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Abstract

Abstract. Given a super-commutative ring A = A0⊕A1, does (A0, A1A1) always
have a divided power structure? We give an example proving the answer is no. There
exists a super-commutative ring SR = SR0⊕SR1 with no divided power structure
possible on (SR0, SR1SR1). Also, we study super divided power structures and the
properties they force onto divided power structures on the even part of a ring-ideal
pair. We show that there can exist a divided power structure on the even part that
is incompatible with the super divided power structure.

Also, just for fun, we explore the phenomenon of upper-Sierpinski-triangular
matrices and where they manifest.
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CHAPTER 1

Introduction

In 2006 a question arose from a paper by Albert Schwarz and Ilya Shapiro[17].
Schwarz and Shapiro recognized that many super-rings have divided power structures
even when the analogous commutative rings have none. For example

(
Z[x, y], (xy)

)
does not have a divided power structure as there is generally no way to divide, but
it’s analogous super-ring

(
(Z[ξ1, ξ2])0 , (ξ1ξ2)

)
does have a divided power structure,

since the powers of the nilpotent elements are zero, and zero is the only integer that
may be divided by any other integer and remain an integer.

In this thesis we give an example of a Fp super-algebra A = A0 ⊕ A1 with no
divided power structure on the ideal A1A1, answering the question in the negative.
There are super-rings without divided power structure. Before getting to the example,
as an introduction we shall go over the mathematical history that led to the question
being asked in the first place.

1.1. De Rham Cohomology

De Rham cohomology was (somewhat paradoxically) discovered before cohomol-
ogy as Georges de Rham demonstrated it in his thesis in 1931 while the idea for co-
homology was introduced by Andrey Kolmogoroff and J.W. Alexander independently
at the topology conference in Moscow in 1935 [13, p. 801, 731]. De Rham wrote his
theorem in terms of homology groups. It was only in the years after the introduction
of cohomology theory that it was recognized as an antecedent, the premonition of
what was to come [13, p. 580].

De Rham was responding to a conjecture made by Elie Cartan dealing with the
complex of exterior differential forms on a smooth manifold M [13, p. 801]. That is,
something like this:

0→ Ω0(M)
d1→ Ω1(M)

d2→ Ω2(M)
d3→ Ω3(M)

d4→ · · ·

where Ωn(M) is the module of n-forms on M , and d is the exterior derivative1.
Cartan’s conjecture dealt with the relationship between exact and closed differen-
tial forms. An n-form, ω ∈ Ωn(M), is called exact if there exists an (n − 1)-form,

1Today this is called the De Rham complex.

1



1.1. DE RHAM COHOMOLOGY 2

ω′ ∈ Ωn−1(M), such that d(ω′) = ω, while an n-form ω ∈ Ωn(M) is called closed if
d(ω) = 0. Part of the definition of a complex is the requirement that d2 = 0, which
implies that all exact forms are necessarily closed. The converse of this in Rn is er-
roneously referred to as the Poincaré Lemma, when it really should be attributed to
Vito Volterra2 [7, 16, p. 63, 526 resp.].

Poincaré Lemma. IfM is a manifold which is smoothly contractible to a point (such
as Rn), and ω is a closed form on M , then it is exact.

The de Rham cohomology groups

Hn
dR (M) =

ker (dn)

im (dn−1)

measure how much a manifold fails to follow the Poincaré Lemma. That is, in what
way closed forms on M are or are not exact.

De Rham proved Cartan’s Conjecture, by showing what is now known as:

De Rham’s Theorem. Let M be a smooth manifold, let ∆n(M) be the free abelian
group generated by the n-simplices and let Hn(M ;R) be the nth simplicial cohomology
group. The homomorphism

Ψ : Ωn (M)→ ∆n (M)

where Ψ(ω) : ∆n (M)→ R is given by

Ψ (ω) (σ) =

ˆ
σ

ω

induces an isomorphism

Ψ∗ : Hn
dR (M)→ Hn (M ;R) .

Here are some examples of de Rham cohomology that will be important to keep
in mind as we continue.

Example 1. De Rham cohomology of a point. A function from a point x to R is
completely defined by its value at x. It is obviously a constant function. So we have
Ω0(x) = R, and for n ≥ 1,Ωn(x) = 0. So our complex looks like:

0 −→ R −→ 0 −→ · · · .

Thus H0
dR(x) = R, and for n ≥ 1, Hn

dR(x) = 0.

Example 2. De Rham cohomology of a line. The set of smooth functions from a line
l to R is just C∞ from the undergrad days. We have Ω0(l) = C∞, Ω1(l) = C∞dx,
2Of course, since it has been called that for almost a century, to call it anything else now would lead
to confusion. We can not beat them, so we will join them.
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and for n ≥ 2, Ωn(l) = 0. Giving us a complex:

0 −→ C∞
d1−→ C∞dx

d2−→ 0 −→ · · · .

So H0
dR(l) = ker(d1) ' R, since the derivative kills only the constant functions. Next

we need to find H1
dR(l) =

ker(d2)

im(d1)
. Obviously ker(d2) = C∞dx, and the Fundamental

Theorem of Calculus gives us for every smooth function f , we have F (x) =
´ x
0
f(t)dt

is a smooth function with d(F (x)) = f(x)dx, so every function is exact and im(d1) =

C∞dx. So H1
dR(l) =

ker(d2)

im(d1)
=
C∞dx

C∞dx
= 0.

Example 3. De Rham cohomology of a circle. The set of smooth functions from
a circle S1 to R is isomorphic to the set of smooth periodic functions with period
length P . We shall use the symbol C∞P to represent this set of functions. We now
have Ω0 (S1) = C∞P , Ω1 (S1) = C∞P dx, and for n ≥ 2,Ωn (S1) = 0. Giving us a
complex:

0 −→ C∞P
d1−→ C∞P dx

d2−→ 0 −→ · · · .

As before H0
dR(S1) = ker(d1) ' R, as the functions killed by d1 are exactly the

constant functions. Now H1
dR(S1) =

ker(d2)

im(d1)
, and we know ker(d2) = C∞P dx, but

what is im(d1)? A form f(x)dx ∈ C∞P dx is exact if F (x) =
´ x
0
f(t)dt is in C∞P ,

which would only be true if F (x) = F (x + P ). So specifically, when x = 0 we get´ P
0
f(t)dt =

´ 0
0
f(t)dt = 0, which is sufficient as f(x) is itself P periodic. Thus

im(d1) = {f(x)dx ∈ C∞P dx|
´ P
0
f(x)dx = 0}. Now, if g(x)dx is not an exact form we

can find a constant c =
´ P
0
g(x)dx such that now (g(x)− c)dx is an exact form. Thus

H1
dR(S1) =

ker(d2)

im(d1)
= R.

So the line has the same cohomology as the point, but the circle does not. This
is because the line is contractible to the point, while the circle is not.

The Difference between the Real and Finite Worlds: Frobenius. It is
important to note that de Rham cohomology is only defined on smooth manifolds,
which requires the ground field to be either R or C. If we try to use it on a variety over
the finite field Fp, where p is a prime, then we run into trouble with our calculations.
For instance, consider the 1-form xp−1dx. Obviously it is closed, but is it exact? If
our base field had characteristic 0, we could say yes, as then d(1

p
xp) = xp−1dx; but

since our field has characteristic p, we are not able to divide by p. Notice that in
characteristic p the function x 7→ xp is an endomorphism. This is commonly called
the Frobenius endomorphism, after Ferdinand George Frobenius [18]. In the R-world
xp−1dx is a part of the cohomology of a line; in Fp it is not as intuitive what a “line”
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is but if such a thing exists we expect it to be contractible. So we want it to have the
same cohomology of a point, where every closed form is also exact3, but xp−1dx is a
closed form that fails to be exact. The solution to this problem would not arise for
at least another two decades.

1.2. Increasing Abstraction

The story of cohomology begins on manifolds, but it does not end there. Over
the next few decades more cohomology theories developed, and topologists began to
realize that they were, in fact, invariants of algebraic systems [13, p. 804]. The
creation of category theory by Samuel Eilenberg and Saunders Mac Lane in 1945 was
precipitated in part by a desire to connect the various homology and cohomology
theories [8, 13, p. 911 and p. 805 resp.]. Category theory leads to extraordinary ab-
straction by axiomatizing essential properties of known algebraic objects and keeping
only what is necessary for a given construction [8, p. 791]. Alexander Grothendieck
developed the ideas of abelian categories and additive functors to unify the cohomol-
ogy of sheaves and the cohomology of groups [10]. Six years later he had developed
an algebraic version of de Rham cohomology which he wrote about in a letter to
Michael Atiyah, (which was published in 1966) [11]. It was from this algebraic de
Rham cohomology that Grothendieck began to develop cohomology theories for fields
with positive characteristic.

1.3. Crystalline Cohomology

As we have already mentioned in 1.1, de Rham cohomology leaves something to be
desired. Over fields of characteristic 0, everything works out, but in fields of positive
characteristic there are problems whose situation require a different approach. There
have been a number of cohomology theories developed to solve the problems. The
driving motivation was provided by the Weil conjectures.

In 1949 André Weil developed four conjectures about zeta functions of algebraic
varieties over a p characteristic field Fq analogous to the Riemann hypothesis for the
Riemann zeta function [20]. It was know that given a sufficiently “good” cohomology
theory4 the Weil conjectures could be proven [3, 1.2]. The first to have success
was a p-adic cohomology argument put forward by Bernard Dwork in 1960 [9]. It
proved the first of the Weil conjectures. The next successful cohomology theory was
Grothendieck’s `-adic cohomology, (where ` is any prime other than p), which led
to the proofs of the next two Weil conjectures but had the drawback of killing off
information about p-torsion [3, 1.7]. In order to keep this information crystalline
3That is, where the Poincaré Lemma holds.
4“Good” meaning satisfying the Weil cohomology axioms, which can be found in [3, 1.2 - 1.4].
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cohomology was developed. In order to complete the Weil conjecture story we should
point out that Grothendieck’s student Pierre Deligne proved the final of the four Weil
conjecture in 1974, the same year Pierre Berthelot, another student of Grothendieck’s,
completed his thesis fully defining crystalline cohomology [5].

The entire construction of crystalline cohomology is complicated and uses ma-
chinery such as Grothendieck’s topos and a great deal of category theory to construct
what is referred to as the crystalline site. This part of the theory is important for
establishing crystalline cohomology as an invariant, but it does not play a direct role
in our research. We are instead interested in how Berthelot got around the Frobenius
problem highlighted earlier; ensuring the Poincaré Lemma (1.1) still holds in positive
characteristic. The trick he used involved divided power structures [2].

1.4. Divided Power Structures

Divided power structures were presented by Henri Cartan in 1955 as part of the
seventh Séminaire H. Cartan at the École normale supérieure in Paris [4]. His defi-
nition is essentially identical to the definition used by Grothendieck’s student Pierre
Berthelot in his thesis published in 1974 [2]. We will follow Berthelot’s definition.

Definition 4. A divided power structure (or DP structure) is a sequence of maps
(γn) on an ideal I of a ring R. We say that for (R, I) to have a DP structure (R, I, γ)

the maps must satisfy the following rules.

(1) ∀x ∈ I, γ0(x) = 1, γ1(x) = x, γi(x) ∈ I if i ≥ 1

(2) ∀x, y ∈ I, γk(x+ y) =
∑
i+j=k

γi(x)γj(y)

(3) ∀λ ∈ R, ∀x ∈ I, γk(λx) = λkγk(x)

(4) ∀x ∈ I, γi(x)γj(x) = (i+j)!
(i)!(j)!

γi+j(x)

(5) ∀x ∈ I, γp(γq(x)) = (pq)!
p!(q!)p

γpq(x)

The maps are defined in such a way as to mimic the behaviour of
xn

n!
in (Q[x], (x)).

With a little work it becomes clear that k!γk(x) = xk is true for all k and all x ∈ I.

Notice that d
(
xn

n!

)
=

xn−1

(n− 1)!
dx. So similarly, for any differential graded algebra

with a DP structure we define d (γn(x)) = γn−1(x)dx. If a ring of characteristic
p has such a structure our concerns about the exactness of xp−1dx are soothed, as
d (γp(x)) = γp−1(x)dx, and since xp−1 = (p − 1)!γp−1(x) ≡p −γp−1(x), we know that
xp−1dx is exact and is the image of −γp(x). Divided power structures are usually
notated as a triplet: (R, I, γ), the ring, the ideal, and the maps. In 1963 Norbert
Roby published a construction of a Z graded divided power algebra Γ(M) for any
A-module M , such that Γ0(M) = A, Γ1(M) = M , and there is a guaranteed divided
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power structure [15]. Using this, Berthelot was able to create the construction in the
following theorem. We shall call this construction the divided power envelope.

Theorem 5. [3, Theorem 3.19] Let (A, I, γ) be a DP algebra and let J be an ideal in
an A-algebra B. Then there exists a B-algebra DB,γ(J) with a D.P. ideal (J̄ , ε), such
that JDB,γ(J) ⊆ J̄ , such that ε is compatible with γ, and with the following universal
property: for any B-algebra C containing an ideal K which contains JC and with a
DP structure δ compatible with γ, there is a unique D.P. morphism (DB,γ(J), J̄ , ε) −→
(C,K, δ) making the diagram commute:(

DB,γ(J), J̄ , ε
)

''OOOOOO

(B, J) //

ψ
88ppppppppppp

(C,K, δ)

(A, I, γ)

f

ggNNNNNNNNNNN g

77oooooooooooo

Using this construction Berthelot creates a way to “thicken” a variety V over Fp, by
taking a Zariski open neighbourhood of V which allows for a divided power structure.

1.5. Koszul-Tate Resolutions

An additional application of divided power structures is in Koszul-Tate resolu-
tions. These are projective resolutions that were introduced by John Tate in 1957 as
a generalization of the complex discovered by Jean-Louis Koszul [19]. The resulting
complex was used by Friedemann Brandt, Glenn Barnich, and Marc Henneaux to
calculate BRST cohomology, which we understand might mean something to physi-
cists [1, section 5.].

Here is Tate’s definition of a differential graded algebra.

Definition 6. Given a ring R, a differential graded algebra X is an R-algebra satis-
fying the following axioms.

(1) X is Z graded. That is X =
⊕

i∈ZXi, is the direct sum of R-modules with
XiXj ⊆ Xi+j.

(2) Xi = 0 for i < 0, X0 = R, and Xi is an R-module for i > 0.
(3) X is strictly skew-commutative5, that is:

xy = (−1)ijyx, for x ∈ Xi and y ∈ Xj .

5We would call this super-commutative.
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(4) The map d is a skew derivation of degree −1, that is, dXi ⊆ Xi−1 for all i,
d2 = 0, and

d(xy) = (dx) y + (−1)i x (dy) , for x ∈ Xi and y ∈ Xj .

So we have a complex:

· · · di+1−→ Xi
di−→ Xi−1

di−1−→ · · · d3−→ X2
d2−→ X1

d1−→ X0 = R −→ 0

Notice that this is almost the same as a de Rham complex only d is going in
the opposite direction. Indeed, if a de Rham complex has finite length then through
changing the index we can fit such a complex into Tate’s definition.

Tate is concerned with killing elements which are closed, but not exact; or more
generally, elements in ker(di−1) that are not in im(di). In order to kill a closed
element of degree ρ− 1 an element T of degree ρ is adjoined to our complex creating
a new complex Y with the property that d(T ) = t. The proper way to go about

doing this depends on the parity of ρ. If ρ is odd, then Y =
X[T ]

(T 2)
, and Yi =

Xi +Xi−ρT . The multiplication rules around T are defined by the facts that T 2 = 0

and Tx = (−1)ixT for x ∈ Xi. The derivation also is forced to conform to the rule
d(xT ) = (dx)T + (−1)ixt for x ∈ Xi.

If ρ is even the construction gets more interesting. This is where divided powers
come onto the scene. Set Y = X〈T 〉 where X〈T 〉 is the divided power polynomial
ring6, with basis elements T (i), where

T (i)T (j) =
(i+ j)!

i!j!
T (i+j) .

Notice that we have now forced a divided power structure on the ideal 〈T 〉, with
γk
(
T (i)
)

= T (i+k). The grading of Y now follows the rule

Yi = Xi +Xi−ρT
(1) +Xi−2ρT

(2) + · · ·

and the derivation follows the rules d(T (k)) = T (k−1)t, and d(xT (k)) = (dx)T (k) +

(−1)ixT (k−1)t for x ∈ Xi.
By repeating this process (possibly infinitely) we create a complex with all ho-

mology groups equal to zero, save the first which is equal to
R

im(d1)
[19].

1.6. Super-Commutative Rings

Without drawing attention to it we have already dealt with some super-commutative
rings. The de Rham complex is an example of a differential graded algebra, as were
the rings mentioned in 1.5, and DGAs are examples of super rings. Super rings are
6If we set Y = X[T ], we run into the same problem as discussed in 1.1.
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defined as follows. A super ring is a ring R with a Z
2Z grading such that R = R0⊕R1.

In a super ring the elements of R1 (the “odd” elements) are anti-commutative, that is

∀a, b ∈ R1, ab = −ba ,

and the elements of R0 (the “even” elements) commute with everything, i.e.

∀x ∈ R0,∀r ∈ R, xr = rx .

The prefix “super” comes from physics, as in “supergravity” and “supersymmetry”;
theories that use anti-commutative Grassmann dimensions [12].

1.7. Our Question

In 2006 Albert Schwarz and Ilya Shapiro published a result that provides a way to
avoid some of the giant machinery in crystalline cohomolog [17]. Rather than using
Berthelot’s method with the divided power envelope they created an infinitesimal
“thickening” by passing into the super-world. Since the super-rings they used have a
natural divided power structure, they were able to avoid the grief of the crystalline
site and create a de Rham style cohomology that is easier to compute. During the
refereeing process for their paper, a question came up: Given a super ring A = A0⊕A1

is there is always an obvious DP structure for (A0, A1A1)? For example
(
Z[xi], (xi)

)
has no DP structure, but

(
(Z[ξi])0 , (ξi)

2
)
does. As a demonstration of this take 2n

different odd variables, ξ1, . . . , ξ2n, pair them up and sum them ξ1ξ2 + · · ·+ ξ2n−1ξ2n.
Now by the multinomial theorem (ξ1ξ2 + · · ·+ ξ2n−1ξ2n)n = n!ξ1ξ2 · · · ξ2n−1ξ2n, so the
idea of dividing powers of by n! does actually make sense since any nth power will
be divisible by n!. This gives some reason to believe that super rings might always
be so “nice”, but this is not case. We will show an example of a super ring without
this property.



CHAPTER 2

The Koblitz Example

In Berthelot and Arthur Ogus’ explanation of divided power structures in [3] they
give an example, attributed to Neil Koblitz, of a ring that only just fails to have a
DP structure. They leave the proof as an exercise. Here is that exercise completed.

Let
K =

Fp[x1, . . . , x6]
(xp1, . . . , x

p
6, x1x2 + x3x4 + x5x6)

and I = (x1, . . . , x6) ⊂ K. We will show that (K, I) has no divided power structure.
To do this we shall assume that it does have some divided power structure γ and we
will divine a contradiction.

Now, by rule 3, γp(−x1x2) = xp1γp(−x2) = 0 but following divided power rule 2
we get1,

γp(−x1x2) = γp(x3x4 + x5x6)

=

p∑
i=0

γi(x3x4)γp−i(x5x6)

=

p−1∑
i=1

(x3x4)
i

i!
· (x5x6)

p−i

(p− i)!

=

p−1∑
i=1

(−1)i(x3x4)
i(x5x6)

p−i

i
.

We will demonstrate that
p−1∑
i=1

(−1)i(x3x4)
i(x5x6)

p−i

i
is not zero in our ring.2 We

will consider K as a graded ring, but first some lemmas about graded rings need to
be shown.

Lemma 7. Let R• be a G-graded ring where G is an abelian group, and f ∈ Rk, then(
R•
(f)

)
g

=
Rg

Rgk−1f
.

Proof. R• is a G-graded ring means R• =
⊕

g∈GRg, where each Rg is an abelian
additive group, and x ∈ Rg, y ∈ Rh ⇒ xy ∈ Rgh.
1See Appendix A, Fact 21.
2Which means that γp is not well-defined on K.

9
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Since f ∈ Rk, then (f) = {rf : r ∈ R•}. The homogeneity of f is an important
restriction; it allows us to easily place homogenous multiples of f . It is because of this
that (f) =

⊕
g∈G((f)∩Rg). Each of these ((f)∩Rg) is the set of elements from (f) of

degree g in R•; that is, the elements rf, where r ∈ Rgk−1so that rf ∈ Rgk−1k = Rg.
So now,

R•
(f)

= {q + (f) : q ∈ R•}

=
⊕
g∈G

{qg + (f) ∩Rg : qg ∈ Rg}

=
⊕
g∈G

{qg + {rf : r ∈ Rgk−1} : qg ∈ Rg}

=
⊕
g∈G

{qg +Rgk−1f : qg ∈ Rg}

=
⊕
g∈G

Rg

Rgk−1f
.

Thus
(
R•
(f)

)
g

=
Rg

Rgk−1f
. �

Lemma 8. Let R• be a G-graded ring, and let I be a finitely generated ideal say
I = (f1, . . . , fs) and ∀i ∈ {1 . . . s}, fi ∈ Rki. Then(

R•
I

)
g

=
Rg∑s

i=1Rgk−1
i
fi

.

Proof. We know that I∩Rg =
{∑s

i=1 rifi : ri ∈ Rgk−1
i

}
by the same logic as lemma 7,

so

R•
I

= {q + I : q ∈ R•}

=
⊕
g∈G

{qg + I ∩Rg : qg ∈ Rg}

=
⊕
g∈G

{
qg +

{
s∑
i=1

rifi : ri ∈ Rgk−1
i

}
: qg ∈ Rg

}

=
⊕
g∈G

{
qg +

s∑
i=1

Rgk−1
i
fi : qg ∈ Rg

}

=
⊕
g∈G

Rg∑s
i=1Rgk−1

i
fi

.
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Thus
(
R•
I

)
g

=
Rg∑s

i=1Rgk−1
i
fi
. �

Now we have all the machinery in place to prove the following.

Theorem 9. Let K =
Fp[x1, . . . , x6]

(xp1, . . . , x
p
6, x1x2 + x3x4 + x5x6)

and I = (x1, . . . , x6) ⊂ K.

Then (K, I) has no divided power structure.

Proof. First we endow R• = Fp[x1 . . . x6] with a Z3-grading as follows:

Variable x1 x2 x3 x4 x5 x6

Degree (1, 0, 0) (−1, 0, 0) (0, 1, 0) (0,−1, 0) (0, 0, 1) (0, 0,−1)

Now, R~0 =
{∑

r(i,j,k)x
i
1x

i
2x

j
3x

j
4x

k
5x

k
6 : r(i,j,k) ∈ Fp

}
and

R(n,0,0) =

R~0xn1 n ≥ 0

R~0x
−n
2 n < 0

,

Take a ring A0 over Fp with I0 an ideal of A0 such that A0 = Fp ⊕ I0 and (I0)
2 = 0.

That is, ∀x, y ∈ I0, xy = 0. �

Example 10. Let L : I0 → I0, be a (non-zero) linear map. There is a DP structure
on (A0, I0), constructed as follows:

For all x ∈ I0 set

γ0(x) = 1 ,

γ1(x) = x ,

γpm(x) = Lm(x) ,

and for k, not a power of p,

γk(x) = 0 .

Proof.

R(0,n,0) =

R~0xn3 n ≥ 0

R~0x
−n
4 n < 0

,

R(0,0,n) =

R~0xn5 n ≥ 0

R~0x
−n
6 n < 0

.
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By lemma 8(
R•

(xp1, . . . , x
p
6)

)
~0

=
R~0

R(−p,0,0)x
p
1 +R(p,0,0)x

p
2 +R(0,−p,0)x

p
3 +R(0,p,0)x

p
4 +R(0,0,−p)x

p
5 +R(0,0,p)x

p
6

=
R~0

R~0x
p
2x

p
1 +R~0x

p
1x

p
2 +R~0x

p
4x

p
3 +R~0x

p
3x

p
4 +R~0x

p
6x

p
5 +R~0x

p
5x

p
6

=
R~0

R~0x
p
1x

p
2 +R~0x

p
3x

p
4 +R~0x

p
5x

p
6

.

Now we can see
Fp[a, b, c]
(ap, bp, cp)

'
(

R•
(xp1,...,x

p
6)

)
~0
. Call this isomorphism φ. So we have

φ(a) = x1x2, φ(b) = x3x4, φ(c) = x5x6 .

For the sake of simpler notation let us define A• = R•
(xp1,...,x

p
6)
.

Let
f = φ(a+ b+ c) = x1x2 + x3x4 + x5x6 ∈ A~0 .

Now we have A•
(f)

= K. So we can now have a grading on K.
By lemma 7

K~0 =

(
A•
(f)

)
~0

=
A~0
A~0f

=
Fp[a, b, c]

(ap, bp, cp, a+ b+ c)

=
Fp[b, c]
(bp, cp)

.

So say ω :
Fp[b, c]
(bp, cp)

→ K~0 is the isomorphism with ω(b) = x3x4 and ω(c) = x5x6.

Now,

ω

(
p−1∑
i=1

(−1)i(b)i(c)p−i

i

)
=

p−1∑
i=1

(−1)i(x3x4)
i(x5x6)

p−i

i
= γp(x3x4 + x5x6) .

Over Fp, we know
Fp[b, c]
(bp, cp)

has a basis {bicj|i, j < p}. Since

p−1∑
i=1

(−1)ibicp−i

i
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is a non-zero linear combination of basis elements it is not zero in
Fp[b, c]
(bp, cp)

, thus

ω

(
p−1∑
i=1

(−1)ibicp−i

i

)
= γp(x3x4 + x5x6)

is not zero in K. But according to the rules of divided powers,

γp(x3x4 + x5x6) = γp(−x1x2) = 0 .

So we have the contradiction we have searched for, showing that (K, I) does not have
a DP structure. �



CHAPTER 3

Generalizing to Super Rings.

As already mentioned, a super ring R is a
Z
2Z

-graded ring with homogenous
elements in R0 commuting with everything and homogenous elements of R1 anti-
commuting. That is, for ξi, ξj ∈ R1 we have ξiξj = −ξjξi and for x ∈ R0 and y ∈ R
we have xy = yx. (It is traditional to denote elements in R1 with ξ’s.) Note that anti-
commutativity implies that for any ξ in R1 we have ξ2 = 0. What is the use of super
rings in the context of divided powers? As an example, remember that (Z [xi] , (xi))

has no divided power structure. It happens that (Z [ξi] , (ξi)) does (more technically
if R = Z [ξi] then (R0, R1R1) has a divided power structure) [17]. A natural question
then arises: is it the case that for any super ring A we have a divided power structure
on (A0, A1A1)? To study this question it is necessary to fully define what a divided
power structure is on a super ring.

3.1. Super Divided Power Structures

Definition 11. Given a super ring R = R0 ⊕ R1 and an ideal I = I0 ⊕ I1 a super
divided power structure can be defined as follows.

We start with a traditional DP structure on the even part of the ideal, with one
extra rule (6) to explain how the super structure interacts with the divided power
maps.

(1) ∀x ∈ I0, γ0(x) = 1, γ1(x) = x, γi(x) ∈ I0 if i ≥ 1

(2) ∀x, y ∈ I0, γk(x+ y) =
∑
i+j=k

γi(x)γj(y)

(3) ∀λ ∈ R0,∀x ∈ I0, γk(λx) = λkγk(x)

(4) ∀x ∈ I0, γi(x)γj(x) = (i+j)!
(i)!(j)!

γi+j(x)

(5) ∀x ∈ I0, γp(γq(x)) = (pq)!
p!(q!)p

γpq(x)

(6) ∀ξ1, ξ2 ∈ I1,∀k > 1, γk (ξ1ξ2) = 0

We are not the first to define a “super-rule” like this. When Henri Cartan first
presented DP structures he included a similar rule for differential graded algebras.

“Pour k ≥ 2, γk(xy) = 0 si deg(x) et deg(y) impairs.”[4]

This is essentially what we have for (6).
14
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One might expect that given a DP structure on the even part of a ring, that would
necessarily give rise to a super DP structure. It turns out that this is not the case.

Example 12. Take a ring A0 over Fp with I0 an ideal of A0 such that A0 = Fp ⊕ I0
and (I0)

2 = 0. That is, ∀x, y ∈ I0, xy = 0.
Let L : I0 → I0, be a (non-zero) linear map. There is a DP structure on (A0, I0),

constructed as follows:
For all x ∈ I0 set

γ0(x) = 1 ,

γ1(x) = x ,

γpm(x) = Lm(x) ,

and for k, not a power of p,

γk(x) = 0 .

If this is indeed a DP structure (which we will prove in a moment) it cannot
be extended to a super DP structure. That is, if we consider it as a divided power
structure on (A0, I0) for some (non-trivial) super ring A = A0 ⊕A1, then it does not
follow the “super rule1”. We know that the ideal A1A1 ⊂ I0 since A0 = Fp ⊕ I0 so if
there is a DP structure the super rule should apply on the elements of A1A1. However
γp(ξ1ξ2) = L(ξ1ξ2), which is not zero, so the super rule is not in effect.

Claim 13. Example 12 does in fact define a DP structure.

Proof. To prove it is a DP structure we must prove that each of the five rules
are satisfied. Rule 1 is satisfied directly by the definition.

We will start with Rule 3.
Let λ ∈ A0, x ∈ I0. For k, not a power of p, we have

γk(λx) = 0 = λk · 0 = λkγk(x)

and for powers of p, we can say λ = c+ i where c ∈ Fp, i ∈ I0, so

γpm(λx) = Lm(cx+ ix) = Lm(cx) = cLm(x) = cp
mLm(x) = λp

m

γpm(x)

So Rule 3 is satisfied2.

1Rule 6, ∀ξ1, ξ2 ∈ I1,∀k > 1, γk (ξ1ξ2) = 0
2We have cp

m ≡p c by Fermat’s Little Theorem.
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Now for Rule 2.
Let x, y ∈ I0.
First we can simplify things a bit,

k∑
i=0

γi(x)γk−i(y) = γk(x) + γk(y)

since (I0)
2 = 0.

For k, not a power of p, we have

γk(x) + γk(y) = 0 + 0 = 0 = γk(x+ y)

and for a power of p we have

γpm(x) + γpm(y) = Lm(x) + Lm(y) = Lm(x+ y) = γpm(x+ y) .

Thus Rule 2 is satisfied.
On to Rule 4.
Let x ∈ I0. For k not a power of p, and i ∈ N we have

γi(x)γk−i(x) = 0 =

(
k

i

)
· 0 =

(
k

i

)
γk(x) .

For a power of p,
(
pm

i

)
is divisible by p so

γi(x)γpm−i(x) = 0 = 0 · γpm(x) =

(
pm

i

)
γpm(x) .

Now Rule 4 is satisfied.
Lastly Rule 5.
Let x ∈ I0. If at least one of q or r is not a power of p, then

γq(γr(x)) = 0 =
(qr)!

q!(r!)q
· 0 =

(qr)!

q!(r!)q
γqr(x)

If q = ps and r = pt we know ps+t!
ps!(pt!)ps

≡p 1 (see A.2), so then

γps(γpt(x)) = γps(Lt(x)) = Ls+t(x) =
ps+t!

ps!(pt!)ps
Ls+t(x) =

ps+t!

ps!(pt!)ps
γps+t(x)

Therefore, rule 5 is satisfied and this is a PD structure. �



CHAPTER 4

The Koblitz Example sits in a Super Ring.

To prove that the Koblitz Example is a subring of a super ring, we will prove a

more general result. Any ring of the form
Fp[x1, . . . , xn](
xk11 , . . . , x

kn
n , t

) , where 2 ≤ k1, . . . , kn ≤ p

and t ∈ Fp[x1, . . . , xn], is isomorphic to a subring of some super ring. The key here
is recognizing that any nilpotent element can be constructed as a sum of square-zero
elements. For example if x and y are nilpotent elements of some ring with x2 = 0

and y2 = 0, then (x + y)2 = xy and (x + y)3 = 0. Using that idea we can inject the
Koblitz ring into a ring with square-zero generators1, which can itself be injected into
a super ring.

Theorem 14. For any k ≤ p we have an injection of
Fp[x]

(xk)
into

Fp[x1, . . . , xk−1]
(x2i )

.

Proof. Define a homomorphism ϕ :
Fp[x]

(xk)
→ Fp[x1, . . . , xk−1]

(x2i )
by ϕ(x) =

k−1∑
i=1

xj.

This is well defined because by the multinomial theorem(
k−1∑
i=1

xi

)k

=
∑

j1+j2+···+jk−1=k

(
n

j1, j2, . . . , jk−1

) ∏
1≤t≤k−1

xjtt

and by the pigeon hole principle for each summand there must be at least one jt ≥ 2

which means each summand is 0. Thus

(
k−1∑
i=1

xi

)k

= 0, and ϕ is well defined. Suppose

r ∈ kerϕ. Since r ∈ Fp[x]

(xk)
it can be written uniquely as

k−1∑
h=0

chx
h where ∀h, ch ∈ Fp.

1There is a fun representation of rings of this type that we will discuss in Appendix B.

17
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Now we have
k−1∑
h=0

chx
h ∈ kerϕ and we can calculate,

ϕ

(
k−1∑
h=0

chx
h

)
=

k−1∑
h=0

ch (ϕ(x))h

=
k−1∑
h=0

ch

(
k−1∑
j=1

xj

)h

=
k−1∑
h=0

ch

∑
|M |=h

(h!)
∏
j∈M

xj


=

k−1∑
h=0

∑
|M |=h

(h!) ch
∏
j∈M

xj

where each M in the summation is a subset of {1, . . . , k − 1}. Now{∏
j∈M

xj |M ⊂ {1, . . . , k − 1}

}
is a linearly independent set and

k−1∑
h=0

∑
|M |=h

(h!) ch
∏
j∈M

xj = 0 .

Thus, ∀h, (h!) ch = 0, and since h is less than p, h! is non-zero, so that means ch = 0

for every h. Therefore
k−1∑
h=0

chx
h = r = 0, so kerϕ = {0}, thus ϕ is injective. �

Now we are going to show
Fp[x]

(xk)
'
(
Fp[x1, . . . , xk−1]

(x2i )

)Sk−1

but we require some

more tools first.2

Lemma 15. For any G-modules M and N , we have (M ⊕N)G = MG ⊕NG.

Proof. Let (m,n) ∈ (M ⊕N)G, and g ∈ G. Then we have

(m,n) = g · (m,n) = (g ·m, g · n)

So m = g ·m and n = g · n, thus m⊕ n ∈MG ⊕NG. Which means (M ⊕N)G ⊂
MG⊕NG, and note that the same calculation read backwards also shows that MG⊕
NG ⊂ (M ⊕N)G, so (M ⊕N)G = MG⊕NG. Thus, invariance under a group action
commutes with direct sums. �

2These tools are well known. We include them for the sake of completeness.
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Theorem 16. If k ≤ p, then
Fp[x]

(xk)
is isomorphic to

(
Fp[x1, . . . , xk−1]

(x2i )

)Sk−1
.

Proof. For the sake of easier notation say R =
Fp[x]

(xk)
and A =

Fp[x1, . . . , xk−1]
(x2i )

.

Since ϕ : R → A is injective we know that R ' ϕ (R), so it suffices to show that
ϕ (R) = ASk−1 .

We have ϕ (R) and ASk−1 are both subrings of A, and we know ϕ(R) is generated

by
k−1∑
j=1

xj which is in ASk−1 , so ϕ(R) ⊂ ASk−1 .

Now to show ASk−1 ⊂ ϕ(R). Observe that R =
⊕k−1

h=0Rh has dimension k. Also
note that since invariance under a module preserving group action commutes with
direct sums by Lemma 15, and Sk−1 preserves the degree of the monomials it acts
upon so we have

ASk−1 =

(
k−1⊕
h=0

Ah

)Sk−1

=
k−1⊕
h=0

(Ah)
Sk−1 =

k−1⊕
h=0

(
ASk−1

)
h
.

and each
(
ASk−1

)
h
is generated by only one generator

∑
|M |=h

∏
j∈M

xj. Thus each
(
ASk−1

)
h

is one dimensional. So the total dimension of ASk−1 is k. Since ϕ is an injection and
dim(R) = k, the dimension of ϕ(R) = k as well, which implies ϕ(R) = ASk−1 .

Thus, ASk−1 = ϕ(R). Which means, since ϕ is injective, that R ' ASk−1 , that is

to say
Fp[x]

(xk)
'
(
Fp[x1, . . . , xk−1]

(x2i )

)Sk−1
. �

Remember our goal is to show a result about rings of the form
Fp[x1, . . . , xn](
xk11 , . . . , x

kn
n , t

) .
So far we have a result for rings of the form

Fp[x]

(xk)
. We will extend this to rings of the

form
Fp[x1, . . . , xn](
xk11 , . . . , x

kn
n

) by recognizing that they are just tensor products of n rings with

one variable; and since each
Fp[x]

(xk)
is a finitely generated free Fp-module tensoring

them over Fp is exact.

Lemma 17. Given two Fp-vector spaces V and W and two groups, G and H, where
G acts on V and H acts on W , then V G ⊗WH = (V ⊗W )G×H , and G×H acts on
(V ⊗W ) by (g, h) · (v ⊗ w) = (g · v ⊗ h · w). (So long as |G| and |H| are non-zero
in Fp.)
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Proof. Let
∑

i(vi ⊗ wi) ∈ V G ⊗WH , let (g, h) ∈ G×H. Now,

(g, h) ·
∑
i

(vi ⊗ wi) =
∑
i

(g · vi ⊗ h · wi) =
∑
i

(vi ⊗ wi) .

So V G ⊗WH ⊂ (V ⊗W )G×H .
Let

∑
i(vi⊗wi) ∈ (V ⊗W )G×H , we want to show that for each i there is v′i ∈ V G

and w′i ∈ WH such that (v′i ⊗ w′i) = (vi ⊗ wi). For every i put v′i = 1
|G|

∑
g∈G

g · vi, and

w′i = 1
|H|

∑
h∈H

h · wi.

Now let f ∈ G, for each i

f · v′i = f ·

(
1

|G|
∑
g∈G

g · vi

)
(4.0.1)

=
1

|G|
∑
g∈G

fg · vi

=
1

|G|
∑
g∈G

g · vi

= v′i

So each v′i ∈ V G and by a similar demonstration each w′i ∈ WH .
Now, ∑

i

(v′i ⊗ w′i) =
∑
i

(
1

|G|
∑
g∈G

g · vi ⊗
1

|H|
∑
h∈H

h · wi

)

=
∑
i

1

|G| |H|
∑
g∈G

∑
h∈H

(g · vi ⊗ h · wi)

=
∑
i

1

|G| |H|
∑
g∈G

∑
h∈H

(g, h) · (vi ⊗ wi)

=
1

|G| |H|
∑
g∈G

∑
h∈H

(g, h)
∑
i

(vi ⊗ wi)

=
1

|G| |H|
∑
g∈G

∑
h∈H

∑
i

(vi ⊗ wi)

=
∑
i

(vi ⊗ wi)

Thus
∑

i(vi ⊗ wi) =
∑

i(v
′
i ⊗ w′i) ∈ V G ⊗R WH so (V ⊗RW )G×H ⊂ V G ⊗R WH .

Which means V G ⊗RWH = (V ⊗RW )G×H as required. �
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In our situation if

R =
Fp [x1, x2](
xk11 , x

k2
2

) =
Fp [x1](
xk11
) ⊗ Fp [x2](

xk22
)

and

A =
Fp
[
x(1,1), . . . , x(1,k1−1), x(2,1), . . . , x(2,k2−1)

](
x2(i,j)

)
=

Fp [x1, . . . , xk1−1]

(x2i )
⊗ Fp [x1, . . . , xk2−1]

(x2i )

then lemma 17 says that

ASk1−1×Sk2−1 =

(
Fp[x(1,1), . . . , x(1,k1−1), x(2,1), . . . , x(2,k2−1)]

(x2(i,j))

)Sk1−1×Sk2−1

=

(
Fp [x1, . . . , xk1−1]

(x2i )

)Sk1−1

⊗
(
Fp [x1, . . . , xk2−1]

(x2i )

)Sk2−1

=
Fp [x1](
xk11
) ⊗ Fp [x2](

xk22
)

=
Fp [x1, x2](
xk11 , x

k2
2

)
= R

which is what we need. By induction this can be extended to any finite number of
variables.

Now we want to bring the t of
Fp[x1, . . . , xn](
xk11 , . . . , x

kn
n , t

) into the picture.

Lemma 18. Let R and A be rings. Let G be a group acting on A with |G| invertible
in both R and A. Let φ : R→ A, be an injection of R into A, such that φ(R) = AG.

Then ∀t ∈ R there is an injection of R
(t)

into A
(φ(t))

.

Proof. Let t ∈ R, we want to show that ψ : R
(t)
→ A

(φ(t))
with ψ (r + (t)) =

φ(r) + (φ(t)), is an injection.
Let r + (t) ∈ kerψ. For the sake of simplicity set s = φ(t). Now φ(r) ∈ (s). So

φ(r) = αs, for some α ∈ A.
Define β = 1

|G|
∑

g∈G g ·α. Note: we are able to divide by |G| since it is invertible.
Let f ∈ G. Now by the same calculations as 4.0.1 on the preceding page we have

f · β = β, so we know β ∈ AG = φ(R).
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Now βs = 1
|G|
∑

g∈G(g · α)s, but (g · α)s = (g · α)(g · s) = g · (αs) = αs since
αs ∈ φ(R) = AG. Thus,

βs =
1

|G|
∑
g∈G

(g · α)s

=
1

|G|
∑
g∈G

αs

= αs

so φ(r) = βs. Pick b ∈ R such that φ(b) = β. Now φ(r) = φ(b)φ(t) = φ(bt). Since
φ is injective, we have r ∈ (t).

So we have just shown if φ(r) ∈ (φ(t)) ⊂ A, then r ∈ (t). Now ψ(r + (t)) = 0

implies that φ(r) ∈ (φ(t)), which implies that r ∈ (t), that is r + (t) = 0. So
kerψ = {0}, and ψ is injective. �

Applying this lemma 18 to our case, the only thing we need to check is if |
∏n

i=1 Ski−1| =∏n
i=1

(
(ki − 1)!

)
is invertible, which it is since it has no p factors. Thus, if

R =
Fp[x1, . . . , xn](
xk11 , . . . , x

kn
n

) ,

A =
Fp[x(1,1), . . . , x(1,k1−1), . . . , x(n,1), . . . x(n,kn−1)](

x2(i,j)

) ,

and t ∈ R, then we know from lemma 17 that there is an injective homomorphism

ϕ : R ↪→ A and from lemma 18 we know that
R

(t)
is isomorphic to a subring of

A

(ϕ(t))
.

Now we simply need to show rings like A can be injected into super rings.

Lemma 19. If B =
Fp[y1, . . . , ym]

(y2i )
, then there is a super-ring SR with a subring

isomorphic to B. Specifically the group G =
( Z
2Z

)m acts on SR and B ∼= (SR)G

Proof. Let SR = Fp[ξ1, . . . , ξ2m], where each ξi is an anti-commutative variable.
Remember the ξi’s have the property that ξ2i = 0 so the only exponents that exist are
0 and 1.

The group G =
( Z
2Z

)m acts on SR with (0, . . . , 1, . . . , 0) (one in the jth place)
sending ξ2j−1 7→ −ξ2j−1 and ξ2j 7→ −ξ2j.

So now (SR)G =
{∑

~k∈( Z
2Z)

m c~kξ
k1
1 ξ

k1
2 · · · ξkm2m−1ξkm2m | ∀~k, c~k ∈ Fp

}
' B. Which

completes the proof. �

Now, each ring A, that we were speaking of earlier in 4, has similar structure to B,
and so for each A there is a super-ring SR that has a subring isomorphic to it. Thus



4. THE KOBLITZ EXAMPLE SITS IN A SUPER RING. 23

there is an injection ω : A→ SR, with ω(A) = (SR)G, and by lemma 18, ∀s ∈ A, A
(s)

injects into SR
(ω(s))

.
Now with regards to the Koblitz Example. Define:

K =
Fp[x1, . . . , x6]

(xp1, . . . , x
p
6, x1x2 + x3x4 + x5x6)

.

Theorem 20. There exist super rings A = A0⊕A1 without any divided power struc-
ture on (A0, A1A1). Specifically, K is isomorphic to a subring of a super ring SR,
and since (K, (xi)) has no DP structure, neither does (SR0, SR1SR1).

Proof. We have shown that there exists an injection ϕ taking K into a ring of
the form

A =
Fp[x(1,1), . . . , x(1,p−1), . . . , x(6,1), . . . x(6,p−1)](
x2(1,1), . . . , x

2
(6,p−1), ϕ (x1x2 + x3x4 + x5x6)

) .

We have also shown the existence of an injection ω taking A into a super ring

SR =
Fp[ξ1, . . . , ξ12(p−1)]

(ω ◦ ϕ (x1x2 + x3x4 + x5x6))
.

By our construction ω ◦ ϕ((xi)) ⊂ SR1SR1, so if (SR0, SR1SR1) did have a divided
structure γ it would have the same issues as the Koblitz example creating a contra-
diction. Which means that (SR0, SR1SR1) has no divided power structure. �



APPENDIX A

Some Calculations

A.1. On factorials mod p.

Fact 21. For i < p, i!(p− i)! ≡p (−1)i i.

Proof. Wilson’s theorem says for prime p, we have 1! (p− 1)! ≡p (−1)1 1. If
k!(p− k)! ≡p (−1)k k then we calculate,

(k + 1)!(p− k − 1)! =
(k + 1)

(p− k)
k!(p− k)!

≡p
(k + 1)

(p− k)
(−1)k k

= (−1)k+1 (k + 1)
k

k − p
≡p (−1)k+1 (k + 1) .

So we have the result by induction. �

A.2. Showing that
ps+t!

ps!(pt!)ps
is congruent to 1 modulo p.

In order to prove this we need to first prove a lemma.
The well known formula for the first (non-zero) digit from the right of n! in base-p

is

(−1)ordp(n!)(
r∏
i=0

ni!)

modulo p. (Where ni is the ith digit of n in base p.) [14]

Lemma 22. In the case of n = pr the formula reduces to (−1)
pr−1
p−1 modulo p.

Proof. Given a finite set of natural numbersM defineM ! to be
∏
m∈M

m, the prod-

uct of all of the numbers in M , (of course ∅! = 1). Define µ(M) to be the first (non-
zero) digit of M ! in base-p. So now the task is to determine that µ({1, . . . , pr}) ≡p
(−1)

pr−1
p−1 . We see that if A and B are disjoint subsets of N, then (A t B)! = A!B!.

Thus, µ(A tB) ≡p µ(A)µ(B).
Now {1, . . . , pr} can be partitioned into A0 t . . . t Ar by defining each Ai like

so: Ai = {m ∈ {1, . . . , pr}|ordp(m) = i}. Now for i < r, µ(Ai) ≡p (p − 1)!p
r−i−1 ≡p

24
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ps+t!

ps!(pt!)ps
IS CONGRUENT TO 1 MODULO p. 25

(−1)p
r−i−1 , since for each possible first digit mi ∈ {1, . . . , p − 1} there are pr−i−1

possibilities for the higher digits. ((p − 1)! ≡p (−1) by Wilson’s Theorem.) And of
course µ(Ar) = 1.

So

µ({1, . . . , pr}) ≡p
r∏
i=0

µ(Ai)

≡p (−1)
∑r

i=0 p
r−i−1

≡p (−1)
pr−1
p−1

Thus (pr)! ≡p (−1)
pr−1
p−1 . �

Fact. It is the case that ps+t!
ps!(pt!)ps

≡p 1.

Proof. Note: for any odd prime p, p
t−1
p−1 has the same parity as t. (Induction on

t using
pt − 1

p− 1
=

t−1∑
i=0

pi.)

From the above formula we know the first digit of ps+t! is (−1)
ps+t−1

p−1 ≡p (−1)s+t,

the first digit of ps! is (−1)
ps−1
p−1 ≡p (−1)s, and the first digit of pt! is (−1)

pt−1
p−1 ≡p

(−1)t. So for odd p, the first digit of ps!(pt!)ps is (−1)s(−1)tp
s ≡p (−1)s+t (since ps is

odd). Thus the first digit of
ps+t!

ps!(pt!)ps
is

(−1)s+t

(−1)s+t
= 1, as we’d hoped. (When p = 2,

knowing that p does not divide
ps+t!

ps!(pt!)ps
is enough to know that the first digit is not

zero, so it must be one.)
Now we have the required result. �



APPENDIX B

A Fun Representation of Rings With Square-Zero Generators.

The following is just for fun.

Elements a + bx of a ring
k[x]

(x2)
can be represented by a matrix

[
a b

0 a

]
. To

increase the number of variables we can take the Kronecker product ⊗ of two matrices

representing a+ bx ∈ k[x]

(x2)
and c+ dy ∈ k[y]

(y2)
:

[
a b

0 a

]
⊗

[
c d

0 c

]
=


ac ad bc bd

0 ac 0 bc

0 0 ac ad

0 0 0 ac

 .

So a general element a+ bx+ cy + dxy of
k[x, y]

(x2, y2)
can be represented as:


a c b d

0 a 0 b

0 0 a c

0 0 0 a

 .

Taking this a few steps further, elements of
k[x1, . . . , x4]

(x2i )
can be represented as

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16
a1 a3 a5 a7 a9 a11 a13 a15
a1 a2 a5 a6 a9 a10 a13 a14
a1 a5 a9 a13
a1 a2 a3 a4 a9 a10 a11 a12
a1 a3 a9 a11
a1 a2 a9 a10
a1 a9
a1 a2 a3 a4 a5 a6 a7 a8

a1 a3 a5 a7
a1 a2 a5 a6

a1 a5
a1 a2 a3 a4

a1 a3
a1 a2

a1


26
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and
k[x1, . . . , xn]

(x2i )
can be represented by 2n × 2n matrices with the entries forming

the nth iteration of Sierpinski’s triangle, and all the entries on a diagonal equal. The
fractal is formed since a sheet of paper is a metric space and the Kronecker product
naturally forms a iterative function system on it [6]. As far as we can tell this has no
real uses, save being a Martin Gardner-esque curiosity.
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