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Abstract

This thesis will be dealing with the problem of Bayesian estimation in additive

survival data models accounting for spatial dependencies.

We consider the Aalen’s additive hazards model in which baseline hazard function,

the regression coefficients as well as the covariates are all allowed to be time varying

processes. We incorporate in this model an extra random vector of frailties accounting

for spatial variations among the observations.

Consequently, we propose a Bayesian approach to solving the inference problem

for such spatial frailty model by assuming piece-wise constant structure on all time-

varying functions in the model and hence, imposing appropriately chosen priors on

all model parameters.

We then employ some versions of MCMC and Gibbs sampling approaches to carry

out the inference about the model parameters and apply the resulting algorithm to

Prostate cancer diagnosis data for the state of Louisiana, taken from the Surveillance,

Epidemiology, and End Results (SEER) databases (SEER, 2008).
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CHAPTER 1

Introduction

The era of statistical modeling based on marginal analysis is almost coming to

an end in the face of increasing demand to analyze complex, multidimensional and

correlated streams of data that are available to investigators in real-time. Among

others, methods for spatio-temporal data analysis, which requires conditional spec-

ifications taking into account the various spatial and temporal dependencies among

observations, are the frontiers of the new era. In this thesis, our main objective is to

develop a Bayesian method for the analysis of spatially dependent survival outcomes.

Specifically, we consider Aalen’s additive hazards model (Aalen, 1980) with a vector

of spatial random effects through which the spatial dependencies are to be handled.

Therefore, in this chapter, we will briefly introduce the Aalen’s additive model

and we will review the existing literature on spatial survival models. We also set out

in a more specific fashion, the objectives and organization of the thesis.

1. Literature review

Survival outcomes are particular cases in a more general context of event history

outcomes. Data on event histories are usually represented as

{Di(t) = Ni(t), Yi(t), zi(t); 0 ≤ t ≤ τ, i = 1, ..., N}, (1.1.1)

1
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where {Ni(t), t ∈ [0, τ ]}, is a counting process for the number of events occurring to

the i-th individual in a sample of N individuals, up to time t (inclusive), Yi(t) = 1 if

the i-th individual is at risk of having the events of interest and zero otherwise (risk

indicator function), while zi(t) is time varying, p-dimensional covariate process and

[0, τ ] is the time frame during which subjects are observed.

In event history analysis (Andersen et al., 1993), the intensity of the counting

process, {Ni(t), t ∈ [0, τ ]}, is a process defined as

Ii(t) = hi(t)Yi(t) = E[dNi(t)|F (t−)], (1.1.2)

where hi(t) is the hazard rate, dNi(t) = Ni(t) − Ni(t
−) and F (t−) is the history of

the process {D(t), t ∈ [0, τ ]}. In other words, F (t−) is a filtration of σ−algebras

generated by the data {D(t), t ∈ [0, τ ]}, where both zi(t) and Yi(t) are assumed to

be F (t)-measurable ∀t ∈ [0, τ ].

Most of the currently available event history models are essentially models for the

intensity Ii(t). For instance, the celebrated Cox’s proportional hazards (PH) model

can be expressed as:

Ii(t) = λ(t)Yi(t)e
β′z, (1.1.3)

where in this case, the covariate vector zi is independent of time and λ(t) is a baseline

hazard function. The Cox’s PH model has been intensively studied in the literature.

We refer the reader to the monograph by Andersen et al. (1993) for detailed treatment

of the PH model.
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Similarly, the Aalen’s additive hazards (AH) model can be specified as:

Ii(t) = Yi(t)(λ(t) +α′(t)zi(t)), (1.1.4)

where α(t) is a p-dimensional vector of time-dependent covariate functions. This was

originally proposed in Aalen (1980) as an alternative to the PH model whenever the

proportionality assumption is violated. There has been also an extensive literature

on the AH model. A detailed account of this model can be found in Martinussen and

Scheike (2006), while Hussein et al. (2013) discussed some efficient estimators for the

regression coefficients in the AH model.

The spatial modeling of event history data, on the other hand, has just begun to

attract attention of the statisticians. For instance, Banerjee et al. (2003) developed

a Bayesian method for analysing infant mortality data via Cox’s PH model with

spatial frailties, while Banerjee and Dey (2005) proposed the same approach for a

proportional odds model. Zhang and Lawson (2011) considered an accelerated failure

time (AFT) model and proposed a Bayesian version with Gaussian frailties to handle

spatial dependencies. Darmofal (2009) applied a Bayesian spatial Cox’s PH model to

timing of U.S. House members position announcements on the North American Free

Trade Agreement (NAFTA). Among the non Bayesian models for handling spatial

frailties, we mention the recent work of Lin (2012).

2. Thesis objectives and organization

As mentioned earlier, this thesis will be dealing with the problem of Bayesian

estimation in additive survival data models accounting for spatial dependencies. In
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general, additive survival models are flexible alternatives to the, better interpretable

but more restrictive, proportional hazards models.

In this thesis we consider a very general and flexible model known as the Aalen’s

additive hazards model in which baseline hazard function, the regression coefficients

as well as the covariates are all allowed to be time varying processes. We incorporate

in this model an extra random vector ω(t) (frailties) accounting for spatial variations

among the observations. We assume that such frailties are Gausian with covariance

structures of either geostatistical or conditional autoregressive (CAR) type, two well-

known spatial dependence structures (see for instance Cressie and Wikle, 2011).

We propose a Bayesian approach to solving the inference problem for such additive

spatial frailty models by assuming piece-wise constant structure on all time-varying

functions in the models and then, imposing appropriately chosen priors on all model

parameters.

We employ some variants of MCMC and Gibbs sampling approaches to carry out

the inference about the model parameters. We apply the resulting method to Prostate

cancer diagnosis data for the state of Louisiana, extracted from the Surveillance,

Epidemiology, and End Results (SEER) databases (SEER, 2008).

As far as the author knows, this model and the Bayesian approach taken in this

thesis have not been studied in the existing literature on event history analysis.

The thesis will be organized as follows.

In Chapter 2, we will set up the Additive Hazards spatial model (AHS) and obtain

the joint likelihood of the data and model parameters for the case when the spatial
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frailties have the (CAR) structure. We propose prior distributions for the model

parameters, obtain the posteriors, and prescribe an MCMC sampling algorithms to

tackle the Bayesian inferences for the model.

In Chapter 3, we will examine the case of geostatistical dependence structure for

the spatial components. This case posed a huge computational roadblock, which we

could not overcome. Therefore, for this case, will only explain possible priors on the

parameters and prescribe a future research avenues that are possible in computing

the model parameters.

In Chapter 4 we carry out a small simulation study to verify the performance of

the approach and apply it to the SEER data on prostate cancer.

Chapter 5 contains the conclusions of our work.

Finally, the appendix will contain a brief review of the MCMC Gibbs sampling

and Metropolis-Hastings methodologies as well as some of the technical proofs of

Chapter 2 and the results of simulations.



CHAPTER 2

Additive Hazard Model with Conditional Autoregressive
Spatial Structure

1. Additive hazard frailty model

In the current work, we consider an additive hazard model for spatially corre-

lated survival data. We suppose that we have right censored left truncated sur-

vival data D = {(Ni(t), Yi(t), zi(t)), i = 1 . . . N, 0 ≤ t ≤ τ} from N individuals where

{Ni(t), t ∈ [0, τ ]} is the counting process of the events happened to the i-th individ-

ual, and {Yi(t), t ∈ [0, τ ]} is at-risk process for the i-th individual:

Yi(t) =

{
1, if the i-th individual is at risk at time t,

0, otherwise (dead, censored, truncated, etc).
(2.1.1)

The process {zi(t) = (zi1(t), . . . , zip(t))
T , zi(t) ∈ Ω, i = 1, . . . , N, t ∈ [0, τ ]} rep-

resenting p time dependent covariates, where XT denotes the transpose of X, and

Ω ⊂ Rp is the set of all admissible covariate vectors. Each individual belongs to a

certain region li ∈ {1, . . . , n} with the total number of regions n ≤ N . The model

considered is the extension of the usual Aalen’s additive hazard model by including

additive, region specific and time dependent, frailty terms ωl(t), l = 1 . . . n.

More specifically, in our model, the hazard hi(t) of the i-th individual can be

expressed as:

hi(t) = λ(t) +

p∑
k=1

αk(t)zik(t) + ωli(t), 0 ≤ t ≤ τ, (2.1.2)

6
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where τ is the end of study, λ(t) is the “baseline hazard”, αk(t), k = 1, . . . , p are time

dependent regression coefficients (regression functions), and ωli(t) is a random group

specific frailty term for the group li to which the i-th individual belongs.

Note that for this model to be correctly specified we should ensure that hi(t), i =

1, . . . , N are non-negative functions for all t ∈ [0, τ ]. Also it is worth mentioning

that the “baseline hazard” λ(t) need not be non-negative since it doesn’t necessarily

represent the hazard of any individual in the population (see Klein and Moeschberger,

2003). Formally, it represents the hazard of a hypothetical “individual” with all

covariates z0k(t) set to 0 and null frailty. But for some ways of coding the covariates

and frailty, zero values can not make any sense, and therefore the “baseline hazard”

can not be interpreted as the hazard of any individual. For example, if the covariate

represents the age of the individual plus some value (say, 10 years), then setting this

covariate to 0 means that the age of such individual is negative (-10 years). So in

this case the “baseline hazard” is not actually the hazard, but only some reference

function.

In order for λ(t) to be interpretable, one can shift all the covariate values by some

number (e.g. by the mean value of the covariate) so that the individual with zero

covariates could be really an individual from the population. In this case, λ(t) should

be always non-negative.

Hereinafter, we suppose that the covariates are coded in such a way that λ(t) can

be interpreted as the hazard of some individual.
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The intensities {Ii(t), t ∈ [0, τ ]} of the counting processes {Ni(t), t ∈ [0, τ ]} of

the individuals can be written as follows (see Silva and Amaral-Turkman, 2004):

Ii(t) = Yi(t)hi(t) = Yi(t)

(
λ(t) +

p∑
k=1

αk(t)
T zik(t) + ωli(t)

)
. (2.1.3)

Assuming that all observations are independent, the likelihood of the data D

given baseline hazard λ(t), regression function vector α(t) = (α1(t), . . . , αp(t))
T and

frailties vector ω(t) = (ω1(t), . . . , ωn(t))T , is proportional to:

L

(
D |λ(t),α(t),ω(t)

)
∝

N∏
i=1

[( ∏
0<t≤τ

Ii(t)
dNi(t)

)
exp

(
−
∫ τ

0

Ii(u)du

)]
, (2.1.4)

where

dNi(t) = lim
dt→0+

(Ni(t)−Ni(t− dt)), (2.1.5)

is the number of events of the i-th individual at time t, and the product
∏

0<t≤τ (. . . )

is the product-integral, assuming 00 ≡ 1.

We consider the model where each individual can have only 0 or 1 events. So

dNi(t) = 0 or dNi(t) = 1 for all individuals and all t. Since Ii(t) is non-zero only

when the i-th individual is at risk, (2.1.4) can be rewritten as:

L

(
D |λ(t),α(t),ω(t)

)
∝
∏
i∈E

hi(Ti)
N∏
i=1

exp

(
−
∫
{t:Yi(t)=1}

hi(t)dt

)
, (2.1.6)

where E is the set of all individuals having events during the study period, and Ti is

the event time of the i-th individual in E . That is,

E = {i : Ni(τ) = 1}, (2.1.7)

Ti = inf{t : Ni(t) = 1}, i ∈ E . (2.1.8)
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2. Model specification

2.1. Ensuring non-negativity of the hazard. In Bayesian implementation

we put prior distributions on the parameters of the model, i.e. on λ(t), αk(t), k =

1, . . . , p and ωl(t), l = 1, . . . , n. Assuming that there is no prior knowledge about the

parameters, we make all the prior distributions vague.

Note that the hazard rate h(t) should be always non-negative.

One approach to ensure non-negativity of h(t) (Silva and Amaral-Turkman, 2004)

is to choose prior distributions such that all the parameters of the model are non-

negative. This means that baseline, all the covariates, regression functions and frailty

terms are not allowed to be negative. This approach assumes that all covariates have

positive effect on the hazard, or that the covariates are transformed in a special way.

Such assumption is inappropriate if a certain covariate has a negative effect on the

survival function.

Another approach given in Cai and Zeng (2011), estimates all the parameters

without accounting for the negativity issue, and then modifies the estimator of the

survival function in such way that it becomes always non-increasing. Cai and Zeng

(2011) mentioned that if non-modified estimator of the survival function is consistent,

the modified estimator will also be consistent. While this approach ensures that the

survival function estimator is non-increasing function, the actual estimators of the

coefficients are not interpretable because the hazard becomes negative.

In this work, we use a more flexible approach. Firstly, we will introduce the prior

distributions separately, ignoring the issue of hazard negativity, and only after that
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we will constrain the joint distribution of λ(t), α(t) and ω(t) to the region where the

cumulative hazard is non-negative for all admissible covariate vectors from Ω, i.e.

h(t) = λ(t) +α(t)Tz(t) + ωl(t) ≥ 0,

∀z(t) ∈ Ω, ∀t : 0 < t ≤ τ, ∀l = 1, . . . , n.

(2.2.1)

This means that the marginal distributions of the parameters are not exactly the

distributions we are introducing but the components of the joint distribution. Since

we need only joint distribution and all full conditional distributions of the parameters,

we will not consider the marginal distributions at all.

Now, provided that in (2.2.1) the set of admissible covariate vectors Ω can be

expressed as a Cartesian product of p sets Ω = Ω1 × · · · × Ωp with all Ωi ⊂ R being

the bounded subsets of the real numbers, the conditions above can be rewritten as:

λ(t) +

p∑
k=1

inf
z∈Ωk
{αk(t)z}+ min

1≤l≤n
{ωl(t)} ≥ 0, ∀t ∈ (0, τ ]. (2.2.2)

Note that depending on the sign of αk(t) the infimum inside the summation in

the expression above is either αk(t) inf Ωk or αk(t) sup Ωk. Then we can rewrite the

constraint in the following form:

λ(t) +

p∑
k=1

min

{
αk(t) inf Ωk, αk(t) sup Ωk

}
+ min

1≤l≤n
{ωl(t)} ≥ 0, ∀t ∈ (0, τ ]. (2.2.3)

This constraint will be included in the joint distribution of the parameters which

will be introduced later.

2.2. Partitioning of time. In our model, we estimate all the parameters as

piecewise constant functions, i.e. functions constant in the intervals (t0, t1], (t1, t2],

. . . , (tm−1, tm] where t0, . . . , tm is a finite set of time points such that 0 = t0 < t1 <

· · · < tm = τ . The length of the j-th interval is ∆tj = tj − tj−1 for 1 ≤ j ≤ m.
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In this case, each parameter function can be considered as a finite number of

scalar parameters. The choice of the points ti as well as number of these points m is

arbitrary. However, one should take into account that the wider the intervals are, the

worse is the approximation of the parameter functions, but at the same time if the

intervals are very narrow, the data does not provide enough information to accurately

estimate the parameters in these intervals. So the width of the intervals and their

number should be chosen as a trade-off between the above mentioned problems.

For the case of equidistant time points tj, the choice of these points reduces to the

choice of their number m. This can be done by using the Bayesian model comparison

criteria such as DIC or LCPO which will be discussed later.

After time partitioning, we define:

λj ≡ λ(tj), αkj ≡ αk(tj), zikj ≡ zik(tj), ωlj ≡ ωl(tj), (2.2.4)

which can be compacted as follows:

λ ≡ (λj)j=1,...,m, (2.2.5)

α ≡ (αkj)k=1,...,p, j=1,...,m, (2.2.6)

z ≡ (zikj)i=1,...,N, k=1,...,p, j=1,...,m, (2.2.7)

ω ≡ (ωlj)l=1,...,n, j=1,...,m. (2.2.8)

These parameters fully represent the original time-dependent parameter functions

under the assumption of piecewise constancy.

2.3. Conditional autoregressive structure for the frailties. The distribu-

tion of the frailty parameters should incorporate the spatial structure of the data.
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The one way of doing this is by using the distances between the regions to determine

the correlation between frailties of the regions, resulting in the so called geostatis-

tical model. Another approach, conditional autoregression (CAR), uses adjacency

structure of the regions instead of the distances.

As was already mentioned, in this chapter we discuss only the CAR model. As

regards the geostatistical model, we present the prior, posterior and proposal distri-

butions for it in Chapter 3 without further numerical analysis.

The conditional autoregressive (CAR) structure for frailties allows to take into

account the spatial correlation of data based on the adjacency structure of the regions.

To introduce the CAR structure, we assume that ωj is independent of all ωj′ 6=j.

This allows us to introduce the spatial correlation in each time interval independently.

Following Banerjee et al. (2003) and Zhang and Lawson (2011), we consider a con-

ditional autoregressive model (CAR), and particularly the model with the following

prior joint distribution of frailties:

π(ωj|θ2
j ) ∝

1(
θ2
j

)n/2 exp

− 1

2θ2
j

∑
l∼l′
l<l′

(ωlj − ωl′j)2

 , (2.2.9)

where l ∼ l′ denotes the adjacency relation between l and l′, and condition l < l′

ensures that each pair of adjacent regions is included in the summation only once.

This prior was used in Besag et al. (1991) under the name of Gaussian intrinsic

autoregression mainly in application to image restoration. It is a particular case of

pairwise-difference priors (see Besag et al., 1995). They note that such priors are

improper since the corresponding variables are of an arbitrary level, and only their
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differences are taken into account. But this impropriety is removed from the posterior

distribution by the presence of any informative data.

Although the prior itself is improper, the conditional distribution of any frailty

given all others is well defined, and is then proportional to:

π
(
ωlj |ωl′j 6=lj, θ2

j

)
∝ 1

θj
exp

(
− 1

2θ2
j

ml (ωlj − ωlj)2

)
, (2.2.10)

where ml = card {l′ | l′ ∼ l} is the number of regions adjacent to the l-th and ωlj =

1
ml

∑
l′∼l ωl′j is the average of the frailties adjacent to the l-th, which means that

conditionally, the frailties are normally distributed with mean ωlj and variance θ2
j/ml:

(
ωlj |ωl′j 6=lj, θ2

j

)
∼ N

(
ωlj,

θ2
j

ml

)
. (2.2.11)

Further details on the conditional and intrinsic autoregression can be found in

Besag and Kooperberg (1995).

Although, in combination with the data likelihood and baseline hazard prior, the

joint posterior becomes proper, since the frailties are defined only up to an additive

hazard, the data cannot distinguish which part of the hazard ascribe to the baseline

and which to the frailties. So this distinguishing relies only on the prior distributions

of the baseline and frailties.

However, if the priors are vague as in our case, the estimation of the frailties and

baseline can have a very large variance since nothing really prevents the frailties from

being greater than the actual ones by some value while keeping baseline less by the

same value.
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In order to decrease possible variance in estimation, one can make the prior distri-

bution of the frailties proper by including the terms containing the values of frailties

themselves in addition to their differences. For instance, one can include the squares

of the frailties multiplied by some coefficients, in which case the joint prior distribution

of the frailties takes the following form:

π(ωj|θ2
j , ε) ∝

1(
θ2
j

)n/2 exp

− 1

2θ2
j

∑
l∼l′
l<l′

(ωlj − ωl′j)2 − ε

2θ2
j

n∑
l=1

ω2
lj

 . (2.2.12)

Such prior will shrink the frailties towards 0 because of the presence of the pure

square terms. If we suspect that values of the frailties are concentrated not around 0

but around some value µ, then we should include (ωlj − µ)2 instead of ω2
lj. This will

shrink the frailties towards µ. The parameter ε represents the amount of shrinkage:

the greater it is, the more the frailties are shrunk towards µ.

Now, the conditional distributions of the frailties in the case of µ = 0 will take

the following form:

π
(
ωlj |ωl′j 6=lj, θ2

j , ε
)
∝ 1

θj
exp

(
−ml + ε

2θ2
j

(
ωlj −

ml

ml + ε
ωlj

)2
)
, (2.2.13)

which means that frailties are conditionally normally distributed:

(
ωlj |ωl′j 6=lj, θ2

j , ε
)
∼ N

(
ml

ml + ε
ωlj,

θ2
j

ml + ε

)
. (2.2.14)

We can see that the less the parameter ε is, the closer this distribution is to the

conditional autoregressive model and they become the same if ε = 0.

Another way to deal with impropriety of frailties’ prior is to exclude baseline

hazard from the model and include its effect in the frailty terms. In this case, we can

use (2.2.9) directly without additional parameters, since the frailties are estimable
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from the data. This approach is more suitable when one does not know the level

of frailties and wants to rely in estimation on the data rather than on the prior

distributions.

Although, in this case the baseline and frailties are combined into frailty terms

only, hence not distinguishable, this does not affect the estimation of regression func-

tions. Moreover, if the frailties are considered not as random effects but as fixed

effects depending on the regions to which the observations belong, exclusion of the

baseline does not affect the prediction problem: the hazard of any individual with

known covariates and region can be estimated based on the resulting values of the

regression functions and frailties.

On hte other hand, if the frailties are considered random effects, this approach

does not work since the estimators of the hazard in this case should not depend on

the frailties values. So one should use the modified prior distribution like in (2.2.12),

or make some additional assumptions about the frailty terms.

In this work, we choose another approach. We assume that the first frailty term

is equal to 0, and therefore the first region is the reference level. This means that

the baseline is interpreted as the hazard of an individual from the first region with

all covariates equal to 0. This assumption eliminates the problem of identifiability of

baseline and frailties since observations from the first region have the known value of

frailty (zero) and hence allow estimation of the baseline.
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The joint prior distribution in this case can be expressed as follows:

π(ωj|θ2
j ) ∝

1(
θ2
j

)(n−1)/2
exp

− 1

2θ2
j

∑
l∼l′
l<l′

(ωlj − ωl′j)2

 δ(ω1j), (2.2.15)

where δ(x) is the delta-function representing the point-mass at 0 for the first frailty,

and the power of the parameter θ2
j is changed to (n − 1)/2 since one frailty is fixed

and only n− 1 of them are included in the CAR distribution.

In order to simplify the notation, we denote the set of all θj, j = 1, . . . ,m by θ.

2.3.1. Prior distribution of the CAR model’s hyper-parameters. If the CAR spatial

model is used, then we set the prior for the set of hyper-parameters θ2
j . In order to

make the prior conjugate, we take the inverse-gamma prior IG (β, γ) for each θj with

common β and γ. The mean in this case is β
γ−1

and variance is β2

(γ−1)2(γ−2)
. Making

γ = 2 we can make this prior vague which is provided by the infinite variance.

Also, we assume that all θ2
j are independent, and so their joint distribution is the

product of marginal distributions.

2.4. Prior distribution for the baseline hazard. We assume that the prior

distributions of the values of baseline hazard in different intervals λ1, . . . , λj are

independent Gamma distributions with shape and scale parameters r0c0∆tj and

1/(c0∆tj), respectively:

λj ∼ G
(
r0c0∆tj,

1

c0∆tj

)
, 1 ≤ j ≤ m, r0 > 0, c0 > 0, (2.2.16)

where G (a, b) denotes the Gamma distribution with shape parameter a and scale

parameter b.
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The value r0 represents the “best gues” for the baseline hazard at each interval,

and the value c0 represents the “confidence” in this “guess”. Such interpretation

of r0 and c0 follows from the fact that mean of the above Gamma distribution is

r0 (“best guess”) and the variance is r0/(c0∆tj) which decreases when c0 increases

(“confidence” in the “best guess”). If the baseline hazard is not known, one should

set c0 very small to make the prior vague.

Such choice of the prior distribution for the baseline hazard is the discretized ver-

sion of the Gamma-process prior for the cumulative baseline hazard Λ(t) =
∫ t

0
λ(u)du

as in Silva and Amaral-Turkman (2004).

The Gamma process with parameter function Λ∗(t) representing the “best guess”

for Λ(t) and scalar parameter c0 representing the “confidence” in this “guess” is

defined as follows. For any partitioning of the time axis 0 = t0 < t1 < · · · <

tm < ∞ the increments ∆Λ(tj) = Λ(tj) − Λ(tj−1), j = 1, . . . ,m of the cumulative

baseline hazard are mutually independent random variables each following Gamma

distribution with shape parameter c0∆Λ∗(tj) and scale parameter 1/c0. So, the mean

of ∆Λ(tj) is ∆Λ∗(tj) and the variance is
∆Λ∗(tj)

c0
.

Now if the parameter function for the Gamma process takes the form Λ∗(t) = r0t,

where r0 represents the ”best guess” for the λ(t) (constant over time), and if we fix

the partitioning of time and assume that the baseline hazard is piecewise constant,

we obtain the prior distribution given in (2.2.16). Also since the increments are

independent, the corresponding values of λ(tj) = ∆Λ/∆tj are also independent. So we

obtain the independent Gamma distributions given at the beginning of this subsection.
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Since the baseline hazard distributions at different intervals are independent, the

joint distribution of them can be found as product of the marginal distributions, and

so it is proportional to:

π(λ) ∝
m∏
j=1

λ
r0c0∆tj−1
j exp (−λjc0∆tj) , λj > 0, ∀j = 1, . . . ,m. (2.2.17)

As was already mentioned before, this is not exactly the joint prior distribution of

the parameters λ1, . . . , λm, but rather one component of the constrained joint prior

distribution of all the parameters in the model which will be introduced later.

2.5. Prior distribution of regression functions. Following Banerjee et al.

(2003) we put flat (improper uniform) priors on the regression functions. This is a

common practice and we adhere to it. So the joint prior distribution of the regression

functions is proportional to 1:

π(α) ∝ 1. (2.2.18)

Alternatively, one can consider Gaussian priors. These can be, for example, con-

structed as a discretized versions of Wiener processes for the cumulative regression

functions Ak(t) =
∫ t

0
αk(u)du similarly to constructing the prior distribution for the

baseline hazard. Then, the marginal distributions of αkj in this case are normal with

mean 0 and variance σ2
k/∆tj.

2.6. Joint prior distribution. The joint constrained prior of the parameters

can be obtained by multiplication of all components introduced earlier and an indi-

cator function representing the constraints.
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Note that constraining the prior changes the marginal distributions of λj and

ωlj discussed above and introduces the dependency among baseline λj, frailties ωlj

and regression functions αkj. So, rigorously speaking, we should have introduced the

joint prior of all parameters of the model directly without discussing the marginal

prior distributions of the parameters. However we decided to talk about the marginal

components first in order to explain the choice of the joint prior.

For the CAR model, the joint prior distribution is:

π (λ,α,ω,θ) ∝
m∏
j=1

(
λ
c0r0∆tj−1
j exp (−c0λj∆tj)

)
︸ ︷︷ ︸

Gamma prior for λj

×
m∏
j=1

 1(
θ2
j

)(n−1)/2
exp

− 1

2θ2
j

∑
l∼l′
l<l′

(ωlj − ωl′j)2

δ(ω1j)


︸ ︷︷ ︸

Conditional autoregressive prior for ωj = (ω1j , . . . , ωnj)
T

×
m∏
j=1

(
I

{
λj +

p∑
k=1

min

{
αkj inf Ωk, αkj sup Ωk

}
+ min

1≤l≤n
ωlj ≥ 0

})
︸ ︷︷ ︸

Constraint component

×
m∏
j=1

((
θ2
j

)−γ−1
exp

(
− β
θ2
j

))
︸ ︷︷ ︸

Inverse-gamma prior for θ2j

, (2.2.19)

where I {E} denotes the indicator function of the event E. Also, here we used the

conditional autoregressive prior for the frailties with additional assumption that the

first frailty term is equal to 0.
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3. Posterior distribution

In Bayesian analysis, all the information about the parameters of the model is

contained in their posterior distribution. So, in order to make inference within the

Bayesian framework, the main goal is to find this posterior distribution and compute

the necessary quantities using it.

In our proposed model, it is very hard to find the posterior distribution in explicit

form. However, we can approximate this distribution by using Markov Chain Monte

Carlo (MCMC) method.

Firstly, we need to derive the joint distribution of the data and the parameters

which can be easily obtained by simply multiplying the data likelihood and the joint

prior distribution of the parameters.

With the assumption of piecewise constant parameters, the likelihood in the for-

mula (2.1.6) becomes:

L (D |λ,α,ω) ∝
m∏
j=1

∏
i∈Ej

hi(tj)

 exp

(
−

N∑
i=1

Rijhi(tj)∆tj

) , (2.3.1)

where Ej denotes the set of all individuals having events in the interval (tj−1, tj], and

Rij is the proportions of time the i-th individuals is at risk in the interval (tj−1, tj]:

Ej = {i : Ni(tj)−Ni(tj−1) = 1}, (2.3.2)

Rij =
1

∆tj

∫ tj

tj−1

Yi(t)dt. (2.3.3)

Now, for the CAR model, we can get the joint distribution of the data and param-

eters (up to normalizing constant) multiplying the expressions given by the formulas
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(2.2.19) and (2.3.1):

π(λ,α,ω,θ,D) ∝ L (D |λ,α,ω) π (λ,α,ω,θ) , (2.3.4)

where the collection of all the covariate vectors of individuals z is considered known.

Note that given the data, the posterior distribution of the parameters is propor-

tional to the joint distribution of the data and parameters:

π (λ,α,ω,θ |D) =
π(λ,α,ω,θ,D)

π(D)
∝ π(λ,α,ω,θ,D). (2.3.5)

Then, the posterior distribution can be obtained by multiplying the joint prior

distribution and the likelihood given by equations (2.2.19) and (2.3.1), respectively:

π (λ,α,ω,θ |D) ∝ L (D |λ,α,ω) π (λ,α,ω,θ) . (2.3.6)

The distribution given by (2.3.6) is very hard to work with: it is not easy to

find the normalizing constant, mean, quantiles and any other quantities of interest.

However, we can approximate these quantities by their sample values obtaining a

sufficiently large sample from the posterior distribution. So the problem is how to

generate this sample. This issue will be discussed in the following section.

4. Obtaining random sample from the posterior distribution

We will use the Markov Chain Monte Carlo (MCMC) algorithm called Metropolis-

within-Gibbs to sample from the joint posterior distribution given by the equa-

tion (2.3.6). The details regarding this algorithm adopted to our purposes are pre-

sented in Appendix A.
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The basic idea of all MCMC algorithms is to construct a Markov chain with the

limiting distribution equal to the desired posterior distribution. Metropolis-within-

Gibbs, particularly, updates the parameters one-by-one using the full conditional

distributions. If the full conditional distributions are not standard, the sampling is

performed from the so-called proposal distributions instead of real conditionals and

the algorithm adjusts for the differences in these distributions by itself in order to

obtain the correct limiting distribution.

The parameters of interest for sampling are the baseline hazard λj, regression

functions αkj and hyper-parameters θj for CAR model. The frailties ωlj can be

considered either as the parameters of interest along with the previous ones or as

nuisance parameters. The nuisance parameters are usually integrated out from the

joint distribution. However, in our case, such integration is very difficult to carry out,

so we sample frailties along with all other parameters.

The full set of parameters to be sampled consists of m parameters for the baseline

hazard {λj}mj=1, m parameters for each of p regression functions
{
{αkj}pk=1

}m
j=1

, m

parameters for each of n frailty terms
{
{ωlj}nl=1

}m
j=1

, and m hyper-parameters {θj}mj=1

for CAR model, which form m(1 + p+ n+ 1) parameters in total.

For MCMC algorithm to work better, on each step we need to find the proposal

density close to the conditional density or at least similar in shape (see details in

Appendix A). At the same time, this proposal should be simple enough to allow

direct sampling from it. In the following subsections we will investigate the conditional

densities and offer the proposals satisfying the mentioned requirements.
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4.1. Sampling from the baseline hazard’s full conditional distribution.

The baseline hazard is represented by m components λ1, . . . , λm.

Let Ej be the number of events in the interval (tj−1, tj], and Rj =
∑N

i=1 Rij

be the summation of proportions of time all individuals are at risk in this interval.

Furthermore, suppose that individuals having events in this interval have the indices

i = i1, . . . , iEj in the original dataset.

Denote also Γ(ρ) =
∫∞

0
ξρ−1 exp(−ξ)dξ (gamma-function), ρ = c0r0∆tj, ε =

1
(c0+Rj)∆tj

, cs =
∑p

k=1 αkjziskj + ωlis and the constraint a computed as:

a = −
p∑

k=1

min

{
αkj inf Ωk, αkj sup Ωk

}
− min

1≤l≤n
ωlj. (2.4.1)

Then the conditional distribution of λj, fixing all other parameters and data, has

the form given by the following proposition.

Proposition 4.1. The distribution of λj conditional on all other parameters is a

constrained Polynomial-Gamma distribution whose probability density function apart

from normalizing constant has the following form:

fλj(x) ∝
Ej∏
s=1

(x+ cs)
1

ερΓ(ρ)
xρ−1 exp

(
−x
ε

)
I {x > a} , x > 0. (2.4.2)

Proof. The proof of this proposition is given in Appendix B. �

4.1.1. Finding the proposal distribution using the mean of the full conditional.

One way of finding suitable proposal distribution is based on locating the mean of

the full conditional stated in Proposition 4.1. This requires finding the normalizing

constant of this distribution. Fortunately, the normalizing constant and the mean

can be found explicitly, as stated in the proposition below.
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Let df , f = 0, . . . , Ej be the coefficients of the polynomial
∑Ej

f=0 dfx
f obtained by

the expansion of the product
∏Ej

s=1(x+ cs), and let

If = εf
Γ(ρ+ f)

Γ(ρ)

1−
γ
(

max[a,0]
ε

, ρ+ f
)

Γ(ρ+ f)

 , (2.4.3)

where γ (x, ρ) =
∫ x

0
ξρ−1 exp(−ξ)dξ is the lower incomplete gamma function.

Proposition 4.2. The normalizing constant Cnorm and the mean µ of the distri-

bution stated in Proposition 4.1 can be expressed as follows:

Cnorm =

Ej∑
f=0

dfIf , (2.4.4)

µ =

∑Ej
f=0 dfIf+1∑Ej
f=0 dfIf

. (2.4.5)

Proof. We leave the proof of this proposition to Appendix B. �

From this point we can introduce the proposal which is close to the distribution

discussed above. As a proposal we are going to use the gamma distribution whose

origin is moved to max[a, 0]. We leave the scale parameter of this new distribution

equal to ε and we adjust the shape parameter in such a way that the mean of the

proposal distribution is equal to the mean µ of the actual distribution fλj(x) de-

rived above. Given the shape parameter ν, the mean of the proposal distribution is

(max[a, 0] + νε). Then ν = µ−max[a,0]
ε

will provide the desired mean µ.

In the case, when the real distribution fλj(x) is exactly Gamma, the proposal

distribution is equal to it, otherwise they are hopefully close enough to each others.

The Figures 1a–1h illustrate how the proposal distribution is close to the distribu-

tion given by (B.1.2). The parameter ρ is fixed at 0.05 by setting ∆tj = 1, c0 = 0.01
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and r0 = 5. The power Ej of the polynomial is chosen randomly from the Poisson

distribution, the constraint a is drawn from the normal distribution, and the coeffi-

cients cs are generated from gamma and then shifted by −a which ensures that all

cs ≥ −a. The scale parameter ε is calculated as ε = 1
(c0+Rj)∆tj

with Rj generated

from Poisson distribution.

Figure 1. Comparing real and proposal distribution for sampling from
the full conditional of the baseline
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We see that proposal distribution follows the form of a desired distribution well.

The main feature to notice is that localization regions of both distributions are the

same, which is needed for good convergence of the MCMC algorithm. This shows us

that the proposals are satisfactory.

However, this method of finding the proposal distribution has one hidden draw-

back. The expansion of the polynomial P (x) =
∏Ej

s=1(x + cs) in (B.1.2) to the form

of
∑Ej

f=0 dfx
f requires the evaluation of 2Ej terms, so the computational complexity

of this operation grows extremely fast with the number of events Ej.
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Figure 1. Continuation: Comparing real and proposal distribution
for sampling from the full conditional of the baseline
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So, for the case of large Ej instead of direct expansion we recommend using the

following method. The coefficient d0 can be easily obtained by simple multiplication:

d0 =

Ej∏
s=1

cs, (2.4.6)

and the coefficient dEj is equal to 1. Regarding the rest Ej − 1 coefficients, we can

evaluate the polynomial P (x) at Ej − 1 different points x1, . . . , xEj−1 and find these

coefficients by solving the linear system of equations:

Ej−1∑
s=1

dsx
s
1 = P (x1)− xEj1 − d0,

. . .

Ej−1∑
s=1

dsx
s
Ej−1 = P (xEj−1)− xEjEj−1 − d0.

(2.4.7)

Note that value x = 0 should not be used for any of the points xs to avoid the

presence of noninformative equation 0 = 0.

This method of polynomial expansion is much faster than the direct expansion

but suffers from numerical instability because of the presence of high powers of xs.

So for large Ej the precision provided by the default floating point variable type in

most of the mathematical packages and programming languages is not enough to

obtain satisfactorily precise values of ds. So one should use some non-standard types

providing higher precision. For the programming language C one can use the type

mpf t which can be found in the GMP library or the type mpfr t which can be found

in MPFR library.

4.1.2. Finding the proposal distribution using the mode of the full conditional. An

alternative to expansion of the polynomial is finding the local maximum x̂ of the pdf
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fλj(x) in the region x > max{a, 0} and then derive the proposal distribution based

on such local maximum.

The proposition below allows us to find whether such local maximum exists and

when it does to find its region of localization.

Let cmin = min
1≤s≤Ej

cs be the minimum of the coefficients cs of fλj(x) defined in

Proposition 4.1, and cmax = max
1≤s≤Ej

cs be the maximum of them.

Also define the following two values (if the expressions under the square roots are

non-negative):

xL=
1

2

(
ε(ρ+Ej−1)−cmax+

√
(ε(ρ+Ej−1)−cmax)2+4ε(ρ−1)cmax

)
, (2.4.8)

xU =
1

2

(
ε(ρ+Ej−1)−cmin+

√
(ε(ρ+Ej−1)−cmin)2+4ε(ρ−1)cmin

)
. (2.4.9)

Proposition 4.3. The following statements for the greatest extremum x̂ of the

pdf fλj(x) in the region x > max{a, 0} are true:

(1) If xU is undefined or xU ≤ max{a, 0} then fλj(x) does not have extrema for

x > max{a, 0} and is strictly decreasing in this region.

(2) If there exist extrema of fλj(x) in x > max{a, 0} then there are only finite

number of them and the greatest extremum, x̂, is a local maximum. In addi-

tion, in this case, xU is guaranteed to be defined and x̂ satisfies the inequality

max{a, 0} < x̂ ≤ xU .

(3) If xL is defined and xL > max{a, 0}, then both x̂ and xU are defined and

satisfy the inequality max{a, 0} < xL ≤ x̂ ≤ xU .

Proof. The proof is presented in Appendix B �
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Now, for the first case stated in Proposition 4.3, i.e. when xU is undefined or

xU ≤ max{a, 0}, we set x̂ = max{a, 0} as the maximum. Note that the value of

fλj(x) can be infinite at this point.

If xU is defined and xU > max{a, 0}, we are sure that if x̂ exists it satisfies x̂ ≤ xU .

So we can constrain the search for x̂ to the region max{a, 0} < x ≤ xU .

Also, if the third condition is satisfied, i.e. xL is defined and xL > max{a, 0}, the

region for the search can be constrained to the region xL ≤ x ≤ xU .

We use the modified Newton-Raphson optimization algorithm which searches for

extremum in an open interval. The details about this algorithm are presented in

Appendix C.

This algorithm attempts to find the extremum in the specified open interval (L,U)

and guarantees that the returned value belongs to this interval even if the desired

extremum is not found. The ability of the algorithm to return some well-defined value

of x for any input is essential for our application. If we find any finite point x̂ in the

region x > max{a, 0} and construct the proposal distribution with the support in this

region and mode at x̂, the MCMC algorithm will work with this proposal. However,

in order for the proposal distribution to be close to the desired full conditional, we

try to use not the arbitrary point but the maximum and only if we fail to do so we

rely on the fact that this point can be chosen arbitrarily.

We can run this algorithm with the limits L and U found as follows:

L =

{
max{xL, a, 0}, if xL exists,

max{a, 0}, otherwise,
(2.4.10)

U = xU . (2.4.11)
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Note that, if the maximum is reached at either L or U , the algorithm will not

return exactly this value but a value very close to it.

It is worth mentioning that even if the extremum does not exist, the algorithm

will still give some value between L and U . This means that if we do not succeed in

finding the largest extremum of fλj(x) we still obtain some value of x̂ which can be

used for construction of the proposal distribution.

After we find the x̂, we can use the Gamma proposal shifted by the value max{a, 0}

as before, and we set the scale parameter of it equal to the scale parameter of the

original distribution ε = 1/((Rj + c0)∆tj). The shape parameter ν of the proposal

distribution is chosen such that the mode of this distribution is equal to x̂. That is,

we set:

ν =
x̂−max{a, 0}

ε
+ 1. (2.4.12)

Note that proposal distribution found by any of the two discussed methods is

not an approximation of the desired conditional distribution in any way but it only

follows the shape of this distribution. However, the shape similarity is enough for

our purposes, since wrapping the sampling from it into a Metropolis-Hastings step

adjusts for any differences in these distributions.

4.2. Sampling from the regression functions conditional distribution.

The distribution of the component of one regression function αkj conditional on all

other parameters is given by the proposition below.
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Let q be the number of individuals who had an event in the interval (tj−1, tj] and

whose k-th covariates were not zero at the moment of event. Also suppose that these

individuals have indices i = i1, . . . , iq in the original dataset.

In addition, denote the constant

Cconstr =

(
−λj −

∑
k′ 6=k

min

{
αk′j inf Ωk′ , αk′j sup Ωk′

}
− min

1≤l≤n
ωlj

)
, (2.4.13)

coefficients

cs =
1

zikj

(
λj +

∑
k′ 6=k

αk′jzik′j + ωlisj

)
, (2.4.14)

ε =

(
N∑
i=1

Rijzikj

)
∆tj, (2.4.15)

and the constraints

a =

{
Cconstr

sup Ωk
if sup Ωk > 0,

−∞ otherwise,

b =

{
Cconstr

inf Ωk
if inf Ωk < 0,

+∞ otherwise.

(2.4.16)

Proposition 4.4. The probability density function fαkj(x) of αkj conditional on

all other parameters is proportional to:

fαkj(x) ∝

(
q∏
s=1

(x+ cs)

)
exp (−εx) I {a ≤ x ≤ b} , (2.4.17)

Proof. The proof is presented in Appendix B. �

Similarly to the baseline hazard, we propose two methods of constructing the

proposal distribution

4.2.1. Construction of proposal distribution using the mean of the full conditional.

The mean of the distribution given by Proposition 4.4 is obtained as follows.



4. OBTAINING RANDOM SAMPLE FROM THE POSTERIOR DISTRIBUTION 32

Let df be the coefficients of the polynomial
∑q

f=0 dfx
f obtained by expansion of

the product
∏q

s=1(x+ cs) in the pdf fαkj(x) defined in Proposition 4.4.

Now, if ε 6= 0 denote

I0 =
1

ε

(
exp(−εa)− exp(−εb)

)
, (2.4.18)

If =
1

ε

(
af exp(−εa)− bf exp(−εb) + fIf−1

)
, f = 1, . . . , q, (2.4.19)

where in case of infinite a or b the values of the corresponding functions are evaluated

as limits when argument approaches infinity.

In the case ε = 0 let

If =
bf+1 − af+1

f + 1
, f = 0, . . . , q, (2.4.20)

where we suppose that a and b are both finite.

Proposition 4.5. The normalizing constant Cnorm and the mean µ of the distri-

bution fαkj(x) can be found as:

Cnorm =

q∑
f=0

dfIf , (2.4.21)

µ =

∑q
f=0 dfIf+1∑q
f=0 dfIf

. (2.4.22)

Proof. The proof is presented in Appendix B �

In the case of ε 6= 0, we can use proposal of the form:

S + sign(ε)G
(
ν,

1

|ε|

)
, (2.4.23)

where S is equal to a or b depending on the sign of ε:

S =

{
a, if ε > 0,

b, if ε < 0,
(2.4.24)
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and ν is calculated in a such way that the mean of the proposal distribution is equal

to the mean µ obtained earlier, i.e.:

ν = ε(µ− S). (2.4.25)

So the proposal density g(x) becomes:

g(x) =
|ε|ν

Γ(ν)

(
sign(ε)x− S

)ν−1

exp

(
− |ε| (sign(ε)x− S)

)
. (2.4.26)

For ε = 0 we can use the Gaussian proposal with mean equal to µ and standard

deviation τ which provides the same ratio of Gaussian pdf g(x) at mean µ and one

more point y (the choice of which will be discussed later) as that of the original

distribution fαkj(x) at the same points:

g(µ)

g(y)
=
fαkj(µ)

fαkj(y)
⇔ 1

exp
(
− (y−µ)2

2κ2

) =
fαkj(µ)

fαkj(y)
⇔ κ =

√√√√ (y − µ)2

2 ln
(
fαkj (µ)

fαkj (y)

) . (2.4.27)

The point y is chosen to be 0.1µ + 0.9a or 0.1µ + 0.9b whichever produces the

greater value of fαkj(x). We do not use the points a and b since fαkj(x) can be 0 at

both of them.

4.2.2. Construction of proposal distribution using the mode of the full conditional.

Similarly to the proposal distribution of baseline hazard, we can construct the pro-

posals for regression functions without expanding the polynomial. Instead, we are

trying to find the mode of the distribution fαkj(x) and construct the proposal density

g(x) with the same mode.

The following proposition describes the possible behaviour of the function fαkj(x)

defined in Proposition 4.4.
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Proposition 4.6. Provided that q and ε are not simultaneously equal to 0, the

density fαkj(x) satisfies one of the following conditions:

(1) fαkj(x) has a unique maximum in the region a < x < b.

(2) fαkj(x) is strictly decreasing in the interval a < x < b, in which case a is

finite.

(3) fαkj(x) is strictly increasing in the interval a < x < b, in which case b is

finite.

Moreover, if q 6= 0, the modified Newton-Raphson algorithm explained in Appen-

dix C applied to the function fαkj(x) with the limits L = a and U = b always converges

to a finite value.

Proof. The proof is presented in Appendix B. �

So in the case of q 6= 0, our modified Newton-Raphson algorithm will converge to

some satisfactory value, and in the case of q = 0, the maximum is x̂ = a if ε > 0 or

x̂ = b if ε < 0 and is always finite.

The obtained point x̂ can be used for construction of a proposal distribution.

We consider the same form of proposal distribution as in the previous section, i.e.

distribution given by formula (2.4.23) in the case of ε 6= 0 and Gaussian proposal in

the case of ε = 0.

The shape parameter ν of the Gamma distribution can be found as ε(x̂− S) + 1,

the scale parameter remains 1
|ε| and S is the same as before.
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If ε = 0 we use the Gaussian proposal with mean at x̂ and standard deviation

found through the equality of ratios like before.

4.3. Sampling from the frailty’s full conditional distribution. The condi-

tional distribution of the frailty ωlj given all other parameters is given by the following

proposition.

Let q be the number of individuals from the l-th region who had an event in the

interval (tj−1, tj]. Also suppose that these individuals have indices i = i1, . . . , iq in

the original dataset.

Let the limits a1 and b1 be

a1 = −λj −
p∑

k=1

min

{
αkj inf Ωk, αkj sup Ωk

}
, (2.4.28)

b1 = +∞, (2.4.29)

and the parameters µ0 and δ be

µ0 =
θ2
j

ml

R
(l)
j ∆tj + ωlj, (2.4.30)

δ2 =
θ2
j

ml

. (2.4.31)

Proposition 4.7. The density fωlj(x) of the parameter ωlj conditional on all

other parameters is proportional to:

fωlj(x) ∝

(
q∏
s=1

(x+ cs)

)
1√

2πδ2
exp

(
−(x− µ0)2

2δ2

)
I {a1 < x < b1} . (2.4.32)

Proof. The proof is presented in Appendix B. �

4.3.1. Construction of proposal distribution using the mean of full conditional.

The mean of the distribution given by Proposition 4.7 is obtained as follows.
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Let x = y−µ0
δ

and let df be the coefficients of the polynomial
∑q

f=0 dfy
f obtained

by expansion of the product
∏q

s=1(x+cs) in the pdf fωlj(x) defined in Proposition 4.4.

Also, let a = a1−µ0
δ

and b = b1−µ0
δ

.

Denote:

I0 = Φ(b)− Φ(a), (2.4.33)

I1 = ϕ(a)− ϕ(b), (2.4.34)

If = af−1ϕ(a)− bf−1ϕ(b) + (f − 1)If−2, (2.4.35)

where Φ(y) and ϕ(y) are the CDF and pdf of the standard normal distribution,

respectively.

Proposition 4.8. Then the normalizing constant Cnorm and the mean µ of the

distribution fωlj(x) can be found as:

Cnorm = CY
normδ

q, (2.4.36)

µ = δµY + µ0, (2.4.37)

where

CY
norm =

q∑
f=0

dfIf , (2.4.38)

µY =

∑q
f=0 dfIf+1∑q
f=0 dfIf

. (2.4.39)

Proof. The proof is presented in Appendix B. �
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Therefore the proposal g(x) will have µ as its mean parameter. The standard

deviation parameter κ of the proposal should be chosen such that the proposal dis-

tribution g(x) would be close to the distribution fωlj(x) given by the Proposition 4.7.

A convenient way of doing this is to make the proposal density equal to fωlj(x) at the

mean µ. This ensures that both densities have approximately the same scale. Also

in the case when the density fωlj(x) is exactly normal, the proposal density g(x) will

be equal to fωlj(x) exactly.

Thus, the parameter κ can be found from the following equation:

fωlj(µ) = g(µ) ⇔ fωlj(µ) =
1√
2πκ

⇔ κ =
1√

2πfωlj(µ)
. (2.4.40)

The examples showing how the normal proposal with the parameters obtained

above is close to a distribution constrained from the left side only, can be seen in the

Figures 2a–2f. The solid line shows desired constrained distribution, the dashed line

shows proposed normal distribution and the vertical line indicates the mean of both

distributions.

The parameter a shown in the graph is the lower constraint. The upper bound b is

set to infinity in all the graphs presented. The polynomials are expressed in the form

(x+ c1)× · · · × (x+ cq), and the values of the coefficients c1, . . . , cq are shown on the

graph. We see that for different polynomials (the power of the polynomials increases

from graph to graph) and different constraint parameter values (they are chosen

randomly) the proposed density follows the shape of the desired density satisfactory

close. The constrained distribution is especially close to normal if the power of the

polynomial is high.
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Figure 2. Comparing real and proposal distribution for sampling from
frailty’s full conditional
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4.3.2. Construction of proposal distribution using the mode of the full conditional.

As before, along with the polynomial expansion method, we also offer an alternative

method based on finding the extremum.

The following proposition describes the possible behaviour of the function fωlj(x)

defined in Proposition 4.7.

Proposition 4.9. The density fωlj(x) satisfies one of the following conditions:

(1) fωlj(x) has a unique maximum in the region x > a1.

(2) fωlj(x) is strictly decreasing in the interval x > a1.

The modified Newton-Raphson algorithm explained in Appendix C applied to the

function fωlj(x) with the limits L = a1 and U = +∞ always converges to the local

maximum or to a1.

Proof. The proof is presented in Appendix B. �

The obtained x̂ can be used as the mean of the proposal Gaussian distribution.

The standard deviation parameter can not be found like in previous case because we

do not know the normalizing constant, and hence we can not find the exact value of

fωlj(x). However, we can use the method of equal ratios as we did before. Since there

is a possibility that extremum is outside the region x > a1, the obtained x̂ cannot be

the actual extremum. And since we do not allow x̂ to reach the limit a1, the value

of the function fωlj(x) at the points between a1 and x̂ can be greater than that at x̂.

Further, for the equal ratio method we assume that x̂ is the maximum. Therefore we
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cannot always use the points near the limit a1 and we need to use some point y > x̂.

We can use y = x̂+ max{|a1| , |x̂|}.

The standard deviation κ can be then obtained using formula (2.4.27).

4.4. Sampling from spatial hyper-parameters’ full conditional distribu-

tions. The full conditional distribution of a frailty hyper-parameter θ2
j is proportional

to:

π
(
θ2
j

∣∣ωj) ∝ 1(
θ2
j

)(n−1)/2
exp

− 1

2θ2
j

∑
l∼l′
l<l′

(ωlj − ωl′j)2

(θ2
j

)−γ−1
exp

(
− β
θ2
j

)

=
(
θ2
j

)−(γ+n−1
2 )−1

exp

− 1

θ2
j

β +
1

2

∑
l∼l′
l<l′

(ωlj − ωl′j)2


 , (2.4.41)

This means that the posterior distribution is also inverse-gamma:

(
θ2
j

∣∣ωj) ∼ IG
γ +

n− 1

2
, β +

1

2

∑
l∼l′
l<l′

(ωlj − ωl′j)2

 . (2.4.42)

So the prior for θ2
j appears to be conjugate which explains the inverse-gamma

choice for it. This distribution is one of the standard distributions, and thus it is

straightforward to sample directly from it without even using Metropolis-Hastings

step.



CHAPTER 3

Geostatistical spatial model

In this chapter we present the prior, posterior and proposal distributions for the

model with geostatistical spatial structure. However, the complex posterior distribu-

tion of the frailty hyper-parameters does not allow us to obtain the proposal distri-

bution as we did it for the CAR model.

One possible solution of this issue could be to use the Metropolis Random Walk, for

which the proposals are chosen to be Gaussian distributions centered at the previously

sampled point. However, this method has a slow convergence, so it requires a large

number of iterations. For the big data which we analyse and the large number of

parameters of the model, performing so many iterations takes a huge amount of time.

So for now we do not have a solution for this problem and leave it for future

research.

1. Prior distribution for the geostatistical model

The joint prior distribution of all parameters of the model for the geostatistical

spatial structure is obtained the same way it was obtained for the CAR structure

with the only difference in the frailties’ distributions and distributions of their hyper-

parameters.

41
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1.1. Geostatistical model for frailties. If the correlation between the observa-

tions from different regions is expected to depend on the distances between the regions,

we can use the geostatistical model for which the frailty terms ωj = (ω1j, . . . , ωnj)
T are

considered jointly multivariate normal with the variance-covariance matrix depending

on the distances between locations (see Banerjee et al., 2003), i.e.:

ωj ∼ N
(
0,Σ

(
σ2
j , φj

))
, (3.1.1)

where 0 is the n × 1 vector of zeros and Σ
(
σ2
j , φj

)
is the n × n matrix with the

components:

Σll′
(
σ2
j , φj

)
= σ2

j exp (−φjdll′) , l, l′ ∈ {1, . . . , n}, (3.1.2)

where dll′ denotes the distance between the locations of the groups l and l′. The

parameter σ2
j represents the variance of each of the frailty terms, and parameter

φj determines the correlation between the frailties (the less this parameter is, the

more is the correlation). In this model the correlation between the groups decreases

exponentially with the distance.

Note that the introduced covariance structure assumes the isotropic correlation

which means that it decreases in the same manner in any direction. In order to

introduce anisotropic correlation, one should use different kind of variance-covariance

matrix.

The frailties in different intervals are assumed independent. So the joint prior

distribution of all frailties can be obtained by multiplication of the priors in different

intervals.
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To simplify the notation, we denote the set of all σj, j = 1, . . . ,m as σ, and the

set of all φj as φ.

1.1.1. Prior distributions of the hyper-parameters. For the geostatistical spatial

model, we put the prior distributions on the variance parameters σ2
j and correlation

parameters φj. The prior distributions for φj and σ2
j are taken according to Banerjee

et al. (2003).

We take the gamma prior G (a, 1/a) for φj with the shape and scale parameters

a and 1/a respectively, so that the mean is 1 and variance is 1/a. For a vague prior,

the value of a should be taken small.

The prior for σ2
j is assumed to be inverse-gamma IG (β, γ) with β and γ as scale

and shape parameters, respectively. The mean in this case is β
γ−1

and variance is

β2

(γ−1)2(γ−2)
. By setting γ = 2 we can make this prior vague which is provided by the

infinite variance. The inverse-gamma prior is chosen in order to make it conjugate.
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1.1.2. Joint prior distribution for the geostatistical model. For geostatistical model

the joint constrained prior distribution takes the following form:

π (λ,α,ω,σ,φ) ∝
m∏
j=1

(
λ
c0r0∆tj−1
j exp (−c0λj∆tj)

)
︸ ︷︷ ︸

Gamma prior for λj

×
m∏
j=1

 1√
det
(
Σ
(
σ2
j , φj

)) exp

(
−1

2
ωTj

(
Σ
(
σ2
j , φj

))−1

ωj

)
︸ ︷︷ ︸

Joint multivariate normal prior for ωj = (ω1j , . . . , ωnj)
T

×
m∏
j=1

(
I

{
λj +

p∑
k=1

min

{
αkj inf Ωk, αkj sup Ωk

}
+ min

1≤l≤n
ωlj ≥ 0

})
︸ ︷︷ ︸

Constraint component

×
m∏
j=1

(
φa−1
j exp (−aφj)

)
︸ ︷︷ ︸

Gamma prior for φj

m∏
j=1

((
σ2
j

)−γ−1
exp

(
− β

σ2
j

))
︸ ︷︷ ︸

Inverse-gamma prior for σ2
j

, (3.1.3)

where det(X) denotes the determinant of the matrix X and all other notation is the

same as in the CAR model.

This likelihood is similar to that of the CAR model with the exception that the

parameters φj are included in the distribution in a very complex way.

2. Obtaining a random sample from the posterior distribution

2.1. Posterior distribution. For the posterior distribution of the parameters

we have:

π (λ,α,ω,σ,φ |D) ∝ L (D |λ,α,ω) π (λ,α,ω,σ,φ) , (3.2.1)

where the likelihood and the prior distribution are given by the equations (2.3.1)

and (3.1.3) respectively.

This is obtained similarly to the case of CAR model.
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2.2. Sampling from the frailty full conditional distribution. The full con-

ditional distribution of the l-th frailty for the geostatistical model it is proportional

to:

π
(
ωlj |λj,αj, ωl′j 6=lj, σ2

j , φj,D
)

∝
∏

i∈Ej∩Sl

(
λj +

p∑
k=1

αkjzikj + ωlj

)
exp

(
−R(l)

j ωlj∆tj

)

× exp

[
− 1

2σ2
j

(
ω2
lj + 2

∑
l′ 6=l

ωljωl′j

(
H(φj)

)−1

ll′

)]

× I

{
ωlj ≥ −λj −

p∑
k=1

min

{
αkj inf Ωk, αkj sup Ωk

}}
, (3.2.2)

where
(
H(φj)

)−1

ll′
denotes the ll′-th component of the matrix

(
H(φj)

)−1
with H(φj) =

1
σ2
j

Σ
(
σ2
j , φj

)
being the correlation matrix of the frailties and all other notation as

before.

The same way it was done for the CAR model, it can be shown that the distribu-

tion given by equation (3.2.2) has the following form:

fωlj(x) =

(
q∏
s=1

(x+ cs)

)
1√

2πδ2
exp

(
−(x− µ0)2

2δ2

)
I {a1 < x < b1} , (3.2.3)

where the power of the polynomial is q = card(Ej ∩ Sl), and the limits a1 and b1 are

the following:

a1 = −λj −
p∑

k=1

min

{
αkj inf Ωk, αkj sup Ωk

}
, (3.2.4)

b1 = +∞. (3.2.5)
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The parameters µ0 and δ of this distribution are:

µ0 = σ2
jR

(l)
j ∆tj −

∑
l′ 6=l

(
H(φj)

)−1

ll′
, (3.2.6)

δ2 = σ2
j . (3.2.7)

So the algorithm for sampling from geostatistical frailty full conditional distribu-

tion is exactly the same as for the CAR model discussed before.

2.3. Sampling from the full conditionals of geostatistical model variance

hyper-parameters. The full conditional distribution of a frailty variance parameter

σ2
j is proportional to:

π
(
σ2
j

∣∣ωj, φj) ∝ 1(
σ2
j

)n/2 exp

(
− 1

2σ2
j

ωTj

(
H(φj)

)−1

ωj

)(
σ2
j

)−γ−1
exp

(
− β

σ2
j

)

=
(
σ2
j

)−(γ+n
2 )−1

exp

(
− 1

σ2
j

(
β +

1

2
ωTj

(
H(φj)

)−1

ωj

))
, (3.2.8)

which means that it has the from of inverse-gamma distribution:

(
σ2
j

∣∣ωj, φj) ∼ IG(γ +
n

2
, β +

1

2
ωTj

(
H(φj)

)−1

ωj

)
. (3.2.9)

2.4. Sampling from the full conditionals of geostatistical model cor-

relation hyper-parameters. The full conditional distribution of the correlation

hyper-parameter φj has the following form:

π
(
φj |ωj, σ2

j

)
∝ 1√

det H(φj)
exp

(
− 1

2σ2
j

ωTj

(
H(φj)

)−1

ωj

)
φa−1
j exp (−aφj)

(3.2.10)

The variable φj is included in this distribution in a very complex way (through

the determinant and inverse of matrix H(φj). So we did not succeed in obtaining a

proposal distribution which would follow the form of this distribution. This is the
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only problematic parameter in the geostatistical model. All other parameters have

the same procedures of sampling like in CAR model and thus can be implemented

similarly.

We leave the procedure of obtaining the suitable proposal distribution for the

parameter φj for the future research. After it is found, the geostatistical model can

be easily implemented based on the implementation of the CAR model.



CHAPTER 4

Application of the Method

1. Model Implementation

We implement the whole specified model in a program using the combination of

R and C programming languages.

The routine MCMC sampling part is implemented in C programming language.

The necessary functions are written in C and compiled into a shared library. In order

to allow analysing data with a very large number of observations (greater than 50,000),

all the routine functions use the multiple-precision floating point types from the open

source C libraries GMP and MPFR. These libraries allow to operate with numbers which

are much closer to zero than it is allowed by the standard floating-point types of R

and C languages.

This is essential for the data with large number of observations since the expres-

sions for the posterior full conditional distributions become extremely small in this

case. As a result, the computed expressions become zero due to rounding and all the

analyses become impossible. The mentioned libraries allow to overcome this problem

which greatly increases the applicability of the method.

For the method of constructing proposal distributions which uses the means of

full conditionals (which requires computation of normalizing constants), the usage

48
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of these libraries is necessary even for comparatively small number of observations,

particularly for data in which the number of events during one time interval exceeds

50.

Also, we require reimplementation of CDF of gamma distribution with the use

of multiple precision types and reimplementation of an algorithm for solving linear

systems of equations, for which we implement a Householder method of solving them.

The implementation of these functions is based on a code from another open source

library called GSL. It contains most of the frequently used mathematical functions

and methods but with the use of only standard double precision floating point type.

The rest of the program is written using the R language which calls the routine

MCMC-sampling functions from the compiled C shared library.

The resulting program allows to incorporate the strong analytical capabilities of

R language while utilizing the fast execution of C code for the computationally hard

routine sampling procedures. Also, the C implementation allows to use the methods

of the mentioned GMP and MPFR libraries.

While we implement both of the discussed methods of constructing the proposal

distributions, we use only the one based on the mode of the full conditional since

it is much faster and numerically stable especially when we analyse the data with

around 50,000 observations later on. So in future we discuss only the results of the

mode-based method.
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2. Simulation Study

We conduct the simulations in order to study the performance of the proposed

method of estimating the parameters. These simulations are intended to study how

the input values of the algorithm affect the model parameters estimation.

2.1. Data Generation.

2.1.1. Generating parameters. We choose the number of covariates p = 2, the

number of regions n = 5 and the study period τ = 1. The baseline hazard is set to

be a linear function of time λ(t) = 0.3 + t. The first regression function is set to be

a linear function, and the second one a quadratic function of time: α1(t) = −0.3t,

α2(t) = −0.4t2. The sets of admissible covariate values are Ω1 = Ω2 = [−1, 1].

The adjacency structure of the regions is represented by the tridiagonal matrix:

A =


1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1

 , (4.2.1)

where All′ = 1 denotes that the regions l and l′ are adjacent.

The values of the frailties are assumed to be constant over time and are generated

from the CAR distribution with the first frailty set to 0 and parameter θ = 0.1. If

the value of any frailty appears to be less than −0.3, all frailties are resampled.

The covariate values are also assumed to be constant and generated from uniform

distribution with the limits specified in Ω1 and Ω2.

The generated parameters satisfy the condition of non-negative hazard given

by (2.2.3), so the specified model is well defined.
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2.1.2. Generating Event Times. In order to generate the event times for the in-

dividuals, we propose using the piecewise constant hazard approximation of survival

function for each individual. For sufficiently large number of break points, the data

generated from a distribution with such survival function is very close to the desired

distribution.

We choose M = 1, 000 equidistant break points t̃s = hs, h = 1/M from 0 to 1 and

approximate the above mentioned functions by step functions λ̃(t), α̃1(t) and α̃2(t)

that are constant during the defined intervals and equal to the values of the approxi-

mated functions at the midpoints of the intervals. We will write the formula only for

the baseline λ̃(t), and the formulae for the regression functions approximations will

be similar to it:

λ̃(t) = λ

(
t̃s(t) + t̃s(t)−1

2

)
, s(t) = min{r : tr ≥ t}. (4.2.2)

Note that this time partitioning is not the same partitioning which was discussed

in the previous chapters. The breakpoints t̃s are used only for data generation.

Now, we compute the hazard for each individual at all breakpoints t̃s from which

we can obtain the approximations of survival functions of these individuals. Then

in order to generate the event time of one individual, we generate a random number

between 0 and 1 and then apply the inverse survival function to this number. The

obtained value is considered as the event time of that individual. The inverse survival

function can be found based on the approximations λ̃(t), α̃1(t) and α̃2(t) introduced

above. Since all these three functions and frailties are piecewise constant functions

any linear combination of them is also a piecewise constant function. So the problem
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of finding the inverse survival function reduces to finding the inverse survival functions

for the piecewise constant hazard.

The survival function has the following relation with the hazard:

S(t) = exp

(
−
∫ t

0

h(u)du

)
⇔ lnS(t) = −

∫ t

0

h(u)du. (4.2.3)

For the piecewise constant hazard, the integral reduces to the summation:

lnS(t) = −
∑
s≥1:
t̃s≤t

h(t̃s)∆t̃s − h
(
t̃s(t)+1

)
(t− t̃s(t)), (4.2.4)

where s(t) = max{s ≥ 0 : t̃s ≤ t}.

So if we want to find t given the value S(t) = Ŝ we can firstly find the index ŝ

such that the corresponding time point tŝ is the beginning of the interval to which

the desired t belongs. This ŝ can be found from the following equation:

ŝ = max{s : 0 ≤ s ≤M and S(t̃s) ≥ ŝ}. (4.2.5)

Now when we know ŝ, we can find t from the equation:

−h
(
t̃ŝ+1

)
(t− t̃ŝ) = ln Ŝ +

ŝ∑
s=1

h(t̃s)∆t̃s (4.2.6)

⇔ t = − ln Ŝ +
∑ŝ

s=1 h(t̃s)∆t̃s

h
(
t̃ŝ+1

) + t̃ŝ, (4.2.7)

where we assume that if ŝ = M then t = +∞.

After all the event times are generated, we generate random censoring times from

exponential distribution with the rate ν = − ln(0.5)/τ ≈ 0.69. This rate is chosen so

that the probability of censoring time to exceed τ is equal to 0.5.
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Now, if an individual has censoring time greater than the event time, then the

event time is recorded and this individual is marked as having the event, otherwise

the individual is marked as censored.

2.2. Studying the performance of the method. We run simulations for dif-

ferent values of N (number of observations) and m (number of time break points)

and construct the plots representing the results of estimation which can be found in

Appendix D. For every N and m we run the algorithm several times with different

numbers of iterations. The first quarter of iterations in all cases is considered as

burn-in period and is excluded from the estimation.

The thick line on each plot shows the real value of the parameter, the solid thin

line shows the median value of parameter the among the simulated values, and dashed

lines show the 2.5% and 97.5% quantiles. These quantiles take the place of confidence

intervals in the frequentist’s estimation.

One can notice that the number of iterations almost do not play any role in

estimation. Thus, the estimators with the number of iterations equal 100 are almost

the same as ones with the number of iterations equal to 5, 000. This can be explained

by the very fast convergence of the designed MCMC algorithm.

The number of observations, on the other hand, has a very important role. One

can notice that the confidence limits become significantly narrower when the number

of observations increase.

Regarding the number of break points, we can notice the tendency of the esti-

mators to be closer to the actual values when the number of time points increases.
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This seems reasonable since we are trying to approximate time-varying functions.

However, for large numbers of intervals compared to number of observations, the con-

fidence limits become very wide. This can be explained by the fact that the accuracy

of estimation depends on the number of observations carrying the information about

the parameters. But when we increase the number of intervals, there are less subjects

having events during each interval, thus increasing the variability.

So the number of intervals should be chosen as a trade-off between accuracy of

the piecewise constant approximation and variability of estimators.

From all above mentioned we conclude that for data analysis there is no need

to perform huge number of MCMC iterations and 500 seems to be quite reasonable.

Also the method is sensitive to the number of observations, so it works better for big

data. Regarding the number of time points, this choice should be made depending on

the particular application. It is worth mentioning, that it is better not to take this

number so big that some of the intervals do not have events at all. In this case the

hazard for such intervals is estimated as zero or almost zero. While theoretically it

may be correct estimation of hazard, practically such intervals appear not due to zero

hazard, but due to lack of observations or discrete time recording. So, for reasonable

estimation, such intervals should be joined with adjacent intervals to ensure that each

interval has at least one event.
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Table 1. Variables Used in Data Analysis

Variable Name Variable Values Variable Name
in Analysis in Analysis in SEER Database

age 0–106 Age at diagnosis

Distant,
stage

Localized/regional
SEER historic stage A

Race recode
race Black, White

(White, Black, Other)

marriage Single, Married, Other Marital status at diagnosis

region 1–64 County

Survival time recode
time 1–72

(total # of months)

Vital status recode
event 0, 1

(study cutoff used)

3. Application to the Prostate Cancer Data

3.1. Data Description. We apply the proposed method to the Surveillance,

Epidemiology, and End Results prostate cancer data (SEER, 2008).

The data analysed is similar to that analysed in Zhang and Lawson (2011).

We extract the data set from the SEER 17 Registries Incidence database based

on the November 2007 submission. As Zhang and Lawson (2011) we use only the

Louisiana cases.

The variables considered are presented in the Table 1.

The observations with unknown age were excluded, and according to the stage of

cancer, all observations were divided into two groups like in Zhang and Lawson (2011):
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‘Localized/regional’ and ‘Distant’. The cases with stage other than ‘Localized’, ‘Re-

gional’, ‘Localized/regional (Prostate cases)’ or ‘Distant’ were also excluded from con-

siderations. The first three groups were joined into one group, ‘Localized/regional’.

The observations with ‘Other’ or ‘Unknown’ race were ignored. So only individuals

with the race ‘Black’ or ‘White’ were included in the analysis.

The marital status was recoded into ‘Married’, ‘Single’ and ‘Other’. The ‘Other’

category included all categories other than ‘Married’ and ‘Single’. The observations

with unknown marital status were ignored.

The county numbers presented in the SEER database include only odd numbers

from 1 to 127. In the variable ‘region’ we recoded them into the numbers from 1

to 64. The numbers of the counties were in alphabetical order with respect to their

names.

The survival times in the database represent the total number of months the

patients survived. In order to avoid zero survival times, in our analysis we add 1 to all

survival times so the survival times used in our analysis have different interpretation.

In the original data, the value n of survival means that the patient’s survival time is

between n and n+ 1 months. In our analysis the value n means that survival time is

between n − 1 and n months. This changes allow us to avoid zero survival times by

only slightly changing the interpretation. So the original survival times taking values

0–71 in our analysis are recoded to 1–72.

The event indicator variable ‘event’ contains the vital status recoded as 0 (Alive)

and 1 (Dead).
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Further, we constructed dummy variables for the categorical variables ‘race’,

‘stage’ and ‘marriage’.

Therefore, the total number of variables is 5: 1 for ‘age’, 1 for ‘race’, 1 for ‘stage’

and 2 for ‘marriage’. In addition, we have 64 counties the effects of which are analysed

through introducing 63 spatial frailty terms (recall that the first frailty term is set to

be always 0), and the intercept term is represented by the baseline hazard.

3.2. Choice of the number of intervals. As was already mentioned before,

our method depends on the partitioning of time. We use the equidistant time break

points, so the choice of the break points reduces to the number of these breakpoints.

We choose the optimal number of intervals based on the Deviance Information

Criterion (DIC) as in Banerjee et al. (2003); Zhang and Lawson (2011) and the sum-

mary Log-Conditional Predictive Ordinate (LCPO) as in Silva and Amaral-Turkman

(2004).

The DIC is a Bayesian analog of Akaike’s Information Criterion (AIC). The

value of DIC incorporates the information about the model fit and about the model

complexity. The better the fit and the simpler the model is, the less is the DIC value.

DIC can be found based on the deviance statistic (see Banerjee et al., 2003):

Dev(λ,α,ω) = −2 lnL(D|λ,α,ω), (4.3.1)

where λ, α and ω are the baseline, regression functions and frailties values introduced

before, D is the data and L(D|λ,α,ω) is the likelihood function.
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Now, the fit of the model is represented by the posterior expectation of the de-

viance:

D = E

[
Dev(λ,α,ω)|D

]
. (4.3.2)

The complexity of the model is captured by the effective number of parameters

pD which can be defined as the posterior expectation of deviance minus deviance

evaluated at the posterior expectation of the parameters:

pD = E

[
Dev(λ,α,ω) | D

]
−Dev

(
E

[
(λ,α,ω) | D

])
. (4.3.3)

Then the DIC can be computed as the sum of the obtained values D and pD:

DIC = D + pD. (4.3.4)

The smallest value of DIC among the models compared indicates the preferred

model. Banerjee et al. (2003) mention that DIC can not be used for the identification

of the correct model, but can only be used to compare the alternative formulations all

of which can be incorrect. Also they note that the value of DIC itself has no meaning

and only the differences on the DIC for the compared models are meaningful.

The posterior expectations in the formulas above can be obtained by the Monte-

Carlo integration, i.e. using the fact that the posterior expectation of any measurable

function T (λ,α,ω) of the sampled parameters can be estimated by the mean value

of this function among all sampled values of parameters (see, e.g. Gelfand and Smith,

1990):

E

[
T (λ,α,ω) | D

]
≈ 1

I

M∑
s=1

T
(
λ(s),α(s),ω(s)

)
, (4.3.5)
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where I is the number of sampled values of parameters, and the superscript (s)

indicates that we use the s-th sampled value of the parameter.

Another measure which can be used for model comparison is the summary Log-

Conditional Predictive Ordinate LCPO measure. This measure is based on the cross-

validating predictive densities of observations given all other observations (see Silva

and Amaral-Turkman, 2004), i.e.:

CPOi = π(yi|D−i) = E

[
L(yi|λ,α,ω) | D−i

]
, (4.3.6)

where yi denotes the i-th observation and D−i denotes the rest of the data after

deleting the i-th observation from it, the expectation is computed with respect to the

model parameters (with yi fixed) and we assume that the observations are condition-

ally independent given the model parameters. The larger the value of CPOi is, the

better the i-th observation agrees with the model obtained using the rest of the data.

The CPOi can be computed by the MCMC algorithm using:

CPOi ≈
1

1
I

I∑
s=1

1

L(yi|λ(s),α(s),ω(s))

, (4.3.7)

where the denominator represents the Monte-Carlo integration of the reciprocal of

the marginal likelihood of the i-th observation.

Comparison of two models can be made using a summary measure LCPO defined

as:

LCPO =
N∑
i=1

lnCPOi. (4.3.8)

The large values of LCPO imply a better model adequacy.
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Table 2. Values of DIC, pD and LCPO for different numbers of intervals

Number Actual Effective Deviance Conditional
of Number of Number of Information Predictive

Breakpoints Parameters Parameters Criterion Ordinate
m npar pD DIC LCPO

1 70 63 189,244 -94,630
12 840 463 -692,284 327,009
24 1,680 740 -1,780,091 827,536
36 2,520 953 -3,098,172 1,403,102
72 5,040 1,273 -7,702,954 3,393,691

From the simulation study we found that a reasonable choice of the number of

MCMC algorithm iterations is 500. So we run this number of iterations for differ-

ent numbers of breakpoints in order to obtain the optimal value of m. However we

prefer to run 5, 000 iterations for the data analysis since the number of model param-

eters here is much more than that used in simulations and we want to decrease the

estimation errors due to small sample.

We use both DIC and LCPO for choosing the optimal number of breakpoints in

the model. The values of DIC, pD and LCPO for different numbers of breakpoints

m are presented in Table 2.

One can notice that the effective number of parameters is much less than the actual

number of parameters in the model. Also it increases even slower that the actual

number of parameters. For example, the effective number of parameters changes from

953 to 1, 273 for the case of m = 36 and m = 72 while the actual number of parameters

increases from 2, 520 to 5, 040. This means that the penalty for introducing more

parameters in the model is very small, and at the same time, the fit of the model
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significantly improves when we use more time breakpoints which is indicated by the

rapid decrease of DIC and increase of LCPO. So clearly, the more intervals we take

the better a model becomes.

However, the further increase of number of breakpoints is unreasonable. The

survival is presented in integer number of months. So it is impossible for the data to

have any intermediate values between consequent integers. Therefore, the smallest

reasonable partitioning is partitioning into the intervals of the length 1. This case is

represented by the number of intervals equal to 72.

So the optimal number of intervals for this data is 72. Thus we select the model

with m = 72 for further data analysis.

3.3. Analysis of the data. The estimated values of the baseline hazard, regres-

sion functions, and spatial frailty terms are presented in the Figures 3–6.

The solid line indicates the median values of parameters while the dashed lines

show the 2.5% and 97.5% quantiles thus representing the confidence limits.

The Regression function 1 stands for the ‘age’, Regression function 2 for the

‘race’ (0 - Black, 1 - White), Regression function 3 for the ‘stage’ (0 - Distant, 1 -

Localized/regional) and Regression functions 4 and 5 together stand for ‘marriage’

((0,0) - Married, (0,1) - Single, (1,0) - Other).

The value of the first frailty term (corresponding to Acadia parish) is forced to be

0, so it is not shown in the figures.

The baseline hazard corresponds to the person with ‘age=0’, ‘race=Black’, ‘stage=Distant’

and ‘marriage=Married’ from the first county (Acadia).
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Figure 3. Estimated Parameters of The Model
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Figure 4. Estimated Parameters of The Model (Continuation)
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Figure 5. Estimated Parameters of The Model (Continuation)
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Figure 6. Estimated Parameters of The Model (Continuation)
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We see that the hazard for such person starts from the small value before 1 month,

takes the maximum value between 1 and 2 months and rapidly decreases to the

initial value at 5 months. After that it slowly decreases until 30 months and remains

approximately constant until 50 months and then increases. The confidence limits

for the baseline hazard starting from 65 months are very wide which means that the

estimated values are not reliable in this region. The confidence limits for the first 4
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month, on the other hand, are almost equal to the median value which means that the

estimated value of the baseline hazard is very accurate. Such a difference in accuracy

is explained by the number of events (deaths) at these regions. The total number of

events in the region t ≥ 65 is 57 with only 2 events corresponding to the interval 71–72

months and a little more for the preceding intervals. For the interval 0–1 months,

on the other hand, there are 2091 events which allows to estimate the hazard with a

very good accuracy.

Note that the values of the Regression function 3 (stage) are approximately equal

to the negative values of the baseline hazard. This means that for the persons with

the ‘stage=Localized/regional’ the hazard is almost 0. So the stage effect is obviously

very significant during the first 4 months. After that the stage is much less important

while the hazard is always less for the person with Localized/regional stage.

The age effect (Regression function 1) is significant during the first 5 months and

after that it is not significant since the confidence intervals always contain zero.

Regarding the race (Regression function 2), it seems insignificant. However the

confidence intervals are skewed towards negative values which indicates that there is

a tendency for the black persons to have greater hazard than white.

Now, according to the Regression function 4 and 5 plots, the marital status is

not significant after ten months within which the hazard for both Single and Other

is greater than that of the Married, and the hazard corresponding to the persons

with ‘marriage=Other’ which includes Divorced, Separated and Widowed, is a little

greater than that of Single. While the effect after 10 months does not seem to be
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significant, there is still a tendency for it to increase the hazard compared to the

Married persons.

Regarding spatial effects, while some frailty effects seem to be insignificant, we can

notice the tendency of other ones to be negative or positive. For instance, the values

of the 36-th (Orleans) and 52-nd (Saint Tammany) frailty tend to be negative. This

means that the hazard of the patients in these counties is less than that of patients in

the first county (Acadia parish). For the 33-rd (Madison parish) and 54-th (Tensas

parish), however, the frailties are always positive which indicates larger hazards in

these counties.

These tendencies agree with the results obtained by Zhang and Lawson (2011).

Note that the AFT model used by them considers the effect of the covariates and

frailties on the survival time while our model considers the effects on the hazard. So,

the positive effect obtained in our model corresponds to the negative effect in theirs

and visa versa.

The important thing that need to be mentioned is that the data indicates signifi-

cant time-dependency of the effects which cannot be caught by the AFT model. This

suggests the usage of our model.



CHAPTER 5

Conclusions

We developed a Bayesian Spatial Additive Hazard Survival Model in which all

covariates and spatial effects have additive form with respect to the hazard rate and

the spatial dependency assumed to have a conditional autoregressive form. All the

included effects are allowed to be time-varying which makes the model more general

than the models existing in literature.

The estimation of the parameters is made through Markov Chain Monte Carlo

sampling from the posterior distribution which is carefully designed to have good con-

vergence properties. In order to provide good convergence, the appropriate proposal

distributions were constructed.

The model is implemented in a program which uses the combination of R and C

programming languages and utilizes the multiple precision floating point data types

allowing to apply model to the big data.

Using the mentioned computer program, we conducted the simulations to study

the performance of the algorithm for different sets of parameters.

Finally, we applied the proposed model to the prostate cancer data from the SEER

database, and presented the results of the analysis in the form of plots which were

discussed in detail and supplied with necessary comments.

68
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In addition, we presented (but not implemented) the model with the geostatistical

spatial structure leaving the implementation as a future research direction.



APPENDIX A

Introduction to Markov Chain Monte Carlo

We use the Markov Chain Monte Carlo (MCMC) method for sampling from the

posterior distribution. As discussed for example in Gelfand and Smith (1990), Casella

and George (1992) or Tierney (1994a,b), this method allows to obtain samples from

any distribution the pdf (or pmf) of which is known up to a multiplicative constant.

The basic idea of the method is to generate a Markov Chain which limiting distribu-

tion is the same as the desired distribution. Then the states of this Markov Chain

can be considered as a sample from this distribution.

1. Gibbs sampler

We will use a particular MCMC algorithm which is called Gibbs sampler (see

Gelfand and Smith, 1990; Casella and George, 1992). This method can be ex-

pressed as follows. Suppose we need to obtain a sample of I random vectors U(i) =(
U

(i)
1 , . . . , U

(i)
K

)T
, i = 1, . . . , I from the multivariate distribution with the pdf f(U) =

f(U1, . . . , UK). Then Gibbs sampler algorithm consists of the following steps:

(1) Begin with some starting set of values U(0) =
(
U

(0)
1 , . . . , U

(0)
K

)T
.

(2) On the i-th iteration (i ∈ {1, . . . , I}) we use the following Markovian updat-

ing scheme:

(a) draw U
(i)
1 from the conditional distribution f

(
U1

∣∣∣U (i−1)
2 , . . . , U

(i−1)
K

)
;

70
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(b) draw U
(i)
2 from f

(
U2

∣∣∣U (i)
1 , U

(i−1)
3 , . . . , U

(i−1)
K

)
;

. . .

(c) draw U
(i)
j from f

(
Uj

∣∣∣U (i)
1 , . . . , U

(i)
j−1, U

(i−1)
j+1 , . . . , U

(i−1)
K

)
;

. . .

(d) draw U
(i)
K from f

(
UK

∣∣∣U (i)
1 , U

(i)
2 , . . . , U

(i)
K−1

)
;

(e) set U(i) =
(
U

(i)
1 , . . . , U

(i)
K

)T
.

(3) Repeat step 2 until all I desired vectors are obtained.

It is proved that under mild regularity conditions the distribution of the vectors

obtained by the algorithm above, converges to the desired distribution f(U1, . . . , UK)

(see Gelfand and Smith, 1990, and their references).

However, Gibbs sampler requires availability of full conditional distributions, i.e.

existence of the efficient algorithm to generate samples directly from these distri-

butions. This is not provided in our case since the full conditionals appear to be

non-standard constrained distributions.

Application of Gibbs sampler for constrained distributions is discussed in Gelfand

et al. (1992). They offer several methods of sampling from a constrained distribution

which belongs to one of the standard ones, and also for some cases of non-standard.

Unfortunately, our conditional distributions don’t belong to the class of distribu-

tions discussed by them. So we need to use some other methods for sampling from

conditionals.
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2. Metropolis-Hastings step

If the conditional distribution is complex non-standard distribution as in our case,

one should use the Metropolis-Hastings sampling algorithm for sampling from condi-

tional distribution.

The basic idea fo the method is explained in Hastings (1970). He considers the

discrete distributions but he mentions that continuous distributions can be more

than adequately approximated by the discrete distributions. This is actually what

happens in computations because the generated by computer random variables can

not be continuous, but they are discrete with very small steps though.

The continuous version of Metropolis-Hastings algorithm is well described in

Tierney (1994a). Adopted to our purposes, it can be expressed as follows. Let

p(Uj|Us,∀s 6= j) be a known function proportional to the desired conditional dis-

tribution f(Uj|Us,∀s 6= j) which is unknown. Also suppose that we have proposal

density function g(Uj|Us,∀s 6= j) which is a pdf of some standard distribution which

is easy to sample from. Then, the Metropolis-Hastings algorithm for the j-th vector

component on the i-th iteration of the Gibbs sampler is the following:

(1) Draw a proposal state U ′j from the distribution with density:

g
(
Uj

∣∣∣U (i)
1 , . . . , U

(i)
j−1, U

(i−1)
j+1 , . . . , U

(i−1)
K

)
. (A.2.1)
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(2) Calculate the acceptance ratio AR:

AR =
p
(
U ′j

∣∣∣U (i)
1 , . . . , U

(i)
j−1, U

(i−1)
j+1 , . . . , U

(i−1)
K

)
p
(
U

(i−1)
j

∣∣∣U (i)
1 , . . . , U

(i)
j−1, U

(i−1)
j+1 , . . . , U

(i−1)
K

)
×
g
(
U

(i−1)
j

∣∣∣U (i)
1 , . . . , U

(i)
j−1, U

(i−1)
j+1 , . . . , U

(i−1)
K

)
g
(
U ′j

∣∣∣U (i)
1 , . . . , U

(i)
j−1, U

(i−1)
j+1 , . . . , U

(i−1)
K

) . (A.2.2)

Here we assume that denominators of both fractions are positive. Since all generated

values of U belong to the region with positive density by construction of the MCMC

algorithm, then it suffices for the initial state to be within this region to ensure that

the denominator of the first fraction is always positive. The second denominator is

positive because the value U ′j is generated from the proposal density which provides

its positivity at this point.

Therefore, provided that the initial value U(0) is chosen properly, the acceptance

ratio will be always possible to calculate.

(3) Calculate the acceptance probability a based on the acceptance ratio:

a = min {AR, 1} . (A.2.3)

(4) Accept the proposal state U ′j with acceptance probability a, i.e. set

U
(i)
j =

{
U ′j with probability a,

U
(i−1)
j with probability 1− a.

(A.2.4)

Theoretically, this algorithm eventually converges to the desired distribution for

any proposal density g(Uj|U1, . . . , Uj−1, Uj+1, . . . , UK) which is almost everywhere pos-

itive wherever the desired conditional density f(Uj|U1, . . . , Uj−1, Uj+1, . . . , UK) is pos-

itive (see Tierney, 1994a, subsection 2.3.3). However, it works best if the proposal is

close to the desired conditional density.
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Note that actually Metropolis-Hastings algorithm can be used directly for sam-

pling from the multivariate posterior distribution rather than from univariate full

conditionals. But in this case it will be very hard to find the appropriate multivariate

proposal distribution which would provide good convergence. So we only use one step

of Metropolis-Hastings algorithm on each iteration of the Gibbs sampler.

This combined algorithm having one iteration of Metropolis-Hastings algorithm

inside the Gibbs sampler, is known as Metropolis-within-Gibbs. Combined Metropolis

algorithms are discussed in Tierney (1994a,b). They provide the necessary theoretical

background and prove the convergence of such methods. They mention that in the

case of being unable to sample from the conditional distribution in Gibbs sampler

directly, one can use the approximate algorithms like rejection sampling or grid-

based sampling. But in order to ensure that stationary distribution doesn’t change,

one should embed such algorithm in a Metropolis chain. This guarantees that the

equilibrium distribution is exactly the desired distribution no matter how good the

approximation is.

Often the proposal contains some parameters which need to be tuned in order to

improve the convergence properties. This can be hard to do sometimes. The adap-

tive algorithms can be used to automate the tuning process during the sampling.

Roberts and Rosenthal (2007) discuss the adaptive MCMC algorithms, showing that

one should be careful with adopting since it can destroy the convergence to the de-

sired distribution. In particular they discuss the adaptive Metropolis-within-Gibbs

algorithm on the example (”Stairway to Heaven”). The adaptive algorithms are very
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useful if one uses, for example, Metropolis random walk, i.e. the Metropolis algo-

rithm with proposal having the form of normal distribution centred at the previously

generated point. In this case the variance parameter should be tuned to ensure that

the rejection doesn’t occur too often and at the same time random walk explores the

sample space good enough.

In our work we choose to derive the proposals which are close to the desired full

conditionals instead of using the methods like random walk which are very simple in

implementation but require tuning procedures and suffering from slow convergence.



APPENDIX B

Proofs of Propositions Concerning Full Conditional
Distributions

In this Appendix we present the proofs of the propositions stated in Chapter 2.

1. Baseline full conditional distribution

Proof of Proposition 4.1. The full conditional distribution of λj given all

other parameters and data can be obtained by extracting all the terms containing λj

from the posterior distribution given by the formula (2.3.6). Thus it is proportional

to:

π (λj |αj,ωj,D) ∝
∏
i∈Ej

(
λj +

p∑
k=1

αkjzikj + ωli

)

× λc0r0∆tj−1
j exp

(
−(Rj + c0)λj∆tj

)
× I

{
λj +

p∑
k=1

min

{
αkj inf Ωk, αkj sup Ωk

}
+ min

1≤l≤n
ωlj > 0

}
, λj > 0, (B.1.1)

where Ej is the set of all individuals for which the event occurred in the interval

(tj−1, tj] and Rj =
∑N

i=1Rij with Rij being the proportions the individuals are at risk

in this interval which are defined in (2.3.3).

So, if there are no events in the interval (tj−1, tj] then the distribution of λj given

by (B.1.1) reduces to constrained Gamma. If, in addition, the inequality inside the

indicator function in this equation holds for all λj > 0, this distribution becomes

76
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Gamma with the shape and scale parameters c0r0∆tj and 1
(c0+Rj)∆tj

respectively.

If however there are events in the interval (tj−1, tj] the distribution becomes more

complex.

Note that with regard to λj the first term of the equation (B.1.1) is a polynomial

of the power Ej = card(Ej) equal to the number of events in the interval (tj−1, tj].

Then the distribution of λj has the form of:

fλj(x) ∝
Ej∏
s=1

(x+ cs)
1

ερΓ(ρ)
xρ−1 exp

(
−x
ε

)
I {x > a} , x > 0, (B.1.2)

where cs =
∑p

k=1 αkjziskj +ωlis with is being the indexes of the individuals from cEj;

ρ = c0r0∆tj, ε = 1
(c0+Rj)∆tj

and Γ(ρ) =
∫∞

0
ξρ−1 exp(−ξ)dξ is a gamma-function. The

constraint a inside the indicator function is computed according to (B.1.1) as:

a = −
p∑

k=1

min

{
αkj inf Ωk, αkj sup Ωk

}
− min

1≤l≤n
ωlj. (B.1.3)

Also we make a convention that in the case of Ej = 0 the product
∏0

s=1(x+ cs) ≡ 1.

Note that cs ≥ −a, ∀s = 1 . . . Ej, which follows directly from the definition of

constraint a and coefficients cs.

This gives us the distribution of exactly the same form as stated. �

Proof of Proposition 4.2. The polynomial
∏Ej

s=1(x + cs) can be expanded

into
∑Ej

f=0 dfx
f which leads to the following expression for the density:

fλj(x) =
1

CnormερΓ(ρ)

Ej∑
f=0

dfx
ρ+f−1 exp

(
−x
ε

)
I {x > max[a, 0]} . (B.1.4)
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This allows us to find the normalizing constant explicitly:

Cnorm =

∫ ∞
max[a,0]

Cnormfλj(x)dx

=

Ej∑
f=0

(
dfε

f Γ(ρ+ f)

Γ(ρ)

∫ ∞
max[a,0]

1

ερ+fΓ(ρ+ f)
xρ+f−1 exp

(
−x
ε

)
dx

)

=

Ej∑
f=0

dfεf Γ(ρ+ f)

Γ(ρ)

1−
γ
(

max[a,0]
ε

, ρ+ f
)

Γ(ρ+ f)

 =

Ej∑
f=0

dfIf , (B.1.5)

with
γ(xε ,ρ)

Γ(ρ)
being a CDF of gamma distribution G(ρ, ε), where:

γ (x, ρ) =

∫ x

0

ξρ−1 exp(−ξ)dξ (B.1.6)

is the lower incomplete gamma function, and we denote:

If = εf
Γ(ρ+ f)

Γ(ρ)

1−
γ
(

max[a,0]
ε

, ρ+ f
)

Γ(ρ+ f)

 . (B.1.7)

Similarly to normalizing constant, we can now find the mean of this distribution:

µ =

∑Ej
f=0 dfIf+1∑Ej
f=0 dfIf

, (B.1.8)

which is exactly the formula stated. �

Proof of Proposition 4.3. We will use the log-transformation of the pdf for

finding the maximum:

ψ(x) = ln fλj(x) =

Ej∑
s=1

ln(x+ cs) + (ρ− 1) lnx− x

ε
+ C, (B.1.9)

ψ′(x) =

Ej∑
s=1

1

x+ cs
+
ρ− 1

x
− 1

ε
, (B.1.10)

ψ′′(x) = −
Ej∑
s=1

1

(x+ cs)2
− ρ− 1

x2
, (B.1.11)
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where C is a constant not depending on x. Recall that the terms (x + cs) are all

positive provided that x > a which makes the usage of the logarithm possible.

So we search for local maximum of ψ(x) in the region x > max{a, 0}. To avoid

singularity at the ending point, the optimization algorithm should be designed in such

way that it does not allow x to reach the bound.

Now consider the following functions:

ψmin(x) = Ej ln(x+ cmin) + (ρ− 1) ln(x)− x

ε
+ C, (B.1.12)

ψmax(x) = Ej ln(x+ cmax) + (ρ− 1) ln(x)− x

ε
+ C, (B.1.13)

where the function ψmin(x) is obtained from the function ψ(x) by replacing all the

coefficients cs by the minimum of them cmin = min
1≤s≤Ej

cs, and ψmax(x) is obtained

from ψ(x) by replacing all the coefficients cs by the maximum cmax = max
1≤s≤Ej

cs.

The corresponding first derivatives will then be the following:

ψ′min(x) =
Ej

x+ cmin
+
ρ− 1

x
− 1

ε
, (B.1.14)

ψ′max(x) =
Ej

x+ cmax
+
ρ− 1

x
− 1

ε
. (B.1.15)

The simple expressions for ψmax(x) and ψmin(x) allow us to find the largest ex-

tremum for each of them analytically (if it exists):

xL=
1

2

(
ε(ρ+Ej−1)−cmax+

√
(ε(ρ+Ej−1)−cmax)2+4ε(ρ−1)cmax

)
(B.1.16)

xU =
1

2

(
ε(ρ+Ej−1)−cmin+

√
(ε(ρ+Ej−1)−cmin)2+4ε(ρ−1)cmin

)
(B.1.17)

where xL and xU are the maximums of ψmax(x) and ψmin(x) respectively provided

that the expressions under the square roots are non-negative.
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Note that since cmin ≤ cs ≤ cmax, ∀s = 1, . . . , Ej, then ψ′max(x) ≤ ψ′(x) ≤

ψ′min(x), ∀x > max{a, 0}.

This implies that if ψmin(x) does not have extrema then ψ′min(x) < 0, ∀x >

max{a, 0}, and thus, ψ′(x) < 0 in this region from which we conclude that ψ(x) does

not have extrema as well and is strictly decreasing.

Note that when x → ∞ the function ψ(x) tends to negative infinity and its

derivative approaches a negative value:

lim
x→∞

ψ(x) = −∞, lim
x→∞

ψ′(x) = −1

ε
< 0. (B.1.18)

The form of the function ψ′(x) tells us that there can be only finite number of

solutions for the equation ψ′(x) = 0. So if there exist extrema of ψ(x), there are

only finite number of them. Since ψ′(x) eventually becomes negative, the greatest

extremum can not be local minimum. So it is local maximum. This proves the first

statement.

Now since x̂ is local maximum, ψ′(x̂) = 0 and ψ′(x) > 0 for some x < x̂. Then

ψ′min(x) > 0 and so since ψ′min(x) eventually becomes negative and is continuous,

there exists an extremum xU of ψmin(x) which is greater or equal to the extremum of

ψ(x), i.e. xU ≥ x̂.

Similarly, the existence of the largest extremum xL of ψmax(x) implies the existence

of extrema for ψ(x) and holding of inequality xL ≤ x̂. Then as was shown before xU

is defined and x̂ ≤ xU .

This proves all the statements of the proposition. �
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2. Regression function full conditional distribution

Proof of Proposition 4.4. The full conditional distribution of the compo-

nent of one regression function αkj given all other parameters can be obtained by

extracting all the terms containing αkj from the posterior distribution given by the

formula (2.3.6). Thus it is proportional to:

π (αkj |λj, αkj′ 6=kj,ωj,D) ∝
∏

i∈Ej∩Ckj

(
λj + αkjzikj +

∑
k′ 6=k

αk′jzik′j + ωlij

)

× exp

(
−

(
N∑
i=1

Rijzikj

)
αkj∆tj

)

× I

{
αkj inf Ωk ≥ −λj −

∑
k′ 6=k

min

{
αk′j inf Ωk′ , αk′j sup Ωk′

}
− min

1≤l≤n
ωlj

}

× I

{
αkj sup Ωk ≥ −λj −

∑
k′ 6=k

min

{
αk′j inf Ωk′ , αk′j sup Ωk′

}
− min

1≤l≤n
ωlj

}

× I

{
0 ∈ Ωk ⇒ 0 ≥ −λj −

∑
k′ 6=k

min

{
αk′j inf Ωk′ , αk′j sup Ωk′

}
− min

1≤l≤n
ωlj

}
,

(B.2.1)

where Ckj is the set of individuals whose k-th covariate takes non-zero value at time

tj, i.e.

Ckj =

{
i : zikj 6= 0

}
. (B.2.2)

The first term in (B.2.1) is the polynomial of the power q = card(Ej ∩ Ckj) which

is equal to the number of individuals who had an event in the interval (tj−1, tj] and

whose k-th covariate was not zero at the moment of event.

The last three terms (indicator functions) represent constraints. If Ωk contains

only non-negative values then the distribution is constrained from the left, if it con-

tains only non-positive values then the distribution is constrained from the right, and
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if it contains both positive and negative values then the distribution is constrained

from both sides. The last constraint is introduced for mathematical completeness and

is actually a constraint on the variables in the condition rather than on αkj. Since

every set Ωk contains 0 (which makes λ(t) to be interpretable as the baseline hazard),

this constraint basically tells us that the right hand side of the first two restricting

inequalities is always non-positive.

Since zikj 6= 0, ∀i ∈ Ej ∩ Ckj, then we can divide each term in the product by

corresponding zikj and obtain the distribution of the following form:

fαkj(x) ∝

(
q∏
s=1

(x+ cs)

)
exp (−εx) I {a < x < b} , (B.2.3)

where the coefficients of the polynomial cs and the parameter ε are defined as:

cs =
1

zikj

(
λj +

∑
k′ 6=k

αk′jzik′j + ωlisj

)
, (B.2.4)

ε =

(
N∑
i=1

Rijzikj

)
∆tj, (B.2.5)

with the indices is being the indices of the individuals from Ej ∩ Ckj.

In the case of q = 0 the convention is made that
∏0

s=1(x+ cs) ≡ 1. Also note that

in the case when all individuals which are at risk in the interval (tj−1, tj] have the

k-th covariate equal to 0, it is impossible to estimate αkj from the data. In this case

one should merge the interval (tj−1, tj] with the adjacent intervals in order to obtain

at least one individual at risk with non-zero k-th covariate.
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The constraints −∞ ≤ a < b ≤ ∞ are constants calculated according to (B.2.1)

as follows:

a =

{
Cconstr

sup Ωk
if sup Ωk > 0,

−∞ otherwise,

b =

{
Cconstr

inf Ωk
if inf Ωk < 0,

+∞ otherwise,

(B.2.6)

where Cconstr is the right side of the restricting inequalities inside the indicator func-

tions of (B.2.1):

Cconstr =

(
−λj −

∑
k′ 6=k

min

{
αk′j inf Ωk′ , αk′j sup Ωk′

}
− min

1≤l≤n
ωlj

)
, (B.2.7)

which is non-positive as was already told before.

Note that all the coefficients cs of the polynomial in (B.2.3) satisfy exactly one of

the conditions −cs ≤ a ≤ 0 or −cs ≥ b ≥ 0 which implies that sign(x + cs) = const,

∀x : a < x < b. �

Proof of Proposition 4.5. Expanding the product
∏q

s=1(x+ cs) to the form∑q
f=0 dfx

f we can rewrite the pdf fαkj(x) as:

fαkj(x) =
1

Cnorm

q∑
f=0

dfx
f exp (−εx) I {a ≤ x ≤ b} . (B.2.8)

As before, the normalizing constant Cnorm can be obtained by integration of each

term in the summation(B.2.8). The recurrence relation between the integrals If =∫ b
a
xf exp(−εx)dx used for integrating the summation (B.2.8) in the case of ε 6= 0 is

the following:

I0 =
1

ε

(
exp(−εa)− exp(−εb)

)
, (B.2.9)

If =
1

ε

(
af exp(−εa)− bf exp(−εb) + fIf−1

)
, f = 1, . . . , q, (B.2.10)
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and in the case of ε = 0 these integrals become:

If =
xf+1

f + 1
, f = 0, . . . , q. (B.2.11)

Then the normalizing constant is equal to:

Cnorm =

q∑
f=0

dfIf , (B.2.12)

and the mean of this distribution can be obtained as:

µ =

∑q
f=0 dfIf+1∑q
f=0 dfIf

. (B.2.13)

�

Proof of Proposition4.6. Firstly, consider the relation between the sign of ε

and the infiniteness of a or b.

If both a and b are finite, it means that inf Ωk < 0 and sup Ωk > 0. So the

covariates zikj of individuals can have any sign and therefore ε can have any sign as

well.

If a is finite and b is infinite then it means that inf Ωk = 0 and so all zikj ≥ 0.

Then ε ≥ 0 and in case when there is at least one individual at risk with non-zero

k-th covariate, it becomes strictly positive: ε > 0. The case when there are no such

individuals is not considered since in this case it is impossible to estimate αkj from

the data.

Similarly, if a is infinite and b is finite, ε < 0.

The case of both a and b infinite is impossible since Ωk contains non-zero values

and so ether inf Ωk < 0 or sup Ωk > 0 or both this conditions are satisfied. This

implies that at least one of a and b is finite.
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In the case of q = 0, the function fαkj(x) is just the exponent and so the correctness

of the stated in this proposition statements is obvious.

In the case of q 6= 0 we study the behaviour of function fαkj(x) using its logarithm

transformation:

ψ(x) = ln fαkj(x) =

q∑
s=1

ln |x+ cs| − εx, (B.2.14)

ψ′(x) =

q∑
s=1

1

x+ cs
− ε, (B.2.15)

ψ′′(x) = −
q∑
s=1

1

(x+ cs)2
. (B.2.16)

The second derivative is always negative, so the function ψ(x) is strictly concave

and therefore it can have at most one extremum which should be maximum. Then

the stated cases of function behaviour are obvious.

Now, consider the behaviour of modified Newton-Raphson algorithm.

If both a and b are finite, then setting L = a and U = b will provide that the

algorithm returns a value between a and b.

Consider now the case when a is finite and b is infinite.

The coefficients cs all satisfy cs ≥ −a ≥ 0 and so x + cs ≥ 0. Then the function

ψ′(x) is positive near x = −cmin and negative at infinity:

lim
x→−c+min

ψ′(x) = +∞ > 0, (B.2.17)

lim
x→+∞

ψ′(x) = −ε < 0. (B.2.18)

Since ψ′(x) is continuous for x > −cmin there exists a point where ψ′(x) = 0. Since

the function is concave, the Newton-Raphson algorithm will converge to this point,
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and so our modified Newton-Raphson algorithm will converge to this point or will

approach a if this point is less than a.

The case of infinite a and finite b is symmetric.

Since the case when both a and b are infinite is impossible, we conclude that the

statement of the proposition about the Newton-Raphson algorithm is true. �

3. Frailty full conditional distribution

Proof of Proposition 4.7. The full conditional distribution of the frailty ωlj

given all other parameters can be obtained by extracting all the terms containing ωlj

from the posterior distribution given by the formula (2.3.6). Thus it is proportional

to:

π
(
ωlj |λj,αj, ωl′j 6=lj, θ2

j ,D
)

∝
∏

i∈Ej∩Sl

(
λj +

p∑
k=1

αkjzikj + ωlj

)
exp

(
−R(l)

j ωlj∆tj

)

× exp

(
− 1

2θ2
j

ml(ωlj − ωlj)2

)
× I

{
ωlj ≥ −λj −

p∑
k=1

min

{
αkj inf Ωk, αkj sup Ωk

}}
, (B.3.1)

where Sl is the set of all individuals which belong to the l-th group, R
(l)
j =

∑
i∈Sl Rij is

the proportion of time the individuals in l-th group are at risk in the interval (tj−1, tj].

This distribution has the following form:

fωlj(x) =

(
q∏
s=1

(x+ cs)

)
1√

2πδ2
exp

(
−(x− µ0)2

2δ2

)
I {a1 < x < b1} , (B.3.2)
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where the power of the polynomial is q = card(Ej ∩ Sl), and the limits a1 and b1 are

the following:

a1 = −λj −
p∑

k=1

min

{
αkj inf Ωk, αkj sup Ωk

}
, (B.3.3)

b1 = +∞. (B.3.4)

The parameters µ0 and δ of this distribution are computed as:

µ0 =
θ2
j

ml

R
(l)
j ∆tj + ωlj, (B.3.5)

δ2 =
θ2
j

ml

. (B.3.6)

�

Proof of Proposition 4.8. Expanding the product and applying the trans-

formation x = y−µ0
δ

we obtain the following distribution:

fY (y) ∝

(
q∑

f=0

dfy
f

)
1√
2π

exp

(
−y

2

2

)
I {a < y < b} , (B.3.7)

where the coefficients of the polynomial are changed in accordance with expansion

and transformation, and the constraints a1 and b1 are changed to a = a1−µ0
δ

and

b = b1−µ0
δ

respectively.

This distribution is very similar to constrained normal. So normal distribution

can be used as proposal. We take normal proposal with mean equal to the mean

of the distribution in equation (B.3.7) and variance adjusted to fit the shape of this

distribution.

In order to obtain the mean, we need to find the normalizing constant first. It can

be obtained by integrating the function given by formula (B.3.7). It is straightforward
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if we know the integrals of the form:

If =

∫ b

a

1√
2π
yf exp

(
−y

2

2

)
dy, f = 0, 1, 2, . . . (B.3.8)

For f = 0 and 1 this integral will be:

I0 =

∫ b

a

1√
2π

exp

(
−y

2

2

)
dy = Φ(b)− Φ(a), (B.3.9)

I1 =

∫ b

a

1√
2π
y exp

(
−y

2

2

)
dy = −

∫ b

y=a

d

(
1√
2π

exp

(
−y

2

2

))
= −ϕ(y)

∣∣b
a

= ϕ(a)− ϕ(b), (B.3.10)

where Φ(y) and ϕ(y) are the CDF and pdf of the standard normal distribution,

respectively.

Now If can be found recursively for all f = 2, 3, . . .

If =

∫ b

a

1√
2π
yf exp

(
−y

2

2

)
dy = −

∫ b

y=a

yf−1d

(
1√
2π

exp

(
−y

2

2

))
= −yf−1ϕ(y)

∣∣b
a

+ (f − 1)

∫ b

a

1√
2π
yf−2 exp

(
−y

2

2

)
dy

= af−1ϕ(a)− bf−1ϕ(b) + (f − 1)If−2. (B.3.11)

Then the normalizing constant for the function given by equation (B.3.7) is simply:

CY
norm =

q∑
f=0

dfIf . (B.3.12)

So, the exact expression for the fY (y) in (B.3.7) is the following:

fY (y) =

(∑q
f=0 dfy

f
)

1√
2π

exp
(
−y2

2

)
I {a < y < b}∑q

f=0 dfIf
. (B.3.13)

The mean of this distribution can be found similarly:

µY =

∑q
f=0 dfIf+1∑q
f=0 dfIf

. (B.3.14)
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The mean of the fωlj(x) can be found by back-transformation to x as:

µ = δµY + µ0 (B.3.15)

The normalizing constant for fωlj(x) can be found by back transformation as well:

Cnorm = CY
normδ

q (B.3.16)

�

Proof of Proposition 4.9. The log-transformed pdf and its derivatives have

the following form here:

ψ(x) = ln fωlj(x) =

q∑
s=1

ln(x+ cs)−
(x− µ0)2

2δ2
, (B.3.17)

ψ′(x) =

q∑
s=1

1

x+ cs
− x− µ0

δ2
, (B.3.18)

ψ′′(x) = −
q∑
s=1

1

(x+ cs)2
− 1

δ2
. (B.3.19)

The second derivative is always strictly negative, so if the extremum exists, it is

the only extremum which function ψ(x) can have and it is maximum.

Using the fact that:

lim
x→−c+min

ψ′(x) = +∞ > 0, (B.3.20)

lim
x→+∞

ψ′(x) = −∞ < 0, (B.3.21)

and that ψ′(x) is continuous in x > −cmin, where cmin = min1≤s≤q{cs} and we assume

that cmin = +∞ if q = 0, we get that extremum always exists (if q = 0 this is the usual

maximum of normal distribution at µ0). So our modified Newton-Raphson algorithm

will converge to this extremum or to the limit a1 if extremum is less than this limit.
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So the algorithm will not tend to infinity and we do not need the upper limit and can

simply use U = +∞. �



APPENDIX C

Modified Newton-Raphson Algorithm for Finding the
Extremum in an Open Interval

The original Newton-Raphson algorithm consists in producing the sequence of

points xr which is expected to converge to the extremum:

xr = xr−1 −
ψ′(xr−1)

ψ′′(xr−1)
, r = 1, . . . ,M, (C.0.1)

where the initial value x0 is chosen arbitrary but such that it provides the convergence

of the algorithm, and the number M is chosen such that the consecutive points or

the values of function at these points become sufficiently close to each other. We will

use the closeness of points as the criterium of choosing M :

M = min{r ≥ 1 : |xr − xr−1| < δ}, (C.0.2)

where δ is a prespecified value representing the desired accuracy.

This algorithm attempts to solve the equation ψ′(x) = 0 the solution of which is

expected to be the desired extremum.

Note that this algorithm does not suppose any constraints on x. So in order to

solve the optimization problem in a particular region we need to modify this algorithm

not allowing xr to take values outside that region. Also since the ending points can

contain singularities we do not allow xr to reach them as well.
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So, we propose the following modified algorithm of finding the extremum in the

opened interval (L,U):

xr =


x

(0)
r , if L < x

(0)
r < U,

ζxr−1 + (1− ζ)L, if x
(0)
r ≤ L,

ζxr−1 + (1− ζ)U, if x
(0)
r ≥ U,

(C.0.3)

where x
(0)
r is the value obtained using the regular Newton-Raphson formula (C.0.1),

ζ is some value from the interval (0, 1) and the limits L and U satisfy the condition

−∞ ≤ L < U ≤ ∞, i.e. the upper bound is strictly greater than the lower and any or

both of them can be infinite. We choose the value ζ to be 0.01 which does not allow

xr to reach L or U but allows it to come very close to them if the Newton-Raphson

method attempts to take the next value outside the interval (L,U).

Also we limit the maximum number of iterations by some value Mmax (which is

chosen to be 500) to avoid the possible infinite cycle.

In the case of zero second derivative or undefined first or second derivative at some

iteration, the algorithm stops and returns the last found value. This applies also to

the case when the second derivative is zero at the initial point x0.

Note that our modified Newton-Raphson algorithm does not guarantee that the

extremum is found. Particularly in the case of non-existence of extremum in the

interval or existence of several extrema. But it is worth mentioning, that the algorithm

produces some well-defined value of x in a finite number of steps for any input, i.e.

for any function ψ(x) and any initial value x0 ∈ (L,U), and ensures that this value

belongs to the interval (L,U). This is a very important property of the algorithm in

our application.



APPENDIX D

Results of Simulations

Figure 7. Estimated parameters for number of observations N = 100,
number of breakpoints m = 1 and number of iterations I = 100
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Figure 8. Estimated parameters for number of observations N = 100,
number of breakpoints m = 1 and number of iterations I = 500
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Figure 9. Estimated parameters for number of observations N = 100,
number of breakpoints m = 1 and number of iterations I = 1000
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Figure 10. Estimated parameters for number of observations N =
100, number of breakpoints m = 1 and number of iterations I = 5000
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Figure 11. Estimated parameters for number of observations N =
100, number of breakpoints m = 5 and number of iterations I = 100
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Figure 12. Estimated parameters for number of observations N =
100, number of breakpoints m = 5 and number of iterations I = 500
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Figure 13. Estimated parameters for number of observations N =
100, number of breakpoints m = 5 and number of iterations I = 1000
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Figure 14. Estimated parameters for number of observations N =
100, number of breakpoints m = 5 and number of iterations I = 5000
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Figure 15. Estimated parameters for number of observations N =
100, number of breakpoints m = 10 and number of iterations I = 100
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Figure 16. Estimated parameters for number of observations N =
100, number of breakpoints m = 10 and number of iterations I = 500
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Figure 17. Estimated parameters for number of observations N =
100, number of breakpoints m = 10 and number of iterations I = 1000
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Figure 18. Estimated parameters for number of observations N =
100, number of breakpoints m = 10 and number of iterations I = 5000
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Figure 19. Estimated parameters for number of observations N =
100, number of breakpoints m = 50 and number of iterations I = 100
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Figure 20. Estimated parameters for number of observations N =
100, number of breakpoints m = 50 and number of iterations I = 500
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Figure 21. Estimated parameters for number of observations N =
100, number of breakpoints m = 50 and number of iterations I = 1000
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Figure 22. Estimated parameters for number of observations N =
100, number of breakpoints m = 50 and number of iterations I = 5000
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Figure 23. Estimated parameters for number of observations N =
1000, number of breakpoints m = 1 and number of iterations I = 100
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Figure 24. Estimated parameters for number of observations N =
1000, number of breakpoints m = 1 and number of iterations I = 500
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Figure 25. Estimated parameters for number of observations N =
1000, number of breakpoints m = 1 and number of iterations I = 1000
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Figure 26. Estimated parameters for number of observations N =
1000, number of breakpoints m = 1 and number of iterations I = 5000
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Figure 27. Estimated parameters for number of observations N =
1000, number of breakpoints m = 5 and number of iterations I = 100
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Figure 28. Estimated parameters for number of observations N =
1000, number of breakpoints m = 5 and number of iterations I = 500
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Figure 29. Estimated parameters for number of observations N =
1000, number of breakpoints m = 5 and number of iterations I = 1000
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Figure 30. Estimated parameters for number of observations N =
1000, number of breakpoints m = 5 and number of iterations I = 5000
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Figure 31. Estimated parameters for number of observations N =
1000, number of breakpoints m = 10 and number of iterations I = 100

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

1.
0

1.
5

Baseline

t

B
as

el
in

e

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

Regression function 1

t

R
eg

re
ss

io
n 

fu
nc

tio
n 

1

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

Regression function 2

t

R
eg

re
ss

io
n 

fu
nc

tio
n 

2

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

Frailty 2

t

F
ra

ilt
y 

2

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

Frailty 3

t

F
ra

ilt
y 

3

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

Frailty 4

t

F
ra

ilt
y 

4

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

Frailty 5

t

F
ra

ilt
y 

5

Figure 32. Estimated parameters for number of observations N =
1000, number of breakpoints m = 10 and number of iterations I = 500
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Figure 33. Estimated parameters for number of observations N =
1000, number of breakpoints m = 10 and number of iterations I = 1000
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Figure 34. Estimated parameters for number of observations N =
1000, number of breakpoints m = 10 and number of iterations I = 5000
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Figure 35. Estimated parameters for number of observations N =
1000, number of breakpoints m = 50 and number of iterations I = 100
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Figure 36. Estimated parameters for number of observations N =
1000, number of breakpoints m = 50 and number of iterations I = 500
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Figure 37. Estimated parameters for number of observations N =
1000, number of breakpoints m = 50 and number of iterations I = 1000
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Figure 38. Estimated parameters for number of observations N =
1000, number of breakpoints m = 50 and number of iterations I = 5000
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Figure 39. Estimated parameters for number of observations N =
10000, number of breakpoints m = 1 and number of iterations I = 100
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Figure 40. Estimated parameters for number of observations N =
10000, number of breakpoints m = 1 and number of iterations I = 500
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Figure 41. Estimated parameters for number of observations N =
10000, number of breakpoints m = 1 and number of iterations I = 1000
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Figure 42. Estimated parameters for number of observations N =
10000, number of breakpoints m = 1 and number of iterations I = 5000
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Figure 43. Estimated parameters for number of observations N =
10000, number of breakpoints m = 5 and number of iterations I = 100
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Figure 44. Estimated parameters for number of observations N =
10000, number of breakpoints m = 5 and number of iterations I = 500
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Figure 45. Estimated parameters for number of observations N =
10000, number of breakpoints m = 5 and number of iterations I = 1000
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Figure 46. Estimated parameters for number of observations N =
10000, number of breakpoints m = 5 and number of iterations I = 5000
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Figure 47. Estimated parameters for number of observations N =
10000, number of breakpoints m = 10 and number of iterations I = 100
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Figure 48. Estimated parameters for number of observations N =
10000, number of breakpoints m = 10 and number of iterations I = 500
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Figure 49. Estimated parameters for number of observations N =
10000, number of breakpoints m = 10 and number of iterations I =
1000
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Figure 50. Estimated parameters for number of observations N =
10000, number of breakpoints m = 10 and number of iterations I =
5000
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Figure 51. Estimated parameters for number of observations N =
10000, number of breakpoints m = 50 and number of iterations I = 100
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Figure 52. Estimated parameters for number of observations N =
10000, number of breakpoints m = 50 and number of iterations I = 500
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Figure 53. Estimated parameters for number of observations N =
10000, number of breakpoints m = 50 and number of iterations I =
1000
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Figure 54. Estimated parameters for number of observations N =
10000, number of breakpoints m = 50 and number of iterations I =
5000
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