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ABSTRACT 
 

        This research focuses on the development of simple and cost effective approaches 

for making electrochemical sensors with a great sensitivity and selectivity. As an 

economic and abundant starting material, organic substrates were investigated to making 

conductive polymers that showed promising electrocatalytic activities. Firstly, a poly(4-

bromoaniline) film was successfully synthesized on a gold electrode and the porous film 

which was made up of nano-ribbons on the Au electrode was used for the recognition of 

amino acids enantiomers. Secondly, different halogen ions were introduced to manifest 

the properties of the synthesized polymers. The results show that bromide ions have 

significantly inhibited the transition of leucoemeraldine to emeraldine, letting the PANI 

polymer to be in Pernigraniline form, which exhibited much improved performance in pH 

sensing. In addition, a simple way to controllably deposit copper nanoparticles inside 

poly-2,5-dimethoxyaniline matrix, which can be employed as a glucose sensor, was 

developed.  
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Chapter 1. Introduction 

Chapter 1. Introduction 
 

1.1 Overview of Electrochemical Sensor 

An electrochemical sensor is a device which detects a variable quantity and then 

transfers the measurement into electrochemical signals to be recorded elsewhere [1]. The 

development of electrochemical sensor has gathered a great deal of attention in the last 3 

decades as an inexpensive and simple means to sensitively detect a variety of chemical 

and biological analytes [1], and have found a wide range of applications in physical 

chemistry, materials science, biochemistry, solid-state physics, micro-device fabrication, 

electrical engineering, clinical diagnostics, medical engineering, process measuring 

engineering, and environmental analysis [2,3]. Today there are numerous literatures 

focusing on two branches of electrochemical sensing: (1) sensors with a great specificity 

and (2) sensors capable of simultaneous/multiplex determination [2]. Our group have 

developed, for example, a low cost modified carbon electrodes that can simultaneously 

determine 1,4-hydroquinone and pyrocatechol with the limit of 2.0 µm and 5.0 µm, 

respectively [4]. Besides that stability, activity and selectivity are of paramount 

importance in electrochemical sensing, low cost, miniaturization, reproducibility must 

also be considered when developing new sensors. Meanwhile, depending on the 

instruments, a range of detection modes such as potentiometric, voltammetric, 

conductimetric and impedimetric can be used for electrochemical detection.  

In recent development of electrochemical sensors, nanomaterials have been 

extensively explored for signal amplification due to their large specific surface area [5]. 
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Indeed, nano-size particles of less than 100 nm in diameter are currently attracting 

increasing attention for the wide range of new applications in various fields including 

industrial production [6]. Those being actively investigated in electrochemical sensing 

has roughly been focused on three categories, specifically including carbon nanotubes 

(CNTs), noble metal nanoparticles and conductive polymers. Firstly, CNTs will be 

discussed in this thesis, for it is one of the most exciting materials because of its unique 

electronic, chemical, and mechanical properties.  

1.2 Electrochemical Sensing with Carbon Nanotubes 

CNTs are built from sp2 carbon units with a few nanometers in diameter and many 

microns in length [2, 7-9]. There are two groups of CNTs, say multi-walled (MW) and 

single- walled (SW) [10, 11] (Figure 1.1), which can be synthesized by various methods 

[12], such as, arc discharge [13, 14], laser ablation/vaporization [15, 16], and carbon 

vapor deposition (CVD) [17, 18]. CNTs have unique mechanical and electronic 

properties, and can behave electrically as a metal or semiconductor, depending on the 

diameter and the degree of helicity [1, 19-21]. Combined with chemical stability, CNTs 

have many advantages for sensing applications, such as small ratio between the size and 

surface area [11], outstanding electron transfer promoting ability [22]. When being used 

as electrodes modifier in electrochemical reactions for purposes such as easy protein 

immobilization [23, 24] etc., they are suitable for the modification of various electrodes 

due to high electronic conductivity for the electron transfer reactions, better 

electrochemical and chemical stabilities in both aqueous and non-aqueous solutions and 

the promotion of electron-transfer reaction in several small biologically important 

molecules and large biomolecules [1, 25]. 
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Figure 1.1 Schematics of an individual (A) SWCNT and (B) MWCNT. Ref [11] 

Studies have shown that carbon atoms of CNTs at the sidewall and the end of the 

tubes are not the same, and the electroactive sites on CNTs are located at the tube ends 

[26, 27]. In other words, electrochemistry of CNTs is dominated by the ends of CNTs. In 

addition, both the orientation and length of the aligned CNTs have significant influence 

on the electron transfer rate. More specifically, according to the research by Gooding et al. 

electron transfer between the gold electrode and the ferrocene moiety has been found 40 

times slower through randomly dispersed nanotubes than through vertically aligned 

nanotubes [27]. A theory has been proposed by the same group to account for the 

observation that the inverse of the apparent electron transfer rate constant (Kapp) is related 

to length of nanotubes [27]. 

Various electrochemical techniques such as voltammetry, amperometry, 

potentiometry, impedemetry and conductometry were reported to investigate CNTs-based 

electrodes as chemical sensors or biosensors. For example, an electrochemical sensor 

based on SWCNTs modified glassy carbon electrode has been developed by Chen and 

co-workers for the sensitive detection of valacydovir, a substance that is the choice for 

the treatment of herpes zoster and cold sores. The results of cyclic voltammetry (CV) and 

differential pulse voltammetry (DPV) showed that the modified electrode possessed high 
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activity, a wide linear response range and very low detection limit toward the 

electrochemical oxidation of valacyclovir, highlighting that this electrochemical sensor 

has strong potential to be applied in the quality control testing of pharmaceutical products 

and also for therapeutic drug monitoring in hospitals [28]. Mohammad et al. recently 

reported that an electrochemical sensor based on CNTs could be employed for selective 

determination of dopamine (DA) in the presence of uric acid (UA), folic acid (FA) and 

acetaminophen (AC). Their sensor was developed on a carbon paste electrode modified 

by Schiff base (2, 2’-[1, 4-phenylenediyl-bis (nitrilomethyl-idene)]-bis (4-hydroxyphenol) 

(PNH)) and CNTs. The electrochemical properties of such modified electrodes were 

studied by CV and DPV of DA, which displayed two linear dynamic ranges with a 

detection limit of 0.42 µm [29]. Another example of biocompatible electrochemical 

sensor was developed by Thomas et al., which can selectively determine epinephrine (EP) 

in the presence of 1000-fold excess of ascorbic acid (AA) and uric acid (UA). The 

electrochemical sensor was fabricated by modifying the carbon paste electrode (CPE) 

with multi-walled carbon nanotubes (MWCNTs) using a casting method. Both CV and 

electrochemical impedance spectroscopic (EIS) methods were employed to study the 

characters of the electrode, which reveal that the current sensitivity of EP was increased 

five times upon modification. The modified electrode is highly reproducible and stable 

with anti fouling effects [30].  

Recently, there are attempts to combine CNTs with polymers or metal-nanoparticles 

to develop new platforms for electrochemical sensing. For examples, Zhai et al. 

developed a multilayer film of MWCNTs and chitosan (CS) to detect Nicotinamide 

adenine dinucleotide phosphate (NADH), whose direct oxidation needs a high 
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overpotential at a bare electrode. The multilayer film of MWCNTs and CS was obtained 

by the layer-by-layer (LBL) method which takes advantage of the interaction between a 

positively charged CS and the negatively charged MWCNTs. This assembled 

{CHIT/MWCNTs}/ GC electrode exhibited a wide linear response, a rapid response time 

and a low detection limit for the detection of NADH, also, it is highly stable [31]. CNTs-

polymer composite can also be used for the fabrication of DA sensor. Wang and co-

workers [32] and Zhang group [33] have respectively reported poly (3-methythiophene) 

modified glassy carbon electrode coated with Nafion/SWCNTs and a 

poly(styrenesulfonic acid) sodium salt/SWCNTs electrodes for highly selective and 

sensitive determination of DA. 

GC electrode combining Au nanoparticles (AuNP) with multi-walled carbon 

nanotubes has also been made into a biosensor by cross-linking glucose oxidase (GOD) 

with glutaradehyde, where MWCNTs were dispersed in AuNP-doped CS solution 

(AuNP-CS), which is prepared by treating the CS solution followed by chemical 

reduction of Au (III) with NaBH4. Several electrochemical methods such as CV, EIS and 

amperometry were employed to investigate the synergistic effect between AuNP and 

CNTs of the AuNP-CNTs-CS material. The modified electrode was applied to detect 

H2O2 at low potential. With the immobilization of GOD, the electrode could determine 

glucose in human serum samples [34].  

Despite of the earlier promising results, there are still numerous challenges 

remaining in order to develop CNTs into active chemical and biochemical sensors that 

can be widely used. Firstly, impurities in manufacture and imperfections in processing 

[35], lead to undesirable properties of CNTs which are difficult to overcome. It is hard to 
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develop a cost-effective method for separating different types of CNTs [36]. The 

structure of CNTs determines the electronic state, which varies between individual 

nanotubes. For CNT-field effect transistors (FETs) different electronic states can lead to 

inhomogeneity between devices and it may also disturb other sensors as well [10, 12, 37]. 

Additionally, the difficulty in the miniaturization of sensors [38], possible toxicity of 

nanotubes [39], and the technological difficulty in fabrication [40] also limited the 

application of CNTs. The disadvantage also includes that the adsorbed acid moieties 

during purification and acid- treatment processes can decrease the electrocatalytic activity 

of CNTs in electroanalysis [1, 41]. Those suggest that more research needs to be done in 

this area. 

1.3 Metal Nanoparticle in Electrochemical Sensing 

Over the past few decades, metal nanoparticles (NPs) have attracted much attention 

due to their fascinating physical and chemical properties, such as, size- and shape-

dependent interatomic bond distances [42,43], optical and electronic properties [42, 44, 

45], nanoscale electrochemical processes to be probed [46-49], which are significantly 

different from those of the bulk materials. One of the many applications of NPs is in 

electrocatalysis, as the small size of nanoparticles has allowed electric double layer 

effects on interfacial electron-transfer reaction and charge can transfer at the interface 

between a solid catalyst and an electrolyte [50]. In general, controlling the size of 

nanoparticels is a key factor in the development of electrochemical sensing systems [51]. 

The mass-transport rates of reactants, products and intermediates depend on the 

nanoparticles size and coverage on the support of an electrode [52, 53]. In other words, a 

high surface area to mass ratio that can be tailored to promote particular reaction 
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pathways are key advantages of nanoparticles in electrochemical sensing system [52].  It 

is important to note, however, that the catalytic activity does not scale linearly with the 

nanoparticle surface area and the ultrasmall nanoparticles may become non-metal-like 

[54] and be more prone to poisoning [55]. 

The supporting material of a solid sensor where nanoparticles are dispersed also 

plays a number of important roles in sensing performance, including acting as a 

conductive bridge, limiting agglomeration of the nanoparticles to maintain the high 

surface-to-volume ratio as well as interacting with nanoparticles to modify the 

electrocatalytic activity of those nanoparticles [52, 56]. The most commonly used 

supporting materials are carbon [57, 58], gold [59, 60], titania [56, 61] and doped tin 

oxides [62, 63] that are typically desired as optically transparent electrodes. According to 

the order of the formation and immobilization of nanoparticles, methods of making 

nanoparticulate electrodes can be roughly divided into three groups, i.e., (1) simultaneous, 

(2) immobilization followed by the formation of metal nanoparticles, and (3) synthesis of 

metal nanoparticles followed by their immobilization on the surface of support electrode 

[52]. Specifically, in the simultaneous approach the formation and immobilization of 

nanoparticles on a supporting electrode took place in a single step. This method usually is 

connected to the electrodeposition of nanoparticles onto a bare electrode [64, 65] or a 

supporting electrode that has been modified with a polymer film [66, 67] etc. Since there 

are many parameters that can be adjusted, such as current, potential, time, temperature, 

electrolyte composition, concentration of the metal ion, and the pH, electrodeposition is 

one of the most popular methods to synthesize modified electrode with variable size, 

shape and spatial distribution of nanoparticles.  
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However, the size of nanoparticles in electrochemical deposition is not easy to 

control, which often leads to deposited nanoparticle with a wide size distribution [64]. 

The reasons for this include progressive nucleation [64, 68], depletion effects [69] and 

Ostwald ripening [70]. There are several approaches to circumvent the size dispersion, 

such as the double potential pulse method [62, 64, 65], or driving a gas evolving reaction 

in parallel with the electrodeposition reaction [71, 72]. To better control nanoparticle 

sizes, the second, two-step procedure was developed, which involves the immobilization 

of metal ions and their subsequent reduction. Through adjusting the density of metal ion 

immobilization sites, the spatial distribution and average size of the resulting 

nanoparticles can be controlled. A main drawback of this approach is that the hardly 

controlled coordination between functional groups and desired metal precursor on the 

supporting electrode surface. One option to address this problem is to encapsulate the 

nanoparticles within the polyelectrolyte film which deposited onto the substrate electrode 

[73, 74]. The other option is diazonium coupling, which is most commonly applied on 

carbon electrode, such as highly oriented pyrolytic graphite [75], or CNTs [76, 77]. 

The third approach seems to provide the best way to control the size and shape of 

nanoparticle of an electrochemical sensor, which involves synthesizing metal 

nanoparticles separately, followed by their immobilization. Colloidal synthesis [78, 79], 

an empirical method, for example, offers excellent shape and size control of nanoparticles, 

which follows straightforward principle and requires simple equipment. An alternative 

method to fabricate nanoparticle is called “cathodic corrosion”, which is a novel 

electrochemical method [80, 81]. This method is achieved at very negative potential of 

about -5 or -10 V to the metal in an aqueous electrolyte containing a strong nonreducible 
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cation. According to the adjustment of several parameters, such as the electrolyte 

concentration, the electrical current and the voltage, the size and the shape of 

nanoparticles can be controlled.  However, a challenge in the third approach is how to 

satisfactorily immobilize those nanoparticles on the supporting electrode and avoid 

interference with the nanoparticle reactivity. The most straightforward method is drop-

casting, but may lead to inhomogeneous deposition with severe particle aggregation [82, 

83]. The other way to tether nanoparticles is to functionalize the support electrode to 

obtain specific anchoring sites, through diazonium grafting, or a self-assembled 

monolayer (SAM) [84]. In addition, depositing a charged polymer (polyelectrolyte) on 

the support electrode with a charge opposite to that of the nanoparticles [85] is also a 

good way to tether nanoparticles. 

The shape, size as well as the total surface area of nanoparticles coated on a 

supporting electrode can be determined either through an electrochemical or non-

electrochemical method. CV is a very powerful way to determine both the exposed 

surface area and the dominant surface structure of the materials [86]. Recently, analysis 

of shape and structure of nanoparticles by electrochemical method has been extensively 

developed. Site-specific irreversible adsorption of adatoms can be achieved to identify 

the ratio of different species on shape-selected nanoparticles, and reveal quantitatively the 

amount of adsorption through the stripping after adsorption. The surface structure can be 

sensitively determined by the voltammetric signature for monolayer formation or 

monolayer “stripping” [87]. Thus, this technique can be applied to nanoparticulate 

electrodes, where an average nanoparticle shape can be determined by the relative 

number of surface facets. Moreover, electrochemical method can be applied to 
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characterize the surface domains on nanoparticles detail by measuring the hydrogen 

adsorption and desorption region, as well as the oxidation of CO on the nanoparticles 

surface [87]. 

The size and/or shape of nanoparticles, on the other hand, can be determined through 

other non-electrochemical method, such as atomic force microscopy (AFM) [88], X-ray 

diffraction (XRD) [89], dynamic light scattering (DLS) [90], NP-tracking analysis (NTA) 

[91], scanning electron microscopy (SEM) [92] and transmission electron microscopy 

(TEM) [89].  

As one of the most important chemical application of metal-nanopaticles, 

electrocatalysis has been extensively discussed lately. In 1990s, Chiou [94] and co-

workers have deposited nano-gold particles uniformly on the carbon black supports, and 

developed this dispersed catalyst gas-diffusion electrode for SO2 sensing. Because gold 

nanoparticles catalyze the electrochemical oxidation of SO2, the current is proportional to 

the concentration of SO2 when the reaction controlling step is the diffusion of SO2. 

Additionally, this SO2 sensor showed excellent stability, reproducibility, sensitivity and 

the response time was fast. In the same year, Casella [95] et al. introduced the second 

method that was mentioned above (i.e. immobilization of metal ions followed by 

reduction) to synthesize gold nanoparticles dispersed on the electrode surface. They also 

achieved an amperometric sensor for glucose sensing, based on a bimetallic electrode 

composed of copper nanoparticles dispersed onto a gold surface [96]. Constant-potential 

amperometric detection (DC) and in pulsed-potential amperometric detection (PAD) have 

been assessed for the stability, background current, sensitivity and linear range of the 

modified electrode. Natan and collaborators demonstrated that it was important of 
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nanometer-scale morphology in protein voltammetry, and proposed that well-defined Au 

colloid-based substrates hold promise as substrates for biological measurements at metal 

surfaces [97].  

In 2000s, many researchers focused on the gold nano particles modified ITO 

electrode, which can be developed in electroanalysis as protein-based biosensors and 

sensitively determining guanosine and epinephrine. Also, Cui et al. displayed that seed-

mediated growth of gold nanoparticles on glassy carbon (GC) surfaces was developed to 

electrochemically determine nitrite in a real wastewater sample, showing excellent 

stability and anti-interference ability [98]. Recently, metallic nanoparticles with organic 

shell encapsulation obtained attentions because of the potential technological application 

in many field. The core-shell structure gold nanoparticles have been demonstrated for the 

first time by Zheng et al., which can be utilized to construct network architectures that 

impart biomimetic ion-gating properties. According to the noncovalent head-to-head 

hydrogen-bonding linkages at the carboxylic shells, the nanoconstruction is formed and 

can be effectively tuned by pH between a neutral “close” and an ionic “open” or “close” 

state to exhibit electrochemical ion-gating properties [99].  

1.4 Polymer-based Electrochemical Sensors 

1.4.1 Historical Development 
 

The word ‘polymer’ was derived from two classical Greek words ‘poly’ and 

‘meres’, which mean ‘many’ and ‘parts’, respectively. The whole story began from 1862, 

since camphor was in fact discovered as an efficient plasticizer for cellulose nitrate by 

Alexander Parkes. However, the independent discovery of celluloid by John Wesley 
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Hyatt, which was the first time to take out patens, was recognized as the beginnings of 

plastics industry. Whereas cellulose nitrate is still derived from a natural polymer—

cellulose, the first truly man-made plastic was phenol-formaldehyde plastics, which was 

developed by Leo Hendrick Baekeland. Other polymers—cellulose acetate, urea-

formaldehyde, poly (vinyl chloride), and nylon followed in the 1920s. Later, the 

polymeric products achieved commercial success after a better understanding of the 

character of polymer in the period between 1925 and 1950. In 1950s, professors Karl 

Ziegler and Giulio Natta dedicated to develop catalysts that enabled polymerization at 

room temperature and normal atmospheric pressure and exactly controlled the positioning 

of atoms attached to the polymer chains. They had polymerized ethylene and propylene 

catalytically, resulting eventually in the long-sought goal of a synthetic rubber that is 

molecularly identical with natural rubber. Due to their important contribution in the 

polymer science and technology, Ziegler and Natta were awarded the Nobel Prize in 1963. 

New materials including thermoplastic polyesters, high-barrier nitrile resins and so-called 

high-temperature plastics were introduced between 1960s and 1970s [100].  

In the period 1970 to 2000, scientists focused on the methods to make highly 

oriented polymers, which have provided tremendous stimulus to both basic polymer 

science and industrial developments. There are three methods that were discovered to 

enhance the properties, i.e., hydrostatic extrusion, die-drawing and hot compaction of 

oriented fibres and tapes [100]. Nowadays, polymer has permeated every field of our life, 

such as clothes, computer, glasses, chairs, toothbrush and so forth. As discussed above 

there are two types of polymers, one class is natural polymers, consisting of wool, hair, 

rubber, etc., and another are synthetic polymers which include nylon, synthetic rubber, 
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polyester, Teflon. Though polymers have been with us for long time, their applications in 

electrochemical sensing have not been fully explored in comparison to other materials.  

1.4.2 Conducting Polymer 
 

When we talk about conductive materials, we usually think of metals, not of 

synthetic polymers, such as plastics. But in the 1970s, three scientists collaborating at the 

University of Pennsylvania —  Alan G. MacDiarmid, Alan J. Heeger, and Hideki 

Shirakawa—developed special ‘polymers’ of oxidized iodine-doped polyacetylene[101]. 

Their work, which earned them the Nobel Prize in chemistry in 2000, has opened up 

possibilities for the development of a new class of materials known as conducting 

polymers. In traditional polymers, such as polyethylenes, the valence electrons are bound 

in sp3 hybridized covalent bonds, which lead to low mobility and insulation or 

semiconductivity. However, in conjugated materials, polymers have backbones of 

contiguous sp2 hybridize carbon centers, which have high mobility when the material is 

“doped” by oxidation [102].  

            Conductive polymers can be prepared by chemical and/or electrochemical 

methods. Most redox conductive polymers are prepared by oxidative coupling of 

monocyclic precursors, while electrochemical method synthesizes polymer film on a 

working electrode. Comparing these two methods, electrochemical polymerization is 

preferable due to the rapid process, low cost and environmentally benign, especially if the 

polymeric product is required for using as a polymer film electrode, thin-layer sensor, in 

microtechnology. In addition, conducting polymer can be reversibly doped and undoped 
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using electrochemical method accompanied by significant changes in conductivity [103]. 

However the chemical approach is recommended if large amounts of polymer are needed. 

Due to the straightforward preparation procedure, unique properties, and stability 

in air, conducting polymers have been developed as significant candidates for 

electrochemical sensors and biosensors [104, 105]. Most of the applications of 

conducting polymers as sensors include gas and vaporous sensors, pH sensor, ion 

selective electrodes, glucose sensor and so forth. For example, numerous publications 

have studied that polypyrrole could be applied as weak acid vaporous sensors such as 

H2S and CH3COOH due to the proton transfer [106]. Bulhoes and Faria have reported 

poly (1-aminoanthracene) film that was electropolymerized on platinum electrode could 

be used as a pH sensor [107]. The polymer electrode showed an apparent Nernstian 

response in the 1-12 pH range, with a slope of 52.5 mV/decade and no interference of 

alkaline ions was observed. Sommerdijk et al. have developed poly (3,4-

ethylenedioxythiophene) used as the conducting component for amperometric glucose 

sensor, which demonstrated superior electrochemical stability [108]. 

1.4.3 Polyaniline 

        Among conducting polymers, polyaniline (PANI) has attracted interest due to its 

high specific capacitance, inexpensive monomer, good environmental stability, 

electroactivity and doping-dedoping chemistry. According to its multiple redox states, 

PANI can be controlled to reversibly change the oxidation state of their main chain by 

protonation of the imine nitrogen atoms. The literature dealing with the synthesis of 

PANI by different methods is sufficient but the comparison always between the chemical 
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and electrochemical polymerization. In terms of chemical polymerized method, 

polymeric stabilizers or variety of template can assemble and synthesize different 

morphologies of PANI, such as spherical shapes [109], needle-like shapes [110], 

nanowires [111, 112], nanotubes [113, 114], hollow microspheres [114] and so forth. 

(Figure 1.2) 

 

Figure 1.2 SEM images of different morphologies of PANI: (A) Needle-like shapes Ref 

[110] (B) Nanowires Ref [112] (C) Nanotubes Ref [114] (D) Hollow Microsphere Ref 

[114] 

        Manohar et al. have introduced an extremely simple “nanofiber seeding” method to 

chemically synthesize bulk quantities of PANI nanofibers in one step without the need 

for large organic dopants, surfactants, and/or large amounts of insoluble templates [115]. 

However, comparing with chemical synthesis of PANI, the electrochemical 

polymerization seems the preferred approach, due to: 1.The polymer film can be easily 

prepared by the electrochemical deposition route, which can be directly used for 

electrochemical studies [116]. 2. Many control parameters can be easily adjusted in order 
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to obtain different redox states. 3. It gives cohesive films which have been reported to 

show a fairly smooth featureless topography by scanning electron microscopy (SEM) 

[117]. 

        The wide range of associated electrical, electrochemical, and optical properties 

makes PANI potentially attractive for using as an electronic material in a variety of 

application, such as solar energy conversion, rechargeable batteries, supercapacitors [116] 

and pseudocapacitors. Also, PANI can be used as a glucose sensor. Wu and Yin have 

reported that a new type of amperometric glucose sensor used PANI-wrapped boron 

nitride nanotubes decorated with Pt nanoparticles as the electrode material [118]. Ramya 

and Sangaranarayanan have developed a PANI nanofiber dendrites modified electrode 

using electrochemical synthesis method with p-toluenesulfonic acid, which can be 

applied to detect glucose in the presence of interference species such as AA, UA, and DA 

[119]. 

Although PANI has obtained great progress as sensors, there are several 

limitations and challenges must be addressed in order to making further advancement. 

The first limitation of PANI is the loss of conductivity in neutral and high pH 

environment. It has very poor conductivity when the pH is greater than 5, due to that 

PANI requires a large amount of protons attached to the polymer to be electrically 

conducting. Secondly, the conductivity of PANI is known to possess hysteresis, which 

can be observed in CV curves that the current response to the potential sweep in the 

positive direction is different from that to the reverse sweep of the potential. Last but not 

the least, the PANI based electrochemical sensors always have relatively slow response 
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time. Obviously, these concerns must be addressed in the near future before any realistic 

commercial development can be made. 

In my thesis, electrochemical synthesis and applications of PANI and its 

derivatives will be discussed hereinafter. 
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Chapter 2 Electrochemical Synthesis of Poly-(4-
bromoaniline) for the recognition of Chiral Molecules 

 

2.1 Introduction 

        The recognition of chiral molecules represents an important task in many areas [1-5]. 

For example, in the development of chiral drugs, normally only one enantiomer tends to 

be physiologically active while the other is inactive or even toxic. Recently, D-

penicillamine (PA) has been used to treat rheumatoid arthritis and hepatitis [6,7], but in 

contrast L-PA could induce several adverse reactions such as neuritis and osteomyelitis 

[8]. A key step in sensing chiral molecules is to build a chiral surface that can identify the 

minute differences between the enantiomers [9-13]. A variety of methods such as coating, 

covalent bonding and self-assembly have been applied to prepare the chiral surface or 

directly utilize gold chiral surfaces [14-17].  

To develop low cost and sensitive chiral sensors, conductive organic materials have 

recently been investigated as the promising candidates [18-28], where chiral polymers 

were synthesized in the presence of chiral substituents or chiral dopant anions [29]. When 

the chiral dopants were removed from the polymer, the remaining polymer matrix 

attained the capability of recognizing a single enantiomer. Chiral polyaniline (PANI), for 

example, has been prepared in 1994 by Havinga and co-workers through 

electropolymerization of aniline in the presence of enantiomeric HCSA ((+)- or (-)-

camphorsulfonic acid) or by the acid doping of preformed emeraldine base [30]. Recently 

Kong and co-workers synthesized a molecularly imprinted PANI electrode column by 

reversibly doping/undoping chiral amino acids and applied such PANI electrode column 
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as a chiral sensor for enantioselective recognition of various amino acids [27]. They also 

employed poly(aniline-co-m-aminophenol) to create an electrode column for the  

recognition of glutamic acid enantiomers [28].  

        So far, the success of polymer based electrochemical chiral sensing has largely 

relied on the doping of probe chiral molecules during the fabrication process. The 

complicated fabrication procedure hinders their broad applications. To overcome the 

need of making probing chiral molecules and directly exploit the asymmetric structure of 

polymer chains in chiral sensing, in this work poly(4-bromoaniline) (PBA) was 

electrochemically synthesized on a gold electrode without the presence of any doping 

agents. As shown in the following, the as-prepared Au/PBA electrode exhibits very 

different behaviors in the electrochemical oxidation of L- and D-glutamic acids and L- 

and D-aspartic acids, in which not only their anodic peak currents are different, but also 

the oxidation waveforms are qualitatively different, providing an intuitive way to 

recognize these chiral amino acids.   

2.2 Experimental 

        Nitric acid (60-70%), D-glutamic acid (DGA) (>99%) and potassium ferricyanide 

(III) (99%) were purchased from Aldrich. Sodium hydroxide was purchased from Merck 

KGaA (Germany). L-glutamic acid (LGA) (>99%) and L-aspartic acid (LAA) (>99%) 

were purchased from Fluka A.G. Switzerland. 4-bromoaniline (>98%) was obtained from 

the British Drug Houses Ltd. DL-aspartic acid (DLAA) was purchased from J.T. Baker. 

Scanning electron microscopy (SEM) images and Energy-dispersive X-ray spectroscopy 

(EDX) were taken on a Quanta 200 FEG microscope (FEI, Inc.). All electrochemical 
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experiments were performed at room temperature (22 ± 2o

A three-electrode system was employed, using a bare or PBA modified Au electrode 

(with a 2.0 mm diameter) as the working electrode, a Pt wire as the auxiliary electrode, 

and a saturated calomel electrode (SCE) as the reference electrode. Before the 

polymerization, the Au electrode was polished with 0.05 µM alumina powder 

(CHInstrument), then cleaned by ultrasonic cleaner (Branson 1510, USA), and finally 

rinsed with double distilled water. The scan rate used in the cyclic voltammetry (CV) was 

50 mV/s, unless otherwise stated in the context. Parameters used in the differential pulse 

voltammetry (DPV) measurements were 10 mV increment, 50 mV pulse amplitude, 200 

ms pulse width and 500 ms pulse period. Electrochemical impedance spectroscopy (EIS) 

was measured at the formal redox potential of Fe(CN)

C) with a CHI660D 

electrochemical workstation (CHInstrument, USA).  

6
4-/Fe(CN)6

3- (i.e., 0.262 V vs SCE) 

in the frequency range of 100 kHz to 0.1 Hz with an amplitude of 5 mV. There are 12 

points per frequency decade. The electrolyte solution for the EIS measurements consisted 

of 5.0 mM K3Fe(CN)6

 

 and 0.1 M NaCl. 

2.3 Results and Discussion 

        Figure 2.1a presents CVs collected during the electrochemical polymerization of 4-

bromoaniline on a Au electrode. The electrolyte solution consisted of 0.05 M 4-

bromoaniline and 1.0 M HNO3. For the first forward scan from -0.2 to 1.0 V, there was 

only one anodic peak at above 0.8V (vs SCE), which corresponded to the oxidation of 4-

bromoaniline. On the reverse scan, a cathodic peak emerged at around 0.47 V, which 

arose from the reduction of the intermediates from 4-bromoaniline oxidation. Another 
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notable change is that after the first cycle a new anodic peak emerged at the potential of 

0.5 V, presumably due to the products generated through the preceding reduction 

reactions. The amplitude of this anodic peak increased initially and then started 

decreasing after 5 cycles. Our following experiments indicate that if the electrochemical 

synthesis was stopped right after 5 cycles, the as-prepared PBA film would exhibit the 

best selectivity in the detection of glutamic acid chiral molecules. We have therefore used 

this turning point as a reference to fabricate PBA in this  study. As shown in the 

following, Phenomenologically, the yellow Au electrode turned into orange color after 5 

CV scans, indicating the formation of a polymer film. Electrochemical polymerization of 

4-bromoaniline has been investigated earlier by Nagy and co-workers [31] and by Sari 

and Talu [32]. The suggested electropolymerization mechanisms include the 

polymerization at an ortho-position as well as at the para-position that is followed by the 

bromination of the aniline polymers. Our study suggests that the newly formed anodic 

peak at V = 0.5 can provide a visible guidance to optimize PBA film for chiral sensing. 

 

 

 

 

 

 

Figure 2.1 CVs of 4-bromoaniline (a), EIS of the PBA films (b), Electrolyte used in (b) 

consists of 5.0 mM K3Fe(CN)6
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 and 0.1M NaCl, (5 and 10 means CV cycles for PBA 

film; sim means simulated EIS and exp means experimental EIS, in which 12 data points 

were recorded per frequency decade at 0.262 V). 
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        Electrochemical properties of two PBA films fabricated respectively with 5 and 10 

CV cycles were examined with EIS, using Fe(CN)6
3-/Fe(CN)6

4- as the redox marker. The 

EIS spectra shown in Figure 2.1b illustrate that the film prepared with 5 cycles has a 

much smaller charge transfer resistance (550 Ω vs. 9200 Ω for 10 cycles ), which is a 

desired property for electrochemical reactions.  Simulated EIS was carried out in a 

modified Randles circuit by using constant phase element (CPE) instead of capacitance. 

 

Figure 2.2 SEMs of the PBA films fabricated with 5 cycles (a) and 10 cycles (b).  

        Figure 2.2 presents SEM images of the PBA films on Au electrodes. Both films look 

like a porous matrix being made up of a large number of nanofibers. As the number of 

CV cycles was increased from 5 to 10, the film became a lot denser due to the continuous 

growth of the PBA polymer. This accounts for the observed increase of electrochemical 

impedance in Figure 2.1b. EDX data shows that the atomic ratio of Br/N for both films is 

a lot smaller than 1, as opposed to the 1/1 in its monomers, suggesting that some bromine 

have lost during the electropolymerization [32]. In other words, the above 

electrochemical synthesis of PBA in acidic solution is likely a combination of meta-
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position and para-position polymerization, in which the meta-position polymerization is 

due to the para-position bromide inhibition. The para-position polymerization is 

accompanied with the bromine lost [32,33]. As the polymer grew denser and thicker, the 

Br/N ratio increased slightly. 

 

 

 

 

 

 

 

Figure 2.3 DPVs of DGA (a) and LGA (b) at the Au-PBA Au electrode,  (c) DPVs of 

DGA and LGA at a bare Au electrode. The concentration of LGA and DGA in (c) is 15.0 

mM. 

        The selectivity of the above prepared PBA films on the electrochemical oxidation of 

LGA and DGA was investigated with DPV in a 0.1 M NaOH solution. The Au-PBA film 

was prepared with 5 cycles. DPV spectra in Figure 2.3a illustrate that as the DGA 

concentration was increased from 0 (curve 0) to 5 mM (curve 1), 10 mM (curve 2), 15 

mM (curve 3) and then 20 mM (curve 4), the amplitude of the anodic peak, centred 

around 0.4 V, increased accordingly. The corresponding anodic peaks of LGA in Figure 
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2.3b are greatly higher than that of DGA, indicating that the PBA film favors the 

oxidation of LGA over DGA. Such a conclusion is further supported by the negative shift 

of peak potential. Another more pronounced difference is that there is a shoulder at 0.2 V 

in the LGA spectrum, accompanying the sharp increase of the anodic current. This 

shoulder became more and more obvious as the LGA concentration was increased from 5 

to 20 mM. Such a qualitative change in the DPV spectrum provides an intuitive way to 

recognize chiral glutamic acids. To demonstrate the essential role of PBA film in the 

above experiments, DPVs of the LGA and DGA at a bare Au electrode were presented in 

Figure 2.2c. Here, the only difference is their amplitude. It is interesting to point out that, 

as opposed to the Au-PBA electrode, here the oxidation peak of DGA is actually slightly 

higher than that of LGA. The peak current at the bare Au electrode is higher than that 

achieved at the Au-PBA electrode. Such a decrease is due to that the partial coverage of 

the Au surface by PBA film reduces the number of active sites. 

 

 

 

 

Figure 2.4 The relationship between the peak current and the scan rate in the cyclic 

voltammetry experiments. The concentration of LGA and DGA used in these 

experiments is 15.0 mM, The scan rate was adjusted between 5 and 200 mV/s. 
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        In Figure 2.4 the peak current of glutamic acids at the Au-PBA electrode was 

examined as a function of scan rate, where the square root of the scan rate has a linear 

relationship with the peak current, suggesting that the electro-oxidation process is 

diffusion-controlled. The PBA film was fabricated with 5 CV cycles. 

         Figure 2.5 shows the electro-oxidation behavior of chiral aspartic acid at the Au-

PBA electrode. As the concentration of LAA was increased from 0 to 30 mM in Figure 

2.5a, the DPVs display only a smooth current peak with an increasing magnitude. The 

commercial L-/D- aspartic acid mixture, on the other hand, produced DPVs that have a 

broad shoulder at around 0.4 V, while the current density is much higher than that of 

equivalent amount of LAA. The qualitative change in the DPV spectra from Figure 2.5a 

to 2.5b, including the negative shift of the peak potential, is clearly due to the presence of 

DAA. 

 

 

 

 

 

Figure 2.5 DPVs of (a) LAA and (b) DLAA at the Au-PBA electrode. The aspartic 

concentration was increased from 0 (curve 0) to 30.0 mM (curve 6) with an increment of 

5.0 mM. 
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        The electrochemical measurements in Figure 2.3 and 2.5 illustrate that L-aspartic 

acid and D-glutamic acid have similar electrochemical oxidation behavior at the PBA 

modified Au electrode. In terms of their molecular structures, due to the zigzag carbon 

chain and one -CH2 group difference between the DGA and LAA molecules, DGA has 

indeed the same steric structure as LAA, in which planes of the two carboxyl groups are 

in opposite phase with one faces into the paper while the other faces outside the paper. 

The above analysis suggests that rapidly synthesized PBA film has attained the desired 

enantiomeric surface for recognizing chiral amino acids. 

2.4 Conclusions 

        A facile method was established to fabricate optimized Au-PBA electrodes for 

electrochemically recognizing chiral amino acids. Notably, this approach does not require 

the doping of chiral molecules. To gain insights into the positive results achieved with 

PBA, we have repeated the above experiments with aniline and found that the polyaniline 

film electropolymerized on Au electrode could not produce similar results, which led us 

to suggest that the asymmetric structure of the PBA polymer chain is essential in the 

chiral sensing. Meanwhile, when glassy carbon electrodes were used as the substrate, no 

such distinguishable DPV responses could be obtained either, implicating that above 

enantioselective recognition arises from the synergistic interactions between gold and 

PBA film. This approach may be extended to conductive polymers from meta-/ortho-

substituted monomers for developing new low cost chiral sensors. 
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Chapter 3 Controlled Synthesis of Polyaniline on Glassy 
Carbon Electrodes for Improved pH sensing 

 

3.1 Introduction 

        Polyaniline (PANI) is a unique conducting polymer [1,2] and has shown its own 

tunable organic nature. Its ability to form various micro/nanostructures [3-7] has open up 

further dimensions to the design and development of new electronic devices and 

biosensors on the basis of conductive polymers [8-13]. In recent decades, in-situ 

electrochemical polymerization has become an attractive approach in the fabrication of 

PANI, as it yields a reproducible film thickness and stability [14-16]. PANI-coated 

electrodes have been utilized successfully in numerous electrochemical sensing 

applications, such as the detection of nitrite [17], H2O2

        It is generally agreed that PANI has a variety of oxidation states that are both pH 

and potential dependent: leucoemeraldine (LE, fully reduced), emeraldine (EB, partially-

oxidised) and pernigraniline (PE, fully oxidised) [22]. This makes PANI a potential 

candidate in pH sensing. As a pH sensor, PANI-coated electrodes overcome some 

limitations of the conventional glass electrode, such as high ohmic resistance, the need 

 [18-19] and pH [20-26], etc. In 

one of our very recent works presented in chapter 2 [13], Poly (4-bromoaniline) (PBA) 

film has been in-situ synthesized on a gold electrode, which demonstrates promising 

ability for enantioselective recognition of amino acids. Notably, the differential pulse 

voltammagrams of L and D-glutamic acid not only have very different current density at 

the same concentration, but also show different shapes, providing an intuitive way to 

probe the chiral molecules. 
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for internal solution and fragility of the glass. Due to that the amine group in PANI can 

be protonated or deprotonated, PANI-coated electrodes can be served as either optical pH 

sensors [20-22] or potential-based pH sensors [23-26]. Of particular relevance to the 

optical pH sensors is the equilibrium between the two partially oxidized forms --- the 

deprotonated emeraldine base (EB) and protonated emeraldine salt (ES). ES form of 

PANI displays two characteristic absorbance ranging at 390-450 nm or above 700 nm 

[23]. EB form of PANI shows a single absorbance at 640-650 nm [23].The largest 

spectral change due to deprotonation of ES is obatined between pH 5 and pH 8, whereas 

only small changes are observed between pH 2 and pH 5 due to the hysteresis in the 

transfer between EB and ES forms. This leads to the limitation of the pH range of such 

sensors. Such limitation not only happens in optical PANI pH sensors, but also exists in 

the potential-based pH sensing.  

        The main goal of the present study is to controllably synthesize PANI through 

introducing additives to the electrolyte. Through controlling the final chemical state of 

the PANI polymer, their pH sensing performance such as range and response time may 

be improved. We found that it is possible to improve the hysteresis in the transfer 

between EB and ES forms by having bromide ions present in the solution during the 

preparation of PANI. Impressively, the synthesized PANI polymer also displays a broad 

linear response to pH, i.e. between 1 and 13. Such potential-based pH sensor is very 

stable whether it is stored in water or exposed to air. 

3.2 Experimental 

        Aniline (>98%), Nitric acid (60-70%) and potassium ferricyanide (III) (99%) were 

purchased from Aldrich. Sodium hydroxide was purchased from Merck KGaA 
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(Germany). All aqueous solutions were prepared with double distilled water. A wide 

range of buffers covering pH from 1 to 13 were prepared with phosphate buffer. 

Hydrochloric acid (0.1 M) and sodium hydroxide (0.1 M) were used to adjust the pH to 

the desired value. Scanning electron microscopy (SEM) images and Energy-dispersive X-

ray spectroscopy (EDX) were taken on a Quanta 200 FEG microscope (FEI, Inc.). All 

electrochemical experiments were performed at room temperature (22 ± 2o

        A three-electrode system was employed, using a modified glassy carbon electrode 

(with a 2.0 mm diameter) as the working electrode, a Pt wire as the auxiliary electrode, 

and a saturated calomel electrode (SCE) as the reference electrode. Before the 

polymerization of aniline, the glassy carbon electrode was polished with 0.05 µm 

alumina powder (CHInstrument), then cleaned by ultrasonic cleaner (Branson 1510, 

USA), and finally rinsed with double distilled water. The scan rate used in the cyclic 

voltammetry was 100 mV/s, unless otherwise stated in the context. Electrochemical 

impedance spectroscopy was measured at the formal redox potential of Fe(CN)

C) with a 

CHI660D electrochemical workstation (CHInstrument, USA).  

6
4-

/Fe(CN)6
3- in the frequency range from 100 kHz to 0.1 Hz with an amplitude of 5 mV. 

The electrolyte solution for the EIS measurements consisted of 5.0 mM K3Fe(CN)6 and 

0.1 M KNO3

3.3 Results and Discussion 

. 

        Cyclic voltammograms recorded during the electrochemical synthesis of polyaniline 

were presented in Figure 3.1, where the electrolyte consists of 1.0 M HNO3 and 0.05 M 

aniline in the absence (Figure 3.1a) and presence (Figure 3.1b) of bromide ions. The 

sweep rate used here was 50 mV/ s. There is a well-defined anodic peak around 1.0 V in 
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both Figures 3.1a and 3.1b, which decreases drastically from the first to the second loop. 

Without the presence of bromide ions it can be seen in Figure 3.1a that there are four 

pairs of redox peaks with growing magnitudes. This is a typical behavior of the synthesis 

of polyaniline on an electrode. The oxidation peak around 200 mV (peak A) is obviously 

enhanced the most among four peaks and is attributed to the transition of 

leucoemeraldine to emeraldine. Redox peaks B/B’ and C/C’ correspond to the redox of 

the benzoquione/ hydroquione couple and the redox of head-to-tail dimer, respectively. 

The oxidation peak D is attributed to the transition of emeraldine to pernigraniline, which 

is the fully oxidized form. The fabricated PANI film at a GC electrode after 10 cycles of 

CV is green, which is the color of PANI in the ES form.  

        After 0.05M NaBr was added into the electrolyte solution, however, the oxidation 

peak at 200 mV was dramatically reduced and shifted positively by about 0.05 V (see the 

results shown in Figure 3.1b). The main pair of redox peaks in Figure 3.1b become D/ D’, 

which is due to the transition of emeraldine to pernigranilne. The color of the film in 

Figure 3.1b is violet, which is very different from that seen in Figure 3.1a. The violet 

color corresponds to PANI in a fully oxidized form. This result highlights that the 

additive bromide ions have significant influence on the electrochemical polymerization of 

PANI and can manifest the final chemical state of the synthesized PANI polymer, i.e. 

pushing the final product to PE form. As a comparison, we have also tested other halogen 

ions, specifically, adding 0.05 M NaCl into the solution. Quantitatively the same CV 

curves as shown in Figure 3.1a were achieved. The observation that chloride ions have no 

similar effect as bromide ions may arise from the fact that bromide ions were easier to 

adsorb/reduce at the electrode surface and then occupied the active spots of LE at the low 
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potential.  

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Cyclic voltammogram (50 mV s-1) of electrochemically synthesized PANI in 

0.05 M aniline and 1 M HNO3 at glassy carbon electrode in the absence (a) and presence 

(b) of 0.05 M NaBr ; (c) EIS measurements of polymer film (a) in 5 mM K3Fe(CN)6 with 

the electrolyte 0.1M NaCl solution within the range from 100 mHz to 100 kHz, with an 

amplitude of 5 mV rms, the fixed potential of the film corresponded to the anodic 

potential; (d) Experimental and simulated EIS curves of polymer film (b) under the same 

condition in (c). 

        EIS was e,ployed to characterize properties of the PANI film synthesized without 

(Figure 3.1c) and with (Figure 3.1d) the presence of bromide ions in the electrolyte 

solution. Here, K3Fe(CN)6
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 was employed as the redox mark. In general, a semicircle is 

expected to occur in EIS, in which the radius of the semicircle reflects the charge transfer 

rate at the interface. Figure 3.1c shows a distorted half circle, whereas in Figure 3.1d 

there appears to be two half cycles. Such a difference in the electrochemical property is 

likely due to that in the case of Figure 3.1c, the film was predominantly the ES form of 
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PANI, while in the later case the PANI film consists of two major forms (ES and PE). 

Again, the EIS spectra further confirm the bromide effects on the electrochemical 

synthesis of PANI. The EIS spectrum seen in Figure 3.1d can be reproduced with a 

general model shown in the following (see model 1). The outer circuit represents the 

small half cycle with 0.3 kΩ resistance, and the inner circuit represents the large half 

cycle with 0.6 kΩ resistance. The simulated spectrum is overlap in Figure 3.1d.  

 

Model 1 

        PE form is the most π conjugated conducting form and therefore would facilitate the 

electron transfer through it. As a result, it may favor the oxidation of K3Fe(CN)6

 

, in 

comparison to the other two forms of PANI film. Therefore, the small half circuit seen in 

Figure 3.1d is suggested here to arise from the PE form, whereas the larger half cycle is 

derived from the ES form. 
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Figure 3.2 SEM images for 10 cycles of bromide-absence PANI (a) and bromide-

presence PANI (b) on glassy carbon electrode, the conditions of electropolymerization of 

PANI were the same as Figure 1a and 1b, respectively. 

        Figure 3.2 shows SEM images of the PANI films prepared with (a) and without *b) 

the presence of bromide ions in the electrolyte solution. While fiber structures can be 

seen in both images, a noticeable difference is the quantity of those polymers, despite that 

they were prepared through the identical protocol with the same reaction time. The 

decrease in the amounts of fibers seen in Figure 3.2b is consistent with the CV spectrum 

presented in Figure 3.1b, where the peak current is clearly lower than that seen in Figure 

3.1a. The decrease may be attributed to the fact that the additive bromide ions may 

occupy some active sites on the glassy carbon electrode, making the effective surface 

area for the oxidation of aniline monomer smaller. EDX data shows no bromine atom 

neither in Figure 3.2(a) nor Figure 3.2(b), suggesting that bromide ions can significantly 

impact the polymerization of PANI, but didn’t dope into the bone structure of polymer. 

        The ability of using the above prepared PANI film on a glassy carbon electrode as a 

pH sensor was explored by using open circuit potential (OCP) method [26]. As shown in 

Figure 3.3, the OCP of both films decreases with the increase of the solution pH value. 
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For the PANI film synthesized without adding bromide ions, its OCP decreases about 12 

mV/ pH within the pH range of 1 to 4 and 39 mV/ pH for pH between 4 and 13. The 

smaller potential variation in strong acidic pH range could be due to the hysteresis in the 

transfer from EB to ES form by big clusters aggregation. A notable difference is that for 

the film fabricated in the presence of bromide ions, its response to pH change is linear 

over the range of 1 to 13, making it a better candidate in applications of pH sensing. The 

plot shows that the pH linear range was between 1 and 13 with the slope of -29 mV/ pH. 

 

 

 

 

 

 

 

Figure 3.3 pH vs. OCP (open circuit potential) curve tested by bromide-free PANI 

(square) and bromide-added PANI (circle) modified GC electrode. pH buffered solution 

was prepared by pH = 7 phosphate buffer, hydrochloric acid (0.1 M) and sodium 

hydroxide (0.1 M) were used to adjust the pH to the desired value. 

        A possible explanation for the results presented in Figure 3.3 is that leucoemeraldine 

base [-(C6H4)-N(H)-(C6H4)-N(H)]4x displays a hydrophobic character unfavorable for 

molecular adsorption, but pernigraniline base [-(C6H4)-N=(C6H4)=N-]4x is hydrophilic 

enabling the formation of differently charged surface groups like C-NH2, C-NH3
+
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Thus protonation is more favored for pernigraniline base, which subsequently broadens 
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the linear potential response to pH values. 

 

 

 

 

 

 

 

 

Figure 3.4 Open circuit potential responses to a successive addition of 0.01 M NaOH in 

pH = 1 phosphate buffer, curve 1 and 2 represent bromide-added PANI and bromide-free 

PANI modified GC electrode, respectively. 

        Figure 3.4 shows the potential responses of the two films to a series of consecutive 

addition of 0.01 M NaOH to the sample solution. Both curves 1 and 2 were started at the 

same pH = 1 phosphate buffer. The response time for the PANI film prepared in the 

presence of bromide ions (curve 1) is less than 8 s, i.e. the time required by the system to 

reach a steady open circuit potential upon the addition of NaOH.  However, the potential 

response time of curve 2, where the PANI film prepared without bromide ions, was much 

longer (i.e., between 15-25 seconds for each addition). Within the strong acid range, the 

curve 2 does not exhibit obvious decease. Results of Figure 3.3 and 3.4 clearly 

demonstrate that PANI prepared in the presence of bromide ions does not only a broad 

linear potential response, but also exhibits a shorter response time. Further tests indicate 

that the bromide-controlled PANI film has good consistency and accuracy with the values 

detected in the reverse direction from base to acid. The film can be stored in air or 
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distilled water for one month without losing its performance. 

3.4 Conclusions 

        Knowing that PANI polymer can exist at three different oxidation states, where each 

chemical state may have different electrochemical properties, this research explored a 

way to control the synthesis of PANI for potential applications in electrocatalysis and 

chemical sensing. The preliminary data indicate that the addition of bromide ions in the 

monomer solution could greatly affect the synthesized PANI film. As indicated by the CV 

voltammograms, the PE and ES become the dominant constituents of the as-prepared 

PANI polymer. Other physical observations such as the color of the as-prepared film 

support the above conclusion. When the synthesized PANI films were applied in pH 

sensing, the film obtained under the influence of bromide ions exhibits distinct 

advantages with regard to large linear potential response range to pH, a short response 

time, high accuracy and stability. As discussed earlier, such a change is likely due to that 

amine groups in PANI are more favored in prononation, making the potential response 

more sensitive in acidic pH range. Notably, this bromide controlled approach is relatively 

simple and inexpensive and provides a promising means of developing a new kind of 

potential chemical sensors for in situ monitoring. No similar effect was obtained with 

chloride ions. This may come from the fact that bromide ions can be oxidized into 

bromine atoms/molecules within the potential applied, whereas chloride cannot be 

oxidized. The bromine subsequently oxidizes the EB form of PANI polymer, making that 

PE and ES the dominant components of the final PANI product.  
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Applications as Non-enzymatic Glucose Sensor 
 

4.1 Introduction 

        The fact that the selectivity and sensitivity of existing nonenzymatic glucose sensors 

[1,2] are still not as good as those of enzyme-based sensors [3,4] has fueled the constant 

search for new types of sensing materials and platforms for glucose detection. In the past 

two decades, sensors based on carbon nanotubes (CNTs)-inorganic hybrids including 

Pt/CNT [5,6], PtPb/CNT [7], Pd/Single walled CNT [8], NiO/Multi walled carbon 

nanotubes (MWCNT) [9], NiCu/MWCNTs [10], Cu/MWCNTs [11], Cu2

1μMμA −⋅

O/MWCNT [12] 

have been developed for the direct electrochemical detection of glucose. Those 

nonenzymatic glucose CNT-biosensors have shown promising results such as a faster 

response time and a higher stability than their enzyme counterparts. The cupric oxide 

modified MWCNT electrode, for example, has successfully detected glucose with a limit 

of detection (LOD) of 50 nM and a sensitivity of 6.5  and displayed only 9% 

current reduction after 30 days of storage at room temperature [12]. Many kinds of 

Cu/Cu2

        To improve the performance, a large surface area is sought when preparing 

electrochemical sensors.  Porous polymers in general have a large specific area, making 

O/CuO nanoparticles with different morphology and sizes have been synthesized 

on various substrates and the related study has led to better understanding on influences 

of nano-shapes and sizes on the sensitivity and selectivity [13-16]. However, seldom can 

reach to the level of facets’ influences is due to the difficulty in fabricating nanoparticles 

enclosed with a specific facet. 
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them an attractive candidate as the substrate [17-20]. Indeed there are increasing interests 

in the last decade to deposit metallic or semiconductor nanoparticles on conductive 

polymer matrices such as polypyrrole and polyanniline [21-25]. The polymer matrix can 

also be used for stabilizing the growth of nanoparticles and avoiding the agglomeration 

process, where the stabilized nanoparticles can be studied for their catalytic, optical, 

magnetic, and electrical properties [26]. Meanwhile, the nanoparticles deposited into 

polymer matrices can also modify the electronic, mechanical, and electrical properties of 

the polymer matrix [27]. The synergistic interactions have made the study of 

incorporating nanosized metal particles into polymer matrices current interests for many 

applications. 

        From existing reports, however, the formation of electrodeposited particles on or 

inside the conducting polymers appears to occur randomly [28]. When the deposition 

only takes place on the surface of a polymer matrix, the large specific surface area from 

the porous micro structure of the substrate is wasted. This study aims to design a 

convenient technique that copper nanoparticles can be deposited inside a conductive 

polymer matrix. The approach employed here is through the addition of chloride ions to 

the electrolyte solution. Studies have demonstrated that halogen ions preferentially 

adsorb on a specific face of metal crystals, providing a way to develop facet-controlled 

synthesis of nanocrystals [29-32]. A very recent study, using custom-build in situ high-

speed electrochemical STM, found the reduction of the critical Cu nucleus size in the 

presence of Cl-, which could lead to a lower nucleation barrier [32]. In other words, 

chloride could be introduced to the electrolyte solution to make more sites on the polymer 

chains suitable for the nucleation, which shall in turn favor the uniform deposition of 
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copper naparticles inside a three-dimensional polymer matrix. Here, we 

electrochemically synthesized a conducting polymer, poly-2,5-dimethoxyaniline (PDMA), 

on a glassy carbon electrode and used it as a solid template for preparing Cu 

nanoparticles with and without Cl-. Pulsed deposition was employed to allow ions diffuse 

into the matrix during the “off” period. As shown in the following, the presence of Cl- not 

only increased the nucleus density and thus reduced the size of Cu nanoparticles, but also 

exhibited significant effects on their morphology. Electrochemical experiments further 

demonstrate that the Cu/polymer composite film fabricated in the presence of chloride 

ion have better electroactivity in the detection of glucose. 

4.2 Experimental 

        2,5-dimethoxyaniline (≥98%), sulfuric acid (95-98%), D(+)-Glucose, dopamine 

hydrochloride (DA) were purchased from Aldrich. L-ascorbic acid (AA) was obtained 

from the British Drug Houses Ltd. and uric acid (UA) was purchased from Fisher 

Scientific Company. Sodium hydroxide was purchased from Merck KGaA (Germany). 

Both copper sulfate (≥98%) and potassium chloride (≥99%) were obtained from ACP 

Chemicals Inc. All solutions were prepared with double distilled water. 

        Scanning electron microscopy (SEM) and Energy-dispersive X-ray 

spectroscopy (EDX) were performed with a Quanta 200 FEG microscope (FEI, Inc.). All 

electrochemical experiments were carried at room temperature (22 ± 2oC) with a 

CHI660D electrochemical workstation (CHInstrument, USA). A three-electrode system 

was employed, using a bare or modified glassy carbon electrode (with a 3.0mm diameter) 

as the working electrode, a Pt wire as the auxiliary electrode, and a saturated calomel 

electrode (SCE) as the reference electrode. All electrochemical experiments were 
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performed at room temperature (22 ± 2o

        The poly(2,5-dimethoxyaniline) (PDMA) was synthesized with a cyclic 

voltammetry technique scanned between -0.2 and 1.0 V (vs SCE) at a rate of 100 mV/s. 

Pulsed current was used to electrochemically deposit copper nanoparticles into the 

conducting poly(2,5-dimethoxyaniline) matrix. There are four main parameters in the 

pulsed deposition method: the off time, the on time, the number of cycles and the applied 

current: the off time was 10 seconds, the on-time was 10 seconds, the applied cathodic 

current was 200 mA for 20 cycles. After the deposition, the films were washed with 

double-distilled water and allowed to dry in nitrogen stream. 

C) with a CHI660D electrochemical workstation 

(CHInstrument, USA). Before the in situ electrochemical polymerization of 2,5-

dimethoxyaniline (PDMA), glassy carbon electrode was polished with 0.05 µM alumina 

powder (CHInstrument USA), then cleaned by ultrasonic cleaner (Branson 1510, USA) 

for 2 minutes, and finally rinsed with double distilled water. The polymer and copper 

products were characterized with SEM and EDX.  

4.3 Results and Discussion 

        Figure 4.1(A) presents cyclic voltammograms (CVs) of 2,5-dimethoxyaniline at a 

GC electrode, performed at 100 mV/s for 20 cycles. The electrolyte solutions contains 

20.0 mM 2,5-dimethoxyaniline and 0.5 M sulfuric acid. For the first forward scan from -

0.2 to 1.0 V, only one anodic peak was observed at above 0.65V, which corresponded to 

the oxidation of 2,5-dimethoxyaniline. On the reverse scan, a cathodic peak emerged at 

around 0.25 V, which arose from the reduction of the intermediates produced from 2,5-

dimethoxyaniline oxidation. Another notable change is that after the first cycle a new 

anodic peak emerged at the potential of 0.3 V, presumably due to the products generated 
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through the preceding redox reactions. The amplitude of this anodic peak increased 

gradually with the number of cycles. Phenomenologically, the gray GC electrode turned 

into blue after 20 CV cycles, indicating the formation of polymer film on its surface. 

Earlier study has shown that poly(2,5-dimethoxyaniline) is highly conductive [33]. 

 

 

 

Figure 4.1 (A) CVs of 20.0 mM 2,5-dimethoxyaniline in 0.5 M H2SO4 solution at a scan 

rate of 100 mV/s. (B) pulsed deposition of Cu in 0.1 M CuSO4

        In Figure 4.1(B) pulsed current was employed to deposit Cu using the GC/PDMA as 

the substrate. The following parameters were used in this synthesis: the off-time was 10 

seconds, the on-time was 10 seconds, the applied cathodic current was 0.2 mA for 20 

cycles. The electrolyte solution composed of 0.10 M CuSO

 solution with or without 

KCl additives. The number of cycles is 20 in both (A) and (B).  

4 adjusted with sulfuric acid 

to pH = 4.5. The dashed and solid lines correspond to the synthesis in the absence and in 

the presence of 20.0 mM KCl in the reaction solution, where quite different potential 

profiles were observed. In the absence of Cl-
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, as soon as the current is on, the potential 

dropped sharply to a negative value in order to maintain the desired cathodic current 

density. After the initial drop, the potential stayed flat during the on-period. Upon turning 
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off the current, the potential gradually relaxes to the zero-current potential, which is 

described by the Nernst equation. In the presence of Cl- in the reaction solution, after the 

initial sharp potential drop to near 0 upon turning on the current, the potential stayed at 

the near 0 briefly and then gradually decreased toward more negative values. This 

behavior suggests that the system does not require a large negative overpotential to 

maintain the present current density. In other words, the reactant became easily reduced. 

This is in agreement with earlier observation on the accelerated reduction of copper ions 

because of the formation of Cu-Cl- complexes. Near the end of the on period, the 

potential became more negative, presumably due to that extensive consumption of copper 

ions, where larger overpotential is needed to maintain the current density. The 

electrochemical system in the presence of Cl- has a larger zero-current potential, which 

indicates that copper ion concentration rapidly regains a higher concentration in 

comparison to the case of without Cl-1

 

. This phenomenon is likely determined by the 

structure of the PDMA/Cu composite films (i.e., porous matrix vs surface blocked 

matrix).   

 

 

 

 

 

 

 

Figure 4.2 SEM images of the PDMA file after the Cu deposition. No additive such as 

KCl was added to the electrolyte solution.  
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        Figure 4.2 presents SEM images of the PDMA film after the pulsed 

electrodeposition of copper particle in a 0.1 M CuSO4

 

 solution that does not contain any 

other additives such as KCl. Figure 4.2(A) indicates that there are many micro-sized 

particles scattered almost uniformly on the surface of the PDMA film. EDX measurement 

confirms that those particles are copper. The size and morphology of those copper 

particles can be better identified from Figures 4.2(B) and 4.2(C), which indicate that each 

copper crystal is made up of many small pyramids. This microstructure is qualitatively 

the same as those obtained when copper was directly electrodeposited on a glassy carbon 

electrode [34]. Detailed examination on the surface morphology of those pyramids (see 

Figure 4.2(D)) indicates that those surfaces are not smooth, where dark colored regions 

indicate the presence of many steps and kinks.  

 

 

 

 

 

 

 

 

 

 

Figure 4.3 SEM images of the PDMA file after the Cu deposition. The pulsed 

electrodeposition of copper took place in the presence of 20.0 mM KCl in the electrolyte.  
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        Figure 4.3 shows SEM images of the PDMA film taken after copper deposition in a 

0.1 M CuSO4 solution that also contains 20.0 mM KCl. The current pulse protocol and 

number of cycles used here are the same as those used in Figure 4.2. The flat surface in 

Figure 4.3(A) (in relative to Figure 4.2(A)) suggests that most of the deposition activity 

took place inside the PDMA matrix. SEM in Figure 4.3(B) confirms that there are various 

nanoparticles inside the porous PDMA polymer. The magnified SEM images in Figures 

4.3(C) and 4.3(D) indicate that those copper deposits are nanocubes, which is different 

from the assembled pyramids formed in Figure 4.2. The above results clearly indicate 

that the additive KCl not only greatly increases the total number of particles (i.e., the 

number of nucleation sites), but also controls the crystal morphology of the final products. 

Increasing number of particles causes the significant decrease of the particle size, which 

provides a larger surface area and more edges to facilitate catalytic reactions. Similar 

copper nanocubes were obtained in the electrodeposition of copper on the vertically 

aligned MWCNTs from CuCl2 electrolyte [35]. Together with what are seen in Figures 

4.2 and 4.3, it is logical to conclude that Cl- is an effective additive to affect the crystal 

growth and to obtain copper nanocubes. Another significant result is that the presence of 

Cl- allows the copper deposition to mainly take place inside the polymer matrix, i.e., 

offering a controllable approach to make the composites of metal nanoparticles and 

conducting polymers. The response potential profile in Figure 4.1(B) suggests that the 

presence of Cl- complexes, likely through forming complexes with copper ions, makes 

the reduction of copper favored. The accelerated reduction, together with the pulse 

deposition technology, could be responsible for the deposition inside the polymer matrix. 

A very recent study suggests that the adsorption of Cl- on copper lowered nucleation 
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energy barrier [32], which subsequently makes more sites on the PDMA chain qualified 

to support copper nucleation. This factor may also contribute to the observed 

electrochemical behavior.  

 

 

 

 

 

 

Figure 4.4 (A) CVs of glucose at (1) GC/PDMA/Cu(cube), (2) GC/PDMA/Cu(pyramid), 

(3) GC/PDMA and (4) bare GC electrodes at a scan rate of 100 mVs−1. (B) DPVs of 

glucose at (1) GC/PDMA/Cu(cube) electrode and (2) GC/PDMA/Cu(pyramid). The 

electrolyte solution contains 10.0 mM glucose and 0.1 M NaOH. 

        The cyclic voltammograms of 10.0 mM glucose at a bare GC (curve 4), GC/PDMA 

(curve 3) GC/PDMA/Cu(pyramid, curve 2) and GC/PDMA/Cu(cube, curve 1) electrodes 

are depicted in Figure 4.4(A). The supporting electrolyte is 0.1 M NaOH. No oxidation 

peak is observed at the bare GC electrode, suggesting that GC electrode is inactive for the 

electro-oxidation of glucose. CV at the GC/PDMA electrode overlaps with curve 3, 

indicating that the conductive polymer does not catalyzed the electro-oxidation of 
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glucose either. With the GC/PDMA/Cu(pyramid) electrode, great electroactivity was 

achieved when the applied potential was increased to above 0.4 V (vs SCE), although 

there was no anodic peak. At the GC/PDMA/Cu(cube) electrode the response current 

increased dramatically starting from 0.2 V to 0.7 V and exhibited a well-developed 

anodic (i.e., oxidation) peak around 0.6 V. This result not only suggests that copper is 

responsible for the glucose oxidation, but also implies copper nanocubes, which have a 

higher aspect ratio and larger surface area, can give rise to higher current response.  

        In Figure 4.4(B) differential pulse voltammetry (DPV) was applied to detect glucose. 

The employed parameters are 5 mV increment, 50 mV pulse amplitude, 200 ms pulse 

width. Same as in Figure 4.4(A) the glucose concentration is 10.0 mM. It illustrates that 

at the GC/PDMA/Cu(pyramid) electrode there is an anodic peak with the peak potential 

around 0.6 V (curve 2). The peak potential decreased to near 0.3 V at the 

GC/PDMA/Cu(cube) electrode (curve 1). The negative shift in the oxidation peak 

suggests that the {100} cubic facet of the copper crystal favors the electro-oxidation of 

glucose [36]. The lower current intensity achieved at GS/PDMA/Cu(pyramid) electrode 

is likely due to that the Cu particle size there is too large, resulting in a low aspect ratio 

and small total surface area.  
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Figure 4.5 (A) Amperometric responses to a successive addition of 0.1 uM glucose in 

phase I, 1.0 uM glucose in phase II and 10.0 uM glucose in phase III, (B) The current 

response vs. glucose concentration, (C) amperometric responses to additions of glucose 

(1 mM), UA (0.1 mM), DA (0.1 mM) and AA (0.1 mM). The supporting electrolyte is 

0.1 M NaOH and the modified electrode was GC/PDMA/Cu(cube). The applied potential 

is 0.3 V. 

        Amperometric responses of the GC/PDMA/Cu(cube) electrode to successive 

additions of glucose are shown in Figure 4.5(A), where 0.1 uM in phase I, 1.0 uM in 

phase II and 10.0 uM in phase III was added each time. The applied potential is 0.3V (vs 

SCE). The inset indicates that this modified glassy carbon electrode could detect glucose 

as low as 10-7 M. Such a low detection limit shall be attributed to the high surface-to-
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volume ratio of the small Cu nanocrystals and the favorite facet of nanocubes. The large 

noise seen in the inset is due to the influence of continuous stirring. The fast current 

response can be attributed to the fast diffusion of glucose molecules in the three 

dimensional porous framework of PDMA matrix and the great electron conductivity of 

the matrix. As shown in Figure 4.5(B), the response current has two linear regions with 

respect to glucose concentration, i.e.,  from 0.1 uM to 10 uM with a linear regression 

coefficient 0.999 and from 10 uM up to 70 uM with a linear regression coefficient 0.995. 

The sensitivity is higher within the low glucose concentration range. We also tested the 

sensitivity of the GC/PBMA/Cu(pyramid) electrode and found that only had one tenth of 

the responses plotted in Figure 4.5(B).  

        A number of oxidizable interfering species co-exist with glucose in many samples. 

Therefore, it is necessary to investigate whether such interferents could produce response 

current comparable to that corresponding to glucose. The normal physiological level of 

glucose in human blood is 3-8 mM compared to about 0.1 mM of interfering species, 

while the glucose/interferents ratio is even higher in food samples. The current response 

of several common interferents such as 0.1 mM L-ascorbic acid (AA), 0.1 mM uric acid 

(UA) and 0.1 mM dopamine (DA) were tested in Figure 4.5(C), along with 1.0 mM 

glucose in a supporting solution of 0.1 M NaOH. The applied potential was 0.3V. These 

results suggest that the as-prepared GC/PDMA/Cu electrode is highly specific to glucose 

even in the presence of several common interfering species found in human blood and 

biological samples. The above prepared glucose sensor also shows a good reproducibility 

and stability, with a loss of less than 10% in the current response after being kept in water 

for more than a week at room temperature. 
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4.4 Conclusions 

        Chloride ions are found to be an effective additive to manifest the growth of copper 

crystals, leading to the formation of copper nanocubes instead of octahedrons. Such a 

morphology selection may arise from the preferential adsorption of halogen ions on a 

specific crystal face. Significantly, chloride also offers a convenient way to design 

whether the copper nanoparticles deposit inside the polymer matrix or at the outside of 

the matrix. This finding may be extended to fabricating composites of other metal 

nanoparticles and conductive polymers. According to a recent study, the above observed 

influences of chlorides may come from the reduction of the copper nucleation energy by 

chloride, which subsequently makes more sites on the polymer chains feasible for 

accommodating copper deposition [32]. The accelerated electroreduction of copper ions, 

as indicated by the response potential profile in Figure 4.1(b), could also contribute to the 

great increase in the total number of nucleation sites (i.e., number of particles) [35]. This 

study demonstrated that different morphology of Cu nanoparticles could give rise to 

distinctive peak potential for the electrochemical oxidation of glucose, in which glucose 

is greatly favored to be oxidized on the (100) cubic facet rather than on (111) octahedral 

facet.  
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Chapter 5 Electrochemical Detection of Sulfide: A Review 
5.1 Introduction 

       The broad presence of sulfide in nature including biological systems has made the study 

of sulfide a great interest for chemists [1], biochemists [2], environmentalist [3,4], 

mineralogists [5] and geochemists [6]. There are two classes of sulfides, i.e., inorganic 

sulfides and organic sulfides. Many important metals are present in nature combined with 

sulfur as metal sulfides, such as: cadmium [7], cobalt [8], copper [9], lead [10], molybdenum 

[11], nickel [12], zinc [13] and iron [14]. For mineralogists and geochemists, determining the 

sulfides context is a key to understand the formation mechanism and the geological processes 

by which certain ore deposits have formed [15]. For chemical engineers, the sulfide within 

oil and gas reserves can pose problems throughout the petroleum industry [16]. The potential 

hazards faced by workers involved in the processing of sulfide contaminated feedstock has 

meant that there is a pressing need for the development of fast and sensitive detection 

technologies [17]. Over the centuries, there is widespread awareness of the toxicity of sulfide 

in its liberated hydrogen sulfide (H2S) form [18, 19].  Even at a low concentration, H2S can 

lead to personal distress, while at a higher concentration it can result in loss of consciousness, 

permanent brain damage or even death due to the neurotoxic effect of the gas [20, 21].  

        In the last ten years, hydrogen sulphide has also been identified as an important 

endogenous signaling molecule [22], which has provided attractive opportunities for H2S to 

be developed into an innovative class of drugs [23, 24].  Moreover, hydrogen sulfide was 

discovered as an oxygen sensor in trout gill chemoreceptors, where the balance between 

constitutive production and oxidation, tightly couples tissue [H2S] to Po2 and may provide an 
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exquisitely sensitive, yet simple, O2 sensor in a variety of tissues [25]. In addition to 

inorganic sulfide, organic sulfide, such as biological thiols play crucial roles in biological 

systems for their biological activity [26]. In addition, the abnormal levels of sulfide in the 

human body have been implicated in the aetiology of several diseases [27, 28].  

        As a result, the detection of hydrogen sulfide has gained significant importance within 

the analytical community as both a consequence of its toxicity, its biological/physiological 

roles and its therapeutic potential [29].  

5.2  Classical Detection Methods 

        Table 1. Different methods used in different periods 

Time Range Methods Advantages Disadvantages 

1970s Titration with iodine [29] Simplicity Significant limitations 

 

1980s 

Methylene blue test [30] Simplicity 

Selectivity 

Sensitivity 

Interferences from light 

and nitrogen dioxide 

1990s UV [37], Fluorescence 

[38], HPLC [40] 

Selectivity 

Sensitivity 

Time consuming 

Large scale instruments 

 

2000s-now 

Atomic spectroscopic [43], 

Chemiluminescent [44],  

Ion-chromatographic [47] 

Sensitivity 

Selectivity 

Time consuming 

Large scale instruments 

 

        In the last four decades, various techniques have been successfully developed to 

measure sulfide in a variety of media even down to nanomolar concentrations. Since the 

1970s, for example, the titration of sulfide with iodine has become a classical approach to 

sulfide determination [30]. Unfortunately, the simplicity of this method comes with 
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limitations in terms of sensitivity and selectivity when dealing with real world samples. Then, 

in the late 1800’s, the methylene blue test was developed as the most common approach to 

the analysis of sulfide [31, 32]. This basic test, which involves the reaction of aqueous sulfide 

with N, N-dimethylphenyl-1,4-diamine in the presence of a small quantity of ferric ions 

giving rise to a characteristic blue coloration, retains significant analytical value today in 

terms of simplicity, selectivity, and sensitivity [17]. However, the methylene blue method has 

some limitations due to interferences from photosensitivity, cross-reactivity with nitrogen 

dioxide, aggregate formation (dimer, trimers or n-mers) leading to deviations from Beer’s 

law, as well as pH artifacts that erroneously affect absorbance readings [33-36]. After the 

1990s, a number of investigation, such as, UV/visible absorption spectroscopy [37], 

fluorescence [38],  and HPLC [40] techniques have led to substantial improvements in 

sensitivity. For example, with the fluorescence method the signal is linear over the range 

0.75-15.0 mg l-1 of injected sulfide, with a limit of detection of 0.08 mg l-1 injected sulfide 

when 9.0 M H2SO4 is used in the N,N-dimethyl-p- phenylenediamine (DMPD) carrier stream 

[39]. Infrared spectroscopy has also been applied to the quasi-direct determination of 

sulphide [41]. Over the past decade, a variety of analytical methods for determining sulfides 

have been reported [42]. Atomic spectroscopic techniques [43] and chemiluminescent [44] 

approaches have been investigated in the analysis of reduced sulfur species such as 

dimethylsulfide. Spectrophotometric method still played an important role in the detection of 

sulfide [45, 46]. Ion-chromatographic techniques were also developed as a useful method to 

determine sulfides such as hydrosulfuric acids [47]. In addition, Raman spectroscopy has also 

been used to measure sulphide.  In the Raman studies, methemoglobin was bound to non-

functionalized carbon nanotubes.  The subsequent addition of H2S resulted in significant 
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changes to the Raman spectrum of the carbon nanotubes-hemoglobin complexes.  These 

studies suggest that carbon nanotubes-hemoglobin complexes can potentially be utilized as 

biosensors to measure H2S in blood [48, 49]. More recently, our group introduced a method 

based on the selective permeability of polydimethylsiloxane (PDMS) to detect free H2S [50].  

5.3 Electrochemical Methods 

        Notably, the above classical methods require complex instrumentation and are time-

consuming. The electrochemical methods on the other hand offer distinct advantages of high 

sensitivity, rapidity, affordable instrumentation and relatively simpler procedures. As a result 

there has been renewed interest in developing new electrochemical methods to determine 

sulfides both in the inorganic and organic forms. 

5.3.1 Anodic Stripping Voltammetry 

        In 2011, Huang and co-workers introduced an indirect determination method for sulfide 

in water samples by anodic stripping voltammetry (ASV) [51]. Three-electrode system was 

used in their electrochemical experiment, utilizing a bismuth-film glassy carbon electrode 

(BiEFs) as the working electrode, saturated calomel as the reference electrodes (SCE) and 

platinum wire as the counter electrode. There are two steps in the operation. In the first step, 

the working electrode was deposited 120s under a preconcentration potential of -1.2 V while 

stirring in 25 mL of 0.1 M pH 4.5 NaAc-HAc containing a certain amount of Cd2+. Then, the 

linear sweep curve between -1.0 V and -0.5 V was performed in the same solution to get the 

modified working electrode. In the second step, different amount of S2- was added into above 

solution for ASV.  
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Figure 5.1 The ASV response of Cd2+ changed with the addition of sulfide. 0.1 M PH 4.5 

NaAc-HAc(---base line) buffer solution at 3.6 × 10 -6 M; a-h: C*
S2- = 0, 0.7, 1.4, 2.2, 2.9, 3.6, 

4.3, 5.0 × 10 -6 M. Insert: plot of the relation between the peak current of Cd2+ and the 

concentration of sulfide added. 

        The principle for sulfide determination by ASV is based on the interaction between Cd2+ 

and S2- to form CdS precipitate, therefore, the concentration of sulfide can be determinate by 

the peak current of Cd2+. As can be seen from Figure 5.1, the peak current of Cd2+ decreased 

while more S2- added into the solution, and Δ pCd
2+ has a linear relationship with the 

concentration of sulfide. This proposed method can determine S2- in the range of (0.7-5.0) × 

10-6 M (Figure 1) with a limit of detection (LOD) of 2.1 × 10-7 M and a relative standard 

deviation (RSD) of 3.6% for 1.7 × 10-6 M. The advantages of this method are affordable 

instrument and simple manipulation. It has been successfully applied to the determination of 

S2- in different water matrices. 

5.3.2 Amperometric Method 

        Amperometry is another attractive technique to obtain sensitive and fast-responsive 

results. Savizi et al. developed an amperometric inhibition biosensor for the determination of 

sulfide [52]. This biosensor was fabricated by immobilizing coprinus cinereus peroxidase 

(CIP) on the surface of screen printed electrode (SPE). Chitosan/acrylamide was applied for 
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the immobilization of peroxidase on the working electrode. The amperometric measurement 

was performed at an applied potential of -150 mV versus Ag/AgCl in the presence of 

hydroquinone as an electron mediator and 0.1 M phosphate buffer solution of pH 6.5. 

Current inhibition with different concentrations of sulfide and a linear response of the 

elevation of sulfide concentration to the inhibition of current were shown in Figure 2. The 

determination range of sulfide can be achieved between 1.09 µM and 16.3 µM with a 

detection limit of 0.3 µM (Figure 5.2). This biosensor has also been successfully tested for 

the analysis of environmental water samples. 

 

Figure 5.2 Amperometric response of CIP biosensor for different concentrations of sulfide at 

-150 mV vs. Ag/ AgCl in 0.1 M phosphate buffer (PH 6.5) solution containing 0.6mM H2O2 

and 1.25 mM of hydroquinone. Inset (a): calibration curve for sulfide determination with CIP 

inhibition sensor. 

       Though this method has the advantage of quicker response time against sulfide, the 

disadvantage is the poor selectivity. Fe3+ and Cd2+ have significant interference with the 

detection of sulfide and the error caused by CN- is up to 43.25%. 
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        Chang, etc. have reported that they have used hydrodynamic chronoamperometry to 

detection sulfide at a highly stable Fe(CN)6
3- -immobilized polymeric ionic liquid-modified 

electrode (designated as FeCN-PIL-SPCE) [53]. Under a detection potential of 0.0 V in pH 7 

PBS buffer solution, a linear calibration in the range of 1 µM up to 3 mM with a limit 

detection (S/N=3) of 12.9 nM was obtained  (Figure 5.3A). As shown in Figure 3B, the 

relative standard deviations are all less than 5 % for various concentrations of sulfide, which 

demonstrate that the FeCN-PIL-SPCE electrode is stable and reproducible toward the 

detection of sulfide. 

 

Figure 5.3 (A) Chronoamperometric response of sulfide at the FeCN-PIL-SPCE in pH 7, 0.1 

M PBS at a detection potential of 0.0 V vs. Ag/ AgCl. The insert graph is the calibration 

curve with a linear concentration range of 1 µM to 3 mM. (B) The results at the FeCN-PIL-

SPCE for 10 continuous additions of 3 µM, 50 µM and 300 µM sulfide, respectively. 
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      The proposed system shows good selectivity in real sample analysis. Practical test of the 

above system include the determination of sulfide content in hot spring water and ground 

water. 

5.3.3 Cyclic Voltammetry 

        Cyclic voltammetry (CV) is another useful and widely applied method in the field of 

electrochemical detection of sulfide [54]. Qi and co-workers have shown the rapid detection 

of sulfide on reduced graphene sheets (RGS) modified GC electrodes by CV in 2011 [55].  

The morphology and electrochemical properties of the RGS were characterized by atomic 

force microscopy (AFM) and CV. The AFM results indicate that the fascinating electrical 

properties maybe due to the nanosized sheets which are single-layer sheets contained of a 

large amount of open graphitic edge planes [56, 57]. The CV detection at RGCs/GC 

electrodes with 0.5 mM sulfide at various scan rates indicated the adsorption-controlled 

kinetic of this system. The stability of the RGSs/GC electrodes was studied by repeating the 

determination of 0.5 mM sulfide at set intervals for 22 h with a scan rate of 0.1 V s-1 in a 

potential range of -0.6-0.8 V in 0.2 M PBS buffer solution (pH 7.4). The results showed good 

reproducibility for the detection of sulfide. 
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Figure 5.4 (A) Cyclic voltammograms of RGSs/GC electrode in 0.2 M PBS (pH 7.4) 

containing different concentrations of sulfide of (a) 5 × 10-3, (b) 1.0 × 10-2, (c) 2.0 × 10-2, (d) 

4.0 × 10-2, (e) 8.0 × 10-2, (f) 0.16,  (g) 0.25, (h) 0.35, (i) 0.45, (j) 0.54, (k) 0.74,  (l) 0.98, (m) 

1.47, (n) 1.95, (o) 2.9,  (p) 4.7,  (q) 7.4 mM. (B) The changes of Ipa versus concentrations of 

sulfide ranging from 5 × 10-3 to 7.4 mM. Inset: Plot of changes of Ipa versus concentration of 

sulfide ranging from 5 × 10-3 to 0.45 mM. 

       It can be seen from Figure 5.4A that the oxidation peak current increases with the 

increase of sulfide concentration. Figure 5.4B showed the detection limit was 4.2 × 10-3 mM 

with a linear correlation coefficient of 0.999 and the detection range was between 5 × 10-3 

and 7.4 mM. The analytical application has been assessed for the direct determination of 

sulfide in water samples. The recovery of sulfide was in the range of 97.62 % and 106.90 %, 

indicating that the sensor is sufficient for practical application.  

        Another study utilizing the CV method to detect sulfide was reported by Paim and 

Stradiotto [58]. They modified a glassy carbon electrode with cobalt 

pentacyanonitrosylferrate (CoPCNF) film. The redox couple of the CoPCNF film presented 

an electrocatalytic response to sulfide in aqueous solution and the analytical curve was linear 
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in the concentration range of 7.5 × 10-5 to 7.7 × 10-4 M with a detection limit of 4.6 ×10-5 M 

for sulfide ions in 0.5 M KNO3 solution.  Compared with other electrochemical systems, a 

wide linear range was observed here. Furthermore, CV method can provide much more 

information than other electrochemical methods. For example, the anodic current might 

change linearly with the square root of the scan rate, indicating diffusion-controlled kinetics 

[59]. The transfer electron number, the redox potential and the surface coverage [60] can also 

obtain from the CV spectrum. However, the sensitivity and the detection limit of 4.6 ×10-5 M 

were not as good as other methods mentioned above.  

5.3.4 Photoelectrochemical Method 

        A facile and effective photoelectrochemical method has been developed for in situ 

determination of aqueous H2S based on the deposition of CdS nanoclusters onto TiO2 

nanotubes by Li [61]. Their article demonstrated that the photocurrent produced by bare TiO2 

is negligible compared with that from CdS/ TiO2 films. Moreover the photocurrent increased 

with the increasing amount of CdS nanoclusters which were deposited onto TiO2 nanotubes 

exposing in CdSO4 solution with the increased concentration of Na2S. The good linearity of 

logarithm photocurrent intensity versus the logarithm concentration of Na2S was also 

obtained. This work exhibited a broad linear range for H2S detection from 1 × 10-8 to 1 × 10-3 

M. The detection limit was 0.31 nM (~9.92 ppt), far lower than other methods. The most 

obvious advantages of this approach are high sensitivity, broad linear range and a low 

detection limit. In addition, because of the good selectivity, this method can be applied to 

detect sulfide in complex samples. 
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5.3.5 Electrochemical Detection Methods Coupled with Other Devices 

       Recently, increasing number of groups have attempted to couple electrochemical 

detection methods to other devices for the direct routine sensitive and simultaneous 

measurement of aminothiols, disulfides, and thioethers in either plasma or tissue 

homogenates [62-65].  

       As was mentioned before, the amperometric detection (AD) technique is a highly 

sensitive electrochemical method to detect sulfide. However, the capillary electrophoresis 

(CE) analysis combined with AD technique can achieve unparalleled sensitivity up to 

attomole levels. Particularly, recent advances in the microfabrication techniques make the 

development of on-chip CE devices coupled with electrochemical detection methods quicker. 

Recently, Chand and co-workers published an article dealing with separation, aliquot and 

detection of amino thiols on a microchip capillary electrophoresis with electrochemical 

detection in a microchannel [62]. The advantages of the modified microchannel are that it can 

collect the separated thiols in different reservoirs for further analysis and also ignore the need 

of electrode regeneration, which are totally different with conventional capillary 

electrophresis. In Chand’s work, the gold electrodes which were fabricated on glass wafers 

were used to separate and detect thiols, while microchannels were laid in PDMS. The 

microchannel had an inverted double Y-shaped structure which was required to easily store 

the separated analytes in different reservoirs. They also fabricated a potentiostat array to 

simultaneously detect analytes in different channels. The CE-AD microchip in Chand’s work 

was fabricated by standard photolithographic procedures [66]. The chip was built on a single 

soda lime glass substrate with microchannel engraved in PDMS. There were three sets of  a 

three-electrode system (working electrode, reference electrode and counter electrode) in the 



91 
Chapter 5 Electrochemical Detection of Sulfide: A Review 

CE-AD microchip and were used for electrochemical detection; in addition, electrodes for 

applying separation electric field were fabricated on the soda lime glass wafer using the 

vacuum thermal evaporation method [67]. After completion, the PDMS mold carrying 

microchannel was linked to the glass substrate containing Au microelectrodes by UV-ozone 

treatment. The configuration of the CE-AD microchip is shown in Figure 5.5. 

 

Figure 5.5 (A) Image of CE-AD microchip showing microchannel engraved in PDMS mold, 

sample reservoirs, silicon tubes carrying sample and NaOH solution into the microchannel, 

gold microelectrodes (W1-3=working; C1-3=counter; R1-3=reference; S1-4= separation 

electrodes). (B) Schematics for electronic circuit and the operation of the in-house built dual 

potentiostat. 

        Electrochemical measurements included cyclic voltammetry and chronoamperometry (i-

t curve). The CV analysis of cysteine (Cys) and homocysteine (Hcys) was the pre-requisite in 

order to find the detection voltage to be applied in the CE-AD procedure, as well as the peak 

current range that the chemicals would generate. The CV experiments were employed 

separately in a 0.1 M NaOH solution with 100 µM Cys and Hcys, respectively. A stable 

voltammogram demonstrated no sign of thiols depositing on the electrode surface. From the 

CV curves, Cys and HCys produced defined oxidation peaks in the anodic scan at 0.42 and 
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0.48 V, respectively. Hence, a detection voltage of 0.5 V was applied to detect the sample in 

straight microchannel. Then, a small volume of a 2 µL mixture containing 5 µM Cys and 

HCys each were injected into the reservoir and subsequently analyzed on the microfluidic 

chip at 0.5 V. The resulting electropherogram showed that the migration times of Cys and 

HCys were 280 s and 345 s, respectively. Thus, it proved the effectiveness of using such a 

device in the separation of Cys and HCys. For the simultaneous detection of both Cys and 

Hcys, they injected 2 µL of an equiproportionate mixture of Cys and HCys into a fresh 

device filled with 1.5% (w/v) agarose gel and applied an initial separation voltage between 

the inlet and outlet reservoir of the straight channel. The electric field was switched in the 

direction of outlet of the branched channels after 230 s. Thereafter, the detection voltage was 

set to 0.42 V and 0.48V for Cys and HCys, respectively, which was obtained from CV 

figures. In order to accurately calibrate the system for quantitative analysis, the calibration 

plots which were obtained for each analyte over a concentration range of 0.1-5 µM 

represented a typical sigmoidal correlation between peak current and concentration. A linear 

response was obtained for a range from 0.5 µM to 3 µM and the calculated limit of detection 

(LOD) for the sensor was 0.05 µM (S/N=3). Compared with other conventional CE or flow 

injection based detection procedures, the advantages of this method were the lower 

separation voltage [68], the lower limit of detection [69] and the higher peak resolution [70]. 

This CE-AD device has been successfully tested for the detection of amino thiols in real 

blood samples without the need of any sample pretreatments. 

        In addition, HPLC coupled to electrochemical detection (HPLC-ECD) is another 

sensitive approach that was recently developed for the direct measurement of thiols, 

disulfides and thioethers [63].  Bailey et al. introduced two different methods using reversed-



93 
Chapter 5 Electrochemical Detection of Sulfide: A Review 

phase HPLC with the electrochemical detection on a boron-doped diamond (BDD) working 

electrode for the direct, routine, sensitive and simultaneous measurement of a number of 

aminothiols, disulfides, and thioethers, in either plasma or tissue.49b Firstly, the 

hydrodynamic voltammograms (HDVs) for aminothiols, thioethers, and disulfides were 

obtained to illustrate that the optimal applied potential for the detection of these compounds 

on BDD electrode was approximately +1500 mV (vs. palladium reference electrode). Then 

the analysis of various concentrations of aminothiols using HPLC with a BDD electrode 

produced a linear response curve, which showed the limit of detection (LOD) was about 0.66 

nM (on column). The analysis of a typical plasma sample using the plasma chromatography 

method showed that the plasma levels of glutathione (GSH) and glutathione disulfide (GSSG) 

were 4.5 nM and 0.59 nM, respectively. The analysis of GSH and GSSG in rat brain and 

liver samples were also presented as 0.204 µM, 9.04 nM, 3.659 µM and 35.68 nM, 

respectively.  
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Table. 2 Different analytical characteristics by different electrochemical method 

Electrochemical 

method 

WE LOD Detection range Real application 

Anodic stripping 

voltammetry 

BiEFs [51] 0.21 µM 0.7-5.0 µM Sulfide in water 

Amperometric 

method 

CIP biosensor 

[52] 

0.3 µM 1.09-16.3 µM Sulfide in water 

FeCN-PIL-SPCE 

[53] 

12.9 nM 1µM- 3 mM Sulfide in water 

Cyclic voltammetry RGSs/GC [55] 4.2 µM 5× 10-3-7.4 mM Sulfide in water 

CoPCNF/GC [58] 46 µM 75-770 µM  

Photoelectrochemical 

method 

CdS/TiO2 [61] 0.31 nM 1 × 10-8-1 × 10-3 M aqueous H2S in 

water 

CE-AD Gold [62] 0.05 µM 0.5 µM to 3 µM Aminothiols in 

real blood 

HPLC-ECD BDD [63] 0.66 nM  Aminothiols,disu

lfides and 

thioethers in 

plasma or tissue 

WE, working electrode; LOD, limit of detection; CE-AD, capillary electrophoresis combined 

with amperometric detection; HPLC-ECD, High Performance Liquid Chromatography with 

electrochemical detection. 

5.4  Summary 

        Many of the electrochemical methods discussed here to detect sulfide, including 

inorganic sulfide and organic sulfide, with different working electrodes, showed different 

analytical characteristics (Table 2). It can be seen from the table that cyclic voltammetry was 

observed with the highest limit of detection (4.2 µM), yet it also had very broad detection 
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range. In other words, CV can be used to detect a high concentration of sulfide. On the other 

hand, the photo-electrochemical method is uniquely capable of detecting sulfide when the 

concentration is extremely low, as the limit of detection is 0.31 nM and the detection range is 

from 1 × 10-8 to 1 × 10-3 M. The amperometric method is another sensitive method to detect 

sulfide in water. The limit of detection was only 12 nm with FeCN-PIL-SPCE working 

electrode. In addition, electrochemical techniques coupled with other devices such as 

capillary electrophoresis or HPLC developed into more promising methods to test organic 

sulfide in real blood and other bodily fluids and tissues.  

        In conclusion, there is a sufficiently large range of electrochemical techniques 

developed recently for sulfide detection. Compared with non-electrochemical techniques, the 

electrochemical techniques reported here are clearly superior with respect to sensitivity, 

selectivity, portability of the instrumentation and the relative ease of use. In the future, the 

development of new electrochemical technology, such as using new types of Q-dots or the 

other nano-particles based electrochemical detection methods, or the application of new 

modified sensors, will make electrochemical detection of sulphide even more specific and 

efficient. 
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6.1 Summary 

        Polyanilne and its derivatives are the most extensively used among conducting 

polymers in the construction of different types of electrochemical sensors and biosensors. 

In the first part of this thesis, PBA film was electrochemically synthesized on gold 

electrodes for the recognition of amino acid enantiomers. SEM measurements illustrate 

that the as-prepared PBA film has porous structure and was made up of numerous nano-

ribbons. DPVs of L- and D-glutamic acids at the PBA modified Au electrode do not only 

have very different current densities, but also produce different waveforms, providing an 

intuitive way to differentiate the two chiral molecules. Similar results are obtained in the 

analysis of L- and D-aspartic acids. Control experiments suggests that while the observed 

electro reactivity arises from Au substrate, the coating of the PBA film provides a steric 

structure needed for differentiating chiral molecules. The approach of utilizing the 

secondary branches of a polymer chain to build the steric structure needed for chiral 

sensing may be extended to other monomers which contain various functional groups 

such as 2-aminophenol. 

        Halogen ions were subsequently employed in this research as an additive to manifest 

the properties of the synthesized polymers. In chapter 3 it has been shown that bromide 

ions could significantly affect the oxidation state of the prepared PANI film, where the 

results indicated that the bromide ions inhibited the formation of ES and forced the PANI 

polymer to be dominated by PE and SE forms. When the above synthesized PANI films 
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were applied for pH sensing, the film obtained under the influence of bromide ions 

exhibits distinct advantages with regard to larger linear potential response range to pH, a 

shorter response time, higher accuracy and stability. Such an improvement is attributed to 

the amine groups in PANI that are more favored in prononation, making the potential 

response more sensitive in strongly acidic solution.  

       In addition, motivated by the tremendous research interest in making metal 

nanoparticle and polymer hybrids, controlled electrodeposion of copper nanoparticles 

inside or on conductive PDMA matrix was explored. In chapter 4, PDMA film was in-

situ synthesized on a glassy carbon electrode with CV technique. The presence of 

chloride ions in the electrolyte solution was found to have crucial influences on the 

locations where the copper deposition took place. SEM images illustrate that chloride 

ions also have significant influence on the size and morphology of the Cu deposit. A 

transition from octahedral to cubic crystals was seen. Experiments demonstrate that 

different facets of the Cu nanoparticles give rise to distinctive peak potential for the 

electrochemical oxidation of glucose, in which glucose oxidation is greatly favored at the 

(100) cubic facet than at the (111) octahedral facet. The cubic facet exhibits a lower 

oxidation potential in the electro-oxidation of glucose in alkaline solution with a 

detection limit of 0.1 μM. The as-prepared PDMA/Cu hybrid electrode also shows great 

stability for repeated usages. 

        Finally, a review on electrochemical detection of sulfide was introduced in chapter 5. 

This review provided an up-to-date overview of the electrochemical detection of sulfide, 

including hydrogen sulfide, metal sulfide and organic sulfide. Comparing with other 

detection methods, electrochemical detection represents a highly sensitive, rapid, 
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affordable and simple technique. This review also detailed different electrochemical 

approaches and the development of various electrodes, which could be helpful for 

designing new polymer modified electrodes in our future work.  

6.2 Future works 

        Research conducted in this thesis has demonstrated that conductive polymers may 

have a very promising role in the construction of low cost, highly sensitive sensors by 

either proving the necessary steric frames or proving more active sites due to its large 

specific surface area. So far, only monomers of aniline and bromo aniline were explored 

in this thesis.  In the future work, DL- β phenyl-alanine and aniline-2-sulfonic acid can be 

copolymerized and the properties of copolymer film can be compared with the 

homopolymers. Most water-soluble ANI monomers, such as aniline-2(or -3)-sulfonic 

acid, could hardly be homopolymerized because of the withdrawing effect of the sulfonic 

acid moiety of the phenyl ring. However, the dopant incorporated into inherently 

conducting polymers could solve this problem and have a profound effect on the physical 

and chemical properties of the resultant material. Due to the presence of negatively 

charged sulfonate group, these materials are capable of electrostatic interaction with 

positively charged groups such as anilinium ions [1]. 

Our work has demonstrated that the polymer which containing –COOH group has 

capability to distinguish between HQ and CC [2-6]. Benzene derivatives with –COOH 

group can be tried in the future work to be electropolymerized and then explored as the 

electrochemical sensor to determine HQ and CC. As to the approach employed in the 

preparation of the metal-polymer hybrid sensors, several directions can be tested. For 
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example, Xia and his co-workers reported that they could control the ratio of the etching 

and regrowth rates simply by varying the amount of HCl added to their reaction solution, 

which resulted in the formation of Pd octahedra or Pd cubes [7]. Inspired by his work, 

based on our work in chapter 4, the shape of copper nanoparticles may also be controlled 

to form in the conductive polymer matrix by using different pH values. Then, catalytic 

performance of nanoparticles with different shapes in the electrochemical oxidation of 

glucose and other chemicals will be compared.  
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