
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2013

An empirical study of 3-vertex connectivity algorithms An empirical study of 3-vertex connectivity algorithms

Zhigang Jiang
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Jiang, Zhigang, "An empirical study of 3-vertex connectivity algorithms" (2013). Electronic Theses and
Dissertations. 4980.
https://scholar.uwindsor.ca/etd/4980

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4980&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/4980?utm_source=scholar.uwindsor.ca%2Fetd%2F4980&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

AN EMPIRICAL STUDY OF 3-VERTEX CONNECTIVITY ALGORITHMS

by

ZHIGANG JIANG

A Thesis

Submitted to the Faculty of Graduate Studies

through Computer Science

in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada

2013

c© 2013 Zhigang Jiang

AN EMPIRICAL STUDY OF 3-VERTEX CONNECTIVITY ALGORITHMS

by

ZHIGANG JIANG

APPROVED BY:

J. Wu

Electrical and Computer Engineering

D. Wu

Computer Science

Y. H Tsin, Advisor

Computer Science

September 11, 2013

Declaration of originality

I hereby certify that I am the sole author of this thesis and that no part of this thesis has been

published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone’s copy-

right nor violate any proprietary rights and that any ideas, techniques, quotations, or any other

material from the work of other people included in my thesis, published or otherwise, are fully

acknowledged in accordance with the standard referencing practices. Furthermore, to the extent

that I have included copyrighted material that surpasses the bounds of fair dealing within the

meaning of the Canada Copyright Act, I certify that I have obtained a written permission from

the copyright owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved by my

thesis committee and the Graduate Studies office, and that this thesis has not been submitted for

a higher degree to any other University or Institution.

iii

Abstract

Graph connectivity is one of the most basic properties of graph. Owing to this reason, it is funda-

mental to the studies of many important applications such as network reliability, cluster analysis,

graph optimization, quantum physics, bioinformatics and social networks. Triconnectivity is a

topic in graph connectivity which has been used in graph drawing, graph decomposition in ge-

ometry constraint solver, and social network studies. Hopcroft and Tarjan (1973) proposed the

first linear-time algorithm for this problem. Although elegant, this algorithm is very complex

and contains many minor but crucial errors which make it very difficult to understand and im-

plement correctly. Gutwenger and Mutzel (2001) published a list of errors, outlining how to fix

them and implemented the corrected algorithm.Recently, Tsin (2012) proposed a new linear-time

algorithm which is based on a new graph transformation technique. Tsin’s algorithm is concep-

tually very simple and performs one less pass over the given graph than Hopcroft et al. These

make the algorithm much easier to implement. In this thesis , we implemented Tsin’s algorithm

and compare its performance with Gutwenger and Mutzel’s implementation of the algorithm of

Hopcroft and Tarjan by carrying out an empirical study.

iv

Dedication

I would like to dedicate this thesis to my girlfriend, my parents and my aunt’s family.

v

Acknowledgements

I would like to express my gratitude to my supervisor Dr. Yung H. Tsin for his invaluable

assitance, patience and guidance. The most important is that he teaches me to be an independent

thinker. Without his support and help, I would not have been able to write this thesis.

Besides my supervisor, I would like to thank the rest of my thesis committee: Dr. Dan Wu, Dr.

Jonathan Wu, and Dr. Jianguo Lu for their engagement, insightful comments.

vi

Contents

Declaration of originality iii

Abstract iv

Dedication v

Acknowledgements vi

List of Figures x

1 Introduction 1

1.1 Graph . 1

1.2 Depth-first search . 4

1.2.1 Adjacency list . 6

1.2.2 Palm tree . 7

1.3 Some definitions related to DFS . 8

1.4 Graph Connectivity . 9

1.4.1 Applications . 9

1.4.2 Some definitions . 10

2 3-vertex connectivity 12

2.1 Triconnected graph . 12

2.2 Split graph . 13

2.3 Split components and Triconnected components 14

2.4 Previous work and two algorithms for empirical study 15

vii

CONTENTS viii

3 Two Algorithms 17

3.1 Hopcroft and Tarjan’s Algorithm . 17

3.1.1 Key idea . 17

3.1.2 Finding Separation Pair . 18

3.1.3 Finding Split Components . 19

3.2 Tsin’s Algorithm . 20

3.2.1 Millipede . 22

3.2.2 Two Transformations . 23

3.2.3 The Algorithm . 24

4 Implementation 26

4.1 Modifying Gutwenger and Mutzel’s code for Hopcroft and Tarjan’s algorithm . . . 26

4.2 Randomly generate the biconnected input graph 29

4.3 Creating adjacency list . 30

4.4 Determining ancestor or descendant relationship 31

4.5 Representation of the millipede . 32

4.6 Handling incoming frond . 33

4.6.1 How to compute an initial value for f ’ . 39

4.6.2 Time to compute f ’ . 41

4.7 Performing the coalesce operation . 42

4.8 Finding separation pair . 43

4.9 Creating triple bonds . 44

4.9.1 Determining if frond u ↪→ w exists . 44

4.9.2 Determining if frond w ↪→ lowpt1(u) exists 45

5 Comparison 47

5.1 Platform . 47

5.2 Data Set . 48

5.3 Results . 49

CONTENTS ix

5.3.1 Dense graph comparison . 49

5.3.2 Sparse graph comparison . 75

6 Conclusion 95

Bibliography 96

Vita Auctoris 99

List of Figures

1.1 Examples for directed graph, undirected graph and multigraph. 3

1.2 G = (V, E) . 5

1.3 An adjacency-list structure for the graph G in Figure 1.2 6

1.4 The palm tree of graph G. The solid edge denoted tree-edge and the dotted edge

denoted frond edge . 7

1.5 2-vertex connected component of graph G . 11

1.6 Two and three edge-connected component of graph G 11

2.1 Two special conditions for separation pair . 13

2.2 Graph G and its split graphs . 14

2.3 Graph G and its split components . 15

3.1 Type-1 and Type-2 separation pair of Hopcroft and Tarjan’s algorithm 18

3.2 separation pair (graph taken from Tsin (2012)) 21

3.3 Example of super graph (graph from Tsin (2012)) 22

3.4 Example of millipede (graph from Tsin (2012)) 23

4.1 Example of stack overflow occurs before modifying Gutwegner and Mutzel’s code 28

4.2 Example of ancestor and descendant relationship 31

4.3 Incoming frond of vertex u when w is a first descendant of u 33

4.4 Incoming frond of vertex u when w is not a first descedant of u 34

4.5 Handling incoming frond of vertex u when w is a first descendant of u 35

4.6 Handling incoming frond of vertex u when w is not a first descendant of u but is a

first descendant of v. 36

x

LIST OF FIGURES xi

4.7 Handling incoming frond of vertex u when w is not a first descendant of u and is

not a first descendant of v. 37

4.8 Example of path(v) and fork[v] . 40

4.9 Compute f ’ . 41

4.10 Example of different incoming fronds of vertex u 42

4.11 Example of the existence of frond u ↪→ w. 44

4.12 Example of the existence of frond u ↪→ lowpt1(u). 45

5.1 Total execution time (dense graphs with 0 < k ≤ 0.1) 51

5.2 Total execution time (dense graphs with 0.1 < k ≤ 0.2) 52

5.3 Total execution time (dense graphs with 0.2 < k ≤ 0.3) 53

5.4 Total execution time (dense graphs with 0.3 < k ≤ 0.4) 54

5.5 Total execution time (dense graphs with 0.4 < k ≤ 0.5) 55

5.6 Total execution time (dense graphs with 0.5 < k ≤ 0.6) 56

5.7 Total execution time (dense graphs with 0.6 < k ≤ 0.7) 57

5.8 Total execution time (dense graphs with 0.7 < k ≤ 0.8) 58

5.9 Time required to create the adjacency-lists (dense graphs with 0 < k ≤ 0.1) 59

5.10 Time required to create the adjacency-lists (dense graphs with 0.1 < k ≤ 0.2) . . . 60

5.11 Time required to create the adjacency-lists (dense graphs with 0.2 < k ≤ 0.3) . . . 61

5.12 Time required to create the adjacency-lists (dense graphs with 0.3 < k ≤ 0.4) . . . 62

5.13 Time required to create the adjacency-lists (dense graphs with 0.4 < k ≤ 0.5) . . . 63

5.14 Time required to create the adjacency-lists (dense graphs with 0.5 < k ≤ 0.6) . . . 64

5.15 Time required to create the adjacency-lists (dense graphs with 0.6 < k ≤ 0.7) . . . 65

5.16 Time required to create the adjacency-lists (dense graphs with 0.7 < k ≤ 0.8) . . . 66

5.17 Time required to find split components (dense graphs with 0 < k ≤ 0.1) 67

5.18 Time required to find split components (dense graphs with 0.1 < k ≤ 0.2) 68

5.19 Time required to find split components (dense graphs with 0.2 < k ≤ 0.3) 69

5.20 Time required to find split components (dense graphs with 0.3 < k ≤ 0.4) 70

LIST OF FIGURES xii

5.21 Time required to find split components (dense graphs with 0.4 < k ≤ 0.5) 71

5.22 Time required to find split components (dense graphs with 0.5 < k ≤ 0.6) 72

5.23 Time required to find split components (dense graphs with 0.6 < k ≤ 0.7) 73

5.24 Time required to find split components (dense graphs with 0.7 < k ≤ 0.8) 74

5.25 Total execution time (sparse graphs with 1≤ |E||V | < 1.1) 76

5.26 Total execution time (sparse graphs with 1.1≤ |E||V | < 1.3) 77

5.27 Total execution time (sparse graphs with 1.3≤ |E||V | < 2) 78

5.28 Total execution time (sparse graphs with 2≤ |E||V | < 5) 79

5.29 Total execution time (sparse graphs with 5≤ |E||V | < 10) 80

5.30 Total execution time (sparse graphs with 10≤ |E||V | < 100) 81

5.31 Time required to create the adjacency-lists (sparse graphs with 1≤ |E||V | < 1.1) . . . 82

5.32 Time required to create the adjacency-lists (sparse graphs with 1.1≤ |E||V | < 1.3) . . 83

5.33 Time required to create the adjacency-lists (sparse graphs with 1.3≤ |E||V | < 2) . . . 84

5.34 Time required to create the adjacency-lists (sparse graphs with 2≤ |E||V | < 5) 85

5.35 Time required to create the adjacency-lists (sparse graphs with 5≤ |E||V | < 10) . . . 86

5.36 Time required to create the adjacency-lists (sparse graphs with 10≤ |E||V | < 100) . . 87

5.37 Time required to find split components (sparse graphs with 1≤ |E||V | < 1.1) 88

5.38 Time required to find split components (sparse graphs with 1.1≤ |E||V | < 1.3) 89

5.39 Time required to find split components (sparse graphs with 1.3≤ |E||V | < 2) 90

5.40 Time required to find split components (sparse graphs with 2≤ |E||V | < 5) 91

5.41 Time required to find split components (sparse graphs with 5≤ |E||V | < 10) 92

5.42 Time required to find split components (sparse graphs with 10≤ |E||V | < 100) 93

Chapter 1

Introduction

1.1 Graph

A graph, denoted by G = (V, E), consists of a set of vertices V and a set of edges E such that

every edge in E is associated with two vertices in V. The graph is an undirected graph if the edges

are associated with unordered pairs of vertices, represented by (v, w). The graph is a directed

graph if the edges are associated with ordered pairs of vertices represented by w→ v, where w

is called the tail and v is the head of the edge. An edge e associated with an unordered pair (v,

w) in an undirected graph is denoted by e = (v, w). An edge e associated with an ordered pair (v

→ w) in a directed graph is denoted by e = (v→ w).

The followings are some graph related definitions.

End-point

Let e = (v, w) be an edge in an undirected graph. The vertices v and w are called the end-points

of edge e.

Incident

1

CHAPTER 1. INTRODUCTION 2

Let e = (v, w) be an edge. Edge e is incident to its end-points v and w.

Adjacent

Let (v, w) be an edge in a graph G. Vertices v and w are adjacent in G and are neighbor of each

other.

Degree

In an undirected graph, the degree of a vertex v in a graph G, denoted by degG(v), is the number

of edges incident to v.

In a directed graph, the indegree of a vertex v, denoted by indegG(v), is the number of edges with

v as their head and the outdegree of a vertex v, denoted by outdegG(v), is the number of edges

with v as their tail.

Path

A path P in a graph G, denoted by P: v ∗→ w, is a sequence of vertices and edges leading from

v to w. A path is simple if all of its vertices are distinct. A path P: v ∗→ w is a cycle if all of its

edges are distinct and the only vertex to occur twice in P is v, which occurs exactly twice.

Multigraph

If two or more edges having the same end-vertices in a graph G, then G is a multigraph. The

undirected version of a directed graph is the graph formed by converting each edge of the directed

graph into an undirected edge.

CHAPTER 1. INTRODUCTION 3

Directed Graph Undirected Graph Multigraph

Figure 1.1: Examples for directed graph, undirected graph and multigraph.

Connected graph

A graph is connected if every pair of vertices in it is connected by a path.

Subgraph

If G = (V, E) and G
′
= (V

′
, E
′
) are two graphs such that V

′ ⊆ V and E
′ ⊆ E, then G

′
is a subgraph

of G.

Rooted tree

A rooted tree T is a directed graph that has exactly one vertex which is the head of no edges

(called the root) and that all vertices except the root are the head of exactly one edge.

Leaf, Parent and Child

In a rooted tree, a leaf is a vertex with outdegree 0. Vertex v is the parent of vertex w and w is a

child of v if v→ w is a tree-edge in the rooted tree.

CHAPTER 1. INTRODUCTION 4

Ancestor and Descendant

In a rooted tree, if there exists a path from v to w, denoted by v ∗→ w, then v is an ancestor of w

and w is a descendant of v.

Spanning tree

If G is a directed graph, a rooted tree T is a spanning tree of G if T is a subgraph of G and

contains all the vertices of G.

1.2 Depth-first search

Depth-first search (DFS), developed by Tarjan and coauthors, is a fundamental technique of effi-

cient algorithm design for graphs (Tarjan (1972)). It has been widely used in solving a variety of

graph-theoretic problems including the connectivity problems. It was used to determine the bi-

connected components of an undirected graph and the strong connected components of a directed

graph. This technique had also been used in an efficient algorithm for planarity testing.

In this thesis, we study algorithms that use depth-first search to find the triconnected components

of a graph. We shall thus briefly explain the basic idea underlying depth-first search. Let G = (V,

E) be a graph to be explored by depth-first search. Initially all vertices are marked as ‘unvisited’

and all edges are marked as ‘unexplored’.

1. Starting from a vertex v, called the root, which could be any vertex in G.

2. An unexploded edge incident to v is arbitrarily chosen and mark the edge as exploded. Let

w be the other end-point of the edge,

• if vertex w is unvisited, then mark w as visited and then continue depth-first search

CHAPTER 1. INTRODUCTION 5

from w.

• if vertex w is visited, then repeat this step.

3. When there is no unexplored edges incident to vertex v, the search backtracks to the vertex

u leading to vertex v and then continue depth-first search from u.

4. When the depth-first search backtracks to the root and there is no unexplored edges incident

to the root, the search terminates.

Since each vertex is only visited once and each edge is examined twice (once from each end-

point), The time complexity of depth-first search is thus O(|V | + |E|), where V is the set of

vertices and E is the set of edges.

1

2

3 4 5

6

7 8 9

10

Figure 1.2: G = (V, E)

CHAPTER 1. INTRODUCTION 6

1.2.1 Adjacency list

1

2

3

4

5

6

7

8

9

10

2

1

2

1

4

1

3

7

5

7

3

3

1

3

1

4

8

9

8

8

4

6

4

5

6

5

10

10

10

9

5

7

6

9

2

6

Figure 1.3: An adjacency-list structure for the graph G in Figure 1.2

An adjacency-lists structure is a representation of a graph. Each linked-list in it describes the set

of the neighbors of the vertex. Specifically, let G = (V, E) be a graph. For each vertex v in V,

the linked-list of vertex v contains all of the vertices w in graph G such that (v, w) ∈ E. If G is a

undirected graph, each edge (v, w) in graph G is represented twice, one is in the list of vertex v,

and another one is in the list of vertex w. These lists together comprises an adjacency list data

structure for graph G. Figure 1.3 shows an adjacency list of the graph in Figure 1.2.

Using the adjacency-lists representation, depth-first search can be done in linear time.

CHAPTER 1. INTRODUCTION 7

1.2.2 Palm tree

1

2

3

4

6

5

9

10

7

8

Figure 1.4: The palm tree of graph G. The solid edge denoted tree-edge and the dotted edge denoted frond edge

Let PG be a directed graph, consisting of two disjoint sets of edges, denoted by v→ w and v ↪→

w (called tree-edge and frond edge, respectively). Suppose PG satisfies the following properties:

1. The subgraph T consisting of the tree edges is a spanning tree of PG;

2. if v ↪→ w, then w ∗→ v. That is, each edge not in the spanning tree T of PG connects a vertex

with one of its ancestor in T.

Then PG is called a palm tree.

Performing a depth-first search over a graph G transforms the graph into a palm tree. Let v, w

∈ V and e = (v, w) ∈ E. Edge e is transformed into the tree-edge v→ w if the depth-first search

traverses edge e from v to w; edge e is transformed into the frond edge v ↪→ w if vertex w is

CHAPTER 1. INTRODUCTION 8

already visited when edge e is examined for the first time at vertex v.

The palm of graph G of Figure 1.2 is shown in Figure 1.4.

1.3 Some definitions related to DFS

DFS number

A depth-first search assigns an unique number to every vertex in the palm tree PG, hence the

graph G, called the depth-first search number of the vertex. The depth-first search number of

vertex v is denoted by dfs(v). The depth-first search number of vertex v is k if v is the k-th vertex

visited by the DFS for the first time. Therefore, the depth-first search number of the root of

spanning tree of PG is 1.

Subtree

Let T be the spanning tree of the palm tree PG. The subtree of T rooted at vertex w, denoted by

Tw, is the maximal subgraph of T which is a rooted tree rooted at w.

Incoming frond edge and Outgoing frond edge

A frond edge v ↪→ w is an incoming frond edge of w and an outgoing frond edge of v.

Lowpt1(w) and Lowpt2(w), ∀ w ∈ V

lowpt1(w) = min ({d f s(w)}∪{d f s(u) | ∃(w ↪→ u)}∪{lowpt1(u) | u is a child o f w})

lowpt1(w) is the vertex with the smallest dfs number in the palm tree that is reachable from vertex

w by traversing zero or more tree-edges followed by exactly one frond.

lowpt2 (w) = min ({d f s(w)} ∪ (({d f s(u) | ∃(w ↪→ u)} ∪ {lowpt1(u) | u is a child o f w} ∪

CHAPTER 1. INTRODUCTION 9

{lowpt2(u) | u is a child o f w})−{lowpt1(w)}))

lowpt2 (w) is the vertex with the second smallest dfs number in the palm tree that is reachable

from vertex w by traversing zero or more tree-edges followed by exactly one frond.

First child and First descendant

For each vertex w, the first child is a vertex v which is the first child of w satisfying lowpt1(v) =

lowpt1(w) during the depth-first search. The first frond of w is the first frond w ↪→ v encountered

during the depth-first search that satisfies dfs(v) = lowpt1(w). A first descendant of w is the first

child of w or a first descendant of the first chid of w.

1.4 Graph Connectivity

1.4.1 Applications

Graph connectivity (k-vertex-connectivity and k-edge-connectivity) is one of the most basic prop-

erties of graph. Owing to this reason, it is fundamental to the studies of many important appli-

cations such as network reliability, circuit and chip design, network flow, cluster analysis, graph

optimization, quantum physics, and bioinformatics.

The most direct applications arise in operation research for scheduling problems (Boffey (1992))

and performance analysis of telecommunication systems and transportation networks (Jung-

nickel (2008), Novak & Gibbons (2009)). The application of graph connectivity also arise in irre-

ducibility analysis of Feynman diagrams in quantum physics and chemistry (Nakanishi (1971));

circuit lay-out problems (Ellis-Monaghan & Gutwin (2003)); planarity testing (Knauer (1975));

Flow edge-monitor optimization problem (Chin et al. (2009)); Graph Drawing (Gutwenger &

Mutzel (2000)); and clustering algorithm (Hartuv & Shamir (2000)).

CHAPTER 1. INTRODUCTION 10

1.4.2 Some definitions

k-vertex(k-edge) connectivity

A connected undirected graph is k-vertex-connected (k-edge-connected) if removing less than k

vertices (edges) cannot disconnect it.

k-vertex(k-edge) connected component

A k-vertex-connected (k-edge-connected) component of a graph is a maximal k-vertex-connected

(k-edge-connected) subgraph.

1-vertex(edge)-connected graph

A 1-vertex-connected (1-edge-connected, respectively) graph is simply a connected graph.

2-edge-connected graph

A 2-edge-connected graph is also called a bridge-connected graph. A bridge of a graph G is

an edge whose removal results in disconnecting G. A graph G is bridge-connected if there is no

bridge in it.

2-vertex-connected graph

A 2-vertex-connected graph is also called a biconnected graph.

Let G = (V, E) be a connected, undirected graph with |V | ≥ 2. A cut vertex is a vertex whose

removal results in disconnecting the graph G. G is biconnected if there is no cut-vertex in it.

Tarjan presented the first linear-time algorithm for both biconnectivity and 2-edge-connectivity

(Tarjan (1972)).

CHAPTER 1. INTRODUCTION 11

1 3

2 4

5

6 1 3

2 4

5

3 6

Graph G 2-vertex connected component

Figure 1.5: 2-vertex connected component of graph G

3-edge-connected Graph

Let G = (V, E) be a bridge-connected undirected graph. A pair of edges in G is a cut-pair if their

removal results in disconnecting G. G is 3-edge connected if there is no cut-pair in it.

The first linear-time algorithm for 3-edge-connectivity was reported by Galil & Italiano (1991).

The algorithm reduces the problem to 3-vertex-connectivity which makes it very complicated.

Two simpler linear-time algorithms were reported by Taoka et al. (1992) and Nagamochi &

Ibaraki (1992).

The conceptually simplest and fastest (in terms of actual run-time) linear-time algorithms were

reported by Tsin (2007) and Tsin (2009).

1 3

2 4

5

6 1 3

2 4

5

6 1 3

2 4

5

6

Graph G 2-edge connected components 3-edge connected components

Figure 1.6: Two and three edge-connected component of graph G

Chapter 2

3-vertex connectivity

2.1 Triconnected graph

Equivalence relation

A relation in a set X is a set of ordered pairs from X . Let R be a relation in a set X. Then, R is

reflexive if (∀x ∈ X) (x, x) ∈ R; R is symmetric if (x, y) ∈ R⇒ (y, x) ∈ R; R is transitive if (x, y)

∈ R ∧ (y, z) ∈ R⇒ (x, z) ∈ R. A relation R in a set X is an equivalence relation if R is reflexive,

symmetric, and transitive.

Equivalence class

Let R be an equivalence relation in a set X. For each x ∈ X, the equivalnece class of x with respect

to R is the set [x]R = {y | y ∈ X ∧ (x, y) ∈ R}.

In other words, the equivalence class of x with respect to R consists of all the elements of X which

form an ordered pair with x in R, and in each of such ordered pairs, x is the first coordinate.

Triconnected graph

12

CHAPTER 2. 3-VERTEX CONNECTIVITY 13

Let G = (V, E) be a biconnected graph and a, b ∈ V. Let ∼(a,b) be a relation in E such that

∀e,e′ ∈ E,e ∼(a,b) e′ if and only if there exists a path containing both e and e′ but not a or b

except as a terminating vertex. The relation ∼(a,b) is an equivalence relation in E. Therefore, the

edge set E can be partitioned into equivalence classes E1, E2, E3, , Ek such that any two

edges on the common path not containing any vertex of {a, b} as an internal vertex are in same

equivalence class. Ei,1 ≤ i ≤ k, are the equivalence classes respect to ∼(a,b). The vertex pair

{a,b} is a separation-pair if there are at least two equivlence classes (i.e k > 1), unless:

1. k = 2 and ∃ i ∈ {1, 2}, Ei= {(a, b)}, or

2. k = 3 and Ei = {(a, b)}, 1≤ i≤ 3.

Figure 2.1: Two special conditions for separation pair

A biconnected graph is 3-vertex-connected if there is no separation pair in it. A 3-vertex-

connected graph is also called a triconnected graph.

2.2 Split graph

Let {a, b} be a separation pair, and E1, E2, E3, , Ek be the equivalence classes w.r.t. ∼(a,b).

Let E
′
=

⋃h
i=1 Ei and E” =

⋃k
i=h+1 Ei such that

∣∣∣E ′∣∣∣, ∣∣E”
∣∣ ≥ 2. Let G1 = (V1, E

′ ∪{e}), G2= (V2,

E”∪{e}) such that V1 is the set of vertices which are the end-points of edges in E
′
, V2 is the set

CHAPTER 2. 3-VERTEX CONNECTIVITY 14

of vertices which are the end-points of edges in E”, and e is a new edge (a, b), called a virtual

edge. G1, G2 are called split graphs of G.

1

2

3 4 5

6

7 8 9

10

1

2

3

3

4 5

5

6

7 8 9

10
Graph G

split graphs

Figure 2.2: Graph G and its split graphs

2.3 Split components and Triconnected components

Let G be an undirected biconnected graph. The graph G is split into two split graphs G1 and G2.

G1 (G2, respectively) is then split into two smaller split graphs, and so on, until no more splitting

is possible. The resulting split graphs are the split components of G. A split component is one of

the followings:

• a triple bond

• a triangle (cycle of length three)

• a triconnected simple graph

CHAPTER 2. 3-VERTEX CONNECTIVITY 15

Let B3 bet the set of triple bonds, T3 be the set of triangles, and Gn be the set of triconnected

simple graphs. The triple bonds in B3 which have common edge are merged into multiple bonds

until no more merging is possible. Let the resulting set of multiple bonds be B. Similarly, the

triangles in T3 that have common edge are merged into polygons as much as possible until no

more merging is possible. Let the resulting set of polygons be T. Then B ∪ T ∪ Gn are the

triconnected components of G.

1

2

3 4 5

6

7 8 9

10

1

2

3 4 5

6

7 8 9

10

7

3

9

3 5

9

Graph G. Split components of graph G.

Figure 2.3: Graph G and its split components

2.4 Previous work and two algorithms for empirical study

Hopcroft & Tarjan (1973) presented the first linear-time algorithm. Unfortunately, this algorithm

contains quite a number of minor but crucial errors which make it hard to understand and difficult

to implement correctly so that the resulting program does run in linear time. Gutwenger &

Mutzel (2001) presented a list of such errors and explained how to correct them. However,

their explanation for some errors were brief, and no detailed explanation on implementation was

given. Nevertheless, they had implemented the corrected algorithm and the code is available at

CHAPTER 2. 3-VERTEX CONNECTIVITY 16

Gutwenger & Mutzel (2000). Recently, Mallach (2011) revealed further inaccuracies in Hopcroft

& Tarjan (1973) and provided more comprehensive description of the algorithm.

Miller & Ramachandran (1992) and Fussell et al. (1989) presented parallel algorithms on the

PRAM (Parallel RAM). The parallel algorithms can be converted into sequential algorithms that

run in linear-time. However, the resulting algorithms are much more complicated than Hopcroft

& Tarjan (1973) and obviously less efficient in terms of actual run-time.

Vo (1983) presented a linear-time algorithm which resembles that of Hopcroft & Tarjan (1973).

But no detail on implementation was given.

Saifullah & Üngör (2009) showed that triconnectivity can be reduced to 3-edge-connectivity in

linear time, making it possible to use the simpler 3-edge-connectivity algorithms to solve the

triconnectivity problem.

Recently, Tsin (2012) presented a new linear-time triconnectivity algorithm that is conceptually

simple. The algorithm

• uses a new graph transformation technique in conjunction with the depth-first search tech-

nique.

• avoids the time-consuming acceptable adjacency-lists construction required by Hopcroft &

Tarjan (1973).

• makes one less pass over the given graph than Hopcroft & Tarjan (1973).

In this thesis, we perform an empirical study on Tsin’s algorithm and the algorithm of Hopcroft

and Trajan. The study is based on our implementation of Tsin’s algorithm and the implementa-

tion of Hopcroft & Tarjan (1973) by Gutwenger & Mutzel (2000).

Chapter 3

Two Algorithms

3.1 Hopcroft and Tarjan’s Algorithm

3.1.1 Key idea

Let G = (V, E) be a biconnected graph and a, b be two vertices lying on a cycle C in G. Let C be

partitioned into two simple paths p1 and p2 by a and b. Then {a, b} is a separation pair if and

only if one of the following cases holds.

• Type-1 Case: ∃ a segment S with at least two edges that has only a and b in common with

C;

• Type-2 Case: @ a segment S containing a vertex v in p1 and a vertex w in p2 such that:

v /∈ {a,b},w /∈ {a,b}, and p1 and p2 each contains a vertex besides a and b.

17

CHAPTER 3. TWO ALGORITHMS 18

a

b

S

C

p1
p2

a

b

S

C

p1
p2w

Type-1

Separation pair Type-2 Separation pair

Figure 3.1: Type-1 and Type-2 separation pair of Hopcroft and Tarjan’s algorithm

3.1.2 Finding Separation Pair

Given a biconnected graph G = (V, E), the main problem for finding the split components of the

given graph is to find the separation pair. The followings are the outline of finding the separation

pair.

1. Perform a depth-first search over G to turn G into a palm tree PG.

2. Create an acceptable adjacency-lists structure for PG to rearrange the children and outgoing

fronds of every vertex in a particular order.

3. Perform a depth-first search again using the acceptable adjacency-lists structure constructed

in the previous step. Use a path-finding procedure to partition the edges of PG into disjoint

paths in the following way: each time an edge is traversed, append the edge to the current

path; each time a frond is traversed, append the frond to the current path and terminate the

current path; then start the current path with a null path. As a result, each path consists of a

(possible empty) sequence of tree edges followed by a frond. Owing to the way the edges

CHAPTER 3. TWO ALGORITHMS 19

are ordered in the acceptable adjacency-lists, each path ended in the vertex with the lowest

possible d f s number. Furthermore, the first path is a cycle.

After the input graph G, which is a biconnected graph, is converted into a palm tree, if a,b are

two vertices with d f s(a) < d f s(b), then {a, b} satisfies one of the following conditions if and

only if {a, b} is a separation pair.

1. There are two distinct vertices t and s, such that b→ t, lowpt1(t) = a, lowpt2(t) ≥ b,

s /∈ {a,b} and s is not a descendant of t (in this case, {a, b} is a type-1 separation pair).

2. There is a vertex r such that a→ r ∗→ b, where b is a proper first descendant of r, a is not

the root, and every frond x ↪→ y with r � x ≺ b has a � y; every frond x ↪→ y with a ≺ y ≺

b and b→ w ∗→ x has lowpt1(w)≥ a (in this case, {a,b} is a type-2 separation pair).

3. (a, b) is a multiple edge of G and G contains at least four edges.

In Figure 1.4, {3, 9} is a type-1 separation pair, {3, 5} and {7, 9} are type-2 separation pair.

3.1.3 Finding Split Components

Repeatedly use the path-finding procedure to search for a path and use the path to find split

components.

1. Maintain a stack of edges (called ESTACK); add edges to this stack as backing up over

them during the depth-first search.

2. Maintain a stack of triples (h, a, b) (called TSTACK) such that {a, b} is a possible type-2

pair and h denotes the largest numbered vertex in the corresponding split component.

3. On finding a separation pair, edges on the ESTACK are popped to form the corresponding

split component.

CHAPTER 3. TWO ALGORITHMS 20

4. Add the corresponding virtual edge to both the split component and the ESTACK.

5. Maintain various pieces of information, such as:

• parent(v): the parent of vertex v in the depth-first search spanning tree.

• Degree(v): the degree of vertex v.

• lowpt1(v): the vertex with the smallest dfs number among the vertices in PG that can

be reached via a tree-path following by one frond.

• lowpt2(v): the vertex with the second smallest dfs number among the vertices in PG

that can be reached via a tree-path following by one frond.

The pseudocode for finding the split components is as follows:

Type-1 split components

1: On backing up over a tree edge vi→ vi+1 during the path-finding search.
2: if lowpt2(vi+1) ≥ vi ∧ lowpt1(vi+1) ≺ vi∧ (parent(vi) 6= root ∨ vi is adjacent to a not yet visited tree-edge)

then
3: {vi, lowpt1(vi+1)} is a type-1 separation pair; pop the ESTACK until an edge (x, y) does not satisfy vi+1 ≤ x

, y≤ vi+1 + ND(vi+1) is encountered, where ND(vi+1) is the number of descendants of vi+1 in the DFS spanning
tree.

4: end if

Type-2 split components

3.2 Tsin’s Algorithm

In the flowing figures (a) and (b), it is obvious that the vertex pair {a, b} is a separation pair and

the triangle a e1 w e2 b e
′
a is a split component, where e1 = (a,w),e2 = (w,b) and e

′
= (b,a) is

a virtual edge.

CHAPTER 3. TWO ALGORITHMS 21

1: Use TSTACK to find separation pairs in the following way:
On backing up over a tree edge vi→ vi+1 during the path-finding search

2: if vi 6= root then
3: examine the top triple (h1, a1, b1) on TSTACK.
4: if a1 = vi and a1 = parent(b1) then
5: pop (h1, a1, b1), discard it and repeat this step.
6: end if
7: if a1 = vi and a1 6= parent(b1) then
8: {a1, b1} is a type-2 separation pair. Repeatedly pop edges from ESTACK to form a split component

until an edge (x, y) does not satisfy a1 ≤ x, y ≤ h1 is encountered. Pop the top entry and repeat this step with
the new top entry.

9: end if
10: if Degree(vi+1) = 2 and vi+1 has a child x then
11: {vi, x} is a type-2 separation pair. Pop the top two entries from ESTACK. Add virtual edge (vi, x).
12: end if
13: end if

Figure 3.2: separation pair (graph taken from Tsin (2012))

Obviously, not every split component has such simple structure. Tsin (2012) transforms the

input graph gradually during a depth-first search so that every split component is transformed

into a special structure, called millipede, consisting of two or more superedges (the edges on the

a− b path in the following figure (a), (b)) such that no outgoing edge of the superedges or of

the internal vertices on the millipede has its head outside the millipede. This condition will be

detected when the search backtracks to one of the end-vertices (vertex a in the following figures

(a) and (b)). A split component will then be created.

CHAPTER 3. TWO ALGORITHMS 22

A millipede has a structure similar to the simple structure depicted in Figure 3.2. A superedge is

an edge representing a set of edges. A supergraph is a graph whose edges are superedges. Tsin

(2012) transforms the input graph to a supergraph, keeping the separation pairs intact.

Figure 3.3: Example of super graph (graph from Tsin (2012))

3.2.1 Millipede

Millipede is a special data structure defined in Tsin (2012) for graph transformation. A millipede,

denoted by T̂0e1T̂1e2T̂2 . . .ekT̂k, is a supergraph in which ei (1≤ i ≤ k) is a superedge associated

with a set of edges (tree edge or frond edge) of the palm tree and T̂i (0 ≤ i ≤ k) is a tree rooted

at ui with height at most 1. The tree-path u0e1u1e2u2 . . .ekuk, where ui,1 ≤ i ≤ k, is the root of

T̂i is called the spine of the millipede. The edges in the T̂i’s (which are also superedges) are the

legs of the millipede. A frond edge, (x ↪→ y), is an outgoing frond edge of a superedge e if the

CHAPTER 3. TWO ALGORITHMS 23

tail x is inside e. The outgoing frond edges of a millipede consists of the outgoing frond edges of

all superedges in the millipede and the outgoing frond edges of all vertices in the millipede. The

set of outgoing frond edges of a superedge e and of a vertex u are denoted by Outfrond(e) and

Outfrond(v), respectively.

Figure 3.4: Example of millipede (graph from Tsin (2012))

3.2.2 Two Transformations

Tsin (2012) uses two transformations, split and coalesce, to transform the given graph.

Split

Separate a millipede from a supergraph so as to produce a split component.

Coalesce

Applied to a millipede whose spine consists of two superedges after the internal vertex of the

spine has been confirmed to be unable to form new separation pair.

As an example, suppose e1T̂1e2 is a millipede in which the spine is u0e1u1e2u2, where e1 = (u0,

CHAPTER 3. TWO ALGORITHMS 24

u1) and e2 = (u1, u2). If a coalesce operation is applied to the millipede, the millipede is replaced

by a new superedge e
′
1 = (u0, u2) such that e

′
1 represents all of the edges in the millipede and

Outfrond(e
′
1) represents all of the outgoing frond edges of the millipede. The coalesce operation

can be easily extended to millipedes having more than two superedges on its spine.

3.2.3 The Algorithm

The following is a brief description of Tsin’s algorithm:

1. Perform a depth-first search over the input graph G to turn G into a palm tree PG and create

an adjacent-lists structure representing PG such that the first entry of the linked list of vertex

v is the first child or first frond of v.

2. A depth-first search is then performed over PG based on its adjacency lists created in Step

1.

3. During the depth-first search, whenever the search backtracks from a vertex u to the parent

vertex w, the subgraph of G consisting of the edge set of the subtree rooted at u and the

outgoing fronds of that subtree has been transformed into a supergraph consisting of a set

of split components and a millipede P̂u: T̂0e1T̂1 . . .ekT̂k f , called the u-millipede, where f is

an outgoing frond of uk that reaches the highest vertex (the vertex with the smallest d f s

number) in PG .

4. If u is the first child of w.

• If there is no outgoing frond of e0T̂0e1, where e0 = (w, u0), with its head being a proper

ancestor of w, then {w, u1} is a separation pair and a split operation is applied to Pu to

make e0T̂0e1 a split component.

• P̂u then becomes e0T̂1e2T̂2 . . .ekT̂k f , where e0 =(w, u1) is a virtual link replacing e0T̂0e1.

• If the aforementioned condition applies to e0 again, then {w, u2} is a separation pair

and a split operation is applied to Pu to make e0T̂1e2 a split component.

CHAPTER 3. TWO ALGORITHMS 25

• This process is repeated until the aforementioned condition does not apply.

• Let the resulting millipede be P̂u: e0T̂heh+1T̂h+1 . . .ekT̂k f , where f = (uk, z) such that

d f s(z) = lowpt1(uk).

• If there is no outgoing frond of P̂u whose head is an internal vertex of the tree-path z
∗→ w and there is at least one vertex outside P̂u, then {w, z} is a separation pair and the

entire millipede P̂u is removed to produce a split component.

5. Otherwise, coalesce the u−millipede into a superedge e1 = (u0, uk) which becomes a leg

of the tree rooted at w.

6. If there is a incoming frond, u ↪→ w, of w. Coalesce the section of the millipede from w to

u into a superedge e0 = (w,u0)

Chapter 4

Implementation

We implemented Tsin’s algorithm using C++. For Hopcroft and Tarajan’s algorithm, we use the

implementation of Gutwenger & Mutzel (2000) which is also a C++ program. However, to en-

sure that the empirical study is based on large input sizes, we have to modify the implementation

of Gutwenger and Mutzel.

4.1 Modifying Gutwenger and Mutzel’s code for Hopcroft and Tarjan’s

algorithm

The run-time environment of a C++ program consists of three major memory segments: text

segment, stack segment and heap segment.

The text segment is responsible for storing the compiled code of the C++ program.

The stack segment is a region of memory for storing temporary variables that are created in each

program function (i.e. main program or subprogram). This segment is LIFO (last in, first Out)

as it is a stack. When a variable is declared in a function, this variable is pushed onto the top of

the stack. When execution of a function terminates, all variables that were pushed onto the stack

26

CHAPTER 4. IMPLEMENTATION 27

by the function are freed. However, the size of variables can be pushed onto each stack is limited

(varies with the operating system).

The heap segment is a region of memory for storing dynamically declared variables. To allocate

variables in heap segment, the system-defined function malloc() must be used in C and new in

C++. To free the memory when it is not required any more, free() and delete are used in C and

C++ respectively. The size limitation of this region is not restricted. However, the heap is slightly

slower to be read from and written to, because it has to use pointer to be accessed.

Therefore, a large block of memory should be stored in heap segment and the relatively small

size of variables are stored in the stack segment.

Gutwenger & Mutzel (2000) uses recursion to perform depth-first search, and the path finding

search. Since recursion uses the stack segment to store the local variables, and the local variables

are pushed onto the stack every time a recursive call to the function is invoked. The recursive

function calls continue to require more and more stack memory which does not release until

the recursive chain terminates. Stack overflow results when the memory allocation goes beyond

what the stack segment is able to provide.

CHAPTER 4. IMPLEMENTATION 28

0 0.5 1 1.5 2 2.5 3

x 10
5

0

50

100

150

200

250

300

|V| + |E|

tim
e:

m
s

Figure 4.1: Example of stack overflow occurs before modifying Gutwegner and Mutzel’s code

Figure 4.1 show that stack overflow occurs when the number of edges is 255,000 and the number

of vertex is 42,500 in running Gutwegner and Mutzel’s code.

To ensure that Gutwegner and Mutzel’s code could handle input graph with millions of vertices

and edges, we modified their code to use iteration to perform depth-first search and path finding

search. This is accomplished by maintaining a self declared stack in the heap segment to record

all of the function variables. After the modification, the largest input size that Gutwegner and

Mutzel’s code could handle is in the range of millions, significantly larger than 42,500.

CHAPTER 4. IMPLEMENTATION 29

4.2 Randomly generate the biconnected input graph

In order to get the best results of comparing these two algorithms, the input graphs must be

randomly generated. The following describes how to randomly generate the biconnected input

graphs:

1. Randomly generate random numbers n and m,(m> n), which are the the number of vertices

and edges, respectively, of the graph to be generated.

2. Generate a random number n′ such that n≥ n′ > 3. Then generate a set of n′ edges to form

a cycle. Set m′← n′.

3. If n′ < n then generate a random number b ∈ {0,1}.

• If b = 0

– Randomly choose two vertices v and w from the graph generated thus far.

– Randomly generate an integer l in the range [1..(n−n′)].

– Generate a path consisting of the following l +1 edges:

(v,v1),(v1,v2) . . .(vi,vi+1), . . .(vl,w),

where vi,1≤ i≤ l, are new vertices

– Set n′← n′+ l; m′← m′+ l +1.

• If b = 1

– Randomly choose two non-adjacent vertices v and w from the generated graph and

generate an edge (v,w).

– Set m′← m′+1.

else if m′ < m then

CHAPTER 4. IMPLEMENTATION 30

• Randomly choose two non-adjacent vertices v and w from the generated graph and

generate an edge (v,w).

• Set m′← m′+1.

4. Repeat Step 3 until m′ = m.

4.3 Creating adjacency list

In this and the following subsections, we explain how we implemented Tsin’s algorithm based

on the description given in Tsin (2012).

First, an adjacency-lists structure for the palm tree PG created by the first depth-first search is to

be created. In this linked-lists structure, the first entry of the linked list of vertex v is the first

child or the first frond of v. This is accomplished as follow:

1. Initially all vertices are marked as ‘unvisited’ and all edges are marked as ‘unexplored’.

A[w] is used to record all of the adjacent edges of vertex w,∀w ∈V .

2. Perform a depth-first search starting from an arbitrary vertex r (which becomes the root of

the dfs spanning tree). Let d f s = 1, v = r and d f s(v) = lowpt1(v) = 1.

3. Choose the next unexplored edge from A[v]. Mark this edge as explored, let w be the other

end-point of this edge.

• If w is unvisited, mark w as visited.

Let d f s(w) = lowpt1(w) = d f s+1;d f s = d f s+1. Insert w into the first entry of A[v].

Continue the depth-first search from w.

• If w is visited,

– if d f s(w) < lowpt1(v), insert w into the first entry of A[v]. Let lowpt1(v) =

d f s(w);

CHAPTER 4. IMPLEMENTATION 31

– otherwise, Insert w into the second entry of A[v].

Repeat step 3.

4. When there is no unexplored edges incident to vertex v, the search backtracks to the vertex

u leading to vertex v.

• If lowpt1(u)> lowpt1(v), let lowpt1(u) = lowpt1(v).

• Otherwise, switch the first two entries of A[v].

Continue depth-first search from u.

5. When the depth-first search backtracks to the root and there is no unexplored edges incident

to the root, the search terminates.

4.4 Determining ancestor or descendant relationship

In Tsin’s algorithm, to ensure that the coalesce transformation is performed efficiency, we need

to test the ancestor or descendant relationship in O(1) time. In the following example, vertex u

is a descendant of vertex w.

a

w

u

Figure 4.2: Example of ancestor and descendant relationship

CHAPTER 4. IMPLEMENTATION 32

To test if there exists an ancestor/descedant relation between two vertices v and w, we use the

following criterion:

Vertex w is an ancestor of vertex u if and only if dfs(w) ≤ dfs(u) < dfs(w) + nd(w), where nd(w)

is the number of descendants of vertex w.

The term nd(v) can be efficiently computed during the depth-first search using the following

recursive definition.

nd(w) =

 1 if w is a leaf;

1+∑v∈C(w) nd(v) otherwise.

Note: C(w) is the set of children of w

Knowing d f s(w),d f s(v) and nd(w), dfs(w) ≤ dfs(u) < dfs(w) + nd(w) can be evaluated in O(1)

time.

4.5 Representation of the millipede

The following data structure is used to represent a millipede P̂: T̂0e1T̂1 . . .ekT̂k.

• a linked list u0−u1−u2− . . .−un, augmented with the following data structure:

– Outfrond(v) ∀v ∈ V, the set of outgoing frond of vertex v.

– p(v) ∀v ∈ V, the parent vertex of vertex v. In the millipede, for every leg (ui→ v) in T̂i,

p(v) = ui.

– ẽv ∀v ∈ V, where ẽv= (p(v)→ v). The edges in the superedge ẽv are divided into:

∗ Int(ẽv), edges that are not outgoing fronds.

∗ Out(ẽv), edges that are outgoing fronds.

CHAPTER 4. IMPLEMENTATION 33

Since we use linked list to represent Outfrond(v) ∀v ∈ V, and ẽv ∀v ∈ V −{r} (r is the root),

therefore, two superedges can be coalesced in O(1) time.

4.6 Handling incoming frond

During the depth-first search, when a vertex u is examined and u has an incoming frond, then a

section of the u-millipede is to be coalesced. Since the palm tree PG is being transformed during

the depth-first search, when a frond f = (w ↪→ u) is examined at vertex u, the frond could have

been transformed to a frond f ′ = (w′ ↪→ u). In the following, we shall illustrate how to determine

f ′ in different situations.

The following figure is an example of an incoming frond of vertex u where w is a first descendant

of u.

w

u

f

w

u

f’

Figure 4.3: Incoming frond of vertex u when w is a first descendant of u

The following figure is an example of an incoming frond of vertex u where w is not a first de-

scendant of u:

CHAPTER 4. IMPLEMENTATION 34

v

u

f
(i)

w

v

u

f’

w

u

f
v

(ii)

w

v

u

f’

w

Figure 4.4: Incoming frond of vertex u when w is not a first descedant of u

In case (i), w is a first descendant of vertex v, whereas in case (ii), w is not a first descendant of

vertex v.

As was mentioned above, when depth-first search backtracks to vertex u, frond f ’ instead of f is

examined. The following figures illustrate how f is transformed to f ′ in different situations.

First, consider the situation in which w is a first descendant of u:

CHAPTER 4. IMPLEMENTATION 35

w

u

f=f’(i)

w

u

f’=f

(ii)

w
e

x

y

u

f=f’

x

e
y

u

f’=f

Figure 4.5: Handling incoming frond of vertex u when w is a first descendant of u

In case (i), f = f ′. This case is trivial.

In case (ii), x ↪→ y is an incoming frond of vertex y. When depth-first search backtracks to vertex

y and the frond x ↪→ y is being examined, the millipede whose spine is the tree-path from x to y

is coalesced to a superedge e, and f is transformed to f ′ which is an outgoing frond of e.

Next, consider the situation in which w is not a first descendant of u but is a first descendant of

v, where v is a first descendant of u.

CHAPTER 4. IMPLEMENTATION 36

y

v
e2

e1

u

f
(i)

z
x

w

e2

e1

y

v

u

f

Tv

e2

y

v

u

f f’

e2

e1

e6

t

y

s

v

u

f
(ii)

z
x

w

e2

e1

e6

s

t

y

v

u

f

Tv

s
e6

t

u

f f’

Figure 4.6: Handling incoming frond of vertex u when w is not a first descendant of u but is a first descendant of v.

In case (i), f = (w ↪→ u) is an incoming frond of vertex u, f1 = (x ↪→ y) and z, x, w are first

descendants of vertex v.

1. When depth-first search backtracks to vertex v, the millipede whose spine is the tree-path

connecting v and w is coalesced into the superedge e1 to become a tree T̂v rooted at vertex v

with the height of 1.

2. When depth-first search backtracks to vertex y and the frond x ↪→ y is examined. Since x is

located in T̂v, T̂v is coalesced into the superedge e2 and f becomes an outgoing frond of e2.

In case (ii), f = (w ↪→ u) is an incoming frond of vertex u, f1 = (x ↪→ y), f2 = (t ↪→ s) and z, x,

w are first descendants of vertex v.

CHAPTER 4. IMPLEMENTATION 37

1. When depth-first search backtracks to vertex v, as with case (i), the millipede whose spine

is the tree-path connecting v and w is coalesced into the superedge e1 to become a tree T̂v

rooted at vertex v with the height of 1.

2. When depth-first search backtracks to vertex y and the frond x ↪→ y is examined, as with

case (i), T̂v is coalesced into the superedge e2 and f becomes an outgoing frond of e2.

3. When depth-first search backtracks to vertex s and the incoming frond t ↪→ s is examined,

the millipede whose spine is the tree-path connecting s and t is coalesced into the superedge

e6 and f is transformed into f ′ which is an outgoing frond of e6.

It remains to show how to handle incoming fronds w ↪→ u of vertex u where w is not a first

descendant of vertex u and is also not a first descendant of vertex v.

(i)

(ii)

v

y
e1

e2

e3

f

t

s
x

w

u

v

y

t

Tt

u

e1

e2

e3

f e1

e2

f

v

y

Tv

u

e1

f f′

v

y

u

c
v

y
d

e1

e2

e3

e4

f

t

s
x

w

u

e4

c

d

v

y

t

Tt

u

e1

e2

e3

f

e4

c

d

e1

e2

f
v

y

Tv

u

e4

c

d
f f′

u

Figure 4.7: Handling incoming frond of vertex u when w is not a first descendant of u and is not a first descendant

of v.

CHAPTER 4. IMPLEMENTATION 38

In case (i), frond f = (w ↪→ u) is an incoming frond of vertex u, frond f1 = (x ↪→ y) and w is not

a first descendant of u and is also not a first descendant of v.

1. When depth-first search backtracks to vertex t, the millipede whose spine is the tree-path

connecting t and w is coalesced into the superedge e3 = (t→ s) to become a tree T̂t of height

1 and rooted at vertex t.

2. When depth-first search backtracks to vertex v, the millipede whose spine is the tree-path

connecting v and s is coalesced into the superedge e2 to become a tree T̂v of height 1 and

rooted at vertex v.

3. When depth-first search backtracks to vertex y and the incoming frond x ↪→ y is examined,

since vertex x is located in T̂v which is a leg of the millipede whose spine is the tree-path

connecting vertices y and v, the millipede and T̂v are coalesced into the superedge e1 and f

becomes an outgoing frond f ′ of e1.

In case (ii), frond f = (w ↪→ u) is an incoming frond of vertex u, fronds f1 = (x ↪→ y), f2 =

(c ↪→ d), and w is not a first descendant of u and is also not a first descendant of v.

1. When depth-first search backtracks to vertex t, as with case (i), the millipede whose spine

is the tree-path connecting t and w is coalesced into the superedge e3 = (t→ s) to become

a tree T̂t of height 1 and rooted at vertex t.

2. When depth-first search backtracks to vertex v, again as with case (i), the millipede whose

spine is the tree-path connecting v and s is coalesced into the superedge e2 to become a tree

T̂v of height 1 and rooted at vertex v.

3. When depth-first search backtracks to vertex y and the incoming frond x ↪→ y is examined,

as with case (i), since vertex x is located in T̂v which is a leg of the millipede whose spine

is the tree-path connecting vertices y and v, the millipede and T̂v are coalesced into the

superedge e1 and f becomes an outgoing frond f ′ of e1.

CHAPTER 4. IMPLEMENTATION 39

4. When depth-first search backtracks to vertex d and the incoming frond c ↪→ d is examined,

since d is located in e1, the millipede whose spine is the tree-path connecting vertices d

and c is coalesced into the superedge e4 whereby transforming the frond f to f ′ which is an

outgoing frond of e4.

4.6.1 How to compute an initial value for f’

We observed that when we examined a frond f =(w ↪→ u) at its head u, the frond could have been

transformed to a new frond f ′ = (w′ ↪→ u). In order to determine f ′, we just have to determine

w′ and to determine w′, we have to give it an initial value. This value is determined as follows:

• If ∃/ x such that x is the first vertex on the tree-path connecting u and w such that p(x) 6= u

and x is not the first child of p(x), then w′ = w.

• If ∃x such that x is the first vertex on the tree-path connecting u and w such that p(x) 6= u

and x is not the first child of p(x), then w′ = x.

The initial value of w′ can be determined efficiently as follow:

A number, path(w), is assigned to every vertex w during the depth-first search. If w is the root,

then path(w) = 1.

Suppose w is not the root. If w is the first child of its parent v, then path(w) = path(v); otherwise,

path(w) = path(v)+1. Specifically,

path(w) =

 path(v) if w is the first child of v;

1+ path(v) if w is not the first child of v.

CHAPTER 4. IMPLEMENTATION 40

A stack fork[1..|V |] is maintained such that fork[j] records the first vertex u on the current path

of the depth-first search with path(u) = j.

Stack fork[j] is updated as follows:

• When the depth-first search advances from vertex v to vertex w, and w is not the first child

of v, then w is pushed onto f ork.

• When the depth-first search backtracks for vertex v to vertex w, and v is not the first child

of w, then v is popped out of f ork.

r path(r) = 1
u path(u) = 2

path(.) = 2

v path(v) = 2
w path(w) = 3

path(.) = 3

x path(x) = 3
y path(y) = 4

z path(z) = 5

r

u

w

y

z

0

1

2

3

4

5

Figure 4.8: Example of path(v) and fork[v]

The follow algorithm is for computing the initial value of f ’:

CHAPTER 4. IMPLEMENTATION 41

Algorithm 1 compute f ′

1: At vertex w, when frond f (w ↪→ u) is examined.

2: if path(w) = path(u) ∨ (path(w) = path(u)+1∧u = parent(f ork(top))) where f ork(top) is the vertex at the

top of stack f ork then

3: f ’ = f ;

4: else

5: if u = parent (f ork (path(u)+1)) then

6: f ’ = w’↪→ u where w’ = fork (path(u)+2);

7: else

8: f ’ = w’↪→ u where w’ = fork (path(u)+1);

9: end if

10: end if

w

u

f’ = f

u

w

f’=f

u

w

f’

f

u

w

f’ f

i ii iii iiii

Figure 4.9: Compute f ’

4.6.2 Time to compute f’

It takes O(|V |) time to calculate path(v),∀v ∈ V and O(|V |) time to mainipulate the stack f ork.

Since there are |E| − |V | + 1 fronds f and every frond f
′

is determined in O(1) time, it takes

O(|E|−|V |) time to determine all of the fronds f
′
. The total time spent on determining the initial

value of f ′ for all of the fronds f is thus O(|E|).

CHAPTER 4. IMPLEMENTATION 42

4.7 Performing the coalesce operation

Whenever an incoming frond f ’ = (w ↪→ u) is retrieved from vertex u, a section of the u-millipede

from vertex u to vertex ui is to be coalesced into the superedge e1 = (u, ui), where ui satisfies

one of the following three conditions: (i) ui = w, (ii) f ′ is an outgoing frond of the superedge

(ui−1, ui) on the millipede, and (iii) ui = parent(w).

u

w

u

ui−1

ui

w

u

ui

w

Figure 4.10: Example of different incoming fronds of vertex u

The first condition can clearly be verified in O(1) time. For the second condition, ui−1 is an

ancestor of vertex w while ui is not an ancestor of vertex w which can be verified in O(1) time

by using the method for testing ancestor/descendant relationship explained earlier. For the third

condition, the frond f ’ = (w ↪→ u) is an outgoing frond of edge (parent (w)→ w) which can be

determined in O(1) time.

Coalesceing a section T̂0e1T̂1 . . . T̂h−1eh of a millipede involves coalesceing ei,1≤ i≤ h, and the

superedges in T̂i,1≤ i < h, into a superedge e
′
1 = (u0, uh) and combining outfrond(ui),1≤ i < h,

and the outgoing fronds of the superedges in T̂i,1 ≤ i < h, to form the set of outgoing fronds

for e′1. Since linked list is used to represent the superedges, and coalescing any two of them

takes O (1) time. Therefore, it takes O
(

h+∑
h−1
j=1

∣∣∣ET̂j

∣∣∣) time to coalesce the section of millipede,

CHAPTER 4. IMPLEMENTATION 43

possibly including a leg in T̂h.

4.8 Finding separation pair

To find separation pair efficiently, we need to introduce two concepts: lowpt3(w) and lowpt3(ẽ),

where w ∈V and ẽ is a superedge of a millipede.

∀w ∈V , lowpt3(w) = min({d f s(w)} ∪ {d f s(u) | ∃(w ↪→ u)} ∪

{lowpt1(u) | ∃(w→ u)∧ (u is not a f irst descendant o f w)})

Specifically, lowpt3(w) is the vertex with the smallest d f s number that is reachable from vertex

w by traversing a possibly null tree-path that avoids the first child of w following by a frond.

∀ẽ = (v→ w), lowpt3(ẽ) = min({d f s(v)} ∪ {d f s(y) | ∃(x ↪→ y) ∈ Out(ẽ)}), where Out(ẽ) is the

set of outgoing fronds of the superedge ẽ.

Specifically, for a superedge ẽ, lowpt3(ẽ) is the vertex with the smallest d f s number that is

connected to w via an outgoing frond of ẽ.

In Section 3.2.3, we shall call the separation pair found in Step 4 a case-1 separation pair and

the separation pair found in Step 9 a case-2 separation pair. The condition for finding case-1

separation pair can be converted to:

min{lowpt3(u0), lowpt3(ẽ1)} ≥ d f s(w)

The condition for finding case-2 separation pair can be converted to:

(lowpt2(uh)≥ d f s(w))∧ (p(u0) 6= r)∨ (|C(w)|> 1)

The value of lowpt1(w), lowpt2(w), lowpt3(w) ,∀w ∈ V, can be determined in O(|E| + |V |) time

CHAPTER 4. IMPLEMENTATION 44

during the first or second depth-first search.

The value of lowpt3(ẽ) (ẽ is a superedge) is updated when a coalesce operation is performed

during the second depth-first search. This happens when an incoming frond or a child which is

not the first child of the current vertex is examined. The total number of incoming fronds is |E|−

|V | + 1 and the total number of children is |V | − 1. Since every edge can be coalesced at most

once, the total number of coalesce operation performed is O(|E|) and lowpt3(ẽ) (ẽ is a superedge

in PG) can thus be determined in O(|E|) time.

Using lowpt3, lowpt1, lowpt2, each separation pair can be determined in O(1) time. Since there

are at most |E| split components, there are at most |E| checkings resulting in finding separa-

tion pair and at most 2|V | checkings resulting in no separation pair. The total time to find the

separation pairs is thus O(|V | + |E|).

4.9 Creating triple bonds

4.9.1 Determining if frond u ↪→ w exists

In the following figure, when the second depth-first search backtracks to vertex w, and {u, w} is

determined as a separation pair, if there is a frond u ↪→ w, then a triple bond (u, w) is to be created.

w

u

Figure 4.11: Example of the existence of frond u ↪→ w.

CHAPTER 4. IMPLEMENTATION 45

To efficiently determine if the frond u ↪→ w exists, we maintain a linked list, Infrondlist(w) w ∈

V, to store all of the incoming frond of vertex w. During the depth-first search, whenever a frond

(u ↪→ w) is encountered at the tail u, the frond is inserted into Infrondlist(w).

From the nature of depth-first search, the incoming fronds in Infrondlist(w) are stored in de-

scending order of the depth-first search number of their tails. If a frond (u ↪→ w) exists, it must

be in Infrondlist(w). So, Infrondlist(w) is searched. Since the total number of incoming fronds

of all vertices is ∑v∈V indeg(v), the total time spent on this step is thus O(∑v∈V indeg(v)) = O

(|E|− |V |).

4.9.2 Determining if frond w ↪→ lowpt1(u) exists

In the following figure, when the second depth-first search backtracks to vertex w, and {w, lowpt1(u)}

is determined to be a separation pair, if there exists a frond w ↪→ lowpt1(u), then a triple bond

(w, lowpt1(u)) is to be created.

w

u

lowpt1(u)

Figure 4.12: Example of the existence of frond u ↪→ lowpt1(u).

To efficiently determine if the frond w ↪→ lowpt1(u) exists, we maintain a stack fstk[v], v ∈ V,

CHAPTER 4. IMPLEMENTATION 46

The stack is updated as follow: during the second depth-first search, when a frond u ↪→ v is

encountered at vertex u, if the top entry of stack fstk[v] is not u, push u onto fstk[v]; otherwise, a

virtual edge u ↪→ v was created earlier, a triple bond (u,v) is then created.

On creating a virtual edge w ↪→ lowpt1(u), if the top entry of stack fstk[lowpt1(u)] is not w, vertex

w is pushed onto fstk[lowpt1(u)]; otherwise, a virtual edge w ↪→ lowpt1(u) was created earlier,

then a triple bond (u, lowpt1(u)) is created. When the adjacency list of vertex w is completely

processed, vertex w is popped out of every fstk[v] for which a frond w ↪→ v exists.

For each vertex v, the number of incoming fronds is at most indeg(v). Since there are at most

3 |E| − 6 split component (from Hopcroft & Tarjan (1973)), there are at most O(|E|) virtual

edges created. The total time for this step is thus at most O(∑v∈V indeg(v)) + O(|E|) = O(|E| −

|V |) + O (|E|) = O (|E|).

Chapter 5

Comparison

5.1 Platform

The platform we used for the experiments is as below:

• Hardware:

– Model: Dell Precision WorkStation T7400

– Processor: Intel(R) Xeon(R) CPU E5430 @ 2.66GHz 6144KB L2 cache

– Memory: 3GB

• Software:

– Operating System: Debian GNU/Linux 5.0.2

– Programming Language: C++

47

CHAPTER 5. COMPARISON 48

5.2 Data Set

Let G = (V,E) be an undirected graph. G is a dense graph if |E|= O(|V |2); G is a sparse graph if

|E|= O(|V |). Since |E|= O(|V |2) implies that |E|= k|V |2, for some k > 0; |E|= O(|V |) implies

that |E|= k|V |, for some k > 0, and |V |2 > |V | for |V |> 1, therefore, dense graphs contains a lot

of edges while sparse graphs contains relatively few edges. Clearly, there is a grey area in which

it is hard to say if a graph is sparse or dense. This happens when k|V | = k′ is a small constant,

then |E|= k|V |2 becomes |E|= k′|V | and G could be considered as a sparse graph.

For simple undirected graphs (graphs without self-loop and edges having the same end-vertices),

another way of measuring whether a graph is dense or sparse is through the concept density (Cole-

man & Moré (1983)):

density(G) =
2|E|

|V |(|V |−1)

Since for simple undirected graphs, 0 ≤ |E| ≤ 1
2 |V |(|V | − 1), therefore, 0 ≤ density(G) ≤ 1.

When density(G) is small, the graph G is a sparse graph whereas when density(G) is large, the

graph is a dense graph.

In our experiment, we use both dense graphs and sparse graphs to compare the execution time of

the two algorithms. As was mentioned before, the graphs are randomly generated.

For dense graph, since |E| = k|V |2 for some constant k > 0, we generate eight sets of dense

graphs based on the value of k(= |E|
|V |2):

0 < k ≤ 0.1,

0.1 < k ≤ 0.2,

0.2 < k ≤ 0.3,

0.3 < k ≤ 0.4,

0.4 < k ≤ 0.5,

CHAPTER 5. COMPARISON 49

0.5 < k ≤ 0.6,

0.6 < k ≤ 0.7,

0.7 < k ≤ 0.8.

For the sparse graph, since |E|= k|V | for some constant k > 0, we also generate six sets of sparse
graphs based on the value of k(= |E|

|V |).

1≤ |E||V | < 1.1;

1.1≤ |E||V | < 1.3;

1.3≤ |E||V | < 2;

2≤ |E||V | < 5;

5≤ |E||V | < 10;

10≤ |E||V | < 100.

Furthermore, as both algorithms consist of two parts: the first part generates a suitable adjacency-

lists structure and the second part generates the split components, we also generated two sets

of experiments to see how each these two parts influences the total execution time. One set

compares the time needed to construct the acceptable adjacency-lists structure by Hopcroft et al.

with the time needed to construct the simple adjacency-lists structure by Tsin’s algorithm. The

other set compares the time needed to generate the split components.

5.3 Results

5.3.1 Dense graph comparison

Figures 5.1 to 5.24 display the result of the experiment that compares the execution time of

Hopcroft and Tarjan’s algorithm with that of Tsin’s algorithm. Specifically, Figures 5.1 to 5.8

CHAPTER 5. COMPARISON 50

compare the total execution time of the two algorithms. Figures 5.9 to 5.16 compare the execu-

tion time required by the two algorithms in creating their adjacency-lists structure. The remaining

figures compare the execution time of two algorithms spent on generating the split components.

Figures 5.1, 5.9 and 5.17 display the result of running the two algorithms on 358 dense graphs

with 0 < k ≤ 0.1 and 61≤ |V |+ |E| ≤ 9,717,594.

Figures 5.2, 5.10 and 5.18 display the result of running the two algorithms on 399 dense graphs

with 0.1 < k ≤ 0.2 and 595≤ |V |+ |E| ≤ 10,325,787.

Figures 5.3, 5.11 and 5.19 display the result of running the two algorithms on 354 dense graphs

with 0.2 < k ≤ 0.3 and 234≤ |V |+ |E| ≤ 10,494,231.

Figures 5.4, 5.12 and 5.20 display the result of running the two algorithms on 300 dense graphs

with 0.3 < k ≤ 0.4 and 1,923≤ |V |+ |E| ≤ 10,354,049.

Figures 5.5, 5.13 and 5.21 display the result of running the two algorithms on 326 dense graphs

with 0.4 < k ≤ 0.5 and 2,205≤ |V |+ |E| ≤ 10,434,846.

Figures 5.6, 5.14 and 5.22 display the result of running the two algorithms on 297 dense graphs

with 0.5 < k ≤ 0.6 and 966≤ |V |+ |E| ≤ 10,499,902.

Figures 5.7, 5.15 and 5.23 display the result of running the two algorithms on 270 dense graphs

with 0.6 < k ≤ 0.7 and 825≤ |V |+ |E| ≤ 10,240,0357.

Figures 5.8, 5.16 and 5.24 display the result of running the two algorithms on dense graphs with

0.7 < k ≤ 0.8. For Hopcroft and Tarjan’s algorithm, 85 dense graphs were used with 34,865 ≤

|V |+ |E| ≤ 10,789,432; for Tsin’s algorithm, 126 dense graphs were used with 34,865≤ |V |+

|E| ≤ 220,22,942.

Notice that |V |+ |E| is the input size of the graph G.

CHAPTER 5. COMPARISON 51

0 1 2 3 4 5 6 7 8 9 10

x 10
6

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.1: Total execution time (dense graphs with 0 < k ≤ 0.1)

CHAPTER 5. COMPARISON 52

0 2 4 6 8 10 12

x 10
6

 0

 2000

 4000

 6000

 8000

10000

12000

14000

16000

18000

20000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.2: Total execution time (dense graphs with 0.1 < k ≤ 0.2)

CHAPTER 5. COMPARISON 53

0 2 4 6 8 10 12

x 10
6

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.3: Total execution time (dense graphs with 0.2 < k ≤ 0.3)

CHAPTER 5. COMPARISON 54

0 2 4 6 8 10 12

x 10
6

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.4: Total execution time (dense graphs with 0.3 < k ≤ 0.4)

CHAPTER 5. COMPARISON 55

0 2 4 6 8 10 12

x 10
6

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.5: Total execution time (dense graphs with 0.4 < k ≤ 0.5)

CHAPTER 5. COMPARISON 56

0 2 4 6 8 10 12

x 10
6

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.6: Total execution time (dense graphs with 0.5 < k ≤ 0.6)

CHAPTER 5. COMPARISON 57

0 2 4 6 8 10 12

x 10
6

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.7: Total execution time (dense graphs with 0.6 < k ≤ 0.7)

CHAPTER 5. COMPARISON 58

0 0.5 1 1.5 2 2.5

x 10
7

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.8: Total execution time (dense graphs with 0.7 < k ≤ 0.8)

CHAPTER 5. COMPARISON 59

0 1 2 3 4 5 6 7 8 9 10

x 10
6

0

5000

10000

15000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.9: Time required to create the adjacency-lists (dense graphs with 0 < k ≤ 0.1)

CHAPTER 5. COMPARISON 60

0 2 4 6 8 10 12

x 10
6

0

5000

10000

15000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.10: Time required to create the adjacency-lists (dense graphs with 0.1 < k ≤ 0.2)

CHAPTER 5. COMPARISON 61

0 2 4 6 8 10 12

x 10
6

0

2000

4000

6000

8000

10000

12000

14000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.11: Time required to create the adjacency-lists (dense graphs with 0.2 < k ≤ 0.3)

CHAPTER 5. COMPARISON 62

0 2 4 6 8 10 12

x 10
6

0

5000

10000

15000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.12: Time required to create the adjacency-lists (dense graphs with 0.3 < k ≤ 0.4)

CHAPTER 5. COMPARISON 63

0 2 4 6 8 10 12

x 10
6

0

2000

4000

6000

8000

10000

12000

14000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.13: Time required to create the adjacency-lists (dense graphs with 0.4 < k ≤ 0.5)

CHAPTER 5. COMPARISON 64

0 2 4 6 8 10 12

x 10
6

0

2000

4000

6000

8000

10000

12000

14000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.14: Time required to create the adjacency-lists (dense graphs with 0.5 < k ≤ 0.6)

CHAPTER 5. COMPARISON 65

0 2 4 6 8 10 12

x 10
6

0

2000

4000

6000

8000

10000

12000

14000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.15: Time required to create the adjacency-lists (dense graphs with 0.6 < k ≤ 0.7)

CHAPTER 5. COMPARISON 66

0 0.5 1 1.5 2 2.5

x 10
7

0

2000

4000

6000

8000

10000

12000

14000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.16: Time required to create the adjacency-lists (dense graphs with 0.7 < k ≤ 0.8)

CHAPTER 5. COMPARISON 67

0 1 2 3 4 5 6 7 8 9 10

x 10
6

0

1000

2000

3000

4000

5000

6000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.17: Time required to find split components (dense graphs with 0 < k ≤ 0.1)

CHAPTER 5. COMPARISON 68

0 2 4 6 8 10 12

x 10
6

0

1000

2000

3000

4000

5000

6000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.18: Time required to find split components (dense graphs with 0.1 < k ≤ 0.2)

CHAPTER 5. COMPARISON 69

0 2 4 6 8 10 12

x 10
6

0

1000

2000

3000

4000

5000

6000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.19: Time required to find split components (dense graphs with 0.2 < k ≤ 0.3)

CHAPTER 5. COMPARISON 70

0 2 4 6 8 10 12

x 10
6

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.20: Time required to find split components (dense graphs with 0.3 < k ≤ 0.4)

CHAPTER 5. COMPARISON 71

0 2 4 6 8 10 12

x 10
6

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.21: Time required to find split components (dense graphs with 0.4 < k ≤ 0.5)

CHAPTER 5. COMPARISON 72

0 2 4 6 8 10 12

x 10
6

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.22: Time required to find split components (dense graphs with 0.5 < k ≤ 0.6)

CHAPTER 5. COMPARISON 73

0 2 4 6 8 10 12

x 10
6

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.23: Time required to find split components (dense graphs with 0.6 < k ≤ 0.7)

CHAPTER 5. COMPARISON 74

0 0.5 1 1.5 2 2.5

x 10
7

0

2000

4000

6000

8000

10000

12000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.24: Time required to find split components (dense graphs with 0.7 < k ≤ 0.8)

From Figures 5.1 to 5.24, we observe that Tsin’s algorithm runs faster than Hopcroft and Tarjan’s

algorithm for dense graphs. Figures 5.9 to 5.16 show that Hopcroft and Tarjan’s algorithm takes

much longer to create their adjacency-lists structure. This is because the algorithm needs two

depth-first searches and a bucket sort to build the acceptable adjacency-lists structure. By con-

trast, Tsin’s algorithm only needs one depth-first search. However, Tsin’s algorithm takes longer

to generate the split components. This is shown in Figures 5.17 to 5.24. The reason is per-

haps owing to the fact that Tsin’s algorithm uses linked lists to maintain the millipedes whereas

Hopcroft and Tarjan’s algrotihm uses a stack (i.e. an arrays) to keep edges belonging to the same

split components together. Finally, it is worth noting that for the case 0.7 < k ≤ 0.8 (i.e. very

CHAPTER 5. COMPARISON 75

dense graphs), when the input size goes beyond 10,700,201, Hopcroft and Tarjan algrothm starts

to collapse as it runs out of memory whereas Tsin’s algorithm continues to run until 24,622,080

(Figures 5.8, 5.16 and 5.24).

5.3.2 Sparse graph comparison

Figures 5.25 to 5.42 display the result of the experiment that compares the execution time of

Hopcroft and Tarjan’s algorithm with that of Tsin’s algorithm. Specifically, Figures 5.25 to

5.30 compare the total execution time of the two algorithms. Figures 5.31 to 5.36 compare the

execution time required by the two algorithms in creating their adjacency-lists structure. The

remaining figures compare the execution time of two algorithms spent on generating the split

components.

Figures 5.25, 5.31 and 5.37 display the result of running the two algorithms on 471 sparse graphs

with 1≤ |E||V | ≤ 1.1 and 1,001≤ |V |+ |E| ≤ 9,828,745.

Figures 5.26, 5.32 and 5.38 display the result of running the two algorithms on 459 sparse graphs

with 1.1≤ |E||V | ≤ 1.3 and 1,350≤ |V |+ |E| ≤ 10,269,705.

Figures 5.27, 5.33 and 5.39 display the result of running the two algorithms on 317 sparse graphs

with 1.3≤ |E||V | ≤ 2 and 129≤ |V |+ |E| ≤ 10,808,947.

Figures 5.28, 5.34 and 5.40 display the result of running the two algorithms on 195 sparse graphs

with 2≤ |E||V | ≤ 5 and 2,944≤ |V |+ |E| ≤ 114,35,194.

Figures 5.29, 5.35 and 5.41 display the result of running the two algorithms on 254 sparse graphs

with 5≤ |E||V | ≤ 10 and 3,924≤ |V |+ |E| ≤ 10,094,725.

Figures 5.30, 5.36 and 5.42 display the result of running the two algorithms on sparse graphs with

10≤ |E||V | ≤ 100. For Hopcroft and Tarjan’s algorithm, 220 sparse graphs were used with 34,175≤

|V |+ |E| ≤ 10,993,919; for Tsin’s algorithm, 239 sparse graphs were used with 34,175≤ |V |+

CHAPTER 5. COMPARISON 76

|E| ≤ 11,494,050.

0 1 2 3 4 5 6 7 8 9 10

x 10
6

0

1000

2000

3000

4000

5000

6000

7000

8000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.25: Total execution time (sparse graphs with 1≤ |E||V | < 1.1)

CHAPTER 5. COMPARISON 77

0 2 4 6 8 10 12

x 10
6

0

2000

4000

6000

8000

10000

12000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.26: Total execution time (sparse graphs with 1.1≤ |E||V | < 1.3)

CHAPTER 5. COMPARISON 78

0 2 4 6 8 10 12

x 10
6

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.27: Total execution time (sparse graphs with 1.3≤ |E||V | < 2)

CHAPTER 5. COMPARISON 79

0 2 4 6 8 10 12

x 10
6

 0

 5000

10000

15000

20000

25000

30000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.28: Total execution time (sparse graphs with 2≤ |E||V | < 5)

CHAPTER 5. COMPARISON 80

0 2 4 6 8 10 12

x 10
6

 0

 5000

10000

15000

20000

25000

30000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.29: Total execution time (sparse graphs with 5≤ |E||V | < 10)

CHAPTER 5. COMPARISON 81

0 2 4 6 8 10 12

x 10
6

 0

 5000

10000

15000

20000

25000

30000

35000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.30: Total execution time (sparse graphs with 10≤ |E||V | < 100)

CHAPTER 5. COMPARISON 82

0 1 2 3 4 5 6 7 8 9 10

x 10
6

0

500

1000

1500

2000

2500

3000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.31: Time required to create the adjacency-lists (sparse graphs with 1≤ |E||V | < 1.1)

CHAPTER 5. COMPARISON 83

0 2 4 6 8 10 12

x 10
6

0

1000

2000

3000

4000

5000

6000

7000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.32: Time required to create the adjacency-lists (sparse graphs with 1.1≤ |E||V | < 1.3)

CHAPTER 5. COMPARISON 84

0 2 4 6 8 10 12

x 10
6

0

2000

4000

6000

8000

10000

12000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.33: Time required to create the adjacency-lists (sparse graphs with 1.3≤ |E||V | < 2)

CHAPTER 5. COMPARISON 85

0 2 4 6 8 10 12

x 10
6

 0

 5000

10000

15000

20000

25000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.34: Time required to create the adjacency-lists (sparse graphs with 2≤ |E||V | < 5)

CHAPTER 5. COMPARISON 86

0 2 4 6 8 10 12

x 10
6

 0

 5000

10000

15000

20000

25000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.35: Time required to create the adjacency-lists (sparse graphs with 5≤ |E||V | < 10)

CHAPTER 5. COMPARISON 87

0 2 4 6 8 10 12

x 10
6

 0

 5000

10000

15000

20000

25000

30000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.36: Time required to create the adjacency-lists (sparse graphs with 10≤ |E||V | < 100)

CHAPTER 5. COMPARISON 88

0 1 2 3 4 5 6 7 8 9 10

x 10
6

0

1000

2000

3000

4000

5000

6000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.37: Time required to find split components (sparse graphs with 1≤ |E||V | < 1.1)

CHAPTER 5. COMPARISON 89

0 2 4 6 8 10 12

x 10
6

0

1000

2000

3000

4000

5000

6000

7000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.38: Time required to find split components (sparse graphs with 1.1≤ |E||V | < 1.3)

CHAPTER 5. COMPARISON 90

0 2 4 6 8 10 12

x 10
6

0

2000

4000

6000

8000

10000

12000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.39: Time required to find split components (sparse graphs with 1.3≤ |E||V | < 2)

CHAPTER 5. COMPARISON 91

0 2 4 6 8 10 12

x 10
6

 0

 2000

 4000

 6000

 8000

10000

12000

14000

16000

18000

20000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.40: Time required to find split components (sparse graphs with 2≤ |E||V | < 5)

CHAPTER 5. COMPARISON 92

0 2 4 6 8 10 12

x 10
6

 0

 2000

 4000

 6000

 8000

10000

12000

14000

16000

18000

20000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.41: Time required to find split components (sparse graphs with 5≤ |E||V | < 10)

CHAPTER 5. COMPARISON 93

0 2 4 6 8 10 12

x 10
6

 0

 5000

10000

15000

20000

25000

|V| + |E|

tim
e:

m
s

Tsin algorithm
Hopcroft and Tarjan algorithm

Figure 5.42: Time required to find split components (sparse graphs with 10≤ |E||V | < 100)

From Figures 5.25 and 5.26, we observe that Tsin’s algorithm runs slower than Hopcroft and

Tarjan’s algorithm when 1 ≤ |E||V | < 1.3. When 1.3 ≤ |E||V | < 5 (Figures 5.27, and 5.28), the exe-

cution times of two algorithms are almost the same, but when 5 ≤ |E||V | < 100 (Figures 5.29 and

5.30), Tsin’s algorithm runs faster.

As with the case for dense graphs, Figures 5.31 to 5.36 show that Tsin’s algorithm uses less time

to create the adjacency-lists structure while Figures 5.37 to 5.42 show that Hopcroft and Tarjan’s

algorithm runs faster in generating the split components.

Finally, it is worth noting that for the case 10< |E||V | ≤ 100, when the input size exceeds 10,993,919,

CHAPTER 5. COMPARISON 94

Hopcroft and Tarjan algrothm starts to collapse as it runs out of memory whereas Tsin’s algo-

rithm continues to run until 11,494,050.

Chapter 6

Conclusion

From Chapter 5, we observe that, for dense graphs, while Tsin’s algorithm runs much faster

than Hopcroft and Tarjan’s algorithm in creating the adjacency-lists structure, it runs slower in

generating split components. Overall, Tsin’s algorithms runs faster than Hopcroft and Tarjan’s

algorithm for dense graphs.

For sparse graphs, when 1 < |E|
|V | ≤ 1.3, Tsin’s algorithm runs slower than Hopcroft and Tarjan’s

algorithm; when 1.3 < |E|
|V | ≤ 5, the execution times of two algorithms are almost the same; when

5 < |E|
|V | ≤ 100, Tsin’s algorithm runs faster than Hopcroft and Tarjan’s algorithm.

In conclusion, for dense graphs, Tsin’s algorithm should be used. For sparse graphs, Tsin’s

algorithm should be used when 5 < |E|
|V | ≤ 100 whereas Hopcroft and Tarjan’s algorithm should

be used when 1 < |E|
|V | ≤ 1.3. For 1.3 < |E|

|V | ≤ 5, either algorithm can be used.

95

Bibliography

Boffey, T. (1992), Graph theory in operations research, Scholium International.

Chin, F., Chrobak, M. & Yan, L. (2009), Algorithms for placing monitors in a flow network, in

‘Algorithmic Aspects in Information and Management’, Springer, pp. 114–128.

Coleman, T. F. & Moré, J. J. (1983), ‘Estimation of sparse jacobian matrices and graph coloring

blems’, SIAM journal on Numerical Analysis 20(1), 187–209.

Ellis-Monaghan, J. A. & Gutwin, P. (2003), ‘Graph theoretical problems in next-generation chip

design’, Congressus Numerantium pp. 143–160.

Fussell, D., Ramachandran, V. & Thurimella, R. (1989), Finding triconnected components by

local replacements, in ‘Automata, Languages and Programming’, Springer, pp. 379–393.

Galil, Z. & Italiano, G. F. (1991), ‘Reducing edge connectivity to vertex connectivity’, ACM

SIGACT News 22(1), 57–61.

Gutwenger, C. & Mutzel, P. (2000), ‘http://www.ogdf.net/doku.php’.

Gutwenger, C. & Mutzel, P. (2001), A linear time implementation of spqr-trees, in ‘Graph Draw-

ing’, Springer, pp. 77–90.

Hartuv, E. & Shamir, R. (2000), ‘A clustering algorithm based on graph connectivity’, Informa-

tion processing letters 76(4), 175–181.

Hopcroft, J. E. & Tarjan, R. E. (1973), ‘Dividing a graph into triconnected components’, SIAM

Journal on Computing 2(3), 135–158.

96

BIBLIOGRAPHY 97

Jungnickel, D. (2008), Graphs, networks and algorithms, Springer.

Knauer, B. (1975), ‘A simple planarity criterion’, Journal of the ACM (JACM) 22(2), 226–230.

Mallach, S. (2011), On separation pairs and split components of biconnected graphs, Technical

report, Institut fur Informatik, Universitat zu Koln, Germany.

Miller, G. L. & Ramachandran, V. (1992), ‘A new graph triconnectivity algorithm and its paral-

lelization’, Combinatorica 12(1), 53–76.

Nagamochi, H. & Ibaraki, T. (1992), ‘A linear time algorithm for computing 3-edge-connected

components in a multigraph’, Japan journal of industrial and applied mathematics 9(2), 163–

180.

Nakanishi, N. (1971), Graph theory and Feynman integrals, Gordon and Breach New York.

Novak, L. & Gibbons, A. (2009), Hybrid graph theory and network analysis, Cambridge Uni-

versity Press.

Saifullah, A. M. & Üngör, A. (2009), A simple algorithm for triconnectivity of a multigraph,

in ‘Proceedings of the Fifteenth Australasian Symposium on Computing: The Australasian

Theory-Volume 94’, Australian Computer Society, Inc., pp. 53–62.

Taoka, S., Watanabe, T. & Onaga, K. (1992), ‘A linear-time algorithm for computing all 3-

edge-connected components of a multigraph’, IEICE TRANSACTIONS on Fundamentals of

Electronics, Communications and Computer Sciences 75(3), 410–424.

Tarjan, R. (1972), ‘Depth-first search and linear graph algorithms’, SIAM journal on computing

1(2), 146–160.

Tsin, Y. H. (2007), ‘A simple 3-edge-connected component algorithm’, Theory of Computing

Systems 40(2), 125–142.

Tsin, Y. H. (2009), ‘Yet another optimal algorithm for 3-edge-connectivity’, Journal of Discrete

Algorithms 7(1), 130–146.

BIBLIOGRAPHY 98

Tsin, Y. H. (2012), Decomposing a multigraph into split components, in ‘Proceedings of the

Eighteenth Australasian Symposium on Computing: The Australasian Theory Symposium

(CATS 2012)’, pp. 3–12.

Vo, K. P. (1983), ‘Finding triconnected components of graphs’, Linear and Multilinear Algebra

13(2), 143–165.

Vita Auctoris

Zhigang Jiang was born in 1986 in Hunan, China. He obtained his Bachelor degree of Informa-

tion and Computation Science from Changsha University, he went to University of Windsor in

2011, and graduated with a Master of Computer Science degree in 2013.

99

	An empirical study of 3-vertex connectivity algorithms
	Recommended Citation

	tmp.1390331755.pdf.PS4fQ

