE, achieving the double-resonance. The AFM image for the morphology of 6 nm
mass thickness film shows an inhomogeneous distribution of particles with sizes ranging

between 40 and 80 nm (Figure 5.2).
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5.2.3 Characteristic vibrational modes of the tagged phospholipid

Characteristic vibrational modes are vibrational bands observed in the Raman (or
the infrared) which carry the largest Raman cross section (or absorption cross section in
the infrared)[7]. The first step in this project is the vibrational characterization of the

tagged phospholipid -tracking the phospholipid and the chromophore.

fluorescein DHPE P
{

| '

WWN\! FTIR

1636 1743

LB-SERRS at 514.5 nm
|
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|
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Figure 5.5 FTIR spectra for cast film of fluorescein-DHPE on Ge and LB-SERRS spectrum on SIF at
514.5 nm.

For comparison, the infrared and enhanced resonance-Raman spectra (using 514.5
nm) for fluorescein DHPE are shown in Figure 5.5. FTIR spectrum in transmission mode
was collected from a cast film of fluorescein DHPE deposited onto a Ge plate. The
infrared spectrum consists of vibrational bands from the phospholipid and the
chromophore while The RRS spectrum is entirely from the vibrations of the
chromophore. In the IR spectrum, the C-H stretching modes, which are the strongest
bands, as same as the C=O stretching band at 1743 cm™ (ester carbonyl group

phospholipid)[57], are not observed in the RRS spectrum. On the other hand, in RRS
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spectrum of fluorescein DHPE, the ring stretching of chromophore at 1636 cm™ and 1328
cm™ as some of the most intense bands. The SERRS fluorescein DHPE is not very
different in relative intensities, in comparison with the spectra recorded with the 632.8 nm
and 785 nm laser lines, as can be seen in Figure 5.6. Notably, the only laser line in full
resonance with molecular electronic absorption given RRS is the 514.5 nm. That explains
differences in the relative intensity of the characteristic vibrational bands, and it also
explain the similarity between the spectra excited with the 632.8 nm and 785 nm laser

lines.
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Figure 5.6 Raman spectra of fluorescein DHPE recorded with different laser lines

Characteristic vibrational modes of fluorescein DHPE are collected in Table 5.1.
Notably the FTIR spectrum of the solid fluorescein DHPE contains molecular vibration

of the phospholipid and the chromophore, while the RRS and the pre-resonant spectra
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show mainly the molecular vibrations of the chromophore. The most intense bands in the
infrared spectrum are due to the symmetric and anti-symmetric C-H stretching of the
polymethylene chain of the lipid[58]. The carbonyl stretch is the most intense band in the
IR of the low frequency region at 1742 cm™. Another characteristic lipid vibration is the
C-C stretching mode seen at 1061 cm™ [58]. These bands are not seen in the LB-SERRS
and the tentative assignment is based on published work on phospholipids and related
molecules.[59-61] To help the assignment of characteristic chromophore modes, we carry
out a quantum mechanical calculation using Gaussian suite of programs, RB3LYP and
the basis set 6-311+G (d, p). The proposed assignment for observed vibrations is given in

Table 5.1
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Table 5.1 Characteristic vibrational Raman modes and FTIR modes for F-DHPE

Experimental | Experimental Vibrational Assignment
FTIR LB-SERRS
358 m Anthracene ring deformation
493 m Ring deformation+N-H wag
597 m Benzene wagging
649 vw 645 m Anthracene C-H wagging
677w CH; rocking
724 w 727w Benzene deformation
769 w 769 m Anthracene ring breathing
776 w O-P-0O stretching
850 m O-P-0O stretching
952 w 947 w C-N stretching asymmetric (head group -
phospholipid)
1061 m C-C Stretching phospholipid
1110 m C-C Stretching phospholipid
1180 m 1183 wvs. C-H bending + O-H bending (in benzene ring)
1212 w C-O stretching phospholipid
1260 w CH, twist phospholipid
1328 vw 1328 vs Anthracene ring stretching+ C-H bending
1378 w CH; scissoring (chain phospholipid)
1400 s Benzene stretch + C-H bending + O-H bending
1465 m CH; scissor (chain phospholipid)
1483 s Anthracene ring stretching)
1545 vw 1545 vs Anthracene ring stretching
1591 sh 1591 s Anthracene ring stretching
1636 sh 1636 vs C=0 and C=C ring stretching
1742 s C=0 stretching (phospholipid)
2852s Symmetric C-H stretching (phospholipid chain)
2872 sh C-H Stretching
2924 vs Antisymmetric C-H Stretching (phospholipid
chain)
2953 sh C-H Stretching

vs= very strong; s=strong; sh=shoulder; m=medium; w=weak
5.2.4 Single molecule detection
The sensitivity of LB-SERRS is reassuring to pursue dilution studies for single
molecule detection. The LB-SERRS spectrum matches the reference spectra (including
pre-resonance Raman scattering) indicating that the silver island films are not interacting
chemically with the monolayers of tag-phospholipid, which means there is physical

adsorption and the enhancement is plasmonic. The reference LB-SERRS spectrum is
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exactly the same as the SERRS spectrum of fluorescein DHPE casted on silver island

films as can be seen in Figure 5.7.
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Figure 5.7 SERRS and LB-SERRS spectra of fluorescein DHPE on SIF

For ultrasensitive detection, different mixing ratio solutions leading to a few target
molecules per lum2 of surface area in the floating monolayer i.e. 10:3,999,990,
100:4,999,900, 1000:3,999,000 were prepared and transferred to SIF. The spectral data
were recorded using point-by-point spectral mapping on LB films with 514 nm laser
excitation. When we have, in average, ca. 10 target molecules per 1pm™ using the signal
to baseline mapping routine (Wire 3.4) on the intensity of 1636 cm™ band for 2400
spectra, we only see a few reliable spectra that are most likely due to the detection of a
single molecule as shown in Figure 5.8. It should be remember that SM detection is a
rare event-taking place at the spatial locations where a molecule is located at a hot spot. It
is assumed that only highly localized local fields or kot spots[41] are responsible for the

observation of single molecule SERRS spectra. Figure 5.8 shows one LB-SERRS
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reference and two single molecule spectra from the recorded data set. As it is common in
the SM spectra[64], in the absence of the statistical average, minor changes in relative

intensities and frequency shifts are observed form one SM spectrum to another.
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Figure 5.8 LB-SERRS spectra and mapping image for 10 target molecules per 1um’ of LB surface on

SIF.

5.2.5 SHINEF from Fluorescein-DHPE

The SHINEEF spectra of fluorescein-DHPE are obtained using Au-SHIN on an LB
monolayer of the target molecule. Notably, the fluorophore has a high quantum yield
~0.95[24]. Fluorescein’s extinction spectra as well as the comparable fluorescein-DHPE
spectra are presented in Figure 5.9. The latter Figure includes the emission spectra of a
solution of fluorescein-DHPE and a LB film that are the reference spectra. The

fluorescence is collected excitating with the 514.5 nm laser line. The gold SHINs have a
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plasmon peak is 524 nm (Figure 5.10) in tune with the emission of fluorescein-DHPE as

shown in Figure 5.9.
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Figure 5.9 Extinction and emission spectra of fluorescein-DHPE, with the extinction spectrum of
fluorescein also LB film

SHINEF measurements are carried out by casting Au-SHINs on a LB monolayer of
fluorescein-DHPE molecules on quartz. The SHINEF that is observed with excitation
fixed at 514.5 nm as shown in Figure 5.10. Since casting does not provide a uniform
coverage, we record a spectral mapping ~108 spectra on the surface of the LB covered by
SHINs. The highest enhancement factor so obtained was 68. The CCD camera reveals
that EF maximum occurs within the spatial area where large SHIN particle aggregates
seems to be formed.

In a separate experiment, a micro litre of gold SHINSs is added to a fluorescein-DHPE in
chloroform solution. The resulting fluorescence of the solution was monitored. A

SHINEF enhancement of ca. 2 was attained. This is a rather small EF compared to those
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from experiments that involve solid substrates. The enhancing nanoparticles that are
present in solutions are in all probability separated-gold SHINs, i.e, they do not form
aggregated nanostructures, as they do in the case of the solid substrate. Such an advantage
of aggregation is comparable to the results presented for R18’s experiments in a previous

chapter.
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Figure 5.10 Plasmon enhanced fluorescence for fluorescein-DHPE with gold SHINs also LSPR of Au
SHINSs (bold line) and Au colloid (inset)

5.3 Conclusions

The plasmon enhanced scattering and fluorescence are illustrated in Langmuir-Blodgett
films using fluorescein-DHPE tagged phospholipid as the target molecule. The molecular
fingerprints observed in SERRS on silver island films may be used for ultrasensitive
detection. Plasmon enhanced fluorescence (SHINEF) of a high quantum yield

chromophore in LB films is achieved using gold shell isolated nanoparticles.
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Chapter 6

Plasmon enhanced scattering and fluorescence of NBD tagged

phospholipid
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This project is an extension of our investigation of the plasmon enhancement of
emission and scattering to a phospholipid covalently attached to 7-nitro-2-1,3-
benzoxadiazol-4-yl (NBD) group, that has been extensively used to study the properties,
spatial organization, and distribution of phospholipids and proteins in monolayers,
bilayer, and biological membranes[65-68]. The NBD chromophore (7-nitro-2,1,3-
benzoxadiazole or nitrobenzofurazan) may link to phospholipids to either the polar head
group or to the apolar aliphatic chain of the phospholipid. Considering both of these
orientations may help to monitor the changes in the photophysical behavior and gain
important information about the phospholipid membrane such as aggregation, phase
separation and other processes. Recent studies of NBD in organic solvents show that
NBD display solvatochromic properties owing to the large dipole moment that may
increase upon excitation[69]. The polar properties of NBD group might induce a looping
back of the fluorescent moiety toward the membrane surface. In other word, the
preference of the NBD to polar environment induces the looping NBD-acyl chain toward

the aqueous phase.

The way that NBD is attached to the head group or aliphatic acyl chain produces
different phospholipid properties. In our work 7-nitrobenz-2-oxa-1,3-diazol-4-yl(NBD) is
attached to long chain fatty acid analog C12 (dodecanoyl) in sn2-position (see Figure
6.1). The isotherm shows liquid expanded behavior. Surface potential data and
spectroscopic data illustrate that the NBD group is attached to the head group of the
phospholipid looping the NBD labeled chain of C12-NBD-PC toward water. The less
structured environment of NBD group on C12-NBD-PC allows the rotation of the NBD,

also fast relaxation of water dipoles. Fluorescence quenching studies has been shown that
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the rotation is due to the polarity of NBD group and the flexibility of the acyl chain. The
dipole moment may be able to change between the ground and excited states probably
due to reorientation in its excited state. Independent studies show that changing the
polarity of the surrounding medium can control the quantum yield; this will dominate the
rate constant of the nonradiative deactivation processes. Following the Demchak-Fort
three layer capacitor model, which is used to give microscopic structural information, the
surface potential AV results from the contribution of the dipole moments ; of aliphatic
molecules of monolayer at air/water surface including the dipole moment of terminal CHj3
groups, hydrophilic head groups, and water molecules reoriented and polarized by the

monolayer.[69]
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Figure 6.1 Illustration for chemical structures of the tag phospholipid

This chapter discusses the plasmon enhancement of emission and scattering using
the LB technique to handle the molecular target. The enhanced fluorescence is attained

using shell isolated nanoparticles, while SIF are used for surface enhanced resonance
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Raman. The enhanced fluorescence of long chain alkylamine derivatives of
nitrobenzoxadiazole (NBD-C16 and NBD-C18) deposited directly on SIF, using the
Langmuir-Blodgett technique, has been reported [70]. It was shown that for the LB NBD
monolayer deposited in close proximity to silver islands, a 16-fold increase in

fluorescence intensity is possible.

The absorption cross section and the quantum yield are two factors should be considered

when it comes to choose the fluorophore in tagged phospholipids.
Pgluo = KkolpQo [6.1]

Where, k, is the absorption coefficient, I, is the photon flux impingent on the fluorophore

and Q, is the quantum yield.

Qo =2~ [6.2]

Frad+Tnr

Where, I, is the radiative decay rate and T" , is the non-radiative decay rate. The

absorption rate of the fluorophore near the metallic nanoparticles will also be modified
due to the local field of the excited surface plasmon and the total average enhancement
factor (EF) will be represented by the ratio of the enhanced local field and the incident

field[71, 72].

|Ejocl?
EF = I};T [6.3]

Since Iy, the photon flux impingent on the fluorophore, is proportional to |Ey|?, the

emission enhancement is due to £, . However, when a chromophore is too close to
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metallic nanoparticles strong quenching will take place[33]. As a result of the direct

energy transfer to the metal, a new non-radiative decay channel is created.

Qo = e [6.4]

l—‘rad"'1—‘nR"'l—‘nmReml

Therefore, the distance dependence is a key factor and property of SEF[47, 73]. In this
project we use a shell-isolated nanoparticles (SHINs) [74] to provide a molecule-metal
separation system and avoid a fluorescence quenching. When the core gold or silver is
coated with silica with thickness around 10 nm, the silica will give the needed stability as
it offers a non-metallic surface for the interaction with fluorophores, and also protects the
metal from surface reactions. In a typical SHINEF experiments, the SHINs will be casted
over a LB monolayer deposited on glass or quartz (containing a tag-phospholipid)[45,

74].

In this work, Silver island films (SIF) of 6 nm mass thickness are used to obtain SERRS
[4]. SERS experiments are attempted using colloidal gold generated by reducing the
corresponding salt using trisodium citrate. The metal colloids fabricated by this
established protocol provides metal nanoparticles with a surface that bears negative

charges and the suspension of colloids is stable [75, 76].
6.1 Experimental

2-(12-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)dodecanoyl-1-hexadecanoyl-sn-
glycero-3-phosphocholine C12-NBD-HPC was purchased from Invitrogen. Arachidic

acid —(the saturated fatty acid with a 20 carbon chain- CH, (CH 5 ) . COOH ), chloroform,

and ultrapure (99.9%) Ag shot (1-3 mm) were obtained from Aldrich and used without
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further purification. The spreading solution was prepared with HPLC chloroform and
wrapped in aluminum and stored in freezer. The SHINs’ synthesis using the method

of[39] Li et al. was discussed in chapter 2.

SHINEF target samples were prepared using the LB technique; z-deposition at
air/water interface. LB film with about 10° molecules of C12-NBD-HPC within 1pm?
over quartz slides. The same LB films were also transferred onto silver island films of 6
nm mass thickness and were used for SERRS work. The SIFs were vacuum evaporated

onto Corning 2048 microscope glass slides.

UV-visible absorption spectra are recorded for tag-phospholipid, colloids, SHINs
solutions and SIFs using a Cary 50 scan UV-Visible Spectrophotometer. Atomic Force
Microscopy (AFM) images were recorded using a digital instruments NanoScope 1V
operating in tapping mode with an n' silicon tip. Renishaw InVia system with laser
excitation at 514.5 and 633 nm using laser power of less than 1 mW, and a 50x
microscope objective is employed for SHINEF, SERRS and SERS measurements. All the
measurements were extended mapping and were collected through computer controlled

stage. Data analysis was done using GRAMS software.
6.2 Results and Discussions
6.2.1 Absorption and resonance Raman scattering

The absorption spectra of neat C12-NBD-HPC solution and the plasmon

absorption of silver island film are shown in Figure 6.2. The tag-phospholipid absorbed

in the visible region due to the -1 electronic transition of the chromophore NBD from
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the ground electronic state to any of the excited vibrational states, and the extinction
spectrum shown in Figure 6.2 is in full agreement with reported spectra[70]. The SIF has
a maximum at ca. 420 nm with a broad extinction spectrum covering the visible region,
confirming a broad distribution of particle sizes and interactions between nanoparticles.
A typical AFM image of 1um? area of SIF is also shown using tapping mode. The
morphology of AFM image shows the inhomogeneous distribution of particle sizes. The
514.5 nm laser excitation line is in resonance with plasmon absorption of SIF and the
electronic absorption of C12-NBD-HPC with a maximum at 460 nm, achieving the

double resonance condition (SERRS).

Absorbance (a.u.)

T T T T
300 400 500 600 700 800

Wavelength/nm

Figure 6.2 Extinction spectra of C12-NBD-HPC in solution and SIF. Inset, AFM of Ag island film.
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Figure 6.3 shows the plasmon absorption of Au colloid and the electronic absorption of
C12-NBD-HPC. It can be seen that the 632.8 nm laser line is outside the molecular

electronic spectrum and can be used to explore SERS work. The extinction and
fluorescence spectra of 10 C12-NBD-HPC solution are shown in Figure 6.4. The
fluorescence spectrum of solution of C12-NBD-HPC is the mirror images of absorption,
the 0-0 transition of C12-NBD-HPC appears at around 460 nm and emission peak was at

580 nm.

NBD chromophore

i o : :
2-|  Solution 7\ (nitrobenzoxadiazol)
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Figure 6.3 Extinction spectra of C12-NBD-HPC in solution and Au colloidal solution.
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Figure 6.4 Extinction and fluorescence spectra of 10* M C12-NBD-HPC solution

The surface-pressure area isotherm was recorded spreading a solution of C12-NBD-HPC
in chloroform on water surface at room temperature. The surface-area isotherm of neat
C12-NBD-HPC exhibits two-phase transitions: a gas-liquid transition and condensed
phase. The molecules at air water interface are likely organized, where the hydrophobic
part is away from the water surface and polar part is toward the water surface. The

monolayer was held at a constant surface pressure of 25 mNn/m and transfer to solid

substrates (silver island film or quartz slides).

6.2.2 Average SERRS spectra

LB monolayer of C12-NBD-HPC fabricated on silver island film was used to
obtain enhanced resonance Raman scattering exciting at 514.5 nm using and collecting
extended mapping. Figure 6.5 shows the average LB-SERRS spectra and Raman

spectrum of the solid sample of the phospholipid. The comparison demonstrates that the
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LB-SERRS spectrum is entirely due to the chromophore, i.e., the fundamentals
vibrational modes of NBD chromophore are observed. As can be seen the C=0 and CH
stretching bands are absent in the LB-SERRS spectra. Since the most intense bands
(stretching bands) are absent, any other vibrational mode of the phospholipid will be very
weak in LB-SERRS spectrum. To further illustrate the idea, another comparison between
the LB-SERRS of the tag-phospholipid and a simple fatty acid (Arachidic acid) is

presented in Figure 6.6.
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Figure 6.5 LB-SERRS of neat C12-NBD-HPC with Raman spectra of the solid phospholipid
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Figure 6.6 LB-SERRS of neat C12-NBD-HPC with Raman spectra of the fatty acid (Arachidic acid)

Therefore the vibrational modes seen in LB-SERRS in Figures 6.5 or 6.6 correspond to
vibrational spectrum of the chromophore (4-amino-7-nitrobenzofurazan or NBD-amino).
A complete vibrational analysis of 4-chloro-7-nitrobenzofurazan (NBD-Chloride) has
been published recently[77] and it is used here to help the assignment of the characteristic
modes observed in LB-SERRS. The vibrational wavenumbers with noticeable Raman

intensities are collected in Table 6.1.

The strongest Raman bands correspond to the in-plane modes of the 7-nitrobenzofurazan
ring. The band at 1561 cm™ is an in-plane stretching mode of the nitrobenfurazan ring. In
fact all the modes in this spectral region have perceptible contributions from the ring

stretches[77]. Despite the quantity of C-Hs in the NBD phospholipid, the stretching C-H
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is not seen in the LB- SERRS (see Figure 6.5). However, the in-plane CC—H bending
vibrations that in the substituted benzenes appear in the range 1300-1000 cm™' are seen

with medium weak relative intensity at 1360 cm ™' and 1276 cm™.

The characteristics group frequencies of the nitro group (-NO,) are relatively independent
of the rest of the molecule, which makes this group easy to identify The nitro group
attached to aromatic rings present a set of characteristic vibrations[78] in the 1400 cm™'
region (1440 cm™' and 1319 cm™) for the stretching modes, a bending at 597 cm™' and a

1

rocking mode at 527 cm . The out-of-plane modes, wagging and twisting, induce a

minor change in the polarizability and carry very little intensity in the Raman spectrum.

Collective ring vibrations (breathing mode in benzene); normally are the most intense
Raman bands in aromatic molecules. The actual position of these modes is determined by
the nature of the substituents and the form of substitution around the ring. The CCC in
plane ring breathing vibrations are observed at 1048 cm™' and 734 cm™' with strong

Raman intensity.

The identification of C—N vibration in C-NO;, is difficult because of the mixing of several
modes. In the case of benzotriazole, the C—N stretching bands are found to be at 1307 and
1382 cm—1. However, the C-N stretch is seen in the 920-830 cm™' range (Lambert page
172)[78], and we assigned the band at 907 cm™ to this vibrations mode with strong ring

mixing.
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Table 6.1 Characteristic vibrational Raman modes in the LB-SERRS of neat C12-NBD-HPC

Observed wavenumber

Interpretation

1607 medium

C=C stretch

1561 very strong

Nitrobenzofurazan ring stretch

1440 weak NO; stretching +furazan ring stretch
1360 weak CC-H bending
1319  weak NO; stretching +CC-H bending

1276 medium

CC-H bending

1092 medium

N-O-N stretch furazan ring

1048 very strong

Benzene ring breathing

999  weak Furazan ring stretch
907 strong C-N stretch + ring stretch
734  strong Ring breathing

597 medium

NO; scissoring

527 medium

NO; rocking

Au colloids (before coating with SiO,) were casted onto the monolayer of neat LB of
C12-NBD-HPC. Excitation with the 514.5 nm laser line carries a strong fluorescence
background. However, excitation with 633 nm laser line gave spectra that may be
classified as surface enhanced Raman scattering due to plasmon enhancement. Since, the

Au colloid is delivered by transferring a drop of it into the monolayer, these ere casted
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colloids, only a few spots (points in the spectral map) produce spectra and is not
recommended as an analytical tool. A typical surface enhanced Raman scattering
spectrum obtained with 633 nm is shown in Figure 6.7 The latter spectrum contains
vibrational modes of the NBD phospholipid, and not only those of the chromophore, as

can besee by comparing Figures 6.5 and 6.7.

9
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Figure 6.7 LB-SERS of neat C12-NBD-HPC LB with Au colloid

6.2.3 SHINEF in concentrated LB films

Fluorescence spectra of the same LB monolayer in with and without Au SHINs
using a 514.5 nm laser excitation are shown in Figure 6.8. The emission from neat C12-
NBD-HPC LB monolayer on quartz is recorded first and is the used as reference. It is
marked as LB reference in Figure 6.8, and its intensity has been multiplied by a factor of
10, to facilitate visual comparison. The dame neat LB-monolayer is covered with gold

shell isolated nanoparticles Au-SHINSs, to compare the measured intensities with respect
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to the reference. All the experimental variables are kept constant: laser power, microscope
objective and acquisition times. The laser line 514.5 nm is in resonance with both the
molecular electronic absorption and the au-SHIN plasmon resonance. Since the cast Au-
SHINs cover a large space, a mapping of the fluorescence is recorded, and the highest
intensity in the map was selected and shown in Figure 6.8. The enhanced fluorescence

corresponds to monomer fluorescence, which is characteristic of C12-NBD-HPC and the

best enhancement factor is 20.

#SHINEF on Au-SHINs

Intensity (a.u.)

T T T
650 750

Wavelength/nm

Figure 6.8 SHINEF of neat C12-NBD-HPC LB in absent and in present of Au SHINs

6.3 Conclusion

Monolayer of neat C12-NBD-HPC was transferred at air-water interface onto SIF and

quartz slides. SERRS spectra were obtained with reproducible results using the 514 nm
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laser line excitation, and this analytical protocol is recommended for NBD phospholipid
detection. The reproducible results from LB-SERRS allow characterizing the tag-
phospholipid. LB-SERS is also detected with Au colloid using the 633 nm laser line
excitation. Using shell isolated nanoparticles LB-SHINEF is demonstrated with an
enhancement factor off about 20 providing an analytical technique for ultrasensitive

detection tag-phospholipids.
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Chapter 7

Conclusions
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7.1 Conclusions

In this thesis we have examined different spectroscopic analytical techniques, in
particular, surface-enhanced resonance Raman scattering (SERRS) and shell isolated
nanoparticle enhanced fluorescence (SHINEF). Therefore, we fabricate SERS/SERRS
substrates with silver and gold nanoparticles, and the target molecules are manipulated
using Langmuir-Blodgett monolayer. The enhanced fluorescence of tagged phospholipids

is reported using Langmuir-Blodgett technique and gold core coated with SiO,.

In chapter 4, the fabrication of self-assembly SHINEF substrates (Ag SHINS) is
reported. SHINEEF is tested with neat LB monolayers of octadecyl rhodamine B chloride
R18. The enhancement factor of the substrate was proportional to the time of deposition,

due to the growth of the nanoparticle aggregates.

In chapter 5, the LB-SERRS spectra of dye-tagged phospholipid (F-DHPE) in LB
monolayer on silver island films is presented. The highest SERRS enhancement may be
used for ultrasensitive detection, We use fluorescein dye tag, with high quantum yield

value, and Au-SHINSs to obtain SHINEF.

Finally, the chapter 6 carried out the same SHINEF work using a low quantum
yield tag. Gold SHINs are used experimentally to enhance the fluorescence emission.

Ultrasensitive detection using silver island films to achieve SERRS is demonstrated.
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7.2 Future work

The SHINs play an important rule in the analytical enhanced spectroscopy. Base
in the need of SHINs particles we are investigating new coated particles for SHINERS-
SHINEF applications. Gold or silver core are coated with permanganate, which can
control experimentally. Furthermore, this is a great challenge to obtain hot spots with
controllable aggregation. In addition, this may present model to explain the enhancement

factor in this thesis.
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