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ABSTRACT 
 

The competition between a new publicly-owned cross-border bridge and the 

existing Ambassador Bridge is modeled in this thesis as a duopoly game where 

each bridge's strategy is its toll level. We assume the Ambassador Bridge always 

wants to maximize its profit, while the new bridge may have various objective 

functions. The competition between the two bridges has a natural bi-level structure, 

with the upper level being the two bridges setting their respective tolls, and the 

lower level being the road users choosing their routes. The competition 

equilibrium (i.e. Nash equilibrium) emerges when each bridge cannot improve its 

objective function by unilaterally changing its truck toll level. The Mesh Method is 

employed to solve this bi-level equilibrium problem in a simulation context. The 

obtained results of different competition regimes provide valuable insights about 

the nature of the toll competition that will likely emerge in the future.  
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CHAPTER Ⅰ 

INTRODUCTION 

 

1.1 The Research Problem 

 

Cross-border transportation plays an increasingly crucial role in the trade relations of 

neighboring countries. The analysis of traffic flows across international borders usually 

requires a well-defined modeling framework capable of examining new transportation 

policies. The latter are important in regions of high cross-border traffic activities such as 

Canada and the United States. The border separating Canada and the United States is the 

longest international border worldwide. It spans across eight Canadian Provinces and 

thirteen U.S. states and as such, supports the largest bilateral trade relationship around the 

world (McEwen, 2001).  

 

Among all the crossings between Canada and the United States, the one located along the 

Detroit River between Windsor, Ontario and Detroit, Michigan handles a significant 

amount of daily bilateral trade (Anderson, 2012). The majority of this trade is handled by 

trucks via the Ambassador Bridge connecting Windsor to Detroit.  

 

In order to promote bilateral trade and enhance the economic growth of both countries, a 

new publicly owned bridge between Windsor and Detroit, named Detroit River 

International Crossing (DRIC), is announced to be completed over the next several years. 

The DRIC will facilitate the movement of people and goods across the border in the 
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future and will ensure sufficient border crossing capacity. Also, the DRIC is expected to 

boost cross-border trade and traffic demand between Canada and the US.  

 

The development of the DRIC Bridge will affect the nature of traffic flows and toll prices 

on the transportation facilities connecting Windsor to Detroit. However, determining the 

nature of the emerging new traffic flow and toll prices is not a trivial task. Therefore, it is 

necessary to develop a modeling framework capable of simulating cross-border traffic 

and toll prices for both the Ambassador Bridge and the DRIC Bridge. Such framework 

must be able to handle the estimation of tolls under various collaboration and/or 

competition regimes. This is particularly important since the Ambassador Bridge is 

privately owned while the DRIC Bridge will be public owned.  

 

According to the literature, most toll price regime studies are theoretical and/or analytical 

in nature. In this type of studies, road users are typically modeled using a deterministic or 

stochastic user equilibrium model, while road owners are assumed to engage in toll 

competition or toll-capacity competition (e.g. Mun and Nakagawa, 2009; van den Berg 

and Verhoef , 2012; Tan, 2012 ).  A recent summary of theoretical toll road competition 

studies can be found in van den Berg and Verhoef (2012). A few studies are more 

relevant to the Windsor-Detroit cross-border setup because they considered multiple 

governments or countries, or they considered multiple collaboration and/or competition 

regimes.  
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For instance, De Borger et al (2007) studied pricing regimes in the case of two transport 

links, each owned by a different government. In the study conducted by Mun and 

Nakagawa (2009), a simple two-country model of international trade was built where the 

transportation cost of the border-crossing depended on the road capacity and toll. Five 

different alternative pricing regimes were assessed without the consideration of 

congestion. In the recent study of Tan (2012), the problem of how to set the toll and 

capacity levels of a new road added onto an existing network with a single link was 

considered in detail. Likewise, Mun and Nakagawa (2009), tested various ownership 

regimes (free, public or private owned toll road) of an existing network. 

 

The analysis of traffic flows and toll prices for border crossing transportation facilities 

characterizes a bi-level equilibrium problem. In this problem, traffic flow reaches a 

steady state condition where no traveler can achieve any reduction in travel time by 

unilaterally changing their current assigned crossing. At the same time, tolls on the 

available crossings will reach a steady state where the owner of a privately owned 

crossing facilities (e.g. Ambassador Bridge) will not be able to achieve any additional 

profit by decreasing the tolls when competing with the other facility (e.g. DRIC Bridge). 

The steady state (i.e. equilibrium) in the bi-level equilibrium problem is reached 

simultaneously. Existing studies usually converted the bi-level equilibrium problem into 

a single level problem. For instance, in the study performed by Chen (1999), the toll 

design problem is converted into a single level optimization problem with certain 

simplifying assumption.  
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Despite the current efforts, studies that apply the toll regime modeling framework to real 

world network are lacking in the literature. Therefore, this thesis fills this existing gap by 

developing a simulation framework to estimate and forecast the impacts of collaboration 

and competition regimes for the Windsor-Detroit area in the presence of the DRIC Bridge. 

Such framework could provide useful suggestions to help transportation planners and 

decision makers understand the impacts of having a new publicly owned surface crossing 

(i.e. DRIC Bridge) in one of the busiest border crossing regions in the world. 

 

1.2 The Research Objectives 

 

The aim of this research is to develop and implement a numerical modeling framework 

for two international bridges to investigate various cross-border toll competition regimes. 

The specific objectives are: 

1) Develop an operational modeling framework for cross-border toll road 

competitions with an application to the Windsor-Detroit international crossing; 

2) Apply the modeling framework to Ambassador Bridge and new DRIC Bridge to 

explore the outcomes of various toll price regimes. 
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1.3  Thesis Outline 

 

To successfully explore the impacts of different price regimes on the cross-border 

network, some empirical conclusions from previous studies are adopted in this research. 

In order to solve the bi-level toll competition problem for the two bridges, the mesh 

method (a heuristic algorithm) is used. The approach is used to simulate cross-border 

traffic flow and associated toll prices for the year 2031. 

 

The rest of thesis is organized as follows. Chapter 2 reviews relevant past studies; 

Chapter 3 introduces the study area, data and simulation platform, it also presents and 

discusses the competition model adopted in this research; Chapter 4 explains the rationale 

for deriving the values of the parameters adopted in the numerical experiments. It also 

discusses the results from the performed simulations. Finally, conclusions based on the 

obtained results and directions for future research are given in Chapter 5. 
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CHAPTER II 

LITERATURE REVIEW 

 

The past few decades witnessed a significant growth in travel demand. Changes in 

lifestyle and globalization have amplified the levels of trade and economic activities 

between various countries. Consequently, large volumes of goods are shipped across 

international boundaries every day. A number of theoretical and experimental studies 

have been conducted in the past to study transportation systems and the flow of traffic 

across international borders. This chapter provides a review of these studies to set the 

basis for the research that will be presented in this thesis.  

 

This chapter is organized as follows. Section 2.1 provides a review of studies about toll 

road competition. Next, section 2.3 gives a review of the literature on traffic equilibrium 

problems. Section 2.4 sheds light on previous researches for value of time research while 

section 2.5 discusses the main methods used in past studies to perform traffic analysis 

and simulation. The last section gives a summary of this chapter and lists the limitation of 

the previous studies as well. 

 

2.1  Toll Road Competition 

 

Within a road network, competition exists extensively among parallel routes. Based on 

empirical research, there could be several factors affecting road competition. For instance, 

toll price and road capacity are significant factors that have been identified in past 

research. Also, government policies to manage congestion, or to obtain funds and gain 
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profit have been reported (Glaister and Graham, 2004). However, according to Wei et al. 

(2011), road toll price is the most significant factor that has a direct impact on the traffic 

assignment when modeling the different available routes.  

 

One central issue regarding toll roads is how the profit-oriented behaviors of toll roads 

may deviate from the socially optimal outcome, and what kind of government regulation 

should be adopted to avoid too much welfare loss. Several researchers studied this issue 

without considering capacity choice, i.e. road capacity is given exogenously. Viton (1995) 

assessed the economic viability of private roads for the situation where a private toll road 

competes with a free-access road. He concluded that the private roads can be highly 

profitable under a range of assumptions about the mix of vehicle types and the costs of 

travel time, and presented a discussion of regulatory approaches to modify the impacts of 

simple profit-maximization. Mills (1995) discussed the possibility of divergence between 

profit and welfare for a tolled link in a simple road network. In particular, he showed that 

a link that is profitable can nevertheless entail a welfare decrement. Verhoef (1996) and 

Verhoef et al. (1996) considered a network with one origin and one destination connected 

by two parallel routes. They examined two private ownership regimes: a regime in which 

one route is private and the other is free access, and a second regime in which one private 

firm controls both routes. Braid (1996) made a detailed investigation of a private toll road 

treating endogenously all three travel decisions: whether to drive, and if so when and by 

what route, using Vickrey’s bottleneck model of queuing congestion (Vickrey, 1969). De 

Palma and Lindsey (2002) investigated whether private toll road operators will 

implement time-based congestion pricing in a competitive environment. Three types of 
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competing routes were considered using Vickrey’s bottleneck model: private roads, 

public roads, and free access roads. Verhoef and Small (2004) examined the revenue-

maximizing, first-best and second-best pricing schemes under user heterogeneity and 

elastic demand in a simple network with both parallel and serial links. They showed that 

product differentiation mitigates the difference between the revenue-maximizing and the 

first-best results, and that user heterogeneity has more impact on the effectiveness of the 

second-best policies. 

 

There are also numerical and theoretical studies on toll roads that take road capacity as a 

decision variable. Yang and Meng (2000) investigated the profitability and social welfare 

gain of a single new toll road in a general network through numerical experiments. Yang 

et al. (2002) further examined the impact of user heterogeneity on the profitability and 

social welfare gain of new toll roads. Without considering the concession period, Ubbels 

and Verhoef (2004) and Verhoef (2005) analyzed capacity choice and toll setting by 

private investors in a competitive bidding framework organized by the government. They 

considered concessionaire selection based on the various criteria of maximization of 

capacity or patronage, minimization of tolls or minimization of toll revenues, and 

compared the resulting welfare gains (or losses) from each criterion. De Borger and Van 

Dender (2005) analyzed a model with two substitute congestible facilities under three 

administrative regimes: (a) social optimum, (b) monopoly, and (c) duopoly in a 

sequential capacity-then-toll game. They showed that equilibrium time delays are equal 

in regimes (a) and (b), but higher in regime (c). Namely, pricing and capacity choices 

under monopoly do result in the socially optimal service quality. This result was derived 
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theoretically by assuming a linear inverse demand function. Xiao et al. (2007a) obtained 

a more general result when studying the inefficiency of the oligopolistic equilibria of toll 

road competition. They proved that at both oligopolistic equilibria and social optimum, 

the volume/capacity ratio of each road remains unchanged and is only determined by the 

road’s own unit construction cost. Wu et al. (2011) extended their results to general 

networks. Xiao and Yang (2008) analyzed a network consisting of a congested tolled 

highway competing with an uncongested untolled substitute, adopting a continuous VOT 

distribution among a fixed travel demand. They examined the deviation of the private 

firm’s choice from the socially optimum solution under different government regulations. 

In the recent study of Tan (2012), the problem of how to set the toll and capacity levels of 

a new road added onto an existing network with a single link was considered in detail. In 

this study, the government is assumed to concern only the network efficiency, and based 

on that it is reported that the government selects the toll and capacity levels is equate to 

that of the first-best scenario (both roads are public toll roads) under all ownership 

regimes.  

 

Another research subject regarding toll roads is the market of private toll roads, in 

particular the competition among private roads. Several researchers (some already 

mentioned) have studied toll competition among private roads for the case of simple 

networks with parallel links (De Vany and Saving, 1980; De Palma, 1992; De Palma and 

Lindsey, 2002). In a general network context, Yang and Woo (2000) studied toll road 

competition using a game-theoretic approach. Wang et al. (2004) examined the strategic 

interactions and market equilibria of a bilateral monopoly (a private road operator and a 
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private bus service provider) on a private highway. There are also several papers focused 

on the inefficiency bound (similar to the term “price of anarchy”) of toll road competition 

(Engel et al., 2005; Acemoglu and Ozdaglar, 2005; Hayrapetyan et al., 2005; Xiao et al., 

2007a; Xiao et al. 2007b). Van den Berg and Verhoef (2012) provided a summary of 

private toll road competition studies. They also considered the Nash competitions and 

Stackelberg competitions where capacity and toll setting are separate stages. 

 

A few studies considered multiple governments or countries, which is directly relevant to 

our cross-border setup. De Borger et al (2007) performed their study focusing on pricing 

regime in a congested transport corridor with two parallel links between two countries, 

and each of the links is controlled by a different government. It is found that capacities 

are strategic factors for the links of different regions, and higher capacity investment of a 

given country not only reduces optimal tolls within its own region but it also raises the 

transit tolls on the other link. As a complement of the research just mentioned, Mun and 

Nakagawa (2009) developed a simple two-country model of international trade. Five 

different pricing regimes were assessed without congestion and only trips between 

neighboring countries were considered. It is found that the break-even pricing regime 

could gain higher warfare than the free access regime. They also found that some 

different regimes yield the same result, for instance, government pricing regime and 

profit maximization regime, break-even pricing regime and user cost minimization 

regime, etc. A recent review of the literature on pricing and investment decisions with 

competing governments is given by De Borger and Proost (2012). 
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2.2 Traffic Equilibrium Model 

 

When a new link is added to the existing cross-border transportation network, a new 

pattern of traffic will likely emerge. Based on previous studies, toll pricing problems are 

usually based on different assumption of traffic equilibrium.  The latter refers to a stable 

condition of traffic flow pattern that characterizes the interaction between travel decisions 

(i.e. demand) and performance of the transportation network (i.e. delays).  

 

Typically, traffic equilibrium models have been used to predict the steady state traffic 

flow patterns in transportation networks subject to congestion. Traditionally, two traffic 

equilibrium models have been developed and used: the deterministic user equilibrium 

(UE) model and the stochastic user equilibrium (SUE) model (Chen, 1999). The concept 

of traffic equilibrium is pioneered by Knight in 1924. According to Sheffi (1985), both 

UE and SUE are well defined traffic assignment methods. UE is defined as reaching “a 

stable condition when no traveler can improve his travel time by unilaterally changing 

routes”. Here, travelers are assumed to be identical in terms of their route choice behavior. 

Different from the UE, travelers in SUE have different perception of travel time on the 

available routes connecting their origin to their destination.  

 

2.2.1 User Equilibrium Problems 

To decipher the network design problem more precisely, the algorithms for UE problems 

will be demonstrated first in this section following the presentation given in Sheffi (1985). 
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Note that the representation of the network defined in the following paragraph will also 

be adopted in the section discussing the SUE problem. 

 

Through the network, each O-D pair r-s is connected by a set of paths. Let R denote the 

origin centroids set. Also, let S denote the destination centroids set, while let 

    represent the set of paths, where r    and    .  For each path k,   
   is used to 

represent the flow. Let    and    denote the flow and travel time on each link. Total 

travel demand q is fixed, which can be estimated based on the zonal growth data in 

population and employment. Under the UE situation, the results of the equilibrium 

assignment problem can be obtained by solve the following optimization model: 

 

    ( )  ∑ ∫   ( )  
  

                                                                                              (2.1) 

subject to 

 

∑   
                                                                                                                                                (2.2) 

  
                                                                                                                                                      (2.3) 

and definitional constraints 

 

   ∑ ∑ ∑   
      

                                                                                                                    (2.4) 

 

 

Note that the travel time factor   ( ) on link   in equation 2.1 is a function of flow  . 

The above equation means that in the network, the flow on each link equals the total flow 

on all the paths passing the link. The indicator variable     
  ’s value equals 1 if link a is 

included in path connecting O-D pair r-s, and equals 0 otherwise.   is utilized to convert 

toll to travel time. 
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To date, many efforts have been made to develop toll-competition based models where 

the UE is utilized. Verhoef et al. (1996) performed their study with a two-link network 

simulation model under a static UE condition. In a later study, Yang and Woo (2000) 

investigated the competitive Nash equilibrium graphically by considering two private 

operating toll roads. In the exploratory research conducted by Bar-Gera and Boyce 

(2005), the characteristics of route sets in the solution to an integrated user equilibrium 

model is illustrated clearly. Recently, Tan (2012) investigated the problem of toll and 

capacity level setting of an add-on road using the UE model.  

 

2.2.2 Stochastic User Equilibrium Problems 

In SUE network design problems, equilibrium will be reached when no traveler believes 

that his/her travel time can be shorter on any other route than the one currently used. 

Within a network, the following stochastic user equilibrium (SUE) condition always 

holds: 

 

  
       𝑃 

                                                                                                                                               (2.5) 

where 𝑃 
  is the probability that route k within the network has been chosen based on 

measured perceived travel times. Additionally, the basic constraints should also hold for 

the network: 

 

      (  )               𝐴                                                                                                                           (2.6) 

∑   
                                                                                                                                                       (2.7) 

where   is the trip rate on link a within the consecutive link set A, and 
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    ∑ ∑ ∑   
      

                                                                                                                     (2.8) 

 

The indicator variable     
  ’s value equals 1 if link a is included in path connecting O-D 

pair r-s, and equals 0 otherwise.  

 

Compared with the UE model, the SUE model has been shown to produce more realistic 

results yet its application in empirical toll price studies is more complicated given its 

probabilistic nature. Bergomi (2009) applied the concept of SUE for estimating the 

equilibrium travel times and flow pattern. In this study, the SUE case is proved to require 

more computational work than the deterministic UE, since a large number of potential 

routes have to be considered simultaneously. Recently, Liu et al. (2013) presented a study 

to formulate a practical speed-based toll design problem by applying a mathematical 

programming problem with a probit-based stochastic user equilibrium model. Chen (1999) 

used both UE and SUE methods in toll design problems, and demonstrated that the 

relationship between the two methods is very tight. In essence, the UE problem is a 

special condition of the SUE problem. However, UE modeling was more feasible since 

the number of equilibrium constraints in the case of the SUE was proved to be rather 

large for a real-sized network and consequently heavy computational work would be 

required. 

 

2.2.3 Two-Link Network to Illustrate Toll Road Competition 

To illustrate the toll competition theory and bi-level modeling problem more clearly, a 

simple two-link example will be demonstrated first here. 
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Fig. 2.1 A two-link network 

 

Consider two links connecting one origin-destination (OD) pair as depicted in figure 2.1. 

These two links represent two different paths, leading from the origin, node 1, to the 

destination, node 2. The travel time functions for the two links are: 

 

 1( 1)    +  1 

 2( 2)    +  2 

where t he free flow travel time of both is links,  1 and  2 are the traffic volumes on the 

two links, respectively.  

 

Total travel demand (or total traffic volume) between this OD pair is d, given and fixed.  

 

 1 +  2     

 

Each link is assumed to be a private toll road operated by a private firm, and each firm 

would like to set a toll level which can maximize its own revenue. Assuming user 

equilibrium traffic assignment; the total cost of each link to road users is travel time plus 
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toll. For ease of exposition, consider the unit of toll is already converted to time unit by a 

VOT parameter, and thereby the total costs of the two links can be written as 

 

Link 1: 𝜏1 +  1( 1) 

Link 2: 𝜏2 +  2( 2) 

where 𝜏1and 𝜏2 are the toll prices set by Firm 1 and Firm 2, respectively.  

 

To determine the equilibrium tolls charged on the two links, a bi-level model could be 

applied here. In the following part, two situations of the two-link example will be 

discussed: without pavement cost and with pavement cost.  

 

Two-link problem without pavement cost 

In this case, pavement cost will not be a concern when we solve the competition problem. 

Based on the above considerations, both of the two private firms aim at maximizing the 

revenue, which can be expressed as 

 

{
𝐿𝑖𝑛  1: 𝜏1         𝜏1 1(𝜏1 𝜏2)  
𝐿𝑖𝑛  2:  𝜏2         𝜏2 2 (𝜏1 𝜏2)

 

where the equilibrium flows  1and  2 can be calculated by solving the following lower-

level user equilibrium problem: 

 

    ( )  ∫ (  +  )  
  

 
+𝜏1 1+∫ (  +  )  

  

 
+ 𝜏2 2

       

2
                                      (2.9) 

subject to 
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 1 +  2                                                                                                                                                       (2.10) 

 1  2                                                                                                                                                           (2.11) 

 

To simplify the above equilibrium problem for this two-link problem, the original 

formulation can be written as: 

  

    ( )  ∫ (  +  )  
  

 
+𝜏1 1+∫ (  +  )  

    

 
+ 𝜏2(   1) 

subject to 

 1    1      

 

By solving the above one-variable minimization problem,  1 and  2 can be obtained: 

 

 1  
       

2
                                                                                                                                                   (2.12) 

 2  
       

2
                                                                                                                                                   (2.13) 

 

It should be mentioned that the above solution (2.12) and (2.13) can also be directly 

solved by using the UE condition  𝜏1 +  1( 1)  𝜏2 +  2( 2) . Here we used the UE 

problem formulation just to highlight the bi-level nature of the problem. 

 

Substituting expressions (2.12) and (2.13) into the upper-level maximization problems, 

the objective functions become: 
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Firm 1:                              𝜏1 1(𝜏1 𝜏2) = 𝜏1   
       

2
                                                             (2.14) 

Firm 2:                              𝜏2 2(𝜏1 𝜏2) = 𝜏2   
       

2
                                                     (2.15) 

 

The solution of the above mathematical program is: 

 

{
𝐿𝑖𝑛  1: 𝜏1(𝜏2)  

𝜏   

2
 

𝐿𝑖𝑛  2: 𝜏2(𝜏1)  
𝜏   

2

                                                                                                                            (2.16) 

 

Expression (2.16) gives the best-response curve of each firm given the other firm's toll 

level, which is plotted as below: 

 

Fig. 2.2 Toll competition functions between the two links under UE 

 

The above figure reveals the toll competition pattern between the two firms. If the toll of 

Firm 1 is fixed to 0, the revenue-maximizing toll of Firm 2 will be 𝜏2   2⁄ , and vice 

versa. However, the toll competition equilibrium solution can only be obtained when the 

tolls can satisfy the maximization problems (2.14) and (2.15) simultaneously. As marked 
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in the figure, when both of the firms set their tolls to d, the revenue maximization point 

under user equilibrium can be reached for both firms. That is to say, the equilibrium toll 

charged on each links is d in this example. 

 

Two-link problem with pavement cost 

Let m denote the pavement cost for each truck on the two bridges. In this situation, the 

pavement costs should be subtracted before estimating the profits. Considering the 

pavement cost m, the problem can be solved as 

 

{
𝐿𝑖𝑛  1: 𝜏1         ( 𝜏1  ) 1(𝜏1 𝜏2)  
𝐿𝑖𝑛  2:  𝜏2         ( 𝜏2  ) 2 (𝜏1 𝜏2)

 

where the equilibrium flows  1and  2 can be calculated by solving the lower-level user 

equilibrium problem shown in (2.9) to (2.11) . 

 

Using the UE condition  𝜏1 +  1( 1)  𝜏2 +  2( 2) ,  1  and  2  here can be solved as 

shown in (2.12) and (2.13). 

 

For the upper-level problem, the objective functions for the two firms become: 

 

Firm 1:                              ( 𝜏1  ) 1(𝜏1 𝜏2) = (𝜏
1
  )   

𝜏  𝜏   

2
                                   (2.17) 

Firm 2:                              ( 𝜏2  ) 2(𝜏1 𝜏2) = (𝜏
2
  )   

𝜏  𝜏   

2
                               (2.18) 

 

In this context, 𝜏1     𝜏2 can be solved as 



20 
 

 

{
𝐿𝑖𝑛  1: 𝜏1(𝜏2)  

𝜏     

2
 

𝐿𝑖𝑛  2: 𝜏2(𝜏1)  
𝜏     

2

                                                                                                                       (2.19) 

 

And the equilibrium tolls can also be solved as: 

 

{
𝜏1   + 
 𝜏2   + 

                                                                                                                                                  (2.20) 

 

From the above equations, it can be seen that the equilibrium toll is proportional to the 

pavement cost and the pavement cost is translated to the travelers in the system. Since the 

total travel demand is fixed, the equilibrium toll prices for the two links will definitely 

increase with the growth of the pavement cost. However, the total revenue at the 

equilibrium point of the two firms will keep the same since the pavement cost will be 

cancelled out during the calculation. This example indicates that within this two-link 

system, the change of the pavement cost can directly influence the equilibrium toll price, 

but will not change the total revenue when the problem is linear.  

 

Different from the two-link network examples, in this project, DRIC is operated by 

government while Ambassador Bridge is privately-owned. The market objective of the 

Ambassador Bridge is always profit and the DRIC’s goal can be either profit or social-

welfare. In the competition, operators of DRIC and Ambassador Bridge can decide their 

own toll prices and the SUE method were adopted. 
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2.3 Value of Time 

 

In transport economics, the concept of value of time (VOT) stands for the opportunity 

cost of the time that a commuter spends on the journey. Essentially, travel time plays a 

vital role in the general cost of any trip. Sufficient empirical findings to estimate VOT 

can be found in previous studies (e.g. Calfee and Winston, 1998; Lam and Small, 2001; 

Whelan and Bates, 2001; Lake and Ferreira, 2002; Brownstone and Small, 2003; 

Holguín-Veras and Cetin, 2008; Transport Appraisal and Strategic Modelling (TASM) 

Division, 2012). The literature indicates that VOT varies widely for travelers with 

different level of wage, gender, age, trip purpose, length of the trip, and so on. However, 

since travel time is a significant component of a commuter’s travel cost, different VOT 

time and travel time savings could give rise to different attractive ability for every 

transport project (Button, 2004).  

 

Lake and Ferreira (2002) obtain some useful conclusions about the rates of VOT based 

on personal income. They found that for non-business trips, 40% to 50% of average 

income rates is widely accepted, while rates of up to 80% to 100% of the income rate is 

adopted for business trip. Therefore, with certain empirical converting rates, the value of 

time of an area could be generated according to the average local income. Based on 

certain assessment, the average VOT for vehicle travel can be estimated to range from 

$7.50 to $10.00 per hour using the mean hourly income of $15.01 and $20.08 for non-

metropolitan and metropolitan areas, respectively (US Bureau of Labor Statistics, 2007). 

Nevertheless, in some particular circumstances, making a simple assumption of a 
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uniformed value of time for all commuters within a network has been reported. Zhang 

and Levinson (2006) assumed a uniform VOT of 10 dollars per hour for all travelers.  

 

2.4 Traffic Analysis Methods 

 

The urban transport modeling system (UTMS) has been used since the 1950s to simulate 

traffic flows on the transportation network. In most cases, the UTMS makes use of the 

UE method to simulate network traffic flows (Kuzmyak, 2008).  Figure 2.3 illustrates the 

general structure of the UTMS simulation method. 

 

 

Fig. 2.3 Four-step transportation planning model structure 

 (Source: NCHRP Synthesis 384, Forecasting metropolitan Commercial and Freight Travel, 2008) 

 

 

UTMS, also known as the four-stage model, is often utilized for trip estimation (i.e. travel 

demand) during the first 3 stages (as in figure 2.3) and then the UE traffic assignment is 
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applied as the 4th stage. Typically, the urban area is divided into a set of mutually 

exclusive and collectively exhaustive set of traffic analysis zones (TAZs). Land use 

activity information (e.g. population and employment) per TAZ are then collected and 

projected for future years. Data from household travel surveys and commercial travel 

surveys are used to estimate the parameters of the different components of the UTMS.  

 

In the trip generation stage, regression models are normally estimated and used to predict 

the trip productions Oi and attractions Dj per TAZ. Typically, Oi and Dj are modeled as a 

linear function of land use activities variables such as population and employment. In the 

trip distribution stage, a gravity model is usually estimated and then used to predict the 

trip matrix T summarizing the number of trips Tij between any two pairs of TAZs i and j. 

The gravity model makes use of the predicted Oi’s and Dj’s from stage 1 when estimating 

matrix T. Next, The modal split stage relies on discrete choice models (e.g. Multinomial 

Logit or Nested Logit model) to split the trip matrix T produced in stage 2 by travel mode. 

The result is a set of matrices T
m

 that summarize the number of trips “by a given mode m 

(e.g. motorized mode)” between any two pairs of TAZs i and j. Finally, the 4
th

 stage is 

executed to assign the motorized trip matrix T
m

 (m = motorized) to the road network via 

the UE or SUE model.  Although the four-stage model has not been used in the past to 

estimate cross-border traffic, the method could be extended to do so. 
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2.5 Summary 

 

This chapter reviews the relevant past studies from various aspects. The importance of 

the Windsor-Detroit border was first emphasised. Based on the statistical data presented 

in section 1, it can be seen that the Ambassador Bridge is the most critical crossing in the 

study area and the cross-border truck flow could be boost through certain effective 

measures.  The new DRIC Bridge is expected to play the important role in facilitating the 

movement of people and goods through the Windsor-Detroit trade corridor and 

promoting the bilateral economy. 

 

To ensure the accuracy and validity of the simulation results, proper equilibrium situation 

is quite important. From the discussion of the two different kinds of equilibrium problems, 

the SUE is proved to be more feasible for the modeling framework in this study. 

 

It is also necessary to take into account that which analysis methods should be used to 

investigate the impacts of different traffic regimes. UTMS can be used for trip 

assignment during the simulation progress. The sensitivity analysis is able to help us 

revealing the pattern of the traffic situation of the study area. 

 

Thanks to previous studies, many useful findings could be used in this project. However, 

there also have some limitations of these studies. As mentioned before, analysis for toll 

price regime modeling has been conducted from a theoretical perspective in most cases. 

Therefore, studies which apply the toll regime modeling to a real world network are 

lacking and required. It is important to develop and implement a modeling framework for 
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toll road competitions under various regimes for the Windsor-Detroit area. By applying 

the modeling framework to the real-sized network of Windsor-Detroit border crossing 

area, the impacts brought by different toll price regime could be thoroughly investigated 

in this research. 
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CHAPTER III 

DATA & METHODOLOGY 

 

3.1 Study Area & Research Data 

3.1.1 Study Area 

 

 

Fig. 3.1 Map of study areas 

 

The study area in this research is confined to the Windsor-Essex region and the border 

crossings connecting Windsor to Detroit, Michigan. The map displaying the study areas 

is shown in figure 3.1. The whole study area is divided into 83 traffic analysis zones 

(TAZ) with their own geographic codes. The Canadian Census was used to obtain 

population and employment figures for the different zones. Such data are used to predict 

trip productions and attractions from/to each TAZ. The road network, as shown in figure 
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3.1, consists of 1226 links and 791 nodes. Traffic flow on each link can also be estimated 

based on various factors such as travel time, capacity and/or toll prices. These factors are 

important since, travelers are more likely to choose a shorter or less congested path or 

one with lower toll. At the same time, paths with higher cost (in terms of travel time or 

toll) are usually expected to be less attractive when travelers are making their route 

choices. 

 

The Windsor-Detroit Border Crossing is the most critical among all the crossings along 

the Canada-US border. This border handles a significant percentage of the daily bilateral 

trades between the two countries (Anderson, 2012). As an important gateway for 

Canada’s trade, the Windsor-Essex County stands as the southernmost part of Canada to 

the south of Detroit, Michigan in the United States, within the Province of Ontario. The 

county’s current population is estimated at 388,782 including the population of Windsor, 

with a density of 210.1/km² (Statistics Canada, 2012). According to a recent report by 

Wilbur Smith (2010), the Windsor region is expected to grow in terms of its population 

and employment. The same could be said about Ontario (Statistics Canada, 2012). 

However, the growth rate for Detroit and the state of Michigan is projected to have 

negative growth in the future. 

 

Trade between Canada and the United States experienced a significant growth from 1994 

to 2009, with an increase rate of 245% (U.S. Bureau of Transportation Statistics, 2009), 

as a result of the free trade agreements that were signed between the two countries. 

Although bilateral trade decreased after the economic downturn in 2009, Canada is still 
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ranked as the leading exporter and importer to/from the United States (Wilbur Smith, 

2010). According to Statistics Canada (2011), during the year of 2010, the bilateral trade 

volume was more than $600 billion, with at least $1.7 billion worth of merchandise and 

services passing through the border every day. As the most critical of all Canadian border 

crossings, the Windsor-Detroit crossing carries about one third of all Canada-United 

States trade in terms of shipped goods (Statistics Canada, 2011).  

 

Anderson (2012) noted that there is a strong connection between Ontario’s economy and 

its cross-border transportation links with the United States. The trade structure between 

Ontario and the United States has been investigated and many interesting results were 

obtained. For instance, 87% of all exported merchandise pertain to manufactured goods. 

As a result of this type of freight movement structure, higher requirements are imposed 

on the transport costs and travel time for crossing the border. As for transportation mode, 

trucks are the most widely used mode for Ontario’s exports to the United States 

(Anderson 2012). 

 

To date, there are three crossings that connect Ontario and Michigan: the Ambassador 

Bridge, the Detroit–Windsor Tunnel and the Blue Water Bridge. However, when it comes 

to freight traded by trucks, the Ambassador Bridge stands as the most critical connecting 

point. Earlier studies suggest that the three border crossings handled more than 11.2 

million passenger vehicles and 3.7 million commercial vehicles annually, thus accounting 

for more than half of all the commercial flows between the two countries (Wilbur Smith 

2010).  
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Fig. 3.2 Annual traffic statistics of passenger crossings (Source: PBOA, 2013) 

 

 

Fig. 3.3 Annual traffic statistics of truck crossings (Source: PBOA, 2013) 

 

Figures 3.2 and 3.3 are plotted based on statistical data published by Public Border 

Operators Association (PBOA, 2013). Figure 3.2 shows that after the economic downturn 

in 2009, there is a general growing trend in border crossing for passenger vehicle trips. 

The data also indicates that almost 40 percent of all the passenger crossings are handled 

by the Ambassador Bridge. 
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Accordion to figure 3.3, after a significant growth from 2009 to 2010, the volume of 

trucks crossing the border experienced a slow decrease in the following two years. This 

situation could be due to the slow economic recovery and the lack of cross-border 

cooperation between local authorities on both sides of the border. As shown in the figure, 

the Ambassador Bridge retains the lion’s share of truck trips with over 60 percent of 

truck crossings. 

 

According to Sheffi (1985), travel time and travel costs can directly affect drivers’ 

decisions within the transportation system. To obtain a general border crossing cost on 

each bridge, travel time and toll price of vehicles are usually used during the analysis. 

Anderson (2012) reported that the average crossing time on the Ambassador Bridge is 

11.3 minutes from 2008 to 2009. Historical data on toll prices for the Ambassador Bridge 

can be found in the literature. In 1957, the toll price on this bridge was 60 cents per 

vehicle plus 10 cents for each passenger. Since then, the toll price level has experienced 

several increases with the times. Recently, the passenger toll price on Ambassador Bridge 

was increased from $4.75 to $5.00, ranking as the highest among all the Canada-US 

border crossings. In the study conducted by Wilbur Smith (2010), it is reported that the 

annual growth rate of passenger toll was 5.5% from 2002 to 2009. With regards to the toll 

setting for commercial vehicles, the current toll rates given by the Ambassador Bridge are 

$3.50/axle for Class A trucks, $4.00/axle for Class B trucks and $5.50/axle for Class C 

trucks. Compared to the toll price for trucks in 2009, as reported by Wilbur Smith (2010), 

the toll prices increased $0.75/axle for each truck class. 
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The New Bridge 

 

 
Fig. 3.4 Projection of DRIC Bridge 

 (Source: New International Trade Crossing, http://buildthedricnow.com) 

 

Linked by the automobile industry, significant cross-border labor and recreational 

opportunities, the Windsor-Detroit crossing region is portrayed as an area with high level 

of institutional integration and intermunicipal coordination. In order to enhance the 

bilateral economic growth and long-term prosperity, the Detroit River International 

Crossing (DRIC), as shown in figure 3.4, is proposed to be built as a new border crossing 

over the Detroit River next to the Ambassador Bridge.  

 

The DRIC Bridge, which now is named as the New International Trade Crossing (NITC), 

will link the new Herb Gray Parkway in Windsor with I75 and I94 in Detroit. With the 

improvements brought by the new bridge, enhanced flows of people and goods across the 

http://buildthedricnow.com/
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border could boost the development of job opportunities, health care, education, 

recreation and tourism on both sides of the border (Nelles, 2011). 

 

3.1.2 Data sets  

The following data were used to perform the analysis in this study:  

1. Current transportation policy of the cross-border area 

2. Official forecast documents that relate to the anticipated future growth in the city; 

3. Population, economic, transportation and other geographic data of the city; 

4. Road network data of the city; 

5. Current data on trade through the crossing; 

6. Current land use data of the city. 

 

Based on official projections, region-wide growth in population and employment has 

been estimated for the period 2006-2031. The allocation of this growth across the 

different traffic analysis zones was based on the work reported in Gingerich et al. (2014). 

PM Peak Hour (4 PM) trip productions and attractions for each zone were estimated to 

create future demand Origin-Destination matrices for passenger vehicles (PV) as well as 

light (LV), medium (MV) and heavy (HV) commercial vehicles.  

 

3.1.3 Main assumptions 

Since multiple classes of vehicles and a real traffic network are considered in this study, 

we introduced few assumptions, as shown below, to make the modeling work feasible. 
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Restricted Passenger Toll 

Due to political constraint, we assume that both bridges will set their passenger car tolls 

at the highest politically-acceptable level. As such, the passenger car tolls of the two 

bridges are the same and exogenously given. This assumption is reasonable given that the 

Ambassador Bridge and the Detroit-Windsor Tunnel charge the same passenger car toll 

most of the time. With this assumption, each bridge's strategy reduces to its truck toll 

level, and the competition equilibrium (i.e. Nash equilibrium) emerges when each bridge 

cannot improve its objective function by unilaterally changing its truck toll level. 

 

Fixed Travel Demand 

Since the competition problem in this research involves multi vehicle classes and a real 

traffic network, dealing with variable travel demand can complicate the toll competition 

problem. Therefore, the total travel demand q is assumed to be fixed for the border 

crossing area. Such assumption assumes that international trade is mainly determined by 

the economy but not by the border crossing toll. On the other hand, fixed travel demand 

for passenger cars is a reasonable assumption since we are modeling flows during the PM 

peak hour.  

 

Duopoly Price Game 

The price competition we considered in this study is focused on the Ambassador Bridge 

and the new bridge. Although the Detroit–Windsor Tunnel and the Blue Water Bridge are 

also responsible for part of the border crossing traffic, the majority of the flows across the 

border will use the Ambassador Bridge and the new bridge.  
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3.2 Competition Regimes 

 

In order to address the toll competition problem in this study, a bi-level equilibrium 

modeling framework was adopted to formulate and solve the toll competition problem. 

Generally, the upper level of the bi-level modeling framework is known as the operator 

level while the lower level is known as the traveler level. Depending on different 

ownership and purpose, the objective of the operators could be different. Suppose the 

operator of the Ambassador Bridge is always bent on profit, and the DRIC’s operator has 

diverse competitive strategies based on different objectives.  

 

Let A be the set of consecutively numbered links forming the road network; N be the set 

of consecutively numbered nodes; and let    and    denote the flow and travel time on 

link a   . Through the network, each O-D pair r-s is connected by a set of paths. If R 

denote the origin centroids set and S denote the destination centroids set, then we can 

define     as the set of paths connecting r to s, , where r    and    .  For each path k, 

  
   is used to represent the flow. The value of time   in this project will be used for the 

reciprocal conversion between travel time and toll. Here, total travel demand q is fixed, 

which can be estimated based on the zonal growth in population and employment of the 

study area from the period 2006 to 2031. Within the border crossing network, the 

following stochastic user equilibrium (SUE) condition always holds: 

 

  
       𝑃 

                                                                                                                           (3.1) 
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where 𝑃 
  is the probability that route k within the network been chosen based on 

measured perceived travel times.  

 

Additionally, the basic constraints should also hold for the network: 

 

      (  )               𝐴                                                                                                       (3.2) 

∑   
                                                                                                                                   (3.3) 

where   is the trip rate on a link within the consecutive link set A, and  

 

   ∑ ∑ ∑   
      

                                                                                                                                    (3.4) 

The indicator variable     
  ’s value equals 1 if link a is included in path k, and equals 0 

otherwise.  

 

Using the COMMUTE software, a multi-class traffic assignment which simulates 

simultaneous traffic flow for passenger vehicles and commercial vehicles under SUE is 

performed in this study. In the following, five different price regime scenarios will be 

discussed.  

 

3.2.1 Regime 1  

In this regime, both operators of the Ambassador Bridge and the DRIC Bridge choose to 

maximize their profits by selecting their toll charge. Let  1and  2represent the traffic 

volume on the Ambassador Bridge and the DRIC Bridge. Denote   1 and  2 as the travel 

time of the Ambassador Bridge and the DRIC, and let 𝜏1 and 𝜏2 be the toll prices on the 
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two bridges, respectively. In this study,   is utilized to convert travel time to toll.  The 

general travel cost C for each bridge can be represented as follows: 

  𝜏 +    +                                                                                                                               (3.5) 

 

Since the aims of the operators in this regime are to maximize the profits, the problem to 

be solved can be expressed as follows: 

{
𝐴 𝑏     𝑜  𝐵 𝑖 𝑔𝑒:   (𝜏1  1 + (𝜏1   ) 1 )

𝐷𝑅𝐼𝐶 𝐵 𝑖 𝑔𝑒:                   (𝜏2  2 + (𝜏2   ) 2 )
                                                     (3.6) 

where the letters P and H in the above subscripts refer the corresponding parameters of 

passenger vehicle class and  the heavy trucks crossing the border. For passenger vehicles, 

the toll price 𝜏1 and 𝜏2  are given and fixed to a certain level in each regime. Meanwhile, 

the toll price of heavy vehicles 𝜏1 and 𝜏2  are decision variables in this study. M denotes 

the maintenance cost caused by each heavy truck, as a function of different factors such 

as the vehicles’ axle weights, travel speeds, etc. In this equation,  1and  2 are parts of the 

optimal solution to the aforementioned lower-level SUE problem (3.1)-(3.4). 

 

3.2.2 Regime 2  

For the sake of efficiency of the network, the objective of the government should be 

changed to minimize the total travel cost of the commuters. In light of this purpose, two 

different situations could be derived to solve the problem: minimize the total travel cost 

on the two border-crossing bridges and minimize the total travel cost for of the entire 

network. In regime 2, the operator of the DRIC Bridge cares of the efficiency of the 
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heavy trucks passing the two bridges while the owner of the Ambassador Bridge still 

chooses to change the toll to maximize his profit. 

 

Using the parameters defined in regime 1, the mix duopoly problem of regime 2 could be 

expressed as: 

{
𝐴 𝑏     𝑜  𝐵 𝑖 𝑔𝑒:   (𝜏1  1 + (𝜏1   ) 1 )
𝐷𝑅𝐼𝐶 𝐵 𝑖 𝑔𝑒:                   ( 1 1 +  2 2 )                   

                                                   (3.7) 

where  1and  2 are also parts of the optimal solution to the aforementioned lower-level 

SUE problem (3.1)-(3.6).  

 

In equation (3.7), the optimal function of the Ambassador Bridge is same with the one in 

regime 1, since the objective of this bridge is supposed to be profit maximization for all 

of these five regimes. On the other hand, from the optimal function of the DRIC Bridge, 

it can be seen that the goal is to change the toll of DRIC to minimizing the total travel 

cost of heavy trucks on the two border-crossing bridges. 

 

3.2.3 Regime 3 

Similar with regime 2, regime 3 is also a mix duopoly problem. The only difference is 

that the travel cost of passenger vehicles is also considered in DRIC’s competition 

strategy. To estimate the total travel cost of multi-class vehicles, the travel costs of these 

two vehicle groups are converted to equivalent monetary cost using the VOT factor. In 

this case, the problem to be solved can be expressed as follows: 
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{
𝐴 𝑏     𝑜  𝐵 𝑖 𝑔𝑒:   (𝜏

1𝑃
 1𝑃+ (𝜏1𝐻  ) 1𝐻)                             

𝐷𝑅𝐼𝐶 𝐵 𝑖 𝑔𝑒:              𝑖𝑛(( 
1
 1𝑃 +  2 2𝑃) 𝑃+ ( 1 1𝐻 +  2 2𝐻) 𝐻) 

                           (3.8) 

where  1and  2 are parts of the optimal solution to the aforementioned lower-level SUE 

problem (3.1)-(3.4).   and   represents the VOT factor of passenger vehicles and heavy 

trucks respectively. 

 

From the monetary cost function in the above equation, it can be seen that the DRIC’s 

objective here is to change the toll to minimize the total travel cost of all the vehicles 

through the two bridges. 

3.2.4 Regime 4 

As discussed previously, when considering the network efficiency, another alternative for 

the DRIC’s operator is minimizing the total travel cost for of the entire network. In this 

situation, the problem of the Ambassador Bridge is to maximize its profit as before, and 

the DRIC is aimed of minimize the heavy trucks’ travel cost of the whole network. The 

optimal problem in this regime is captured as: 

 

{
𝐴 𝑏     𝑜  𝐵 𝑖 𝑔𝑒:   (𝜏1  1 + (𝜏1   ) 1 )                                 

𝐷𝑅𝐼𝐶 𝐵 𝑖 𝑔𝑒:                  ∑        𝐴                                                                
                 (3.9) 

where    represents the travel time on link a, and     denotes the corresponding heavy 

vehicle trip rate. As above,  1 and    are parts of the optimal solution to the 

aforementioned lower-level SUE problem (3.1)-(3.4).  
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Compared to the objective functions in regime 2 and regime 3, in this case, the DRIC 

cares the travel cost of the heavy vehicles throughout the entire network. To fulfill this, 

the DRIC will choose the toll which gives the minimum results under the SUE condition.  

 

3.2.5 Regime 5 

Compared to regime 4, the heavy vehicle class is no longer the only concern of the DRIC 

Bridge in regime 5. All the vehicles in the study area are taken into consideration to 

optimize the network efficiency. The optimal problem in this regime can be expressed as: 

{
𝐴 𝑏     𝑜  𝐵 𝑖 𝑔𝑒:   (𝜏1  1 + (𝜏1   ) 1 )                  

𝐷𝑅𝐼𝐶 𝐵 𝑖 𝑔𝑒:                  ∑ (       +        𝐴   )                  
                              (3.10) 

 

where     represents the travel time on link a, and     and     represent the 

corresponding passenger and heavy vehicle trip rate. As above,    and     are parts of 

the optimal solution to the aforementioned lower-level SUE problem (3.1)-(3.4).  

 

By comparing the above five regimes, we can see that except regime 1, the DRIC Bridge 

in the other regimes aims at minimizing the travel cost. Regime 2 and regime 3 consider 

the travel cost on the two bridges, when regime 4 and regime 5 care for the entire 

system’s efficiency. Note that problems in these five regimes are all subject to the 

constraint of the SUE situation. 
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3.3 Modelling Techniques and Methods 

 

3.3.1 Mesh Algorithm 

The Mesh Algorithm (a heuristic method) was employed to solve the bi-level competition 

problem. The algorithm is used to numerically generate the best response curves 𝜏1 as a 

function of 𝜏2 (i.e. 𝜏1(𝜏2)) and vice versa (i.e. 𝜏2(𝜏1)), as discussed in section 2.1. 𝜏1 here 

represents the toll price that the Ambassador Bridge is going to set in reaction to the toll 

price set by The DRIC Bridge due to a given regime objective. Likewise, 𝜏2 represents 

the toll price that the DRIC Bridge is going to set in reaction to the toll price set by the 

Ambassador Bridge. The two curves could then be plotted to identify the intercept point 

demarking the equilibrium tolls prices. The Mesh Algorithm determines 𝜏1(𝜏2)  and 

𝜏2(𝜏1) taking into consideration cross-border flows that will be generated on both the 

Ambassador and DRIC Bridges under a particular 𝜏1 and 𝜏1 values.  

 

Cross-border flows under the Mesh Algorithm could be simulated for any given pairs 𝜏1 

and 𝜏2 that pertain to trucks and/or cars. As such, we simulate traffic flows under a range 

of toll prices 𝜏1  and𝜏2 . Typically, we set a range and step-size increments for the toll 

prices on the two bridges. We then simulate the traffic flows for all possible toll pairs  𝜏1 

and 𝜏2on the two bridges. For instance, if the range is $1 to $4 with step-size increments 

of $2 then we will simulate 9 traffic assignments for 9 pairs of toll prices, as shown in 

table 3.1.  
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Table 3.1 Example of Mesh Algorithm 

Bridge 1 Toll 

Price (𝜏1) 

Bridge 2 Toll 

Price (𝜏2) 

Bridge 1 

Revenue  

(R1) 

Bridge 2 

Revenue  

(R2) 

0 0 100 110 

0 2 120 90 

0 4 160 50 

2 0 90 120 

2 2 100 110 

2 4 115 95 

4 0 50 160 

4 2 95 115 

4 4 100 110 

 

Based on the data shown in table 3.1, the best response curve for the Bridge 2 can be 

obtained first. For example, when the toll price of Bridge 1 (𝜏1) is fixed as 0, the best toll 

level of Bridge 2 can be identified as 0 since the Bridge’s 2 revenue R2 reaches its peak at 

that point (i.e. R2 = 110). Therefore, the first point making the best response curve 𝜏1(𝜏2) 

is point (0, 0). Following the same logic, the toll price pairs for best response curve 

𝜏1(𝜏2) can be determined. For Bridge 1, the best response curve can be also obtained by 

identifying its best toll level corresponding to each given toll level of Bridge 2. 

 

In this thesis, the mesh algorithm is executed for a large number of toll pairs. Since the 

cost unit used in the COMMUTE simulation program is in minute, all the toll prices were 

converted into minute using predefined VOT factors. According to the VOT of heavy 

vehicles (H), a toll of $1.193 can be converted to 1 minute in the software. Accordingly, 

the range for the Mesh simulations is set from $1.193 (or 1 minute) to $119.3 (or 100 
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minutes) with an increment of $1.193 (i.e. 1 minute). A total of 10,000 (100×100) 

simulations were executed. In each simulation, cross-border traffic flow v1 and v2 on the 

two bridges were calculated for a given toll price pair (𝜏1 , 𝜏2 ). Each simulation run 

also provided the flow on all the links comprising the Windsor road network.   

 

Since passenger vehicles trips also account for a significant portion of the total trips 

crossing the border, the role of passenger vehicle revenue should not be ignored. 

Therefore, a sensitivity analysis on passenger car toll level was performed, which will be 

discussed in the following chapter.  

 

3.3.2 Traffic simulation  

Given the Windsor Road network, intra-regional and cross-border travel demands, 

equilibrium toll prices on the Ambassador Bridge and DRIC Bridge are estimated for the 

regimes described earlier in this Chapter. A UTMS simulation model was utilized to 

estimate trips for cars and trucks for the year 2031. A Stochastic User Equilibrium (SUE) 

traffic assignment was then employed to determine equilibrium traffic flows for each 

Mesh simulation. The UTMS is executed using the COMMUTE modeling system. 

COMMUTE is a simulation program that executes the four-step models to generate 

traffic flows on the links forming a road network. Generally, COMMUTE enables the 

assessment of impacts such as congestion, energy use and environmental pollution due to 

the estimated traffic flow on the network. COMMUTE is also capable of performing a 

multi-class traffic assignment which simulates simultaneous traffic flow for passenger 

vehicles and commercial vehicles.  
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Given the emphasis on the border, our analysis focused on the two major players that use 

the border: private vehicles and heavy trucks. However, for the sake of 

comprehensiveness and to account for the role of other vehicles on the local road network, 

light and medium commercial vehicles were also considered. Eventually, solving the toll 

competition problem for more than two vehicle classes would prove to be a rather 

difficult modeling exercise. Therefore, we focused on solving the problem for two 

vehicle classes while accounting for the role of light and medium commercial vehicles. 

More specifically, trips pertaining to private vehicles and light commercial vehicles were 

grouped in one class that we refer to as Cars. On the other hand, medium and heavy 

commercial trips were also grouped in a second class that we refer to as Trucks. It was 

convenient to group light commercial vehicles with private vehicles since the former 

occurred only on local roads and did not cross the Canada-US border. Also, light 

commercial trips normally take place by small vehicles and therefore like private vehicles 

can utilize the entire road network. On the other hand, medium and heavy commercial 

vehicles are constrained to certain roads on the local road network and are normally 

carried out by large vehicles. Also, since the majority of the non-passenger traffic 

crossing the Canada-US border pertains to heavy commercial vehicles, grouping medium 

and heavy trucks was deemed appropriate. The trips for the two modeled vehicle classes 

were calculated as follows: 

 

    T  p    P    te Veh cle T  p  +  1 5 L  ht  o  e c  l T  p                                                 (3.11) 

T uck T  p    He  y  o  e c  l T  p  +    8 Me  u   o  e c  l T  p                              (3.12) 
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The 1.5 factor in equation 3.11 suggest that one light commercial vehicle is equivalent to 

one and half passenger vehicles. This is an acceptable assumption since light commercial 

vehicles will normally have more pickup trucks and vans relative to regular size 

passenger vehicles. On the other hand, the 0.8 factor in equation 3.12 suggests that one 

heavy truck is equivalent to 1.25 medium trucks. Following Kanaroglou and Buliung 

(2008), the passenger car equivalent (PCE) factors for heavy and medium trucks is 2.5 

and 2.0, respectively.  

 

3.4  External Costs  

 

In order to estimate the bi-level models and solve the toll competition problem the model 

required a number of parameters to describe tolls in terms of both monetary and time 

units. This section provides an overview on the work done to obtain those parameters.  

 

3.4.1 Passenger toll level 

 

Table 3.2 Passenger Vehicle Toll Price 

Update Date Toll ($) 

2002-Jul-01 2.75 

2007-Aug-18 3.75 

2008-Feb-01 4.00 

2009-Feb-01 4.00 

2012-July-01 4.75 

2013-Aug-15 5.00 
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We started by examining the historical trend of toll rates for passenger vehicles at the 

Ambassador Bridge.  Table 3.2 provides the toll rates from 2002 to 2013. The reported 

values suggest that passenger toll rates increased over time and almost doubled within a 

period of approximately 10 years ($2.75 in 2002 to $5.00 in 2013).  

 

Based on the toll records of year 2002 and 2013, the average annual growth rate from 

2002 to 2013 can be calculated as 5.59%. Similar results can be found in Wilbur Smith 

(2010), who reported that the Ambassador Bridge’s annual toll growth rate for passenger 

vehicles was 6.1% from 1989 to 1999, and 5.9% from 1999 to 2009. 

 

3.4.2 Pavement Costs by Trucks 

According to Hussain and Parker (2006), pavement costs could be estimated as a function 

of different factors of a project, including the standard, the vehicles’ axle weights, and 

travel speeds, etc. As discussed by Holguín-Veras and Cetin (2009), pavement costs are 

made of the total expenditure of construction, maintenance and rehabilitation of the 

infrastructure. In the latter study, the pavement costs are simplified as a function of only 

three main factors: the total life cycle cost, the design standard of the facility and the load 

equivalency factors for each vehicle class.  

 

For the two border crossing bridges in our study, the pavement deterioration could be 

attributed to both passenger and commercial vehicles. According to Chatti et al. (2004), 

traffic loads are a key component in pavement deterioration. However, considering heavy 

axle load to the pavement surface and axle configuration, trucks are the major 
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contributors of roadway system damage (SSIT, 2000). Compared to passenger vehicles, 

trucks can cause more significant damage to highways and bridges, resulting in more 

frequent maintenance work (Bai, 2010). In our study, trucks account for a significant 

proportion of all the vehicles passing through the two bridges. Therefore, it is necessary 

to estimate the maintenance cost of the two bridges due to truck movements. 

 

Although bridges have far more complicated structure than highways, their design codes 

and pavement expenditure are always discussed together in literature. To date, the most 

widely used codes in North America are the American Association of State Highway and 

Transportation Officials (AAHTO), Canadian Highway Bridge Design Code (CHBDC) 

and Ontario Highway Bridge Design Code (OHBDC). Although the requirements are 

quite different in some parts of Canadian and AASHTO provisions for highway bridges, 

they actually yield to similar principles. In the study performed by Bai (2010), pavement 

damage costs attributed to truck traffic were studied as one concept and a systematic 

pavement damage estimation procedure was developed to estimate the expenditure. In the 

NCHRP report by Fu et al. (2003), a highway cost allocation study from FHWA (1997) 

was applied to estimate the effect of truck weight on bridge network costs.  

 

Many  studies  have already been  performed  to  reveal  the  relationship  between  trucks  

and pavement damage of highways and bridges. In the study performed by Hajek and 

Agarwal (1990), it is shown that the amount of axle weight and wheel spacing contribute 

significantly to pavement damage. Chatti and Lee (2003) studied the effects of various 

trucks and axle configurations on flexible pavement fatigue using different summation 
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methods (based on strain and dissipated energy) to calculate the damage. Bai et al. 

developed  a  systematic  pavement  damage  estimation procedure to estimate the 

highway damage costs attributed to the truck traffic associated with the processed meat 

(beef) and  related  industries  in  southwest  Kansas.   

 

In the study performed by SSIT (2012), the FHWA’s Highway Cost Allocation Study 

(2000) was recommended, since the relative costs attributable to each vehicle type are 

still valid now. In the FHWA’s Highway Cost Allocation Study, pavement cost 

represents the contribution by different vehicle classes per mile’s travel to pavement 

deterioration and the expenditure of rehabilitation, and the marginal costs for different 

vehicles on urban and rural Interstate highways were also estimated. The table is shown 

on the next page. The FHWA’s highway cost allocation study (FHWA 2000) is actually 

an update of a previous one in 1982 (FHWA 1982). The new study developed bridge cost 

responsibility (in percentage) for different vehicle fleets. These responsibilities are 

applicable to federal expenditures on highway bridges. Four groups of costs were covered: 

new bridges, bridge replacement, major bridge rehabilitation, and minor bridge 

rehabilitation. Based on the FHWA’s report, the truck damage deterioration level 

depends on load, axle configuration and location. In our study, since the study area is 

urban area and the truck group is combined by heavy commercial vehicles and medium 

commercial vehicles, a middle value between $0.031 and $0.409 will be referred for two 

bridges. 
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Additionally, in the study performed by Holguín-Veras and Cetin (2009), an analytical 

formulation was applied to calculate optimal tolls for different traffic classes. A well-

developed model was proposed to estimate the pavement costs of highways, which could 

also be referred in our bridge study. The pavement fees caused by traffic level   were 

computed based on the load equivalency factors (LEFs) for each vehicle type and the unit 

investment cost per equivalent single axle load (ESAL), as shown below.  

 

  
  ∑  

 

    (
 

𝐿
)  

 

In the above formula,    represents the LEF for vehicle class n; L denotes the design 

number of ESAL repetitions; D represents the travel distance; K is the initial pavement 

investment; the term (K/L) denotes the unit investment cost per ESAL. 

 

The selected LEF value for passenger vehicle was 0.0005 and for heavy truck was 2.4 in 

their study, which means the deterioration attributed to passenger vehicles can be ignored. 

In the analysis by Holguín-Veras and Cetin (2009), cost estimates per ESAL-mile (K/L) 

were set as $0.05, $0.30 and $1.00 for Low, Medium and High scenarios. Based on this 

data, the pavement cost per mile for each truck can be obtained as: 

 
Table 3.3 Range of pavement cost per mile per truck  

Scenario Cost per truck per mile ($) 

Low 0.12 

Medium 0.72 

High 2.4 

 

 



49 
 

By comparison, it can be seen that the range shown in table 3.3 covered the pavement 

cost values ($0.031-$0.409) for multiclass truck recommended in the FHWA’s report. 

Since the two bridges in our study are border crossings, a relatively conservative value of 

$0.70 was used. Since the total length of the two bridges is set as 1.42 miles, the $0.70 

per truck per mile setting will give the pavement cost $1.00 per truck for both 

Ambassador Bridge and DRIC Bridge. 

 

3.4.3 VOT estimation 

As mentioned before, when no road user can reduce his/her travel cost by unilaterally 

changing route, an equilibrium condition is reached. In transport economics, the concept 

of value of time (VOT) stands for the opportunity cost of the time that a commuter 

spends on the journey (Kriger, et al., 2006). According to recent statistics, the hourly 

average wages for truck drivers in Canada ranges from $9.00 to $ 35.47, with an average 

hourly salary of $ 22.64 (Government of Canada, 2013). At the same time, the hourly 

average wages ranges from $15.84to $31.24 for heavy and tractor-trailer truck drivers in 

the USA, with an hourly mean wage of $19.40 (Bureau of Labor Statistics, 2012). With 

certain empirical conversion rates, the value of time of an area could be generated 

according to the average local income. 

 

Essentially, travel time plays an important role in the general cost of any trip. To 

successfully explore the impacts of different price regimes on the cross-border network 

and identify the most feasible toll price regime, some empirical conclusions from 

previous studies will be adopted in this research. In the study performed by Wilbur Smith 
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(2010), calibrated logit models were applied to analysis the border crossing traffic of 

Windsor-Detroit area. The coefficients generated in their study are shown in table 3.4. 

 

Table 3.4 Coefficients obtained in Wilbur Smith’s Research (2010)  

Coefficient Units Passenger Vehicles Commercial Vehicles 

Travel Time Minutes -0.089 -0.068 

Travel Cost Dollars -0.526 -0.057 

 

 

Table 3.5 VOT values for different vehicle groups  

Vehicle VOT ($/min) TOLL ($) TOLLCOST(min) 

P 0.17 4.75 28.07 

L 1.19 6.50 5.45 

M 1.19 11.25 9.43 

H 1.19   

 

As can be seen from table 3.4, the VOT values for different vehicle groups can be 

calculated. For instance, for passenger vehicles, the VOT value can be obtained by 

dividing the minutes coefficient (-0.089) by the cost (dollars) coefficient (-0.526). Table 

3.5 summarizes the VOT values for passenger and commercial vehicles, which were 

adopted in this thesis. 

 

It should be mentioned that the above toll prices for passenger, light commercial and 

medium commercial vehicles are based on the current toll price setting on Ambassador 

Bridge. In this study, except for heavy commercial vehicles, toll prices for all the other 

vehicle groups for both bridges are fixed. According to Kriger et al. (2006), trucks and 

other commercial vehicles are charged much higher (200% - 1,000%) than automobile at 
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toll facilities. Due to the larger size and higher toll rates, commercial vehicles have a 

greater impact on the competition between toll roads. For this reason, this study will 

focus more on the analysis for commercial vehicles.  
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CHAPTER Ⅳ 

RESULTS & DISCUSSION 

 

4.1 Introduction 

 

This chapter presents the results of the bi-level toll competition problem solved by the 

methods discussed in Chapter 3. Outputs from the individual Mesh simulations are not 

reported in this thesis. Instead, the material presented in the chapter is focused on 

reporting the best response curves that were generated from the Mesh Simulations. Also, 

a number of individual simulations were extracted and analyzed to illustrate the 

sensitivity of the model to various important exogenous parameters such as: passenger 

car tolls, truck pavement cost and changes in the Value of Time (VOT) of trucks.  

 

This chapter consists of four sections. Section 4.2 provides the details of the sensitivity 

analyses performed to assess the impacts of some of the exogenous parameters used in 

the model. The sensitivity analysis was also employed to identify the values of the 

exogenous parameters that were used to execute the five toll price regimes. Section 4.3 

presents the simulation results obtained from regimes 1 to 5, while section 4.4 provides a 

comparison and a discussion of the results from these five regimes. The final section of 

this chapter gives a summary of the modeling work.  
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4.2 Exogenous model parameters  

 

All the parameter values were transferred to monetary units before running the simulation 

in the model. Sensitivity analyses were performed using regime 1, where competition 

between the two bridges dictates the system. The analyses allowed us to see the impact of 

the values of the following parameters: the passenger vehicle toll    , the per-truck 

pavement cost   and the VOT of trucks   . 

 

4.2.1 Passenger vehicle toll analysis 

When considering toll competition between the Ambassador Bridge and the DRIC Bridge, 

passenger vehicle revenue plays a significant role. As such, we tested passenger vehicle 

toll price levels for four cases: $5, $7.5, $10, and $12. Consequently, four scenarios of 

traffic simulation (for the 4 passenger vehicle toll price cases) were executed under 

regime 1. In each case, 10000 (100×100) simulations were executed to engage the Mesh 

Algorithm. Because of government policy restrictions, it is assumed that the operators of 

the two bridges have the same passenger tolls on the two bridges in each case. 

 

Figure 4.1 illustrates the best response curve for scenario 1 when the passenger toll is $5. 

Note that the pavement cost is fixed at $0.72 per truck per mile and the VOT for trucks 

was set as $1.19 per minute for these four cases. As can be seen, the grey curve 1(2) 

represents the best response curve of Ambassador Bridge as a function of the toll price of 

the DRIC, while the black curve 2(1) denotes the DRIC’s best response curve with given 

toll price of the Ambassador Bridge. Using Mesh method, the best toll level of one bridge 
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can be numerically determined as a result of setting a given toll level of the other bridge. 

Obviously, both curves are upward-sloping curves, interacting at the common point 

around (15.14, 18.81), indicating that when the passenger toll price is set as $5 for both 

bridges, the equilibrium toll price will be about $15.14 and $18.81 for the Ambassador 

Bridge and the DRIC Bridge respectively. Currently, the average toll cost for each heavy 

commercial vehicle is $26.25 for Ambassador Bridge, which is distinctly higher than the 

estimated equilibrium toll prices in case 1. 

 
        Fig. 4.1 Best response curve for case 1         Fig. 4.2 Best response curve for case 2 

 

 
   Fig. 4.3 Best response curve for case 3          Fig. 4.4 Best response curve for case 4 
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Figure 4.2 presents the best response curves for both bridges when the passenger toll 

price is set as $7.5. Higher equilibrium toll prices are obtained in this case, at 

approximately (19.09, 22.67). Compared with scenario 1, the equilibrium toll prices 

generated in this scenario are closer to the current average truck toll in the study area. 

Figures 4.3 and 4.4 demonstrate the best response curve pertaining to passenger tolls $10 

and $12.5, respectively. From figure 4.8, we can read that the equilibrium of the 

competition appears around the point (23.05, 25.62). In figure 4.4, the two best response 

curves interact at the point (27.00, 29.57).  

 

From the figures demonstrated above, it can be seen that the equilibrium toll price of 

heavy vehicle for the two bridges is increasing with the increase of passenger toll price.  

 

Table 4.1 shows the common points and the corresponding total revenue data obtained 

from the passenger vehicle toll sensitivity analysis. As expected, along with the growth of 

passenger vehicle toll price, the equilibrium truck tolls of the two bridges also increase 

from case 1 to case 4. When the passenger toll is set as $5, the equilibrium was reached 

when the Ambassador Bridge set its heavy vehicle toll to $15.14 and the DRIC Bridge set 

it to $18.81, which might be a relatively low value for the simulated year 2013. At the 

same time, the generated equilibrium truck toll price as well as the given passenger 

vehicle toll $12.5 in case 4 is also not realistic when compared with the former two cases.  
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Table 4.1 Best response curve data for passenger toll analysis 

(A: Ambassador Bridge; D: DRIC Bridge) 

Passenger Toll($) 
Equilibrium Truck 

Toll ($) Total Revenue ($) P.V. Flow  H.V.  Flow  

A D A D A D A D 

5.0 15.14 18.81 
30642.65 42932.13 2154 2615 1362 1721 

(39.38%) (60.62%) (45.17%) (54.83%) (44.17%) (55.83%) 

7.5 19.09 22.67 
40786.21 56898.23 2154 2615 1362 1721 

(41.75%) (58.25%) (45.17%) (54.83%) (44.17%) (55.83%) 

10.0 23.05 25.62 

49430.16 71274.93 2472 2296 1120 1962 

(40.98%) (59.02%) (51.85%) (48.15%) (36.35%) (63.65%) 

12.5 27.00 29.57 
61158.26 86730.41 2472 2296 1120 1962 

(42.98%) (57.02%) (51.85%) (48.15%) (36.35%) (63.65%) 

 

Another aspect to look at is the influence of different passenger toll levels on the total 

revenue. It is shown in table 4.1 that although the increase of passenger vehicle toll 

induces growth in the total revenue of the two bridges, the market share of each bridge 

stays stable. This can be explained by the fact that under SUE condition passenger 

vehicles’ traffic assignment will remain stable so long as the passenger toll prices of these 

two bridges are always the same. The numerical results from the equilibrium toll 

competition problem suggest that the DRIC Bridge will be more attractive and 

competitive than the Ambassador Bridge.  

 

Additionally, it is worthwhile noting that the traffic assignment in case 1 is the same as in 

case 2. At the same time, cases 3 and 4 also generate the same trip distribution for both 

passenger vehicles and trucks. In order to test the elasticity of the trip distribution with 

the change of passenger toll, three additional scenarios are performed with relatively 

extreme passenger toll values: $0, $ 20 and $30 respectively. 
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Table 4.2 Best response curve data for additional passenger toll analysis  

(A: Ambassador Bridge; D: DRIC Bridge) 

Passenger 

Toll($) 

Equilibrium Truck 

Toll ($) Total Revenue ($) P.V. Flow H.V.  Flow 

A D A D A D A D 

0.0 7.16 10.74 
30642.65 42932.13 2154 2615 1362 1721 

(33.35%) (66.65%) (45.17%) (54.83%) (44.17%) (55.83%) 

20.0 39.37 40.56 
93953.91 122286.27 2942 1826 915 2168 

(43.45%) (56.55%) (61.7%) (38.3%) (29.68%) (70.32%) 

30.0 52.49 57.26 

132440.2

0 
176165.84 1573 3196 1656 1427 

(42.92%) (57.08%) (32.99%) (67.01%) (53.70%) (46.30%) 

 

Table 4.2 shows the results of the three additional passenger toll prices. Compared to 

table 4.1, it can be seen that there is no difference in trip distribution among the three 

passenger toll scenarios: $0, $5 and $7.5. In contrast, the passenger toll scenario of $20 

generates the same trip distribution results with as the $10.0 and $12.5 passenger toll 

scenarios. However, when the passenger toll is as high as $30, the flow assignment is 

totally different. While the revenue shares of the two bridges are still similar to the $20 

passenger toll case, a noticeable switch in passenger and truck assignment appears in the 

$30 passenger toll scenario. This could be explained by the fact that when the toll for 

passenger vehicles is extremely high on both bridges, the equilibrium truck toll could be 

quite high and the gap between the truck tolls on the two bridges will also swell. As a 

result of the enlarged truck toll gap, more trucks will turn to choose the Ambassador 

Bridges instead of the DRIC Bridge, which could drive away a number of passenger 

vehicles from the Ambassador Bridge as well. 

 

By observing the results of all the passenger toll analysis scenarios, we can see that 

within a reasonable range, the share of truck trips of the DIRC Bridge would experience 
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an increase when the passenger toll prices on both bridges become higher than $7.5. 

Nevertheless, when the passenger toll price is extremely high, more trucks will be 

attracted by the Ambassador Bridge since the difference between the equilibrium truck 

toll prices will also become very large. 

 

According to Statistics Canada, the Consumer Price Index (CPI) value for transportation 

changed by 0.8% from 2012 to 2013. Based on the 0.8% CPI, the projected future 

passenger vehicle toll would be very low, that is, reaching a total of approximately$5.77 

in 2031. However, $5.77 is perceived to be on the low end for a planning horizon of 

approximately 20 years. Based on the above results, the medium-low value of $7.5 from 

table 4.1 was selected as the fixed passenger toll to run the subsequent simulations. 

 

4.2.2 Pavement cost analysis 

For the two border crossing bridges in our study, pavement deterioration can be caused 

by both passenger and commercial vehicles. However, trucks account for a significant 

proportion of all the vehicles passing through the two bridges (i.e. 39%) and that portion 

magnifies given the more pronounced impact of trucks on pavement when compared to 

regular passenger vehicles. Therefore, it is necessary to estimate the cost associated with 

pavement deterioration due to trucks. 

 

To figure out the ideal pavement cost parameter, regime 1 is simulated under different 

pavement cost values. Based on chapter 3, a medium value of $0.7 was identified as the 

pavement cost per truck per mile. Therefore, the pavement cost per truck for both 
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Ambassador Bridge and DRIC Bridge is estimated to roughly $1 since the total length of 

the two bridges is approximately 1.42 miles (i.e. 2.29 km). Next, four scenarios 

representing four pavement costs including $1 per truck are tested. 

 

Table 4.3 Best response curve data for pavement cost analysis 

(A: Ambassador Bridge; D: DRIC Bridge) 

Pavement Cost  

($ per truck) 

Equilibrium Truck Toll 

($) 
Total Revenue 

($) 
P.V. Flow  H.V.  Flow  

A D A D A D A D 

0.0 19.09 20.28 
39532.95 57660.77 2942 1826 915 2168 

(40.67%) (59.33%) (61.70%) (38.30%) (29.68%) (70.32%) 

1.0 19.09 22.67 
40786.21 56898.23 2154 2615 1362 1721 

(41.75%) (58.25%) (45.17%) (54.83%) (44.17%) (55.83%) 

2.0 20.28 23.86 
41049.01 57230.39 2154 2615 1362 1721 

(41.77%) (58.23%) (45.17%) (54.83%) (44.17%) (55.83%) 

3.0 21.45 25.05 
41311.82 57562.54 2154 2615 1362 1721 

(41.78%) (58.22%) (45.17%) (54.83%) (44.17%) (55.83%) 

 

Table 4.3 summarizes the simulation results of the pavement cost analysis with respect to 

the change of the pavement cost. It can be seen that the toll prices of the two bridges 

grow slightly with the increase in pavement cost. However, it can also be seen that the 

pavement cost parameter has even less influence on the distribution of total revenue than 

the passenger toll. Although there is a slight increase of total revenue with the increase of 

pavement cost for each bridge, the market share of the Ambassador Bridge and the DRIC 

Bridge is always around 40% and 60%, respectively. This could be due to the similar 

generated equilibrium truck tolls in these four pavement cost scenarios. The results 

suggest that after the first scenario, all the following scenarios generate the same trip 

distributions among the two bridges. To examine the elasticity of the pavement cost 
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parameters, two extreme scenarios are simulated with pavement costs of $0.5 and $10 per 

truck, as shown in table 4.4. 

 

Table 4.4 Best response curve data for additional pavement cost analysis 

(A: Ambassador Bridge; D: DRIC Bridge) 

Pavement Cost    

($ per truck) 

Equilibrium Truck 

Toll ($) Total Revenue ($) P.V. Flow  H.V.  Flow  

A D A D A D A D 

0.5 19.09 22.67 
41467.05 57758.73 2154 2615 1362 1721 

(41.75%) (58.25%) (45.17%) (54.83%) (44.17%) (55.83%) 

10.0 28.63 32.21 
41526.96 57834.48 2154 2615 1362 1721 

(41.79%) (58.21%) (45.17%) (54.83%) (44.17%) (55.83%) 

 

The results indicate no difference in the traffic flow assignment when considering the 

new pavement cost values. As expected, the equilibrium truck tolls on the two bridges are 

still found to increase with the rise of pavement cost, and the market share of the two 

bridges is still around 40% and 60% respectively. This indicates that the change of the 

pavement cost will only affect the equilibrium truck price level, but will have little 

influence on the revenue and trip distribution. In the two-link example discussed in 

Chapter 3, it is found that the change of the pavement cost will only change the 

equilibrium toll prices but will have no influence on the revenue, i.e., one unit increase in 

pavement cost will simply result in one unit increase in equilibrium toll level, or, in other 

words, the pavement cost is simply transferred to the road users by the road operators. In 

contrast, here from table 4.3 and 4.4, we can see that the equilibrium revenue of both 

bridges can increase a bit with the pavement cost. This is because the competition 

problem in this research is under non-linear cost function and one unit increase in 

pavement cost could lead to more than one unit increase in equilibrium toll. 
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Figure 4.5 to 4.8 illustrate the best response curves for regime 1 when the pavement cost 

increase from $0 to $2.1 per truck per mile ($0 to $3.0 per truck). Note that the passenger 

vehicles toll is fixed as $7.5 and the VOT for heavy vehicle class is set as $1.193/min in 

these four cases. 

 

 
          Fig. 4.5 Best response curve for case 1          Fig. 4.6 Best response curve for case 2 

 

  
         Fig. 4.7 Best response curve for case 3           Fig. 4.8 Best response curve for case 3 

 

Similar with the passenger toll analysis section, the grey curve 1(2) denotes the best 

response curve of Ambassador Bridge as a function of the toll price of the DRIC Bridge, 
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and the black curve 2(1) is the DRIC’s best response curve as a function of the toll price 

of the Ambassador Bridge.  

 

From figure 4.5 to 4.8, it can be seen that there is an increasing trend of the equilibrium 

prices with the growth of pavement cost. However, the change caused by the increase of 

pavement cost is relatively weak compared with the passenger toll factor. From case 1 to 

case 4 in this section, the pavement cost raises from 0 to $2.1 per truck per mile, but the 

change of the equilibrium toll is not very significant. Based on the sensitivity analysis 

and the findings from past studies, the medium value of $0.70 per truck per mile was 

chosen as the fixed pavement cost parameter in this research. 

 

4.2.2 Truck VOT analysis 

In this section, the truck VOT sensitivity analysis based on the results of regime 1 is 

performed. Four different scenarios are simulated to figure out the influence of the truck 

VOT parameter on the toll competition. In each scenario, the passenger toll is fixed as 

$7.50 and the pavement cost is given as $0.70 per truck per mile.  

 

For case 4, the VOT value for trucks is estimated based on the data given by Wilbur 

Smith (2010).  Since the VOT for case 4 is nearly $70 per hour, a relatively high value, 

the testing values of the first three cases are set as $40, $50 and $60 per hour, 

corresponding to the values of $0.667, $0.833 and $1.000 per minute, respectively.   
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Table 4.3 lays out the numerical results of regime 1’s subcases for truck VOT analysis. It 

can be seen that when the VOT of heavy vehicles increase, the change of total revenue 

distribution is quite slight as well as the equilibrium truck tolls. It can also be found that 

the trip distributions in the first three scenarios are totally the same. In order to collect 

additional data to explain this observation, four additional experiments with a wider 

range of VOT values of $0.5, $2, $3 and $4 per minute are performed.  

 

Table 4.3 Best response curve data for Truck VOT analysis 

(A: Ambassador Bridge; D: DRIC Bridge) 

Truck VOT 

($ per minute) 
Equilibrium Truck Toll ($) Total Revenue ($) P.V. Flow H.V.  Flow 

A D A D A D A D 

0.67 17.33 18.67 
37282.58 51378.43 2415 2354 1173 1909 

(42.05%) (57.95%) (50.63%) (49.37%) (38.08%) (61.92%) 

0.83 17.50 19.17 
37478.22 52332.82 2415 2354 1174 1909 

(41.73%) (58.21%) (50.63%) (49.37%) (38.08%) (61.92%) 

1.00 19.00 21.00 
39239.05 55832.25 2415 2354 1174 1909 

(41.27 %

) 
(58.73%) (50.63%) (49.37%) (38.08%) (61.92%) 

1.19 19.09 22.67 
40786.21 56898.23 2154 2615 1362 1721 

(41.75%) (58.25%) (45.17%) (54.83%) (44.17%) (55.83%) 

 

Table 4.4 shows the simulation results of the four additional scenarios. Compared with 

the four scenarios shown in table 4.3, we can see that when VOT increases from $0.50 to 

$4.00, there is a general increase trend in the revenue share of the DRIC Bridge. When 

the VOT is as low as $0.50, it is found that more trucks would like to choose the 

Ambassador Bridge, even though the advantage is not quite significant. At the same time, 

the DRIC attracts a large part of passenger vehicles. This can be explained by the fact 

that when the VOT is very low, the influence of the travel time will be reduced and lower 

toll price will be more attractive to the truck drivers.  After the $0.50 scenario, although 
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there are some small fluctuations, the trip distributions are found to be stable with the 

change of the VOT.  

 

Table 4.4 Best response curve data for additional VOT analysis 

(A: Ambassador Bridge; D: DRIC Bridge) 

VOT 
($ per minute) 

Equilibrium Truck Toll ($) Total Revenue ($) P.V. Flow H.V.  Flow 

A D A D A D A D 

0.5 16 18 
36631.33 48228.73 1573 3196 1656 1427 

(43.17%) (56.83%) (32.99%) (67.01%) (53.70%) (46.30%) 

2.0 24 30 
47474.74 69518.33 2154 2615 1362 1721 

(40.58%) (59.42%) (45.17%) (54.83%) (44.17%) (55.83%) 

3.0 33 39 
55673.47 90199.33 2415 2354 1174 1909 

(38.17%) (61.83%) (50.63%) (49.37%) (38.08%) (61.92%) 

4.0 36 48 
63814.85 100496.23 2154 2615 1362 1721 

(38.84 %) (61.16%) (45.17%) (54.83%) (44.17%) (55.83%) 

 

Based on the sensitivity analysis and the findings from past studies (Wilbur Smith, 2010), 

a relatively high value of $1.193 per minute was selected as the truck VOT in this study. 

 

4.3 Simulation Results of Different Competition Regimes 

 

In Chapter 3, five different competition regimes between the two bridges were explained 

in detail: for Regime 1, both bridges aim at maximizing their profits; for Regime 2, the 

operator of DRIC Bridge wants to minimize the total travel cost of heavy trucks on the 

two bridges while the Ambassador Bridge’s concern is still profit maximization;  Regime 

3 is quite similar to Regime 2, the only difference is the travel cost minimization problem 

also includes the passenger vehicle group; in Regime 4, the objective of the DRIC 
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Bridge’s operator is to minimize the heavy vehicle group’s travel cost in the entire system; 

for Regime 5, the DRIC’s system travel cost minimization objective also takes the 

passenger vehicle group into consideration. 

 

Table 4.5 Simulation structure of Regime 1 

(A: Ambassador Bridge; D: DRIC Bridge) 

Simulation Run Passenger Toll ($) 
Pavement Cost 

($ per mile per truck) 

VOT of Truck 

($ per minute) 

Truck Toll ($) 

A D 

1 7.5 0.7 1.193 1.19 1.19 

…
 

7.5 0.7 1.193 …
 

…
 

10000 7.5 0.7 1.193 119 119 

 

In this section, using the Mesh method and the selected model parameter values, the 

competition equilibrium of each regime was numerically identified. Table 4.5 shows the 

framework of the mesh method in this study. That is, by changing the toll levels of both 

bridges from $1.193 to $119.3 at a step-size of $1.193, the best-response curve of each 

bridge as a function of the other bridge's toll level was generated to solve the equilibrium 

toll competition problem.  

 

4.3.1 General comparison of simulation results  

Table 4.6 summarizes the equilibrium results of the five competition regimes, from which 

we can see that the equilibrium results of Regime 2 and Regime 3 are exactly the same, 

while Regime 4 and Regime 5 also generate identical results with each other. This 

observation is not a coincidence, but resulted from the disparity in the VOT of the 

passenger vehicles and the heavy commercial vehicles. That is, because the passenger car 
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VOT is much smaller than the truck VOT, the equivalent change in monetary cost 

brought by one minute change of the passenger vehicle travel time is much smaller than 

that brought by one minute change of the truck travel time. As a result, taking passenger 

car travel time into consideration in Regime 3 and 5 will not have much impact on the 

optimal strategy of DRIC as compared to Regime 2 and 4.  

 

Table 4.6 Best response curve data of different truck toll regimes 

(A: Ambassador Bridge; D: DRIC Bridge) 

Regime 
Equilibrium Truck Toll ($) Total Revenue ($) P.V. Flow H.V.  Flow 

A D A D A D A D 

1 19.09 22.67 40786.21 56898.23 2154 2615 1362 1721 

2 17.90 19.09 37526.32 52907.10 2942 1826 915 2168 

3 17.90 19.09 37526.32 52907.10 2942 1826 915 2168 

4 15.51 11.93 32295.21 38253.82 3717 1052 304 2778 

5 15.51 11.93 32295.21 38253.82 3717 1052 304 2778 

 

To see the above explanation more clearly, let us take consider one iteration of the Mesh 

method to compare the best responses of DRIC under Regime 2 and under Regime 3. 

Consider the Ambassador Bridge’s truck toll is fixed at 𝜏1   1    , then figure 4.9 

shows how the objective functions of Regime 2 and Regime 3 of DRIC change when its 

truck toll changes. From figure 4.9, we can see that the shapes of the two objective 

functions are identical, both attaining optimality (minimum objective function value) at 

 𝜏2 =16 minutes (or $19.10). Thus it is verified that, whether DRIC considers trucks only 

(under Regime 2) or considers both trucks and passenger cars (under Regime 3), its 

optimal strategy is the same, i.e., it should set a truck toll 𝜏2   1  1   in both cases 

given the Ambassador Bridge’s truck toll 𝜏1   1    . Similarly, it can be verified that 

the best responses of DRIC under Regime 4 and under Regime 5 are the same. 
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Fig. 4.9 Objective functions of DRIC under Regime 2 and Regime 3 given             

 

Using the same simulation iteration as in figure 4.9, figure 4.10 compares the obtained 

travel time of different vehicle groups in Regime 3. Obviously, the travel time of the 

passenger vehicles is very high before being converted into monetary cost. However, 

compared to the heavy vehicle group, the fluctuation of the passenger vehicles’ travel 

time curve is too mild to affect the total travel time curve. Thus, even though the travel 

time of passenger vehicles is taken into account in Regime 3, the best response curve is 

still the same with the Regime 2. For Regime 5, the situation is in the same fashion. The 

outcomes of Regime 3 and Regime 5 also show that the total travel time of passenger 

vehicles is not very sensitive to the change to truck toll. 
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Fig. 4.10 Travel time of different vehicle groups of a sample from Regime 3 

 

In summary, because the truck VOT is much higher than the passenger car VOT, whether 

DRIC considers minimizing truck travel time only, or it considers minimizing the 

monetary delay of trucks and passenger cars, its decision making should not change. This 

means the five regimes actually reduce to three regimes only. Therefore, from now on, 

when comparing different regimes, we only refer to Regime 1, Regime 3 and Regime 5.  

 

Figure 4.11 presents the best response curve of the Ambassador Bridge,  𝜏1 (𝜏2 ) 

(marked as 1(2) in figure 3), and three different best response curves of DRIC, 𝜏2 (𝜏1 ) 

(marked as 2(1) in figure 3) under Regime 1, 3 and 5. Note that the intersection between 

𝜏1 (𝜏2 ) and each 𝜏2 (𝜏1 )  represents the truck toll equilibrium under each regime. 
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Fig. 4.11 Best response curves for regime 1, 3 and 5 

By comparing the best response curves of DRIC under Regime 3 and under Regime 5, it 

can be seen that these two curves are parallel to each other, and both of them intersect 

with the Ambassador Bridge’s curve at a lower point than Regime 1. This indicates that 

when the operator of DRIC focuses on the improvement of border-crossing network 

efficiency, the toll competition will lead to lower truck toll prices on both bridges. 
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4.3.2 Specialized comparison of the simulation results 

Revenue and Equilibrium Toll Comparison 

 

 

Fig. 4.12 Total Revenue Comparison of Different Regimes 

 

Figure 4.12 illustrates the comparison of total revenue under the three regimes. Generally, 

both bridges experience a decrease in profit from Regime 1 to Regime 5. For Regime 3 

and Regime 5, since the objective of the DRIC is not for profit, the operator of the DRIC 

could choose sacrificing the advantage in revenue to improve the travel time in the study 

area. However, since the objective of the Ambassador Bridge is profit maximizing for all 

of these regimes, the most beneficial competition mode is supposed to be the one with 

highest total revenue. According to figure 4.12, it can be seen that the Ambassador 

Bridge’s profit peak appears in Regime 1, with 39035.85 dollars. This indicates that after 

the new bridge is completed, the highest equilibrium revenue of Ambassador Bridge will 

only occur when the DIRC Bridge also goes for profit in the competition. 
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Fig. 4.13 Equilibrium Toll Comparison of Different Regimes 

 

Figure 4.13 shows the comparison of the equilibrium truck tolls of these three regimes. It 

can be seen that, from Regime 1 to Regime 5, there is a more significant decreasing trend 

of the toll price on DRIC as compare to the Ambassador Bridge. This is because the 

design capacity of the DRIC Bridge is considerably larger than the Ambassador Bridge, 

and the system congestion level can be decreased if more trucks are attracted to DRIC by 

its lower tolls.  
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Trip Distribution Comparison 

 

 

Fig. 4.14 Passenger Vehicle Trip Distribution Comparison of Different Regimes 

 

Figure 4.14 provides the comparison of the passenger vehicle trip distribution among 

different regimes. As can be seen from the figure, the Ambassador Bridge attracts the 

highest passenger vehicle volume in Regime 5, when the operator of the DRIC Bridge 

plans to minimize the entire traffic system’s travel time. On the other hand, the peak of 

passenger vehicle volume of DRIC Bridge appears in the first regime, when both bridges 

compete for the profit.   
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Fig. 4.15 Truck Trip Distribution Comparison of Different Regimes 

 

Figure 4.15 gives the comparison of the truck trip distribution among different regimes. It 

can be seen that the truck volume of the Ambassador Bridge experiences a dramatic 

decrease from Regime 1 to Regime 5. On the contrary, in the last regime, the truck trip 

rate on the DRIC Bridge reaches the highest point. This indicates that when most trucks 

are assigned to the DRIC Bridge during the competition, the transportation system 

efficiency of the border crossing area is the highest. 
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CHAPTER Ⅴ 

CONCLUSION 

 

5.1 Overview 

 

A new publicly-owned cross-border bridge over the Detroit River between Windsor, 

Ontario and Detroit, Michigan is planned to be built by the year 2020. The competition 

between the new bridge (named New International Trade Crossing (NITC), or Detroit 

River International Crossing (DRIC)) and the existing bridge (the Ambassador Bridge) 

will have significant impact on international trade and border-crossing traffic between 

Canada and US. In this paper we model the competition between the two bridges as a 

duopoly game where each bridge's strategy is its toll level.  

Due to political constraint, we assume that both bridges will set their passenger car tolls 

at the highest politically-acceptable level. As such, the passenger car tolls of the two 

bridges are the same and exogenously given. This assumption is reasonable given that the 

Ambassador Bridge and the Detroit-Windsor Tunnel charge the same passenger car toll 

for most of the time. With this assumption, each bridge's strategy reduces to its truck toll 

level, and the competition equilibrium (i.e. Nash equilibrium) emerges when each bridge 

cannot improve its objective function by unilaterally changing its truck toll level. 

For the Ambassador Bridge, as a privately-owned bridge, its objective function is 

naturally profit maximization. However, since the new bridge is a publicly-owned bridge 

it may have different objectives, or, at least profit maximization should not be considered 
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as its only option. In this paper, we consider five different objective functions for the new 

bridge, which will give five different competition regimes between the two bridges. 

 

5.2. Modeling Approach 

 

Based on official projections, region-wide growth in population and employment has 

been estimated for the period 2006-2031. The allocation of this growth across the 

different traffic analysis zones (TAZ) was based on the work reported in Gingerich et al. 

(2014). PM Peak Hour (4 PM) trip productions and attractions for each zone were 

estimated to create future demand Origin-Destination matrices for the year 2031 for 

passenger vehicles (PV) as well as light (LV), medium (MV) and heavy (HV) 

commercial vehicles. Given the emphasis on the border, our analysis focused on the two 

major players that use the border: private vehicles and heavy trucks.  

 

The competition between the two bridges has a natural bi-level structure, with the upper 

level being the two bridges setting their respective tolls, and the lower level being the 

road users (cars and trucks) choosing their routes. This gives rise to an equilibrium 

problem with equilibrium constraints (EPEC problem). We model the upper level 

competition equilibrium using the traditional Nash equilibrium concept, i.e., at 

equilibrium each bridge cannot improve its objective function by unilaterally changing its 

strategy (i.e. truck toll). The lower level traffic equilibrium is modeled as a multi-class 

logit-based stochastic user equilibrium (SUE), where the logit SUE parameter for trucks 

is set to be sufficiently large so that each truck will choose the shortest path.  
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We assume the Ambassador Bridge always wants to maximize its profit, while the new 

bridge may have various objective functions including: (1) maximization of profit, (2) 

minimizing overall travel time of trucks over the two bridges, (3) minimizing the total 

monetary  cost of the travel time of both trucks and passenger vehicles over the two 

bridges, (4) minimizing the network-wide total travel time of trucks, or  (5) minimize the 

network-wide total monetary cost of the travel time of both trucks and passenger cars.  

 

We employ the Mesh method to solve the bi-level competition problem. This is done by 

simulating a multi vehicle-class SUE traffic assignment under a range of truck tolls for 

both bridges. Specifically, we change the truck toll of each bridge from 1 minute to 100 

minutes at an incremental step-size of 1 minute. This is equivalent to monetary value 

from $1.19 to $119 at a step-size of $1.19, given the truck VOT parameter $1.19H   per 

minute. Such approach enabled us to obtain Best Response Curves for the two Bridges, 

thus allowing us to determine the equilibrium tolls and traffic flows. 

 

5.3 Major Contribution and Key Findings  

 

This thesis makes a direct contribution to the existing transportation literature on toll 

competition in the context of cross-border transportation. As noted earlier in the thesis, 

most of the existing studies on the topic were either theoretical or were applied to 

conceptual small road networks. To our knowledge, this is the first applied and numerical 

study that attempted to model toll price competition for the busiest border-crossing region 

in North America and around the world. The modeling framework we developed provide 
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valuable insights about the nature of the toll competition that will likely emerge in the 

future should the new Bridge connecting Windsor to Detroit choose to adopt a particular 

toll strategy. The findings from the numerical analysis provide novel results about the 

competition equilibrium which allowed us to determine the exact tolls on the two bridges 

while at the same time simulating the amount of passenger and truck traffic that will 

utilize the two bridges. Those findings are worth reporting as they could assist the 

Government of Canada to rationalize the best toll competition strategy in the future.  

 

Three main findings can be drawn from the work reported in this thesis. First, whether 

the new bridge operator cares about international trade only (trucks only) or cares about 

both international trade and local traffic (both trucks and passenger cars), it will behave 

the same. The reason is that the truck VOT is much higher than the passenger car VOT, 

which makes the passenger car travel time not important from a system economic 

efficiency perspective. Second, with the new bridge, trucks will probably pay a much 

lower toll to cross the border due to competition. Thirdly, the more the new bridge cares 

about the system efficiency, the lower it will set its own truck toll and thereby makes 

both bridges' tolls lower as a result of competition. The reason is that the new bridge is 

designed with a very large capacity, which means a higher utilization of the new bridge 

will improve the system efficiency. 
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5.4 Limitations and Future Study  

 

The toll competition problem is solved on the basis of fixed demand in this research, 

which makes the border crossing trip rate constant in all scenarios. This assumption could 

be relaxed in the future but this would require integrating the developed model of this 

thesis with a cross-border travel demand model. Additionally, we only considered the 

duopoly price competition in this study to compare different regimes for the two bridges. 

However, the model could be expanded to include a larger network which would allow us 

to account for a third international crossing such as the Blue Water Bridge in Sarnia, 

Ontario.  
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