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ABSTRACT 

 

The current era of mobile communication is passing through the days of rapidly changing 

technologies. Such an evolving promising technology is mobile ad hoc networks (MANETs). The 

communications in ad hoc networks are adversely affected by the link failures in the network layer, 

and by the hidden station, mobile hidden station, neighborhood capture and asymmetric radio link 

problems in the MAC layer. All the problems are highly affected by mobility of the stations. If the 

degree of mobility of any station in a route increases, the route life time decreases. That causes 

frequent link failures, and results packet retransmissions, additional latency and packet loss. An 

algorithm to include mobility in a routing protocol to reduce packet losses in a MANET is proposed 

in this thesis. The proposed algorithm estimates the number of packets that can traverse through the 

route before it breaks because of mobility. The algorithm is implemented in dynamic source routing 

protocol, and simulated in Network Simulator-2. The MHS problem arises if a station is hidden due 

to mobility. Asymmetric/unequal radio links in can occur in MANETs/VANETs for many reasons 

such as hardware limitations, power saving protocols, shadowing effects, dynamic spectrum 

managements. A MAC protocol named extended reservation Aloha (ERA) is proposed which 

partially solves these problems. Then, using the concept of ERA, another MAC protocol named 

extended sliding frame reservation Aloha (ESFRA), which addresses all the above mentioned MAC 

problems, is proposed in this thesis. 

As safety critical information dissemination in DSRC/WAVE systems requires reliability and 

robustness, a network-MAC cross-layer information dissemination protocol is proposed in this 

thesis to address those issues. Although the layered architecture is still a good candidate for any 

design of wireless networks, the researchers are looking for some optimizations by interaction 

between neighbor layers which is called cross-layer design. So I proposed a network-MAC cross-

layer algorithm, cross-layer extended sliding frame reservation Aloha (CESFRA), which solves 

mobility related problems, confirms low and deterministic end-to-end delay, and is robust and 

reliable in safety critical information dissemination up to 3
rd

 hop. Discrete time Markov chain 

(DTMC) and OMNeT++ are used for all the MAC layer analyses.  
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CHAPTER 1:    INTRODUCTION 

Demand for high bit rate is pushing the researchers in the field of wireless communication systems to 

think about short range communications instead of long range communication in some specific 

applications. Mobile ad hoc network/vehicular ad hoc network (MANET/VANET) is a short range 

communication paradigm that can meet the requirement of high bit rate. However, MANET/VANET will 

not be realizable if the packet loss due to mobility related problems are not solved. MANET/VANET is 

different from traditional local area network (LAN) or wireless LAN (WLAN) with their multi-hop 

networking in which the mobile hosts are routers and form dynamic connections with other hosts in their 

radio ranges (i.e. transmission ranges). These multi-hop topologies present many unavoidable challenges in 

the physical layer, medium access control (MAC) layer and network layer. Some of these potential 

challenges are dynamically changing routes, and continuously varying radio characteristics between 

communicating hosts. These challenges are amplified while considering multi-hop ad hoc networks where 

data transport is not constrained to a single wireless network link. It is found that the throughput of a 

multiple link route in an ad hoc network decreases drastically if the nodes are mobile. That is why it is a 

significant challenge to improve the performances of a MANET by overcoming problems at different 

communication layers. My research goal is to investigate problems in packet communication in MANET 

which evolves from mobility and mitigate these problems in order to improve the network throughput and 

latency. 

1.1 Contributions 

The contributions in this thesis can be broadly divided into three parts e.g. network layer contribution, 

MAC layer contribution and network-MAC cross-layer design contribution.  

 Since mobility is inevitable in MANETs, link failures are very common and cause packet loss as a 

consequence of inconsistent routes. Most of the on-demand routing protocols use route maintenance 

procedure to detect broken links and reroute packets. This increases packet delay. Packet losses and 

delays get worse when  mobility increases. In order to mitigate unnecessary packet loss, a novel 

mobility algorithm is proposed in which the approximate route life time (RLT) is estimated, and this 

route is utilized only this amount time to limit the packet loss. The packet transmission is stopped after 

the route life time, then route discovery or alternative routes are used for the remaining packets. 

 Packet collision in wireless communication systems is one of the most important sources of delay and 

network inefficiency which affect safety critical information dissemination applications the most in the 

network [1]. The cooperative vehicle safety system (CVSS) is designed to serve a safety critical 

application of the dedicated short range communication (DSRC) technology proposed for vehicular ad 

hoc networking [2]. DSRC, as part of wireless access vehicular environment (WAVE), uses IEEE 

802.11p as the MAC protocol [3][4][5]. Since IEEE 802.11p’s MAC is based on the distributed 

coordination function (DCF), it does not solve mobility related problems like mobile hidden station 

(MHS) [6], asymmetric/unequal radio link (ARL/URL) [7], and blocking problems like neighborhood 

capture (NC) [8]. This thesis contains a detailed discussion of these problems and their effects in 

MANET/VANET in Chapter 2. The MHS problem is unique in mobile networks and occurs if a mobile 

station enters in a collision free zone of any ongoing communication and disturbs this communication 

with its transmission. A novel MAC protocol named extended reservation Aloha (ERA) is proposed to 

address these problems. ERA is based on the modification of reservation Aloha (R-Aloha). ERA fully 
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solves the HS and NC problems, and partially solves the MHS and ARL problems. This is why, a 

second MAC protocol, called extended sliding frame reservation Aloha (ESFRA), is proposed which 

uses the concept of ERA and sliding frame R-Aloha (SFRA). ESFRA is particularly designed to solve 

the MHS problem in a MANET by including relative locations of transmitting stations in the packet 

frame information header. In addition to the MHS problem, ESFRA simultaneously solves the hidden 

station (HS), exposed station (ES), neighborhood capture, and asymmetric radio link problems. These 

proposed protocols are explained in Chapter 4. 

 According to the analyses in [10] and [11], the early CVSS solutions work well in low utilization cases 

(i.e. at low vehicle density). For crowded highways, the performance of a CVSS degrades significantly 

due to the DSRC channel congestion [2], [12]–[15]. The causes of this congestion is the dissemination 

of information by flooding, collisions due to hidden stations and mobile hidden stations, neighborhood 

capture problem, asymmetric radio link problem etc. So CVSS needs a robust and efficient information 

dissemination mechanism. Although flooding by broadcast is robust enough to disseminate redundant 

information, it requires more bandwidth and delay. This is why, it is necessary to design algorithms to 

reduce DSRC channel congestion and end-to-end delay by limiting high volume of broadcast messages 

and by solving the above mentioned problems (i.e. HS, MHS, NC, ARL etc.). In this thesis, I have 

presented a network-MAC cross-layer protocol named cross-layer extended sliding frame reservation 

Aloha (CESFRA) which is based on the concept of ESFRA [16]. CESFRA is a controlled broadcast 

mechanism where all the stations maintain their slot reservation by a sliding frame (SF) mechanism, and 

broadcast their packets in their pre-reserved slots in every frame. CESFRA manages the channel 

accessing, disseminates the safety critical information in a novel approach which solves MHS, ARL and 

NC problems and eliminates the congestion behavior of flooding approach. CESFRA also confirms end-

to-end low deterministic delay, and increases robustness by redundancy of information. The 

DSRC/WAVE systems are designed to support various services of different transmission ranges (i.e. 

1000 meter emergency vehicle alert messaging, 300 meter collision avoidance messaging etc.) which 

create the ARL problem and thus more collisions. CESFRA can disseminate any information up to the 

third hop without any routing. For example, the DSRC/WAVE systems uses 1000 meter transmission 

ranges for the emergency vehicle alert message whereas CESFRA disseminates it up to 900 meter using 

300 meter transmission range. In case of the collision avoidance alert messaging, the DSRC/WAVE 

systems take care of only one hop (i.e. 300 meter) whereas CESFRA manages to disseminate the 

information up to the third hop (i.e. 900 meter). The analysis shows that CESFRA decreases the frame 

transmission delay, increases the throughput, and reduces the collision probabilities compared to IEEE 

802.11 and SFRA. The improved performance is obtained at the expense of the synchronization 

compared to IEEE 802.11, but there is virtually no extra cost compared to SFRA. 

1.2 Thesis Organization 

The thesis is organized as follows. All the network layer and MAC layer problems addressed in this 

thesis are explained in Chapter 2. How the network layer of a MANET is affected by mobility is briefly 

explained in the beginning of this chapter. Then the NC problem in the MAC layer is explained. The MHS 

problem is explained using both MANET and VANET scenario. The effect of the ARL problem in 

DSRC/WAVE systems is characterized. The research methodology of this work is presented at the end of 

this chapter. Chapter 3 contains the discussion on the related literatures reviewed for this research. Some 

related network layer mobility algorithms are briefly discussed. Because most of the researches in this 

thesis are in the MAC layer, different types related MAC protocols are discussed with respect to MANET 

and DSRC/WAVE systems. The MAC protocols are categorized as contention based and reservation based, 

and the reservation based protocols are considered best suited to address the most of the MAC problems. 

The proposed solutions are explained in Chapter 4. A mobility algorithm in the network layer of a MANET 

is proposed to reduce packet loss due to link failure. A reservation based MAC protocol is proposed to 

address the MAC problems and is modified to make it suitable for safety critical information dissemination. 

Detailed analyses of the proposed solutions are presented in Chapter 5. The proposed network-layer 

mobility algorithm is evaluated in NS-2. The proposed MAC protocols as well as some other related 
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contention based and reservation based existing MAC protocols are evaluated using Combinatory theory, 

Markov analysis and OMNeT++. The thesis is concluded in Chapter 6. 
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CHAPTER 2:    PROBLEM DEFINITION AND 

RESEARCH METHODOLOGY 

2.1 Link Failure Due to Mobility in MANET and Its Severity 

One of the major challenges in MANETs is link failures due to mobility [17]. Because nodes in a 

MANET act as routers for any ongoing packet communication and have limited transmission ranges, the 

communication links are broken, and packets are lost. This problem is amplified when a route constitutes 

several such links. If any of those links fails, the route breaks, which initiates series of undesirable events 

and outcomes. If how long a link is operational can be  predicted, the routing protocol can use this to limit 

its use, which in turn reduce the packet loss in this link. It is assumed that every link remains connected for 

a limited time, called link life time (LLT), and a route has a limited life, called RLT. The RLT depends on 

the LLTs of the links that are constructed, that is why RTL can be taken as the lowest LLT in the route. 

When degree of mobility increases, LLTs and eventually RLTs decrease. That contributes to increase in 

packet losses and low throughputs in a MANET. 

 

Figure 2-1:  Link breaking due to mobility in an ongoing communication. 

For example, Station A is communicating with C using B as a router and B is moving towards any 

direction as shown in Figure 2-1. If B moves outside the detection range of A or C or both, the 

communication link between A and C will be disconnected and some packets of the ongoing 

communication will be lost. A route or path from source to destination may constitute of several such links. 

The link which will remain connected for the lowest amount of time in a route will determine the life of 

that route termed as RLT. As degree of mobility in any topology increases, the RLT decreases and so the 

packet loss increases due the frequent breakage of links. Mobility is an inevitable property of a MANET. 

So, there is no other way but search good approaches for dealing mobility challenges like the packet loss.  

2.2 Neighborhood Capture Problem in MANET 

The neighborhood capture problem is observed in a multiple mobile station environment where one 

station is deprived of accessing the channel captured by its neighbor stations for long time. Let us try to 

understand the neighborhood capture problem with the scenario in Figure 2-2. This scenario contains six 

nodes where Node B is in the transmission range of both A and C which are out of the transmission ranges 

A 

B 

C 

Moving 

Packets 
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of each other (i.e. the distance between A and C is greater than the transmission range). Moreover E is in 

the transmission range of A; D is in the transmission range of C; and F is in the transmission range of B. 

Figure 2-3 illustrates a data transmission scenario. Suppose B has accessed the channel first and is 

transmitting data to F as shown in Figure 2-3. After the end of B’s transmission, the channel is free for any 

of the nodes A, B and C. Now C has data to transmit, and it starts to transmit. At this moment, B does not 

have a chance to transmit as it is in the transmission range of C, but A is free to use the channel as it is out 

of transmission range of C. Node A starts transmission as it has data to transmit now. At this moment, the 

situation of the channel is, if B wants to access the channel, B must have to wait until both A and C release 

the channel simultaneously, which is almost uncertain because of the variable length of the data 

transmissions of A and C or asynchronous transmissions. So B is severely affected by its neighbors A and 

C, and this phenomenon is called “Neighborhood Capture”. 

 

 

A E B C D 

F 

 

 

Figure 2-2:  Neighborhood capture scenario. 

 

Figure 2-3:  Data transmission scenario at the time of neighborhood capture. 

2.3 Mobile Hidden Station Problem in MANET or DSRC/WAVE 

Systems 

Mobility is ever increasing in today’s lifestyle, and wireless networks have to accommodate user 

mobility in the network. MANETs, mesh networks and VANETs are a few network types that will 

eventually be deployed along with cellular communication systems. Relatively high mobility in those 

networks creates unique problems. One such problem is the mobile hidden station problem. Figure 2-4(a) 

illustrates the MHS problem in a VANET scenario, and Figure 2-4(b) illustrates the problem in a MANET 

scenario. In these illustrations, Station D is communicating with Station E, and Station A is communicating 

with Station B. When Station D moves into the interference range of Station B, D disturbs Station A’s 
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communication with B with its transmission. Stations like D in the illustrated scenarios are called mobile 

hidden stations, because they are hidden first, but disturb receptions of the other transmissions when their 

transmissions interfere with the reception of others. MHSs can affect up to twenty five percent of the nodes 

in a VANET employed in a highway scenario, if a two-way highway accommodates equally probably 

distributed vehicle traffic, because stations moving in the opposite direction of the traffic will become 

MHSs to the stations on the other side of the highway [2]. Analysis provided in this thesis shows that 

MHSs severely degrade network performance. That is why a MAC protocol must have to solve the MHS 

problem in mobile networks. ESFRA is proposed to address the MHS problem. It significantly reduces 

performance degradations due to mobility. HS is solved using request to send (RTS) and clear to send 

(CTS) messages in the IEEE 802.11 MAC. However, RTS/CTS introduce the ES problem. ESFRA solves 

these four problems, namely MHS, NC, HS, and ES simultaneously to facilitate improved utilization of 

scarce mobile network resources. The proposed protocol is based on the sliding frame reservation Aloha 

(SFRA) [18][19]. Messages in the sliding frame mechanism of SFRA transfer control information up to the 

second hop neighbors [18]-[20], which is sufficient to solve HS and ES problems. This SFRA control 

information transfer mechanism alone does not solve the MHS problem because mobile stations at third 

hops away from the ongoing communication are not informed.  
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(a) A mobile hidden station scenario in VANET.      (b) A mobile hidden station scenario in MANET. 

Figure 2-4:  Mobile hidden station scenario in VANET and MANET. 

 



 

7 

 

2.4 Asymmetric Radio Link Problem in MANET/ VANET and Its 

Severity 

2.4.1 Asymmetric Radio Link Problem in MANET 

Asymmetric links are common in wireless networks [7][9][21]. Figure 2-5 illustrates a scenario to 

explain ARLs in a mobile network where Station A is sending packets to B, and C and D are HSs because 

of ARLs. Hardware limitations, power saving protocols, shadowing effects, dynamic spectrum 

managements causes ARLs in a wireless networks [7][9][21]. Let us consider using IEEE 802.11 MAC 

protocol in Figure 2-5, hence B’s CTS packet is heard by hidden Station C. As hidden, Station D is out of 

the transmission range of B, it does not hear B’s CTS, and so D can transmit packets and these packets can 

collide with A’s transmitted packets at B. Thus, HS problem due to the ARL is not addressed by IEEE 

802.11 MAC.  

 

A B D, HS 
Data 

rd ra 

rb 
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Sender 1st Hop 2nd Hop 3rd Hop 

 

Figure 2-5:  HS in an asymmetric radio link MANET scenario. 

2.4.2 Asymmetric Radio Link Problem in DSRC/WAVE Systems 

The DSRC/WAVE systems use different transmission ranges and different data rates for different types 

of messages as shown in Figure 2-6 [22]. 

 

Figure 2-6:  DSRC multichannel communication ranges (Copied from [22]). 
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Figure 2-7:  HSs in an unequal/asymmetric link VANET scenario. 

Let us consider a VANET scenario in Figure 2-7 where the radio links are maintained according to the 

DSRC/WAVE systems. In DSRC systems, an ARL arises when the transmission power of a service 

channel is varied to support different services with different transmission ranges. For example toll 

collection service uses about 10 to 90 meters (m) transmission range where as road condition warning 

services, like work zone warning uses 90 to 300 m transmission range. Similarly, the control channel is 

used for emergency vehicle warning with transmission range up to 1000 m, and the basic safety message 

transmissions with transmission range of 300 m. In addition to transmission range differences, ARL can 

occur with shadowing such as experienced by the car behind the truck in Figure 2-7. In order to address the 

ARL problem, the control information is required to be distributed up to the 3rd hop nodes as illustrated in 

Figure 2-5. It is difficult to meet this requirement by an unsynchronized and distributed MAC protocol such 

as IEEE 802.11 MAC. Some of the synchronized and reservation-based MAC protocols can increase the 

performance of the network with problems related ARL such as SFRA in [18][19]. However SFRA does 

not solve ARL problem but reduced its impact in the performance. That is why I have investigated ESFRA 

proposed in [16] which provides a complete solution to problems caused by ARLs. Mainly, ESFRA passes 

the control information up to the 3
rd

 hop, thus it eliminates problems related to ARL. 

2.5 Research Contributions and Methodology 

2.5.1 Research Contributions 

- Short-term Objective Based Contributions: 

 Investigated packet losses due to link failures in MANETs/VANETS. 

 Developed algorithms to reduce packet losses due to link failures in MANETs/VANETS. 

 Characterized and investigated the neighborhood capture problem in MANETs/VANETS. 

 Characterized and investigated packet losses due to MHSs in MANETs/VANETS. 

 Developed a new MAC algorithm to solve the MHS and neighborhood capture problems in 

MANETs/VANETS. 

 Investigated the new MAC algorithm with discrete time Markov chain (DTMC). 

 Investigated the new MAC algorithm in OMNeT++. 

 Investigated the cross-layer (i.e. network and MAC layer) behavior of the new MAC algorithm. 

- Major Contributions: 

 Developed a MAC layer scheme which addresses all the problems mentioned in Section 2.2. 
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 Developed a cross-layer scheme which constitutes the developed MAC algorithm as well as a 

network layer control on packet losses due to link failures. 

2.5.2 Research Methodology 

 

 

Figure 2-8:  Research methodology and accomplishments. 

Step 1: Mobility causes packet losses in MANETS. I studied literatures to identify the factors affecting the 

packet communication when stations are mobile. I found two significant factors: link failures, and 

mobile hidden stations. Some other factors have drawn my attention along with mobility 

problems. Those are neighborhood capture and asymmetric/unequal radio link problems. All 

these four problems (See Figure 2-8) are investigated and solved throughout my research work. 

 

Step 2: In this step, a mobility algorithm is developed in the network layer to reduce packet losses due to 

link failure [23]. The mobility algorithm is investigated in NS-2, and it was implemented with 

dynamic source routing (DSR) protocol. The algorithm is applicable to any on-demand routing 

protocol. 

 

Step 3: The adverse effects of the neighborhood capture problem and mobile hidden station problems in the 

MAC layer of MANETs are characterized. The NC problem is analyzed using Combinatory theory 

[8]. The MHS problem is analyzed using both Combinatory theory [24] as well as DTMC [6]. The 

hidden station problem in a VANET is investigated in [25]. 

 

Step 4: I did research to devise a novel approach to treat the NC, MHS, ARL and other problems in the 

MAC layer. First, I developed a new MAC protocol named ERA and analyzed with respect to the 

NC and MHS problems [24]. Another protocol, SFRA is also analyzed with respect to the MHS 

problem [26]. Then I used the concept of ERA into SFRA, and developed ESFRA. ESFRA is 

analyzed using DTMC with respect to the NC and MHS problems [16]. ESFRA is also analyzed 

with respect to the ARL problem in [21] and compared with other MAC schemes in [27]. 
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Step 5: CESFRA is proposed which is based on ESFRA. CESFRA MAC is evaluated in OMNeT++ with 

respect to the MHS and ARL problems [28]. The behavior of IEEE 802.11p broadcast and 

CESFRA MAC is analyzed using DTMC with respect to the criteria set in the DSRC/WAVE 

systems [28]. 

 

Step 6: Completion of the thesis. 

The research problems are identified and the methodology for this research is defined in this chapter. 

There are some issues which are not addressed in this research, and which should be solved. Those are time 

synchronization among the mobile stations, privacy issues and security issues in the vehicular 

communication. Some related literatures are discussed in the next chapter. 
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CHAPTER 3:    RELATED WORK 

The research work in this thesis is related to the network and MAC layers. So the literatures reviewed 

throughout this research work are divided into two sub-sections based on the related communication layers. 

3.1 Review of the Impact of Mobility in the Network Layer 

A part of this thesis is related to the impact of mobility in the network layer of wireless ad hoc 

networks. So, some of the mobility related papers are discussed in this sub-section. A model to compute an 

upper bound for the maximum network size in a MANET is proposed in [29]. According to the analysis 

presented in [29], a route would die due to mobility after a certain number of hops. A protocol is proposed 

in [30] for managing MANETs. In this protocol, a small subset of the network nodes, called backbone 

network, is selected based on the nodes’ statuses. The protocol in [30] operates in two phases: first the 

“most suitable” nodes are selected to serve as backbone nodes, and then a backbone network is formed by 

using these nodes. Topology dynamics is investigated in [31] based on the smooth mobility model. The 

smooth model generates smooth and microscopic nodal movements, and maintains a uniform spatial node 

distribution. The model predicts link existence based on the present distance between a pair of nodes and 

their relative speeds. The analysis in [31] reveals that the expected link life time decreases exponentially 

with increasing mobility. Results presented in [31] were not tested in any protocol. A mobility assessment 

on-demand (MAOD) routing protocol is proposed to select a stable route in order to enhance system 

throughput and performance [17]. MAOD is an on-demand routing protocol similar to dynamic source 

routing (DSR) protocol [32]. The difference between MAOD and DSR is in the path selection method. As 

MAOD takes the mobility of the hosts into consideration, it selects a more stable route than DSR. In 

MAOD, an error count parameter is used to measure mobility of a host. However, the error count method 

has problems in judging the mobility of the nodes because it does not indicate which node is mobile, the 

node itself or the nodes around it. Even if a node is static, it needs to increase its error count when its 

neighbors are mobile. A new measure of mobility in which each node estimates at regular time intervals its 

relative mobility with respect to its neighbors is proposed in [33]. A multicast scheme, on-demand 

multicast routing protocol (ODMRP) [34], has been recently proposed for MANETs. ODMRP is a reactive 

(on-demand) protocol that delivers packets to a destination in a mesh topology using scoped flooding of 

data. ODMRP proposes a method to predict the link expiration time, which is based on a more realistic 

propagation model, and uses received signal strength indication (RSSI). But, instantaneous RSSI values 

may not be reliable for fading channels since its fluctuations vary significantly in short time and distances. 

3.2 Review of the Behavior of Some Related MAC Protocols 

Existing MAC protocols for MANETs can be broadly divided into two categories e.g. distributed and 

reservation based protocols. IEEE 802.11 and its modified versions (e.g. 802.11e, 802.11p) are distributed 

protocols [35] and successfully deal with HS and ES problems with their RTS/CTS mechanism [36][37]. 

When IEEE 802.11 MAC is used in MANETs, Station V4 stays outside of the interference range of Station 

V7, as shown in Figure 3-1, and as soon as it moves in the interference range of V7, its packets will collide 
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with V6’s packets to V7 because Station V4 did not receive any CTS, and it was unaware of V6’s 

transmission to V7.  

 

 
 

 

Figure 3-1:  Mobile hidden station scenario. 

IEEE 802.11p is the most recent draft standard which is used in wireless access in vehicular 

environment (WAVE) [38][4]. Since IEEE 802.11p’s MAC is based on the distributed coordination 

function (DCF), which does not solve mobility related problems like MHS, or blocking problems like NC. 

Authors in [39] proposed an adaptive M-ary tree algorithm with priority broadcast (ATPB). This MAC 

scheme builds a tree that is assumed to be dynamic and adaptive, and prioritizes the stations according to 

their needs. ATPB is completely based on RTS/CTS, this is why it solves HS and ES problems, but cannot 

solve the MHS problem. Dual busy tone multiple access (DBTMA) is an asynchronous and distributed 

scheme, which was proposed in [40] and [41]. The total bandwidth is divided into three channels, one for 

the transmission of data, and the other two are for busy tones used to inform the neighbors of the sender 

and the receiver. Consequently, DBTMA creates a collision free zone up to a maximum of two hops from 

the sender just like IEEE 802.11. Thus it fails to address the NC and MHS problems. Interleaved MAC 

protocol is a distributed scheme which uses two frequency channels, one for RTS and DATA, and the other 

for CTS and acknowledgement (ACK) [42]. Thus it solves HS and ES problems, and decreases the 

blocking probability due to the NC problem, but it does not completely solve the MHS problem. Global 

channel release (GCR) is a synchronized distributed scheme in which all stations release the channel at the 

same time, and all contending stations have an equal chance to access the channel [43]. This requires 

slotting of the channel into super-frames and synchronization of all stations; the resulting protocol would be 

a slotted CSMA/CA [43]. That is why GCR solves the NC problem, and also solves HS and ES problems 

by creating a collision free zone similar to IEEE 802.11, but does not address the MHS problem. 

Synchronous reservation based scheme (i.e. ERA [8], SFRA [44] etc.) solves the access related HS, ES and 

NC problems, and reduces collisions due to MHSs. All the MAC schemes mentioned above solve HS and 

ES problems, only the synchronous MAC schemes mentioned above solve the NC problem. Synchronized 

reservation based MAC schemes mentioned above reduces collisions due to MHSs but do not fully solve 

the MHS problem. So synchronous reservation based schemes work better to address the MAC problems. 

Although the wireless medium is fundamentally different from the wired one, the conventional layered 

architecture fails in wireless networking [45]. The authors in [45] offer cross layer design (CLD) as an 

alternative for wireless networks. They showed that some unintended cross-layer interactions may create 
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undesirable consequences. For example, principle of rate-adaptive MAC protocol [46] is to use higher 

transmission rates in a good quality channel. In this case, the higher rates are maintained by changing 

different modulation schemes. The authors in [45] showed that such schemes can have undesirable 

consequences for the higher layers. When rate-adaptive MAC is used with minimum hop routing, the 

performances get worse as minimum hop routing uses longer hops for which the signal strength is lower, 

and thus the rate-adaptive MAC will always choose low rates. The authors in [47], [48]and [49] discussed 

repetition based protocols for DSRC MAC. Those are asynchronous p-persistent repetition (APR) [47], 

asynchronous fixed repetition (AFR) [47], synchronous p-persistent repetition (SPR) [48], synchronous 

fixed repetition (SFR) [48], AFR by adding a carrier sensing (CS) mechanism (AFR-CS) [48], and positive 

orthogonal codes (POC) [49]. All these protocols are designed without considering the effect of hidden 

stations and mobile hidden stations which are inherent in vehicular ad hoc communications. The analysis in 

[48] shows that SPR and SFR perform better than asynchronous protocols (i.e. APR and AFR), and SFR 

performs better than SPR. The authors in [49] showed that POC works better than SFR. The authors in [50] 

analyzed the performances of SPR, SFR and POC protocols considering the effect of hidden stations, which 

shows that these protocols do not meet the minimum requirements for safety critical information 

dissemination. The authors proposed SFRA in [19], which is developed by CarTALK/FleetNet IVC system 

in Europe [51], one of the most promising protocols for distributed wireless networks [44]. The author in 

[52] analyzed the suitability of an R-Aloha based protocol for inter-vehicle communication in multi-hop 

networks. The dynamic behavior of SFRA is analyzed in [19], [44] and [53]. The authors in [26] analyzed 

the performance of SFRA considering the adverse effects of MHS and NC problems along with HS and ES 

problems. This analysis shows that SFRA reduces collisions due to MHSs, but it does not solve the MHS 

problem in MANETs/VANETs. I have quantitatively measured the behavior of SFRA with ARL problem 

in [21]. The analysis in [21] shows that the probability of collision increases with the increment of the 

number of transmitting stations while using SFRA as a MAC protocol. The probability of successful 

channel accessing is also severely affected by HSs due to ARLs. IEEE 802.11p is the most recent draft 

standard used in WAVE [12][13]. Since IEEE 802.11p’s MAC is based on the distributed coordination 

function, which does not solve mobility related problems like MHS, ARL and NC problem according to the 

analysis in [1], [6] and [8] respectively. Moreover, a quantitative approach presented in [54] shows that the 

broadcast performance of IEEE 802.11p is inefficient for short safety messaging in DSRC systems.  

That is why, I proposed to design CESFRA which addresses all the MAC problems and makes safety 

critical information dissemination in DSRC/ WAVE systems routing less, robust, fast and reliable, and 

which is compared with some of the related literatures. The detail discussion on the proposed work is 

presented in the next sub-section. 
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CHAPTER 4:    PROPOSED WORK 

The research throughout this thesis is associated to network layer, MAC layer and network-MAC cross 

layer. So, the proposed work is divided into three sub-sections based on the layer basis contributions. 

4.1 Proposed Work in the Network Layer  

4.1.1 A Mobility Algorithm to Reduce Packet Loss 

The duration of connectivity between two nodes is unlimited for static ad hoc networks whereas it 

changes with mobility in MANETs. Link failures are inevitable if the nodes are mobile, and get more 

severe when the mobility of nodes increases. Link failures increase packet loss considerably. In order to 

reduce the packet loss due to link failures, mobility needs to be integrated in routing protocols. This 

integration needs to be independent of routing protocols to have an effective solution. However, on-demand 

routing protocols (i.e. DSR [32], ad hoc on-demand distance vector (AODV) [55]) are considered as the 

candidate to apply the developed mobility algorithm. The algorithm is based on an efficient use of the 

duration of connectivity of two neighboring nodes in a route. This duration is called LLT throughout this 

thesis. 
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Figure 4-1:  A scenario for calculating LLT. 

4.1.1.1 Calculation of Link Life Time 

In [34], a method to calculate LLT is proposed. This method is utilized for the calculation of LLT in 

this mobility algorithm. The calculation is briefly presented here for the clarity of the discussions to be 

made later. Figure 4-1 shows two mobile nodes A and B with their radio ranges,  . The current locations of 

A and B are A(xa1,ya1) and B(xb1,yb1), respectively. A and B are moving with velocities va and vb, and angles 
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θa and θb, respectively. Their future locations are A(xa2,ya2) and B(xb2,yb2) after some time duration,  . It is 

assumed that nodes A and B are not changing directions within this time duration,  . 

If all the information related to their current locations, such as va, θa, vb, θb, xa1, ya1, xb1 and yb1 are 

known, their future locations can be calculated using the provided information from known values by the 

following two functions. 

 

A(xa2,ya2)  = f (t, va, θa, xa1,ya1).     (4.1.1) 

B(xb2,yb2)  = f (t, vb, θb, xb1,yb1).     (4.1.2) 

 

If the distance between A and B after time t is s, then 

 

s
2
 = (xa2 – xb2)

2
 + (ya2 – yb2)

2
.     (4.1.3)  

 

A and B will be able to communicate with each other as long as they will remain within their 

transmission ranges, r. So, t = LLT if s ≤ r. After solving Equation (4.1.3) with s ≤ r and considering t = 

LLT, I get 

 

LLT
22

2222 )()()(

ca

bcadrcacdab




 ,  (4.1.4) 

where, bbaa vva  coscos  , 11 ba xxb  , bbaa vvc  sinsin  , and 11 ba yyd  . 

 

4.1.1.2 Calculation of Adaptive Link Life Time 

The transmission range is an important factor in MANETs. Normally the radio ranges of mobile nodes 

in any network are considered equal. The authors of [56] calculated LLT considering that the radio range of 

each mobile node in an ad hoc network is equal. In reality, the transmission ranges of mobile nodes in any 

wireless network might be unequal for variety of reasons. Asymmetric/unequal radio links are common in 

wireless networks for a variety of physical, logical, operational, and legal considerations [7][21]. The 

transmission range of a node might be limited by the capabilities of the hardware or by power limitations. 

A node might need to limit its transmission power to avoid interference with a licensed user of the 

spectrum, or because of dynamic spectrum management considerations. In military applications, 

considerations of stealth might require some nodes to reduce their transmission power. If this holds true, 

the link will expire before the calculated LLT according to the scenario shown in Figure 4-2. Because, 

according to the procedure of LLT calculation in the previous sub-section, Node B will calculate the LLT 

using rb considering that its partner A has the same transmission power. Unfortunately, it will give B an 

LLT value larger than the real value. Implementation of this wrong LLT value will produce unexpected 

results and this necessitates a modification in LLT calculation. 
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Figure 4-2:  A scenario for calculating ALLT for asymmetric radio links in a MANET. 

In this work, the modified LLT is calculated using the smaller of the two radio ranges as the future 

distance (i.e. d) between the two mobile nodes. This modified LLT is termed as adaptive LLT (ALLT) 

throughout this document as it is adaptive to unequal radio ranges of the mobile nodes in any wireless 

network. I have applied the following algorithm along with the LLT calculation in the previous sub-section 

to calculate ALLT. 

Let, 

ra = f (A’s transmit power) 

rb = f (B’s transmit power) 

 

If  ( rb <  ra ) { 

ALLT = f (LLT calculated with rb) 

else if  ( ra < rb ) 

ALLT = f (LLT calculated with ra) 

else 

ALLT = f (LLT calculated with ra = rb = r) 

} 

 

4.1.1.3 Mobility Algorithm 

The algorithm has been designed to treat mobility related problems in wireless networks. The size of a 

wireless network is significantly affected by the mobility of nodes [29]. As mobility increases, LLT 

between nodes decreases. This causes the routes to break quickly, and the packet losses due to the route 

breakages. All of those impacts negatively affect the network parameters such as packet delivery ratio, 
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delay and throughput. The proposed algorithm solves the mobility related routing problems and comprises 

the following 4 steps. 

Step 1: Source estimates a minimum threshold link life time: In any on-demand routing protocol 

like DSR, routes that are used for sending data packets are discovered based on some requirements (i.e., 

routing metrics). In the proposed mobility algorithm, the source uses a minimum threshold link life time 

(TLLT) to discover more stable links and routes. The source estimates TLLT based on the nature of 

mobility (i.e. urban area or highway). Unlike highway, random mobility scenario prevails in urban area. 

Statistically more than twenty percent of the routes in a random mobility scenario die out within few 

seconds [57]. Routes in a highway mobility scenario are more stable compared to routes in a random 

mobility scenario. Thus, TLLT can be set higher for highways compared to a random mobility scenario. 

TLLT in a random mobility scenario can be set higher for low speeds compared to high speeds. 

Step 2: Using TLLT in route discovery process to detect unstable routes: In case of any on-demand 

routing protocol, whenever the source has a packet to send, it searches a route in the route cache. If there is 

no route available in the cache, the node sends a route discovery packet to a desired destination. In the 

proposed algorithm, the source sends TLLT in the route discovery packet. 

 

 

Figure 4-3:  Discarding unstable routes. 

Each node along the path toward the destination calculates its own LLT with the previous node, and 

compares the calculated LLT with the TLLT in the packet. If the calculated LLT is greater than the TLLT 

of the packet, this node becomes a part of the route. Otherwise, it is not included in the route. Figure 4-3 

illustrates a simple scenario where the source sends a route discovery packet with TLLT = 5 seconds. MN 2 

and MN 4 agree to be part of the route comparing their LLTs. But, MN 6 refrains becoming part of the 

route since its LLT is lower than the TLLT. The described provision prevents discovering routes that have 

less stable links. 

Step 3: Determination of route life time: How long a route exists (i.e. RLT) is an important criterion 

for the proposed algorithm. An RLT is defined as the duration of the liveliness of any route. All the nodes 

in any route have their own LLTs, and the node with the lowest LLT has higher probability of breaking the 

route. So, the lowest LLT in any route is RLT. The scenario given in Figure 4-3 illustrates that, and MN 2’s 

LLT (i.e. 30 seconds) is taken as RLT. According to the proposed algorithm, the source sends the route 

discovery packet with a large number in its RLT field (e.g., RLT = 99999 seconds.). If any node is a part of 

the route, it compares its LLT with the RLT in the route discovery packet. If the LLT is less than the RLT, 

it replaces the RLT field in the discovery packet with its own LLT. Otherwise, it forwards the route 

discovery packet without changing the RLT field. After getting the route reply packet, the source calculates 

the net RLT, RLTnet, which is the difference between RLT of the packet and the time it took the route reply 

packet to arrive to the source, troute. Then, RLTnet is given by 
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RLTnet = RLT– troute.     (4.1.5) 

 

The source stores the RLTnet, and the troute in the route cache. troute is considered average latency between 

source and destination, which will be used to calculate how many packets are supposed to be successfully 

transferred from source to destination.  

Step 4: Algorithm for reducing packet loss due to mobility using RLT: The route discovery process 

with mobility assisted routing is explained in Step 3. Whenever there is a packet to send, the source finds a 

route from the route cache, and sends an estimated number of packets that the respective route is able to 

deliver before breaking. Latency between source and destination, troute, is important as well. That is needed 

to estimate the number of packets that can be sent by the source to the destination. Let us assume Nest be the 

estimated number of packets to be sent through that route, and given by 

 

Nest = RLTnet/ troute .     (4.1.6) 

 

According to Equation (4.1.6), the selected route remains alive during RLTnet, and within this RLTnet, the 

source will be able to send approximately Nest number of packets. If the source sends more than Nest 

packets, the additional packets have higher probability of getting lost due to the broken route. After finding 

Nest, the packets are sent in order. If there are more packets to be sent, the source finds an alternative route 

from the route cache, and repeats the process for this route by calculating its Nest. If there is no route 

available in the route cache, the source starts the route discovery process. Figure 4-4 provides the flowchart 

of the algorithm. 

 

Figure 4-4: Flowchart for mobility assisted routing. 
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4.1.1.4 System Model and Implementation 

MANETs with 10, 20 and 30 nodes are considered for testing the proposed algorithm. Each node in this 

network is considered to be equipped with global positioning system (GPS) (or any other positioning 

service) which is capable of providing the current location, direction of movement, as well as the current 

velocity of the mobile node. Packet losses occur in two ways (i.e. due to link failures and due to collisions 

[58]), and the emphasis here is given to reduce packet losses due to link failures. I have created two routes 

from source to destination that can be broken and reconnected continuously. These scenarios were tested 

with Network Simulator version 2.33 (NS-2) [59] in SuSE linux. According to the implementation, each 

node is using an omni-directional antenna with a height of 1.5 meters. Two ray ground  reflection 

propagation model is chosen for radio propagation, and the path loss factor is four. The nodes are sharing 

the same channel for the packet transmission, and IEEE 802.11 [60] is used as the multiple access 

technique. Constant bit rate (CBR) traffic is used as the traffic mode at the source, and it is producing 512 

byte data packets. User datagram protocol (UDP) is used as a transport layer protocol. Loss monitor is used 

at the destinations to monitor and measure the observed parameters at the end of each transmission. The 

simulations were run 200 seconds each time. I have used DSR as a routing layer protocol, and DSR is 

combined with the proposed mobility algorithm. I have considered four modifications in the route 

discovery phase of DSR protocol. First, whenever a node receives a route discovery packet, it calculates 

LLT with its previous node. Second, each route discovery packet contains a TLLT value assigned by the 

source. Any node that receives a route discovery packet compares its calculated LLT with the TLLT in the 

packet, and drops the packet if the LLT is less than the TLLT. Third, the RLT of the discovered route is 

estimated with the minimum of the LLT values of the nodes along the route. Fourth, the destination 

calculates latency of each route, and sends this to the source through route reply packet. In data 

transmission phase, the source finds the shortest route according to the principle of DSR. Then, the source 

estimates the approximate number of packets to be sent using the RLT and latency of the corresponding 

route. That provision reduces packet loss due to link failures. I call this implementation “DSR with LLT”.  

The proposed mobility algorithm in this sub-section will be analyzed in Sub-section 5.1. The next sub-

section contains the proposed algorithms in the MAC layer of a MANET/VANET. 

4.2 Proposed Work in the MAC Layer 

Some MAC problems (i.e. HS, ES, MHS, NC, ARL etc.) in the MAC layer of ad hoc networks can be 

solved with R-Aloha based MACs. Transmission of special type of control messages through the frames 

gives a very good opportunity to save the radio channel from neighborhood capture. The proposed MAC 

protocols are discussed in this sub-section. Before going to the proposed MAC protocols, a brief view of 

the Reservation Aloha is presented in the next sub-section. 

4.2.1 A View of Reservation ALOHA 

Reservation Aloha (R-Aloha) is a packet access scheme based on time division multiplexing (TDM). In 

this protocol, certain packet slots are assigned with priority, and it is possible for users to reserve slots of a 

frame for the transmission of packets. Each time slot is long enough for the transmission of a packet of 

data. The duration of a frame is assumed to be greater than the maximum channel propagation delay in the 

broadcast network [61]. Slots can be permanently reserved or can be reserved on request. According to the 

principle of R-Aloha each user is aware of the usage status of time slot one frame ago. The network 

operates without any central control, but requires each user to obey the same set of rules for transmitting 

packets into time slots depending upon what happened in the previous frame. A time slot in the previous 

frame may be: 
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Unused, which means that it was empty (previously not used) or instantly vacant due to a collision 

among several packets. Used, which means that exactly one packet was transmitted in a slot and the packet 

was successfully received (it is assumed that the channel is error-free except for collisions). 

The transmission rules in R-Aloha are as follows- 

 If slot   had a successful transmission by user X in the previous frame, slot   is not available to 
anyone except user X in the current frame. Slot   is said to be reserved by user X. Note that user 
X has exclusive access to slot m as long as it continues to transmit a packet into in every frame. 

 Those slots in the last frame, which were unused, are available for contention by all users 
according to the adaptive algorithm. 

4.2.2 The Proposed MAC Protocol: Extended R-Aloha (ERA) 

The traditional R-Aloha is not enough to remove the access related problems (i.e. HS, ES and NC 
problems) in ad hoc networks. I have modified the R-Aloha, called extended reservation Aloha, to use it 
with ad hoc networks. The basic modifications that I have made to the traditional R-Aloha are described in 
the following three steps. 

1) Two stations under a communication are using the same slot in different frames one after another. They 
are establishing a bi-directional TDD connection sharing the same slot in the consecutive frames. 

2) Any of the two stations is using one slot and reserving the same slot in the subsequent frame which will 
be used by the other station. 

3) Any of the two stations using one slot in the current frame and reserving the same slot in the next two 
subsequent frames. 
 

As shown in Figure 4-5, station A is transmitting to station B. Station C is out of detection range of A. 

So C may be a HS to A during ongoing communication. Again station D is inside the detection range of A. 

So D may be an ES to A during ongoing communication. ERA has been explained using the scenario in 

Figure 4-5, described how it solves the HS and ES problems, provided that the above three modifications 

are applied here.  

 

 

D A B C 

Data 

ACK 
 

 

Figure 4-5:  ERA to hidden station and exposed station. 

(1) If A and B use different slots in the same frame or different frames it is difficult to inform C about A’s 
reservation and D about B’s reservation. If A and B use the same slot in every frame one after another 
as shown in Figure 4-6, this problem is solved, and thus C knows about A’s reservation from B’s 
reservation.   

 

1 2 3 4 m 1 2 3 4 m 1 2 3 

A A B 

fi fi+1 fi+2 

Reservation 
 

 

Figure 4-6:  Reservation scenario in R-Aloha. 
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(2) Station A has seized slot 2 of frame i for the communication with station B. It is using this slot as well 
as reserving slot 2 of frame i+1 as shown in Figure 4-6 (follow the unidirectional arrow). According 
to modification (1) station B is bound to use the same slot (i.e. slot 2) in the frame i+1. So B is using 
slot 2 of frame i+1 and according to modification (2), it is reserving slot 2 of frame i+2. 

According to modification (2), after A’s transmission using slot 2 of frame i, D knows about A’s 

reservation of slot 2 in frame i+1. When B sends acknowledgement to A using slot 2 of frame i+1, C works 

as ES, and there is no problem from D (HS to B). After B’s transmission using slot 2 of frame i+1, C knows 

about B’s reservation of slot 2 in frame i+2. When A sends data to B using slot 2 of frame i+2, D works as 

ES, and there is no problem from C (HS to A). If the transmission continues in this way, then it confirms 

the solution of the HS problem, but not of the ES problem.  

 

1 2 3 4 m 1 2 3 4 m 1 2 3 

A A B 

fi fi+1 fi+2 

Reservation 

 

Figure 4-7:  Extended reservation scenario in ERA. 

(3) Station A has seized slot 2 of frame i for the communication with Station B. It is using this slot and 
reserving slot 2 of frame i+1 as well as slot 2 of frame i+2 at the same time as shown in Figure 4-7 
(See the unidirectional arrow). All stations follow the same rules. 

According to modification (3), after A’s transmission using slot 2 of frame i, D knows about A’s 

reservation of slot 2 in frames i+1 and i+2. When B sends acknowledgement to A using slot 2 of frame i+1, 

C works as ES and no problem from D (HS to B). After B’s transmission using slot 2 of frame i+1, C 

knows about B’s reservation of slot 2 in frames i+2 and i+3. When A sends data to B using slot 2 of frame 

i+2, there is no problem from D (ES to A) and C (HS to A). If the transmission continues in this way it 

confirms the solution of both HS and ES problems. 

4.2.3 The Proposed MAC Protocol: Extended Sliding Frame R-Aloha (ESFRA) 

ESFRA is based on SFRA, and accordingly SFRA will be briefly presented here in order to understand 

some reasons why ESFRA is superior for mobility. 

4.2.3.1 Sliding Frame Reservation-Aloha 

In SFRA protocol [18], the channel time is divided into time slots, which are grouped to form a frame. 

Each frame is assumed to contain N slots. The basic mechanism of the protocol is described in the 

following steps: 

 At start up, each station acquires one slot as its basic channel (BC) to transmit its packet, which contains 

a payload and a field called frame information (FI).  

 Stations reserve BCs as long as they are active. SFRA uses the FI field to distribute stations’ view of the 

statuses of the slots, whether the slots are busy or free. Each station records the statuses of the previous 

N slots, which is called a sliding frame (SF).  

 At each slot, the received FI is used to update the statuses of the following N slots of the SF. In this way, 

a station knows the communication statuses of the stations up to 2 hops away. So, the stations positioned 

at least three hops apart can reuse the busy slots. With this, SFRA solves hidden and exposed station 

problems. 

 Slots are automatically released when stations are turned off or exit the transmission ranges of all other 

active stations in the frame. 
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Figure 4-8 is provided to illustrate how SFRA works using a scenario. There are 4 stations in this 

scenario; the stations are labeled as S1, S2, S3, and S4; where S1 is sending data to S2, and S4 is moving 

towards S3. Busy slots are labeled as “B”, and free slots are labeled as “FR”. 
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Figure 4-8:  Sliding frame scenario of SFRA. 

Let us assume that all stations are using only their BCs for both FI and data transmissions. All the 

stations, S1, S2, S3, and S4, have reserved their BCs. S1’s FI informs all the stations around S1 about the slots 

that are used by S1. Similarly, S2’s FI informs all the stations around S2 about the slots that are used by S2. 

Thus, S2’s FI contains the statuses of the slots reserved by both S1 and S2. Also, as S3 receives S2’s FI, it 

knows the slots used by S1 and S2. As a result S3, which is a hidden station to S1, avoids using those slots 

for its transmission, which prevents the collisions at S2. 

According to SFRA, S4 knows the slots used by Stations S2 and S3 from FI of S3 but it does not know 

about S1’s reservation. While transmitting to any other station, S4 can move to the transmission range of S2, 

which causes collisions at S2. 

4.2.3.2 Principles of Extended Sliding Frame R-Aloha 

ESFRA is based on SFRA, and designed to solve the MHS problem. However, the FIs in ESFRA 

uniquely inform relative positions of the stations in addition to the status of a slot. With this modification, 

stations learn if a busy slot belongs to an immediate neighboring station or to a station which is 2 or 3 hops 

away. Another modification introduced with ESFRA is the access to the free slot, where the free slots are 

open to contention to allow the mobile stations access to the medium. There can be collisions in this 

contention period but the collisions are contained in this free slot, and do not happen in the busy slots. With 

these modifications, ESFRA handles the mobility much better than SFRA. Properties of ESFRA are 

described as follows: 

(i) The contending station senses the idle slot for a random small amount of time while reserving a free 

slot. This is done by using a small back-off timer. The contending station with a lower value in its 

back-off timer has the priority to reserve a free slot first. If there is a collision, it resets the back-off 
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timer again. This back-off procedure is applied only at the time of reserving a free slot at the start of 

a communication. 

(ii) In order to avoid unnecessary losses at the receiver at the start of a data transmission, it is necessary 

to know whether the expected receiver is free or not. Whenever a station has a packet to send to any 

other station, it sends RTS to the expected receiver to know its status. If the expected receiver is free 

to communicate, it sends CTS to the sender. The sender transmits the packets using the reserved 

slots in every frame. RTS/CTS handshaking is done only at the starting of any new transmission. By 

using ESFRA the sender infers that the receiver is aware of subsequent reserved slots. 

(iii) In a low traffic network, any station can reserve extra available slots for more data transmission. 

(iv) The MHS problem will be solved if the MHSs are managed to be aware of any communication in 

advance. According to SFRA, a station knows the communication statuses of the stations up to two 

hops apart. ESFRA manages to distribute the status of a slot assignment to three hops by organizing 

the FIs with a new scheme. The FIs in ESFRA contain reservation information of three consecutive 

stations, and the stations located at least 4 hops away are able to reuse the slots. The FI in ESFRA 

contains the status information of a slot that specifies whether this slot contains a successfully 

received packet, which is labeled as BUSY-1 slot, BUSY-2 slot, or FREE slot. The busy slots are 

recognized as reserved, and the free slots are recognized as available. If a station discovers that any 

station is using a slot for transmission, it does not use this slot, and the slot is recorded as BUSY-1 in 

its own FI. If a station discovers any slot with status BUSY-1 in any of its received FIs, it does not 

use this slot, and the slot is recorded as BUSY-2 in its own FI. If a station discovers any slot with 

status BUSY-2 in any of its received FIs, it does not use this slot, and the slot is recorded as FREE in 

its own FI. The free slots are always recorded as FREE. 

Figure 4-9 illustrates how ESFRA works using a scenario. S1 is sending data to S2, and S4 is moving 

towards S3. In this scenario, S3 is a hidden station to S1, S5 is exposed station to S1, and S4 is mobile hidden 

station to S1. In Figure 4-9, “BUSY-1” is labeled as “B1”, “BUSY-2” is labeled as “B2”, and “FREE” is 

labeled as “FR”. 

                           

      

       

 

 

 S1 S2 S3 S4  S1 S2 S3 S4   

 
B1 B2 FR FR S1 

 

B1 B2 FR B1 S2   

B1 FR B2 B1 S3 
 

FR FR B2 B1 S4 

  S1                   S2                     S3                   S4 

fz fz+1 

FI-S1 

FI-S2 

FI-S3 

FI-S4 

S5 

S6 

 

Figure 4-9:  Sliding frame scenario of ESFRA. 
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Let, stations S1, S2, S3 and S4 have reserved the slots 1, 2, 3 and 4 in a frame respectively as their BCs, 

and they are using only their BCs both for FI and data transmission. The FIs in Figure 4-9 show that S2 is 

recording S1’s reservation as BUSY-1, S3’s reservation as BUSY-1, and S4’s reservation as BUSY-2. 

Similarly, S3 is recording S1’s reservation as BUSY-2, S2’s reservation as BUSY-1, and S4’s reservation as 

BUSY-1. Thus, the modified sliding frame mechanism works for distributing slot status up to three hops, 

and offers smooth slot switching. The mobile hidden station gets enough time to switch to an idle slot 

before becoming a second hop neighbor if it finds its reserved slot busy as a third hop neighbor.  

Sub-section 5.2.3 will provide how ESFRA deals with HS, ES, NC and MHS problems, and a detailed 

analysis by using Markov modeling. The network-MAC cross-layer algorithm is explained in the next sub-

section. 

4.3 The Proposed Network-MAC Cross-Layer Algorithm 

Communication systems are divided into layers for reducing complexity in processing and regulating 

information to be transmitted in wired or wireless networks. Wireless networks characteristics are quite 

different from wired networks in some of the cases which create new challenges. Researchers are applying 

different techniques to solve those challenges. For some specific scenario, researchers are using the 

dependencies and interactions between adjacent layers which brings the concept of cross-layer design 

(CLD) [1]. The channel conditions from PHY and MAC can be used in the network, transport and 

application layer for designing the optimized algorithms specially in case of unstable channel conditions 

(i.e. mobility, limited bandwidth, power constraints, dynamic network topologies etc.). The algorithm 

proposed in this section makes the MAC layer useful for disseminating network layer information. 

4.3.1 The Proposed Cross-Layer Based Algorithm 

4.3.1.1 Construction of Cross-Layer Extended Sliding Frame R-Aloha 

The cross-layer extended sliding frame reservation Aloha is based on the modification of the principles 

of ESFRA, and it is designed to support safety critical information dissemination in VANETs. So, 

CESFRA is an vehicular communication application specific version of ESFRA. ESFRA is basically 

designed for medium access control in ad hoc networks. According to the mechanism of ESFRA [16], any 

mobile station situated at most three hops away from the sender is aware of the respective communication. 

This property of ESFRA can be used for routing among the mobile stations situated up to three hops away. 

So, ESFRA can be used as a cross-layer (i.e. both MAC and network layers) protocol for the applications 

where three hops routing is sufficient, such as collision avoidance in VANET, advance association between 

vehicles and road side units (RSUs), communication between two RSUs in WAVE etc.. Normally, ESFRA 

uses a small field called FI, which contains the statuses of the previous slots of the sliding frame for passing 

medium access controlling information to the next neighbors. The FI in ESFRA requires some 

enhancements to make it cross-layer information (CI). 

The structure of a CI is shown in Figure 4-11. Each CI contains two types of information e.g. FI which 

carries control information (i.e. FREE, BUSY-1, BUSY-2 etc.), and upper-layer information (UI) which 

needs to be transmitted (i.e. basic safety message (BSM) and other high and low priority information) to 

next hop or multi-hops. BSM is transmitted by each vehicle every 100 milliseconds [62]. Other information 

to be transmitted (i.e. traffic information, weather information, emergency vehicle alert, lane change alert, 

blind spot alert, collision avoidance alert etc.), information hop number (IHN), packet ID etc. are 

considered as upper layer information. Information hop number means how many hops an information 

must be forwarded. For example, lane change alert and blind spot alert are one hop information because 
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these messages are to be transmitted only one hop, whereas emergency vehicle alert and collision 

avoidance alert are multiple hop information. The construction of CIs in CESFRA is as follows: 

1 If a station has packets to send it searches a free slot from its FI, reserves it for a specified number 

of frames, and release it at the end. If it does not have enough packets, it releases the channel as 

soon as its queue is empty. For a network where number of communicating stations is very low 

compared to the number of slots in a frame, the stations are allowed to reserve more than one slot 

in a frame. The stations increase their slot reservation one by one keeping at least one slot free. If a 

new station appears, it reserves that free slot. As soon as the other stations observe this 

reservation, they release one slot each from their excess reservations. This rule is followed while 

arriving or departing a station to/from the collision domain. 

2 If a station listens to any other station using a slot for a transmission, it does not use that slot. That 

slot is marked as BUSY-1 in its own CI. If it is a one hop message (i.e. IHN equals to one), it is 

dropped after reading the information otherwise the UI of the owner of that slot is copied to its 

own CI. 

3 If a station finds any slot with status BUSY-1 in any of the received CIs, it does not use that slot. 

That slot is marked as BUSY-2 in its own CI. If it is a one hop message, it is dropped after reading 

the information otherwise the UI of the owner of that slot is copied to its own CI. 

4 If a station finds any slot with status BUSY-2 in all the received CIs, it does not use that slot. That 

slot is marked as FREE in its own CI. If it is a one hop message, it is dropped after reading the 

information otherwise the UI of the owner of that slot is copied to its own CI.and transmitted by it. 

5 Free slots are always marked as FREE. 

This slot reservation mechanism is explained with state diagram in the next sub-section. 

4.3.1.2 State Diagram of Slot Status in CESFRA 

 
 

Figure 4-10:  The state diagram of the status of a slot in CESFRA. 
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CESFRA eliminates the collisions using the FI part of the CI. FI contains the statuses of the slots of the 

sliding frame. Every slot in an FI must be in any of the four statuses as illustrated in Figure 4-10. Those are 

idle, reserved, reserved BUSY-1 and reserved BUSY-2. The slot status in a current FI is reported based on 

the statuses of the corresponding slot in the received FIs. The future state of a slot may be FREE in three 

ways e.g. (1) if it is reported as BUSY-2 in some of the received FIs while others are idle or BUSY-2 in all 

the received FIs, (2) if it is reported idle in all the received FIs, or (3) if any station releases it. The slot state 

changes from FREE to Reserved if a station starts transmission using that slot. It reports this slot as 

reserved as long as it keeps on transmitting. Whenever it releases the slot, it changes its state to FREE. If a 

slot is used by a neighbor, it will always be reported as BUSY-1 in the current FI. If the user of a slot is not 

a neighbor and if the slot is reported as BUSY-1 in any of the received FIs, its state will be BUSY-2 in the 

current FI. In the next section, I will explain how FI is extended to CI, and how it is used for information 

dissemination. 

4.3.1.3 Information Dissemination Mechanism with CESFRA  

The BUSY-1 and BUSY-2 in CI passes the reservation information of any slot up to third hop without 

any routing support as discussed in the previous sub-section. A CI is a complete packet to transmit. Every 

CI contains a number of fields equal to the number of slots in a frame. Every field has two parts e.g. control 

information and UI. Slot statuses, slot numbers etc. are control information, and vehicle ID, BSMs, 

collision information etc. are UI. Any information included along with the control information will also 

pass up to three hops in VANET without any routing support. If RSUs are installed maximum three hops 

away from each other, neighboring RSUs will be able to communicate with each other using V2V 

communication. In other words, CESFRA can forwards safety critical information in a controlled 

broadcasting manner without any routing support. For one hop information forwarding, any station includes 

the one hop information into its own CI field and broadcasts the CI. The neighbors just read the information 

from the sender’s CI and do not add it to their own CIs. For multi-hop information dissemination, the 

emergency message generating vehicle puts the message into its own CI along with a specified IHN. Every 

vehicle who receives this CI will copy in its own CI and transmit. The IHN in a slot is decreased by one 

along with the change of the status of the corresponding slot.  

Figure 4-11 illustrates a collision avoidance scenario using CESFRA. It also shows the snapshots of CIs 

transmitted by vehicles. Vehicle   in the highway scenario in Figure 4-11 generates hard brake message to 

avoid collision, and this message should be reached at Vehicles  ,   and   in advance. The frame 

constitutes of 10 slots, and each vehicle reserved one slot for transmitting its own CI. Here, every CI 

contains slot reservation information (i.e. slot number (  ,   , etc.), vehicle ID ( ,  ,  , etc.), slot status 

(B1, B2, F )) and upper layer information (i.e. collision information and BSM). Vehicle   reserved slot 1 

for transmitting a BSM. After a collision detection it included the collision information (i.e. coll info) into 

its CI (i.e. CI- ). Whenever Vehicle   receives CI- , it changes  ’s slot reservation status to B1 in its own 

CI (i.e. CI- ), and copies the collision information. Vehicle   applies all other rules of Sub-section 4.3.1.1 

to include slot statuses of all other received CIs into CI- . After receiving CI- , Vehicle   changes  ’s slot 

reservation status to B2 in its own CI (i.e. CI- ), and copies the collision information. Vehicle   gets the 

collision information from  ’s CI. Vehicle d deletes  ’s reservation in its own CI and does not use that slot. 

IHN is not used in this example communication scenario because the collision information is supposed to 

dissipate up to three hops. 

The construction of CI and information dissemination mechanism of CESFRA is described in this 

section. Some critical VANET scenarios are designed in the Sub-section 5.3 to expose mobile hidden 

station and asymmetric radio link problems. The effectiveness of CESFRA with these problems is also 

described in Sub-section 5.3. 
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Figure 4-11:  CI Structure for information dissemination. 
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CHAPTER 5:    RESULTS AND ANALYSIS OF THE 

PROPOSED APPROACHES 

All the proposed algorithms are analyzed in this chapter. The proposed mobility algorithm for the 

network layer is analyzed in Sub-section 5.1. All the MAC layer and network-MAC cross-layer analyses 

are included in Sub-section 5.2 and Sub-section 5.3 respectively. 

5.1 Analysis of the Proposed Algorithm in the Network Layer 

5.1.1 Investigation of the Mobility Algorithm on Dynamic Source Routing (DSR) 

Protocol 

A mobility algorithm is proposed in Sub-section 4.1. This algorithm is applied to the DSR protocol for 

evaluating its performance. Three metrics are considered in measuring and comparing the performance of 

the proposed algorithm with existing solutions. Those metrics are packet delivery ratio, packet loss and 

average packet delay. Packet delivery ratio is the ratio between the number of received packets by the 

destination and the total number of packets sent by the source at the end of each simulation. Packet loss is 

defined by the total number of lost packets during the simulation. Average packet delay is defined as the 

span of time required by a packet to reach from source to destination. As I am dealing with the effect of 

mobility in an ad hoc network, I have chosen speed (i.e. meter/second) of the mobile nodes as a variable 

while measuring the performance of the protocols. I have compared my implementation with original DSR 

(i.e. “DSR with Error Count”) and “DSR with Direction Tracking” [56]. Figure 5-1, 5–2 and 5–3 provide 

results of the simulations for a 10 node scenario. DSR has its own solution to broken routes, called route 

maintenance procedure, which deletes the route with a broken link from its cache. “DSR with Direction 

Tracking” is based on two considerations. First, searching for the shortest path, e.g. if LLT > 0, based on 

the number of hop-count from both primary and secondary caches.  

 

Figure 5-1:  Packet delivery ratio versus speed. 
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Second, searching for a path with better LLT with the same minimum hop-count, and searching for a 

path with the best LLT value from both primary and secondary caches. Figure 5-1 shows that a significant 

improvement in packet delivery ratio can be obtained with “DSR with LLT”. Packet delivery ratio is 46 

percent more compared to other two schemes when the speed of the mobile nodes is about 25 

meter/second. The bold line in Figure 5-1 shows that the packet delivery ratio (using DSR with LLT) is 

decreasing with increasing mobile speeds. This is due to the assumption made during LLT calculation that 

nodes are not changing directions within the duration of LLT. This causes some links to expire before the 

calculated LLT. That is why some packets are lost, which decreases the packet delivery ratio. 

 

Figure 5-2:  Packet loss versus speed. 

Figure 5-2 shows that there is a significant reduction of packet loss with the use of the proposed 

algorithm in DSR. Packet loss is reduced by about 90 percent when the speed of the nodes is 25 

meter/second. The average packet delay is determined by averaging the individual packet delay. Because 

same routes as in the traditional DSR is used in both schemes (i.e. “DSR with Error Count” and “DSR with 

LLT”), the average packet delay of these schemes should be same. This is evident in Figure 5-3 which 

shows average packet delay of schemes (i.e. “DSR with Error Count” and “DSR with LLT”). “DSR with 

Direction Tracking” and “DSR with Error Count” are using same routes with same strategy; this is why it is 

expected to have similar average packet delay. 

 

Figure 5-3:  Average packet delay versus speed. 
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I have also simulated “DSR with LLT” in scenarios with different number of nodes (i.e., 10, 20 and 30 

nodes) to see the impact of the size of a MANET on the mobility assisted algorithm. The comparative 

views between “DSR with LLT” and “DSR with Error Count” are shown in Figure 5-4, 5-5 and 5-6. The 

number of link failures is increasing with increasing of the number of nodes. So, the packet delivery ratio is 

decreasing in both “DSR with LLT” and “DSR with Error Count”, as illustrated in Figure 5-4. 

 

 

Figure 5-4:  Effect of number of nodes on packet delivery ratio. 

 

 

Figure 5-5:  Effect of number of nodes on packet loss. 
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Figure 5-6:  Effect of number of nodes on delay. 

Figure 5-5 shows that more link failures are causing more packet losses in “DSR with Error Count”. As 

my algorithm is sending the number of packets that the route can handle, packet loss is reduced by about 90 

percent. Average packet delay is increasing with increasing of number of nodes for both protocols as 

average lengths of the routes are increasing, which was shown in Figure 5-6. 

5.2 MAC Layer 

5.2.1 Analysis of the Behavior of the Reservation Based Protocols (i.e. ERA, SFRA 

and ESFRA) and IEEE 802.11 with respect to the Neighborhood Capture 

Problem 

A simple MANET scenario as shown in Figure 5-7(a) is used to illustrate the NC problem. Let us 

consider that all stations in Figure 5-7(a) are using the IEEE 802.11 MAC protocol. Station B is one hop 

neighbor of both Stations A and C. Stations A and C are out of the interference ranges of each other this is 

why they cannot hear each other, and use the channel independently. If B wants to transmit packets, it must 

have to wait until both Stations A and C release the channel simultaneously. Consequently, Station B may 

not get access to the channel for long time, which is the NC problem. The NC problem will be severe if A 

and C both have many packets in their queues. Now, let see what happens if ERA or SFRA or ESFRA is 

applied in this scenario as a MAC protocol. According to these protocols, Station B knows about A’s and 

C’s reservation of slots as shown in Figure 5-7(c). So, B may continue its communication with any other 

stations (i.e. Station F in Figure 5-7(a)) by reserving a slot free from both A and C. So, Station B is out of 

the effect of the NC problem. For example, A is communicating with E reserving one slot in frame fi as 

shown in Figure 5-7(b), and C is communicating with D reserving one slot in the same frame as shown in 

Figure 5-7(d). B observes both A’s and C’s reservations, and selects any slot from the rest of )2( n  slots 

of the frame fi as shown in Figure 5-7(c). But, high traffic load reduces B’s chance to access to the channel. 

Let us consider that Station B wants to reserve 1 slot per frame, and there are n  number of slots per frame, 

and the number of slots reserved by Station A is a , and number of slots reserved by Station C is c . If 

summation of all slots reserved by A and C is less than the total number of slots in a frame, B can always 
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access the channel, which is the best case scenario for B. Therefore, the probability of B’s chance to access 

the channel, BP , based upon the condition nca   is 1, this is  

 

1BP .      (5.2.1) 
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E B 
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F 

 
 

 

 

(a) A simple MANET scenario to show the neighborhood capture problem. 
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(b) A’s reservation.         (c) B’s observation.          (d) C’s reservation. 

Figure 5-7:  Neighborhood capture problem with example reservations of stations in a frame. 

B has a probability to access the channel for the boundary conditions nca   and nca 2 . Let 

us consider that A has the possibility to use the frame in 1U  ways, and C has the possibility to use the 

frame in 2U  ways. Therefore, the number of events in which station A is reserving a  number of slots out 

of n  slots in a frame in all possible ways is 

 

a

n
CU 1 .      (5.2.2) 

 

The number of events in which C is reserving c number of slots out of n  slots in a frame in all possible 

ways is 

 

c

n
CU 2 .      (5.2.3) 
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Since A and C choose the slots independently, the total number of events (i.e. U in (5.2.4)) in which A 

and C both use the frame is 

 

c

n

a

n CCUUU  21 .    (5.2.4) 

 

Let us consider only one case first, where A is reserving the first a  number of slots of the frame, and C 

can reserve its c  number of slots out of n  slots in that frame in all possible ways. In this case, the number 

of slots remaining in the frame or not reserved by A is )( an . Let us find the number of events V  in 

which C must use the rest of )( an   number of slots of the frame in its reservation. B will not get a 

chance to access to the channel in V  number of events. Because, stations A and C are covering all the slots 

of the frame in these V  events. As )( anc  , V  can be found by taking a combination of 

))(( anc   out of a  slots. Therefore, the number of events in which B will not get chance to access to 

the channel is 

 

)( anc

a
CV  .     (5.2.5) 

 

Now, the total number of events for all cases of A in which B will not get chance to access to the 

channel is 

 

a

n

anc

a

a

n CCCVW   )( .   (5.2.6) 

 

Therefore, the probability of B’s chance to access to the channel based upon the condition 

ncan 2  is given by 

U

WU
PB


 .     (5.2.7) 

 

Using Equations (5.2.5), (5.2.6), and (5.2.7),    is given by 

 

)!(!

!!)!(!

nacn

canacn
PB




 .   (5.2.8) 
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According to the IEEE 802.11, Station B in Figure 5-7(a) is exposed to both Stations A and C, and 

forced to remain idle. As there is no guarantee that A and C will release the channel simultaneously, B’s 

chance to access the channel is completely uncertain. So, IEEE 802.11 blocks stations like B for an 

indefinite time. ERA or SFRA or ESFRA provides a good channel accessing probability to these stations 

(i.e. B) as revealed in Equations (5.2.1) and (5.8.8).  

 

Figure 5-8:  Channel accessing probability of B with the variation of the number of slots reserved 

by Station A and Station C. 

ERA, SFRA or ESFRA has the provision to reserve more than one slot if necessary. Figure 5-8 shows a 

mesh diagram where Stations A and C are reserving variable numbers of slots in a 16-slot frame. The 

channel accessing probability of B is plotted against different combinations of slots reserved by A and C. 

Figure 5-8 shows that the channel accessing probability of B is always 1 for any combination of slot 

reservations of A and C where the summation of the number reserved slots by them is less than 16. The 

probability decreases if this summation is greater than 16. For example, if the number of slots reserved by 

A is 14, and the number of slots reserved by C is 15, the channel accessing probability of B is 0.25. The 

worst case occurs if either of A or C reserves the whole frame. But, that is a rare case. 

Figure 5-9 shows the effect of percentage of traffic on the channel accessing probability of B. The 

percentage of traffic is defined as the ratio of the total number of reserved slots in a frame and total number 

of slots in a frame. In this case, I have considered that all stations in the contending region of B are allowed 

to reserve only one slot per frame. The channel accessing probability of B starts decreasing when the traffic 

is more than fifty percent. Figure 5-9 also shows that channel accessing probability increases for larger 

frame size. ERA, SFRA or ESFRA promises 100 percent channel accessing probability for the traffic less 

than or equal to 50 percent in the contending region. Alike the analysis in Figure 5-9, if all stations in the 

contending region of B are allowed to reserve only one slot per frame, the channel accessing probability of 
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Station B decreases with increasing the number of contending neighbours while using ERA or SFRA or 

ESFRA as a MAC protocol. So, unlike IEEE 802.11 MAC, ERA, SFRA and ESFRA solve the NC problem 

with neighbours more than two. 

In Figure 5-10, every graph is drawn for a fixed percentage of loads but for different combination of 

slot accusation between the neighbouring stations A and C. Suppose, frame size is 16 slots. Both station A 

and C are operating with 50 percent load. If they use equal number of slots, they will use 8 slots each. If 

they use any other combination, the sum should always be 16 for 50 percent load. For the same frame size 

but for 70 percent load, the sum of the slot for any combination should be 24. The number of slots reserved 

by any one station between A and C is shown in the horizontal axis. The number of slots used by the other 

station can be found by subtracting from the total of the combination for each labelling in the horizontal 

axis. 

 

Figure 5-9:  Channel accessing probability of B with the variation of traffic in the contending 

area. 

 

It is evident that the 70% load curve is below the 50% load curve for both cases  =16 and  =6. One 
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Figure 5-10:  Comparison scenarios for different load and different frame size. 

The discussion in this sub-section highlights that the severity of the NC problem increases with the 

IEEE 802.11 MAC, where as the ERA, SFRA and ESFRA MAC protocols solve the NC problem in a 

probabilistic manner. The stations using these MAC protocol are not severely affected by the NC problem 

compared to the IEEE 802.11 or similar distributed-type protocols. The next sub-section contains an 

analysis how ERA and SFRA reduces the collision due to the MHS problem. 

5.2.2 Analysis of the Behavior of the Reservation Based Protocols (i.e. ERA and 

SFRA) to the Mobile Hidden Station Problem 
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Figure 5-11:  HS, ES and MHS in a MANET scenario. 
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the same slot, there will be a collision with A’s transmission at B. Otherwise, there is no collision with D’s 

transmission. So, ERA and SFRA decrease the probability of collisions due to an MHS, but does not 

eliminate collisions. Let us consider that Station A and Station D reserve   and   number of slots per frame 

respectively and total number of slots per frame is  . If summation of all the slots reserved by Stations A 

and D is greater than the total number of slots in a frame, there is always a collision. Therefore,   , the 

probability of successful transmission by Station A based on the condition         is zero. There is 

possibility of successful transmission by Station A for the following condition 

 

nda  .       (5.2.9) 

 

Let, A has a possibility to use the frame in Q1 ways, and D has the possibility to use the frame in Q2 

ways. Therefore, number of events in which A is reserving a number of slots out of   slots in a frame in all 

possible ways is 
a

n
CQ 1

. The number of events in which D is reserving   number of slots out of   

slots in a frame in all possible ways is 
d

n
CQ 2

. The total number of events (i.e. Q) in which A and D 

both use the frame is 

 

d

n

a

n CCQQQ  21 .   (5.2.10) 

 

Let us consider only one case of Station A first, where A reserves the first   number of slots of the 

frame, and D reserves its   number of slots out of   slots of the frame in all possible ways. In this case, 

number of slots remaining in the frame or not used by A is      . I need to find the number of events   

in which Station D must reserve its   number of slots from the remaining       number of slots of the 

frame. Station D will not cause any collision at B in this   number of events because A and D are not 

reserving any common slot of the frame in these   events. According to Equation (5.2.9),   is less or equal 

to      .   can be found by taking a combination of   out of       slots. Therefore, the number of 

events in which there is no collision from MHS, D is 
d

an
CR

)( 
 . So, total number of events for all 

cases of Station A in which there is no collision from MHS, D is 

 

a

n

d

an

a

n CCCRS 
 )(

.   (5.2.11) 

 

Therefore,   , the probability of successful transmission by Station B based on the condition      

   is given by 

Q

S
Ps  .     (5.2.12) 
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Using Equations (5.2.10),(5.2.11), and (5.2.12) I get 

!)!(

)!()!(

ndan

dnan
Ps




 .     (5.2.13) 

 

According to the principle of IEEE 802.11 MAC, Station D does not know about A’s transmission to B. 

Whenever D will enter the interference range of B, D’s transmission will collide with A’s transmission. So, 

according to IEEE 802.11, the severity of the probability of collision due to MHSs is high whereas ERA or 

SFRA reduces probability of collision due to MHSs as revealed in Equation (5.2.13). Figure 5-12 shows 

that Station A reserves a variable number of slots in a frame, and a variable number of MHSs are affecting 

A’s communication. It is considered that each MHS reserves one slot per frame. The increment of the 

number of slots reserved by A decreases the probability of its successful transmission. If A reserves only 

one slot for its transmission to B, A has 83 percent probability of successful transmission with 2 interfering 

MHSs. This probability decreases if the number of MHS increases. Figure 5-13 shows the effect of traffic 

intensity in the contending region of A on the probability of successful transmissions of A. Traffic intensity 

or percentage of traffic is defined as the ratio of total number reserved slots and total number of slots in a 

frame. Different curves are plotted for different number of MHSs. In this case, I have considered that all 

stations in the contending region of A are allowed to reserve only one slot per frame for their transmissions. 

One frame consists of 10 slots in this plot. The MHSs are also allowed to reserve only one slot per frame. If 

there is no MHS, the probability of successful transmissions using ERA or SFRA is always 100 percent as 

shown in the dotted line with the asterisk in Figure 5-13. For 1 MHS, it decreases linearly with the 

increment of the percentage of traffic. For any other cases, it decreases exponentially. Thus the analysis in 

this sub-section shows that ERA and SFRA work better than IEEE 802.11. 

 

Figure 5-12:  Probability of successful transmission by Station A with the variation of number of 

slots reserved by A. 
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Figure 5-13:  Probability of successful transmission with the variation of traffic in the contending area of A. 

The probability of collision using SFRA or ERA, cP , is given by 

.
!)!(
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1

ndan

dnan
Pc




      (5.2.14) 

 

Figure 5-14:  Severity of MHS problem in SFRA and ERA. 

1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of traffic in the contending region of A (X10%)

P
ro

b
ab

il
it

y
 o

f 
su

cc
es

sf
u

l 
tr

an
sm

is
si

o
n

s

 

 

0 MHS

1 MHS

2 MHS's

3 MHS's

4 MHS's

0 1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of MHSs

P
ro

b
a

b
ili

ty
 o

f 
c
o

lli
s
io

n
, 
P

c

 

 

1 transmitting station

4 transmitting stations

7 transmitting stations



 

40 

 

cP  is plotted versus the number of MHSs in Figure 5-14, which shows that probability of collisions due 

to MHSs is increasing with the number of MHSs as well as with number of transmitting stations.  

 

Figure 5-15:  Probability of collision due to MHS, D with the variation of the number of slots 

reserved by A and D. 

The mesh diagram in Figure 5-15 illustrates that Stations A and D are reserving variable numbers of 

slots in a 16-slot frame. The probability of collision at B due to MHS, D is plotted against different 

combinations of slots reserved by A and D. Figure 5-15 shows that the probability of collision at B is 

always less than one for any combination of slot reservations of A and D, where summation of the number 

of their reserved slots is less than or equal to 16. For example, if the number of slots reserved by A is one, 

and the number of slots reserved by MHS, D is one, the probability of collision at B is 0.07. So, A has 95 

percent probability to make a successful transmission in this situation. The probability of collision increases 

if the summation of reservations by A and D increases. The worst case arises if the summation of 

reservations of slots by A and D exceeds the number slots in a frame (i.e. 16 in this case). In these cases, 

the probability of collision is 100 percent (See top flat portion of Figure 5-15). But, these are not usual 

cases. 

So, ERA or SFRA reduces collisions due to MHSs but cannot completely solve the MHS problem. 

5.2.3 Markov Analysis of IEEE 802.11, SFRA and ESFRA Considering the Effect 

of Mobile Hidden Station 

A comparative Markov analysis for SFRA, ESFRA, and IEEE 802.11 that consider the effect of the 

MHS problem is provided here. First, I will provide a Markov model for SFRA, then I will apply the model 

to ESFRA. Finally I will provide a Markov model for IEEE 802.11 MAC with considering the MHS 

problem. With these models, the probability of collisions, throughput and delay performances of the MAC 

protocols will be obtained. 
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5.2.3.1 Discrete Time Markov Chain Model for SFRA 

Channel (i.e., slot) accessing mechanism in SFRA is similar to slotted Aloha, and SFRA provides 

reservation of slots using FI, which eliminate HS problem. Each slot can be in either one of the following 

three states: idle, collided, and transmitting. States of the Markov chain represent the states of a slot. I am 

considering that N  is an average number of equal priority stations contending for one slot, and all of these 

stations are in one contention region. The duration of one Markov chain time step is considered equal to 

one slot duration. As I am dealing with mobile ad hoc networks, link failures randomly occur in short 

intervals. Propagation delays are very small, and they are ignored. Let us consider r  Markov time steps are 

required to transmit data from one station. The probability that an idle station attempts to send a message 

during a Markov time step (i.e., slot duration) is a . The probability that k  stations attempt a transmission 

during a given slot is given by 

 

  kNkN

kk aaCq


 1  .     (5.2.15) 
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(a)  Markov state diagram for SFRA.                                   (b)  Markov state diagram for ESFRA. 
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(c)  Markov state diagram for IEEE 802.11 considering the adverse effect of MHS. 

Figure 5-16:  Markov state diagrams: SFRA, ESFRA and IEEE 802.11. 

Figure 5-16(a) shows the state transition diagram of SFRA. There are r  numbers of transmitting states 

(i.e., 1P  to rP ) for one reservation process. If there is no collision in any of the transmitting states in the 

whole reservation time, the slot will be released to idle state. As stations are mobile, there is a possibility of 

collision from mobile hidden stations in any of the transmitting states from 1P  to rP . Probability of 

collision in each state is calculated by Equation (5.2.14), and plotted in Figure 5-14. Whenever there is a 

collision due to a MHS in any transmitting state, the status of a slot changes to the collided state, CP . 

According to SFRA, the information transmitted in the collided slot will be lost, and the status of the slot 

changes to idle state because the users of this slot will transmit again simultaneously, and further collisions 

will be inevitable. That is why any collided slot becomes an open slot for contention in the following 

frame. The state diagram reflects this transition. 

The channel stays in the idle state with the transition probability 00p  as shown in the state diagram, 

which indicates no station has a frame to send. 00p  is calculated from Equation (5.2.15) and given by 

 

Naqp )1(000   .    (5.2.16) 
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The status of a slot changes from the idle state, 0P , to the first transmitting state, 1P , with the 

transition probability of 01p  which is the probability that only one station gets access to any slot for 

reservation and transmission. The transition probability 01p  is calculated using Equation (5.2.15) and 

given by 

 

1

01 )1(  NaNap  .    (5.2.17) 

 

The status of a slot moves from the idle state, 0P , to the collided state, CP , with the transition 

probability Cp0 , which is the probability that more than one station try to access to a slot. Using Equations 

(5.2.16) and (5.2.17), the transition probability Cp0  for this event is given by 

 

01000 1 ppp C  .    (5.2.18) 

 

Any slot may be affected by an MHS in any of the transmission states. Whenever, the transmission in a 

slot is interrupted by an MHS, the status of the slot changes to the collided state, CP , as shown in Figure 

5-16(a). The transition probabilities Cp1 , Cp2 , … , rCp  in Figure 5-16(a) are representing the collision 

probabilities due to MHSs. The value of these probabilities can be obtained from Figure 5-14. If there is no 

collision in the transmitting state, 1P , the status of the slot changes to the second transmitting state, 2P , 

with the transition probability 12p  thus this proceeds up to the r
th

 transmitting state, rP . The status of a 

slot moves back to idle state, 0P , with the transition probability one at the end of a reservation process. I 

create a state transition matrix, P, with all the transition probabilities given by the state diagram in Figure 

5-16(a). I organize the distribution vector at equilibrium as follows, 

 

 TCrr PPPPPP 1210 ...  . (5.2.19) 

 

At equilibrium, the distribution vector is obtained by solving following two equations, 

 

P   ,       (5.2.20) 

and 

1  .      (5.2.21) 
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The solution of Equations (5.2.20) and (5.2.21) are yielded 
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where, 
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In this sub-section, a Markov model of SFRA is designed, and the state probabilities are calculated. The 

Markov model of ESFRA is presented in the next sub-section. 

5.2.3.2 Discrete Time Markov Chain Model for ESFRA 

According to the principles of ESFRA, each station uses a small back-off counter to reduce the access 

collisions while reserving a slot in a frame at the start of a data communication. In this model, I assume that 

the back-off counter (or back-off window) is composed of some small back-off slots (b-slot). There are 

maximum w  b-slots in a back-off counter. This approach is barrowed from [63]. Whenever a station needs 

to reserve a slot for a packet transmission in any frame, it randomly chooses a b-slot out of w  b-slots of 

the back-off counter. The value of w  is equal to the maximum value that may be stored in the back-off 

counter of any station. The station with a smallest b-slot counter accesses to the channel, and sends its RTS. 

If CTS is successfully received, then the station starts its data transmission for this slot. All stations with 

other b-slots in their back-off counters sense the channel busy, decreases their back-off counter by one, and 

refrain from transmitting. A collision may happen if two or more stations with same back-off counters start 

to transmit simultaneously. However, the likelihood of this event is small since the number of stations with 

same back-off counter is low. If the station with b-slot 0 in its back-off counter remains idle, the station 

with b-slot 1 in its back-off counter can transmit based upon the requirement of the reservation. The same 

procedure is repeated for the stations with higher counter values waiting for accessing the channel for 

reservations. A slot is considered idle if it remains unused, transmitting if it is reserved or collided if there 

is any collision. ESFRA eliminates collisions due to HSs and MHSs with its SF mechanism. A missing 

CTS packet is considered as a collision in ESFRA for this analysis. Since the future state of a slot depends 

on its present history, the state of this slot can be modeled using Markov chain analysis. The state of the 

Markov chain represents the state of a slot whether that is idle, transmitting or collided. For this modeling, 

it is assumed that there are N  stations, and they have equal probabilities to access to the channel. The 

duration of one b-slot in the back-off window is considered equal to the time required for one RTS/CTS 
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handshaking, and this duration is one Markov chain time step. As I am dealing with ad hoc networks, the 

single hop propagation delay can be considered very small. The lengths of RTS and CTS packets are much 

smaller compared to a slot transmission time, and are only needed to access and reserve an idle (i.e., free) 

slot. Let us consider that r  Markov time steps are required to cover one reservation process. The 

probability that an idle station accesses to an idle slot during one Markov time step is a . As, the maximum 

value that can be stored in a back-off counter is w , and if total number of contending stations, N , is 

greater than w , the number of stations who may select the same slot is given by  

 

w

N
N   .      (5.2.26) 

 

Thus, the number of stations that compete to access a slot is reduced from N  to N  . The probability 

that k  stations attempt a transmission in an idle slot is given by 

 

  kNkN

kk aaCq


 1  .    (5.2.27) 

 

Figure 5-16(b) shows the state transition diagram of Markov chain for ESFRA in MANET. If no station 

needs to reserve a slot, the status of a slot remains idle. If a station successfully acquires a slot using its 

back-off counter mechanism, it reserves its slot for r  Markov chain time steps to transmit its message, and 

the status of a slot changes to transmitting state. The transition probability to move from the idle state to the 

1
st
 transmitting state is 01p . The status of a slot changes to the collision state in two ways. First, if more 

than one station select the same b-slot (i.e., same b-slot out of w  b-slots according to my model), the status 

of a slot changes from the idle state to the collided state with the transition probability Cp0  as shown in 

Figure 5-16(b). Second, if the CTS is not received by the sender. This may happen in two ways: (i) if there 

is a RTS collision at the expected receiver or (ii) if the expected receiver is busy. Both cases are considered 

as a collision in this model, and either of these two cases causes the status of a slot to change from the 1
st
 

transmitting state to the collided state with the transition probability Cp1  as shown in Figure 5-16(b). 

Whenever the status of a slot is in the collided state, it must move to the idle state with the transition 

probability 1. If there is no collision in the 1
st
 transmitting state, the status of a slot traverses all the 

remaining transmitting states with the transition probabilities 12p , 23p , … , rrp )1(   as shown in Figure 

5-16(b). The status of a slot must move to the idle state at the end of the r th
 transmitting state. The status of 

a slot stays in the idle state with the transition probability 00p , which is the probability that no station has a 

message to send. Using Equations (5.2.26) and (5.2.27), the transition probability 00p  for this model is 

given by 

 

Nw
aqp )1(000   .    (5.2.28) 
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The calculation of the transition probability 01p  is based on the selection of a b-slot in the back-off 

counter. This is the probability in which a station selects a b-slot in its back-off counter, and requests a 

transmission, and all other stations select the previous b-slots in their back-off counters, and do not request 

to access to the slot. The transition probability 01p  for this event as calculated in [63] is given by 
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Using Equations (5.2.28) and (5.2.29), the transition probability Cp0  for this model is given by 

 

01000 1 ppp C  .    (5.2.30) 

 

I create a state transition matrix, P for the transition probabilities given in the state diagram. The 

distribution vector of the states of the channel at equilibrium is organized as 

 

 TCrr PPPPPP 1210 ...    (5.2.31) 

 

At equilibrium, the distribution vector is obtained by solving the following two equations 

 

P    ,       (5.2.32) 

and  

1  .      (5.2.33) 

 

After solving Equations (5.2.32) and (5.2.33) I get 
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where,  

00120101 )2(2 ppprpA  .    (5.2.38) 

 

In this sub-section, a Markov model of ESFRA was presented, and the state probabilities were 

calculated. Markov model of IEEE 802.11 MAC will be presented in the next sub-section. 

5.2.3.3 Discrete Time Markov Chain Model for IEEE 802.11 MAC with MHS. 

IEEE 802.11 is one of the widely used MAC protocols for wireless access, and it is considered for 

mobile systems under the new standardization process of IEEE 802.11p. That is why it is important to 

investigate how IEEE 802.11 MAC will behave with the MHS problem. This will provide a benchmark for 

ESFRA as well. The author in [63] presented a Markov model of only IEEE 802.11: DCF without 

considering RTS/CTS handshaking. This modeling and techniques were used in modeling of SFRA and 

ESFRA in the previous sections too. However, the model presented in [63] for IEEE 802.11 MAC does not 

capture the effect of HS and MHS problems. Here, the model will be enhanced; and HS and MHS problems 

will be introduced. 

Let us assume that there are N  equal priority stations that contend for a channel access. The duration 

of one Markov time step is considered equal to the time it takes a station to sense the presence of a carrier 

plus the amount of time required for RTS/CTS handshaking, and one frame transmission takes several 

Markov chain time steps. Let, n  Markov chain time steps are required to transmit one frame. 

IEEE 802.11 channel may be in one of three states: idle, collided, or transmitting. If no station has a 

frame to send, the channel remains idle. The status of a channel changes to any of the other two states if the 

stations have frames to transmit. If a station successfully acquires the channel using its back-off counter 

mechanism, it exchanges its RTS/CTS in the first transmitting state (i.e., 1P ). The status of the channel 

changes to the first transmitting state with the transition probability 01p . If RTS/CTS handshaking is 

successful, it transmits its frame in the next )1( n  Markov chain time steps, and the status of the channel 

traverses )1( n  transmitting states with the transition probabilities 12p , 23p , …, and nnp )1(   as 

illustrated in Figure 5-16(c). The status of the channel must change to the idle state at the end of a frame 

transmission at the n th
 transmitting state. If there is a collision at the time of accessing, the status of the 

channel changes from the idle state, 0P , to the collided state, 1CP , with the transition probability 10Cp . 

The channel is affected by the loss of an RTS or a CTS packet in the transmitting state, 1P . This loss 
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changes the status of the channel from the transmitting state, 1P , to the collided state, 1CP . The transmitting 

state, 1P  is also affected by the MHSs. This also changes the status of the channel from the transmitting 

state, 1P , to the collided state, 1CP . Whenever the status of the channel is in the collision state, 1CP , it 

changes to the idle state, 0P , with the transition probability one.  

Each of the rest )1( n  transmitting states might be affected by only MHSs, this is why each of the rest 

)1( n  transmitting states must have a corresponding collided state e.g. 2CP , 3CP , … and CnP . 

Whenever there is a collision due to MHSs in any of the )1( n  transmitting states (i.e., 2p , 3p , …. or 

np ), the status of the channel must transit to the corresponding collided state (i.e., 2CP , 3CP , … or CnP ) 

with a transition probability (i.e., 22Cp , 33Cp , …. or nCnp ). According to IEEE 802.11, the rest of the 

frame is lost, and the status of the channel changes to idle state, 0P , after traversing the remaining collided 

states. A state transition matrix, P, can be obtained with the transition probabilities given by the state 

diagram in Figure 5-16(c). 

The state distribution vector, , is in the following from: 

 

 TCnCCn PPPPPPP .... 21210 .  (5.2.39) 

 

At the equilibrium, the distribution vector is obtained by solving the following equations: 

 

P   ,       (5.2.40) 

and 

1 .      (5.2.41) 

 

The solution of Equations (5.2.40) and (5.2.41) gives 
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With these models, the next sub-section contains the comparison among the three MAC protocols 

SFRA, ESFRA and IEEE 802.11 considering the effect of MHS problem. 

5.2.3.4 Results of Markov Analysis on MHS Problem: Comparative Behavior of IEEE 802.11, 

SFRA and ESFRA 

ESFRA is compared with SFRA and IEEE 802.11 in terms of throughput, total delay, and collision 

probability to observe the effect of the MHS problem. The throughput (i.e., T ) is defined by probability of 

any station to be in the transmitting states for an effective data transmission. The total delay is defined as 

the summation of the access delay (i.e., aT ), and the transmission delay. The access delay is defined as the 

total amount of time required for the retransmission attempts before making a successful transmission of a 

frame. In order to calculate the access delay, access probability (i.e., aP ) needs to be calculated first. The 

access probability is defined in [63] and given by 
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 ,      (5.2.47) 

 

where N  is the number of contending stations, and a  is the probability that a station attempts to 

access to the channel. In this analysis,   = 0.1 and   = 15. For SFRA and ESFRA, it is considered that 

there are 8 slots in a frame. The average number of attempts (i.e., an ) for a successful transmission is 

given by [63] as well and follows 
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The access delay is obtained by the average number of attempts for a successful transmission, and 

duration of one Markov time step, MT . Thus,  
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Maa TnT  .      (5.2.49) 

The collision probability is defined by the probability of any station to be in the collided states.  

 

Figure 5-17:  Comparison of probability of collision. 

 

Figure 5-18:  Comparison of throughputs of IEEE 802.11, SFRA and ESFRA. 
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With these performance metrics, Figure 5-17 provides the comparison of the collision probabilities for 

ESFRA, SFRA and IEEE 802.11. The probability of collision in ESFRA is two percent when the input 

traffic is 8 frames per frame duration. The probability of collision using SFRA is 16 percent more than 

ESFRA when the input traffic is 8. This probability includes both collisions due to MHSs and unsuccessful 

transmission attempts due to the busy recipients in SFRA. The collision probability for IEEE 802.11 with 

the same number of mobile stations is 25 percent, which is ten percent more than SFRA and 23 percent 

more than ESFRA. When there is a collision in IEEE 802.11, the whole frame is lost, but only the 

transmission in a collided slot is lost in ESFRA and SFRA. The difference between ESFRA and SFRA is 

significant too. ESFRA has a better access scheme for the idle slots, which reduces the collisions, at the 

same time, ESFRA does not have collisions due to MHSs. 

As ESFRA is free from the collisions due to MHSs, there is a significant improvement in the throughput 

for ESFRA. Figure 5-18 is provided to show the normalized throughputs of the MAC protocols. The 

throughput of ESFRA is 87 percent, which is 28 percent more than that of IEEE 802.11 and 36 percent 

more than that of SFRA when the input traffic is 8. Figure 5-19 shows that the total delay is significantly 

decreased in ESFRA. When the input traffic is 8, the total time required to transmit a frame using ESFRA 

is 16 Markov time steps, which is 16.5 Markov time steps lower than SFRA, and 16 Markov time steps 

lower than IEEE 802.11.  

 

Figure 5-19:  Comparison of total delay. 

5.2.4 Analysis of the Behavior of the Reservation Based Protocols (i.e. ERA and 
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A detailed quantitative analysis in this sub-section shows how reservation based protocols (i.e. ERA and 

SFRA) is affected by collisions due to the ARL problem. 
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The scenario in Figure 2-5 is used for the analysis in this sub-section. Let, Station A is transmitting data 

packet to B, and C and D are HSs to A. According to the principle of ERA or SFRA, Station A reserved a 

slot, and is communicating with B during this slot. Similarly, Stations C and D reserve their slots in the 

frame. A’s reservation is known to B and C according to the mechanisms of both ERA and SFRA. Station 

D does not know about A’s reservation due to asymmetric radio links of the stations. If A’s reservation and 

D’s reservation are the same slot, there will be a collision with A’s transmission at B. Otherwise, there is no 

collision with D’s transmission. So, ERA or SFRA does not solve HS problem due to ARL. Let us consider 

that Stations A, B, C and D reserve  ,  ,   and   number of slots per frame respectively, and total number 

of slots per frame is  . If summation of all the slots reserved by Stations A, B, C and D is greater than the 

total number of slots in a frame, there is always a collision. Therefore,   , the probability of collision by 

Station A based on the condition             is certain, (i.e.,     ). There is possibility of 

successful transmission by Station A for the following condition 

 

ndcba  .       (5.2.50) 

 

Let, A has a possibility to use the frame in Q1 ways, and D has the possibility to use the frame in Q2 

ways. Both A and D know about B and C’s reservation. Therefore, Let us assume 
a

cbn
CQ


1

is   

number of slots out of   slots in a frame in all possible ways that A reserves is. Similarly, 

d

cbn
CQ


2

is the number of events that D is reserving   number of slots out of   slots in a frame in 

all possible ways. Total number of events (i.e. Q) in which both A and D use in the frame is given by 
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First, let us consider only one case of Station A, where A reserves the first   number of slots of the 

frame, B uses any number of slots from the rest of the slots, C uses any   number of slots from the rest of 

the slots, and D reserves its   number of slots from rest of   slots of the frame in all possible ways. In this 

case, the number of slots remaining in the frame or not used by A, B and C is          . I need to 

find the number of events R in which Station D must reserve its   number of slots from the remaining 

          number of slots of the frame. Station D will not cause any collision at B in this R number 

of events because A and D are not reserving any common slot of the frame in these R events. According to 

Equation (5.2.50),   is less or equal to          . R can be found by taking a combination of   out 

of           slots. Therefore, the number of events in which there is no collision from an HS, 

namely D, is 
d

cban
CR

)( 
 . So, total number of events for all cases of Station A in which there 

is no collision from D is 

a

cbn

d

cban

a

cbn CCCRS  
)(

.   (5.2.52) 

Therefore, Ps, the probability of successful transmission by Station A based on the condition     

        is given by 
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Q

S
Ps  .     (5.2.53) 

 

Using Equations (5.2.51), (5.2.52), and  (5.2.53) I get Ps as 

 

)!()!(

)!()!(
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dcbncban
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


 .    (5.2.54) 

 

Figure 5-20 shows the probability of collision if transmitting stations like A increases and/or HSs like D 

increases in the scenario in Figure 2-5. For the analysis in Figure 5-20, I consider that there is only one 

station like Station B and one station like Station C. Let us consider that all stations in the collision domain 

reserves one slot per frame. Figure 5-20 shows that probability of collision increases with increasing with 

number of transmitting stations like A as well as HSs due to ARL like D. On the other hand, ESFRA 

confirms the propagation of the slot reservation information up to three hops away that removes the 

collisions HSs due to the ARLs, and the probability of collision due to HSs due to ARLs is zero.  

  

Figure 5-20:  Probability of collision if SFRA is used as a MAC protocol in an asymmetric radio 

link scenario. 

Figure 5-21 illustrates how packet transmissions are affected by the total number of stations in the 

collision domain if ERA or SFRA is used as a MAC protocol. It is considered that all the stations like A, B, 

C and D in Figure 2-5 are increasing in numbers. As the stations like D are not addressed by ERA or 
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SFRA, their transmissions are responsible for the collisions at the receivers like B. If total number of 

stations in the collision domain increases, the probability of collision increases significantly as shown in 

Figure 5-21. Figure 5-21 also shows that high message rate increases the probability of collision due to the 

ARL problem. 

 

Figure 5-21:  Probability of collision with the variation of the total number of mobile stations in 

the contending area of A. 

5.3 Cross-layer 

ESFRA is modified to CESFRA to make it efficient for safety critical information dissemination in 

vehicular communication. The cross-layer behavior of CESFRA comprises the behaviors of the network 

layer and the MAC layer, and the mechanism of the MAC part of CESFRA is same as ESFRA. There are 

basically two types of communication in DSRC/WAVE systems e.g. safety critical information 

dissemination by broadcasting and vehicle to RSU data communication. The DSRC/WAVE systems use 

IEEE 802.11p broadcast for safety critical information dissemination and IEEE 802.11p MAC for vehicle 

to RSU data communication. So, the analysis in this sub-section is divided into two parts, e.g. (1) Sub-

section 5.3.1 contains the comparison between IEEE 802.11 MAC and CESFRA MAC; (2) Sub-section 

5.3.2 contains the comparison between IEEE 802.11p broadcast and CESFRA MAC. Because the service 

differentiation (i.e. quality of service) part of IEEE 802.11p is omitted in this simulation, the term IEEE 

802.11 MAC is used instead of IEEE 802.11p MAC in Sub-section 5.3.1. In all analyses, the physical layer 

is IEEE 802.11p. 

5.3.1 Simulation: Comparative Behavior of IEEE 802.11 MAC and CESFRA 

MAC to Mobile Hidden Station and Asymmetric Radio Link Problems 

A comparative view of CESFRA MAC and IEEE 802.11 MAC is presented in this section to reveal 

their performances in communication between vehicles and RSUs. Both protocols are simulated in 

OMNeT++ with MiXiM modeling framework [64]. The IEEE 802.11p physical layer available in MiXiM 

is used as the physical layer in both protocols. Two separate simulations are done in two different scenario 

to reveal the adverse effects of the MHS problem and the ARL problem separately. One scenario reflects 

the MHS problem while the other one reflects the ARL problem. Ten high speed (30 meter/second) mobile 
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stations are moved from opposite direction as in a highway to create the MHS problem in one simulation. 

The other simulation uses ten stations with different transmission ranges (i.e. 300 meter and 150 meter) to 

create the ARL problem. In both simulations, the application layer packet size used is 512 Byte, and the 

distribution of the incoming packets is binomial distribution. The simulations are always executed for 50 

seconds. The performances of CESFRA MAC is compared with IEEE 802.11 MAC using four metrics e.g. 

channel utilization, throughput, average packet delay and total number of packets successfully transmitted 

in both simulations. Channel utilization is defined as the percentage of the utilization of the channel. 

Throughput is defined as the average number of bits successfully transmitted per unit duration. Average 

packet delay is defined by the average time required for the successful one hop transmission of a packet. 

All the metrics are measured with the variation of input traffic to the source stations. Input traffic is defined 

as the number of incoming packets per packet duration. 

 

Figure 5-22:  Comparison of channel utilization considering the effect of MHS problem. 

 

Figure 5-23:  Comparison of average packet delay considering the effect of MHS problem. 
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Figure 5-22 illustrates that CESFRA MAC provides about seventy five percent channel utilization when 

input traffic is 0.1 packet per packet duration. It reaches eighty percent at input traffic 0.2. The channel 

utilization of IEEE 802.11 MAC increases up to thirty eight percent when input traffic is 0.8. The channel 

utilization of CESFRA MAC is forty two percent more than IEEE 802.11 MAC at input traffic 0.8. The 

consideration of the delay of a safety critical packet transmission to neighbors is important in 

DSRC/WAVE systems. The average packet delay for CESFRA MAC is about two millisecond whereas it 

is about six millisecond for IEEE 802.11 MAC as compared in Figure 5-23. CESFRA MAC improves the 

safety systems in delay consideration. 

 

 

Figure 5-24:  Total number of successfully transmitted packets considering the effect of MHS 

problem. 

 

Figure 5-25:  Comparison of throughput considering the effect of MHS problem. 
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The simulation time is fifty second for every input traffic. CESFRA MAC successfully transmits about 

19000 packets in each simulation after input traffic 0.1 whereas IEEE 802.11 MAC reaches its maximum 

transmission of about 8000 packets per simulation at input traffic 1 (See Figure 5-24). CESFRA MAC 

performs more than fifty percent successful packet transmission. Figure 5-25 shows that Throughputs of 

both protocols are low for low traffic, and these are increasing up to saturation. For higher packet arrival 

rate, CESFRA MAC is providing about 0.9 Mbps more throughput than IEEE 802.11 MAC. The results in 

Figure 5-22, 5-21, 5-22 and 5-23 show that CESFRA MAC outperforms IEEE 802.11 MAC in solving the 

MHS problem. As MHSs are situated 3 hops apart from the sender, CESFRA MAC manages to send the 

MAC control information up to the 3
rd

 hop to make MHSs aware of the communication, where as IEEE 

802.11 MAC manages to pass MAC control information up to the 2
nd

 hop. 

 

 

Figure 5-26:  Effect of ARL problem on channel utilization. 

 

 

Figure 5-27:  Effect of ARL problem on average packet delay. 

The analysis in Figure 5-26, 5-25, 5-26, and 5-27 illustrates the adverse effect of ARL problems. As 

discussed in Sub-section 2.4, asymmetric radio links of different stations creates some hidden stations 
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which are not recognized by IEEE 802.11 MAC. Those HSs make collisions on the receiver side. Figure 

5-26 shows that CESFRA MAC reaches the maximum channel utilization at input traffic 0.2 while IEEE 

802.11 MAC at input traffic 0.8. The channel utilization of IEEE 802.11 MAC is 58 percent in networks 

with ARLs. Normally the channel utilization of IEEE 802.11 MAC is about 80 percent at full load if ARL 

or MHS problems are not considered [6]. As there is no MHS in this simulation scenario, only ARL 

problem is responsible for this 22 percent reduction of channel utilization. As CESFRA MAC solves ARL 

problem, it provides about 80 percent channel utilization. Figure 5-27 shows that CESFRA MAC reduces 

about 1 millisecond delay compared to IEEE 802.11 MAC when the input traffic is 0.8 or above. CESFRA 

MAC successfully transmits about 6000 more packets (See Figure 5-28), and thus it offers about 0.45 Mbps 

more throughput (See Figure 5-29) compared to IEEE 802.11 MAC in every 50 seconds simulation at input 

traffic 0.8 or above. 

 

Figure 5-28:  Effect of ARL problem on total number of packets. 

 

 

Figure 5-29:  Effect of ARL problem on throughput. 
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The reservation based sliding frame mechanism in CESFRA MAC removes contention for channel 

access, collisions due to HS, MHS, and ARL problems, and thus helps more successful transmissions. On 

the other hand, contention, MHS, and ARL problems reduce IEEE 802.11’s successful transmissions. 

5.3.2 Markov Analysis of IEEE 802.11 Broadcast and CESFRA MAC Considering 

the Effect of Hidden Station and Mobile Hidden Station Problems in a 

DSRC/WAVE Based VANET Scenario 

Hidden stations (HSs) and mobile hidden stations (MHSs) are very common in vehicular 

communications. Vehicles running in both directions in a highway may turn into HSs. Figure 5-30 

illustrates a highway scenario where all the vehicles are randomly broadcasting basic safety messages 

(BSMs) every 100 ms. Let us consider a snapshot where Vehicle u is broadcasting a periodic basic safety 

message to the vehicles (i.e. k, h, f, etc.) in its transmission range. At this situation, a, b, c, etc. are HSs to u, 

because they are also broadcasting the periodic basic safety messages. As a does not have any knowledge 

of u’s transmission and vice versa, the basic safety messages collide at f. 

All the vehicles coming from the opposite direction in the other side of the highway are MHSs to each 

other. For example, u and m are MHSs to each other, because after a while they will have some common 

receivers (i.e. f, g, etc.). As they are broadcasting their basic safety messages without the knowledge of the 

transmission of one another, their transmissions collide at f. Although one MHS is enough to make a 

collision, there might have several MHSs colliding with the same transmission. The severity of MHSs can 

be measured probabilistically. The severity of having interfering MHSs in a highway scenario as shown in 

Figure 5-30 is calculated by discrete time Markov chain (DTMC) for both CESFRA MAC and IEEE 

802.11 Broadcast. 

 

Figure 5-30:  HSs and MHSs in a DSRC/WAVE based highway scenario. 

 

5.3.2.1 Discrete Time Markov Chain Model for CESFRA MAC for DSRC/WAVE Highway 

Communication Scenario 

According to the principle of CESFRA MAC, the time channel in divided into frames, and the frames 

are divided into slots. Each station reserves a slot for couple of subsequent frames. The slot reservation is 

maintained or corrected by the status information obtained from CIs. The usages of CIs eliminate both HS 
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and MHS problems. In this Markov model, each station can be in either one of the following four states: 

waiting, reservation, transmission and collision. Waiting state represents the probability of a station to be in 

waiting period (i.e. 100 ms according to DSRC/WAVE based systems) between the subsequent BSMs 

transmissions. Reservation state represents the probability of a station to be in the initial reservation 

process. I am considering that N  is an average number of equal priority stations who are initially 

contending for one slot reservation, and all of these stations are in one contention region. After that the 

reservation is controlled by CIs. I am also considering that 
hN  is an average number of hidden and mobile 

hidden stations who may be responsible for MAC collisions. States of the Markov chain represent the states 

of a station using CESFRA MAC. The duration of one Markov chain time step is considered equal to the 

time required for sensing the channel and reserving a slot. Propagation delays are very small, and they are 

ignored. Let us consider n  Markov time steps are required to transmit data from one station, and a station 

requires to exhibits   waiting states where,                     . The probability that an idle 

station attempts to send a packet during a Markov time step is a . The probability that k  stations attempt a 

transmission during a given slot is given by 

 

  kNkN

kk aaCq


 1  .      (5.3.1) 

 

 

 

(a) Markov state diagram for CESFRA MAC. 
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(b) Markov state diagram for IEEE 802.11 Broadcast. 

Figure 5-31:  Markov state diagrams CESFRA MAC and IEEE 802.11. 

Figure 5-31(a) shows the state transition diagram of CESFRA MAC.   represents the reservation state 

where the channel is sensed and a slot is reserved for starting a communication. If the channel is sensed 

busy, a station will remain in the reservation state with transition probability,    which means a station will 

not request to access the channel. 
0P  is calculated from Equation (5.2.15) and given by 

 

NaP )1(0   .     (5.3.2) 

 

If the channel is sensed idle, a station reserves a slot, and starts transmission using that slot. At this 

moment, the station moves from the reservation state,   to the transmission state,    with transition 

probability    which is the probability that only one station gets access to any slot for reservation and 

transmission. The transition probability 1P  is calculated using Equation (5.2.15) and given by 

 

1

1 )1(  NaNaP  .     (5.3.3) 

 

A station must exhibit   transmission states (i.e.   ,   , ..., and   ). with transition probability one to 

transmit a packet. CESFRA MAC is aware of HSs and MHSs, this is why the transmission states are not 

affected by any collision. If two or more stations reserve the same slot simultaneously, a station must move 
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from the reservation state,   to the collision state,    with transition probability,          . Whenever 

there is a collision, the whole packet is lost. This is why every transmission state has a corresponding 

collision state, any station who enters the first collision state,    must have to exhibit all the remaining 

collision states (i.e.   ,   , ...., and   ) with transition probability, one.   ,   , ...,    are waiting states. 

A station in either    or    state must move to the first waiting state,    with transition probability one. 

Whenever a station enters    state, it must exhibit all the waiting states with transition probabilities one. 

As a slot is reserved by a station, it can reuse the slot. This is why, whenever a station reaches the last 

waiting state,   , it must start transmitting the next packet and moves to the first transmission state,    

with high transition probability,   . A station may need to make a new reservation of slot for any 

unexpected collision. In this case, the station changes its state from    to   with transition probability    

which is given by       . I create a state transition matrix, P, with all the transition probabilities given by 

the state diagram in Figure 5-31(a). I organize the distribution vector at equilibrium as follows, 

 

 Tnnm CCCTTTRWWW ...... 212121 . (5.3.4) 

 

At equilibrium, the distribution vector is obtained by solving following two equations, 

 

P   ,       (5.3.5) 

and 

1  .      (5.3.6) 

 

The solutions of Equations (5.3.5) and (5.3.6) are given by 
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0

10

0

1

0

1
1

1

11 P

PP
Pn

P

PP
Pn

P

P
mA r

r

t

r




















 .  (5.3.11) 

A Markov model of CESFRA MAC is designed and the state probabilities are calculated in this sub-

section. The Markov model of IEEE 802.11 Broadcast is presented in the next sub-section. 

5.3.2.2 Discrete Time Markov Chain Model for IEEE 802.11 Broadcast Considering HS and MHS 

Problems 

IEEE 802.11 is one of the widely used MAC protocols for wireless access, and IEEE 802.11 Broadcast 

is considered for vehicle to vehicle communication under the new standardization process of IEEE 802.11p 

specially for vehicle to vehicle broadcasting. That is why it is important to investigate how IEEE 802.11 

Broadcast behaves with the HS and MHS problems in a highway traffic as shown in Figure 5-30. A 

Markov model of IEEE 802.11 Broadcast for DSRC/WAVE based systems is designed in this sub-section. 

This is used as a benchmark for the Markov model of CESFRA MAC described above. 

Let us assume that there are N  equal priority stations that contend for a channel access. The duration 

of one Markov time step is considered equal to the time it takes a station to sense the presence of a carrier 

plus the distributed inter frame space (DIFS) time, and one frame transmission takes several Markov chain 

time steps. Let, n  Markov chain time steps are required to transmit one frame. 

A station using IEEE 802.11 Broadcast may be in one of three states: waiting, transmission and 

collision. Waiting state represents the probability of a station to be in the time (i.e. 100 ms according to 

DSRC/WAVE systems) between two consecutive broadcasts. Let a station requires to exhibit   waiting 

states where,                         . The waiting states are   ,   , ...., and   . If a station 

enters the first waiting state,   , it must exhibit all the waiting states through   . This is why, the 

transition probability from one waiting state to another waiting state is always one. The state of a station 

changes from    to any of the other two states (i.e.    or   ) if the station has frames to transmit. If a 

station does not have frames to transmit, it remains in the last waiting state,    with transition probability, 

   as calculated in Equation (5.3.2). If a station has frames to send, and if it starts its transmission 

successfully, it's status changes to the first transmission state,    with transition probability,    as calculated 

in Equation (5.3.3). If more than one station transmit simultaneously, the state of a station changes to the 

first collision state,   with transition probability,          . There are   number of transmission states 

(i.e.   ,   , ...., and   ) as shown in Figure 5-31(b), and each transmission has a corresponding collision 

state (i.e.   ,   , ...., and   ). Since IEEE 802.11 Broadcast is not aware of HSs or MHSs, there is a 

possibility of collision in all the transmission states. If there is no collision by HSs and MHSs, the state of a 

station changes to the next consecutive transmission state with transition probability,    and finally moves 

to the first waiting state,    with transition probability,  .    is defined as the probability that no HSs and 

MHSs are transmitting. If total number of HSs and MHSs is   ,    can be calculated using Equation 

(5.2.15) and given by 

hN
aU )1(0   .     (5.3.12) 

The probability that one or more HSs and MHSs are transmitting simultaneously is       . Hence, 

for a collision due to HSs or MHSs in any of the transmission states, the state of a station changes to the 

corresponding collision state with transition probability,        as shown in Figure 5-31(b), and must 

changes to the first waiting state,    after exhibiting the rest of the collision state with transition 

probability one.  
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A state transition matrix, P, can be obtained with the transition probabilities given by the state diagram 

in Figure 5-31(b). The state distribution vector, , is in the following from: 

 

 Tnnm CCCTTTWWW ...... 212121 . (5.3.13) 

 

At the equilibrium, the distribution vector is obtained by solving the following equations: 
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The solution of Equations (5.3.14) and (5.3.15) gives 
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Using these two models, the probability of collision due to HSs and MHSs in vehicle to vehicle 

communication is calculated using MATLAB. 
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Table 1: Values used in Markov analysis. 

Parameter Name Value 

Packet length 512 Byte 

Bit rate 3 Mbps 

Safety message interval 100 ms 

Breaking time 2 sec 

Transmission range 300 m 

Number of lanes 2 

Probability of transmission 0.2 

 

  

(a)                                                                                      (b) 

 

(c) 

Figure 5-32:  Effect of HSs and MHSs in DSRC/WAVE systems. 

A highway scenario as shown in Figure 5-30, where all the vehicles have the same velocity, is 

considered for this Markov analysis. Figure 5-32(a), (b) and (c) illustrate the effect of HSs and MHSs in 

DSRC/WAVE based VANETs with respect to vehicle density, number of vehicles in the collision region 

and velocity of the vehicles on the highway. Vehicle density is considered same all over the highway. The 

collision region is defined as the region around the transmitter within which a transmitted packet has the 

possibility to be collided. The values of the parameters used in this Markov analysis are included in Table 

1. The probability of collision while using IEEE 802.11p broadcast is about 0.0125 (i.e. 1.25%) for a 
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vehicle density 0.01 vehicles/meter or for about 25 vehicles in the collision region in a two lane highway as 

shown in Figure 5-32(a) and (b) respectively. The probability of collision increases with the increment of 

the vehicle density, and it is about 0.015 (i.e. 1.5%) for vehicle density 0.03 or for number of vehicles 75. 

For high vehicle density the probability of successful transmission (i.e.    in Figure 5-32(a)) is very low. In 

these cases, a station changes its state from    to    with transition probability           which is 

approximately one. This is why, the increment of the probability of collision is very low for the vehicle 

density greater than 0.03, and it is almost constant at about 0.015 for higher vehicle densities or higher 

number of vehicles in the collision region. On the other hand, the reservation mechanism of CESFRA 

MAC removes the contending behavior of channel accessing. This is why, the probability of collision for 

CESFRA MAC is approximately zero. Provided that the probability to be in the waiting states is very high 

for maintaining the DSRC/WAVE specification of 100 ms waiting time between consecutive message 

transmissions. Apparently, 1.5% packet loss using IEEE 802.11p broadcast is not a significant figure for a 

packet communication system other than VANETs with safety messaging. Because, DSRC/WAVE based 

VANETs are aimed to disseminate safety critical information, 1.5 packets loss (i.e. actually 2 packets, if 

part of a packet is collided, the whole packet will be lost) out of 100 packets is meaningful. High speed 

vehicles require more safe breaking distance (i.e. 2 second breaking time is used as shown in Table 1). 

Figure 5-32(c) shows that the low speed traffic is affected by HS and MHS collisions more than the high 

speed traffic. 

The next sub-section contains more analysis of the severity of the ARL problem in VANET. It is 

explained how CESFRA manages to solve this problem with its cross-layer behavior. 

5.3.3 Justification of the Cross Layer Behavior of CESFRA in the DSRC/WAVE 

Systems 

CESFRA promises an efficient information dissemination in the WAVE/DSRC systems. The IEEE 

P1609 standards define the communication services in different layers of the WAVE/DSRC systems. 

P1609.1, P1609.2, P1609.3 and P1609.4 represents WAVE resource manager, WAVE security services, 

WAVE networking services and WAVE multi-channel operations (i.e. DSRC) respectively [65]. The SAE 

J2735 DSRC message set dictionary (MSD) defines the application level message that are exchanged [62] 

in the DSRC/WAVE systems. According to SAE J2735, all the messages are broadly divided into three 

types based on application e.g. basic safety message (BSM), roadside alert message and probe vehicle 

message [62]. According to [62] all vehicles must transmit basic safety messages every 100 ms. 

DSRC/WAVE systems have mobility related problem (i.e. MHS problem [6]), and ARL problem. In this 

section, I have explained these problems using different DSRC/WAVE based scenario, and analyzed how 

my cross-layer based algorithm confirms better results. 

5.3.3.1 Cooperative Collision Warning/Avoidance in DSRC/WAVE Systems with CESFRA 

The on-board unit (OBU) collects safety critical information from the messages broadcast by 

surrounding vehicles, and warns the driver if a collision is likely. The control channel with a transmission 

range of 300 m is used for this kind of messaging. An example scenario is presented in Figure 5-33. If 

Vehicle V8 is stopped suddenly for any reason (i.e. a blockade on the road, snow, a collision already 

happened etc.), the vehicles within 300 meter of V8 is supposed to get the message from V8, and they will 

either try to change lane or stop. In a high speed and high traffic scenario, in most of the cases failure to 

change lane or stop within 300 meter will cause disastrous back to back collision.  CESFRA solves this 

problem disseminating this collision avoidance information up to 900 meter without any routing. 
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Figure 5-33:  Cooperative collision warning with CESFRA. 

5.3.3.2 Shadowing Effect and Asymmetric Radio Link Problem 

Asymmetric radio link can also be generated by blocking of a big vehicle. Figure 5-33 illustrate a 

scenario how an ARL problem may occur by a big truck. A big truck V2 in Figure 5-33 may be a reason of 

asymmetric radio link to the car V3 just behind it. If the V1 suddenly brakes for any reason, the car behind 

the truck cannot listen the signal although it is in the transmission range of V1. So, the car behind the truck 

collides with the truck. CESFRA in VANET solves this problem. This ARL scenario are discussed 

elaborately in the next sub-sections. 

5.3.3.3 Emergency Vehicle Warning - an Example ARL Scenario 

An emergency vehicle (i.e. Vm in Figure 5-34) transmits its approaching message in a range of 1000 

meter as mentioned in DSRC standards. Other vehicles are transmitting with 300 meter range. So, the 

vehicles in the scenario are affected by the ARL problem. Suppose, Vehicle V1 has sent a safety critical 

message to Vehicle V2, and emergency Vehicle Vm is approaching towards V1 and V2. Vm is HS or MHS 

to V1, and there is a packet collision at V2. So, V2 is losing packets from both V1 (i.e. safety critical 

message packet) and Vm (i.e. emergency vehicle approaching alert message packet). This problem is not 

solved by DSRC MAC (i.e. IEEE 802.11p) or any other distributed MAC [6]. According to the scenario 

Vehicle V2 is the last vehicle in 1000 meter which receives emergency vehicle warning message. CESFRA 

can disseminate this information to V1, V5 and so on with it routing-less controlled broadcasting behavior. 

CESFRA can do the same even if the emergency vehicle transmission range is limited to 300 meter as other 

vehicles. 

 

Figure 5-34:  Asymmetric radio link problem in a DSRC/WAVE systems based scenario with 

emergency vehicle. 
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5.3.3.4 Service - Toll Collection and Work Zone Warning - an Example ARL Scenario 

Another DSRC scenario of ARL problem arises when the transmission power of a service channel is 

varied to support services using different transmission ranges. Figure 5-35 shows that Vehicles V8 and V10 

are in toll collection service, and they are using about 10 ~ 90 meter range; work zone RSU and road 

condition warning RSU are communicating with 90 ~ 300 meter range; whereas other vehicles (i.e. V6, V7, 

V9, V11 and V12) are transmitting BSMs with 300 meter range). BSMs from V7 and V9 are making ARLs 

with V8 and V10. CESFRA solves this problem with its cross-layer sliding frame behavior. V8 and V10 

know in advance about the toll collection communication of V7 and V9 with the toll collection RSU. 

 

Figure 5-35:  Toll-collection scenario in DSRC/WAVE systems. 

 
CESFRA also improves the quality of service of the toll collection service. According to the 

DSRC/WAVE design, vehicles are allowed to run in normal speed on highway while collecting toll by toll 

collection RSU. How much time an RSU will get to collect the toll any vehicle depends on the number of 

vehicles within its 90 meter range. CESFRA introduces any vehicle with the toll collection RSU at least 3 

hops ahead which means when a vehicle is at least 270 (i.e. 90 meters X 3 hops) meters apart. So, CESFRA 

makes toll collection procedure smooth and reliable. 
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CHAPTER 6:    CONCLUSION AND FUTURE 

WORK 

6.1 Conclusion 

The network layer communication and multiple access procedures in ad hoc networks are not error 

prone till now, although significant research has been done in network and MAC layers. This is why, this 

thesis is organized to address one network layer issue and several MAC layer issues. A new approach to 

reduce packet loss due to inevitable link failures in MANET is presented in this thesis. The proposed 

algorithm is implemented in DSR, but this algorithm is independent of the choice of any on-demand 

routing protocol. RLT is estimated using the route discovery mechanism. Using RLT and latency, the 

number of packets that can traverse a route is estimated, and only this number of packets is sent through 

that route. The simulation results show that packet loss decreases and packet delivery ratio increases 

significantly compared to the conventional DSR and DSR with direction tracking if this algorithm is 

applied to DSR. 

The MAC layer issues e.g. hidden station, mobile hidden station, neighborhood capture and asymmetric 

radio link problems are particular points of attention in this thesis. IEEE 802.11 solves HS and ES 

problems, but does not solve neighborhood capture, mobile hidden station and asymmetric radio link 

problems. The proposed reservation based ERA solves HS and ES problems, and significantly mitigates 

NC and MHS problems by reducing the probability of their occurrence in the network. If all the stations use 

IEEE 802.11 as a MAC protocol, at least two stations hidden to each other may block their common 

neighbor for an indefinite span of time. This blocking gets more severe when number of stations gets 

larger. ERA MAC protocol provides a good channel accessing probability to the blocked station even if the 

number of the neighbors of the blocked station is more than two. ERA reduces collisions due to MHSs, and 

thereby provides good chances of successful transmissions. The analysis of another reservation based 

protocol called SFRA shows that it behaves similarly as ERA to the above mentioned problems. Both ERA 

and SFRA outperforms IEEE 802.11 and demonstrates that the reservation based MAC protocols like ERA 

and SFRA better suits in mobile networks. It is very encouraging that both ERA and SFRA achieves about 

90 percent successful transmissions rate when there is 1 MHS, and it decreases significantly when the 

number of MHSs increases. In another investigation, it is found that both ERA and SFRA reduce the 

collisions due to the ARL problem, and the probability of collision significantly degrades the channel 

utilization for high traffic, whereas the distributed protocols like IEEE 802.11 do not address the ARL 

problem. That is why, I proposed another MAC protocol called ESFRA which solves the MHS and ARL 

problems in addition to the NC, HS and ES problems. ESFRA provides a solution to MHSs by including 

the relative positions of the transmitting stations in three hop neighborhood. Markov modeling that includes 

MHSs is developed for ESFRA, as well as SFRA and IEEE 802.11. The Markov models developed here 

are used to calculate the performance figures of ESFRA, SFRA and IEEE 802.11. Based on the Markov 

modeling, ESFRA provides lower collision probabilities, higher throughputs and lower delays compared to 

SFRA and IEEE 802.11. While development of VANETs and works on IEEE 802.11p are continuing, 

MAC protocols for these networks must be designed to handle MHSs, ARLs as well as other MAC 

problems. ESFRA like protocols can provide competitive solutions. The only requirement for ESFRA is to 
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have synchronization between mobile nodes, with the availability of positioning systems, like GPS. If this 

synchronization problem can be solved relatively reliably, it will remove the main obstacle in the 

implementation of ESFRA in practical systems. 

The DSRC/WAVE systems disseminate safety critical information using IEEE 802.11p broadcast as a 

MAC protocol. Studies show that IEEE 802.11p does not address the adverse effects of asymmetric radio 

link and mobility related problems in VANETs. The discussion in this paper emphasizes the solution to 

these problems by incorporating some interactions between subsequent layers. A cross-layer based MAC 

algorithm called CESFRA is presented in this thesis. CESFRA is based on ESFRA and designed for a 

specific application, VANET. It disseminates the network layer information up to 3rd hop with its sliding 

frame mechanism. Thus it confirms routing packets up to 3rd hop in the network which can be considered a 

layer 2 routing. The analysis in Chapter 5 shows that it solves the MHS and ARL problems in 

DSRC/WAVE systems with its routing less behavior up to 3rd hop. Markov analysis and simulation studies 

in OMNeT++ show that CESFRA MAC outperforms IEEE 802.11p broadcast and IEEE 802.11 MAC in 

resolving the contentions and collisions due to mobility and other factors. CESFRA MAC offers about 

eighty percent channel utilization and low average packet delay (i.e. about 2 millisecond) which is very low 

compared to minimum human response time (i.e. 200 millisecond) required after any critical events (i.e. 

accidents, emergency brakes etc.). So, CESFRA can be a good candidate for safety critical information 

dissemination in DSRC/WAVE or any other similar systems. 

6.2 Future Work 

There are some factors which are assumed perfect or overlooked throughout this analysis. Those are 

time synchronization among the mobile vehicles, size of the collision domain, privacy issues and security 

issues in vehicular communication.  

6.2.1 Time Synchronization Among the Mobile Vehicles 

One of the basic criteria in designing ESFRA and CESFRA is that the mobile stations/vehicles must 

have to be synchronized with respect to time. Throughout this research, I considered that all the mobile 

stations/vehicles are synchronized with respect to time. There is a scope of research how the mobile 

stations/vehicles can be time synchronized in the back-end. 

6.2.2 Size of the Contention Domain 

In wireless communication, collision domain is an approximate bounded area in which a receiver has 

the probability to receive multiple packets simultaneously in the same frequency channel. For an Ad hoc 

network with static stations/nodes, it is bounded by the transmission area of a node considering symmetric 

transmission ranges. The collision domain is bigger if asymmetric transmission ranges as well as mobility 

of stations/vehicles are considered. The stations contends for the channel to get rid of the collisions 

supposed to occur in the collision domain. For an Ad hoc network with symmetric transmission ranges as 

well as static stations, the contention domain is two hops. So most of the MAC protocols designed for this 

kind of Ad hoc networks use a two-hop contention domain. If the nodes are mobile and the transmission 

ranges are considered asymmetric, the contention domain is three hops. Because ESFRA and CESFRA 

address the MHS and ARL problems, the design of ESFRA and CESFRA is based on a three-hop 

contention domain. So, CESFRA is enlarging the contention domain to solve the MHS and ARL problems. 

There is a scope of research here, how this changes to contention domain is affecting the performance, and 

how can we optimize it. 
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6.2.3 Privacy and Security Issues 

The privacy and security issues are not in the scope of this research. The privacy and security issues are 

important factors. Because vehicular wireless communications are based on concept of cooperation with 

one another, the vehicle users are required to share identifications (i.e. MAC addresses), location 

information, speeds, different sensor outputs etc. which affect the privacy and security issues. So, there is a 

scope of research here how these issues can be solved without violating the requirements of cooperation. 
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