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ABSTRACT 

Formation of dent defects in steel pipelines is not uncommon. A dent is a plastic 

deformation causing strains in the pipe wall which can be a threat to the structural 

integrity of the pipeline. This study investigated the effect of dent shapes, dent depths, 

and internal pressures on the strain distribution of the pipe. The work was completed 

using full-scale tests and numerical method. The study found that as the D/t ratio and the 

pressure increases so does the maximum strain around the dent. The study found that the 

location of the maximum strain value does not change with D/t ratio or internal pressure 

for rectangular dents. The maximum strain occurs at 125 mm away from the dent centre 

and at the dent centre for the longitudinal and circumferential axes, respectively. For 

spherical dent the location of the maximum strain in the longitudinal and circumferential 

axes differs for different pressures. 
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CHAPTER 1 

1.0 INTRODUCTION 

1.1 Overview 

Steel pipelines are used for the transportation of oil and gas across the nation. Most of 

these pipelines lie underground, which in turn creates a greater risk for the creation of 

damages. Because they are underground it is much more difficult to detect any damage 

existent in the pipeline. If damage exists, it has the capacity to affect the structural 

integrity of the pipes. This in turn can cause safety and environmental disasters as well as 

cause operational setbacks. The damages can be due to mechanical damages or 

construction damages (Cosham and Hopkins 2004).  

 

Mechanical damages are caused from the impact of construction equipment that hits the 

underground pipes. These impacts can cause dents in the pipeline to form. A dent is an 

inward plastic deformation in the cross-section of the pipe. Such a deformation causes 

residual stresses to exist in the deformed pipeline (Cosham and Hopkins 2004). 

 

Construction damages are those that occur when placing the pipeline in the field. They 

occur due to the fact that the ground has rocks and inconsistencies which can cause the 

formation of dents to occur in the pipeline. Furthermore, when a pipeline rests on top of a 

rock, dent can also form. If the rock remains in its position the dent is called a 

constrained dent. Constrained dents are those that are not free to re-round back after the 

dent has been formed. However, if the rock is removed after such dent has been found, 

this type of dent is called unconstrained dent as the dented area can now re-round back as 

the internal pressure is pushing it outwards. 
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There are different types of dents that can form in the surface of a pipeline. A dent can be 

accompanied by additional damages such as gouges or cracks. These dents can cause the 

pipe to fail before reaching its service life (Rosenfeld 2001). The focus of the study by 

Rosenfeld (2001) was plain dents. Plain dents are smooth dents having no gouges, cracks, 

or other inconsistencies in its dented surface. These types of dents are much less 

dangerous than the previously mentioned, however, they can still cause problems in the 

long-term due to the fluctuating pressure which can cause fatigue cycling, or from the 

development of corrosion as well as similar problems (Baker 2004a). Additionally, it was 

also determined from analytical models for unconstrained dents that the fatigue life of the 

pipe decreases as the initial dent depth is higher (Alexander and Kiefner 1997). 

Moreover, the fatigue life also decreases with an increasing D/t ratio, with D being the 

outer diameter of the pipeline and t being the thickness of the pipe wall, (Fowler 1993). 

 

Furthermore, other studies were carried out in order to determine the burst strength of a 

pipe containing a plain dent. It was determined by different researchers that the burst 

strength of a pipeline with a plain dent is not greatly reduced as compared to the burst 

strength of a dent containing a gouge (Cosham and Hopkins 2001). 

1.2 Problem Statement 

Dent can cause serious structural integrity problems for field pipelines leading to 

economic and environmental damages. In order to avoid such problems, it is necessary to 

determine more efficient and improved ways of determining the safety of a linepipe with 

dent defect. Dent depth is one of the most studied parameters; however, the dent shape, 

D/t ratio, and strain distributions around the dented area are also important parameters 

that also need to be considered to find improved methods for the assessment of the dent 

severity. 

Hence the current study looked into the strain distributions at and near the dented region 

of a pipeline. Different parameters such as the dent shape, dent depth, D/t ratio, and 
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internal pressure after denting were considered in this study. The study was completed 

using full-scale tests and finite element models on dented pipes. 

1.3 Objective of the Study 

The main objective of this study was to better understand and predict the behaviour of 

pipelines that are subjected to a plain dent by determining the strains and their locations 

in and around dent.   Monotonically increasing pressure was applied on the dented pipe to 

determine the strains in and around the dents. The parameters that were considered are 

the strain distribution around the dented area, the different dent shapes, and the position 

and location of the maximum strain value for the different types of indenters, internal 

pressures, and D/t ratios. A specific objective of this work is to create a Finite Element 

Model (FEM) based on experimental verification and validation. Second, to determine 

the value and location of the maximum strains in and around the dented region of a pipe 

for different dent shapes. Third, to develop a parametric study to determine the effect of 

the D/t ratio, the dent shape, and the internal pressure have on the maximum strain value 

and location. Lastly, to determine the  

1.4 Layout of Thesis  

This thesis is divided into seven chapters. The first chapter is the introduction, the second 

chapter deals with the literature review that was conducted for the purpose of reviewing 

other similar works as well as determining what is necessary to continue to research. The 

third chapter looks into the experimental test procedure. This chapter details all the 

specimens used, their material properties, the parameters, and the methods of testing the 

pipes as well as the equipment used. Chapter four describes in detail all the experimental 

tests results obtained for the pipes tested. Chapter five describes the Finite Element 

Modeling technique used to develop the numerical tool. Chapter six deals with the 

validation of the FE models and results of the parametric study involving the dent shape, 

D/t ratio, and internal pressure. Lastly, chapter seven concludes all the findings of this 

study and recommendations on future research. 
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CHAPTER 2 

2.0 LITERATURE REVIEW 

2.1 Research Background 

Various studies using different methodologies related to dents in pressurized pipelines 

were undertaken to understand and assess the severity of such pipelines. Pipelines 

carrying oil and gas can be subjected to failure due to mechanical damages, natural 

disasters, as well as corrosion (Ong et al. 1992). Mechanical damages such as dents that 

occur due to earthmoving equipment striking the pipeline can be in the form of dents 

along with gouges (Rosenfeld 2002). Other forms of dent damage that arise are those that 

occur during construction of the pipeline. These damages appear in the form of plain 

dents along the bottom half of the pipe (Rosenfeld 2002). Dents can also form in buried 

pipelines if the pipe rests on a rock or sharp hard surface. These failures can be 

environmentally and economically detrimental.  In most studies, mechanical damages in 

the form of dents were studied and analyzed through the use of experimental and or 

analytical studies as well as Finite Element method based on numerical study. Dent 

defect can lead to a leak or rupture in the line pipes. These studies as well as existing 

standards and codes use the dent depth as the main leading parameter for the 

determination of pipeline safety (Rosenfeld 2002). Furthermore, other studies used the 

strain level as another important criterion for the evaluation of the severity of dents 

(Lancaster and Palmer 1996; Rafi et al. 2012). As discussed in the following chapters, 

evaluation of the severity of dents requires an understanding of the dent behaviour. 

2.2 Dent Overview 

A dent in a pipeline is usually defined as the permanent inward indentation or plastic 

deformation of the cross-section of the pipe, causing distortion to the pipeline cross-
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section. This permanent deformation causes residual (locked-in) stresses to remain in the 

deformed pipeline. The dent depth is measured as the maximum reduction in the pipe’s 

diameter as compared to its original diameter (Cosham and Hopkins 2004). Figure 2.1 

shows both a dent in a pipeline as well its dent depth, H.  

 

Buried linepipe develops different types of damages, however only a few of these are 

discussed in this chapter. 

2.2.1 General Defects 

Buried linepipe can develop various defects as follows: 

 

• Gouges: Surface damages caused by external object which removes material 

from the pipe wall and hence surface metal loss occurs (Cosham and Hopkins 

2004). 

• Cracks: A material discontinuity in which the surfaces are located very closely 

to each other and the surfaces end in sharp tip (El Sayed 2013).  

• Corrosion: Deterioration of the material due to chemical or electrochemical 

action. 

• Wrinkles: A localized deformation of the pipe wall that is frequently 

characterized by a main outward bulge (Baker 2004). 

• Dent: A permanent plastic inward deformation of the cross-section of a 

linepipe as discussed next. Dents can be further classified into smooth dent, 

kinked dent, and plain dent. 

2.2.2 Dent Defects 

• Smooth dent: A dent causing smooth changes on the pipe wall’s curvature. 

• Kinked dent: A dent with a sharp change in the wall of the pipe.  
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• Plain dent: A smooth dent having no gouges or cracks or other defect in the 

dent. It can be either smooth dent or kinked dent depending on dents curvature 

pattern 

 

This research focuses on the study of plain dent on steel oil and gas pipelines and hence, 

the literature review is mainly focused on such dent defect. 

2.3 Strains in Dents 

In previous studies, the strains in dented pipelines was determined in two ways: when 

dent was being formed and when the dented pipe was being pressurized. The severity of 

dent can be obtained by determining the strain level of the dent. Strains in the dented 

region of the pipe can be obtained either numerically using finite element (FE) method or 

using experimental method. Determining strain values using FE method requires the 

solution of large plastic deformation shell with large number of nodes (Lukasiewicz et al. 

2006). A comparison between the results obtained from the finite element analysis (FEA) 

and the experimental or analytical results is usually carried out to validate the numerical 

(FE) model. 

2.3.1 Strains after dent formation  

Strains formed after the formation of a dent were widely studied by many (Lancaster and 

Palmer 1996; Ong et al. 1992; Keating and Hoffmann 1997). Most of the studies 

discussed different methods for calculation of strains in dented pipelines (Rosenfeld et al. 

1998). The work by Rosenfeld et al. focused on obtaining the signal from inline 

inspection tools so that the residual strain due to the indentation of the pipe can be 

determined. The study determined that there are three different strain components in 

order to accurately assess the severity of the dent. These components are the longitudinal 

bending strain, membrane strain, and circumferential bending strains. Once all three 

strain components were obtained, it was assumed that the strain components occur at the 
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dent apex which may not be correct and Equations 2.1 and 2.2 were combined to 

determine the net strain on the outer and inner diameter surfaces.  

 

   √   
            

  (2.1) 

   √                 (2.2) 

 

Where     and    are the net  strains on inner and outer surface, respectively;     and 

    are net circumferential strains on the inner and outer surfaces, respectively; and 

    and      are the net longitudinal strains at the inner and outer surfaces, respectively 

(Rosenfeld et al. 1998). 

 

Furthermore, Noronha et al. (2010) presented a procedure based on B-spline curves that 

interpolate the dent geometry obtained from the data extracted by in-line inspection (ILI) 

tools. The results obtained were then validated to those obtained from the non-linear FE 

analysis carried out for dented pipes with a 323.9 mm nominal outer diameter and 4.78 

mm wall thickness. The dent was created by a 219.1 mm diameter dome indenter. The 

study found a good estimation for both the circumferential and longitudinal bending 

strains. This method however, is valid if the field data from ILI tools is available 

(Noronha et al. 2010). The limitations with this method are that the study was carried out 

on rock dents that have the strain components   ,   , and     in the principal strain 

directions. This means that the dent is symmetric in both the longitudinal and 

circumferential directions. 

2.3.2 Strains in dented pipelines under internal pressure 

Strains in dented pipes subject to monotonically increasing internal pressure have been 

widely studied by various researchers. One of those researchers was Ong et al. (Ong et al. 
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1992) who performed FE analysis and experimental study on a pipe with a plain dent in 

order to study the elastic strain distribution. The pipe in the study was 900 mm long with 

a mean diameter of 160 mm and 2 mm wall thickness. The indenter used was spherical in 

shape with a 63.5 mm diameter. This indenter left a permanent dent depth of 13.5 mm 

(8.45% of the pipe diameter). Strain gauges were placed on the exterior surface of the 

pipe to obtain the elastic strain distributions in the dented region. It was found that the 

maximum strain occurred in the hoop direction along the longitudinal direction and 

located at the flank of the pipe (Ong et al. 1992) (See Figure 2.3). 

 

As described by Lancaster and Palmer (Lancaster and Palmer 1996), dent damage to 

transmission pipelines is a main cause of work-related failures which has serious 

environmental, economic, and safety consequences. The study undertook a series of tests 

to measure strains and displacements in previously dented mild steel pipes subjected to 

increasing internal pressure. The objective was to identify the size, shape, and location of 

regions of high strains. Small-scale pipes of 100 mm diameter, 1.85 mm thickness, and 

338 mm length were chosen in this study. The material chosen was aluminum alloy 6063-

TB with a yield stress of 163       and a yield strain of 2090 µe. The Poisson’s ratio 

of the pipes was 0.32. The model pipe material and geometry was chosen to ensure that 

strains in the models would be identical to strains in the full-size pipes.  Some of the 

specimens were dented under no pressure while others contained internal pressure. The 

indenter used to make the short dents was a steel sphere with a diameter of 50.8 mm. The 

total dent depth reached up to 16% of the diameter. Linear variable differential 

transformers and a traverse system were used to monitor the dent displacement and 

surface profile throughout the pressure tests (Lancaster and Palmer 1996). Furthermore, 

strain gauges and a photoelastic coating were used to determine the changes in surface 

strain in three specimens with identical small (short) plain dent depths of 0.16D. The 

photoelastic coating’s purpose was to measure the difference in the principal strains on 

the surface. Although the strains in a plain dent were observed on the longitudinal and 

circumferential axes, it was found that the maximum strains occur at the flanks (See 

Figure 2.3) of the axial extremities of the dented pipe. The high strain concentration 

values along with a larger reduction in the dent depth were observed in pipes dented at 
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zero pressure as compared to those dented under non-zero internal pressure (two pipe 

specimens of 0.23py and 0.57py). The study found that to observe a significant amount of 

plastic deformation on the pipes dented with internal pressure, the indentation pressure, 

pressure used to indent the pipe, must be exceeded. It was recommended that further 

research on pipes dented under internal pressure is needed to understand this 

phenomenon better. 

 

Another research conducted by Rosenfeld (2002), found that having the combination of a 

dent with a gouge can have serious effects due to the existence of the gouge and the re-

rounding internal pressure that is constantly existent throughout the pipeline. Such 

combination is dangerous because as the damage has occurred, plastic flow or even re-

melting, which could happen due to the heat from the contact between the material and 

the pipe, might have occurred within the gouge. When this happens, the local ductility 

and toughness of the pipe decreases and hence, a local rupture can occur.  The study also 

found that as the dent is being pushed out by the internal pressure of the pipe this 

produces high tensile strains at the root of the gouged area which can in turn cause cracks 

due to the low ductility and toughness in the dented region. The study concluded that for 

such damage there are no reliable methods for determining whether a dent with a gouge 

in a pipeline is safe at operating pressures. However, some repair options were 

recommended such as using steel sleeves to contain pressure. Furthermore, the study also 

recommended a composite wrap as long as the gouge is first grounded down to have a 

smooth contour, no cracks exist after grounding the gouge, and finally the dented region 

is filled with a hard filler (hardenable materials) under the sleeve. If the damage, 

however, is light, the study suggested that by simply grinding the damage out and 

repairing the coating, the pipeline will be safe for the operating pressures. The study 

recommended the following relationship for the safe length of grinding out the damage 

region: 
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Where   is the safe length of grinding,   is the grinding depth,   is the pipe’s wall 

thickness, and   is the pipe’s diameter. Furthermore, the safest grinding depth is 

suggested as 0.40 . Although the previous relationship contains parameters that can be 

simply obtained from the geometry of the pipe, the study did not specify what 

characterizes a light damage in order to just grind the damage out. An educated guess 

would have to be taken to determine if the damaged region is light.  

 

The study also discussed another form of damage that occurs when the pipeline is poorly 

installed. These damages occur mostly in the bottom half of the pipe and are usually not 

accompanied damages such as gouges or cracks; however, scratches could exist. As the 

pipeline is improperly installed, dents occur which are caused by rocks located in the 

bottom of the ditch (Rosenfeld 2002).  Although this other type of damage does not pose 

an immediate danger to the integrity of the pipeline due to the restrain from being pushed 

out, long-term problems can still occur such as corrosion, punctures, and even stress-

corrosion cracking, or even hydrogen cracking. As it was mentioned, the best way to 

prevent such long-term problems is to remove the rocks from the bottom of the ditch. 

Although this maybe be complicated to do as there could be large amount of rocks, a 

padding of sand can be laid in the ditch before placing the pipe. This can provide some 

form of protection against the sharpness of the rocks (Rosenfeld 2002). If the damage has 

already been created, there are ways to repair them as suggested by the authors such as by 

adding steel sleeves or a composite wrap with a filler in the dent area. The study 

recommended that only hardenable filler materials are to be utilized. 
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2.3.3 Determination of Strains with the use of In-line Caliper Data 

In-line calipers provide accurate data from which the dent shape can be obtained with the 

use of Finite Element Models (FEM) (Lukasiewicz et al. 2006). Strains in pipe walls have 

two major components; longitudinal and circumferential strains. Each of these can be 

split into bending and membrane components. The main difficulty arises when 

determining the membrane component as it stays constant through the pipe wall. The 

bending component of the strain changes linearly from inner to outer surface 

(Lukasiewicz et al. 2006). Based on the findings, most of the existing techniques focus on 

finding only the longitudinal membrane strains. The study by Lukasiewicz et al. 

recommended a method for determining both the longitudinal and circumferential 

membrane strains in dented pipes. The radial displacements of a pipe obtained from the 

high resolution in-line caliper were used to obtain an effective mathematical algorithm to 

calculate the bending and membrane strains. Equation 2.4 shows the final equation that 

combines the membrane and bending strains to obtain the effective strain. The derivation 

of this equation is detailed in the authors’ paper. This algorithm called the Dent Strain 

Analysis (DSA) program which was used to calculate these two strain components.  The 

results from the DSA were compared with the results from two FEM models (one with a 

simulated dent and another with a sample dent measured from the in-line caliper). The 

results from the DSA and the FEM models showed a good agreement validating that the 

algorithm developed can be used for the assessment of all the strains in dents. This 

assessment can evaluate whether the strain in dents are within an acceptable range. The 

study recommended a strain of 6% to be the acceptable limit for strains which is adopted 

by the B31.8 code for gas transmission and distribution piping systems (ASME 2007). It 

is important to find such strains as it helps in assessing the severity (risk associated with 

failure) of a dent in order to repair mechanical damages to the pipe. 

 

    
 

√ 
√             (2.4) 
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Where εef is the effective strain, εx is the strain in the longitudinal direction, and εy is 

the strain in the circumferential direction. 

 

2.3.4 Review of ASME B31.8 Code 

A few studies reviewed the ASME B31.8 code which looks at the strain-based criteria to 

determine whether a pipe with a dent is safe (Noronha et al. 2010).  Furthermore, the 

equations used to determine the strains were reviewed by the authors. Appendix R of the 

ASME B31.8 code (2003 and 2007) recommends equations for determining the total 

strain acting on the inside and outside of the pipe surface. Such equations are compared 

to the allowable strain limit in order to determine whether the dent in the pipe is 

considered safe. After reviewing the equations, it was found that there was an error in the 

derivation of those equations as they were derived using the assumption of plane strain. 

The use of such incorrect assumption can lead to inaccurate results. It was stated that the 

strains in the dent region were mostly within the plastic range. 

Additionally, another error found in the 2003 ASME B31.8 code was that the 

circumferential and longitudinal bending strain equations which missed a factor of 2 (see 

Equations 2.5 and 2.6) which divides the pipe wall thickness as seen in. This error leads 

to conservative estimates of strain components. Such error was corrected in the 2007 

revision of the code as shown in Equations 2.6 and 2.7: 
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In addition, interpolation of dent geometry data to develop the contour shape of dent 

surface and determine the strain levels was also reviewed (Noronha et al. 2010). The data 

was obtained from in-line inspection (ILI) tools. The use of fourth-order B-spline curves 

were used to interpolate the dent contour (Noronha et al. 2010). The use of ILI tools was 

studied to determine if there are any differences in the resolution. The study found that 

using more sensors would render better estimations of strains in the dent region and 

hence, a better contour shapes of the dented region. Finally, this study also reviewed the 

equations used for determination of longitudinal membrane strains. It was found that the 

evaluation of such strains is extremely dependent on the definition of the dent length 

(Noronha et al. 2010). Two different dent lengths used in Appendix R of the ASME 

B31.8 2007 code were compared to the FE results and the result indicated that a much 

better agreement exists with the FE results when measuring the length at the dent half-

depth (Noronha et al. 2010). These findings can help improve the code for future use. 

 

Later, another study recommended that neglecting the effect of the circumferential 

membrane strain to determine the critical strain values in a dent as recommended by the 

ASME B31.8 code (2003, 2007) is not reasonable (Rafi et al. 2012).  It was also 

determined that membrane strains are sensitive to the internal pressure applied aside from 

the dent depth and dent shape and hence it was recommended that the internal pressure 

should be taken into account (Rafi et al. 2012). 

2.3.5 Strains in Unconstrained and Constrained Dents 

Unconstrained dents by definition tend to rebound elastically and re-round inelastically 

due to the increasing internal pressure (Alexander and Kiefner 1997).  Constrained dents 

are those dents that are not allowed to re-round back after they occur (Alexander 1999). 
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The main finding associated with unconstrained dents is that if dent depth is 2% or less it 

would not likely fail during the useful life of a pipeline, and therefore, it would not be 

necessary to repair them.   

 

Rock (constrained) dents that have the rock stay in the same position in the vicinity of the 

existing dent are of main concern if the rock is sharp enough. If this occurs, it could lead 

to a puncture in the pipeline and therefore, a failure could occur under increasing internal 

pressure. The authors conducted three different types of tests on unconstrained smooth 

dents. The first one had a dome-shaped dent, the next ones had a bar-shaped dent, finally 

a pyramid-shaped dent. For the dome-shaped dents, a 219 mm (8.625 inch) diameter 

indenter was used to produce dents that vary between 6% to 18% depth of the pipe’s 

diameter. The dents were made with no internal pressure in the pipe (Alexander and 

Kiefner 1997). Aside from many findings, it was concluded that the unconstrained dents 

developed longitudinally-oriented cracks that spread from the outer pipe surface towards 

the inner pipe surface. It was also found by the comparison of fatigue lives, that 

constrained dents (with depths of 6% or less) would have longer lives than those of 

unconstrained dents (Alexander and Kiefner 1997). No conclusion was made by the study 

for dent depths greater than 6%. 

 

The next tests were completed with two different types of bar indenters: a 305 mm (12 

inch) long by a 25 mm (1 inch) in diameter bar-shaped indenter and a 457 mm (18 inch) 

long by 102 mm (4 inch) in diameter bar-shaped indenter. All dents were formed without 

internal pressure in the pipes. The bar indenter was oriented in two different positions 

within the pipe: for six pipes, the bar was placed parallel to the axis of the pipe, and in the 

last two pipes it was placed transverse to the axis of the pipe (Alexander and Kiefner 

1997). It was found that the cracks that occurred were longitudinally oriented and started 

at the outer diameter surface of the pipe. 
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The pyramid-shaped indenter had a 324 mm (12.75 inch) outer diameter by 5 mm (0.188 

inch) wall thickness. It was concluded by the authors that the pyramid dents exhibited 

less total rerounding as compared to the other two dent shapes. 

 

The authors concluded that the pipeline operators do not need to be concerned about the 

short-term consequences of smooth unconstrained dents. The only concern comes when 

the dent is subjected to severe service pressure if and only if, the dent is subjected to 

aggressive service pressure over a long period of time. Another finding was that smooth, 

unconstrained dents that have depths of 2% or more can be left without repairing if the 

analyses run on the pressure cycles in the pipe show that the dent would not fail within its 

useful life (Alexander and Kiefner 1997), however, this does not mean that the 6% limit 

is unsound. 

2.3.6 Strain Concentrations in Dented Pipelines with Internal Pressure 

As determined by Lancaster and Palmer (1996), high elastic hoop strain concentration 

factors occurs at the rim of the dent as seen in Figure 2.2. The strain concentration factors 

(SF) were determined by dividing the strain measured experimentally in the dent of the 

pipe by the calculated value of hoop strain away from the dent as shown in Equation 2.9 

(Lancaster and Palmer 1996). 

 

   
  

   
 (2.9) 

 

Where p is the internal pressure of the specimen, D is the outside diameter, E is the 

modulus of elasticity, and t is the pipe wall thickness. 
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The study observed high strain concentration factors as well as a reduction of the dent 

depth after pressurization indicating start of plastic deformation in pipes dented under 

zero pressure. However, for dents formed under internal pressure, the start of plastic 

deformation is delayed until after exceeding the indentation pressure (Lancaster and 

Palmer 1996). This result may cause different residual stress distributions and dent shape 

which should be studied further. 

2.3.7 Stress Concentrations in Dented Pipes with Internal Pressure 

As stated by Rinehart and Keating (2007), stress concentrations associated with dent 

defect can degrade the in-service performance as well as the fatigue life of pipes. This 

study developed a semi-analytical solution to determine the stress concentration 

distribution for a two dimensional cross-section dented cylinder pipe subjected to internal 

pressure. The method used for the semi-analytical approach was the equivalent load 

method. Such method provides a similar stress effect as that associated with the actual 

dent. It approximates the effect of geometric imperfections by assuming that the 

deviation in the shell behavior due to the dent imperfection is equivalent to the 

imperfection caused by pressure distribution on a perfect shell (Rinehart and Keating 

2007). The pipe wall profile and applied equivalent pressure and using this method can 

be found in Equations 2.10 and 2.11, respectively. 

 

 ( )        [ 
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Where r is the radius at any angle φ of the dent (pipe wall profile), R is the pipe’s 

undeformed nominal radius, ζ is the dent depth, and φo is the circumferential extent 

of the dent. 
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Where Pr
*
(ϕ) is the applied pressure distribution at any ϕ location of the dent. 

 

 

The displacement coefficient, Nφ, in the equivalent load is calculated through the 

derivation of the thin-wall, small deformation case, shell equations presented by Flugge 

(Flügge 1962). Furthermore, the actual stress predicted near the imperfection was 

determined to be the summation of the stresses present in the perfect cylinder and the 

change in stress induced by the equivalent load as shown in Equation 2.12: 
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Where,        
     , is the inner wall hoop stress,        is the nominal hoop stress, and t is 

the pipe wall thickness. 
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Where, m and n are Fourier series modes, l defines the periodicity in the axial direction, 

Io defines the Fourier expansion where m is zero, Im defines the Fourier expansion when 

φ = φo, and k is a material and specimen constant. 
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The semi analytical results were compared with the FEM results to study their agreement. 

The pipe geometry used in such FE models was the same as the semi analytical solution. 

A more simplified formula was deduced from such models for calculating the stress 

concentrations. The simplification of such formula as seen in Equation 2.14. 

 

           
     

 
 (2.14) 

 

Where d is the dent depth and t is the pipe wall thickness. 

 

This equation takes into consideration that fatigue cracks in dents normally develop on 

the outer surface of the dent center and therefore, the inner surface component was 

ignored (Rinehart and Keating 2007). It was also observed from parametric studies that 

long dents have a greater dependency on the dent depth to pipe thickness ratio (d/t) and 

hence, the relationship was simplified to include only that specific geometry. Such 

relationships provides conservative solutions (Rinehart and Keating 2007). This study 

determines the stress concentration factors for dents that have a longer length compared 

to the depth (L>50d). This study did not take into account the effects of gouges in dents 

as well as the effects of residual stresses that can influence the behavior of dent fatigue 

(Rinehart and Keating 2007). 

 

Furthermore, a study compared by Pinheiro and Pasqualino (2008) evaluates the stress 

concentration factors for longitudinal and transverse plain dents. The objective was to 

evaluate the fatigue failure of pipes with such dents that occurs due to stress 

concentrations in the dented region. High cycle fatigue theory was used to modify the S-

N curves for metallic structures undergoing high cycle fatigue loadings (Pinheiro and 

Pasqualino 2008). The S-N curves demonstrate the stress required to cause a fatigue 

failure in the pipe due to a number of cycles. This was done to propose a new method to 

calculate the fatigue life. Stress concentration factors for longitudinal and transverse plain 
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dents were obtained from a previously developed FE model for a spherical dent (Pinheiro 

and Pasqualino 2008). Stress concentration factors for spherical dents were previously 

determined from another parametric study (Pinheiro and Pasqualino 2008). FE models 

were used to perform a parametric study to asses stress concentration factors for 

longitudinal and transverse dents. It uses a non-linear elastic-plastic simulation of the 

denting process and generation of deformed shape, followed by an elastic determination 

of the stress concentration factors (Pinheiro and Pasqualino 2008).  It used a nonlinear 3D 

elastic-plastic shell model. The mesh was set to be S8R5 second-order quadrilateral thin 

shell elements that include five degrees of freedom per node (Pinheiro and Pasqualino 

2008).  From the parametric results, analytical expressions were also carried out to 

estimate stress concentration factors for longitudinal, transverse, and spherical dents as 

function of pipe and dent geometries. The FE model results were validated with 

experimental results of small-scale fatigue test on steel pipe with spherical dents under 

cyclic internal pressure (Pinheiro and Pasqualino 2008). Both, the experimental tests and 

FE models were conducted with the same dimensions, boundary conditions, and material 

properties. The study found a good agreement between the experimental and numerical 

strain results. The study also determined that the numerical model can accurately 

calculate the stress concentration factors. As suggested in the study, the analytical 

expressions developed in this study can be also used to evaluate the fatigue life of dented 

steel pipes with the use of modified S-N curves. 

2.4 Effect of Dent on Fatigue Behaviour 

As stated by Cosham and Hopkins (2004), strains and stress concentrations occur from 

the formation of a dent. Furthermore, a reduction in the pipe’s diameter is also observed. 

The dent depth is a very important factor which influences the fatigue life of pipelines 

(Cosham and Hopkins 2004). Additionally, the dent width and length play an important 

role in the distribution of strains and stresses which can also influence the fatigue life of 

pipes. Furthermore, Baker (2004) found from analytical models that for the fatigue life of 

unconstrained dents: 
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• Decrease with an increase in dent depth (Alexander and Kiefner 1997) 

• Decrease with increasing local strain (Alexander and Kiefner 1997) 

• Decrease with increasing pipe D/t ratio (Fowler 1993) 

2.4.1 Long and Short Dents Overview 

The following section provides an overview of the differences in the fatigue behavior 

between long and short dents. Long dents are dents that span a significant portion of the 

total pipe length and short dents are much smaller. 

 

For long dents, the maximum strain and stress occurs at the root of the dent. Furthermore, 

for long dents it is observed that fatigue cracking usually occurs at the center of the root 

of the dent and it is oriented longitudinally (Cosham and Hopkins 2004). For short dents, 

the maximum strain and stress occurs on the flanks of the dent (See Figure 2.2). A similar 

finding from another study found that the maximum hoop strain in short dents is located 

at the flanks of the dent and for long dents it is located at the root of the dent (Ong et al. 

1992). The nomenclature of a typical dent can be found in Figure 2.2. Additionally, 

fatigue cracking for short dents usually occurs around the flanks of the dent (Cosham and 

Hopkins 2004). A subsequent study researched by Keating and Hoffman (1997), 

concluded that long dents developed fatigue cracks in the root (See Figure 2.2) of the 

dent and for short dents, it occurs at the rim (See Figure 2.2) of the dent. In their study, 

dents were developed using three types of indenters. The specimen’s diameter ranged 

from 305 mm (12 inches) to 914 mm (36 inches) and the D/t ratio ranged from 34 to 96. 

 

As also mentioned by Cosham and Hopkins (2004), the fatigue life of plain dents is much 

less than that of a perfect pipe based on experimental tests. However, the fatigue life of s 

dents is much higher than those of kinked dents or plain dents containing gouges. A study 

done by Beller et al. (1991) which investigated the effect of dent depth and shape on 

pipeline stress distributions states that the largest local stresses for a semi-spherical 

indentation are located along the rim (See Figure 2.2) of the dent while those of a 
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cylindrical indentation are located at the root of the dent (See Figure 2.2).  It was 

suggested from the results that it is possible that a critical ratio of length to width exists 

for a dent such that the location of the largest stresses changes from the root to the rim of 

the dent (Beller et al. 1991). 

2.4.2 Importance of Fatigue  

Pipeline operation is an important factor in the determination of the life of pipes. It is an 

important issue as the pressure in the field oil pipelines changes constantly which in turn 

can lead to fatigue failure. As stated by Wu et al. (2011), if a dent defect exists on a 

pipeline, the undented shape will be recovered by the pressure wave circulating through 

the pipe (Wu et al. 2011). The study conducted tests using a FE model. This will in turn 

cause a movement of bending stresses. In addition to that, if there are other mechanical 

damages in the pipe such as a gouge or a weld, then the movement of bending stresses 

increases which can cause the pipeline to fail due to fatigue fracture. It was also found 

that, actual pipe pressures can be obtained from the daily reports of each pump along the 

pipeline. Such data can be beneficial in the prediction of pipeline failure if such 

mechanical damages exist within the body.  

2.5 Summary 

Overall, pipelines are widely used in the industry to carry and transport oil or pressurized 

gas. Having a dent defect in a pipeline introduces strain and stress concentrations that 

must be examined in order to determine the structural integrity and safety of the linepipe. 

The determination of strains in dents has been a major topic for research for a long period 

of time. Different methods were developed to determine the strains in different type of 

dents as there is no specific method of determining strains for all types of dents. It was 

found from the literature review that plain dents, which are the focus of this research 

project, are the least dangerous types of dents encountered in pipelines.  It has also been 

determined that for short dents, the maximum strain and stress occurs at the flanks of the 

dent. This project deals with the determination of the strain distributions in short dents of 
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various shapes and dent depths in order to determine the stress concentration locations 

and values. This was done as it is important for the fatigue life assessment as well as 

other pipeline structural integrity issues. 
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Figure 2.1: Cross Section of Dented Pipeline (Cosham and Hopkins 2004) 

 

 

Figure 2.2: Nomenclature of Typical Dent 

 

 

Figure 2.3: External Strains along the Axial Line of Symmetry 

(Lancaster and Palmer 1996) 
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CHAPTER 3 

3.0 TEST PROCEDURE 

3.1 Overview 

Previous research conducted on dented pipelines looked into the effect that dents have on 

the strain distribution around the dented area. Furthermore, the fatigue behaviour of 

dented pipes was also studied by different researches. From the many previous studies, it 

was determined that the main parameters that have an effect on the strength as well as 

fatigue life of the pipe are the dent depth and its shape. 

 

Most experimental studies focused on one or two different parameters, however, the 

current study investigates the effect that different parameters such as the dent depth, dent 

shape, and internal pressures have on the strain distribution around the dented area. There 

are a range of different parameters that can affect pipelines in the field; however in this 

study not all parameters were tested.  The different dent shapes as well as dent depths and 

internal pressures were considered in this study and the results provided good general 

overview of the expected outcome of dented field pipelines.  Additionally, the results 

obtained from the experimental work were then used to validate numerical models that 

could in turn provide results for many more different parameters. 

3.2 Specimens 

Full-scale tests were previously carried out by Centre for Engineering Research in 

Pipelines (CERP) led by Dr. S. Das at the University of Windsor, to determine the 

behaviour of a dented pipe under constant internal pressure (Rafi 2011). The strain 

distributions of were extracted to determine such behaviour. In order to do so, the 
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specimens chosen for testing represent the properties of gas and oil field pipes used in the 

industries. 

 

The pipelines were manufactured with an outer diameter of 274 mm, a wall thickness of 

8.2 mm, D/t ratio of 34 and a length of 1100 mm. The grade of steel conformed to API 

5L X52 steel pipes (American Petroleum Institute 2007). The ends of the pipes were 

welded to 50 mm thick end plates. 

3.3 Material Properties 

The pipe specimens chosen in this study were comprised of the same material. In order to 

obtain the mechanical properties of the steel pipes, tensile coupons were made from the 

longitudinal direction of the pipes. The tensile coupons were then tested according to the 

specifications set in ASTM E8/E8M-08 specifications (ASTM E28.04 Subcommittee 

2013). All pipe specimens with same diameter-to-thickness ratio of 34 were made from 

same steel.  

 

The mechanical properties obtained from testing the coupons were then used in the 

creation of the finite element models. The mechanical properties of the pipelines are 

shown in Table 3.1. The stress vs. the strain behaviour from such tensile coupons are 

plotted and shown in Figure 3.1 (Rafi 2011). 

3.4 Preparation of Selected Specimens 

The dents were created previously by Dr. Das’s research group CERP by applying 

monotonically increasing static load and deformation with constant internal pressure 

(Rafi 2011). Theses dented pipe specimens are used in the current study again under the 

leadership of Dr. S. Das of CERP. The dented pipe specimens were cleaned around the 

dented area in order to provide a smooth surface and to facilitate installation of strain 
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gauges for a better and more precise reading. Figures 3.2 and 3.3 show the setup of a pipe 

tested in the current study. 

3.5 Parameters 

In the experimental work of this study tests, different parameters were considered. The 

parameters are: i) the internal pressure, ii) the indenter shape, iii) the dent depth. Table 

3.2 shows the test matrix of this study. In order to differentiate between the different 

specimens tested, the pipes were given names to reflect their important characteristics. As 

can be found in Table 3.2, the test matrix shows the specific names given to each pipe. As 

an example, for a rectangular indented pipe of name RP20D8, R means that the pipe has a 

rectangular dent; P20 describes the internal pressure that was maintained in the pipe at 

the time of indentation and the pressure of this specimen was 0.2py. The internal pressure 

is in terms of py, which is the pressure that causes the stress in the circumferential axis to 

reach the material’s yield pressure as shown by the following equation (3.1). Finally, D8 

describes the permanent dent depth as a percentage of the pipe’s outer diameter. 

 

A more in-depth study was carried out in the numerical parametric study as it is not 

possible to test a wide range of pipe specimens. 

3.6 Boundary Conditions 

The boundary conditions chosen for the experimental study simulate the conditions 

experienced in the field. This was done in order to be able to accurately simulate the 

results that can occur in the field as well as report on the parameters of most importance 

that can affect the integrity and safety of field pipelines. In the field, a pipe buried 

underground usually rests on the soil. In the experimental testing, the pipes rested on a 

rigid table in order to provide a similar support system. Furthermore, the internal pressure 

within the pipe was applied through a hydrostatic pump (Figure 3.3). 
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3.7 Indenters 

Three different indenters used in the experimental study were chosen to produce different 

dent shapes that can be found in the field pipelines. These indenters were used to produce 

the different dent shapes in the pipe (Figure 3.4). In a previous study by Centre for 

Engineering Research in Pipeline (CFRP) as reported by Rafi (Rafi 2011). The dent can 

form due to the accidental impact of construction equipment such as excavators or 

sometimes during the construction of the pipe itself. Furthermore, rocks can also create a 

dent in the field buried linepipe. Figure 3.4 shows the shape of the three indenters used: 

• Sphere indenter acting as a sharp indenter 

• Rectangular indenter acting as a moderate indenter 

• Dome indenter acting as a smooth indenter 

3.8 Internal Pressure 

Oil and gas pipelines are constantly transporting fluid which needs internal pressure to be 

existent within the pipe. As the pipeline is setup underground until it serves its lifetime, 

dents can occur anytime during its lifetime. A dent an pose environmental as well as 

economic threats since a dent can lead to a rupture or even burst. For this study, the 

denting of the pipelines was already created previously by CERP (Rafi 2011); however 

an explanation of such process is described in the following section since the current 

study is a continuation of the previous study. The internal pressure in the dent tests was 

applied as a function of py, the yield pressure as shown in equation (3.1) and the pressure 

was kept unchanged during the entire indentation process; 

 

   
   

 
 (3.1) 
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Where σy is the material's yield stress level, t is the thickness of the pipe wall, and r is the 

inner radius of the pipe. 

3.8.1 Internal Pressure while Denting 

The internal water pressure during the indentation process was applied to simulate the 

indentation process occurring in the field. The internal pressure was varied between 0% 

and 20% of py for different pipes specimens. The value of py is 23.5 MPa (3410 psi) 

calculated using equation (3.1). The objective was to determine the effect of the internal 

pressure on the load-deformation behaviour of pipes as well as the strain distribution 

around the dented region (Rafi 2011). 

3.8.2 Internal Pressure after Denting 

In this study, monotonically increasing internal pressure was applied after the removal of 

the indenter. The internal pressure of the pipe was increased to 0.90 py to determine the 

effect that the different dents have on the strain distribution in the dented area. The 

increasing pressure caused re-bounding of the dent and this, releasing locked-in strains 

created by the denting process. 

3.9 Test Process 

All specimens were pressurized same way. The pipes were first filled with water and then 

pressurized with the use of an air-driven hydrostatic pump. The maximum pressure 

applied was 20.7 MPa (3000 psi) as it was not desired to reach the yield pressure of 23.5 

MPa (3410 psi). This yield pressure is obtained from equation 3.1. The main reason for 

having 20.7 MPa was to push out the dent as much as possible without reaching the 

yielding pressure.  After pressurizing the pipes, the internal pressure was then slowly 

reduced to zero (de-pressurized). 
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3.10 Experimental Setup and Instrumentation 

The experimental testing was performed in the structural engineering lab at the 

University of Windsor. The pipes were resting on a strong steel table while being 

pressurized as seen in Figure 3.2 and 3.3. 

 

Two linear voltage displacement transducers (LVDTs) were used to monitor the dent 

displacement throughout the test. They were mounted at right angles to each other to 

record the displacements. Figure 3.2 shows the photo of the test setup and Figure 3.3 

shows the schematic. Strain gauges were placed along the longitudinal and 

circumferential lengths of the dent. This was done to obtain the strain readings as the 

pipes are being pressurized (Figure 3.3). 

3.10.1 Fluid Pump and Pressure Transducer 

The internal pressure applied in the test specimens was carried out using an air-driven 

hydrostatic pump. The capacity of the pump is 10,000 psi (68.9 MPa). A pressure 

transducer was also used in order to read and obtain the internal pressure applied. A 

highly accurate pressure dial gauge was also used to monitor pressure at the pump. 

3.10.2 Linear Voltage Displacement Transducers (LVDTs) 

Two linear voltage displacement transducers (LVDTs) were used during the tests to 

measure the displacements that occurred when the pressure within the pipe pushed the 

dent outwards (See Figure 3.3). The first LVDT (LVDT1) was placed at the centre of the 

dent and the second LVDT (LVDT2) was placed at the side at 90° angle to LVDT1 in 

order to more accurately capture the displacement caused by the internal pressure. 
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3.10.3 Strain Gauges 

There were a total of 16 strain gauges used for each pipe tested (See Figures 3.5 to 3.7). 

The strain gauges measure the local strain on the top surface of the pipe. The locations of 

the strain gauges are shown in Figure 3.5 for the sphere, dome, and rectangular pipe 

specimens. For all indented pipes, the strain gauges were placed at 25 mm intervals near 

and around the dent area with the first gauge placed at the midpoint of the dent in the 

longitudinal direction. The last strain gauges in both directions were placed at 50 mm 

intervals. This was done to obtain a better understanding of the strain values at the center 

of the dent. 

 

The gauges used were 5 mm in length and had an electrical resistance of 120 ohms. They 

were applied at the outer surface of the pipe. Strain gauges were installed in the 

circumferential axis as well as the longitudinal axis. As the pipes were previously dented, 

residual strains were existent within the pipeline. 

3.10.4 Data Acquisition System 

A data acquisition system called CERP-DAQ was used to record and keep all the data 

that was obtained during the experimental testing. The CERP-DAQ was developed by 

Jamshid Zohreh of CERP using LabView® code (National Instruments Corporation 

1996). The data collected was set to be two readings per second. Nineteen channels were 

used in order to connect the sixteen strain gauges as well as the two LVDTs and the 

pressure transducer. By doing so, all the necessary data was saved for later retrieval and 

analysis. The DAQ-CERP is able to record data from up to 100 channels. The test setup 

and tests were jointly carried out with the active help and guidance from other CERP 

members. 
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Table 3.1: Material Properties of Specimes 

Modulas of Elasticity (MPa) Yield Strength (MPa) Tensile Strength (MPa) 

200 410 498 

 

 

 

Figure 3.1: Tensile Coupon Stress-Strain Behavior (Rafi 2011) 

 

Table 3.2: Test Matrix 

Test # Specimen Dent Depth 

(% of 

Diameter) 

D/t Denting 

Internal 

Pressure 

(%) 

Max. 

Internal 

Pressure 

(MPa) 

Indenter 

Shape 

1 RP20D8 8% 34 20% 20.7 Rectangular 

2 RP20D12 12% 34 20% 20.7 Rectangular 

3 SP20D8 8% 34 20% 20.7 Sphere 

4 DP0D8 8% 34 0% 20.7 Dome 

5 DP20D8 8% 34 20% 20.7 Dome 
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Figure 3.2: Photo of Test Setup 

 

 

Figure 3.3: Schematic of Test Setup 
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(a) Rectangular indenter               (b) Sphere indenter               (c) Dome indenter 

Figure 3.4: Indenters 

 

 

Figure 3.5: Strain Gauge Locations for Rectangular, Sphere, and Dome Indented Pipes 
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Figure 3.6: Photo of Strain Gauge Locations for Sphere and Dome Indented Pipes 
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Figure 3.7: Photo of Strain Gauge Locations for Rectangular Indented Pipes 
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CHAPTER 4 

4.0 TEST RESULTS 

4.1 Overview 

The purpose of this chapter is to present and discuss the results obtained from the tests 

carried out in the structural engineering laboratory. There are three different types of 

plots that are shown and explained in this chapter and these are as follows: 

 

• Load vs. displacement relationship 

• Pressure vs. displacement relationship 

• Strain distributions 

 

The load vs. displacement relationships were obtained in previous work by CERP (Rafi 

2011). This work dealt with the creation of indents on the same pipelines that were used 

in the current study as well. The pressures vs. displacement relationships were obtained 

with the use of a pressure transducer and a 25 mm LDVT through a data acquisition 

system. Finally, for the strain distributions, strain gauges of 5 mm gauge length were 

placed on the outer surface of the pipe specimens at and around the dent center to acquire 

the strain caused by the internal pressure applied in the pipe specimens. 

 

The effect of the indenter shape (or dent shape) as well as the dent depth and internal 

pressure existent within the pipe are explained in the following sections. 
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4.1.1 Indenter Shape 

As explained previously, the following three different types of indenters were used 

(Figure 3.2). 

 

• Rectangular Indenter 

• Sphere Indenter 

• Dome Indenter 

 

Each of these indenters can exemplify a broad range of dent defect that can be found in 

the field pipe specimens. In the experimental work, two pipe specimens were indented 

with a rectangular indenter but at different dent depths. Furthermore, one pipeline was 

dented with a spherical indenter, and finally two pipe specimens were dented with a 

dome indenter but, at different internal pressures.  

4.1.2 Dent Depth 

For the three different indenter shapes, the dent depth was varied for the two rectangular 

indented pipes. The reference dent depth (permanent depth) in all pipes was 8% of the 

pipe’s outer diameter. However, the dent depth for the rectangular indented pipes was 

varied to 8% and 12%. During the test of the 8% dent depth with a rectangular shape 

(RP20D8), the data acquisition system failed to save the test data when the internal 

pressure was raised to 1000 psi (6.9 MPa); however; the test data was interpolated as the 

experiment was carried out for a maximum pressure of 3000 psi (20.7 MPa). All other 

dent depths were run and the data was extracted. The following sections discuss the 

relationship between the load-displacement relationship as well as the pressure-

displacement relationships and the strain distributions of all the specimens used in this 

study. 
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4.1.3 Pressurization 

For all the test specimens, the maximum internal pressure applied in the pressurizing 

process was 3000 psi (20.7 MPa). This is about 90% of the yield pressure of the pipe 

(0.9py). It was decided not to go beyond this pressure limit to avoid any leak or rupture. 

The data for an internal pressure of 1000 psi (6.9 MPa) and 2000 psi (13.8 MPa) was also 

obtained before obtaining the test data for 3000 psi (20.7 MPa) which is the desired 

pressure. 

4.2 Load-Displacement Relationship 

The load vs. displacement relationship was studied and plotted in order to determine the 

effect of different types of indenters as well as dent depths. This was carried out in order 

to have a better understanding of the effect that different dent shapes on the behaviour of 

pipelines during denting process. The denting tests were completed in the previous study 

of CERP (Rafi 2011). The indenters used are able to represent most of the dents found in 

oil and gas field pipelines. Figures 4.1 through 4.5 show the load vs. displacement 

behaviours for all five specimens tested. It is observed that depending on the shape of 

indenter, there is a large difference on the amount of load required to obtain the same 

dent depth if the internal pressure is kept unchanged. As an example, in order to create a 

permanent dent depth of 8% (22 mm) of the pipe’s outer diameter, a higher load is 

required for a rectangular indenter (≈ 349 kN) rather than a dome (≈ 190 kN) or sphere (≈ 

170 kN) indenters which are smaller in shape. This is because a greater area is in contact 

with the pipe when creating a rectangular dent, which in turn needs a higher force to 

create the same dent depth. 

4.3 Pressure-Displacement 

The pressure vs. displacement relationship was studied and plotted to determine the effect 

of different shapes of indenters and dent depths. As shown in Figures 4.6 through 4.10, 
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there is a greater bounce-back in the dent depth for dome indented pipes (Figure 4.8 and 

4.9) as compared to the rectangular (Figure 4.6) and sphere indented pipelines (Figure 

4.10) for equal initial total dent depth. This is due to the fact that a dome indenter has a 

more evenly circular shape than the sphere and hence, it allows the dent to re-round back 

to a greater extent. Additionally, the rectangular indenter has four corners which are 

regions that have localized strain concentrations and hence, it is hard to re-round back, 

thus there is a smaller displacement than that of the dome shape. However, the 

displacement for the 12% dent depth (Figure 4.7) is much greater than any of the 8% dent 

depths. Furthermore, in Figure 4.6, it is observed that the data for 6.9 MPa (1000 psi) had 

to be interpolated as the computer program failed to save the data for this pressure. 

4.4 Strain Distributions 

The key objective of this study is to determine the strain distributions around the dented 

region when the pipe specimen is under constant internal pressure. This study is very 

important as the safety and structural integrity of the pipe is at risk if dent damage occurs. 

In the following sub-sections, the relationships between the dent shape and the strain 

distribution are explained. 

4.4.1 Rectangular Indented Specimens RP20D8 and RP20D12 

Specimen RP20D8 was indented with a rectangular indenter at the internal pressure of 

0.20py. The permanent dent depth was 8% of the pipe’s outer diameter. The strain gauge 

locations for the rectangular indented pipes are shown in Figure 3.5. Figures 4.11(a) and 

4.11(b) show the strain distributions along the longitudinal axis, Line 1 for specimen 

RP20D8, when the maximum pressure of 3000 psi (20.7 MPa) was applied and when all 

the pressure was released, respectively. It is observed that the maximum strain occurs at 

approximately 125 mm from the dent center which is outside of the dented region (see 

Figure 2.2). The value of the maximum strain is 0.19% when a pressure of 3000 psi (20.7 

MPa) was reached and 0.13% when the pressure was completely released. The difference 

between both peeks is about 0.06%. 
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Figures 4.11(c) and 4.11(d) show the strain distributions along the circumferential axis 

which is Line 2 for specimen RP20D8, when the maximum pressure of 3000 psi (20.7 

MPa) was reached and when such pressure was released to zero, respectively. The 

maximum strain occurs at the dent center. The value of the maximum strain is 1.26% 

when a pressure of 3000 psi (20.7 MPa) was reached and 0.95% when the pressure was 

completely released. The difference between both curves is around 0.31%. 

 

Specimen RP20D12 was dented with a rectangular indenter with an internal pressure of 

0.20py. The total permanent dent depth was 12%. The strain gauge locations for the 

rectangular indented pipes are shown in Figure 3.5. Figures 4.12(a) and 4.12(b) show the 

strain distributions along the longitudinal axis, Line 1 for specimen RP20D12, when the 

maximum pressure applied was 3000 psi (20.7 MPa) and then after releasing all the 

pressure to zero, respectively. It is observed that the maximum strain occurs at 

approximately 125 mm from the dent center which is outside of the dented region (see 

Figure 2.2). The value of the maximum strain is 1.51% when a pressure of 3000 psi was 

reached and 1.33% when the pressure was completely released. The difference between 

both strains is about 0.18%. 

 

Figures 4.12(c) and 4.12(d) show the strain distributions along the circumferential axis 

which is Line 2 for the same specimen RP20D12, when the pressure was 3000 psi (20.7 

MPa) and when the entire pressure was released, respectively. The maximum strain 

occurs at the dent center. The value of the maximum strain is 2.43% at 3000 psi pressure 

(20.7 MPa) and 2.39% when the pressure was completely released. The difference 

between applying and releasing pressure is about 0.04%. 
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4.4.3 Dome Indented Specimens DP20D8 and DP0D8 

Specimen DP20D8 was indented with a dome indenter with an internal pressure of 0.2py. 

The dent final permanent depth was 8% of the pipe’s outer diameter. The strain gauge 

locations for the dome indented pipes are shown in Figure 3.5. Figures 4.13(a) and 

4.13(b) show the strain distributions along the longitudinal axis, Line 1, when the 

maximum pressure of 3000 psi (20.7 MPa) was reached and when the pressure was 

released to zero, respectively. It is observed that the maximum strain occurs at 

approximately 100 mm from the dent center which is outside of the dented region. The 

value of the maximum strain is 0.57% when a pressure of 3000 psi (20.7 MPa) was 

reached and 0.65% when all the pressure was released. The difference between these two 

strain values is 0.08% which is marginal. However, a higher strain was observed when 

the pressure was released.  

 

Figures 4.13(c) and 4.13(d) show the strain distributions along the circumferential axis, 

Line 2 for same specimen DP20D8, at maximum pressure of 3000 psi (20.7 MPa) and 

after releasing all the pressure, respectively. The maximum strain occurs at the dent 

center. The value of the maximum strain is 3.7% at a pressure of 3000 psi (20.7 MPa) and 

3.1% when the pressure was released to zero. The strain gauge at that location failed 

during depressurization. Hence the strain at that location was extrapolated at 3.1%. The 

difference between these two strain values is 0.6%.  

 

Specimen DP0D8 was indented with the same dome indenter with an internal pressure of 

0py. The dent depth was 8%. The strain gauge locations for the dome indented pipes were 

shown in Figure 3.5 (a). Figures 4.14(a) and 4.14(b) show the strain distributions along 

the longitudinal axis which is Line 1 for specimen DP0D8, when the maximum pressure 

of 3000 psi (20.7 MPa) was reached and when such pressure was released, respectively. 

It is observed that the maximum strain occurs at approximately 75 mm from the dent 

center which is outside of the dented region. The value of the maximum strain is 1.29% 
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when a pressure of 3000 psi (20.7 MPa) was reached and 1.25% when the pressure was 

completely released. The difference between both strain values is about 0.04%. 

 

Figures 4.14(c) and 4.14(d) show the strain distributions along the circumferential axis, 

Line 2 for same specimen DP0D8, at the maximum pressure of 3000 psi (20.7 MPa) and 

at zero pressure, respectively. The maximum strain occurs at the dent center. The value of 

the maximum strain is 2.67% at the pressure of 3000 psi (20.7 MPa) and 2.38% when the 

pressure was completely released. The difference between both curves is around 0.29%. 

4.4.3 Spherical Indented Pipe SP20D8 

Specimen SP20D8 was indented with a spherical indenter with an internal pressure of 

0.2py. The total permanent dent depth was 8% of the pipe’s outer diameter. The strain 

gauge locations for the sphere indented pipes are shown in Figure 3.5. Figures 4.15(a) 

and 4.15(b) show the strain distributions along the longitudinal axis, Line 1 for specimen 

SP20D8, when the maximum pressure of 3000 psi (20.7 MPa) was reached and when 

such pressure was released to zero respectively. It is observed that the maximum strain 

occurs at approximately 50 mm away from the dent center. The value of the maximum 

strain is 1.29% when a pressure of 3000 psi (20.7 MPa) was reached and 1.22% when the 

pressure was completely released. The difference between both curves is around 0.07%. 

 

Figures 4.15(c) and 4.15(d) show the strain distributions along the circumferential axis, 

Line 2 for the same specimen SP20D8, at the maximum pressure of 3000 psi (20.7 MPa) 

and when such pressure was released to zero, respectively. The maximum strain occurs at 

a distance of 25 mm from the dent center, which is near the flank of the dent and within 

the dented region. The value of the maximum strain is 0.92% when a pressure of 3000 psi 

(20.7 MPa) was reached and 0.79% when the pressure was completely released. The 

difference between both peeks is around 0.13%. 
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4.5 Summary 

The following conclusions can be made from the results obtained from the experimental 

tests conducted: 

 

• The load-displacement relationships of pipelines that are dented with a lateral 

load are dependent on the amount of contact area between the indenter and the 

pipe surface. A higher load is required for indenters with a higher contact 

area. Furthermore, a higher load is required to produce the same amount of 

dent depth for pipelines such as the DP20D8 pipe that was dented while 

having pressure versus DP0D8 pipe that was dented under no internal pressure 

(Rafi 2011).  

• The pressure-displacement relationships of pipelines vary depending on the 

shape of indenter used. A rectangular indenter produces a higher displacement 

for the same pressure as that of the sphere indenter. However a dome indenter 

has a higher re-rounding than the rectangular indenter as it does not contain 

any corners that can restrict the dent reversal to a higher value. 

• The strain distribution at and near the dented region are dependent on the 

shape of the dent and the internal pressure applied during indentation process. 

The locations of the maximum strain are close to each other for the dome and 

the rectangular indented pipes. However, this is not true for the sphere 

indented pipes although the dome and sphere indenters are closer in shape. 

• The location of the maximum strain depends on the indenting pressure. For 

example, the location of the maximum strain for specimen DP20D8 occurs at 

a distance of 100 mm from the dent center, but that of specimen DP0D8 

occurs at a distance of 75 mm from the dent center for the longitudinal axis. 

The locations of the maximum strains are the same for the circumferential axis 

for both dome specimens (See Table 4.1 to Table 4.4). 

• The maximum strain locations vary between the longitudinal vs. the 

circumferential locations. For the longitudinal axis it is observed that the 
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maximum strains occur away from the dent center as for the circumferential 

axis they occur closer to the dent center. 

• The dent shape has a significant influence on the strain values at and near the 

dented region. For the rectangular and dome dented pipes, the maximum 

strain occurs in the circumferential axis while for the sphere dented pipes the 

maximum strain occurs in the longitudinal axis.  
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Figure 4.1: RP20D8 Experimental Load-Displacement Behaviour (Rafi 2011) 

 

 

Figure 4.2: RP20D12 Experimental Load-Displacement Behaviour (Rafi 2011) 
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Figure 4.3: DP20D8 Experimental Load-Displacement Behaviour (Rafi 2011) 

 

 

Figure 4.4: DP0D8 Experimental Load-Displacement Behaviour (Rafi 2011) 
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Figure 4.5: SP20D8 Experimental Load-Displacement Behaviour (Rafi 2011) 

 

 

Figure 4.6: RP20D8 Experimental Pressure-Displacement Behaviour 
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Figure 4.7: RP20D12 Experimental Pressure-Displacement Behaviour 

 

 

Figure 4.8: DP20D8 Experimental Pressure-Displacement Behaviour 
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Figure 4.9: DP0D8 Experimental Pressure-Displacement Behaviour 

 

 

Figure 4.10: SP20D8 Experimental Pressure-Displacement Behaviour 
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Figure 4.11(a): Longitudinal Strain for RP20D8 Specimen at 20.7 MPa (3000 psi) 

 

 

Figure 4.11(b): Longitudinal Strain for RP20D8 Specimen at 0 MPa (0 psi) 
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Figure 4.11(c): Circumferential Strain for RP20D8 Specimen at 20.7 MPa (3000 psi) 

 

 

Figure 4.11(d): Circumferential Strain for RP20D8 Specimen at 0 MPa (0 psi) 
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Figure 4.12(a): Longitudinal Strain for RP20D12 Specimen at 20.7 MPa (3000 psi) 

 

 

Figure 4.12(b): Longitudinal Strain for RP20D12 Specimen at 0 MPa (0 psi) 
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Figure 4.12(c): Circumferential Strain for RP20D12 Specimen at 20.7 MPa (3000 psi) 

 

 

Figure 4.12(d): Circumferential Strain for RP20D12 Specimen at 0 MPa (0 psi) 
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Figure 4.13(a): Longitudinal Strain for DP20D8 Specimen at 20.7 MPa (3000 psi) 

 

 

Figure 4.13(b): Longitudinal Strain for DP20D8 Specimen at 0 MPa (0 psi) 
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Figure 4.13(c): Circumferential Strain for DP20D8 Specimen at 20.7 MPa (3000 psi) 

 

 

Figure 4.13(d): Circumferential Strain for DP20D8 Specimen at 0 MPa (0 psi) 
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Figure 4.14(a): Longitudinal Strain for DP0D8 Specimen at 20.7 MPa (3000 psi) 

 

 

Figure 4.14(b): Longitudinal Strain for DP0D8 Specimen at 0 MPa (0 psi) 
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Figure 4.14(c): Circumferential Strain for DP0D8 Specimen at 20.7 MPa (3000 psi) 

 

 

Figure 4.14(d): Circumferential Strain for DP0D8 Specimen at 0 MPa (0 psi) 
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Figure 4.15(a): Longitudinal Strain for SP20D8 Specimen at 20.7 MPa (3000 psi) 

 

 

Figure 4.15(b): Longitudinal Strain for SP20D8 Specimen at 0 MPa (0 psi) 
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Figure 4.15(c): Circumferential Strain for SP20D8 Specimen at 20.7 MPa (3000 psi) 

 

 

Figure 4.15(d): Circumferential Strain for SP20D8 Specimen at 0 MPa (0 psi) 
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Table 4.1: Effect of Indenter Shape, Dent Depth, and Indenting Pressure on Maximum 

Strain at Maximum Pressure (Tension) 

Indenter 

Dent 

Depth 

(d/D) 

% 

Indenting 

Pressure 

(MPa) 

Max. 

Pressurizing 

Pressure 

(MPa) 

Max. 

Longit. 

Strain 

% 

Location 

(mm) 

Max. 

Circumf. 

Strain 

% 

Location 

(mm) 

Rectangle 8 20 

20.7 

0.19 125 1.26 0 

Rectangle 12 20 1.51 125 2.43 0 

Dome 8 20 0.57 100 3.72 0 

Dome 8 0 1.29 75 2.67 0 

Sphere 8 20 1.29 50 0.92 25 

 

Table 4.2: Effect of Indenter Shape, Dent Depth, and Indenting Pressure on Maximum 

Values at Zero Pressure (Tension) 

Indenter 

Dent 

Depth 

(d/D) 

% 

Indenting 

Pressure 

(MPa) 

Max. 

Pressurizing 

Pressure 

(MPa) 

Max. 

Longit. 

Strain 

% 

Location 

(mm) 

Max. 

Circumf. 

Strain 

% 

Location 

(mm) 

Rectangle 8 20 

0 

0.13 125 0.95 0 

Rectangle 12 20 1.33 125 2.39 0 

Dome 8 20 0.65 100 * 3.1 * 0 

Dome 8 0 1.25 75 2.38 0 

Sphere 8 20 1.22 50 0.79 25 

* Educated guess was made as strain gauge failed during de-pressurization process 
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Table 4.3: Effect of Indenter Shape, Dent Depth, and Indenting Pressure on Maximum 

Values at Maximum Pressure (Compression) 

Indenter 

Dent 

Depth 

(d/D) 

% 

Indenting 

Pressure 

(MPa) 

Max. 

Pressurizing 

Pressure 

(MPa) 

Max. 

Longit. 

Strain 

% 

Location 

(mm) 

Max. 

Circumf. 

Strain 

% 

Location 

(mm) 

Rectangle 8 20 

20.7 

0.044 50 0.089 50 

Rectangle 12 20 0.062 0 1.27 100 

Dome 8 20 0.35 25 0.78 75 

Dome 8 0 0.25 25 0.88 75 

Sphere 8 20 0.082 25 0.50 75 

 

 

Table 4.4: Effect of Indenter Shape, Dent Depth, and Indenting Pressure on Maximum 

Values at Zero Pressure (Compression) 

Indenter 

Dent 

Depth 

(d/D) 

% 

Indenting 

Pressure 

(MPa) 

Max. 

Pressurizing 

Pressure 

(MPa) 

Max. 

Longit. 

Strain 

% 

Location 

(mm) 

Max. 

Circumf. 

Strain 

% 

Location 

(mm) 

Rectangle 8 20 

0 

0.042 100 0.092 50 

Rectangle 12 20 0.062 0 1.27 100 

Dome 8 20 0.15 25 0.81 75 

Dome 8 0 0.17 25 0.86 75 

Sphere 8 20 0.078 25 0.53 75 
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CHAPTER 5 

5.0 FEA 

5.1 Overview 

Finite element model (FEM) was used to obtain the necessary information needed to 

achieve a better understanding of the experimental data and behaviour of dent subject to 

monotonically increasing internal pressure. This chapter emphasizes how the use of FEM 

was carried out to develop the numerical model. Validating the FE model with 

experimental test results is also necessary in order to have similar characteristics and to 

obtain comparable results with the experimental data. FE modeling was carried out to 

simulate the behavior of the experimental specimens by adopting similar geometry and 

material properties. The FEM tool ABAQUS/Standard version 6.11 distributed by 

SIMULIA was used to carry out the numerical modeling analysis. This tool was chosen 

as it is able to model pipelines with elasto-plastic isotropic and hardening material 

properties that are comparable to those from the experimental pipe specimens. Another 

reason to use such modeling tool is because it is one of the most popular and effective 

tools used to develop pipeline models that have a comparable denting load. This is 

demonstrated in other research such as the one conducted by Karamanos and 

Andreadakis (Karamanos and Andreadakis 2006). Furthermore, ABAQUS/Standard has 

also options for contact interaction that can simulate the experimental boundary 

conditions more precisely.  The purpose of generating a pipeline model with 

ABAQUS/Standard is to be able to more precisely predict the behaviour of a dented 

pipeline when it is being pressurized. Another reason is to obtain the strains within such 

dent in order to determine if a pipe is within the safe region. Lastly, a parametric study 

can also be conducted with the help of such modeling tool to develop a guideline that can 

be used to determine if a dented pipeline is safe. Such guideline will include different 

types of indenters, internal pressures, and D/t ratios. With this finite element program the 
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pipe specimens were developed and tested under similar experimental conditions. The 

development of FE models was done with the support from other students of CERP. 

5.2 Modeling 

The indentation tests were completed in a previous study (Rafi 2011). However FE 

simulations are undertaken in the current study. The finite element (FE) model for the 

pipelines was comprised of an S4R four-node linear doubly curved general purpose shell 

elements with reduced integration, hourglass control, and finite membrane strain 

formulation. Each node has three rotational and three translational degrees of freedom. 

Five integration points were chosen through the thickness of the element. Two flat shaped 

end caps were used in the model with less than 3000 shell elements. The end caps had a 

shell thickness of 50 mm which resemble those used in the experiment. The shell 

elements for the end caps were also S4R. The indenter was composed of 511 R3D4 four-

node 3-D bilinear rigid quadrilateral shell elements. The side support conditions were 

merged into the pipe and the middle support was imbedded into the pipe.  Figures 5.1 to 

5.3 show the different pipelines that were modeled with end caps and supports in place. 

More information on each separate part is provided in the following sections. 

5.3 Mesh Sensitivity Analysis  

A mesh study was needed in order to come up with an efficient way of meshing the 

pipelines to produce comparable results with the least time possible. Different mesh sizes 

were compared to determine an optimal solution. The mesh sizes used were 3 mm, 4 mm, 

5 mm, 6 mm, 8 mm, and 15 mm. As shown in Figure 5.4 it is observed that there is a 

small difference between the different mesh sizes. When comparing the discrepancy 

between the results to the computational time, it was found that an optimal solution was 

reached when using 5 mm mesh. 
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Furthermore, the effect of changing the size of the mesh at and near the dented region of 

the pipe was studied. The mesh size was varied from the mid-length of the pipe to its 

ends. A finer mesh was used at the mid-length and it increased at the ends as the middle 

portion of the pipeline suffered the dent (See Figure 5.5). Different mesh sizes were used 

in this study starting with 5mm square elements at the mid-length covering a length of 

100 mm and 20 mm square elements towards the ends of the pipeline. Another size used 

was 3 mm square elements at the center and 20 mm square elements at the ends.  The 

effect of such change resulted in similar results compared to having the same mesh all 

around the pipe (See Figure 5.6). The total solution time required on a Dell XPS 8300 

with an Intel® Core™ i5-2320 with 8GB of system RAM is 420 min, 300 min, 120 min, 

75 min, 55 min, and 10 min respectively. Hence, it was decided to use a uniform mesh of 

5 mm x 5 mm throughout the pipe (See Figure 5.7). The total number of elements used in 

each pipe specimen was 110,815 for the 3 mm mesh, 63, 027 for the 4 mm mesh, 40,645 

for the 5 mm mesh, 28,404 for the 6 mm mesh, 16,255 for the 8 mm mesh, and 4,570 for 

the 15 mm mesh. 

 

The indenters however, were meshed using a bigger element size. The optimal size of the 

indenters was also chosen in order to obtain a balance between the accuracy of data and 

the solution time of ABAQUS/Standard. The optimal size used when meshing the 

rectangular, dome and sphere indenters was 8.5 mm x 8.5 mm. The total number of 

elements in each indenter was 2,476, 511, and 212 for the rectangular, dome, and 

spherical indenters, respectively. 

5.4 Pipe 

Each pipe specimen used was 1100 mm long with an outer radius of 137 mm and an 

inner radius of 129 mm.  The meshing technique was free meshing with quad-dominated 

element shape and S4R element. The meshing selected was a uniform mesh of 5 mm x 5 

mm as seen in Figure 5.7. 
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5.5 End Caps  

The end caps were meshed using a quad-dominated element shape with a free technique. 

The element type used was also S4R. The shape of the end caps used was shown in 

Figures 5.1 to 5.3. The end caps were modeled with a 50 mm thick section with an elastic 

isotropic material behaviour since the plasticity did not occur in these plates. 

Furthermore, the end caps have a Young’s modulus (E) of 200 GPa, and a Poisson’s ratio 

of 0.3. Such properties closely model those obtained from the experiment. The material 

properties are seen in Table 3.1, and the Tensile Coupon curve is seen in Figure 3.1.  

5.6 Contact Formulation between Surfaces 

In the denting tests (Rafi 2011), the indenters came into contact with the pipes, 

introducing an inward deformation on the pipe wall. In order to model this in ABAQUS, 

a contact algorithm was introduced. This contact acts between the indenter and the outer 

surface of the pipe. In ABAQUS/Standard, there are two different ways of modeling the 

contacts needs. They are finite sliding and small sliding. For small sliding, only a small 

amount of sliding can occur relative to the surfaces that are being contacted. However, 

for finite sliding, there is an arbitrary range of sliding that can be allowed. This type is 

sliding is most commonly used due to its versatility. Additionally, a surface-to-surface 

(SS) discretization method was used for this FE model. This method is the standard 

discretization method provided in ABAQUS/Standard. With this approach, the surfaces 

having contact are required to be defined. A master surface and a slave surface must be 

defined in order to create a SS contact. ABAQUS/Standard provides guidelines regarding 

the selection of such surfaces. The indenters were chosen as the master surface as their 

surface is stiffer than that of the pipelines. The pipeline was then chosen as the slave 

surface. 
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Different contact formulations were used for the support contacts at the sides and at the 

mid-length of the pipe specimen. As it is described in the next section, the optimal 

balance between the results and the solution time was obtained for the chosen supports. 

5.7 Supports 

Various support conditions were simulated in the FE model to determine the most 

efficient way of implementing the supports onto the pipelines. This was done to be able 

to simulate the supports used in the experiments (See Figure 3.2 and 3.3). The supports 

used in the experiments were blocks of 305 mm length, 171 mm width, and a thickness of 

50 mm with a 185 mm groove centered along the length of the support. The supports 

used in the FE model resembled the ones used in the experiment. The supports were used 

at three different points along the length of the pipes: these are at the two ends and at the 

mid-length of the pipe (See Figure 5.1 to 5.3). 

 

For the FEM, four different types of support arrangements were simulated to determine a 

better fit. The first arrangement was comprised of contact interaction at the ends of the 

pipe and an imbedded (considered a regular type of BC) for the mid-support. The second 

arrangement was where all three supports were imbedded. The third arrangement was 

contact interaction in the middle and the side supports were imbedded. The last 

arrangement was to use merged contacts at the sides and imbedding the middle support. 

Imbedded contacts are contacts that are sections of the pipe designated as supports, rather 

than a new part, independent of the pipe itself, being designated as the support. A merged 

contact is an independent part, separate from the pipe, acting as the support but rather 

than using a contact interaction to connect the two parts ABAQUS allows for a merge to 

take place between the two parts. 

 

The first arrangement was to keep the middle support imbedded into the pipeline. When 

using contacts for side supports, the boundary conditions used restricted all movement 

between the base of the support and the surrounding area in order to prevent the contacts 
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from moving out of place. The dimensions of the contact supports used in the model 

resembled those in the experiment; however, the thickness and hence the contact surface 

was changed after many different trials in order to achieve realistic simulation of the 

supports.  

 

The second arrangement was to keep the middle and side supports imbedded.  The 

boundary conditions used restricted all translational degrees of freedom as well as the 

torsional degree of freedom (U1, U2, U3 and UR2). The surface used when imbedding 

the supports onto the pipes was developed after many trials in order to simulate similar 

results to those from the experiment. The load-deformation behaviour when using 

contacts or imbedding the side supports is shown in Figure 5.8. This Figure shows very 

similar results when comparing the use of imbedding the side supports (second 

arrangement) to that of using contact interaction at the sides (first arrangement). 

 

The third arrangement was to keep the side supports imbedded into the pipelines while 

changing the mid-support with a contact interaction. When using a contact for the mid-

support, the BC used restricted the movement of the support away from the pipelines. 

When imbedding the side supports onto the pipelines, the BCs used restricted all 

translational degrees of freedom as well as the torsional degree of freedom (U1, U2, U3, 

and UR2). The load-displacement behaviour of the mid-support when using a contact 

algorithm is shown in Figure 5.9. This figure shows similar results when comparing the 

use of a middle contact interaction (third arrangement) to that of using an imbedded mid-

support (second arrangement). 

The fourth arrangement was to merge the supports at the sides and keep the mid-support 

imbedded. ABAQUS/Standard allows for merging to take place so that two different 

parts can become one. The BCs used for the merged supports at the sides restricted all 

translational degrees of freedom as well as all the rotational degrees of freedom (U1, U2 

U3, UR1, UR2 and UR3). The BCs used for the mid-support, which was imbedded, 

restricted all translational degrees of freedom as well as the torsional degree of freedom 

(U1, U2, U3 and UR2).  
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As can be seen in Figure 5.10, it was concluded to use the fourth arrangement as it 

proved to be the more efficient type of supports as compared to the experimental test. 

5.8 Indenter 

For the FEM three different indenter shapes were used: 80 cm diameter dome indenter, 

50 cm diameter sphere indenter, and a rectangular indenter. The rectangular indenter is a 

rectangular prism with bottom dimensions 100 mm by 20 mm and top dimensions 164 

mm by 87 mm. The dome, sphere and rectangular indenters were all modeled using 

R3D4 four-node 3-D bilinear rigid quadrilateral shell elements. The sizes and shapes of 

all three indenters were modeled according to the size and shape of those used in the 

experiments to obtain similar results. 

5.9 Material Properties  

In order to determine the material properties to be used when modeling the pipelines, 

coupon specimens were tested in accordance with ASTM E E 8/E 8M-08 specification 

(ASTM E28.04 Subcommittee 2013) to obtain the uniaxial engineering stress-strain 

behavior of the pipe material (Rafi 2011). Since the section of the pipe specimen under 

the indenter experienced plastic deformation, a non-linear elastic-plastic material 

modeling technique was used along with von Mises yield criterion and isotropic 

hardening was used for numerical modeling. Since ABAQUS/Standard requires the total 

stress and the plastic strains, the following equations were used in order to obtain such 

values.  

 

          (      ) (5.1) 

    
  
   (      )  

     
 

 (5.2) 
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Where       is the true stress,      
  

 is the true or logarithmic plastic strain,      is the 

nominal stress or engineering stress,      is the nominal strain, and E is Young’s 

modulus. 

 

Since the end caps do not experience plastic deformation, it was modeled as an elastic 

material. 

5.10 Denting Process 

Though the denting was conducted in the previous study of CERP (Rafi 2011). The 

numerical study was developed and validated in the current study. Support and guidance 

was provided by other members of CERP. 

 

The load was applied in the FEM in various load steps that resembled the procedure used 

in the experimental loading procedure. The first step was to apply the internal pressure 

within the pipe. This was applied as a distributed load. The pressure was varied between 

0 to 0.40py, where py is the internal pressure that causes circumferential yielding. Such 

pressure was calculated using the following relationship. 

 

   
   

 
 

(5.3) 

 

Where    is the yield stress of the pipe material,   is the thickness of the pipe wall, and   

is the outer radius of the pipe. 
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Next, the indenter was applied using the displacement central method. The stroke applied 

to the indenter in the FEM was the same as that applied in the test specimens. For the 

tests, during the application of the indenter the internal pressure remained unchanged. 

The next step was to remove the indenter gradually while continuing to have same 

internal pressure. ABAQUS/Standard is able to set up the necessary number of 

increments needed to reach convergence in the solution. Lastly, the internal pressure was 

reduced to zero as done in the experiments.  

5.11 Pressurization Process 

Both experimental and numerical simulations for pressurization and de-pressurization of 

dented pipe specimens were completed in the current study. However, other students of 

CERP were also involved in these activities. 

 

Following the last step of the denting processes, the pipe was gradually pressurized to 

0.90py. This was done by adding a step that increases the internal pressure from zero to 

0.90py. During the next step, the internal pressure was slowly reduced to zero (de-

pressurized). The purpose of doing this is to be able to determine the strain distribution 

around the dented region when the pipe is subjected to internal pressure. 

5.12 Validation of FE Model 

All the validation is done in the next chapter along with the parametric study. 
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Figure 5.1: Sphere Indented Pipe FEA 

 

 

 

Figure 5.2: Dome Indented Pipe FEA 
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Figure 5.3: Rectangular Indented Pipe FEA 

 

 

Figure 5.4: Mesh Sensitivity Analysis 
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Figure 5.5: Varying Size Mesh 

 

 

Figure 5.6: Mesh Analysis for Uniform and Varying Size Mesh 
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Figure 5.7: 5 mm Mesh Selection for all Pipes Tested 

 

 

Figure 5.8: Comparison between All Contacts Imbedded vs. Side Contacts and Middle 

Imbedded 
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Figure 5.9: Comparison between All Contacts Imbedded vs. Sides Imbedded and Middle 
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Figure 5.10: Comparison between all Arrangements vs. Experimental Results 
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CHAPTER 6 

6.0 VALIDATION AND PARAMETRIC STUDY 

6.1 Overview 

As presented in the previous chapters, finite element modeling (FEM) as well as full 

scale tests were carried out in order to compare and validate the FE models. The FE 

models were then used to predict the results which could not otherwise be determined 

from the tests. A validation process must be completed to be able to create a FEM that 

can be accepted as an alternative to expensive and time consuming full-scale tests. As 

previously discussed in the Finite Element Modeling chapter, all models were created 

using the same properties, materials, and geometric parameters as those from the 

experimental tests. By doing so, the results of both methods can be compared and 

conclusions can be reached. 

 

Furthermore, another purpose of creating a FEM is to be able to undertake a parametric 

study in which different parameters are changed and the results for each are obtained. 

This method is much more economically and time efficient as no real experiments are to 

be conducted once the model has been validated. For the purpose of the current research, 

the parameters considered are: the D/t, the internal pressure, the dent, and the dent shape. 

The D/t varied from 20 to 80 that are typically found in the field. The internal pressure 

varied from 1000 psi (6.9 MPa) to 3000 psi (20.7 MPa), and the dent shapes were the 

rectangular and spherical indenters as discussed in more detail in the following sections. 
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6.2 Assessment between FEA and Experimental results 

The purpose of developing a FEM is to compare and validate the results from the 

experimental tests to have an acceptable numerical model. This model can then be used 

to undertake a parametric study and determine the effect that different parameters have 

on the dented pipe. The FEM was validated against the test data for three different 

parameters. The first one was the load-displacement behaviour from the denting process. 

As described in the test procedure chapter, an indenting load was applied to the pipelines 

with the use of different indenters (Rafi 2011). Linear Voltage Displacement Transducers 

(LVDTs) were used to obtain the displacement of the indenters (indentation depth). For 

the FEA data, the displacement was obtained from the nodal displacement of the node 

located at the centre (root) of the dent (maximum displacement), and the magnitude of 

the load was obtained from the force of the indenter.  

 

The second behaviour checked was the pressure-displacement graphs obtained from the 

pressurization process. The description of the pressure application process was described 

in the test procedure chapter. 

 

The third behaviour checked against the test data was the strain distributions around the 

dented area. For the tests, strain gauges were placed at and near the dented region to 

accurately determine the behaviour of a dent. For the finite element analysis (FEA), the 

strain data was obtained from the integration points of the elements within and around the 

dented area. In the tests, no strain data could be collected from underneath the indenter, 

however, these strains were obtained from FEA. 

 

Three different indented specimens were tested in the experimental work: rectangular 

indented specimens, dome indented specimens, and sphere indented specimens. All five 

pipe specimens had the same outer diameter of 274 mm and thickness of 8.2 mm as well 

as the same length of 1100 mm. Two rectangular indented pipes were tested. The main 
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difference between these two pipes is the dent depth used. The first rectangular pipe 

specimen, RP20D8, had a permanent dent depth of 8% of the outer diameter and the 

second specimen had a dent depth of 12%. The load-displacement plots showing the 

comparison between the experimental and FEA data for the 8% dent depth is shown in 

Figure 6.1. Furthermore, the pressure-displacement relationship is shown in Figure 6.2. 

Finally, the strain distribution for the longitudinal and circumferential axes around the 

dented area are shown in Figures 6.3(a), 6.3(b), 6.3(c) and 6.3(d).There is a good 

agreement between the load-displacement, pressure-displacement, as well as the strain 

distribution graphs. The FEA data for load-displacement and pressure-displacement agree 

well with test behaviour as they are compared on a global level. However, the strain 

values do not always agree well, especially at maximum values. Strain data is very hard 

to match, even among two physical tests on the same specimen at different times, as it is 

a very localized behaviour that is very sensitive to environmental influences. Hence, 

further improvement in FE model is recommended. 

 

Two dome indented pipes were tested. The main difference between these two specimens 

was the internal pressure applied during the indentation process. The first dome indented 

pipe (DP0D8) had no internal pressure during denting process, while the second pipe 

(DP20D8) had a 0.20py (20%) internal pressure during the denting process. However, 

both specimens had the permanent dent depth of 8% of the outer diameter of the pipe. 

The load-deformation plots for the comparison between the experimental and FEA for the 

DP20D8 is shown in Figure 6.4 and the pressure-displacement plot is shown in Figure 

6.5. The strain distributions for the longitudinal and circumferential axes around the 

dented area are shown in Figures 6.6(a), 6.6(b), 6.6(c), and 6.6(d). The value for the 

strain at the 0 mm position in Figure 6.6(d) for specimen DP20D8 could not be obtained 

since this strain gauge failed during the pressurization process. There is a good agreement 

between the load-deformation plots. However, the agreement between the test and the 

FEA are reasonable with discrepancies in the maximum values. DP0D8 was not included 

in the FE model generation because only one specimen for each dent shape was included 

for validation purposes. 
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Lastly, one spherical indented pipe was modelled, specimen SP20D8. The internal 

pressure was 0.20py and the dent depth was 8% of the outer diameter of the pipe. The 

load-displacement plot showing the comparison between the experimental and a FEA is 

shown in Figure 6.7. The pressure-displacement graph is shown in Figure 6.8. The strain 

distributions for the longitudinal and circumferential axes around the dented area are also 

shown in Figures 6.9(a), 6.9(b), 6.9(c), and 6.9(d). There is a good agreement between 

the load-deformation and pressure-displacement relationships. However, agreement in the 

maximum strain values in the longitudinal and the circumferential axes have differences 

up to 40% and further research is required. 

6.3 Parametric Study 

A parametric study was performed to determine the effect that different parameters on the 

strain distributions of a dented pipeline. Three different parameters were chosen in this 

parametric study and they are shown below along with their ranges: 

 

• D/t Ratio: 20 to 80 

• Internal Pressure: 6.9 MPa (1000 psi)  to 20.7 MPa (3000 psi)  

• Dent Shape: Rectangular, and Sphere 

 

In order to change the D/t ratio, the thickness of the pipe wall was varied between 3.4 

mm to 13.9 mm. This resulted in a range of D/t ratios in between 20 to 80. Next, the 

internal pressure for pressurization process was varied between 1000 psi (6.9 MPa) to 

3000 psi (20.7 MPa) at an increment of 1000 psi (6.9 MPa). Lastly, the dent shape was 

varied between a rectangular dent shape and a spherical dent shape. The parametric study 

includes two dent shapes, rectangular, and sphere. Due to time constraint, it was decided 

not to include the dome shape dented pipes in the parametric study.  
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The names provided for each pipeline created for the parametric study uses the specific 

parameters changed for that specific run. As an example, for the specimen RP20D6-3000, 

R means that it was dented with a rectangular indenter and hence, the dent shape is 

rectangular, P20 describes the internal pressure at which the pipe was dented is 0.2py 

(20%), D6 shows the permanent (plastic) dent depth of the pipe was 6% of the outer 

diameter, and finally 3000 is the maximum internal pressure reached during the 

pressurizing process of the pipe after the indenter was removed. 

 

The main purpose of a parametric study was to determine the locations where the 

maximum strain occurs when changing the D/t ratio, dent shape, and internal pressures. 

The strain values obtained from the parametric study are the true strain values. 

6.3.1 Effect of D/t ratio and Internal Pressure on Strain Distributions 

The effect of the D/t ratio on the longitudinal and circumferential strain distribution was 

determined. Different ranges of D/t ratios were used in the parametric study and 

depended on the internal pressure applied after the indenter was removed. With a higher 

internal pressure of around 3000 psi (20.7 MPa), the maximum D/t ratio applied in FE 

model for a rectangular indented pipe was 65 and minimum was 20. The highest D/t ratio 

the FE model successfully ran with was 65. A large D/t means very thin pipe wall 

thickness. The pipe with a very large D/t ratio becomes numerically unstable and the 

solution process terminates.  For a D/t ratio of 65, the thickness of the pipe was around 

4.2 mm. However, for the medium internal pressure of 2000 psi (13.8 MPa), the 

maximum D/t ratio modeled for a rectangular indented pipe was 80 and minimum was 

20. With a lower internal pressure of 1000 psi, the maximum D/t ratio modeled was 80 

and minimum was 20, since no numerical difficulties were faced at this pressure 

 

For an internal pressure of 3000 psi (20.7 MPa), the maximum D/t ratio that was 

successfully modeled and solved for a spherical indented pipe was 70 and minimum was 

20. The highest ratio reached was 70 due to the same numerical problem as discussed for 
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the rectangular dented pipe specimen. For a D/t ratio of 70, the thickness of the pipe was 

around 3.9 mm.   

 

However, for medium internal pressure of 2000 psi (13.8 MPa), the maximum D/t ratio 

modelled which was successfully run was 80 and minimum was 20. 

6.3.1.1 Rectangular Dent 

The strain distribution plots for the 8% dent depth rectangular indented specimen for 

3000 (20.7 MPa) and after pressurizing along the longitudinal and circumferential axes 

are shown in Figures 6.3(a), 6.3(b), 6.3(c), and 6.3(d). The maximum strain for the 

longitudinal axis vs. the different D/t ratios for the internal pressures of 3000 psi (20.7 

MPa), 2000 psi (13.8 MPa), and 1000 psi (6.9 MPa) are shown in Figure 6.10. The 

maximum strain for the circumferential axis vs. the different D/t ratios for the internal 

pressures of 3000 psi (20.7 MPa), 2000 psi (13.8 MPa), and 1000 psi (6.9 MPa) are 

shown in Figure 6.11. In these figures the distance of these maximum strains from the 

dent centre are indicated. 

 

The results show that for increasing D/t ratios the maximum strain in the pipe increase. 

Furthermore, as the internal pressure in the pipe increases the maximum strain in the pipe 

increases. It was found that as the internal pressure increases the strain also increases. 

Furthermore, as the D/t ratio increases, so does the strain. The results obtained follow a 

pattern which details that the smaller the pipe’s wall thickness and the higher internal 

pressure a higher strain exist. The location of the maximum strain in the longitudinal 

direction remains unchanged for each pressure with changing D/t ratios. The location of 

the maximum strain stays constant at 125 mm for all three pressures. The location of the 

maximum strain in the circumferential direction remains constant for a constant pressure 

with changing D/t ratios. The location of the maximum stays constant at 0 mm for all 

three pressures. 
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6.3.1.2 Spherical Dent 

The strain distributions graphs for the spherical indented pipe specimen along the 

longitudinal and circumferential axes are shown in Figures 6.9(a), 6.9(b), 6.9(c), and 

6.9(d). The maximum strain for the longitudinal axis vs. the different D/t ratios at the 

internal pressures of 3000 psi (20.7 MPa), 2000 psi (13.8 MPa), and 1000 psi (6.9 MPa) 

are shown in Figure 6.12. The maximum strain for the circumferential axis vs. the 

different D/t ratios for the same internal pressures of 3000 psi (20.7 MPa), 2000 psi (13.8 

MPa), and 1000 psi (6.9 MPa) are shown in Figure 6.13. It can be found that the same 

pattern of strains as that of the rectangular dent was observed; as the internal pressure 

increases the strain also increases. Additionally, as the D/t ratio increases, so does the 

strain. The location of the maximum strain in the longitudinal direction does not change 

if pressure is unchanged with changing D/t ratios. The location of the maximum strain for 

the longitudinal axis varies as pressure changes. For example, at a pressure of 13.8 MPa 

(2000 psi) the maximum strain occurs at 25 mm away from the dent center, while for 

20.7 MPa (3000 psi) it occurs at 50 mm away from the dent center. The location of the 

maximum strain in the circumferential axis does not follow any pattern.  

6.4 Summary 

The summary is as follows 

• Having a large D/t ratio means that the pipe’s wall thickness is very small. 

When this happens, the FE model becomes numerically unstable and the 

solution process terminates. However, further research is recommended to 

overcome this issue. 

• As the D/t ratio increases, so do the strain values. This increase is much larger 

when the internal pressure is higher. This phenomenon occurs for both 

rectangular and spherical indented pipe specimens. 
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• The strain values increase as the internal pressure increases. This occurs for 

the rectangular and sphere indented specimens as shown in Figures 6.10 to 

6.13. 

• The location of the maximum strain for the rectangular dent in the 

longitudinal axis occurs away from the dent centre while the location of the 

maximum strain for the circumferential axis occur at the dent center for all 

internal pressures. 

• The location of the maximum strain for the spherical dent in the longitudinal 

axis increases by 25 mm as the internal pressure increases while the location 

of the maximum strain for the circumferential axis has no apparent pattern. 

• For the rectangular dented pipes, maximum strain values are observed in the 

circumferential axis while for the spherical dent, the maximum values occur in 

the longitudinal axis. 
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Figure 6.1: FEA vs. Experimental Load-Displacement Behaviour of RP20D8 

 

 

Figure 6.2: FEA vs. Experimental Pressure-Displacement Behaviour of RP20D8 
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Figure 6.3(a): Longitudinal Strains for RP20D8 at 20.7 MPa (3000 psi) 

 

 

Figure 6.3(b): Longitudinal Strains for RP20D8 at 0 MPa (0 psi) 
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Figure 6.3(c): Circumferential Strains for RP20D8 at 20.7 MPa (3000 psi) 

 

 

Figure 6.3(d): Circumferential Strains for RP20D8 at 0 MPa (0 psi) 
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Figure 6.4: FEA vs. Experimental Load-Displacement Behaviour for DP20D8 

 

 

Figure 6.5: FEA vs. Experimental Pressure-Displacement Behaviour for DP20D8 
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Figure 6.6(a): Longitudinal Strains for DP20D8 at 20.7 MPa (3000 psi) 

 

 

Figure 6.6(b): Longitudinal Strains for DP20D8 at 0 MPa (0 psi) 
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Figure 6.6(c): Circumferential Strains for DP20D8 at 20.7 MPa (3000 psi) 

 

 

Figure 6.6(d): Circumferential Strains for DP20D8 at 0 MPa (0 psi) 
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Figure 6.7: FEA vs. Experimental Load-Displacement Behaviour for SP20D8 

 

 

Figure 6.8: FEA vs. Experimental Pressure-Displacement Behaviour for SP20D8 
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Figure 6.9(a): Longitudinal Strains for SP20D8 at 20.7 MPa (3000 psi) 

 

 

Figure 6.9(b): Longitudinal Strains for SP20D8 at 0 MPa (0 psi) 
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Figure 6.9(c): Circumferential Strains for SP20D8 at 20.7 MPa (3000 psi) 

 

 

Figure 6.9(d): Circumferential Strains for SP20D8 at 0 MPa (0 psi) 
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Figure 6.10: Maximum Strains for Rectangular Dent in Longitudinal Axis 

 

 

Figure 6.11: Maximum Strains for Rectangular Dent in Circumferential Axis 
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Figure 6.12: Maximum Strains for Spherical Dent in Longitudinal Axis 

 

 

Figure 6.13: Maximum Strains for Spherical Dent in Circumferential Axis 
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CHAPTER 7 

7.0 CONCLUSIONS AND RECOMMENDATIONS 

7.1 Overview 

This chapter is the final chapter of this thesis and  presents summary of the findings of 

this study, the conclusions of this work, and finally the recommendations for future 

studies. 

7.2 Summary 

The main objective of this study was the following. 

• Determine the strain distribution around the dented area 

• Locate the position and value of the maximum strain for different types of 

indenters, internal pressures, and D/t ratios 

In order to achieve the goals, full-scale tests were carried out. Five dented pipe specimens 

were tested and the test data were acquired. Finite element models using 

ABAQUS/Standard were created and then validated using these test data. The FE models 

were used to obtain other data those could not be determined from the tests. The finite 

element models are then used for a parametric study to better understand the the effect of 

the dent shape, internal pressure, and D/t on the strain distributions..  

7.3 Conclusions 

The following are the conclusions made based on the test and finite element analyses 

completed under the scope of this study. 
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• The pressure-displacement relationships of dented pipes vary depending on 

the type of the dent shape. A rectangular dent produces a higher rerounding 

displacement than the sphere indenter for the same pressure. However, a dome 

indent has a higher re-rounding than the rectangular dent as it does not contain 

any corners that can restrict the dent reversal to a higher value. 

• The strain distributions at and near the dented region are dependent on the 

shape of the dent and the pressure used during indentation. The strain 

distribution at and near the dent region is similar for the rectangular and the 

dome indented pipes, However, this is not true for the sphere indented pipes 

although the dome and sphere indenters are closer in shape.  

• The location of the maximum strain also depends on the indenting pressure. 

For example, the location of the maximum strain for specimen DP20D8 

occurs at a distance of 100 mm from the dent center, however, that of 

specimen DP0D8 occurs at a distance of 75 mm from the dent center for the 

longitudinal axis. However, the locations of the maximum strains for the 

circumferential axis for both dome specimens are same (See Table 4.1 to 

Table 4.4). 

• In general, the maximum strain locations vary between the longitudinal and 

the circumferential axes. For the longitudinal axis it is observed that the 

maximum strains occur away from the dent center, however, for the 

circumferential axis the maximum strain occurs close to the dent center. 

• The dent shape has a significant influence on the strain values at and near the 

dented region. For the rectangular and dome dented pipes, the maximum 

strain occurs in the circumferential axis while for the sphere dented pipes the 

maximum strain occurs in the longitudinal axis.  

• Having a large D/t ratio means that the pipe’s wall thickness is very small. 

When this happens, the FE model becomes numerically unstable and the 

solution process terminates. However, further research is recommended to 

overcome this issue. 
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• As the D/t ratio increases, so do the strain values. This increase is much larger 

when the internal pressure is higher. This phenomenon occurs for both 

rectangular and spherical indented pipe specimens. 

• The strain values increase as the internal pressure increases. This occurs for 

the rectangular and sphere indented specimens as shown in Figures 6.10 to 

6.13. 

• The location of the maximum strain for the rectangular dent in the 

longitudinal axis occurs away from the dent centre while the location of the 

maximum strain for the circumferential axis occur at the dent center for all 

internal pressures. 

• The location of the maximum strain for the spherical dent in the longitudinal 

axis increases by 25 mm as the internal pressure increases while the location 

of the maximum strain for the circumferential axis has no apparent pattern. 

• For the rectangular dented pipes, maximum strain values are observed in the 

circumferential axis while for the spherical dent, the maximum values occur in 

the longitudinal axis. 

7.4 Recommendations for Future Studies 

The study conducted provided more insight on the determination of the safety of a 

pipeline containing a plain dent. It also provided a way for future work to develop a 

guideline that could be used to evaluate the damage and determine if replacement is 

necessary. The following are some recommendations for future studies:  

 

• Further research can enhance the FEM models by including different types of 

parameters that can in turn contribute to the development of the guideline. 

• Perform more tests on sphere indented pipelines to better determine the 

behaviour and location of the maximum strains specifically for the 

circumferential axis. 
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• Carry out more experimental tests that include rock dents in order to better 

predict the effect on the pipelines. 

• Conduct some constrained-dent test to be able to know the behavior of 

pipelines with such dents. 
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