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ABSTRACT 

The electricity industry is currently experiencing a significant paradigm shift in 

managing electrical resources. With the onset of aging infrastructure and growing power 

demands, and the influx of intermittent renewable energy generation, grid system 

operators are looking towards energy storage as a solution for mitigating industry 

challenges.  An emerging storage solution is underwater compressed air energy storage 

(UWCAES), where air compressors and turbo-expanders are used to convert electricity 

to and from compressed air stored in submerged accumulators. This work presents three 

papers that collectively focus on the design and optimization of an UWCAES system. In 

the first paper, the field performance of a distensible air accumulator is studied for 

application in UWCAES systems. It is followed by a paper that analyzed the energetic 

and exergetic performance of a theoretical UWCAES system. The final paper presents a 

multi-objective UWCAES optimization model utilizing a genetic algorithm to determine 

optimum system configurations.  
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CHAPTER I 

INTRODUCTION 

1.0 BACKGROUND 

Energy storage is of ever increasing interest to the electricity market as the 

growing need for energy places a greater strain on existing, aging grid assets. The 

capacity to store large amounts of energy for consumption at a later time provides many 

advantages to grid users and operators. Energy businesses can capitalize on fluctuating 

energy markets through energy arbitrage – buying and storing when electricity prices are 

low and generating and selling when demand and prices are high. 

The benefits of storage are evident, summarized in [1]. Storage allows for a 

reduction in power transmission and distribution congestion; which improves existing 

grid efficiency and can reduce costs for sellers trying to get their energy product to 

market. Storage can also significantly increase the utilization of existing generation 

assets. Generation facilities that would not normally generate during non-peak time can 

continue to generate past peak, storing the excess for use when required. Storage is 

particularly valuable for intermittent generators like wind and solar; energy storage has 

great potential in transforming these renewable energy supplies into dispatchable 

generation assets by storing energy produced in times of high supply and delivering it on 

demand. 

An emerging technology in the field of energy storage is underwater compressed 

air energy storage (UWCAES). Using a series of air compressors and turbo-expanders, 

electricity is converted to and from electricity. UWCAES builds on the established 

foundations of traditional compressed air energy storage (CAES), while incorporating 

thermal energy storage and scalable air storage reservoirs. The novelty of the UWCAES 
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concept lies in the air storage method – using submerged, distensible air accumulators. 

The accumulators are placed at or near the bedding of deep water bodies and rely on the 

hydrostatic pressure exerted by the surrounding water. The compressed air maintains its 

pressure in the accumulators, as the storage volume can vary based on filled capacity. 

The research objectives of this thesis are as follows: 

• To establish the necessary components of a full-scale UWCAES system, 

• To understand design parameter influence on UWCAES system performance and 

highlight ways of improving performance with methods yielding the greatest 

benefit, and 

• To determine optimal configurations of a UWCAES system for a given set of 

constraints. 

A survey of available literature shows limited research into UWCAES, as well as 

alternative CAES methods that provide characteristics similar to UWCAES. For the 

UWCAES concept, research to date has primarily focused on the distensible accumulator 

element, with studies examining its shape [2,3] and hydrodynamic flow interaction [4]. 

There have been few studies that sought to achieve characteristics similar to UWCAES, 

particularly to design CAES systems that are isobaric and/or scalable. In [5], a water-

compensated, geologic CAES system was analyzed that featured a water head supplied by 

an aboveground water reservoir; the water head was used to achieve isobaric 

performance. Scalability of CAES systems has been examined by researchers using 

aboveground pressure vessels [6–8] and steel pipe piles [9]. 

As well, tools such as exergy and exergoeconomic analyses, which provide 

valuable insights into the thermodynamic operation of systems, have been sparsely 

applied to CAES thus far. As exergy measures work potential and quantifies energy 

quality, its assessment can help identify the location and magnitude of losses in a system. 
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An analysis of the system is further enhanced by exergoeconomics, which assigns cost 

information to system exergy. While these analysis methods, in general, have gained 

significant attention, only a handful of publications applying these analyses to CAES 

exist; studies of exergy in CAES systems can be found in [5,6,10,11], whereas [12,13] 

incorporated exergoeconomic evaluation.  

These publications show the extent in which general CAES system design and 

performance research has been applied to. As both energy demand and costs increase, 

sustainability becomes an important consideration for energy systems. This thesis 

attempts to address the issue of sustainability in CAES systems, particularly UWCAES, 

through the optimization of its design parameters. It studies the application of energy, 

exergy, and exergoeconomic analysis in a multi-objective optimization model to 

determine optimal system configurations. While multi-objective optimization techniques 

have been applied in analyzing thermal energy systems, such as combined cycle power 

systems, such techniques have yet to be applied to CAES systems. 

2.0 METHODOLOGY 

For the UWCAES concept to be established, it is important that its performance 

as a system and on a component-basis is understood. The concept is first introduced in 

Chapter 2 and provides a discussion of the working principles of UWCAES and its 

advantages over conventional CAES systems. Following the discussion, results and 

findings from a field demonstration of a scaled-down distensible air accumulator is 

presented. The pilot project, conducted in September 2011 in Lake Ontario, consisted of 

a submerged, distensible air accumulator placed at a depth approximately 30 m below 

the water surface. The air accumulator and was connected to an air compressor situated 

onshore by a 1 km-long rubber hose. Using the air compressor, the charge and discharge 

performance of the accumulator were studied to assess its feasibility for use in an 
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UWCAES system. The results of the pilot project validated the proof-of-concept of the 

accumulator element in UWCAES. 

Chapter 3 focused on evaluating the performance of a theoretical UWCAES 

system to determine the impact design parameters may have on system operation. Major 

system components were numerically modelled and individually evaluated for energy 

and exergy. This was done in order to locate and quantify the magnitude of losses in the 

UWCAES process. The system model, rated for a power output of 4 MWh, consisted of 

three air compression stages, three air expansion stages, three heat exchangers, a 

thermal storage reservoir, and an air delivery header pipe connected to a variable 

number of air accumulators.  A parametric study of the modelled system examined the 

following design parameters:  

1. Air storage depth,  

2. Off-shore distance,  

3. System power input,  

4. Compressor isentropic efficiency,  

5. Maximum heat exchanger extraction temperature ratio,  

6. Thermal storage insulation thickness, 

7. Air delivery header pipe diameter,  

8. Expander isentropic efficiency, and  

9. Charge-to-discharge time ratio.  

In the parametric study, the performance of the system was expressed by two 

quantities – system round-trip efficiency and total exergy destruction. The results of the 

parametric study were used in a sensitivity analysis to determine parameter significance 

on system performance. The findings of the sensitivity analysis demonstrated the 4 
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significance parameters: air delivery header pipe diameter, expander isentropic 

efficiency, compressor isentropic efficiency, and air storage depth. 

Building on the research performed using the parametric study and sensitivity 

analysis, Chapter 4 sought to determine optimal system configurations by means of a 

multi-objective optimization model. In addition to analyzing energy and exergy, this 

study integrated exergoeconomic analysis in order to assign cost information to system 

losses. An improved numerical UWCAES model was developed simulating a 4 MWh on-

shore system with air storage situated 5 km off-shore and 100 m below the water surface 

in a fresh water lake. This model was subjected to various system configurations based 

on the following design parameters:  

1. System power input, 

2. Number of air compression stages,  

3. Air delivery header pipe diameter,  

4. Number of air expansion stages, and  

5. Charge-to-discharge time ratio.  

Every component in each configuration was evaluated for energy, exergy and 

exergoeconomics – firstly, the operational performance was quantified; secondly, the 

exergy rates and destruction was determined; thirdly, the cost per unit exergy was 

calculated for every exergy stream; and finally, the cost rate of every exergy stream, 

including exergy destruction, was priced. Equipment capital cost functions, based on 

functions sourced from literature and adjusted by economic cost indices provided by the 

United States Bureau of Labor Statistics and quotes sourced from equipment 

manufactures, were used in the calculation of exergy stream cost rates.  

Three distinct optimization objective functions were developed from the 

thermodynamic and exergoeconomic analyses, which calculated the system’s round-trip 
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efficiency, the total cost rate of exergy destruction and capital costs, and operating profit 

per cycle. These functions were applied in a multi-objective optimization model that used 

the elitist non-dominated sorting genetic algorithm (NSGA-II) method to determine 

optimal configurations based on the supplied information. In addition, the impact of 

interest rates on optimal system designs was gauged using a sensitivity analysis. A multi-

criterion decision making approach was employed on the optimization results which 

selected a preferred design at the different interest rates examined. The detailed results 

of the energy, exergy, exergoeconomic analyses of the preferred system can be found in 

Appendix B. 

These analysis performed in this thesis sets a foundation for building future 

UWCAES systems and further research on improving their performance. The research 

presented herein can be improved using more advanced system models and better cost 

estimates. As electrical energy management methods evolve moving forward, energy 

storage systems will proliferate. The analysis prescribed in this thesis serve to achieve 

future energy sustainability. 
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CHAPTER II1 

DISTENSIBLE AIR ACCUMULATORS AS A MEANS OF 

ADIABATIC UNDERWATER COMPRESSED AIR ENERGY 

STORAGE 

BRIAN CHEUNG†, NING CAO‡, RUPP CARRIVEAU†2, DAVID S-K TING‡ 

†Department of Civil and Environmental Engineering, University of Windsor, Windsor, 

Ontario, Canada;  

‡Department of Mechanical Automotive and Materials Engineering, University of 

Windsor, Windsor, Ontario, Canada 

 

B. Cheung, N. Cao, R. Carriveau, and D. S.-K. Ting, “Distensible air accumulators as a 
means of adiabatic underwater compressed air energy storage,” International Journal 
of Environmental Studies, vol. 69, no. 4, pp. 566–577, Aug. 2012. 
 

NOMENCLATURE 

E  Energy 

m  Mass 

Nbags  Number of air accumulators 

n  Number of compressor or expander stages 

P  Power 

p  Pressure 

R  Gas constant 

T  Temperature 

Vbag Volume of an air accumulator 

v  Specific volume 

w  Specific work 

z  Depth of air accumulator 

β  Pressure ratio 

βi  Stage pressure ratio 

γ  Specific heat ratio 

η  Efficiency 

 

                                                        
1 This thesis incorporates the outcome of a joint research project undertaken in collaboration with 
Mr. Ning Cao under the supervision of Dr. Rupp Carriveau and Dr. David S-K. Ting. In all cases, 
the author performed the key ideas, primary contributions and data analysis and interpretation, 
and the contribution of the co-author was primarily through the provision of developing 
experimental designs and data collection. 
2 Corresponding author. Address: 401 Sunset Ave. Windsor, Ontario, Canada N9B 3P4. 
Telephone: 519-253-3000 ext. 2638. Email: rupp@uwindsor.ca 
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1.0 INTRODUCTION 

Today’s energy landscape is laden with a growing deployment of many new 

technologies that are geared towards modernizing the present electricity system. 

Principal objectives of these technologies include improving: efficiency, reliability, 

resiliency and system sustainability. The largest growth sectors in the present energy 

industry include: the incorporation of renewable energy generators and the 

transformation of existing power grid into a smart grid.  

The benefits of these two trends are significant – they help to make better use of 

existing electrical infrastructure, curb air emissions, and increase energy security, among 

many others. The shift towards greater use of renewable resources and smarter power 

grids is an essential step; however, the reality of the current conventional grid is that 

power generation remains a just-in-time process where electrical energy produced must 

be immediately consumed. The decoupling of the time of electricity production and 

consumption requires a major change in how electricity is managed. This can be 

accomplished through energy storage. 

The aim of this paper is to examine the use of distensible air accumulators for use 

in underwater energy storage. An analysis of the concept is established and a general 

configuration of the equipment and processes used for energy storage underwater is 

discussed. Results of a pilot project that demonstrated field conditions of submerged air 

accumulators are analyzed.  

1.1  The reason for energy storage 

Electrical energy storage (EES) is defined as a process in which electrical power is 

converted into chemical, mechanical, or electrical potential energy for the purpose of 

dispatching back into the power grid when needed [1]. Currently, it is of ever increasing 
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interest to the electricity market. Recent developments in energy prices, growing 

demand, pending major infrastructure renewal and significant use of intermittent 

generation sources like wind and solar have raised awareness of various EES 

technologies as a means of addressing current energy concerns. Storage has been 

recognized as a strategic tool in a modern grid [2]. 

To grid users and operators, the capacity to store large amounts of energy for 

consumption at a later time provides many advantages, including the reduction of power 

transmission and distribution congestion, efficient utilization of existing generation 

assets, improving power quality in the grid, and the potential of transforming 

intermittent generation supplies into dispatchable generation resources. 

Since the storage of electricity itself is a difficult task, many current storage 

solutions convert the electrical power into a storable medium. The selection of a 

technology for energy storage can be based on the application and scale; existing 

technologies such as batteries, super magnetic energy storage, capacitors, and flywheels 

can be used for small-scale storage, whereas large-scale energy storage projects employ 

systems based on compressed air or pumped hydro [3]. 

1.2 Conventional Compressed Air Energy Storage 

Traditionally, compressed air energy storage (CAES) has been used as an 

alternative to pumped hydro storage for large-scale, bulk energy management. These 

CAES systems typically rely on electrically-driven air compressors that pump pressurized 

air into large underground geological formations such as aquifers and caverns for 

storage; at a later time, turbo-expanders connected to generators convert the compressed 

air back into electrical energy whenever the energy is needed. This process is shown in 

Figure 1. 
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Figure 1 - Traditional CAES process 

The system lifetime, stored energy capacity per capital cost and output power per 

capital cost of CAES systems [4] make the technology an attractive means of energy 

storage amongst its competitors, especially when used for energy management [5]. The 

justification for the technology is particularly strong in places with favourable geologic 

and geographic conditions.  Southwestern Ontario is such an example [6]. 

Due to the scale required for feasible plants, CAES technology has been reserved 

for bulk energy applications like energy arbitrage or support of base-load power plants. 

With the influx of renewable energy generation, it has been proposed for CAES 

technology to be extended to support large-scale renewable generation [7].  

1.3 CAES technology in practice 

CAES has evolved throughout the last few decades since the 1970s when the 

technology was first proposed. Most of the developments in CAES technology deal with 

air preheating prior to air expansion. This is done primarily as a measure to prevent 

equipment damage, as the temperature of air cools down as it expands. In first 

generation CAES systems, combustors are used to heat the air entering expander 
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turbines. In second generation systems, air is preheated by exhaust from gas turbines 

[8]. With adiabatic CAES systems, the need for fuel is eliminated by employing a heat 

capture process that stores heat energy produced during air compression for use in 

preheating before air expansion [9].  

Despite ongoing advancement of CAES designs over the years, to date, there are 

only two operating facilities constructed thus far; a 290 MW facility in Huntorf, Germany 

and a 110 MW installation in Alabama, USA. Both these plants are of the first generation 

design and have demonstrated strong performance – the Huntorf plant reported 90% 

availability and 99% starting reliability [10] while the McIntosh plant achieved 91.2% 

and 92.1% average starting reliabilities as well as 96.8% and 99.5% average running 

reliability for the generation cycle and compression cycle respectively over 10 years of 

operation [11]. Currently, new modern conventional-type CAES installations are 

undergoing planning and development, such as the ADELE project in Germany and the 

Norton Energy Storage Project in Ohio, to name a few. Early stage planning are 

underway in places like New York, Texas and California [12]. 

2.0 UNDERWATER COMPRESSED AIR ENERGY STORAGE 

CAES is a proven technology for effective bulk storage of energy. However, in a 

modern, smarter grid, cost-efficient and flexible scale storage solutions that can cater to 

both large and small scale applications are required. Underwater compressed air energy 

storage (UWCAES) is a promising solution that can fit that need. 

UWCAES is an innovative variation of proven conventional CAES technology. 

Using mature technologies like air compression and expansion, UWCAES proposes the 

use of a series of submerged, distensible air accumulators as an alternative to large 

geological formations for the storage of compressed air, illustrated in Figure 2. 
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Figure 2 - Illustration of a UWCAES system 

Conceptually, the accumulators used in the UWCAES system are placed at or 

near the bed of deep water bodies such as lakes and oceans, utilizing the hydrostatic 

pressure exerted by the surrounding water. The extent of the accumulators will expand 

and contract depending on the amount of compressed air present within. Air compressed 

to a design pressure equal to the hydrostatic pressure at the accumulator storage depth 

would remain at constant pressure due to the environment, regardless of the 

accumulator’s filled capacity. 

In terms of the mechanical aspect of the system design, the setup is similar to 

that of adiabatic CAES. As air undergoes isentropic compression, its temperature rises; a 

highly effective thermal recovery process extracts energy from the hot air and stores it in 

a medium that features high specific heat capacity, high density, and good heat transfer 

characteristics. During isentropic air expansion, where compressed air is used to 

generate electricity, the stored energy is used to raise the temperature of the compressed 

air coming from the accumulators, prior to entering turbo-expansion equipment. 
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2.1 Benefits of UWCAES 

The distinct accumulator element in the UWCAES design provides important 

advantages compared to conventional systems; a practically constant energy output 

profile, geographical adaptability, and scalable design. 

The energy output profile is dependent on the dynamics of the expanding air. In 

conventional CAES systems, the fixed volume capacity of the storage reservoir causes 

variability in air pressures as the mass of air stored changes. As air is being discharged, 

conventional systems will experience changing electrical output levels. This phenomenon 

does not occur in the UWCAES system; the accumulators maintain constant pressure 

through their distensible accumulators, even when partially filled with air. Near constant 

energy input and output is exhibited during charge and discharge phases of the system. 

The placement of UWCAES plants is less restrictive than their conventionally 

terrestrial counterpart. With conventional CAES, specific geological conditions must be 

met when selecting sites. In a UWCAES installation, a deep body of water supplants the 

need for specialized geological sites, increasing flexibility in system placement. It is 

estimated that approximately half of the world’s population is situated near a coastline 

[13]; UWCAES could be easily deployed near many population centers, foregoing the 

need for long distance transmission lines. 

The application of a series of air accumulators to store compressed air affords a 

significant advantage in scalability. To increase the size of the reservoir in a UWCAES 

system is simply a matter of adding accumulators. This aspect is particularly useful for 

smaller-scale, distributed storage applications, where smaller reservoirs are needed. 
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2.2 UWCAES Configuration 

The configuration of a UWCAES plant mirrors that of conventional adiabatic 

CAES; the system has five main components: compressor, turbines, motor/generator, air 

storage and the thermal recovery unit. Figure 3 depicts the general layout of the system. 

 

Figure 3 - UWCAES system layout 

For UWCAES, the depth at which the air accumulators are placed below the water 

surface governs the design storage pressure. The system is modelled using a three-stage 

polytropic compression/expansion process with intercooling, using ambient air as the 

working fluid. When the system is charging – energy being stored – a motor runs the 

multi-stage air compressor unit to pump pressurized air into the submerged air 

accumulators. After each compression stage, heat generated by the compression process 

is extracted from the air and stored by the thermal recovery unit (TRU) consisting of heat 

exchangers and a storage reservoir. During system discharge – where electricity is 

generated – air flows back through the TRU to be reheated prior to each expansion stage. 

The heated air is then sent through and expands in the turbines, which drives a 

generator to produce electricity. 
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2.2.1 Compressor/Turbine 

Air is assumed to be an ideal gas, Eq. (1), and is compressed and expanded 

through a polytropic process, Eq. (2). 

RTpv =  (1) 

.constpv =γ  (2) 

Combining Eq. (1) and (2) will yield an isentropic relationship, as given in Eq. (3). 
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As the UWCAES system uses multi-stage compression and expansion, optimum 

work by the machinery is achieved by maintaining equivalent pressure ratios across all  

stages. The stage pressure ratio  is found through Eq. (4) 

( ) n
ifi pp 1=β  (4) 

The specific work for an isentropic process, based on the first law of 

thermodynamics, is given in Eq. (5). 

= dpvw  (5) 

Combining Eq. (3) into Eq. (5) results in an expression to determine the specific 

work for an individual compression or expansion stage, indicated in Eq. (6).  
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In practice, inefficiencies are present whenever work is done; the isentropic 

efficiency is assigned to the compressors and expanders, which is calculated by Eq. (7) 

and (8). 
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2.2.2 Motor/Generator 

For multi-stage air compression, a compressor-train is used and driven by an 

electric motor. In multi-stage air expansion, a turbine-train is connected to a shaft and 

drives a generator, producing an electrical output. Considering the mechanical losses of 

individual devices, the actual input shaft power to the compressor, and the power rating 

of the expander are estimated using Eq. (9) and (10). 

compmech

shaft
acomp

P
P

ηη
=,  (9) 

shaftmecha PP expexp, ηη=  (10) 

An important performance measure of energy storage systems is its round trip 

efficiency. Unlike regular CAES systems, where external sources of energy are used to 

heat up the air, the overall system efficiency is determined using Eq. (11). 

inouttripround EE=−η  (11) 

In practice, it is generally expected that an adiabatic CAES system is able to 

achieve a round trip efficiency of 70%. Based on a thermodynamic analysis by Grazzini 

and Milazzo [14], a system could potentially have an efficiency of close to 72%. 

2.2.3 Underwater Air Storage 

In the case of UWCAES, the underwater air accumulators used must be 

adequately designed to be able to withstand the environment they are placed in. As well, 
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care needs to be taken when anchoring the accumulators to the bedding of deep water 

bodies. 

The UWCAES design uses a series of smaller, submerged accumulators. These 

accumulators borrow many concepts from underwater lift and salvage balloons. As 

mentioned earlier, air inside the accumulators maintains constant pressure during 

storage and near constant pressure during system charge and discharge. This allows for 

more consistency in power output.  

The number of accumulators required for air storage is dependant the depth of 

storage and the corresponding air pressure, the mass of air stored, and the design 

accumulator volume. This relationship is indicated in Eq. (13). Generally, the deeper the 

accumulators are placed in the water, the lower the number of accumulators will be. 

( )bagairairbags VmpzfN ,,,=  (13) 

Since a series of accumulators are used to store air, an air distribution network of 

pipes is needed to direct the flow of air from the compressor/expander equipment to the 

accumulators, and vice versa. Potential pressure losses must be taken into careful 

consideration when developing the pipe network; a constraint with more significance to 

UWCAES compared to other CAES systems. 

Different concepts have been proposed in storing compressed air underwater. As 

an example, a survey of alternative accumulator designs has resulted in a proposal by 

Pimm and Garvey [15], in which large fabric structures with a diameter in the order of 20 

meters were analyzed. 

2.2.4 Thermal Recovery 

An effective thermal recovery process is crucial to the operation of a UWCAES 

system. In addition to electrical energy storage, the UWCAES features thermal energy 



 

19 
 

storage; two forms of energy are stored. Since heat is needed to bring up the temperature 

of the air coming from the accumulator prior to entering the turbines for expansion, 

sufficient thermal energy must be captured, transferred and stored. When designing the 

TRU, a suitable storage medium and temperature must be determined, and proper heat 

exchangers selected. The TRU should be designed to minimize the amount of heat lost to 

the surrounding for extended durations of storage. 

The science of thermal recovery is quite mature. Resources such as Chapter 34 of 

[16] should be consulted regarding thermal recovery design. 

3.0 UWCAES PILOT PROJECT 

3.1  Experimentation 

A pilot project evaluating the distensible air accumulator aspect of the UWCAES 

concept was completed; this project did not study the mechanical and thermodynamic 

aspects of the UWCAES system. Representative mechanical and thermodynamic 

analyses can be found in [14], [17], [18], as UWCAES is similar to that of conventional 

adiabatic CAES systems. 

In the pilot project test, a modified 1:5 scale lift bag was utilized as the 

accumulator. Figure 4 shows the experimental configuration. The accumulator was 

anchored on two 9 tonne concrete cylinders. A feeder hose with a diameter of 20 mm 

was connected to the top of the accumulator to facilitate charging and discharging phases 

of the system. Several pressure safety valves were attached to the bottom of the 

accumulator to ensure safe operational pressure. A 25 mm diameter hose connected the 

test accumulator to a compressor situated on shore.  
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Figure 4 - Experimental configuration of pilot project 

The experiment for the accumulator was conducted in two phases; first, the 

discharge cycle, where air is released from the accumulator, then second, the charge 

cycle, where air is pumped into the accumulator by the compressor. Using a series of 

pressure and temperature sensors, flow meters and data acquisition equipment, results 

were collected. 

3.2 Results 

3.2.1 Accumulator Discharging Phase 

The accumulator was first discharged at an initial pressure of 195 kPa. Figure 5 

shows the pressure and flow data of the discharge phase. A sharp decrease in the 

temperature and pressure and increase in flow rate was observed at the very beginning of 

the discharge period that lasted less than a minute. After five time constants from the 

start of the discharge period, corresponding to the values measured at 113 seconds, the 
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system discharge began to stabilize at a pressure of 134 kPa and a flow rate of 

approximately 0.005 kg/s. An initial pressure loss of approximately 61 kPa can be seen at 

this point; this is attributed to friction and minor losses due to the pipe configuration.  

This was verified using the Bernoulli equation.  

 

Figure 5 - Accumulator discharge data 

From the cycles performed, the average discharge period of a cycle lasted around 

30 minutes. When analyzing the 1868 second discharge cycle, 6.3 kg of air was removed 

from the accumulator. During discharge, the pressure reduced from 134 kPa to 125 kPa. 

As well, the mass flow rate decreased from 0.005 kg/s to 0.003 kg/s. Once the air flow 

was shut off, the final pressure in the accumulator stabilized to 182 kPa. The removal of 

6.3 kg of air resulted in a pressure drop of 13 kPa in the accumulator. 
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3.2.2 Accumulator Charging Phase 

The air flow rate during the accumulator charging was higher than the discharge 

phase due to the compressor that was used – it operated at a minimum charging rate of 

0.023 kg/s. As such, tests for this phase were relatively short; based on the flow rate, full 

accumulator charging took roughly 3 minutes. 

Data for the accumulator charging cycle is shown in Figure 6. Initial air pressure 

in the accumulator was 182 kPa. Once the charging process begun, air was delivered to 

the accumulator at a rate of 0.0252 kg/s. After 246 seconds, a total of 5.7 kg of air was 

added back into the accumulator, and pressure returned to 195 kPa. As air pressure was 

measured on the compressor side of the piping, the high flow rate of air through a 

narrow pipe diameter resulted in significant pressure loss, causing an air compressor’s 

discharge pressure of 730 kPa. 

 

Figure 6 - Accumulator charge data 
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3.3  Discussion 

The pilot project showed that some variation in flow rates and pressures occur 

during the cycling of air in the accumulator, especially during the discharge phase; the 

charging phase maintained consistently predictable performance during system 

operation. While the variations do occur, the general behaviour of the processes remains 

predictable. When designing the full scale UWCAES system, they can be controlled and 

mitigated using carefully developed strategies. 

Ideally, when the accumulator discharges, constant air pressure is maintained. 

However, as shown in the discharge phase results of the pilot project, a slight pressure 

drop occurs from beginning and end of cycle. The root cause of this pressure drop may 

be attributed to the vertical hydrostatic pressure difference between the top and bottom 

of the accumulator. As air leaves the top of the accumulator, the larger pressure at the 

bottom is pushed upwards, decreasing the overall pressure of the bag (the contained 

volume is at a lower pressure). As the pressure decreases, so too does the flow rate. 

When examining the flow rate from Figure 5, a noticeable spike of 0.010 kg/s 

exists. This corresponded to the opening of a valve to release the air. While the vertical 

pressure difference has a major effect on the flow rate, an additional factor can be 

considered; the accumulator itself. A fully charged accumulator would have an internal 

pressure equal to the hydrostatic pressure at the bottom of the bag. As such, a pressure 

difference between the compressed air and the surrounding water exists at the 

accumulator top; this would imply that the stresses at the top of the accumulator are 

balanced by the tension in the accumulator material. When air depletes, this pressure 

difference will reduce, lowering the air flow rate.  These pressure and flow effects are 

functions of the accumulator geometry particular to this experiment.  For instance, 

results for horizontally oriented, cylindrical accumulators would prove different. 
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4.0 CONCLUSIONS 

The potential for UWCAES as a means for cost-efficient and flexible energy 

storage in the modern electricity industry has been examined. By using submerged, 

distensible air accumulators for energy storage, UWCAES systems have the potential to 

be implemented in strategic locations at various scales to enhance the power grid. 

An analysis of the pilot project demonstrating the charge and discharge cycles of 

the balloon shaped air accumulator showed that it may be representative of a potentially 

feasible alternative to the large underground reservoirs of conventional CAES systems. 

The operation of the accumulator is predictable and with further improvements in the 

design of the pipe distribution network and accumulator design, performance can be 

improved over those results presented here. 
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NOMENCLATURE 

cp  Constant pressure specific heat, kJ/kg·K 

cv  Constant volume specific heat, kJ/kg·K 

D  Pipe diameter, m 

f  Darcy’s friction factor 

g  Gravitational acceleration constant, m/s2 

KL  Minor loss coefficient 

k  Specific heat ratio 

L  Pipe length, m 

m  Mass, kg 

N  Number of compressor/turbine stages 

n  Polytropic exponent 

P  Power, kW 

p  Pressure, kPa 

pL  Pressure loss, kPa 

R  Universal gas constant, kJ/kg·K 

Re  Reynolds number 

s  Specific entropy, kJ/kg·K 

T  Temperature, K 

t  Time, s 

u  Specific internal energy, kJ/kg 

V  Velocity, m/s 

V  Volume, m3 

v  Specific volume, m3/kg 

w  Specific work, kJ/kg 
X  Exergy, kJ 

XD  Exergy destruction, kJ 

x  Specific exergy, kJ/kg 

z  Accumulator depth, m 

 

Greek 

βi  Stage pressure ratio 

ε  Pipe roughness, m 

η  Efficiency 

ρ  Density, kg/m3 

 

Subscripts 

0  at reference condition 

                                                        
1 Corresponding author. Tel: +1 519 253 3000. Email address: rupp@uwindsor.ca 



 

28 
 

1.0 INTRODUCTION 

Electrical energy storage (EES) is an increasingly important element to the 

modernization of the electrical grid. Traditionally, the aging infrastructure currently in 

place handled stable electricity production from large, centralized plants. With the 

advent of wide-scale deployment of renewable energy generation from wind and solar, 

electricity distribution networks are required to incorporate energy sourced from 

smaller, naturally intermittent distributed generation, while ensuring power reliability. 

Various technologies and policies have technological been proposed for integrating 

renewable energy sources (RES) [1], with EES gaining traction as a critical solution for 

reliable RES integration [2-6]. As well, EES has been recognized for the services and 

benefits it provides to electricity grid operation [7,8]. 

EES is a set of technologies that decouples electricity production and demand, by 

allowing the flexible storage of power for later use [9]. As electricity itself cannot be 

stockpiled in large quantities, EES systems convert the electrical power into a storable 

medium that includes chemical, mechanical and electrical potential energies. When 

power is needed, the stored energy is converted back into electricity and is injected into 

the electrical grid. One such technology gaining interest is compressed air energy storage 

(CAES). 

CAES is a storage technology that utilizes a series of air compressors to pressurize 

and store ambient air in reservoirs. The compressed air is converted back to electricity by 

generator-coupled air expanders. In applications to date, CAES systems have been 

applied at large, utility scales (>100 MW) for bulk energy storage. It has often been 

considered as an alternative to pumped hydro storage (PHS) for large-scale storage [10], 

primarily for its low energy costs due to its inexpensive storage media and its large 

storage capacity [11,12].  
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This paper examines a novel adaptation of CAES technology known as 

underwater compressed air energy storage (UWCAES), where submerged, distensible air 

accumulators are used to facilitate energy storage. The accumulators used in the system 

offer two important design characteristics – a scalable design and isobaric system charge 

and discharge profiles. These characteristics address some limitations of conventional 

CAES systems pertaining to the storage reservoir, that is, the geology-restricted system 

capacity [3,6] and capacity-linked storage pressure variation [13]. This study presents an 

energy and exergy analysis of an UWCAES system in order to understand the impact 

design parameters may have on the system’s overall performance. As well, a sensitivity 

analysis is performed to determine a hierarchy of influential system variables. The 

findings of this paper can serve as an initial guideline for the design of future UWCAES 

systems. 

2.0 UNDERWATER COMPRESSED AIR ENERGY STORAGE 

 The UWCAES system builds on established concepts proven by reliable 

installations in Huntorf, Germany [14] and McIntosh, Alabama, USA [15], to bring CAES 

applications to smaller scales while eliminating fossil fuel use. It is similar to that of the 

adiabatic CAES concept, in which thermal energy storage is used to replace the 

combustion chamber of a CAES system [16]. The basic process architecture of an 

UWCAES system is given in Figure 1. A general UWCAES system consists of five main 

components: compressor, turbine, motor/generator, thermal recovery unit (TRU) and 

storage (air and thermal). The air storage is made up of a series of air accumulators, all of 

which are connected to an air delivery pipe network. Figure 2 and 3 depicts two possible 

configurations of an UWCAES system. During the system charge phase where energy is 

stored, ambient air is compressed and sent to the air accumulators. Heat generated 

during the compression process is extracted from the air by the TRU – a series of heat 
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exchangers (HEX) – and stored in a suitable thermal storage medium. In the case of 

discharging, the air is first released from storage, heated up by the TRU and expanded 

through a turbine. A generator is connected to the turbine to produce an electrical 

output. 

 

Figure 1 – UWCAES process diagram 

 

 

Figure 2 – A land-based UWCAES system 
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Figure 3 – An UWCAES system located on an off-shore barge 

The storage reservoir is a critical element for consideration when designing and 

siting a CAES system. The application of submerged, distensible air accumulators is the 

UWCAES system’s defining aspect. Traditional CAES has relied on locations with 

suitable geologic formations, demonstrated in the world’s two operating CAES plants – a 

290 MW plant in Huntorf, Germany and a 110 MW plant in McIntosh, Alabama, USA – 

both using large underground, solution-mined salt caverns [12]. Such fixed reservoirs are 

rigid in nature; CAES systems operate under constant volume conditions and experience 

variable pressures based on its filled capacity. In the UWCAES solution, the air 

accumulators are anchored to the bedding of lakes or oceans and rely on the hydrostatic 

pressure exerted by the surrounding water at depths to maintain the stored air pressure. 

The flow of air entering and leaving the air accumulators exhibit a near-isobaric 

behaviour regardless of the accumulator’s filled capacity [17].  

The constant pressure condition in CAES is desirable as it leads to increased 

efficiency in the pneumatic equipment, specifically the turbine, as well as constant power 
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profiles. The two existing CAES facilities have pursued this aspect by throttling air flow 

at the turbine inlet to maintain a high pressure [13]. When system efficiency is 

paramount, this method can lead to unwanted losses. As such, a couple of alternate 

solutions to achieve isobaric performance in land-based CAES systems have been 

presented. In [18], a water-compensated CAES system using a water head supplied by an 

aboveground water reservoir is analyzed. Air pressure in the storage cavern is 

maintained by a water column or hydraulic pump; the choice depends on the depth of 

the cavern below surface. It should be noted that a water-compensated CAES system can 

only be applied to certain storage reservoirs; for example, a salt cavern air reservoir is 

unsuitable for this configuration. A unique CAES concept was proposed in [19], where 

constant pressure airflow is achieved by storing compressed air in nano-porous material.  

 

Figure 4 – UWCAES among other EES technologies 

In terms of storage capacity, the UWCAES air reservoir can be scaled by the 

addition or subtraction of accumulator units. This allows for CAES applications at scales 

normally impractical for geologic CAES. Figure 4 shows UWCAES with respect to other 

energy storage technologies. However, there have been other investigations for small-
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scale CAES. In [20], an analysis of a micro-CAES system using man-made air vessels was 

performed. Quasi-isothermal and adiabatic configurations of a water-compensated 

constant pressure micro-CAES were evaluated. Also using pressure tanks [21], a hybrid 

wind-diesel system combined with CAES for application in remote regions was explored. 

Guidelines for pressure vessel sizing for small-scale CAES systems were presented in 

[22]. The study examined a stress analysis model for different vessel volumes subjected 

to various pressures, and provided an approximate equation for determining the 

pressure associated with the minimum vessel cost. Aside from pressure vessels, the 

feasibility of steel pipe piles for small-scale CAES was studied in [23]. 

Few researchers have explored the underwater CAES adaptation thus far. In [24], 

the concept of an ocean compressed air energy storage was discussed. In this system, a 

receiver vessel, vented to seawater, is mounted on the sea floor at depths in the order of 

300-700 m. Compressed air moving in and out of the vessel displaces seawater. In [25], 

the shape of a large ‘energy bag’ was proposed and optimized to store compressed air at 

significant depths. The energy bag concept was further studied in [26], where a prototype 

bag with a meridional length of 2.36 m was modelled to analyze its shape and cost, 

particularly when deformed. A field study of an underwater lift bag-based air 

accumulator was presented in [27] demonstrating the near-isobaric behaviour of the air 

accumulator. 

3.0 SYSTEM MODELLING 

3.1 Design Theory 

  The design pressure of an UWCAES system is dictated by the submergence of the 

air accumulators. It is determined by the hydrostatic pressure exerted by water at depth, 

given in equation (1). 



 

34 
 

gzpp wateratmstorage ρ+=  (1) 

 In conventional CAES with rigid air storage reservoirs, designed storage 

pressures have been known to be upwards of 70 bar [28]. On the contrary, UWCAES 

systems tend to operate at lower pressures. While the high pressures of conventional 

CAES systems could be achieved by UWCAES at the appropriate depths, it may prove 

cost prohibitive and unnecessary for small-scale energy storage. 

  Taking the storage reservoir as the control volume, the mass of air can be 

calculated using the ideal gas law, shown in equation (2), given that the flow of air in the 

system is an isobaric process and that air behaves as an ideal gas at low temperatures 

and pressures. While in storage, air reaches thermal equilibrium with the water 

temperature at depth.  

( )
water

storage
air RT

pV
m =  (2) 

3.1.1 Air Compression and Expansion 

 Multistage configurations are typically used to handle large pressure changes 

during air compression and expansion. If all stages in an air compressor or turbine are 

identical, the pressure ratio for each stage can be expressed by equation (3). 

( ) N
inletedischi pp /1

arg=β  (3) 

 Combining the ideal gas law and the polytropic process equation, given in 

equation (4), the outlet temperature of an air compression or expansion stage can be 

expressed as a function of pressure ratio, expressed as equation (5). 

.constpvn =  (4) 

( ) nn
iTT /1

12
−= β  (5) 
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If the isentropic efficiency is known, the polytropic exponent can be calculated 

using equation (6). For this study, the values of isentropic efficiency were sourced from 

manufacturer data. 
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The specific heat ratio, k, is calculated using equation (7). Its typical value for air 

is 1.4. 

vp cck =  (7) 

The specific work for a steady flow, polytropic device is given in equation (8). 
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  The operational charge and discharge times can be determined using equation (9) 

for different power requirements. 

P
wmt air=  (9) 

3.1.2 Thermal Recovery 

Effective thermal management is a crucial element in a CAES system. Comprising 

of HEXs and thermal storage reservoirs, the TRU serves to enhance performance and 

protect air compression and expansion equipment while eliminating the need for heating 

using fossil fuels. The lower temperatures experienced in UWCAES air compression and 

expansion provides design flexibility. As an example, thermal recovery can be achieved 

by an open loop system using lake water as the thermal storage medium. 
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 The design of HEXs is central to effective thermal recovery. They must be 

adequately sized to ensure optimal heat extraction during air compression and heat 

addition during air expansion. Different design methods for HEX sizing and 

performance evaluation are available and can be found in design handbooks [29]. 

3.1.3 Air Delivery Pipe Network Design 

The UWCAES system’s novel air storage reservoir requires properly sized pipes 

and fittings to minimize pressure losses associated with friction (major) or bends 

(minor). The calculation for pressure loss is given in equation (10), with the f estimated 

using the Moody chart [30, p. 898] or equation (11). The coefficients of KL for different 

pipe fittings can be determined from various design resources. 
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3.2 Configuration 

 A numerical model was developed to simulate a single charge-discharge cycle a 

conceptual UWCAES system and its components. It was assumed that the simulated 

system was installed in a fresh water lake. The layout of the system mirrors the setup 

depicted in Figure 2, where mechanical and electrical components are situated on-shore 

and connected to the air accumulators through an air delivery pipeline.  

3.2.1 Air Compression and Expansion 

 The system under consideration featured three air compression stages and three 

air expansion stages. During air compression, the first stage inlet temperature was set to 

the ambient air temperature. Trailing stages had a set inlet temperature of 12°C. Each 
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stage had an identical pressure ratio. The discharge pressure of the compressor was 

adjusted for pipe pressure losses. It was assumed that the power input into the three-

stage compressor was 950 kW, after accounting for a motor efficiency 95%. 

 During air expansion, the inlet temperature of each turbine stage was determined 

following a performance evaluation on the HEX units. Identical pressure ratios were 

maintained across all three expansion stages. A generator efficiency of 97% was applied 

to the expander power output. 

3.2.2 Thermal Recovery 

 A set of three flat-plate, counter-flow HEXs were evaluated in the UWCAES 

system. The HEXs were sized according to temperature requirements during air 

compression. The sizing was based on number of stainless steel plates, with each plate 

having a dimension of 1.5m x 2 m and a thickness of 0.75 mm. A 4 mm gap between 

plates was assumed. A 60% ethylene glycol solution was used as the thermal storage 

medium. The HEX units were applied in reverse order during air expansion. The outlet 

temperature and pressure of each HEX was obtained through performance evaluation. 

 Ethylene glycol, heated up from ambient temperature during air compression, 

was stored in a vertical cylindrical tank with a diameter of 6 m, insulated using aerogel 

with a thermal conductivity of 0.021 W/m·K. An 8 hour gap between system charge and 

discharge phases was assumed. The temperature drop in the ethylene glycol during 

storage was calculated for every 15 minute interval. 

3.2.3 Piping and Air Storage 

The model used a single HDPE header pipe, with a roughness of 0.003 mm, to 

connect the air accumulators to the equipment. Each accumulator, with a storage volume 

of 50 m3, was individually connected to the header pipe. The minor losses associated 
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with pipe fittings were assumed to be negligible. The length of the header pipe was 

calculated as a function of the accumulator’s offshore distance and depth. 

3.3 Methodology 

A parametric study was conducted on the system model at different design 

points. Table 1 summarizes the system analysis baseline. Table 2 lists the design 

parameters under study and their variations. For each design case, the round-trip 

efficiency was evaluated and an exergy analysis was performed. The subject of interest in 

the exergy analysis was its destruction. Following the parametric study, a first-order 

sensitivity analysis was performed on the simulation results to determine the total 

impact each design parameter had on round-trip efficiency and exergy destruction. 

Subsequently, each parameter was ranked according to its effect in improving system 

performance. 

Table 1 – Baseline values 

Variable Baseline Value 

Reference environment (ambient) temperature 8°C 

Reference environment (ambient) pressure 101.325 kPa 

System output 4000 kWh 

Accumulator depth 100 m 

Off-shore distance 5000 m 

Number of compression/expansion stages 3 stages each 

System power input 1000 kW 

Compressor isentropic efficiency 80% 

Compressor motor efficiency 95% 

Maximum HEX extraction temperature ratio 0.8 

Heat storage insulation thickness 10 mm 

Header pipe diameter 350 mm 

Expander isentropic efficiency 80% 

Expander generator efficiency 97% 

Charge-discharge time ratio 2 
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Table 2 - Parameter variation 

Design Parameter Variation Range 

(1) Air storage depth ±50% 50-150 m 

(2) Off-shore distance ±50% 2500-7500 m 

(3) System power input ±50% 500-1500 kW 

(4) Compressor isentropic efficiency ±12.5% 70-90% 

(5) Maximum HEX extraction temperature ratio ±12.5% 0.7-0.9 

(6) Heat storage insulation thickness ±50% 5-15 mm 

(7) Header pipe diameter ±50% 175-525 mm 

(8) Expander isentropic efficiency ±12.5% 70-90% 

(9) Charge-discharge time ratio ±50% 1-3 
 

The round-trip efficiency of the system is a widely used term when comparing 

EES systems. It represents the amount of recoverable energy after storage; it is the ratio 

of energy leaving to energy entering the system, shown in equation (12).  

inin

outout

in

out
tripround tP

tP
E
E

==−η   (12) 

While literature has generally considered the round-trip efficiency of adiabatic-type 

CAES to be approximately 70% [13,31], the analysis presented in [32] provides a realistic 

efficiency approximation of around 60%. 

 In addition to round-trip efficiency, the system’s exergy can be analyzed to gauge 

energy quality and identify the location and magnitude of losses in the system. It is a 

useful tool for thermal system designers, as an exergy analysis provides greater detail for 

how individual components in a system perform; an analysis only focusing on round-trip 

efficiency does not provide the same information. Once evaluated, designers can use the 

results to pinpoint and address particular components to improve systems. Exergy 

analyses consider the surroundings of the system, measuring energy potential with 

respect to the environment. On a unit mass basis, thermo-mechanical exergy is 

calculated by equation (13).  
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In real processes, exergy is not conserved; it can be destroyed due to 

irreversibilities. As exergy destruction represents the total magnitude of losses, its 

minimization would result in more effective use of energy in a system. In general, exergy 

destruction is calculated using equation (14). Exergy in the system was evaluated for 

each component to illustrate its loss contribution.  A thorough description of exergy, its 

analysis and destruction can be found in [33]. 

outinD XXX −=  (14) 

4.0 RESULTS AND DISCUSSION 

Using the developed system model, the round trip efficiency and the total exergy 

destroyed for the baseline case was evaluated to be 56.2% and 9.2 GJ, respectively. 

Parameter variations were applied to the system model; the resulting round trip 

efficiency and total exergy destruction changes are shown in Figure 5 for four design 

parameters. The four parameters showed noticeable deviation from baseline when 

subject to varying design values. An increase in round-trip efficiency and a decrease in 

total exergy destruction are considered beneficial to improving the system. 

In Figure 5(a), the variation of the measured values – the round-trip efficiency 

and total exergy destruction – with respect to different system depths is shown. As air is 

stored deeper, the system performance increases. However, as the depth increases, the 

round-trip efficiency and total exergy destruction begins to reach a constant value of 

approximately 1.01 and 0.97, respectively, relative to the baseline value. This result can 

be attributed largely to the decrease in required stored air mass, given in Figure 6. 
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Figure 5 – Relative change in round-trip efficiency and total exergy destruction due to 

parameter variation 

 

Figure 6 – Mass vs. depth 

 Figures 5(b) and 5(d) illustrate the effect of varying compressor and expander 

isentropic efficiencies on system performance. In Figure 5(c), the system performance 

improves as the pipe size increases. The asymptotical relationship given in the figure is 
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typical of pipe flows as the increase in pipe diameter reduces flow velocities resulting in 

decreasing frictional losses.  

Expanding on the information for the design parameters given in Figure 5, Figure 

7 displays the contribution to total exergy destruction of each system component 

modelled at each design point. This provides a direct comparison of the losses 

experienced in each of the components as design parameters vary. 

 

Figure 7 – Component contribution to total exergy destruction 

In Figures 7(a), 7(b) and 7(d), the air compression and expansion stages were the 

dominant contributors to exergy destruction in the system. As the air storage depth 

increases in Figure 7(a), the exergy destruction contribution from the compressor and 

turbine both peak at approximately 40%. The air compressor exergy destruction 

contribution then begins to decrease starting at 0.8 relative to the baseline storage depth. 
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This trend occurs due to a reduction in total exergy destroyed in the compression stages 

combined with an increase in total exergy destruction during heat exchange. Figures 7(b) 

and 7(d) demonstrate similar results, with the contributions coming from the air 

compressor and turbine swapped. Figure 7(c) shows the exergy destruction contribution 

from pipe sizing significantly decreasing as diameters are increased. 

A comparison of the results of all analyzed parameters is found in Figure 8. This 

figure plots the maximum extent that round-trip efficiency and total exergy destruction 

deviates from the simulated system’s baseline value over the parametric variation range 

prescribed in Table 2.  

 

Figure 8 – Extent of deviation in (a) round-trip efficiency and (b) total exergy 

destruction from baseline 

Among all the analyzed parameters, an increase expander and compressor 

isentropic efficiencies, and maximum HEX extraction temperature ratio yielded higher 

round-trip efficiencies and lower exergy destruction. Conversely, a decrease in pipe size, 

expander and compressor isentropic efficiencies, air storage depth, and maximum HEX 

extraction temperature ratio resulted in a lower round-trip efficiency and greater exergy 

destruction. The decrease in system performance is particularly drastic in the case of 

smaller pipe diameters.   
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Figure 9 shows the sensitivity of round-trip efficiency and total exergy 

destruction to the design parameters. The sensitivity of each parameter is represented by 

its sensitivity index – a number between 0 and 1 with higher values being showing 

greater significance [34]. 

 

Figure 9 – Sensitivity of (a) round-trip efficiency, (b) total exergy destruction to design 

parameters 

Figure 9 confirms what is shown in Figure 8, that the system is most sensitive to 

pipe diameter over the design parameter range of variation. Expander and compressor 

isentropic efficiencies and depths are the other parameters that play significant roles in 

the system. The sensitivity analysis found that maximum HEX extraction temperature 

ratio was not significant relative to the other parameters.  

Figure 10 expands on the data given in Figure 9(b), showing a breakdown of the 

exergy destruction sensitivity of each component to the design parameters in the 

simulated UWCAES system. It highlights the number of components that are susceptible 

to a clear performance fluctuation through parametric variation of the design. 
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Figure 10 – Sensitivity of system component exergy destruction to design parameters 

From the figure, most of the UWCAES system components were sensitive to pipe 

diameter changes, with some components having a sensitivity index greater than or 

equal to approximately 0.4. In comparison, only a few components showed sensitivity to 

the variation in each of the other design parameters. 

Based on the findings shown in the previous figures, it can be said that pipe sizing 

has the greatest potential to impact UWCAES system performance, followed by the 

turbine and compressor efficiency and depth. Changes in the other parameters showed 

small, incremental performance gains that may not be beneficial; a detailed capital and 

operational cost analysis may demonstrate this point. 

This analysis demonstrates that careful consideration of pipe design is required. 

The model system examined pressure losses using a single header pipe setup. However, 

it is expected that more complex pipe networks will be used in operating UWCAES 

systems, especially at larger scales. The effect of pressure loss in a UWCAES is system-

wide; greater losses would require the air compressor to consume more energy and 

discharge air at higher pressures as compensation, in addition to a reduction in energy 

output during system discharge. As such, UWCAES designs should have efforts made to 

minimize pressure losses.  
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For noticeable performance gains, turbines and compressors with better 

isentropic efficiencies should be used; this would reduce their energy requirements. 

Utilizing heat exchangers that capture more thermal energy would also increase system 

performance, albeit to a lesser extent. When improvements in these parameters are 

combined, the system performance greatly benefits. To illustrate this, when the three 

parameters are set to their upper value of the analysis range, the system achieves a 

round-trip efficiency of approximately 71% and experiences roughly a 50% reduction in 

total exergy destruction relative to the base case. 

It is possible to conclude that the given baseline value for the air storage depth 

and pipe diameter may be optimal with respect to the other parameters, as further 

increases in these parameters do not have any significant effect on system performance. 

In addition, due to the sharp performance degradation associated with shallower water 

depths and smaller pipe sizes, it would be ideal for any UWCAES system being designed 

to only use these parameters’ optimum values. 

5.0 CONCLUSIONS 

 UWCAES is a novel adaptation of mature CAES technology showing promise for 

energy storage. Its isobaric and scalable characteristics can assist CAES application at 

smaller scales and to wider audiences. A basic system was modelled and an analysis of 

primary system design parameters has been presented. Results of the model were 

studied to determine the magnitude of impact and parameter sensitivity. It was found 

that the pipe diameter, turbine, air compressor and air storage depth exerted the greatest 

influence on system performance. Despite pipe diameter being most sensitive, increases 

in pipe size from the base case yielded marginal gains. For the simulated model, 

significant gains in performance can be achieved through the engagement of more 

efficient turbo-expanders and air compressors. Some performance gains can also be 
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realized through more effective heat recovery. As well, it is worth noting that the 

accumulator depth plays a notable role in determining system performance until a 

critical depth is reached, beyond which round trip efficiency begins to stabilize. 

The analysis conducted in the paper offers some utility for elementary UWCAES 

system design. The parametric study and sensitivity analysis provide insight into where 

resources should be directed in the interest of optimizing round trip efficiency. 

ACKNOWLEDGEMENTS 

Research and development of the UWCAES system is being conducted in 

partnership with Hydrostor Inc.  Funding for this study was provided by the Ontario 

Centres of Excellence.  We appreciate their guidance and support throughout the project. 

REFERENCES 

[1] K. Porter, C. Mudd, and M. Weisburger, “Review of international experience 
integrating variable renewable energy generation,” Apr. 2007. 

[2] A. J. Cavallo, “Energy Storage Technologies for Utility Scale Intermittent 
Renewable Energy Systems,” Journal of Solar Energy Engineering, vol. 123, no. 
4, pp. 387–389, Jul. 2001. 

[3] M. Beaudin, H. Zareipour, A. Schellenberglabe, and W. Rosehart, “Energy storage 
for mitigating the variability of renewable electricity sources: An updated review,” 
Energy for Sustainable Development, vol. 14, no. 4, pp. 302–314, Dec. 2010. 

[4] K. Hedegaard and P. Meibom, “Wind power impacts and electricity storage – A 
time scale perspective,” Renewable Energy, vol. 37, no. 1, pp. 318–324, Jan. 2012. 

[5] F. Díaz-González, A. Sumper, O. Gomis-Bellmunt, and R. Villafáfila-Robles, “A 
review of energy storage technologies for wind power applications,” Renewable 
and Sustainable Energy Reviews, vol. 16, no. 4, pp. 2154–2171, May 2012. 

[6] A. Evans, V. Strezov, and T. J. Evans, “Assessment of utility energy storage 
options for increased renewable energy penetration,” Renewable and Sustainable 
Energy Reviews, vol. 16, no. 6, pp. 4141–4147, Aug. 2012. 



 

48 
 

[7] Electricity Advisory Committee, “Bottling Electricity: Storage as a Strategic Tool 
for Managing Variability and Capacity Concerns in the Modern Grid,” 2008. 

[8] S. Koohi-Kamali, V. V Tyagi, N. A. Rahim, N. L. Panwar, and H. Mokhlis, 
“Emergence of energy storage technologies as the solution for reliable operation of 
smart power systems: A review,” Renewable and Sustainable Energy Reviews, 
vol. 25, pp. 135–165, Jun. 2013. 

[9] R. Baxter, Energy Storage - A Nontechnical Guide. PennWell, 2007. 

[10] S. van der Linden, “Bulk energy storage potential in the USA, current 
developments and future prospects,” Energy, vol. 31, no. 15, pp. 3446–3457, Dec. 
2006. 

[11] S. Sundararagavan and E. Baker, “Evaluating energy storage technologies for wind 
power integration,” Solar Energy, vol. 86, no. 9, pp. 2707–2717, Sep. 2012. 

[12] H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, and Y. Ding, “Progress in electrical 
energy storage system: A critical review,” Progress in Natural Science, vol. 19, no. 
3, pp. 291–312, Mar. 2009. 

[13] S. Succar and R. Williams, “Compressed Air Energy Storage: Theory, Resources 
and Applications for Wind Power,” Apr. 2008. 

[14] F. Crotogino, K.-U. Mohmeyer, and R. Scharf, “Huntorf CAES: more than 20 years 
of successful operation,” 2001. 

[15] L. Davis and R. Schainker, “Compressed Air Energy Storage (CAES): Alabama 
Electric Cooperative McIntosh Plant - Overview and Operational History,” 2006. 

[16] C. Jakiel, S. Zunft, and A. Nowi, “Adiabatic compressed air energy storage plants 
for efficient peak load power supply from wind energy: the European project AA-
CAES,” International Journal of Energy Technology and Policy, vol. 5, no. 3, pp. 
296–306, 2007. 

[17] B. Cheung, R. Carriveau, and D. S.-K. Ting, “Storing energy underwater,” 
Mechanical Engineering, vol. 134, no. 12, pp. 38–41, Dec-2012. 

[18] Y. M. Kim, D. G. Shin, and D. Favrat, “Operating characteristics of constant-
pressure compressed air energy storage (CAES) system combined with pumped 
hydro storage based on energy and exergy analysis,” Energy, vol. 36, no. 10, pp. 
6220–6233, Nov. 2011. 

[19] T. F. Havel, “Adsorption-enhanced compressed air energy storage,” in Nanotech 
2011, 2011, vol. 1, pp. 759–762. 



 

49 
 

[20] Y. M. Kim and D. Favrat, “Energy and exergy analysis of a micro-compressed air 
energy storage and air cycle heating and cooling system,” Energy, vol. 35, no. 1, 
pp. 213–220, Jan. 2010. 

[21] H. Ibrahim, R. Younès, A. Ilinca, M. Dimitrova, and J. Perron, “Study and design 
of a hybrid wind–diesel-compressed air energy storage system for remote areas,” 
Applied Energy, vol. 87, no. 5, pp. 1749–1762, May 2010. 

[22] J. J. Proczka, K. Muralidharan, D. Villela, J. H. Simmons, and G. Frantziskonis, 
“Guidelines for the pressure and efficient sizing of pressure vessels for compressed 
air energy storage,” Energy Conversion and Management, vol. 65, pp. 597–605, 
Jan. 2013. 

[23] L. Zhang, S. Ahmari, M. Budhu, and B. Sternberg, “Feasibility Study of 
Compressed Air Energy Storage Using Steel Pipe Piles,” in GeoCongress 2012, 
2012, pp. 4272–4279. 

[24] R. J. Seymour, “Ocean Energy On-Demand Using Underocean Compressed Air 
Storage,” in ASME 2007 26th International Conference on Offshore Mechanics 
and Arctic Engineering, 2007, vol. 5, pp. 527–531. 

[25] A. Pimm and S. Garvey, “Analysis of flexible fabric structures for large-scale 
subsea compressed air energy storage,” Journal of Physics: Conference Series, 
vol. 181, no. 1, p. 012049, Aug. 2009. 

[26] A. J. Pimm, S. D. Garvey, and R. J. Drew, “Shape and cost analysis of pressurized 
fabric structures for subsea compressed air energy storage,” Proceedings of the 
Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering 
Science, vol. 225, no. 5, pp. 1027–1043, May 2011. 

[27] B. Cheung, N. Cao, R. Carriveau, and D. S.-K. Ting, “Distensible air accumulators 
as a means of adiabatic underwater compressed air energy storage,” International 
Journal of Environmental Studies, vol. 69, no. 4, pp. 566–577, Aug. 2012. 

[28] H. Ibrahim, A. Ilinca, and J. Perron, “Energy storage systems—Characteristics and 
comparisons,” Renewable and Sustainable Energy Reviews, vol. 12, no. 5, pp. 
1221–1250, Jun. 2008. 

[29] R. K. Shah and D. P. Sekulic, Fundamentals of Heat Exchanger Design. John 
Wiley & Sons, Inc., 2003, p. 976. 

[30] Y. A. Çengel and J. M. Cimbala, Fluid Mechanics: Fundamentals and 
Applications. McGraw-Hill Higher Education, 2006, p. 956. 



 

50 
 

[31] G. Grazzini and A. Milazzo, “Thermodynamic analysis of CAES/TES systems for 
renewable energy plants,” Renewable Energy, vol. 33, no. 9, pp. 1998–2006, Sep. 
2008. 

[32] N. Hartmann, O. Vöhringer, C. Kruck, and L. Eltrop, “Simulation and analysis of 
different adiabatic Compressed Air Energy Storage plant configurations,” Applied 
Energy, vol. 93, pp. 541–548, May 2012. 

[33] A. Bejan and M. J. Moran, Thermal Design and Optimization. New York: Wiley, 
1996. 

[34] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, 
and S. Tarantola, Global Sensitivity Analysis. The Primer. 2008.  



 

51 
 

CHAPTER IV 

MULTI-OBJECTIVE OPTIMIZATION OF AN UNDERWATER 

COMPRESSED AIR ENERGY STORAGE SYSTEM USING A 

GENETIC ALGORITHM 

BRIAN C. CHEUNG, RUPP CARRIVEAU1, DAVID S-K. TING 

Turbulence and Energy Laboratory, Ed Lumley Centre for Engineering Innovation, 

University of Windsor, Ontario, Canada, N9B 3P4 

 

Under review for publication in the journal “Energy” 
 

NOMENCLATURE 

A  Heat transfer surface area, m2 

C  Thermal capacitance, kJ/K 

 Cost rate, $/h 

c  Average cost per unit exergy, $/MWh 

cp  Constant pressure specific heat, kJ/kgK 

cv  Constant volume specific heat, kJ/kgK 

CRF  Capital recovery factor 

xE  Exergy rate, kW 

ex  Specific exergy, kJ/kg 

g  Gravitational acceleration, m/s2 

H  Annual operating hours, h 

h  Specific enthalpy, kJ/kg 

IR  Interest rate, % 

k  Specific heat ratio 

 Mass flow rate, kg/s 

m air  Stored air mass, kg 

MCF  Maintenance cost factor 

N  System life, years 

Nstages  Number of compressor/expander stages 

n  Polytropic exponent 

NTU  Number of transfer units 

OP  Operating profit, $/cycle 

P  Power, kW 

p  Pressure, kPa 

q  Heat transfer rate, kW 

R  Gas constant, kJ/kgK 

 Entropy rate, kJ/K 

s  Specific entropy, kJ/kgK 

T  Temperature, K 

TR  Charge-to-discharge time ratio 

t  Time, h 

U  Overall heat transfer coefficient, W/m2K 

V  Volume, m3 

v  Specific volume, m3/kg 

 Work, kW 

w  Specific work, kJ/kg 

wi  Pseudo-weight 

Z  Equipment cost, $ 

 Capital cost rate, $/h 

z  Depth below water surface, m 

 

Greek 

βi  Stage pressure ratio 

ε  Heat exchanger effectiveness (%) 

η  Efficiency (%) 

 

                                                        
1 Corresponding author. Tel: +1 519 253 3000. Email address: rupp@uwindsor.ca 
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Subscripts 

0  Reference 

c  Compressor 

D  Destruction 

e  Expander 

 
F  Fuel 

Q  Heat transfer 

P  Product 

W  Work 

1.0 INTRODUCTION 

Growing interest in electrical energy storage (EES) technologies highlights a 

changing paradigm in the management of electricity resources. As the electricity grid 

system experiences renewal and modernization, grid owners and operators are looking   

to implement large‐scale energy storage technologies. As well, governments have begun 

the process of mandating electricity storage into energy planning policies [1,2]. The 

benefits of EES are significant; since storage decouples electricity production and 

demand, EES systems provide many valuable grid support services which include 

shifting peak demands, regulating electricity flow, reducing transmission and 

distribution congestion, and integrating renewable energy generation [3–5]. 

An emerging technology in the field of EES is underwater compressed air energy 

storage (UWCAES). It is a novel application of conventional compressed air energy 

storage (CAES) where a series of air compressors and turbo-expanders are used to 

convert electrical energy to and from compressed air. The novelty of the UWCAES 

concept lies in the method of storing the compressed air; air is stored in a series of 

submerged distensible air accumulators placed near the beds of deep water bodies rather 

than in rigid reservoirs, such as underground geologic formations.  Building on the 

advantages of conventional CAES – low energy costs due to its inexpensive storage 

media and large storage capacity [6,7] – the UWCAES concept offers two important 

design characteristics: a scalable design and isobaric system charge and discharge 

profiles [8]. A few researchers have investigated the application of submerged, 

distensible air accumulators for UWCAES. Pimm and Garvey [9] determined an 
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optimum shape of a large-scale axisymmetric fabric structure by minimizing the ratio 

between the energy bag cost and stored energy. In their modelling, the stresses on the 

bag membrane were analyzed, and costs of the required material were calculated. Pimm 

et al. [10] later extended their analysis using finite-element analysis modelling. Cheung 

et al. [8] performed a field-study of the distensible air accumulator.  

Sustainability is an important concern in energy systems, particularly energy 

storage. As both energy demand and costs increase, solutions that attempt to address 

these two issues must be efficient and cost-effective. Therefore, it is critical that any 

solution designed must be optimized for these conditions. The aim of this paper is to 

present a multi-objective optimization of a theoretical UWCAES system using a genetic 

algorithm that determines an optimal system configuration based on three objectives: 

1. Maximizing overall round-trip efficiency of the system 

2. Minimizing the cost rate of the system 

3. Maximizing the operating profit of the system as it participates in energy 

arbitrage 

Using the principles of thermodynamics and economics, the UWCAES system was 

numerically simulated by major components and optimized for a series of design 

variables. Energy, exergy, and exergoeconmic analyses were performed to provide a 

foundation for evaluating the objectives. Furthermore, a sensitivity analysis of the 

economic effect of interest rate on optimal system configurations was studied. The goal 

of the numerical model presented in this study was to simulate the high-level 

performance of the overall system during an operation cycle; the findings of this paper 

can serve as a foundation for future low-level UWCAES plant design optimizations 

analyzed by highly refined models.   



 

54 
 

Optimization using multi-objective genetic algorithms (MOGA) is particularly 

useful in the design of real-world engineering systems, which typically have several, at 

often times conflicting, goals and objectives. While optimizations can be done 

individually for each objective, solutions may be dominated by certain objectives over 

others and the cost of time and resources required may prove prohibitively expensive. 

Instead, MOGAs can be employed to find solutions that balance the trade-offs of each 

objective in a timely and cost-effective manner by a stochastic search process that 

mimics biological evolution – particularly Darwin’s rule of natural selection [11]. 

The application of genetic algorithms in optimizing thermal system designs has 

been a relatively recent development dating back to mid-1990. In one of the earliest 

instances, Schmit et al. [12] applied a genetic algorithm (GA) to the design of an avionic 

compact high intensity cooler. The optimization objective was to balance fluid pressure 

drop and overall thermal resistance based on the geometric design of the cooler. The 

proliferation of thermoeconomic/exergoeconomic optimization that started during the 

same time period has led optimization studies applying genetic algorithms [13,14]. 

Toffolo and Lazzaretto [15] were among the first to introduce the methodology 

for performing multi-objective thermoeconomic optimization using evolutionary 

algorithms. In their study, the CGAM problem [16] was simultaneously optimized for 

exergetic efficiency and total cost rate. Their study was later extended to incorporate an 

environmental objective [17]. Researchers have went on to apply the multi-objective 

approach to other types of thermal energy systems, such as combined cycle power 

systems [18–21], and components, like heat pumps [22,23] and heat recovery steam 

generators [24].  

The application of genetic algorithm-type optimization technique to energy 

storage systems has been very limited to date. Among the few studies, Borghi et al. [25] 
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optimized a high-temperature superconducting magnetic energy storage device based on 

the amount of conductor and the device volume. An evolution strategy minimization 

algorithm was applied for two different optimization methods. Morandin et al. [26] 

applied a MOGA optimization to the design of a thermo-electric energy storage system, 

where investment costs were minimized and round-trip efficiency maximized.  

2.0 SIMULATING & ANALYZING UWCAES 

UWCAES is the latest development in energy storage technology. Using the 

principles established by conventional CAES systems operating in Huntorf, Germany 

[27] and McIntosh, Alabama, USA [28], in combination with aspects from the developing 

adiabatic CAES concept, UWCAES is poised to bring CAES applications to smaller scales 

while eliminating fossil fuel use. A general system consists of five main components – an 

air compressor, turbine, motor/generator, thermal recovery unit (TRU) and storage – 

that facilitate the compression and expansion of air. The UWCAES system process is 

given in Figure 1. 

The system operates in three distinct phases: charge, storage, and discharge. 

When the system is being charged to store energy, ambient air is drawn into the system, 

compressed, and stored in the submerged air accumulators. The TRU, consisting of heat 

exchangers and thermal storage, extracts and stores thermal energy generated during the 

compression process. While in storage, air pressure is maintained by the hydrostatic 

forces exerted on the air mass by the surrounding water [8]. When energy is needed, air 

is first discharged from storage, heated up by the TRU, and expanded through a 

generator-connected turbine, producing an electrical output. 
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Figure 1 - The general UWCAES process 

2.1 Thermal Performance 

The air storage pressure, pstorage , is a dictating factor of UWCAES systems. Air 

stored in the submerged accumulators is bounded hydrostatically to the pressure exerted 

by water at depth z , given in equation (1). 

pstorage = patm + ρwatergz   (1) 

The system’s energy capacity is dependent on the stored air mass, mair . The air 

mass can be calculated using the ideal gas law, given that flow of air in the system is an 

isobaric process and remains at low temperatures and pressures. It is assumed that air in 

storage reaches thermal equilibrium with the water temperature, Twater , at depth. 

mair =
pV( )storage
RTwater  

(2) 

Multistage configurations are typically used to achieve large pressure ratios 

during air compression and expansion. The pressure ratio for each stage, βi , can be 



 

57 
 

expressed by equation (3), assuming that all N stages in an air compressor or turbine are 

identical. 

βi = pdicharge pinlet( )1/N  (3) 

The process in which air is compressed or expanded is considered to be 

polytropic, given in equation (4). The polytropic exponent, n , can be calculated using 

equation (5) if the isentropic efficiency, ηisentropic , is known. 

pvn = const.  (4) 
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where the specific heat ratio k = cp cv  and has a typical value for air of 1.4. 

The performance of air compression and expansion in multistage configurations 

can be estimated using equations (6) and (7). The performance is quantified by air 

discharge temperature, T2 , and specific work, w . 
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 Having obtained the air mass required and specific work of the compression or 

expansion stage, the operational charge and discharge times, tcharge  and tdischarge , 

respectively, can be determined using equation (8) as a function of power requirements. 

P
wmt air=  (8) 



 

58 
 

 As it is with adiabatic CAES systems, thermal recovery is used to eliminate the 

need for fuel combustion when preheating air for expansion [29]. Heat exchangers used 

in thermal recovery must be adequately sized to regulate temperatures during the 

compression and expansion processes; this helps to protect and enhance performance of 

the pneumatic equipment. Methods prescribed in design resources [30, 31] can be used 

to size or evaluate heat exchanger performance. For the model in this study, the 

effectiveness-NTU method was used to size the flat plate heat exchangers during air 

compression and rate their performance during air expansion. The effectiveness-NTU 

method can be evaluated using equations (9) and (10), which express the heat exchanger 

effectiveness ε  and number of transfer units NTU , respectively. 

ε = q
qmax

 (9) 

NTU = UA
Cmin

 (10) 

2.2 Exergy Analysis 

Exergy analysis is a useful tool to gauge energy quality and identify the location 

and magnitude of losses in a system process. It provides greater detail on how 

components in a system perform – information that eludes energy analyses. In a thermo-

mechanical system, exergy of substances can be divided into three components – 

physical, kinetic and potential [32]. For this study, the latter two forms of exergy were 

considered negligible. 

An exergy rate balance, shown in equation (11), can be obtained by applying the 

first and second laws of thermodynamics for all sources of exergy, expressed as an exergy 

rate , acting in a control volume during a process.  
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xExExExExExE DQW
e

e
i

i
 Δ=−++−  (11) 

where the subscripts W, Q, and D denote exergy rates associated with work, heat 

transfer, and destruction, respectively. The terms of equation (11) are defined using 

equations (12) through (16). 

xmxE  =  (12) 

( ) ( )000 ssThhexex PH −−−==  (13) 

WxE W
 =  (14) 
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TxE Q

 
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

 −= 01  (15) 

genD STxE 
0=  (16) 

Equations (14) and (15) illustrates how exergy quantifies the usefulness or value 

of an energy source. As work energy can be converted into other forms of energy like 

heat, it is more useful, thus its exergy value is greater. Conversely, since heat energy is 

limited in its uses, it has a lower exergy value. Unlike energy, exergy is not conserved. Its 

destruction, as given in equation (16), is a useful quantity when analyzing a system, as it 

accounts for irreversibilities in a thermodynamic process.  System designs can be 

improved when exergy destruction is minimized. 

2.3 Exergoeconomic Analysis 

Exergoeconomics combines exergy analysis and economic principles on a 

component level to provide information crucial to the design and operation of a cost-

effective system. While thermodynamic analysis methods can determine losses through 

quantifying exergy destruction, it is more practical to associate a cost to the 
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inefficiencies. Each flow is defined by a cost rate , given in equation (17). The cost rate 

is the product of the exergy rate and the cost per unit exergy, c . 

 (17) 

Once all flow cost rates have been found, a cost balance is written for each 

component, defined by equation (18). 

 (18) 

In exergoeconomic analysis, two unique streams are defined – the fuel and 

product stream. The product refers to the stream produced from a system, while fuel is 

the stream consumed to generate the product.  These terms are used when defining the 

cost of exergy destruction. In equation (18), there is no cost term directly associated with 

exergy destruction; it is a hidden cost. When the exergy and exergoeconomic cost rate 

balances are combined, the expression for cost of exergy destruction can be expressed as 

either a function of the fuel or product, shown in equation (19) and (20), respectively. 

DFD xEcC  =  (19) 

DPD xEcC  =  (20) 

The choice of which exergy destruction cost rate equation is used depends on how fuel 

and product streams are interpreted. Equation (19) is used if the product stream is fixed; 

additional fuel would be required to produce the product when accounting for exergy 

destruction. Equation (20) assumes that the fuel stream is fixed; exergy destruction is 

considered as a loss of product. In practice, these equations approximate the average 

costs associated with exergy destruction with equation (19) yielding a lower estimate and 

equation (20) yielding a higher estimate in most applications [32]. The actual exergy 

destruction cost is somewhere between the two. 
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 The cost of equipment, Z , is comprised of two components – purchased and 

operating and maintenance (O&M) costs. It is incorporated into the exergoeconomic 

analysis as a cost rate , determined using the annualized (levelized) cost method [33], 

represented by the capital recovery factor CRF . The method distributes the equipment 

costs over the annual operational time across the system’s service life. This is expressed 

using equations (21) and (22). 

( )( )
H
CRFMCFZZ =  (21) 

CRF =
IR 1+ IR( )N

1+ IR( )N −1
 (22) 

3.0 MULTI-OBJECTIVE GENETIC ALGORITHM OPTIMIZATION 

Optimization routines seek to find optimal system solutions based on its design 

parameters. In the application of genetic algorithms, the design parameters are referred 

to as decision variables. Boundaries can be placed on the decision variable values to aid 

the search for optimum solutions. A design vector, referred to as an individual, is created 

from the decision variables and their respective boundaries. The generation of the 

individual is stochastic, as values of the decision variables are randomly assigned. 

Compared to other optimization methods, genetic algorithms are well suited for 

practical optimization problems, since real world problems typically have a discrete 

value restriction on the decision variables. As well, genetic algorithms can efficiently 

solve many types of optimization problems, handle discontinuous objective functions, 

and do not rely on initial solution guesses [34]. Genetic algorithms achieve these 

characteristics by evaluating objective (fitness) functions with a group of individuals, 

known as a population. Researchers have developed genetic algorithm variants over the 
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past few decades that mainly differ in how new individuals and populations are 

generated [35]. However, the basic working process of each variant remains the same, 

given in Figure 2. For this study, the multi-objective optimization was performed using a 

controlled elitist genetic algorithm [36]. It is a variant of NSGA-II, which is one of the 

more frequently used MOGAs [37]. 

 

Figure 2 - The basic process flow of a genetic algorithm 

3.1 Optimization Process 

The optimization begins with the generation of an initial population. The genetic 

algorithm will evaluate the population with respect to the objective functions to compute 

each individual’s fitness value. A sorting process based on the theory of natural selection 

is used. A pair of solutions are picked and compared against each other for the following 

two conditions: 

1. The first solution is no worse than the second solution in all objectives. 
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2. The first solution is strictly better than the second solution in at least one 

objective. 

If both conditions hold true, it can be said that the first solution dominates the second 

solution. The sorting process evaluates all solutions to determine those that are not 

dominated.  

Termination conditions are checked to determine if further iterations are 

required. These conditions can include limits on fitness, time, generations, and function 

tolerance. While no termination condition is satisfied, the genetic algorithm proceeds to 

generate an offspring population from the current population set. Otherwise, the 

optimization returns the non-dominated solutions, which are called Pareto-optimal 

solutions. A set of Pareto-optimal solutions is referred to as the Pareto-optimal front. An 

example of these two concepts is given in Figure 3. 

 

Figure 3 - A Pareto-optimal front 

The offspring population with new individuals is generated using the genetic 

operations of reproduction, crossover and mutation. In reproduction, the best solutions 

are copied over to the new population, whereas crossover generates a single offspring 

solution from a pair of parents in the current population. For mutation, offspring 
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solutions are created by replacing the value of a decision variable in an individual with 

the hope that the new individual is improved.  

Many different variants of multi-objective genetic algorithms exist; for this study, 

the elitist non-dominated sorting genetic algorithm, known as NSGA-II, was used. In 

NSGA-II, a crowded tournament selection operator enhances the genetic operations. It 

determines two metrics – a non-domination rank and local crowding distance – for each 

individual in the current population. The crowding distance is a measure of the empty 

search space around an individual. Two random individuals will compete in a 

tournament, with the winner being the one that has a better rank or same rank and 

greater crowding distance; this process is intended to mimic natural selection. Additional 

details on the NSGA-II procedure can be found in [34] and [38]. 

3.2 Multiple Criterion Decision Making 

Once the optimization is completed and a Pareto-optimal solution set is obtained, 

post-processing is performed to determine a single preferred solution. The pseudo-

weight vector approach described in [34] is one of a variety of post-optimal decision 

making methods used to determine an applicable solution when higher-level 

considerations (e.g. societal, political, etc.) are factored in. It is worth noting that there 

are a number of techniques available that can find a preferred solution while an 

optimization procedure is running. 

A pseudo-weight vector is calculated for each solution and is compared to user-

defined weights for all objectives. The preferred solution is one whose pseudo-weights 

are the closest to that of the user-defined weights. The pseudo-weights are based on the 

solution’s fitness values relative to the entire solution set. Equation (23) is used to 

calculate a solution’s weight wi of the ith objective function. 
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wi =
fi
max − fi x( )( ) fi

max − fi
min( )

fm
max − fm x( )( ) fm

max − fm
min( )

m=1

M


 (23) 

where M is the total number of objectives. 

4.0 CASE STUDY 

A 4 MWh UWCAES system with air accumulators situated 5 km offshore and 100 

m below the water surface in a fresh water lake was simulated and optimized using 

MATLAB R2012b and the Global Optimization Toolbox. The basic layout of the system is 

given in Figure 4, where mechanical equipment handling the energy conversion is 

situated on-shore is attached to a header pipe. The header pipe is assumed to run along 

the lake bedding and is attached to each accumulator using feeder pipes.  

 

Figure 4 - A UWCAES system with on-shore equipment 

4.1 Modelling Approach 

Each component of the UWCAES process was evaluated in the numerical model; 

the compression phase heat exchangers, thermal storage tank, and air accumulator 
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capacity were sized, whereas the performance of the air compressors, air expanders, 

expansion phase heat exchangers and header pipe were rated.  

The quantity of heat exchangers used in the system equalled to the number of 

compression stages and were designed for 95% effectiveness during system charge. The 

heat exchangers were of a flat-plate design operating in laminar counter-flow to 

minimize pressure loss and maximize fluid extraction temperature. The heat exchanger 

units served as intercoolers during air compression and pre-heaters during air expansion 

and were applied in reverse order during preheating. Thermal energy was stored in a 

60% ethylene glycol solution. 

Air was stored in a series of accumulators. The number of accumulators used was 

based on the required storage capacity and the accumulator unit volume. Heated 

ethylene glycol was stored in an insulated vertical cylinder storage tank with a diameter 

of 6 m and was evaluated for heat loss during storage. The capacity of the tank was sized 

based on the amount of stored fluid. 

4.2 System Variables 

The numerical model evaluated system designs based the decision variables as 

specified in Table 1. Additional variables required for analyzing a system design are given 

in Table 2; these variables remain constant throughout the optimization process. 

Table 1 - Decision Variables 

Variable Lower Boundary Upper Boundary

System power input, Pin (kW) 1000 3000 

Number of air compression stages, Nc 1 6 

Header pipe diameter, Dpipe (mm) 300 600 

Number of air expansion stages, Ne 1 6 

Charge-to-discharge time ratio*, TR 1 2 
* TR = tcharge/tdischarge 
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Table 2 - Additional analysis variables 

Variable Value 

Reference temperature, T0 (°C) 8 

Reference pressure, p0 (kPa) 101.325 

Water temperature at depth, Twater (°C) 8 

Air accumulator unit volume, Vacc (m3) 50 

System storage time, tstorage (hours) 8 

Header pipe roughness, e (mm) 0.003 

Compressor isentropic efficiency, ηc (%) 87.5 

Compressor motor efficiency, ηmotor (%) 95 

Expander isentropic efficiency, ηe (%) 87.5 

Expander generator efficiency, ηgen (%) 97 

System lifespan, N (years) 15 

Interest rate, IR (%) 10 

Maintenance cost factor, MCF 1.06 
 

Economic conditions, particularly interest rates, can affect the design of a system. 

To gauge the economic impact interest rates have on the optimization results and 

preferred system designs, a sensitivity analysis was performed for annual interest rates 

ranging from 5 to 15%. 

4.3 Cost Functions 

The system model was evaluated for energy, exergy, and exergoeconomics. The 

equipment cost functions used in the exergoeconomic evaluation are provided in Table 3. 

Quotes from various equipment manufacturers and cost index data sourced from the US 

Bureau of Labor Statistics were used to develop and modify cost functions found in 

previous literature. In general, the cost functions used show that costs increase as 

equipment scales or inputs increase. For the air compressor and expander cost functions, 

its costs are also dependant on the isentropic efficiency. 
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Table 3 - Equipment cost functions [26,32] 

Component Function 

Air accumulator Zacc = 6500Nacc  

Air compressor  

Air expander  

Flat plate heat exchanger ZHEX =146000 AHEX
2946







0.6

 

Pipe Zpipe = 3.6Lpipe exp 0.00864Dpipe( ) 

Thermal storage tank Ztank = 4500Vtank
0.6 +10000  

 

An hourly average electricity price profile over 24 hours, given in Figure 5, was 

developed using data for the year of October 2012/October 2013 in Ontario, Canada. The 

data was sourced from Ontario’s Independent Electricity System Operator. The modelled 

system calculated an average electricity price based on charge and discharge times, 

which corresponded to off-peak and peak prices, respectively.  

 

Figure 5 - Average hourly electricity prices over 24-hours 
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4.4 Optimization Objectives 

UWCAES system designs were optimized for three objectives and are given in Table 4. 

Table 4 – Summary of objective functions 

Parameter Function Goal 

Round-trip efficiency (%) ηroundtrip = Eout Ein( ) ×100%  Maximize 

Total cost rate ($/h)  Minimize 

Operating profit ($/cycle) OP = cpeak,avgtdischarge − coffpeak,avgtcharge  Maximize 

 

The first objective was to maximize system round-trip efficiency, which analyzed 

the amount of energy provided by the system to the amount used to store energy. It is an 

important parameter when comparing energy storage systems. The round-trip efficiency 

is based on the energy balance of the UWCAES system. 

The second objective was the minimization of a cumulative cost rate function 

consisting of exergy destruction and capital costs rates associated with every component 

in the system. A design with a lower total cost rate would imply better operational 

efficiency and lower capital costs. 

The last objective was maximizing operating profit that a system design would 

receive following an operation cycle. A cycle is the cumulative operational times for 

system charge, storage and discharge. The function determined favourable operation 

schedules based on electricity prices. 

4.5 Modelling and Optimization Considerations 

Several assumptions were made in the numerical system sizing and simulation. 

• All processes were steady-state and had steady flows. 

• Pressure losses associated with feeder pipes and pipe fittings were negligible. 
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• Ethylene glycol did not experience any thermal stratification during storage. 

• Costs were evaluated as present value. 

• Equipment did not have a salvage value at the end of the operating lifespan. 

5.0 RESULTS 

The Pareto-optimal solution set obtained from the multi-objective optimization 

model using the objectives outlined in section 4.4 is given in Figure 6. It can be seen that 

the Pareto-optimal solution set can form a three-dimensional surface. Figures 7 and 8 

provide some two-dimensional views of the three-dimensional scatter plot. It can be seen 

that the Pareto-optimal system designs had round-trip efficiencies ranging from 57.8% 

to 70.7%, total costs rates between $60.57 to $887.69 per hour, and operating profits 

from $14.01 to $63.54 per cycle.  

 

Figure 6 - Pareto-optimal solutions (IR = 10%) 
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Figure 7 - Total Cost Rate vs. Round-trip Efficiency 

 

 

Figure 8 - Operating Profit vs. Total Cost Rate 

In Figure 7, the observed Pareto front shows the correlation between round-trip 

efficiency and total cost rate. The total cost rate of the system increases marginally as the 

round-trip efficiency approaches approximately 67%. For round-trip efficiencies over 

67%, the total cost rate increases significantly. The Pareto front shows an approximate 

asymptotic value for maximum round-trip efficiency and minimum cost rate at 70.7% 

and $60.5/h, respectively. 
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Figure 8 provides a comparison between the operating profit and total cost rate of 

a system. In general, the graph follows a logarithmic trend with a maximum operating 

profit of approximately $63.6/cycle. The asymptotic values shown by the previous two 

figures demonstrate the maximum performance the modelled system can achieve. 

An interest rate sensitivity analysis on the Pareto-optimal solution set, given in 

Figure 9, shows the total cost rate rising with interest rates. This can be attributed to the 

higher capital costs for the components. Based on the optimization results, the Pareto-

optimal front along the total cost rate increases by a factor of approximately 1.3 for every 

5% increase in interest rate. The effect of interest rate on the round-trip efficiency and 

operating profit appears negligible. 

 

Figure 9 - Pareto-optimal solutions (IR = 5% to 15%) 
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The results chosen by the decision making method are summarized in Table 5. 

Preferred designs were chosen for each interest rate that was analyzed using the pseudo-

weight vector approach. The designs were determined with the assumption that all three 

optimization objectives modelled were equally important/weighted.  

Table 5 – Selected system design summary at different interest rates 

IR  (%) Pin  (kW) Nc  Dpipe  (mm) Ne  TR  

5 1968 3 360 4 1.0 

10 1967 3 320 3 1.0 

15 1967 3 340 3 1.0 
 

Table 6 - Performance of the selected system designs at different interest rates 

IR  (%) ηroundtrip  (%)  ($/h) OP  ($/cycle) 

5 68.88 162.57 54.06 

10 68.20 208.91 53.17 

15 68.81 277.83 53.67 
 

Common attributes in the design of a preferred system at the modelled interest 

rates can be observed. The preferred systems shows similar designed power input, 

number of air compression stages, and identical charge-discharge time ratios. Slight 

differences are seen in the header pipe diameter and number of air expansion stages. At 

5% interest rate, the preferred system used a bigger pipe diameter and an additional 

expansion stage when compared to the base case (IR = 10%). This configuration resulted 

in a marginally higher round-trip efficiency and operating profit, and a 22.2% decrease 

in total cost rate. It can be concluded that at lower interest rates, better components can 

be used. At 15% interest rate, the preferred system designed featured a bigger pipe size, 

corresponding to a 33.0% increase in the total cost rate from the base case. Accordingly, 

the round-trip efficiency and cycle operating profit increased slightly. 
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6.0 CONCLUSIONS 

Evaluating and optimizing the energy, exergy, and exergoeconomics of a 

UWCAES system has provided some valuable insight into its design. The energy analysis 

provides high-level details for system performance. The exergy analysis identifies the 

sources of energy loss. Exergoeconomics associates an economic value to the losses. 

When used in an optimization model, a balance between performance, energy losses, and 

costs can be made effectively. 

The results of the multi-objective optimization of a UWCAES with the objectives 

of maximizing round-trip efficiency and operating profit, and minimizing cost rate has 

yielded a set of optimum designs. These designs have slight variations for different 

interest rates. When averaging the preferred designs for the different interest rates, this 

study found a general optimum system design to use a power input of 1967 kW, three air 

compression stages, a 340 mm header pipe, three expansion stages, and a charge-

discharge time ratio of 1.0. These results are not absolute; the findings of the 

optimization model should serve as recommendations for a designer to determine an 

appropriate system design in a timely manner. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

1.0 SUMMARY AND CONCLUSIONS 

It is crucial for energy systems to be well designed in terms of performance, 

efficiency, and costs. As such, studies on the design and optimization of an UWCAES 

system have been presented. 

In Chapter 2, the working principles and advantages of the UWCAES concept 

over conventional CAES was discussed, and the application of a submerged, distensible 

air accumulator was examined. The pilot project conducted showed the performance of 

the balloon-shaped air accumulator when subjected to field conditions. It was 

determined that the charge and discharge behaviour of the accumulators were 

predictable with some variation in flow rates and pressures during the cycling of air. A 

slight air pressure drop during discharge was observed; this was most likely attributed to 

the vertical hydrostatic pressure difference between the top and bottom of the 

accumulator. It can be concluded that this behaviour can be mitigated by an improved 

accumulator design. 

 Chapter 3 presented a sensitivity analysis of design parameters on a theoretical 

UWCAES system. A basic system was modelled and analyzed for energy and exergy. 

Performance was quantified by the system’s overall round-trip efficiency and exergy 

destruction. Results of the parametric study revealed that the pipe diameter, air 

turbine/expander, air compressor and air storage depth exerted the greatest influence on 

system performance. While pipe diameter was the most sensitive, any increases in the 

parameter from the baseline yielded marginal gains. Instead, addressing the efficiency of 

the turbo-expanders and air compressors could attain significant performance gains. It is 



 

80 
 

worth mentioning that critical values were achieved in some design parameters, namely 

air storage depth. 

Optimal system configurations were determined in Chapter 4 using a multi-

objective optimization model employing a genetic algorithm. A numerical simulation of 

varying UWCAES system configurations was performed in MATLAB, with each 

configuration evaluated for energy, exergy, and exergoeconomics. Optimization 

objectives were formulated from the thermodynamic analyses that focused on 

maximizing round-trip efficiency and operating profit, and minimizing a total cost rate 

based on equipment capital costs and exergy destruction. For a 4 MWh UWCAES system 

located 5 km off-shore with air stored at a depth of 100 m below water surface, an 

averaged, preferred optimal system design was determined to use a power input of 1967 

kW, three air compression stages, a 340 mm header pipe, three expansion stages and a 

charge-discharge time ratio of 1.0.  

2.0 RECOMMENDATIONS 

The findings of the studies performed mainly serve as recommendations to the 

development of future UWCAES systems. As UWCAES is currently under development, 

the information presented in this thesis provides valuable insights based on engineering 

fundamentals to the novel system concept. While the analyses performed captured the 

general operating characteristics and performance of UWCAES systems, a few 

recommendations can be made to further enhance the completed analyses. 

In general, the systems modelled can be extended to include greater detail in 

components and subcomponents. Simplifications were made for a few elements as the 

analyses were conducted on a high-level. Integrating a lower-level examination of major 

components – such as the air compressor and turbo-expander – can increase the 
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accuracy of the results. However, it should be noted that certain components, like the 

ones aforementioned, might rely on proprietary and confidential information only 

available to component manufacturers. 

The exergoeconomic analysis and optimization discussed in Chapter 4 can be 

further improved using higher quality equipment cost information. The cost functions 

applied in the study were sourced from past literature and updated with a limited 

manufacturer data. Instead, subsequent models could use cost information sourced from 

commercial cost estimating tools and software. 

Sub-optimization routines can be used on UWCAES components to determine 

their optimum design/selection in the optimized system. The evaluation conducted in 

Chapter 4 focused on the top system-level, with components like the heat exchangers 

being designed based on constant properties. This can lead to improved optimization 

results, but may significantly increase computational expenses. 

Lastly, optimization should continually be performed on evolving UWCAES 

designs that implement new or alternative details, methods, or processes as our 

industrial partner realizes them. Innovations in the system process or components 

typically lead to enhancing overall performance; optimization is a useful tool in studying 

the innovations to assess feasibility. Ongoing innovation is key to the long-term success 

and competitiveness of UWCAES in a growing energy storage market.  
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APPENDIX B 

PERFORMANCE EVALUATION OF PREFERRED SYSTEM 

CONFIGURATION 

The following tables present the energy, exergy, and exergoeconomic evaluations 

of the modelled UWCAES system (described in Chapter 4, Section 4.0) with the 

following preferred system configuration (interest rate of 10%): 

• A power input of 1967 kW,  

• Three air compression stages,  

• A 320 mm header pipe,  

• Three expansion stages, and a  

• Charge-discharge time ratio of 1.0. 

 Please note that for Tables B-1 and B2 that a negative value for energy and exergy 

associated with work indicates its production/output from the system. 
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Table B-1 - Energy Analysis of Modelled system 

 

Air Glycol 
Specific 

Work 
(kJ/kg)

Inlet 
Temp. 

(K) 

Outlet 
Temp.

(K) 

Inlet 
Pressure

(kPa) 

Outlet 
Pressure

(kPa) 

Mass 
Flow 
Rate 

(kg/s)

Pressure 
Loss in 

HEX 
(kPa) 

Inlet 
Temp.

(K) 

Outlet 
Temp. 

(K) 

Mass 
Flow 
Rate 

(kg/s)
Compressor 1 281.15 364.26 101.33 226.67 7.39 -- -- -- -- 83.48 
Heat Exchanger 1 364.26 285.15 226.67 226.66 7.39 0.00 281.15 360.10 2.38 -- 
Compressor 2 285.15 369.44 226.66 507.04 7.39 -- -- -- -- 84.67 
Heat Exchanger 2 369.44 285.15 507.04 507.04 7.39 0.00 281.15 365.03 2.38 -- 
Compressor 3 285.15 369.44 507.04 1134.26 7.39 -- -- -- -- 84.67 
Heat Exchanger 3 369.44 285.15 1134.26 1134.26 7.39 0.00 281.15 365.03 2.38 -- 
Pipe (Charging) 285.15 281.15 1134.26 1082.33 7.39 -- -- -- -- -- 
Air Storage 281.15 281.15 1082.33 1082.33 -- -- -- -- -- -- 
Thermal Storage -- -- -- -- -- -- 363.39 361.31 -- -- 
Pipe (Discharging) 281.15 281.15 1082.33 1028.73 7.39 -- -- -- -- -- 
Heat Exchanger 3 281.15 357.69 1028.73 1028.73 7.39 0.00 361.31 285.29 2.38 -- 
Expander 1 357.69 295.70 1028.73 475.09 7.39 -- -- -- -- -62.27 
Heat Exchanger 2 295.70 358.59 475.09 475.08 7.39 0.00 361.31 299.26 2.38 -- 
Expander 2 358.59 296.44 475.08 219.40 7.39 -- -- -- -- -62.43 
Heat Exchanger 1 296.44 358.55 219.40 219.39 7.39 0.00 361.31 300.05 2.38 -- 
Expander 3 358.55 296.41 219.39 101.32 7.39 -- -- -- -- -62.42 
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Table B-2 – Exergy Analysis of Modelled System 

 
Air Glycol Work 

(Electricity) 
 (kW) 

Exergy 
Destruction 

(kW) 
Inlet  
 (kW) 

Outlet  
(kW) 

Inlet  
(kW) 

Outlet  
(kW) 

Compressor 1 0.00 556.93 -- -- 617.34 60.41 
Heat Exchanger 1 556.93 480.59 0.00 69.93 -- 6.41 
Compressor 2 480.59 1046.38 -- -- 626.13 60.34 
Heat Exchanger 2 1046.38 961.01 0.00 78.45 -- 6.92 
Compressor 3 961.01 1526.80 -- -- 626.13 60.34 
Heat Exchanger 3 1526.80 1441.43 0.00 78.45 -- 6.92 
Pipe (Charging) 1441.43 1413.28 -- -- -- 28.16 
Air Storage 1413.28 1413.28 -- -- -- -- 
Thermal Storage -- -- 75.61 71.99 -- 4.05 
Pipe (Discharging) 1413.28 1382.98 -- -- -- 30.30 
Heat Exchanger 3 1382.98 1448.63 71.99 0.22 -- 6.12 
Expander 1 1448.63 924.61 -- -- -460.49 63.53 
Heat Exchanger 2 924.61 989.07 71.99 4.03 -- 3.50 
Expander 2 989.07 463.89 -- -- -461.64 63.54 
Heat Exchanger 1 463.89 528.00 71.99 4.38 -- 3.50 
Expander 3 528.00 2.86 -- -- -461.60 63.54 
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Table B-3 – Exergoeconomic Analysis of Modelled System (Cost Per Unit Exergy) 

 
Air Glycol Work 

(Electricity) 
 ($/MWh) 

Inlet  
 ($/MWh) 

Outlet  
($/MWh) 

Inlet 
($/MWh) 

Outlet  
($/MWh) 

Compressor 1 0.00 39.07 -- -- 14.48 
Heat Exchanger 1 39.07 39.07 0 223.55 -- 
Compressor 2 39.07 38.87 -- -- 14.48 
Heat Exchanger 2 38.87 38.87 0 206.49 -- 
Compressor 3 38.87 38.81 -- -- 14.48 
Heat Exchanger 3 38.81 38.81 0 206.44 -- 
Pipe (Charging) 38.81 51.44 -- -- -- 
Air Storage 51.44 121.14 -- -- -- 
Thermal Storage -- -- 212.16 327.45 -- 
Pipe (Discharging) 121.14 121.14 -- -- -- 
Heat Exchanger 3 121.14 131.32 327.45 327.45 -- 
Expander 1 131.32 131.32 -- -- 163.15 
Heat Exchanger 2 131.32 144.75 327.45 327.45 -- 
Expander 2 144.75 144.75 -- -- 176.51 
Heat Exchanger 1 144.75 167.99 327.45 327.45 -- 
Expander 3 167.99 167.99 -- -- 199.75 
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Table B-4 – Exergoeconomic Evaluation of Modelled System (Cost Rate) 

 
Air Glycol Work 

(Electricity) 
($/h) 

Exergy 
Destruction

($/h) 

Capital 
Cost 
($/h) 

Inlet  
($/h) 

Outlet 
($/h) 

Inlet 
($/h) 

Outlet 
($/h) 

Compressor 1 0 21.76 -- -- 8.94 2.36 15.18 

Heat Exchanger 1 21.76 18.78 0 15.63 -- 1.43 14.08 

Compressor 2 18.78 40.68 -- -- 9.07 2.35 15.18 

Heat Exchanger 2 40.68 37.36 0 16.20 -- 1.43 14.31 

Compressor 3 37.36 59.26 -- -- 9.07 2.34 15.18 

Heat Exchanger 3 59.26 55.95 0 16.19 -- 1.43 14.31 

Pipe (Charging) 55.95 72.70 -- -- -- 1.45 18.20 

Air Storage -- -- -- -- -- -- -- 

Thermal Storage -- -- -- -- -- -- -- 

Pipe (Discharging) 171.21 167.54 -- -- -- 3.67 -- 

Heat Exchanger 3 167.54 190.24 23.57 0.07 -- 0.80 -- 

Expander 1 190.24 121.42 -- -- -75.13 10.37 16.68 

Heat Exchanger 2 121.42 143.17 23.57 1.32 -- 0.51 -- 

Expander 2 143.17 67.15 -- -- -81.48 11.22 16.68 

Heat Exchanger 1 67.15 88.70 23.57 1.43 -- 0.59 -- 

Expander 3 88.70 0.48 -- -- -92.20 12.69 16.68 
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