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ABSTRACT 
 
 

Azo-dyes are the largest group of colourants produced, and they are applied in many 

industries.  In the environment they are recalcitrant, and under anaerobic conditions can 

break down to toxic or even carcinogenic aromatic amines.  Aerobic treatment of azo-

dye-contaminated waters has been shown to be ineffective. Thus, enzyme-catalyzed 

polymerization and precipitation of azo-dyes and their reduction products was studied 

and optimized in this dissertation.  Additionally, zero-valent iron reduction of azo-dyes 

under anaerobic conditions followed by soybean peroxidase (SBP) enzymatic treatment 

was investigated.  The use of additives to reduce enzyme requirement and enhance the 

removal of anilines was also studied.  Azo-dyes and authentic anilines were treated at 1 

mM, while the anilines recovered from zero-valent iron reduction were treated at 0.5 

mM.  All experiments were conducted in batch reactors, and the parameters: pH, 

hydrogen peroxide to substrate ratio, enzyme concentration and additive concentration 

were optimized. 

Enzymatic treatment was successful in removal of 95% of both aniline and o-anisidine.  

The use of additives, sodium dodecyl sulfate (SDS), sodium dodecylbenzenesulfonate 

(SDBS), Triton X-100, and sodium dodecanoate (SDOD), reduced enzyme dose 

requirement, while the use of polyetheylene glycol (PEG, average molar mass of 3350 

g/mole) had no effect on the required enzyme dose.  In addition, the presence of SDS also 

enhanced treatment by improving precipitation and removing colour. 
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Azo-dyes treated with SBP directly were successfully decolourized, with 85% colour 

removal of Acid Red 4 (AR4) and 95% for Crocein Orange G (COG).  The pretreatment 

of AR4 with zero-valent iron, was able to achieve an even higher percent of 

decolourization 95%, while the second stage of treatment with SBP removed >95% of  

the recovered o-anisidine and further decolourized the water. 
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CHAPTER 1 

 

Introduction 
 

Coloured water is the easiest way to identify water pollution.  As little as 10 mg/L of dye 

can be highly visible (Yu et al., 2001).  It is not only aesthetically displeasing, but can be 

toxic to aquatic life, and interfere with photosynthetic processes in streams (Nawar & 

Doma, 1989).  Major contributors to coloured waters are the textile industries through 

their dyeing and finishing processes (Dahghani et al., 2011).   However, dyes are also 

used in many other industries including leather, plastics, cosmetics and food processing 

industries (Stolz, 2001).   

1.1 Dyes 

Worldwide, more than 7x105 metric tons of synthetic dyes are produced per year, of 

which about 10% is discharged as effluent (Yu et al., 2001; Stolz, 2001).   Dyes can be 

classified according to their chromophores constituting azo, anthroquinone and indigo 

(Yu et al., 2001).  They can also fall under three classes according to their structure and 

charge, cationic, non-ionic and anionic.   These are further sub-classified into direct, acid, 

and reactive dyes, which fall under anionic dyes; whereas disperse dyes are non-ionic 

(Robinson et al., 2001).  Reactive dyes have an even higher percentage, up to 50%, 
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released in the dye bath effluent.  These dyes react with the ionized hydroxyl groups on 

cellulose fibers. Due to the alkaline dyeing conditions, hydroxyl ions compete with the 

cellulose substrate resulting in a certain percentage of the dye unable to bind to the fiber 

(Carliell et al., 1996).   

Among synthetic dyes, azo-dyes are considered to be the most important group 

(Rodriguez Couto & Toca-Herrera, 2006).  These are characterized by aromatic rings 

joined by at least one (-N=N-) bond. Azo-dyes comprise over 50%  of all the dyes, 

accounting for more than 2000 different compounds (Carliell et al., 1995; Carliell et al., 

1996; Stolz, 2001).  This group of dyes is highly recalcitrant and thus form a very 

important class of xenobiotics, that do not degrade readily under aerobic conditions 

(Pakshirajan & Singh, 2010; Stolz, 2001; Stibrova et al., 1996). However, certain aerobic 

bacteria are able to cleave the azo group (Stolz, 2001).  Those dyes that degrade 

anaerobically, or undergo oxidative conversion, form intermediates, such as aromatic 

amines, exhibiting toxic and carcinogenic effects (Stibrova et al., 1996; Biswas et al., 

2007; Rodriguez Couto & Toca – Herrera, 2006).  Two representative dyes were chosen 

in this study, Crocein Orange G (COG) and Acid Red 4 (AR4).  The reason for their 

selection is upon cleaving of the azo linkage they are reduced forming aromatic amines, 

aniline and o-anisidine respectively, which are considered toxic and are of regulatory 

concern.   

1.2 Aromatic Amines 

Aromatic amines are identified by one or more aromatic rings bearing amino substituents 

with aniline being the simplest structure.  They are released in the effluent of many 

industries such as chemical manufacturing, coal conversion, resin and plastic 
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manufacturing, pesticide, pharmaceutical, explosive,  textile industry as well as the dye 

manufacturing industry (Klibanov and Morris, 1981; Klibanov et al., 1983; Karim and 

Hussein, 2009).  Most aromatic amines are toxic and many are classified as carcinogenic 

or probable human carcinogens (Kilbanov and Morris, 1981; Pinheiro et al., 2004; Karim 

and Husain, 2009; Casero at al., 1997).   As early as the late 19th century, aromatic 

amines exposure  has been viewed as a concern in the dye manufacturing industry (Karim 

and Husain, 2009).  They have been shown to biodegrade, however this process seems to 

be more complicated than the reduction of the azo linkage.  In certain cases specific 

microbial strains or co-cultures may be required (Pinheiro et al., 2004) .  Thus, a problem 

of bioaccumulation may arise, posing a further risk to aquatic life (Suzuki et al., 2001). 

Under certain circumstances, these aromatic amines can become mutagenic in mammals 

(Spadaro et al., 1992).  However, toxicity and eco-toxicity data are lacking for many 

chemicals, and new ones are being manufactured, thus regulatory measures are being 

influenced by the precautionary principle, whose goal is to reduce chemical discharge on 

the assumption that they can pose a hazard (Pinheiro et al., 2004).  Azo-dye linkages can 

possibly breakdown to aromatic amines during their use or disposal and thus are 

considered a health hazard (Pinheiro et al., 2004). These factors are influencing 

environmental regulatory agencies to develop more stringent effluent standards (Banat et 

al., 1996).  In particular this study focuses on aniline and o-anisidine both are identified 

in U.S. EPA Toxics Release Inventory (TRI) as toxic and will be further discussed in 

Section 2.1. 

Treatment of aromatic amines has been achieved through adsorption, extraction, 

microbial or chemical oxidation, electrochemical techniques, and irradiation (Slein and 
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Sansone, 1980).  However, these processes are limited by their high cost, incomplete 

treatment, hazardous byproducts, and low concentration effectiveness (Husain and Jan, 

2000).  Chemical oxidation is the most widely used treatment, however it is dependent on 

the oxidant, amine structure and reaction conditions. In certain cases the byproducts can 

also be carcinogenic or can be reduced to the original amine by mild reductants (Casero 

et al., 1997).  Treatment of these compounds via activated sludge systems depends highly 

on the nature of aromatic amine, while some could be metabolized by the system, others 

showed little to no reduction (Baird et al., 1977).  The use of different micro-organisms 

has shown potential for complete mineralization. However, the disadvantages to this 

include high cost of microbes, which are normally substrate specific requiring additional 

alternate carbon sources, and metabolic inhibition (Husain and Jan, 2000).   

1.3 Colour Removal Methods 

Due to the complicated nature of textile and dyestuff industry effluent, conventional 

wastewater treatment processes do not easily remove azo-dyes (Pasti-Grigsby et al., 

1992; Rodriquez Couto & Toca-Herrera, 2006). The difficulty in their treatment is 

attributed to their manufacture of azo-dye characteristics that are stable to sweat, soap, 

water, light or oxidizing agents in order to maintain their brilliant colour (Banat et al., 

1996).   Currently the treatment of these dyes is carried out by physiochemical methods, 

such as adsorption, coagulation and flocculation, chemical oxidation (ozone, hydrogen 

peroxide and chlorine), membrane filtration,  ion exchange, photodegradation,  

irradiation, and electrochemical destruction (Stolz, 2001; Banat et al., 1996; Shaffiqu et 

al., 2002).  The drawbacks to all these processes include excess chemicals requirements, 



 

5 
 

production of large quantity of sludge, disposal restrictions, production of toxins and high 

operating and capital costs (Banat et al., 1996; Shaffique et al., 2002).   

Physical methods include adsorption techniques with adsorbents such as activated 

carbon, peat, wood chips, fly ash, and coal, and silica gel (Robinson, 2001).  Activated 

carbon is inefficient in the treatment of insoluble dyes (Ahn et al., 1999).  For soluble 

dyes, the process is effective but can be costly due to chemicals needed for regeneration 

of the carbon.  Costs also increase due to the need for safe disposal of the concentrated 

and more toxic byproduct (Robinson et al., 2002).   Membrane filtration though resilient 

to the complicated nature of dye effluent, is mostly effective with low concentration 

effluent.  Problems of clogging, residue disposal and membrane replacement can be 

costly (Robinson et al., 2001).  Ion exchange is considered to be a costly process and only 

effective on ionic dyes (Cao, 2000). 

Chemical treatment by coagulation is widely used in Germany (Vandevivere et al., 1998). 

The process produces a large amount of sludge creating another costly disposal problem, 

and in certain cases leads to the need for combustion of toxic sludge (Ahn et al., 1999; 

Vandevivere et al., 1998).  An effective chemical treatment is through oxidation by 

ozonation.  It is able to decolorize all dyes with the exception of disperse dyes.  A 

drawback to ozonation is its inability to remove COD in these effluents, its decolorization 

effectiveness is reduced by impurities leading to an increase in treatment cost, and the 

process might create toxic byproducts (Ahn et al., 1999; Arslan-Alaton, 2003).  

Photochemical processes such as UV treatment are found to be effective only on effluents 

with low dye concentration (Dehghani et al., 2011).  Advanced oxidation processes such 

as UV/TiO2 has been shown to be effective in the treatment of azo-dye at a high light 
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intensity and catalyst loading (Wang et al., 2008).  Another promising method involved 

ozonation followed by UV, which removed colour as well as 90% of residual total 

organic carbon (Huang et al., 1994). 

Activated sludge processes seem to be hindered in azo-dye treatment due to their 

xenobiotic nature (Coughlin et al., 1999; Yu et al., 2001).  Also, some carcinogenic 

aromatic amines were shown to be toxic and resistant to bacterial degradation, with 

acclimated systems being able to at best partially metabolize many mono-aromatics 

(Baird et al., 1977).  A combination of both anaerobic and aerobic treatment process 

would also yield a good outcome for dye effluent (Coughlin et al., 1999).   However, a 

large volume of sludge that would require treatment and disposal would have to follow 

(Rott and Mike, 1999).  On the other hand, a more effective process which has been 

shown to treat dyes in this manner is iron reduction under anaerobic conditions followed 

by enzymatic treatment (Biswas et al., 2007; Biswas et al., 2004).  Enzymatic treatment is 

an efficient  method to remove a wide range of these dyes and their aromatic amine 

substituents (Stolz, 2001; Pasti-Grigsby et al., 1992; Rodriguez Couto & Toca Herrera, 

2006; Husain et al., 2009; Regalado et al., 2004 ).  Advantages to the use of enzymes is 

their ability to react with their substrates with high specificity, without being effected by 

shock load as with microorganisms (Nicell, 2003).  As well, they are easier to handle, 

store and control because of their independence of microbial growth (Mantha et al., 2002 

as per Vieth and Venkatasubramanian, 1973). 

1.4 Enzymes 

Enzymes are classified into six main classes, oxidoreductases, transferases, hydrolases, 

lyases, isomerases and ligases.  They are biological catalysts that increase chemical 
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reaction rates (Palmer, 1991), thus promoting oxidation of many aromatic compounds.  

Their application in waste treatment was first proposed in the 1930s (Atiken, 1993).  

However it was not until the 1970's when they were first used to degrade specific 

pollutants such as pesticide organophosphates (Munnecke, 1976).  In 1980 Klibanov et 

al. developed a new enzymatic method for the removal of aromatic pollutants from waste 

waters by peroxidases.   

Enzymatic treatment of aromatic amines and azo-dyes has been claimed or proposed as a 

preferential method of treatment over conventional treatment with microorganisms 

(Nicell, 2003).  In conventional biological treatment microorganisms produce enzymes, 

which then degrade chemical compounds; however there, is the potential for the 

inhibition of the microorganisms before the enzymes are produced (Nicell, 2003).   

Isolated enzymes can act with greater specificity, are independent to bacterial growth and 

thus do not need acclimatizing time, can handle shock loads more readily and are simpler 

to control (Taylor et al., 1996).  In conventional treatment the target compounds are 

broken down, where as in enzymatic removal they are built up through the process of 

polymerization (Saha et al., 2008).   This allows for precipitation of organics and their 

removal by sedimentation or filtration. Overall, enzymatic treatment is viewed as a low 

energy and chemical consumption process (Demarche et al., 2012).   

Enzymatic treatment does have its drawbacks.  One of the major disadvantages of 

enzymatic treatment is the cost of the enzyme.  However it should be noted that as of 

2009 the enzyme world market was worth $5.1 billion, a figure that has grown 

significantly from the $1.6 billion in 1998 (Sanchez and Demian, 2011).  New 

biotechnological advances in genetic manipulation of microbial and plant cells and 
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improved efficiency of isolation and purification procedures are paving the way for 

cheaper production of enzymes (Nicell, 2003).  Another limitation to enzymatic treatment 

is the possible enzyme inactivation during the treatment process.  This may result in the 

need for an increased amount of enzyme to achieve total treatment of pollutants (Wu et 

al., 1993).  Additives have been used successfully by Nakamoto and Machida (1992) in 

significantly reducing the amount of enzyme needed.  A wide variety of azo-dyes have 

been treated using a number of different enzymes, such as, horseradish peroxidase  

(Stibrova et al., 1996; Bhunia et al., 2001; Mohan et al., 2005; Ulson de Souza et al., 

2007), Pseudomonas reductases(Yu et al., 2001), lignin peroxidase (Ollikka et al., 1993) 

Ipomea & Sacharum peroxidases (Shaffique et al., 2002) Arthromyces ramosus 

peroxidase (Biswas et al., 2007).  In particular 50 µM of COG and AR4 were treated with 

Arthromyces ramosus peroxidase by Wang (2002).   

The wastewater problem of azo dyes and toxic anilines is not just limited to the dye 

industry and regulations have been put in place to monitor and limit their use and release.  

Thus a viable treatment method is needed to resolve their effluent colour and toxicity. 

During this study 1 mM of COG and AR4 along with their aniline reductive products 

were treated with soybean peroxidase. 

1.5 Objective 

• To optimize soybean peroxidase (SBP: EC 1.11.1.7) catalyzed removal of two 

representative azo-dyes Crocein Orange G (COG: CAS No.  1934-20-9)  also 

known as Acid Orange 12 and Acid Red 4 (AR4: CAS No. 5858-39-9).  (The 

chemical structures for these compounds are shown in Figure 1.1) 
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• to determine if pretreatment of dyes by iron reduction is necessary. 

• to optimize SBP catalyzed removal of aniline (CAS No. 62-53-3) and o-anisidine 

(CAS No. 90-04-0) as models for pretreatment products. (The chemical structures 

are shown in Figure 1.2) 

• To determine the impact of additives on treatment efficiency. 

• To develop a new process for the treatment of azo-dyes through iron reduction 

followed by SBP catalyzed treatment of their recovered anilines in the presence of 

additives that have the potential to decrease enzyme demand. 

1.6 Scope 

 Investigated the potential for SBP to decolorize waters containing COG & AR4 

directly. Otherwise, Fe reduction was implemented to reduce 1mM of the dyes to 

their aniline intermediates. 

 Optimized the decolourization of waters containing these dyes with SBP with 

respect to pH, H2O2 molar ratio, SBP concentration and reaction time. 

 Optimized the removal of aniline and o-anisidine with SBP with respect to pH, 

H2O2 molar ratio, SBP concentration and reaction time. 

 Evaluated the effect of different additives [polyetheylene glycol (PEG), sodium 

dodecyl sulfate (SDS), Triton X-100, sodium dodecanoate (SDOD)] on optimum 

enzyme concentration. 
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Crocein Orange G 

 

 

 

Acid Red 4 

 

Figure 1.1 Azo-dyes selected for this study 

 

                                                                

                        Aniline                                               o-Anisidine 

 

Figure 1.2 Anilines selected for this study 



 

11 
 

 
 

CHAPTER 2 

 

Literature Review 
 

2.1 Anilines 

2.1.1 Aniline 

Aniline which is the simplest aromatic amine has been placed on Canada's priority 

substance list (PSL) since 1988, making it obligatory for companies to provide 

information on the release and disposal of the chemical via the National Pollutant Release 

Inventory (NPRI) list.  Similarly, the U.S. EPA Toxics Release Inventory (TRI) also lists 

aniline as a toxic substance.  Aniline is mainly used as an intermediate in various 

chemical productions such as rubber, herbicides, pesticides, dyes and pigments, and 

especially azo-dyes (U. S. EPA, 1994a).  Six hundred and twenty seven kilotons of 

aniline was produced in the U.S. in 1992 (U.S. EPA, 1994a).  In Canada, only one facility 

reported manufacturing 28 tonnes of aniline in 2007, as a by-product of chemical 

manufacturing (Government of Canada, 2010).  Between 13 - 48 tonnes of aniline, as 

well as between 4 - 44 tonnes of N,N-diethylaniline and 3 to 8 tonnes of other aniline 

derivatives and their salts were imported in 2000 to 2007 (Government of Canada, 2010).   

In 2012, it was reported that over 786 tonnes of aniline was released or disposed of in the 
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U.S. and 61 tonnes of aniline was released or disposed of in Canada; however those 

facilities that produce, manufacture or use less than 10 tonnes of aniline per year do not 

have to report their releases  (TRI, 2012; NPRI, 2012). 

Aniline enters the environment through its industrial use.  Sunlight can breakdown 

aniline in air, surface water and soil, while microorganisms can break it down in water 

and soil.  It can easily penetrate groundwater because it does not bind well to soil (U.S. 

EPA, 1994b).  It has been detected in a shallow aquifer known to be contaminated by 

coal-tar wastes, a Wyoming aquifer near an underground coal gasification site, a soil 

sample near Buffalo River in New York, and an air sample in Raleigh, NC (U.S. EPA, 

1994a).  In Ontario, Canada, groundwater samples collected near a landfill site and close 

to a chemical company had a concentration of aniline that ranged from 0.01 mg/L to 300 

mg/L (Government of Canada, 1994). 

Exposure to aniline through inhalation, ingestion or skin contact can cause toxic effects in 

humans.  Extended exposure to aniline causes an increase in methaemoglobin production 

and a decrease in hemoglobin as well as adverse splenic effects and erythrocyte damage 

(U.S. EPA, 1994a; Government of Canada, 2010).  Symptoms associated with anoxia 

resulting from methemoglobinemia include headache, light-headedness, ataxia, and 

weakness (Beard and Noe, 1981).  An occupational study of workers exposed to 1.3 to 

2.75 mg/m3 (0.19-0.39 mg/kg/day) aniline for 3 to 5 years showed a decrease in 

hemoglobin which was also present upon re-examination one year after (U.S. EPA, 

1994a).  In a 1972 study by Jenkins et al., volunteers given single aniline oral doses 

ranging from 5 to 65 mg developed increased methaemoglobin production at doses 25 mg 

or higher.  It was also concluded by the author that humans were more sensitive than rats 
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to aniline exposure. A person who was exposed to  aniline by sitting on a contaminated 

seat experienced dyspnea, fatigue and dizziness associated with a methemoglobin level of 

53%.  In one fatal case of aniline exposure, liver cirrhosis and atrophy were reported 

(U.S. EPA, 1994a).  Slight symptoms occurred in several hours of exposure to 7-53 ppm 

aniline through inhalation and serious disturbances in inhalation exposure for 1 hour of 

100-160 ppm (ACGIH, 1991).    Aniline industry studies on aquatic life have shown that 

it is highly toxic to aquatic life (U.S. EPA, 1994b).  The U.S. EPA classifies aniline as 

highly toxic with a probable oral lethal dose in humans at 50 to 500 mg/kg body mass.  

While the National Institute of Occupational Safety and Health set the immediately 

dangerous to life or health limit (NIOSH IDLH) at 381 mg/m3 inhaled (U.S. EPA, 

2013a). 

2.1.2 ortho-Anisidine 

o-Anisidine is an aromatic amine whose chemical structure consists of an aniline with a  

methoxy functional group.  It is found on U.S. EPA TRI list, as well as Europe's 

Directive 76/769/EEC restricting its use and marketing (European Commission, 2002).  It 

is classified as a cat. 2 carcinogen, one which should be regarded as if it is carcinogenic 

to man, and a cat. 3 mutagen, substances which cause concern for man owing to possible 

mutagenic effects by EU RAR 2002 Risk of Assessment Report (European Commission, 

2002).  In 2002, o-anisidine was included in Directive 2002/61/EC which banned certain 

azo dyes, which can break down under reductive conditions to release certain aromatic 

amines, from being used in regular skin contact consumer goods (Puntener and Page, 

2004).  It has also been classified by IARC as a group 2B possible human carcinogen 

(IARC, 1999).   o-Anisidine has been not produced in Canada and it was last produced in 
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the U.S. in 1957 (NTP, 2011).  In 1995, it was produced in Armenia, China, France, 

Germany, India, Japan, Ukraine and the United Kingdom and as of 2009 it has only been 

produced by six manufacturers worldwide (IARC, 1999; NTP, 2011).  In 2002, imports 

of o-anisidine into the U.S. were up to 227 tonnes (NTP, 2011).  o-Anisidine is mainly 

used in dye and pigment production, as well as in pharmaceuticals, as a corrosion 

inhibitor for steel and as an antioxidant for polymercaptan resins (IARC, 1999; NTP, 

2011).  According to TRI 110 kilograms were released in 2012 (TRI, 2012). 

Presence of o-anisidine in the environment is a result of oil refinery and chemical plant 

wastewater as well as cigarette smoke.  It is expected to degrade in air, with a half-life of 

6 hours (NTP, 2011).  In surface water , it binds to sediment and volatilizes with a half-

life of 31 days in streams and 350 days in lakes, with little potential of aquatic 

bioaccumulation (NTP, 2011). In soil it binds to humic materials and is expected to 

biodegrade at low concentrations (NTP, 2011).  Occupational exposure can occur through 

their manufacture or their use as a chemical intermediate (IARC, 1999). 

Exposure to humans is mainly through inhalation, skin contact and ingestion (NTP, 

2011).  In studies on cats, which have similar capacity to form methaemoglobin as 

humans, it was able to induce methaemoglobin production with a single injection of 7.7 

mg/kg (McLean et al., 1969; European Commission, 2011; Stocker, 2002). Other studies 

have shown that repeated oral ingestion resulted in haemolytic anemia, changes in 

enzyme parameters and organ weights (liver, kidney, and spleen) (Stocker, 2002).  

Workers exposed to 2 mg/m3 for 3.5 hours/day for 6 months developed headaches, 

vertigo and increased methaemoglobin (European Commission, 2011).   In an oral 

exposure study of mice and rats to o-anisdine hydrochloride, tumors of the urinary 
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bladder occurred, and it was assumed that the carcinogenic affect was due to o-anisidine 

(Stocker, 2002) (European Commission, 2002).  Mutagenicity of o-anisidine was shown 

to be positive in in-vitro tests and negative in in-vivo, leading the 2002 EU RAR to 

categorize it as a class 3 mutagen (European Commission, 2002).  Thus, it was concluded 

that o-anisidine is a genotoxic carcinogen.  The U.S. EPA sets the NIOH IDLH for o-

anisidine inhaled at 50 mg/m3  (U.S. EPA, 2013b). 

2.2 Azo-Dyes 

The history of dyes goes back to prehistoric times, when natural vegetable extracts and 

animal products were used.   In the mid-19th century, the synthetic dye industry started 

and it was not until 1876 that the first azo-dye was synthesized and marketed as London 

Yellow (Bafana et al., 2011; Morris and Travis, 1992).  In 2008, the world market of dyes 

was valued at US $16 billion and is projected to grow at a rate of 3.6% from 2013 to 

2018 (Bafana et al., 2011; Market Watch, 2013).  Azo-dyes are considered to be the 

largest group of colourants produced in the world.  Their azo linkage (-N=N-) and 

aromatic components allowed for a diverse and brilliant combination of colours. They are 

easily synthesized, have a vast structural diversity, high molar extinction coefficient, and 

medium-to-high fastness properties with respect to light and wetness (Banafa et al., 

2011).  Their applications are used in many industries such as dyeing, medicine, ink, 

cosmetics, food and paints (Banafa et al. 2011).  

2.2.1 Classes of Azo-Dyes 

Azo-dyes can be further sub classified as basic, disperse, solvent, acid, or direct 

(Chudgar and Oakes, 2001; Spadaro, 1994).  Basic dyes are cationic and are the simplest 



 

16 
 

synthetic dyes.  They can be applied to synthetic fibers that contain large numbers of 

anionic sites such as modified acrylics, modified nylons, modified polyesters, leather, 

unbleached papers, and inks.  Disperse dyes are hydrophobic and have a low water 

solubility. They are applied to hydrophobic fibers such as polyester and nylon.  Solvent 

dyes are insoluble in water and only soluble in non-aqueous solution. They are further 

split into oil-soluble and spirit soluble and are used in petroleum products, lacquers, 

plastics, printing inks and other hydrophobic media.  Acid dyes are anionic and are 

soluble in water due to their sulfonate subsituents.  Their three classes are those that are 

applied from a dyebath, those that are applied in the presence of metal (mordant), and 

those applied in the premixed metal-dye-complex (premetallized). Direct dyes are also 

anionic dyes that contain sulfonate groups.  However, electrolytes are used in the aqueous 

dye bath to be applied on cotton and other cellulosic fibers.  They have a larger size than 

acid dyes and usually contain a bi-azo structure (Chudgar and Oakes, 2001; Spadaro, 

1994). 

2.2.2 Azo-Dyes in the Environment 

Azo-dye import into Canada and their use above reporting thresholds has led 

Environment Canada to view them as potential aquatic and terrestrial environment 

contaminants.  They can be released into the environment from industrial facilities that 

dispose their wastewater into local wastewater treatment plants or aquatic environment 

directly (Environment Canada, 2012).  Azo-dyes are persistent in the environment 

because of their high degree of chemical and photolytic stability.  Their azo bonds and 

sulfonate groups are attributed for their recalcitrance, since they are not synthesized in the 

biosphere and are considered xenobiotic (Banafa et al., 2012; Kulla et al, 1983).   This 
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also accounts for aerobic wastewater treatment plants' inability to treat azo-dyes, 

especially sulfonated-azo-dyes (Kulla et al., 1983).  However, dyes applied to products 

do fade with time and can separate from the product upon washing.  A 1980s study of 

Quebec's Yamasaka River identified the presence of three azo-dyes with the largest 

concentration downstream of a textile mill.  Sediments, 6 km downstream, showed a 

mutagenic degradation product as a result of the azo-bond cleavage (Maguire and Tkacz, 

1991).  In 1984, two azo-acid-dyes, Acid Orange 156 CAS RN 57741-47-6 and Acid Red 

266 CAS RN 57741-47-6, were found in the wastewater effluent at concentrations of 48 

and 12 µg/L entering the Coosa River Basin in Alabama (Tincher, 1986). 

Once released into the environment, the fate of azo-dyes depends on their own properties 

and those of the environment.  Azo-dye degradation is usually done by oxygen-

insensitive azoreductases.   The aromatic amines resulting in aerobic conditions are 

mineralized; whereas azo-bonds are cleaved by various bacteria under anaerobic 

conditions.  The aromatic amines are accumulated instead of mineralized in an oxygen 

deprived environment (Kulla et al., 1983).  A study by Kulla (1983), showed that 

substituting (electron-withdrawing) sulfonate groups for carboxy groups in azo-dyes 

resulted in less degradation, making them less susceptible to oxidative catabolism.  Thus, 

sulfonated azo-dyes could be decolourized by microorganisms under anaerobic 

conditions. In 2009, Hsueh et al. demonstrated that the position of the electron-

withdrawing group in azo-dyes affected decolourization; with para showing greater 

decolourization than ortho which was greater than meta.   It was also shown that azo-dyes 

with electron-withdrawing groups, eg. sulfonate group, are decolorized more readily than 
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those with electron-releasing groups, e.g. -NH-triazine group, and those with more 

electron-withdrawing groups were decolorized much faster (Hsueh et al., 2009). 

2.2.3 Azo-Dye Health Effects 

The government of Canada has identified 358 azo- and benzidine-based substances, 

including azo-dyes, as priorities for action and considered as priority pollutants under 

Canada's Chemical Management Plan based on ecological and human health concerns 

(Environment Canada, 2012).  In 1994, Germany was the first European Union (EU) 

country to place in effect legislation on the use of certain azo-colourants under the 

German Consumer Good Ordinance, restricting their use in consumer products intended 

for more than temporary contact with skin.  The EU enacted similar legislation in 2002 

under Directive 2002/61/EC, which later on was replaced by Commission Regulation 

(EC) No 1907/2006 and amended to  (EC) 552/2009 on June 22, 2009, in Annex XVII of 

the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) 

database (EU, 2006; EU, 2009).  The legislation restricts the use of azo-dyes which by 

reductive cleavage of azo linkage may release one or more aromatic amines listed in 

Appendix 8 in detectable concentrations (i.e. 30 mg/kg) in the finished articles or in the 

dyed parts.  The restriction applies to textile and leather articles that may come into direct 

and prolonged contact with human skin. In 1996, the Significant New Use Rule (SNUR) 

was added by the US EPA to control benzidine-based chemical substances manufacture, 

import and processing.  An action plan was put in place by the US EPA in 2010, in which 

48 dyes derived from benzidine and congeners (azo-dyes) would be investigated, of those 

9 were proposed to be added to the SNUR list in 2012.  Other countries such as India, 

Japan, Australia and New Zealand have also issued their own legislations with regards to 
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azo-dyes (Environment Canada, 2012).  The major health concern of azo-dyes is the 

ability of azo-group cleavage and the production of genotoxic and carcinogenic aromatic 

amines as a result.  Some azo-dyes have also been shown to have haematological effects, 

with mutagenic potential (Environment Canada, 2013).  These factors show the 

importance for treatment of wastewater effluent containing azo-dyes and the potential 

aromatic amines from their azo-reductive cleavage. 

2.3 Peroxidases 

Peroxidases belong to the class of oxidoreductases enzymes.  They are widely distributed 

in nature, abundant in microbial and plant sources but not so much in mammalian cells.  

They catalyze the oxidation of a wide range of substrates in the presence of hydrogen 

peroxide (Dunford and Stillman, 1976).  Peroxidases are used in many industries and 

processes ranging from indicators in the food industry, protein engineering, recombinant 

protein expression and as catalysts for the removal of aromatics from wastewater (Flock 

et al., 1999; Ryan et al., 2006; Regalado et al., 2004).  Their wide use is due to their high 

redox potential, and structural properties giving them relatively high thermal stability and 

wide distribution (Demarche et al., 2012; Regalado et al., 2004).  Aromatic compounds, 

which are a major class of pollutants, can be removed by polymerization using 

peroxidase enzymes.  Hydrogen peroxide acts as the electron acceptor catalyzing 

peroxidase oxidative polymerization of phenols, anilines, azo-dyes and other aromatics to 

insoluble oligomers (Dunford and Stillman, 1976).  These oligomers serve as further 

hydrogen donors leading to further polymerization, and ultimately  transforming water-

soluble aromatics to water-insoluble compounds.  These compounds can be easily 
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removed through sedimentation and filtration (Kilbanov and Morris, 1981).  This 

polymerization process can be shown by the following equations (Dunford, 2010; Nicell 

et al., 1993). 

 

E + H2O2                    Ei + H2O     (Eq. 2.1) 

Ei + AH2                    Eii + AH*     (Eq. 2.2) 

Eii + AH2                   E + AH* + H2O    (Eq. 2.3) 

The overall enzymatic reaction 

H2O2 + 2 AH2                     2AH* + 2H2O   (Eq. 2.4) 

These equations can be expressed in a cycle starting with native enzyme (E) which upon 

a 2-electron oxidation by hydrogen peroxide forms Compound I (Ei).  In turn Compound 

I accepts an aromatic compound (AH2) in its active site which undergoes one-electron 

oxidation releasing a free radical (AH*).  The Compound I enzyme is further reduced to  

Compound II (Eii) which oxidizes a second aromatic compound releasing a second free 

radical, and returning to its native state (E).  The free radicals combine to form dimers 

and then undergo further enzymatic conversion to radicals that from trimers, tetramers, 

oligomers and even polymers (Nicell et al., 1993; Dunford, 2010; Ibrahim et al., 2001). 

Inactivation and inhibition of active enzymes results from side reactions that occur in this 

system (Nicell et al., 1993).  Evidence of a reversible intermediate created during the 

formation of Compound I was first seen by Baek and Van Wart (1989).  This resulted in 

the formation of an E-H2O2 complex and an oxidized enzyme which was referred to as 

Compound 0.  Suicide inactivation as denoted by Arano et al. (1990) is formed in the 
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absence of substrate and in excess hydrogen peroxide, and occurs in one of two possible 

ways.  In the first possibility, Compound II is oxidised by the excess hydrogen peroxide 

to Compound III (Eiii).  Although Compound III is catalytically inactive, it does 

decompose back to the native enzyme.  However, the decomposition is so slow that it can 

be assumed that once Compound III is formed it renders that enzyme inactive. 

Eii + H2O2                    Eiii + H2O  (Eq. 2.5) 

The second way proposed by Arano et al. (1990), involves an irreversible inactivated 

intermediate Compound P670.  At hydrogen peroxide concentrations above 1 mM P670 is 

dominant. 

Klibanov et al. (1983) proposed that inactivation resulted from the return of a free radical 

to the active site, blocking that site and preventing further catalysis. Nakamoto and 

Machida (1992), alternatively suggested that inactivation was a result of  end-product 

polymer adsorption of enzymes, blocking substrate access to the active site. 

The most investigated peroxidase is the horseradish peroxidase (HRP) (Dunford, 2010).   

Klibonav et al. (1980, 1981) were the first to use HRP to remove over 30 phenols and 

aromatic amines from water, achieving 99% removal for some pollutants.  However, it 

has been shown that HRP has a short catalytic lifetime due to enzyme inhibition and 

reaction temperature.  It is active mainly between 5-55oC and are rapidly inactivated at 

temperatures above 65oC, and also is inhibited at low pH (Caza et al., 1999; Flock et al., 

1999, Yu et al., 1994).  The main disadvantage in the use of HRP is the high cost for 

extracting and purifying, limiting its availability in large quantities at a price that would 

be feasible for wastewater treatment (Bassi et al., 2004; Al-Ansari et al., 2009).  These 
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disadvantages paved the way for looking at other peroxidases such as soybean peroxidase 

(SBP). 

2.3.1 Soybean Peroxidase 

Soybean peroxidase (SBP) is a hemoprotein oxidoreductase enzyme that is extracted 

from the seed coats hull of soybeans (Gizen et al., 1993).  It is considered to have a broad 

pH and temperature stability.  SBP is active at pH as low as 2.0 and  temperatures of 

70oC, even at temperatures of 85oC the half life is 2.5 hours (McEldoon and Dordick, 

1996; Ryan et al. 2006). The soybean crop is estimated to grow on 6% of the world's 

arable land with the highest percentage of increase in comparison with other crops.  In 

2008, soybean production reached 230 million tonnes, more than 12.5 times production 

in 1960 (Hartman et al., 2011).   Since the seed coats of soybeans are considered as waste 

products, their hulls provide an inexpensive and abundant source of enzyme that can be 

commercially used in wastewater treatment (Nicell, 2003; Hailu et al., 2010).  Previous 

studies have proven SBP to be very effective in treating aromatic compounds, as shown 

in Table 2.1.  
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Table 2.1: Soybean peroxidase treatment of various  aromatic compounds 

Enzyme Source Substrate Reference 
SBP Phenol s, chlorophenols, & 

cresols, bisphenol A 

Cresols 

Phenol & 2-chlorophenol 

Phenol 

Phenol 

Aniline & toluidines 

Phenol 

2,4-dichlorophenol 

Phenol & colorophenols 

Dyes:  Direct Yellow 11 & 
Basazol 46L 

Phenol 

Phenol 

Diaminotoluenes 

Phenylendiamines & 
benzendiols 

Phenols in coal-tar 
wastewaters 

2-mercaptobenzothiazole 

Dye: Turquise Blue G 133 

Caza et al., 1999 

 
Biswas, 1999 

Flock et al., 1999 

Wright & Nicell, 1999 

Kinsley and Nicell, 2000 

Mantha, 2001 

Wilberg et al., 2002 

Kennedy et al., 2002 

Bassi et al., 2004 

Knutson et al., 2005 
 

Gomez et al., 2006 

Trivedi et al., 2006 

Patapas et al., 2007 

Al-Ansari et al., 2009 
 

Al-Ansari et al., 2010a 

Al-Ansari et al., 2010b 

Marchis et al., 2011 
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2.4 Peroxidases in Wastewater Treatment  

Klibanov et al. (1980)  were able to show that the addition of aromatic compounds that 

were easily removed by enzymatic treatment of a wastewater, improved the enzymatic 

precipitation of those with lower removal efficiencies.  Moreover, Klibanov (1982) stated 

that substances that were not substrates of the enzyme were also precipitated in the 

presence of easily removed substrates.  If true, this would make enzymatic treatment 

more feasible in real wastewaters, which are usually composed of  many different 

pollutants.  Since then, many other studies have looked at HRP for the treatment of 

aromatic compounds such as bentazon (Kim et al., 1998) 2,4-dichlorophenol (Laurenti et 

al., 2003), 4-chlorophenol (Nicell, 1994), phenols (Wagner and Nicell, 2002; Bodalo et 

al., 2006), aniline (Shan at al., 2003), azo dyes (Stibrova et al., 1996), dyes (Bhunia et al., 

2001), acid azo-dye (Acid Black 10x) (Mohan et al., 2005), and textile dyes (Ulson de 

Souza et al., 2007). 

Arthromyces ramosus peroxidase (ARP) has been shown to be a promising enzyme for 

wastewater treatment because of its low cost and potential for commercial availability 

(Biswas, 2004).  Ibrahim et al. (2001) studied the treatment of phenol from real refinery 

wastewater sample and compared it with synthetic wastewater.  The study showed that 

95-99% of the same amount of phenol was removed by the same amount of ARP in both 

real and synthetic wastewater, meanwhile step-addition of H2O2 did not reduce the 

amount of enzyme required. ARP was shown to be effective at reducing azo-dyes, 

including COG and AR4, directly by Wang (2002).  Azo-dyes, pretreated by zero-valent 

iron reduction, were converted to aromatic amines that were then treated successfully by 

ARP (Biswas et al., 2007).  SBP treatment is seen as a better peroxidase choice than HRP 
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and ARP for treatment of wastewater because it is less susceptible to inactivation by 

H2O2, and has greater potential for production in larger quantities at low costs (Al-Ansari 

et al., 2011). 

Caza et al. (1999) demonstrated that purified SBP was able to remove 95% of various 

phenolic compounds from synthetic wastewater.   Crude SBP, extracted from soybean 

hulls, was compared by Biswas (1999) with commercially purified SBP in the removal of 

cresols from synthetic wastewater.  The study showed that crude SBP was more 

thermostable (up to 80oC), and had a higher H2O2 demand which increased with 

increased SBP addition than purified SBP.  The comparison of the studies by Biswas 

(1999) and Caza et al. (1999) demostrates that crude SBP was more efficient in removing 

cresols than purified SBP.  Similarly, Flock et al. (1999)  compared purified SBP to crude 

SBP in the treatment of phenolic compounds and concluded that crude SBP was more 

effective than pure SBP.  Treatment of dyes with SBP was studied by Knutson et al. 

(2005).  In this study, an azo-dye, Direct Yellow 11, and methine-dye, Basazol 46 L, 

were successfully treated by both HRP and SBP.  However, SBP was considered more 

effective in oxidative dye removal. 

Enzymatic treatment of aniline can produce polyaniline, a conducting polymer of high 

environmental stability and interesting electronic properties (Flores-Loyola et al. 2007; 

Shan et al., 2003; Regalado et al., 2004).  They have a wide range of applications such as 

anticorrosive protection, optical display, photoelectrochemical cells and light emitting 

diodes (Raitman et al., 2002).  Due to the fact that polyanilines have to be synthesized 

under acidic conditions, SBP treatment of aniline can yield a by-product that can be 
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diverted from disposal, thus decreasing cost of disposal and even creating a value added 

benefit (Regalado et al., 2004; Taylor et al., 1998). 

Studies on SBP removal of aromatic compounds have to be optimised for several 

parameters including, temperature, pH, H2O2 concentration, enzyme concentration and 

reaction time.  One of SBP's main advantages is the wide range of temperature (active at 

70oC) and pH (2-10) under which the enzyme is active (Ryan et al. 2006).  Equation 2.4, 

shows that stoichometrically 0.5 moles of H2O2 are needed for 1 mole of substrate, i.e. a 

1 to 2 ratio. Studies have shown that  the actual stoichiometry is closer to 1:1 (Taylor et 

al., 1998; Ibrahim et al., 2001).  It is assumed that this extra H2O2 consumption is due to 

the side reactions that form polymers (Nicell, 1991).  However, one should be mindful 

that an excess of H2O2 can lead to lower removal efficiency likely due to inactivation of 

the enzyme (Nicell, 1991).  

Certain compounds that are not substrates of peroxidase can be pre-treated and then 

treated enzymatically.  Mantha et al. (2002) was able to treat nitroaromatics 

enzymatically by first employing zero-valent iron reduction to convert them to anilines 

and then treating anilines by crude SBP in a continuous-flow system.   This method was 

also employed in the treatment of azo-dyes (Biswas et al., 2007; Wang, 2002). 

According to Nicell (2003), the following six criteria that have to be met for an enzyme 

to be considered feasible for waste-treatment application: 

1. Confirm the ability of an enzyme to selectively act upon the target substrate. 

2. Enzyme be able to actively catalyse substrate under typical conditions. 

3. Enzyme should be stable under required reaction conditions. 
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4. Enzymatic reactor systems should be simple to be accepted by potential 

industries. 

5. Reaction products should be less toxic and more biodegradable or easier to treat 

in downstream applications than the original pollutant. 

6. Enzymes must be commercially available. 

Soybean peroxidase, due to its potential for affordable commercial availability, wide 

range of thermal and pH stability and ability to treat a wide range of aromatic substrates 

makes an excellent choice to be used for wastewater treatment. 

2.4.1 Additives in Enzymatic Wastewater Treatment 

Deactivation of enzymes is one of the major disadvantages of enzymatic treatment in 

wastewater, which results in large amounts of enzymes used and an increase in cost.  The 

use of additives to aid in enzymatic treatment of wastewater was first suggested by 

Nakamoto and Machida (1992). They hypothesized that inactivation was due to end-

product polymer hindering access to the enzyme active site. Their suggestion was to add 

proteins or hydrophilic synthetic polymers to suppress the enzyme inactivation.  In their 

study, Nakamoto and Machida (1992) added polyethylene glycol (PEG) and gelatin 

during the HRP treatment of wastewaters containing 10 to 30 g/L phenol and were able to 

reduce the amount of enzyme down to 1/200 of the amount needed without additive.  The 

amount of additive used was shown to increase proportionally with the increase in the 

amount of substrate in solution (Nakamoto and Machida, 1992).  Wu et al. (1993) used 

the same approach as used by Nakamoto and Machida (1992) but applied it to more 

realistic wastewater concentrations of phenol, 1-10 mM (0.1-1 g/L) of phenol, and 
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optimized the reaction for pH, H2O2, HRP and PEG.  The study showed that PEG 

significantly decreased the amount of HRP enzyme used at an optimal pH of 8.0 and 

H2O2 to substrate ratio of 1 to 1; however, PEG was more effective at higher phenol 

concentrations.  The effect of PEG on HRP removal of phenolic compounds was also 

investigated in other studies (Nicell et al., 1995; Wu et al., 1997).   

Addition of PEG (MM 3350) to ARP-treatment of phenol was also shown to be effective 

in enhancing enzyme activity (Ibrahim et al., 2001).  Similar improvements were 

observed with its addition to laccase-treated bisphenol-A (Modaressi et al., 2005).  

However, the addition of PEG (MM 3350) to SBP for removal of phenol was  marginally 

effective (Caza et al., 1999).  Kinsley and Nicell (2000) showed that for improvement of 

enzymatic activity of SBP in the removal of phenol, PEG with a molecular mass of 

35,000 has to be added. 

Tonegawa et al. (2003) compared PEGs with different molecular masses as well as 

surfactants, rhamnolipid, Triton x-100, Tween 20, SDS and NP-40, in the treatment of 

phenols by HRP.  All additives provided improved 2,4-dichlorophenol removal with 

enzyme by 60%, while the effectiveness of PEG was dependent on its molecular mass, 

with higher molecular mass (above 400) being more effective (Tonegawa et al., 2003).   

Flock et al. (1999) studied the effect of different detergents (SDS, Tween 20 and Triton 

X-100) on the removal of phenol and 2-chlorophenol with SBP.  The study showed that, 

even at low concentrations (0.1 % w/v), the detergents significantly increased enzyme 

activity, over 3 fold for SDS and Tween 20 and 2 fold for Triton X-100.  Also, SBP was 

shown to remain active even under high concentrations of detergents (up to 20% w/v).  

Similarly, the removal of phenol by Coprinus cinereus peroxidase was enhanced by the 
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addition of Triton X-100, Triton X-405 and Tween 20, as much as high molecular mass 

PEG (3000).  The addition of Span 20, SDS and lauryl trimethylammonium bromide 

(DTAB) also enhanced enzymatic removal of phenol but was dependent on pH (Sakurai 

et al., 2003).  Al-Ansari et al. (2010a) were able to decrease the amount of SBP needed to 

achieve 95% removal of phenols in coal-tar wastewater by five-fold after the addition of 

SDS.  In synthetic wastewater, the addition of Triton X-100 was able to reduce the 

amount of SBP needed for the removal of 95% of 1 mM phenol better than SDS (Al-

Ansari, 2010a). 

A recent study by Feng et al. ( 2013), in which crude SBP was used in the treatment of 

phenol, showed that SBP trapped in polymerized phenol precipitate remained active. This 

allowed for the recycling of precipitate which reduced the amount of fresh enzyme 

needed in the treatment.  Triton X-100 was used in the study to reverse the 

immobilization of SBP on the phenolic precipitate, resulting in 5.9-fold higher activity.  

This implies that SBP inhibition can be reversed in the presence of Triton; however, it 

was observed that a small fraction of SBP remained on the precipitate.  Steevensz et al. 

(2014) extended this work to a broad range of phenol concentration (1-10 mM) in 

synthetic wastewater as well as in a real wastewater sample.  The study showed that the 

amount of Triton X-100 needed in the reaction increased linearly with that of the 

substrate concentration.  Moreover, the addition of Triton X-100 decreased the amount of 

SBP needed by 10 to 13-fold. 

The method by which additives improve enzymatic removal of aromatic compounds is 

not fully understood.  Nakamoto and Machida (1992) theorized that enzyme inactivation 

was due to end-product polymers adsorbing the enzyme, which prevented its access to the 
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active site.  Thus, PEG acted as a sacrificial polymer reacting with these polymeric 

products preventing them from hindering the enzyme active site and possibly 

precipitating it.  Supporting their theory they were able to show that PEG helped retain 

HRP in aquesous phase, whereas, without PEG addition HRP was precipitated with the 

polymeric product.  In a recent study by Mao et al. (2013), evidence showed that HRP 

enzyme was inactivated by heme destruction.  HRP-mediated phenol reactions in the 

study showed that iron releases from enzyme inactivation is reduced in the presence of 

PEG indicating that heme destruction is suppressed by PEG. 

2.5 Zero-Valent Iron Reduction 

Reduction of halogenated hydrocarbons by galvanized steel was investigated by 

Reynolds et al. (1990); however, Gillham and O'Hannsein (1994), motivated by the 1972 

patent literature of Sweeny and Fisher, were the first to use iron for the degradation of 

chlorinated aliphatic compounds in aqueous solution.  The use of zero-valent iron versus 

other metals is considered to be advantageous due to its availability at low cost and 

effectiveness in the degradation of a wide range of halogenated organic compounds 

(Gillham and O-Hannesin, 1994; Matheson and Tratnyek, 1994).   The reduction of other 

chemical compounds by zero-valent iron followed: chlorinated pesticides (Sayles et al., 

1997),  nitro-aromatic compounds (Agrawal and Tratnyek, 1996; Mantha, 2001), nitrates 

(Cheng et al., 1997),  metals (Cantrell et al., 1995), dinitrotoluenes (Patapas et al., 2007) 

and azo-dyes (Nam and Tratnyek, 2000; Cao et al., 1999; Wang, 2002;  Biswas, 2004).  

Zero-valent iron treatment of wastewater is done under anaerobic conditions to prevent 

corrosion of iron.  Under this condition, iron is a strong reducing agent, water acts as an 
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oxidizing agent by corroding Fe0 to produce Fe2+, OH-, and H2 gas (Reardon, 1995; 

Agrawal and Tratnyek, 1996) as shown in the following equation: 

Fe0 + 2H2O   ⇌    Fe2+ + 2OH- +  H2   (Eq. 2.6) 

Azo-dyes treated by zero-valent iron are decolourized through the reduction of their azo 

linkages (Cao et al., 1999, Nam and Tratnyek, 2000).  Weber (1996) concluded that the 

reduction is surface mediated, making it necessary for the substrate to have direct contact 

with iron surface.  There are several steps involved in this electrochemical corrosive 

process.  The first involves the adsorption of the substrate on the iron surface, followed 

by the oxidation of iron and reduction of the substrate and finally the desorption of the 

by-products from the iron surface (Biswas, 2004).   Cao et al. (1999) suggested that the 

degradation of azo-dye by zero-valent iron is a two step reaction, the first being 

reversible.  They observed that after some time some of the colour returned, indicating 

that the degradation solution was composed of the azo-dye, breakdown products and a 

transitional compound which would transform back to azo-dye. 

Several factors have to be controlled to promote better reduction efficiency.  These 

include iron surface area, pH, and mixing rate.  Use of ultra-fine, nano-scale particles 

provides a larger iron surface area and thus more reactive sites (Choe et al., 2001).  

Cleaning the iron surface with hydrochloric acid (HCl) prior to the reaction enlarges the 

effective surface area by removing the inhibiting oxide layer of iron and thus promoting 

degradation.  The rate of decolourization increases with the rate of mixing (Nam and 

Tratnyek, 2000).  The use of carbonate buffer in the reaction slowed down the reduction 



 

32 
 

by inhibiting access to the iron surface (Lavine et al., 2001).  A lower pH increases 

degradation yield as well as decreases the reaction time (Cao et al., 1999).  However, it 

must be noted that at pH concentrations below 5.0, aniline was observed to adsorb onto 

iron, which is unfavourable since it would require further treatment for aniline desorption 

(Agrawal and Tratenyak, 1996; Mantha, 2001).   

The decolourization of azo-dyes by zero-valent iron has been shown to be feasible in 

wastewater treatment.  However, the reduction products of azo-dyes through this process 

are aromatic amines which are more toxic and thus zero-valent iron reduction has to be 

used as a pre-treatment method in conjunction with amine treatment methods.  In this 

research, soybean peroxidase enzymatic treatment was used for the treatment of parent 

anilines, as well as anilines produced as breakdown products of zero-valent iron pre-

treatment of azo-dyes, along with direct enzymatic treatment of azo dyes to determine the 

optimal methods of treatment. 
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CHAPTER 3 

 

Materials & Methods 
 

This chapter presents the experimental procedures and analytical techniques used in this 

study. 

3.1 Materials 

3.1.1 Anilines and Azo Dyes 

Aniline and o-anisidine (99% purity) were purchased from Sigma-Aldrich Chemical 

Company (Oakville, ON).  Azo dyes Acid Red 4 (AR4, 45% purity) and Crocein Orange 

G (COG, 90% purity) were purchased from MP Biomedicals (Solon, OH).  

3.1.2 Enzymes 

Crude dry solid SBP (E.C. 1.11.7, Industrial Grade lot #18541NX, RZ = 0.75± 0.10. 

activity ≈5 U/mg) was obtained from Organic Technologies (Coshocton, OH).  Dry solid 

bovine liver catalase (E.C. 1.11.1.6, lot #120H7060, activity ≈19,900 U/mg) was 

purchased from Sigma Chemical Company Inc. (Oakville, ON). The enzymes were 

stored at -15oC, while the sub-stock solutions prepared were stored in 4oC. 
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3.1.3 Additives 

Sodium dodecyl sulfate (SDS), sodium dodecylbenzenesulfonate (SDBS) and 

polyetheylene glycol (PEG, average molar mass of 3350 g/mole) were purchased from 

Sigma Chemical Company Inc. (Oakville, ON). Triton X-100 was purchased from 

Alphachem (Missassauga, ON). SDOD (sodium dodecanoate) (99-100% purity) was 

purchased from Sigma-Aldrich Inc. (Oakville, ON). 

3.1.4 Reagents 

2,4,6-Trinitrobenzenesulfonic acid solution (TNBS) (1.0 M in H2O) was purchased from 

Sigma Chemical Company Inc. (Oakville, ON) and was stored at -15oC. 4-AAP (4-

amino-antipyrine) was obtained from BDH Inc. (Toronto, ON) and stored at room 

temperature. Hydrogen peroxide (30% w/v) was purchased from ACP Chemicals Inc. 

(Montreal, PQ) and stored at 4oC. 

3.1.5 Buffer and Solvents 

Analytical grade monobasic and dibasic sodium phosphate, sodium acetate, sodium 

bicarbonate, sodium carbonate, concentrated hydrochloric acid, glacial acetic acid and 

95% ethanol (anhydrous) were purchased from ACP Chemicals Inc. (Montreal, PQ).  

HPLC grade methanol was obtained from Fisher Scientific Co. (Ottawa, ON).  

3.1.6 Others 

Syringe filters (0.2 µm, non-sterile) were purchased from Gelman Laboratories 

(Mississauga, ON).  BD Luer-Lok Tip 10 mL and 3 mL syringe were obtained from 

Dickinson and Company (Franklin Lakes, NJ).  Iron Filings (approx 40 mesh), and 
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Cobalt Chloride were obtained from Fisher Scientific Company (Ottawa, ON). 

Fisherbrand Spinbar Teflon coated magnetic stir bars (various sizes) and Fisherbrand P8 

Qualitative filter paper were purchased from Fisher Scientific (Ottawa, ON).  Pipetman 

adjustible volume pipettes (200 µL, 1000 µL, 5 mL) were purchased from Mandel 

Scientific (Guelph, ON).  

3.2 Analytical Equipment 

3.2.1 UV-VIS Spectrophotometry 

Two spectrophotometers were used to quantify azo dyes and anilines through direct 

absorbance or colorimetric methods. One was a Hewlett-Packard (model 8452A) Diode 

Array Spectrophotometer (λ range of 190 -820 nm and 2 nm resolution) controlled by a 

Hewlett Packard I/O card interfaced with a PC. The other was an Agilent 8453 UV-

Visible spectrophotometer (λ range of 190 -1100 nm and 1 nm resolution) controlled by a 

Hewlett Packard Vectra ES/12 computer. Quartz spectrometer cuvettes with 1 cm path 

length were purchased from Hellma (Concord, ON).  

3.2.2 HPLC (High Performance Liquid  Chromatography) 

Aniline samples were analyzed and compared to the colorimetric technique by HPLC 

from Waters Co. (Mississauga, ON) with a Model 2487 dual wavelength absorbance 

detector, Model 1525 binary HPLC pump and Model 717 autosampler operated by 

Breeze 3.3 software..  A Waters Symmetry C18 reverse phase column (5 µm, 4.6 X 150 

mm) column was used. 
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3.2.3 Total Organic Carbon(TOC) Analysis 

Carbon content of solutions was determined by a Shimadzu TOC-V CSH Total Carbon 

Analyzer, purchased from Shimadzu Scientific Instruments (Columbia, MD).  The total 

organic carbon was calculated by the difference of total carbon (TC) and inorganic 

carbon (IC). Both TC and IC were detected by a non-dispersive infrared 

spectrophotometer. All samples were micro-filtered before injection.  Standard curves for 

both TC and IC were selected from the machine database. 

3.2.4 Sonicator 

Mixing of azo-dyes pretreated by zero-valent iron was done by a Sonicor  SC-101TH 

sonicator (50 /60 Hz, 2.3 Amps) from Sonicor Instrument Corporation (Copiague, NY). 

3.2.5 pH Measurement 

An EA940 pH meter with stainless steel micro pH probe was purchased from London 

Scientific (London, ON). Calibration buffers of pH 4.00, 700, and 10.00 were purchased 

from BDH Inc. (Toronto, ON). 

3.2.6 Other Equipment 

Model K-550-G vortex mixer (50/60Hz, 0.5 Amps) was purchased from Scientific 

Industries, Inc (Bohemia, NY).  VWR magnetic stirrers VS-C10 (50-60 Hz, 30 Watts) 

were purchased from VWR International Inc. (Mississauga, ON). 
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3.3 Analytical Techniques 

3.3.1 Colour Reduction 

Stock solutions of AR4 and COG were made up to 2 mM with deionized water. 

Subsequently, a 1 mM stock was made from that stock solution.  A 20-fold dilution of the 

1 mM stock was analyzed by UV-VIS spectrophotometer to determine optimum 

wavelength (λmax) for maximum absorbance for both dyes.  In order to determine the  

amount of colour remaining after zero-valent iron pre-treatment or enzymatic treatment, 

both initial colour (Ai) as well as final colour (Af) were measured at λmax. 

Percent color remaining = 100*(Af /Ai) 

3.3.2 Anilines Colorimetric Assay   

A TNBS test as per Al-Ansari (2008) was used to measure both parent anilines and 

anilines produced by Fe reduction of azo-dyes AR4 and COG. The reaction of anilines 

with TNBS in the presence of phosphate buffer of pH 7.4 and sodium sulfite generated a 

yellow chromophore.  The colour intensity was proportional to the concentration of the 

anilines.  Both the λmax and time for colour development were dependent on the substrate 

and thus experiments were conducted to determine these parameters.  Samples were 

made in a 1 mL cuvette and included 100 µL of 10 mM TNBS, 100 µL of 0.2 M 

phosphate buffer, 100 µL of 20 mM sodium sulfite, and 700 µL between sample and 

water volume; whereas for the blank 700 µL of water was used.  The UV-VIS 

spectrophotometer was blanked with the sample blank and then set up to measure a range 

of wavelength (300-700 nm) every 2.5 minutes until maximum absorbance was reached. 
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Standard curves were plotted for substrate concentrations of 0.005 mM to 0.04 mM to be 

used in determining concentrations of anilines in the experiments.   

3.3.3 Aniline Analysis by HPLC 

HPLC was used to determine the accuracy of TNBS method in quantifying aniline 

concentrations.  As per Steevensz (2008) aniline standard was run under isocratic 

conditions with 50% methanol (pump A) and 50% 20 mM phosphate buffer at pH 7.4.  

Flow rate was set to 1.0 mL/min 10 µL volumes were through unheated column. UV 

detector was set to λmax = 280 nm and peak retention time was observed at approximately 

3.3 minutes.  Standard curve was created using aniline concentration range of 0.1 - 1 mM 

and was used in determining unknown concentrations. 

3.3.4 Enzyme Activity Assay 

The catalytic activity of SBP was measured through a colorimetric assay as per Wu et al. 

(1997).  In this study, 1 unit of activity is defined as the number of micromoles of H2O2 

converted per minute at pH 7.4 and at room temperature.   Thus, the rate of the catalyzing 

reaction was compared with the rate of uncatalyzed reaction.  The assay included a 

reagent which used  phenol, 4-aminoantipyrine (4-AAP) and H2O2 in excess to ensure 

that the initial rate of reaction was directly proportional to the concentration of enzyme 

activity.  After the addition of 950 µL of the reagent to 50 µL of SBP in the cuvette to 

provide proper mixing, a reaction produced a pink chromophore with  a  maximum  

absorption at λmax = 510 nm  and  an  extinction  coefficient  of  6000 M-1 cm-1. The 

initial rate of colour formation in the first 30 seconds was  monitored by the Agilent 
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spectrophotometer and activity results were calculated by using the kinetic rate 

calculation function built into the software. 

3.3.5 TOC Analysis 

TOC analysis was done on batch reactor experiments involving parent aniline 

compounds.  20 mL samples were collected and micro-filtered.  The machine was 

allowed to start up and run with 3 milli-Q water injections to make sure the system was 

properly purged.  Each sample was then measured for both TC and IC with the difference 

being TOC.  3 injections were used for each reading and the average was recorded. 

3.4 Experimental Procedures 

The experimental procedures used in this study are presented in the following three 

subsections. All experiments were conducted in batch reactors which were run in 

triplicate at room temperature (20 - 22 oC).  The average values of these three readings 

are presented, with error bars representing the standard deviation. 

3.4.1 Enzymatic Treatment of Anilines and Azo-Dyes 

Batch reactors were set up to optimize SBP enzymatic treatment of both aniline and o-

anisidine for 95% removal as well as optimal removal of azo-dyes AR4 and COG. 

Parameters investigated were: pH, H2O2 concentration, enzyme concentration, and 

reaction time.  All experiments were conducted in 20 mL glass vials with each batch 

receiving 1 mM substrate.  Acetate or phosphate buffers were used to cover pH of 3.5 - 

7.5 for anilines, and 3.5-9.4 for azo-dyes.  H2O2 concentration was varied from 0.5 - 3 

mM for anilines and 1 - 5 mM for azo-dyes.   SBP concentrations used depended on the 
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substrate a starting point of 0.17 U/mL was used for anilines and 3 U/mL SBP for azo-

dyes and changed by increasing or decreasing concentration to achieve 95% removal.  A 

teflon-coated magnetic stir bar was placed in the mixture and the vials were then placed 

on a magnetic stirrer to allow for thorough and continuous mixing.  All reactions were 

run for 3 hours and were stopped by adding 100 µL of catalase stock solution, which 

broke down H2O2 to water and oxygen.  The samples were then microfiltered and 

analyzed by TNBS test explained in Section 3.3.2.  Once various parameters were 

optimized for 95% removal conditions, experiments were conducted on enzymatic 

treatment of anilines to determine reaction time effect and kinetics by monitoring anilines 

removal over 3-hour period. 

3.4.2 Additive Effect 

Batch reactors were run to determine the effect of additives on enzymatic treatment.  

Various additives in a range of 10 - 200 mg/L were added to 20 mL glass vials as 

discussed in Section 3.4.1 and optimized and analyzed accordingly. 

3.4.3 TOC  

Batch reactors (25 mL) were run in tap water with 1 mM substrate, optimal 

H2O2:substrate ratio, optimal SBP dose and optimal additive dose gathered from previous 

experiments.  No buffer was added and the pH was not adjusted, the pH of the water was 

approximately 7.0.  The reaction was stopped after 3 hours, the batch samples were then 

microfiltered and analyzed for aniline remaining as described in Section 3.3.2 and TOC 

remaining as described in Section 3.3.5.  Standard curves were prepared for TOC of the 
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additives, SBP and aniline in order to assist in calculating theoretical values versus the 

real sample values measured by the TOC analyzer. 

3.4.4 Zero-Valent Iron Pretreatment of AR4 and COG 

Iron preparation: Iron filings (40 mesh) used in this experiment were first pretreated 

with acid to remove metal oxides from the surface allowing for more surface area contact 

with the substrate (Agrawal and Tratnyek, 1996).  Iron filings were placed in a glass vial 

and soaked for 20 minutes in 10% HCl.  To remove the metal oxides and all chlorides, 

the iron was then washed four times with 15 mM carbonate buffer (pH 9.5) made 

anaerobic by including 1 mM sodium sulfite.  The iron was then washed four times with 

a 20 mM sodium sulfite solution (with  0.1% w/w cobalt chloride with respect to sodium 

sulfite) to remove excess alkalinity and prevent contact with oxygen.  Finally, the iron 

was stored in this solution to maintain anaerobic conditions. 

Colour Reduction:  Batch reactor experiments were set up to decolorize AR4 and COG 

by cleaving the azo-linkage by zero-valent iron reduction, breaking them to their simpler 

compounds. Experiments were set up to optimize for amount of Fe needed, and time to 

achieve optimal colour reduction.  Experiments were carried out in 40 mL screw cap 

glass vials. The appropriate amount of iron (0.5 - 2 g) was placed in 1mM azo dye 

solution made anaerobic by using sodium sulfite (with 1% w/w cobalt chloride). Tap 

water left out overnight to dissipate any chlorine was used in these batch runs, since tap 

water has the advantage of having buffering capacity close to neutral. The vials were 

placed in a sonicator water bath and the sonication was allowed for the required period of 

time (monitored for 2 hrs, every 15 minutes) to ensure proper mixing and contact with 
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Fe. After the reaction the vials were placed on a magnet to allow for iron particle settling 

and then were microfiltered.  Samples were then analyzed for both reduction of colour as 

well as anilines produced by UV-VIS spectrophotometer analytical techniques in 

Sections 3.3.1 and 3.3.2. 

Enzymatic treatment of anilines produced in azo-dye by Fe0: These experiments were 

conducted to determine the difference between enzymatically treated  parent anilines and 

that of Fe0 reduction products.  

In 20 mL batch reactors 0.5 mM  Fe0 reaction anilines product was added and subjected 

to enzymatic treatment using varying SBP concentrations.  The pH ranged from 4 to 8 

with varying H2O2 concentrations (0.5 - 2 mM) to achieve 95% substrate removal.   The 

enhancing effect of additives was also investigated as per Section 3.4.2, and all analysis 

was conducted via UV-VIS spectrophotometer as per Section 3.3.2. 

3.5 Sources of Error 

Experimental accuracy and reliability are affected by two types of errors systematic and 

random.  Errors that include human error or equipment are considered random.  To 

minimize these errors, experiments were conducted in triplicates, and the average taken 

and a standard deviation was plotted on the graphs.  Those graphs that do not show error 

bars have a standard deviation below 1%, which would be hidden by the icons.  

Furthermore, the same pipetes, glass ware and other equipment were used in all 

experiments to minimize cross-contamination.  Systematic errors are the product of 

improper experimental design, and analytical techniques' or instruments' inaccuracy.  To 

minimize these errors, equipment were calibrated, and analytical instruments were tested 
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for known concentrations regularly.  Experimental protocol and procedure was carefully 

followed and compounds that can easily degrade were prepared fresh for each 

experiment.  The factors that may have contributed to the some errors in my study were 

associated with AR4 which had a purity of 45%; the dye with 90% purity, COG, had a 

significantly lower percent error. 
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CHAPTER 4 

 

Results and Discussion 
 

The aim of this chapter is to discuss how enzyme catalyzed removal of anilines and azo-

dyes were optimized.  Several parameters were investigated including, pH, H2O2 

concentration, and SBP concentration.  The experiments were designed to test the effect 

of various parameters in the presence of limited SBP concentration so that stringent 

conditions existed to clearly determine effect. Additives were used to minimize the 

amount of enzyme needed to achieve 95% removal of substrates by polymerization 

followed by filtration.  Pre-treatment of azo-dyes with zero-valent iron was investigated 

as a way to achieve improved decolourization efficiency as well as possibly reducing the 

amount of enzyme needed.  For the sake of comparison, an optimal removal efficiency 

benchmark was set as 95%  for these compounds.  Thus, in this study the mention of 

optimal refers to this benchmark, unless otherwise stated. 

4.1 SBP Catalysis of Anilines 

Zero-valent iron reduction of azo-dyes yields aromatic amines which exhibit toxic and 

carcinogenic effects (Stibrova et al., 1996; Biswas et al., 2007; Rodriguez Couto & Toca 

– Herrera, 2006).  In this study, two anilines were studied, aniline and o-anisidine both of 
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which are by-products from the azo-linkage reduction of azo-dyes COG and AR4, 

respectively.  Thus, it was important to optimize the enzymatic removal of these 

compounds for various parameters. 

The TNBS test discussed in Section 3.3.2 was used to measure aniline and o-anisidine 

concentrations.  The peak wavelength, peak time and extinction coefficient were 

determined for both compounds and used in quantifying them.  The values are shown in 

Table 4.1.  The progression of change in colour intensity with respect to time is shown in 

Figure 4.1.  There is sharp increase in intensity initially which reaches a plateau before it 

starts to decrease at a slow rate.  Based on this observation, 30 min of time for aniline and 

50 min of time for o-anisidine was considered as optimal time for the test.  

 

Figure 4.1 Change in colour intensity with respect to time during TNBS test. 
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Table 4.1 Parameters for analysis of anilines by TNBS test  

Substrate Peak Wavelength 
(nm) 

Peak Time 
(min) 

Extinction coefficient 
(M-1 . cm-1) 

Aniline 430 30 22300 

ortho-Anisidine 430 50 21300 

 

 

4.1.1 pH Effect 

The catalytic activity of a specific enzyme-substrate complex is dependent on pH 

(Palmer, 1991).  This is partly due to changes in characteristics of ionizable side chains of 

amino acids caused by change in pH.  Denaturing of the protein can occur at extreme pH.  

Furthermore, the degree of ionization of certain amino side chains can effect enzyme 

activity.  For these reasons, it is important to study the effect of pH on enzyme catalyzed 

anilines removal.  SBP is active at a wide range of pH (2.0-10.0) but since the results of 

this study relate to wastewater treatment, it was decided to choose a pH range of 3.5 - 7.5 

for this study.  Batch reactors were run for 3 hours with initial substrate concentration of 

1 mM, H2O2 concentration of 1.5 mM and an enzyme concentration of 0.17 U/mL for 

aniline and 0.0035 U/mL for o-anisidine, respectively.  The experiments were designed to 

test the effect of pH in the presence of limited SBP concentration so that stringent 

conditions existed to clearly determine pH effect.  Figures 4.2 and 4.3 show the results of 

these experiments for aniline and o-anisidine, respectively.     
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Figure 4.2 Effect of pH on 1 mM aniline removal by 0.17 U/mL SBP with 1.5 mM H2O2, 
reaction time = 3 hours. 

 

 

Figure 4.3 Effect of pH on 1mM o-anisidine removal by 0.0035 U/mL SBP with 1.5 mM 
H2O2, reaction time = 3 hours. 
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SBP showed catalytic activity in the full pH range studied (3.5 - 7.5).  An optimal pH for 

aniline removal was at pH 5.0, but acceptable removal, within a 5% difference, was 

achieved in the pH range of 4.5 to 5.5.   The same optimum pH of 5.0 was observed for  

o-anisidine removal as well, with acceptable removal in the range of 4.5 - 5.5.  Both of 

these optimal results are close to the pKa of the substrate (aniline pKa = 4.6, o-anisidine 

pKa = 4.5) (Mantha 2001; NTP, 2011).  The removal of  o-anisidine  was more affected 

by pH variation than the removal of aniline.  There was 20% difference in removal 

efficiency between optimal pH and the worst-case pH for aniline and  50% difference in 

the case of o-anisidine removal.  

4.1.2 SBP Dose 

Experiments were conducted for 3 hour duration at the previously established optimal pH 

of 5.0 by varying SBP dose to determine the optimum SBP dose.  All other variables 

were held constant, H2O2 concentration was kept at 1.5 mM, and 1 mM substrate was 

added to all the samples.  The results are shown in Figures 4.4 and 4.5. 

Results show 95% removal of aniline at SBP dose of 0.6 U/mL.  The concentration of 

SBP for the removal of 95% of o-anisidine was 0.012, which is 1/50 of the enzyme dose 

required for optimum aniline removal.  It was also observed visually in both cases that as 

the enzyme concentration was increased the colour intensity of the solution also 

increased, with aniline turning reddish brown and o-anisidine a purplish hue. At optimal 

SBP concentration, precipitate were present in both samples; however, the o-anisidine 

treated sample precipitate were more fine and did not settle as well as the precipitate for 

aniline treated sample. 
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Figure 4.4  SBP optimization for the removal of 1mM aniline, in the presence of 1.5 mM 
H2O2 at pH 5.0, reaction time = 3 hours. 

 

 

Figure 4.5 SBP optimization for the removal of 1mM o-anisidine , in the presence of 1.5 
mM H2O2 at pH 5.0, reaction time = 3 hours. 
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4.1.3 H2O2 Effect 

Peroxidase catalytic reaction stoichiometry, shown by Equation 2.4,  indicates a 1:2 

molar ratio of H2O2 to substrate.  However, studies have shown that it is actually closer to 

1:1  (Taylor et al., 1998; Ibrahim et al., 2001), while excess H2O2 can be limiting (Nicell 

1991).  For this reason, it was important to check the effect of H2O2 concentration on the 

reaction and how it affected the required SBP concentration.  Batch reactors were run for 

3 hours with initial substrate concentration of 1 mM, at optimum pH of 5.0 (40 mM 

acetate buffer)  and H2O2 was varied for a range of SBP concentrations.   

SBP showed catalytic activity in the full range of H2O2 concentration studied (0.5 - 3 

mM), for both aniline and o-anisidine, as seen in Figures 4.6 and 4.7.  It is observed that 

the amount of H2O2 required increased  with the amount of SBP added and the percent of 

substrate removed; thus, H2O2 demand increased with enzyme activity.  At optimal 

conditions the amount of H2O2 required for the treatment of 1 mM aniline with an 

addition of 0.6 U/mL SBP was 1.5 mM, a 1.5 to 1 H2O2 to substrate ratio.  In the case of 

o-anisidine, optimal treatment of 1 mM o-anisidine was achieved at 1.25 mM H2O2, a 

1.25 to 1 H2O2 to substrate ratio.  At this lower H2O2 concentration, the amount of SBP 

needed for 95% removal of o-anisidine also was decreased from 0.012 U/mL to 0.0116 

U/mL.  At higher H2O2 concentrations, the percent of substrate removed had decreased, 

indicating inactivation of SBP by excess H2O2.  These results are similar to what was 

found in earlier studies (Arano et al., 1990; Mantha, 2001).  The extra H2O2 consumption 

over  theoretical  stoichiometric  requirement is attributed to its  consumption  by  dimeric  
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Figure 4.6 Effect of H2O2 concentration on the removal of 1.0 mM aniline by SBP at pH 
5.0, reaction time = 3hours. 
 
 
 
 

 

Figure 4.7 Effect of H2O2 concentration on the removal of 1.0 mM o-anisidine by SBP, 
at pH 5.0, reaction time = 3 hours. 
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and polymeric compounds produced in the reaction, as stated by Yu et al. (1994).  This 

had resulted in an overall 1:1 substrate to H2O2 ratio.   The final optimal parameters for 

both substrates are included in table 4.2.  Crude SBP was noted to have a higher H2O2 

demand than other peroxidase (Patapas et al., 2007).  Biswas (1999) had stated that this 

increase in demand over a peroxide to substrate ratio of 1 could be a result of catalase 

activity, which is found in all plants, that can be exhibited by the SBP catalytic reaction. 

Catalase decomposes hydrogen peroxide to oxygen and water.  Another reason for the 

increase in demand could be a result of hydrogen peroxide oxidation of organic matter 

present in the mixture.  

Table 4.2 Optimal parameters for SBP treatment. 

Substrate     pH [SBP] 
U/mL  

[H2O2]:[substrate] 
(mM:mM) 

Aniline 5.0 0.6 1.50:1 

ortho-Anisidine 5.0 0.0116 1.25:1 

*starting with 1 mM substrate, time = 3 hours. 

 

4.1.4 Effect of Reaction Time 

The time needed for a reaction to achieve 95% removal of substrate, otherwise known as 

retention time in continuous flow system, is an important design factor influencing 

reactor size, which in turn affects capital cost for implementing enzymatic treatment of 

industrial wastewater.  The kinetic study of substrate removal with respect to time and 

analysis provides an understanding of  enzyme-substrate interaction over the full reaction 

time.  In this study, a 3-hour reaction time was chosen to allow for different parameters 

and substrates to be compared, thus the goal was to achieve 95% removal in 3 hours.  
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Results from previous sections 4.1.1 - 4.1.3 were used to set up optimal conditions.  In 

250 mL batch reactors, 1 mM substrate was treated under optimal conditions and aliquots 

were withdrawn at various time intervals, quenched with catalase then micro-filtered and 

analyzed by the TNBS method.  Results are shown in Figures 4.8 and 4.9. 

SBP's catalytic reaction with both substrates proceeded rapidly at the start, then slowed 

down after 30 min.  Thus, reaction kinetics were looked at in the first 30 minutes in 

Figures 4.10 and 4.11. It can be seen from the graphs that the reaction with aniline 

proceeded faster than o-anisidine. As a result it is shown that SBP removal of both 

substrates can be represented as a first-order process, and that the treatment of o-anisidine 

was 25% lower than that of aniline in the first 30 min. Table 4.3 depicts some removal 

efficiencies as percent of substrate removed with respect to time for both substrates.   

 
Table 4.3 Time for SBP to achieve 50%, 75%, 90% and 95% removal efficiency. 

 
 

Substrate 

 
 

50% 

Time for Substrate 
Removal (min) 

75% 

 
 

90% 

 
 

95% 
Aniline 10 30 90 180 

ortho-Anisidine 20 45 120 180 

* Starting with 1 mM substrate at optimum pH, SBP concentration, and H2O2 to substrate 
ratio. 
 

Based on these observations, a 3-hour reaction time was chosen in this study, which 

provided sufficient time to determine the behaviour of different parameters to achieve 

95% removal. 
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Figure 4.8 Aniline removal at optimal conditions with respect to time.  Initially 1 mM 
substrate, 1.5 mM H2O2 and 0.6 U/mL SBP, reaction time =3 hours. 
 

 

Figure 4.9 o-Anisidine removal at optimal conditions with respect to time. Initially 1 
mM substrate, 1.5 mM H2O2 and 0.6 U/mL SBP, reaction time =3 hours. 
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Figure 4.10 Enzymatic treatment of 1.0 mM aniline kinetics  

 

 

 

Figure 4.11 Enzymatic treatment of 1.0 mM o-anisidine kinetics 
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4.2 Additive Effect 

The effect of various additives on enzymatic treatment of anilines was studied in order to 

both reduce the enzyme requirement and enhance the effluent quality.  However, these 

additives add carbon to the treatment process and thus have to be accounted for. 

4.2.1 Additive Effect on SBP Treatment of Aniline 

The use of additives in enzymatic treatment has been shown to be effective in reducing 

the amount of SBP needed to achieve optimal treatment.  Though the use of PEG has 

shown considerable reduction in the requirement of HRP concentration in the treatment 

of phenol (Wu et al., 1993), it has not been successful in reducing the amount of  SBP 

needed to achieve optimal removal of the same substrate (Caza et al., 1999).  However, 

other additives such as SDS, and Triton X-100 were shown to effectively decrease the 

amount of SBP needed in the treatment of phenol (Flock et al., 1999).  This experiment 

was set up to study the effect of different additives on the removal of aniline.   The 

additives chosen included polyetheylene glycol (PEG), a hydrophilic synthetic polymer; 

sodium dodecyl sulfate (SDS), another anionic surfactant; sodium 

dodecylbenzenesulfonate (SDBS), an anionic surfactant;  Triton X-100, a nonionic 

surfactant; and sodium dodecanoate (SDOD) an anionic surfactant fatty acid.  Batch 

reactors were set up at pH 5.0 with 1 mM aniline, 0.3 U/mL SBP, and H2O2 ranging from 

0.5 to 2.25 mM.  The concentration of the additives were 100 mg/L except for SDOD 

where only 50 mg/L was used because of its low solubility.  Beyond 100 mg/L, particles 

can be visibly seen in the reactor.  These results are shown in Figure 4.12.  It can be seen 

that PEG has no effect on the SBP treatment of aniline, a result similar to that reported by 
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Steevensz (2008) in the treatment of aniline with laccase. All other additives showed 

improvement of enzymatic treatment after their addition, with SDOD having the most 

significant impact.  The only additives that also improved the aesthetic quality of the 

treated water by removing colour and improving the ability of floc to settle were SDS and 

SDBS.  Figure A.1 in appendix A shows a qualitative comparison of the treated samples. 

The effect of additive on optimal pH in enzymatic treatment of aniline was studied by 

adding Triton X-100 or SDS.  Experiments were run under stringent conditions, keeping 

all parameters constant except for pH.  Only 0.2 U/mL SBP was added along with 100 

mg/L of additive where applicable.  In Figure 4.13, it can be seen that the optimal for the 

control that had no additive was in the pH range of 4.5 to 5.0 which was also the optimal 

for the batches that had Triton X-100 or SDS.  However, it can be seen that the pH effect 

is more pronounced with SDS addition when compared to control or Triton X-100. 

 

Figure 4.12 Effect of additive addition on treatment of 1 mM aniline with 0.3 U/mL SBP 
at pH 5.0. 
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Figure 4.13  Effect of pH change on 1 mM aniline removal with 0.2 U/mL SBP respect 
to additive addition 

 

The optimal amount of additive required is considered to be the lowest concentration 

added to achieve the optimal results.  Based on the results obtained from the previous 

experiment, it was decided to only optimize the  effect of SDS, Triton X-100 and SDOD. 
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mg/L of SDOD  achieved optimal additive effect as shown in Figure 4.14.   
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Figure 4.14 Optimization of additive concentration 
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Table 4.4 Additive effect on SBP treatment of aniline 

Additive   pH [SBP] 
U/mL  

[H2O2]:[substrate] 
(mM:mM) 

none 5.0 0.6 1.50:1 

SDS (100 mg/L) 

Triton X-100 (100 mg/L) 

SDOD (50 mg/L) 

5.0 

5.0 

5.0 

  0.3 

  0.4 

  0.28 

1.50:1 

1.50:1 

1.50:1 

*Starting with 1 mM aniline, and time = 3 hours 

 

 

Figure 4.15 SBP dose optimization for 1 mM aniline treatment at pH 5.0. 1.5 mM H2O2 
for control, SDS and Triton X-100 and 1.25 mM H2O2 for SDOD, and reaction time = 3 
hours  
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Figure 4.16 H2O2  to substrate molar ratio optimization at optimal SBP dose for 1.0 mM 
aniline, at pH 5.0, and reaction time = 3 hours. 
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Figure 4.17 Effect of additives on treatment of 1 mM o-anisidine with 0.007 U/mL SBP 
at pH 5.0 with 1.25 mM H2O2 and retention time = 3hours. 
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dependent on pH.  Therefore, experiments were set up to determine optimal pH for the 
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constant, i.e. H2O2 to substrate ratio of 1.25 to 1, and 0.0035 U/L SBP.  The results are 

displayed in Figure 4.18.  The optimal pH range was found to be between 6.5 and 7.0, 

however a pH of 6.0 was chosen as an optimal because it gave better colour removal and 

precipitate formation. 
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Figure 4.18 pH optimization of treatment of 1 mM o-anisidine with 0.0035 U/mL SBP in 
the presence of 100 mg/L SDS, with 1.25 mM H2O2 and reaction time = 3 hours. 

 

Next optimal values for SBP dose and H2O2 concentration, needed to achieve 95% 

removal of o-anisidine with the addition of 100 mg/L SDS, were investigated. Batch 

reactors were set up at various H2O2 concentrations, and 0.007 U/mL SBP and run for 3 

hours at pH 6.0.  The results show (Figure 4.19) that a H2O2 to substrate ratio of 1.1 to 1 

with SBP dose of 0.007 U/mL achieved >95% removal.  This is lower than the ratio of 

1.25 to 1 found for o-anisidine without additives in Section 4.1.3, Figure 4.7.  This result 

indicates that the increase in H2O2:substrate stoichiometry above a 1:1 ratio is related to 

the crude SBP demand, at lower SBP concentrations the excess demand seems to also 

decrease.  H2O2 demand decreased close to 15% as SBP decreased from 0.0116 U/mL to 

0.007 U/mL due to additive addition.  Table 4.5 summarizes the results for optimal 

values. 
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Figure 4.19 Optimization of H2O2 at optimal SBP dose of 0.007 U/mL for the treatment 
of 1.0 mM o-anisidine in the presence of SDS. 

 

 

 

Table 4.5  Optimal values for additive effect on SBP treatment of o-anisidine 

Additive Dose 
(mg/L) 

  pH [SBP] 
U/mL  

[H2O2]:[substrate] 
(mM:mM) 

none 0 5.0 0.0116 1.25:1 

SDS 100 6.0   0.007 1.10:1 

* Starting with 1 mM o-anisidine and time = 3 hours 

 

 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

0 0.5 1 1.5 2 2.5 

%
 o

-A
ni

si
di

ne
 R

em
ai

ni
ng

 

[H2O2]/[o-Anisidine] (mM)/(mM) 



 

65 
 

4.2.3 Additive Effect on Reaction Time of Anilines 

How additives affect the reaction rate can give insight on how they enhance enzymatic 

treatment.  Batch reactors were set up as in Section 4.1.4 with the optimal amount of 

additives and experiments were run for 3 hours.  The results are displayed in Figures 

4.20-4.23.  Only SDS was used in the reaction with o-anisidine since the other additives 

had shown no significant effect.  Though the presence of additives decreased the amount 

of SBP required to achieve 95% removal, the time needed to achieve treatment 

benchmarks of 50%, 75%, and to an extent 90%, had increased as seen in Table 4.6.  

However, 95% removal was achieved in 3 hours, indicating that, even when the initial 

rate of reaction had decreased, the reaction rate towards the end was relatively faster.   

The initial reaction kinetics (first 30 minutes) are shown as first-order plots in Figures 

4.24 and 4.25, and the equations of best fit are provided in Table 4.7.  It can be seen in 

Figure 4.24 that the reaction in the presence of SDS has the slowest initial reaction rate.  

Those reactions in the presence of Triton X-100 and SDOD have a similar reaction 

kinetics but are still slower than the control.  The treatment of o-anisidine in the presence 

of  SDS also was slower than that without the additive (Figure 4.25).  
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Figure 4.20 Aniline removal by 0.3 U/mL SBP in presence of 100 mg/L SDS with 
respect to time. Initially 1 mM  aniline at pH 5.0 with 1.5 mM H2O2 and 3 hour reaction. 

 

 

Figure 4.21 o-Anisidine removal by 0.007 U/mL SBP in presence of 100 mg/L SDS with 
respect to time. Initially 1 mM  o-anisidine at pH 5.0 with 1.1 mM H2O2 and 3 hour 
reaction. 
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Figure 4.22 Aniline removal by 0.4 U/mL SBP in presence of 100 mg/L Triton X-100 
with respect to time. Initially 1 mM  aniline at pH 5.0 with 1.5 mM H2O2 and 3 hour 
reaction. 

 

 

Figure 4.23 Aniline removal by 0.28 U/mL SBP in presence of 50 mg/L SDOD with 
respect to time. Initially 1 mM  aniline at pH 5.0 with 1.5 mM H2O2 and 3 hour reaction. 
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Figure 4.24 Reaction kinetics of enzymatic treatment of 1 mM aniline in the presence of 
additives at pH 5.0 with 1.5 mM H2O2 

 

 

Figure 4.25 Reaction kinetics of enzymatic treatment of 1 mM o-anisidine in the 
presence of 100 mg/L SDS at pH 5.0 with  1.25 mM H2O2 for no additive; and 6.0 with 
1.1 mM H2O2 in the presence of SDS. 
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Table 4.6 Time for SBP to achieve 50%, 75% and 90% removal efficiency of substrate. 

 
Substrate 

 
Additive Dose 

(mg/L) 

 
 

50% 

Time for Substrate 
Removal (min.) 

75% 

 
 

90% 
Aniline 

Aniline +SDS 

Aniline +Triton X-100 

Aniline + SDOD 

0 

100 

100 

50 

10 

25 

20 

15 

30 

60 

45 

45 

 

90 

120 

120 

90 

ortho-Anisidine 

ortho-Anisidine + SDS 

0 

100 

20 

30 

45 

60 

120 

120 

* Starting with 1 mM substrate 

 

 

Table 4.7 Equations of best fit  

Substrate Equation of Best Fit 
 

Aniline 

Aniline +SDS 

Aniline +Triton X-100 

Aniline + SDOD 

% Aniline = e (-0.0425t + 4.418) 

% Aniline = e (-0.0213x + 4.477) 

% Aniline = e (-0.0302x + 4.479) 

% Aniline = e (-0.0323x + 4.504) 

 

ortho-Anisidine 

ortho-Anisidine + SDS 

% o-Anisidine = e (-0.0301t + 4.506) 

% o-Anisidine =  e (-0.0209x + 4.584) 

* Starting with 1 mM substrate and time = 30 minutes at optimal, pH, H2O2, and SBP 
concentration. 
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Next, experiments were set up to see how addition of SDS to the enzymatic treatment of 

aniline could change the optimal reaction time.  Batch reactors were set up with a range 

of SDS from 0 to 225 mg/L, 1 mM aniline, 1.5 mM H2O2 and 0.2 U/mL SBP and allowed 

to run for 3 hours.  Samples were taken from the reactors, and after stopping the reaction 

by the addition of catalase, were analyzed for percent aniline remaining.  The 

experiments were continued by stirring up to 6 hours and then the reaction was stopped 

with the addition of catalase and analyzed.  Results shown in Figure 4.26 clearly show 

that SDS addition improved enzymatic treatment of aniline by increasing the removal 

efficiency and also increasing the catalytic life of the enzyme.  With no SDS addition, an 

extra 3 hours past the original 3 hour reaction time gave only an additional 3% aniline 

reduction, while at the optimal dose of SDS of 100 mg/L, an additional 11% of aniline 

reduction was achieved.  This indicates that the addition of SDS protects the enzyme and 

increases enzyme's catalytic life. 

 

Figure 4.26 Effect of SDS addition on enzyme catalytic life. Initially 1 mM aniline in the 
presence of 100 mg/L SDS with 1.5 mM H2O2, at pH 5.0 and reaction time = 3 hours. 
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4.2.4 Additive Fate in Treatment - TOC Study 

The use of an additive in enzymatic treatment has to take into consideration its possible 

negative effect on the environment if the excess amount is released with the effluent.  The 

decision to study SDS, Triton X-100 and SDOD as additives was due to their wide use in 

everyday household detergents.  Thus, their presence in the effluent may not cause any 

toxic effects but a large concentration would have an oxygen demand which may lead to 

a negative environmental impact.  Although, in this study, the additive dose was 

minimized to achieve maximum results at lowest dose, it was important to study the 

effect of these additives on the final effluent.  Batch reactors were run for 3 hours in non-

pH-adjusted tap water with 1 mM substrate, optimal H2O2 to substrate ratio, optimal SBP 

dose and optimal additive dose, (Tables 4.4 and 4.5) and then analyzed for aniline 

remaining and TOC.  Table 4.8 displays the results. Since the reactions were not pH-

adjusted, 95% aniline removal was not achieved. The results displayed in Figures 4.27 

and 4.28 show the actual TOC values of the samples observed versus the sum of TOC 

calculated by theoretically adding SBP, additive, and aniline remaining.   Experiments in 

which aniline was the substrate showed that with no additive, the amount of TOC 

observed was comparable to the calculated amount, indicating that all the enzymatically 

treated aniline indeed formed polymers that precipitated out of the solution.  It can be 

seen that, with the addition of SDS and SDOD, the amount measured is less than that 

calculated, indicating that some of the additive might have been removed during the 

reaction.  With Triton X-100 the observed TOC value is slightly above the calculated; 

however, taking into account the standard deviation, the two values are close enough 

which allow us to assume that all of the Triton X-100 remained in the solution.  
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In the treatment of o-anisidine with SBP, the amount of TOC observed is higher than that 

calculated amount for all the samples except the one with SDS.  The treatment of o-

anisidine with SBP produced finer precipitate than those produced during the treatment of 

aniline.  This observation, along with a higher TOC observed value than that calculated 

value, leads to the assumption that part of the polymers produced remained in solution.  

The addition of SDS had improved precipitate formation and that may be the reason for 

the observed TOC to be equal to the calculated TOC.  However, this gives no information 

about the fate of the additive itself.   

In all cases, the amount of additive used was below the critical micelle concentration 

(CMC), 2.33 g/L for SDS and 0.17 g/L for Triton X-100 (Al-Ansari et al., 2010). 

Respectively, indicating no evidence of partitioning of products  into surfactant micelles 

as a surfactant mechanism which improves substrate removal.  More likely the 

surfactants can resolubalize the active enzyme captured on polymeric precipitate or 

prevent enzyme adsorption in the first place. 

  

Table 4.8 Percent substrate removal in non-pH-adjusted tap water at optimal parameters 

Additive Dose 
(mg/L) 

%  Aniline 
Remaining 

% o-Anisidine 
Remaining 

None 

SDS 

0 

100 

15.2 

20.8 

       40.9 

         1.8  

Triton X-100 

SDOD 

100 

50 

19.8 

40.4 

       24.9   

       31.3 

* Starting with 1 mM substrate and time = 3 hours in non-pH-adjusted tap water at 
optimal H2O2 and SBP concentration. 
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Figure 4.27 TOC of SBP-treated aniline under optimal condition with no buffer 

 

 

Figure 4.28 TOC of SBP-treated o-anisidine under optimal condition with no buffer 
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4.3 SBP Decolourization of Azo-Dyes 

Enzymes have been shown to be effective in directly treating azo dyes (Stibrova et al., 

1996; Wang, 2002; Mohan et al., 2005; Knutson et al., 2005).  Therefore, the 

decolourization of COG and AR4 through direct treatment with SBP was studied and 

optimized.  An analytical method was developed, as per Section 3.3.1, to measure the 

percent colour remaining.  A UV-VIS spectrophotometer was used and the results are 

shown in Figures 4.29 and 4.30.  For AR4 maximum absorbance was at λmax = 508 nm 

and for COG it was at λmax = 482 nm. 

4.3.1 pH Optimization for COG and AR4 

As discussed in Section 4.1.1, enzyme activity is dependent on pH.  Wang (2002) studied 

the direct treatment of 50 µM COG and AR4 with ARP and found the optimal treatment 

at pH close to neutral pH 7.0 to 8.0.   Thus, a slightly wider pH range of 3.5-9.4 than that 

in Section 4.1.1 was considered for these experiments, to take into account optimal past a 

pH of 8.0.  Batch reactors were set up as per Section 3.4.1 with initial substrate 

concentration of 1 mM, hydrogen peroxide concentration of 1.5 mM and enzyme 

concentration of 3 U/mL to ensure reaction.  The experiment was carried out for 2 hr. to 

complete  reaction and stopped with the addition of catalase.  The results of these 

experiments are shown in Figure 4.31 for COG and Figure 4.32 for AR4.   
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Figure 4.29 UV-VIS spectra for 50 µM COG showing λmax = 482 nm 

 

 

Figure 4.30 UV-VIS spectra for 50 µM AR4 showing λmax = 508 nm 
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Figure 4.31 pH optimization of SBP-catalyzed COG decolourization. Starting with 1mM 
COG, 1.5 mM H2O2, 3 U/mL SBP and reaction time = 2 hr. 

 

 

Figure 4.32 pH optimization of SBP-catalyzed AR4 decolourization. Starting with 1mM 
AR4, 1.5 mM H2O2, 3 U/mL SBP and reaction time = 2 hr. 
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Both dyes performed well in acidic range of 3.5 - 4.0 and at slightly basic range of 8.0 - 

8.5; however, they performed poorly at other pH levels indicating a strong dependence on 

pH.  The optimal pH for COG was in the range of 8.0 to 8.5, however AR4 performed 

slightly better at the acidic pH range of 3.5 to 4.0.  The pH value chosen for both the dyes 

as an optimal pH for further investigation was 8.0.  At this pH value, the effluent was not 

expected to have any adverse effect on the downstream biological processes, if used, and 

thus no pH adjustment would be required.  A stronger dependence on pH  was observed 

for the treatment of AR4 than treatment of COG.  COG showed 27% better 

decolourization at pH 8.0 than the worst case and at this pH, AR4 colour reduction was 

36% better as well. 

4.3.2 SBP Dose  

The SBP dose for optimal treatment was investigated in this section.  Batch reactors were 

set up at the chosen optimal pH value of 8.0, starting with 1 mM substrate, 3 mM H2O2 

and SBP dose varied from 0 to 1 U/mL. The reaction was run for 3 hours and results for 

both optimal SBP dose and optimal colour removal are shown in Figures 4.33 and 4.34. 

More than 90% colour reduction of COG was observed with the addition of 0.25 U/mL 

SBP.  An increase of SBP dose to 0.75 U/mL gave 95% colour removal and any increase 

in the SBP dose beyond that had little effect.  In the case of AR4, 75% colour removal 

was achieved with the addition of 0.25 U/mL.   For 84% colour removal an SBP dose of 

0.75 U/mL was needed and, as with COG, any increase beyond 0.75 U/mL had only a 

slight increase in decolourization.   
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Figure 4.33 Optimization of SBP dose for decolourization of COG. Starting with 1mM 
COG, 3 mM H2O2, at pH 8.0 and reaction time = 3 hr. 

 

 

 

Figure 4.34 Optimization of SBP dose for decolourization of AR4. Starting with 1mM 
AR4, 3 mM H2O2, at pH 8.0 and reaction time = 3 hr. 
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4.3.2 H2O2 Optimization 

The effect of initial hydrogen peroxide concentration on colour reduction was studied to 

determine the optimal concentration.  Experiments were conducted with 1mM 

concentration of azo dye at optimal pH of 8.0.  Earlier studies had determined the optimal 

SBP concentration of 0.75 U/mL and thus various H2O2 concentrations were compared at 

that predetermined optimum value.  The results are shown in Figures 4.35 and 4.36.  

Optimal hydrogen peroxide for 95% colour removal of COG was 3.5 mM for 1 mM COG 

at optimal SBP concentration. Higher SBP and hydrogen peroxide concentrations were 

not able to achieve better results.  Only 85% colour removal of 1 mM AR4 was achieved 

with 3 mM H2O2 concentration under optimal conditions and, as with COG,  higher SBP 

and hydrogen peroxide concentrations were not able to achieve better  results.  The lower 

efficiency of AR4 decolourization could be a result of the meta positioning of the 

sulfonate group which according to Hsueh et al. (2009) is the least preferred for colour 

removal, due to lower ability to withdraw electrons from the azo bonds.  Another reason 

could be due to the low purity of the dye, AR4 was 45% pure in comparison to COG 

which was 90% pure.  Some of the residual colour present could be subject to colour 

artifacts from impurities.  These impurities also could have hindered the active site on 

SBP causing higher enzyme inactivation.  The results are summarized in Table 4.9. 

Table 4.9 Optimal results summary for SBP treatment of COG and AR4  

Substrate   pH [SBP] 
U/mL  

[H2O2]:[substrate] 
(mM:mM) 

Efficiency 
% 

COG 8.0 0.75 3.5:1 95 

AR4 8.0 0.75 3.5:1 85 
* Starting with 1 mM azo-dye and time = 3 hours. 
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Figure 4.35 Optimization of H2O2 concentration for decolourization of 1.0 mM COG, at 
pH 8.0 with 0.75 U/mL SBP and reaction time = 3 hr. 

 

 

Figure 4.36 Optimization of H2O2 concentration for decolourization of 1.0 mM AR4 at 
pH 8.0 with 0.75 U/mL SBP and reaction time = 3 hr. 
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4.4 Zero-Valent Iron Reduction Pretreatment of COG & AR4 

Zero-valent iron reduction of azo dyes was shown to be an effective method in reducing 

colour in wastewaters in many studies (Nam and Tratnyek, 1999; Biswas et al., 2007).  In 

Section 4.3, SBP treatment of both COG and AR4 was successful in decolourizing the 

dyes.  The inability of SBP to achieve 95% colour removal of AR4 prompted an 

investigation into its pretreatment with zero-valent iron.  In this section, both COG and 

AR4, were first pretreated with iron and later their aniline by-products were treated 

enzymatically. 

4.4.1 Optimizing Iron Dosage and Oxygen Scavenger (Sodium Sulfite) 

Biswas et al. (2004) had reported that the amount of iron added to the reaction affected 

decolourization of the dyes.  Thus, experiments were set up to study the effect of iron and 

determine its optimum dose for both dyes.  As per Section 3.4.4, batch reactors were run 

for 30 min with tap water containing 1 mM dye, 1 mM sodium sulfite, and iron ranging 

from 0 - 2 g.  Colour reduction was analyzed by UV-VIS spectrophotometer and anilines 

production was determined by the TNBS test.  The results, shown in Figure 4.37, indicate 

that the percent colour reduction was proportional to the percent aniline production.  The 

optimal iron dose for COG decolourization was 1 g iron, and an increase to 2 g iron only 

improved colour reduction by another 6%.  However, an increase of iron dose from 1 g to 

2 g in the treatment of AR4 improved decolourization by 16%, which indicated an 

optimal iron dose of 2 g.  These results could be due to the lower purity of AR4 which 

could have hindered iron active sites. 
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It was suggested by Mantha (2001), while reviewing the literature (Babbit et al., 1975; 

Brandvold, 1975), that sodium sulfite, along with cobaltous chloride as a catalyst at 0.1% 

of sodium sulfite by mass,  was an effective oxygen scavenger. Biswas et al. (2004) 

increased the amount of sodium sulfite proportionally with an increase in iron.  Since 

AR4 was more effectively decolourized with the addition of 2 g of iron, an experiment 

was set up to investigate the effect of sodium sulfite concentration versus iron dose after 

1 hour reaction time.  Figure 4.38 shows that 2g iron with 1 mM sodium sulfite provide 

optimal zero-valent iron decolourization of AR4 and an increase of sodium sulfite to 2 

mM showed no effect.  This is expected as sodium sulfite scavenges oxygen from water 

and thus its concentration should be independent of iron dose. 

 

 

 

Figure 4.37 Optimal iron dosage for iron reduction of 1 mM azo dyes and production of 
anilines in presence of 1 mM sodium sulfite and reaction time = 30 min. 
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Figure 4.38 Optimization of iron dosage versus sodium sulfite concentration for 1 mM 
AR4 colour reduction. Reaction time = 1 hr. 
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The optimal time for the treatment of COG is shown to be 75 min at which close to 98% 

of the colour was removed and 81% of aniline was recovered.  The optimal time for the 

treatment of AR4 was 90 min at which over 96% of colour was removed and 93% of o-

anisidine was recovered.  About 20% of aniline was not recovered in the treatment of 

COG; however, a better product recovery can be seen for AR4 treatment when about 4 % 

of o-anisidine was not recovered.  Mantha (2001) showed that pH affected the reaction, 

with an acidic pH improving iron reduction and a basic pH giving a better product 

recovery.  For this reason, the pH of the tap water used was not adjusted as changing to 

either a higher or lower pH could either hinder colour reduction or aniline desorption.  

Specifically, it was noted that at pH below the pKa none of the aniline would be desorbed 

from the iron, leading to a need for extra treatment.  These results indicate that iron pre-

tretment of AR4 was more effective than that of COG.  Table 4.10 summarizes the 

results. 

 

Table 4.10 Summary of optimal results for zero-valent iron reduction of COG and AR4 

Substrate   Iron 
   (g) 

Sodium Sulfite 
Conc. (mM) 

Time 
(min) 

% Colour 
Removed 

% Product 
Recovered 

COG 1 1 75    98 81 

AR4 2 1 90 96 93 

* Starting with 1 mM azo-dye 
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Figure 4.39  Progressive COG colour reduction and aniline production with time when 
treated with 1 g iron and 1 mM sodium sulfite. 

 

 

 

 

Figure 4.40 Progressive AR4 reduction and o-anisidine production with timewhen 
treated with 2 g Iron and 1 mM sodium sulfite. 
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4.5 SBP Treatment of Aniline Recovered from Zero-Valent Iron 
Reduced Azo-Dye 

Iron pre-treatment was shown to be effective in decolourizing both AR4 and COG; 

however, this method produces anilines which would require treatment before release 

into the environment.  In this section, the aniline and o-anisidine, products of iron 

pretreatment of azo-dyes, were treated  by SBP and the treatment optimum were 

compared to the optimum values for the treatment of authentic anilines.  

4.5.1 pH Effect 

The anilines recovered solution from the reduction of azo-dyes also contained unreacted 

sodium sulfite and Fe2+ as per Equation 4.1 (Beyedilli et al., 1998).  Thus, it was assumed 

that these substances might affect the parameters of enzymatic treatment by increasing 

H2O2 demand (Mantha, 2001).  

  4 H2O                     4 H+ + 4 OH- 

  2 Fe0             2 Fe2+ + 4 e- 

R1N=NR2 + 4 e- + 4 H+                       R1NH2 + R2NH2  (Eq. 4.1) 

Mantha (2001) aerated the solutions after Fe0 reduction of azo-dyes in order to reduce the 

effect of Fe2+ and sodium sulfite present.  In all the experiments in this section the 

solutions were aerated for 30-50 min, the time it took to run the TNBS test.   

COG and AR4 were pretreated with iron as per Section 4.4 and the recovered anilines 

were analyzed by TNBS test. Since the concentration of azo dyes, pretreated with iron, 

was 1 mM, and the recovered anilines were less than 1 mM, it was decided to start with 
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0.5 mM recovered anilines and a pH range of 4.0 to 8.0.  Batch reactors had 0.15 U/mL 

SBP and 1.5 mM H2O2 for recovered aniline from COG and 0.009 U/mL SBP and 1.25 

mM H2O2 for recovered o-anisidine from AR4 and were run for 3 hours.   The results are 

shown in Figures 4.41 and 4.42.   

Recovered aniline had an optimal pH of 5.0 the same optimal as that of  authentic aniline.  

However, recovered o-anisidine showed an optimal pH of 8.0 unlike authentic o-

anisidine which had an optimal pH of 5.0.  The sample with recovered aniline from COG 

had increased in colour after enzymatic treatment.  There was 13% increase in colour 

after enzymatic treatment at pH 5.0 than after Fe0 reduction of COG. While the recovered 

o-anisidine from AR4 had more colour removal after enzymatic treatment with 10% less 

colour at pH 8.0 than after Fe0 reduction.  This higher colour removal of AR4 was partly 

due to the testing at a pH range of 8.0, which was shown in Section 4.4 to be the optimal 

pH for enzymatic treatment of AR4 without pretreatment.  Looking at these results it can 

be deduced that pretreatment of AR4 with iron gives a better result than direct enzymatic 

treatment of AR4. 
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Figure 4.41 pH optimization of 0.5 mM recovered aniline with 0.15 U/mL SBP, 1.5 mM 
H2O2 and reaction time = 3 hr. 

 

 

 

Figure 4.42 pH optimization of 0.5 mM recovered o-anisidine with 0.009 U/mL SBP, 
1.25 mM H2O2 and reaction time = 3 hr. 
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4.5.2 SBP Dose Optimization 

Batch reactor studies were performed to determine the optimal SBP concentration for the 

removal of 95% of 0.5 mM recovered anilines.  The experiments were run for 3 hours at 

pH 5.0, 1.5 mM H2O2 and a SBP range of 0 - 0.4 U/mL SBP for recovered aniline. For 

recovered o-anisidine, the batches were run for 3 hours at pH 8.0 with 1.25 mM H2O2 and 

SBP range of 0 - 0.045 U/mL SBP.   Figures 4.43 and 4.44 show the results. 

Optimal SBP dose for 94% removal of 0.5 mM recovered aniline was 0.3 U/mL and there 

was little if any improvement with the addition of more SBP.  In the case of 0.5 mM 

recovered o-anisidine, the optimal dose was found to be at 0.035 U/mL with 

approximately 96% removal and an increase in SBP dose of 0.01 U/mL increased 

removal to 98%.   The increase in o-anisidine removal with an increase in SBP dose, 

which is not seen with aniline, could be related to the 1/10th enzyme concentration needed 

for the treatment of o-anisidine.  The catalase activity of the SBP enzyme, discussed by 

Biswas (1999),  could be the factor that would require a higher H2O2 uptake with the 

higher concentration of SBP.  This was also reported by Mantha (2001). 

For authentic aniline in Section 4.1, optimal dose of 0.6 U/mL SBP was required for the 

removal of 1 mM aniline.  Whereas, recovered o-anisidine required 6 times more SBP per 

mM of o-anisidine (0.035 U/mL for 0.5 mM) to achieve 95% removal than authentic o-

anisidine, which required 0.0116 U/mL SBP for the treatment of 1 mM.  The need for the 

extra SBP could be due to the complex nature of the solution in which further colour 

reduction was observed, indicating that some fraction of the SBP was treating colour and 

thus extra SBP was required. 
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Figure 4.43 SBP dose optimization for treatment of 0.5 mM recovered aniline at pH 5.0 
with 1.5 mM H2O2 and reaction time = 3 hr. 

 

 

Figure 4.44 SBP dose optimization for treatment of 0.5 mM  recovered o-anisidine at pH 
8.0 with 1.25 mM H2O2 and reaction time = 3 hr.  
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4.5.3 H2O2 to Substrate Ratio Optimization 

In Section 4.1.3 the optimal H2O2 to substrate ratio was 1.5 for authentic aniline and 1.25 

for o-anisidine.  To determine the optimal ratios for 0.5 mM recovered aniline and o-

anisidine, batches were set up at optimal pH and SBP dose as per Section 4.5.1 and 4.5.2 

and a range of H2O2 concentration from 0.5 - 2 mM was used.  The results are plotted in 

Figures 4.45 and 4.46. 

As was observed with authentic aniline and o-anisidine in Section 4.1.3, SBP was able to 

treat both anilines in the full H2O2 range studied.  However, in both cases the H2O2 to 

substrate ratio required to achieve optimal results was twice that found for authentic 

anilines.  The results show an optimal of 3:1 for recovered aniline and 2-2.5:1 for 

recovered o-anisidine.  This increase in H2O2 demand could be due to the complex nature 

of the iron-reduced azo-dye solution.  During zero-valent iron reduction of the dyes, azo-

bonds were split resulting in two compounds, an aniline or o-anisidine and an amino-

napthol sulfonic acid compound, as well some of the original colour remained.  All these 

compounds are substrates for the enzyme, and as a result would require more H2O2 to 

treat.  Another contributor for the increase in H2O2 demand could be a result of sodium 

sulfite and Fe2+ remaining from the Fe0 reduction process.  All these factors might have 

led to the doubling of H2O2 demand. 

As with authentic aniline and o-anisidine, as H2O2 to substrate ratio increased past the 

optimal values the efficiency of removal decreased.  This gives further proof for SBP 

inactivation by H2O2.  Overall, the enzymatic treatment  of  recovered  aniline  at  optimal  
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Figure 4.45 Optimization of hydrogen peroxide to substrate ratio for removal of 0.5 mM 
recovered aniline at pH 5.0 with 0.3 U/mL SBP and reaction time = 3 hr. 

 

 

Figure 4.46 Optimization of hydrogen peroxide to substrate ratio for removal of 0.5 mM 
recovered o-anisidine at pH 8.0 with 0.035 U/mL SBP and reaction time = 3 hr. 
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conditions resulted in an increase in colour, while the enzymatic treatment of recovered 

o-anisidine resulted in further decolourization. 

4.5.4 SDS Effect 

The addition of SDS was shown in Section 4.2 to give the best results, as compared to the 

other additives studied, for enzymatic treatment of aniline and o-anisdine.  Thus, the 

effect of SDS on SBP treatment of recovered aniline and o-anisidine was studied in this 

section.  After zero-valent iron pretreatment of COG and AR4, the recovered anilines 

were analyzed by TNBS test and 0.5 mM was added to 20 mL batch reactors.  Reactors 

were run for 3 hours at pH 5.0 with 0.5 U/mL SBP  and 1.5 mM H2O2 for aniline or at pH 

8.0 with 0.015 U/mL SBP and 1.25 mM H2O2 for o-anisidine with a range of SDS from 0 

- 300 mg/L.  The results for recovered aniline showed no SDS effect.  Therefore further 

experiments were run by varying the pH and maintaining SDS concentration at 100 mg/L 

which again showed no SDS effect.  The results for the effect of SDS on recovered o-

anisidine are shown in Figure 4.47.  

The best effect of SDS on the removal of 0.5 mM recovered o-anisidine was seen at 50 

mg/L and any addition of SDS above that did not improve treatment.  Thus, it was 

determined that, for this study, the optimal SDS concentration would be 50 mg/L for 0.5 

mM recovered o-anisidine, which is similar to authentic o-anisidine which showed 

optimal SDS effect of 100 mg/L for 1 mM o-anisdine. 

Optimal enzymatic treatment of o-anisidine in the presence of SDS for authentic o-

anisidine was seen at a slightly different optimal pH than with no SDS addition.  

Therefore, in Figure 4.48 the  effect of  pH on recovered o-anisidine  enzymatic treatment  
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Figure 4.47 SDS effect on 0.5 mM recovered o-anisidine treatment at pH 8.0 and 0.015 
U/mL SBP with 1.25 mM H2O2 and reaction time = 3 hr. 

 

 

Figure 4.48 pH optimization of 0.5 mM recovered o-anisidine removal in presence of 50 
mg/L SDS and 0.007 U/mL SBP with 1.25 mM H2O2 and reaction time = 3 hr. 
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in the presence of SDS was examined.  The batches were set up with range of pH of 4.0 

to 8.0, with 0.007 U/mL SBP, 1.25 mM H2O2 in the presence of 50 mg/L SDS and were 

run for 3 hours. 

As with authentic o-anisidine, the optimal  pH in the presence of SDS was different than 

with out its addition.  In the presence of 50 mg/L SDS the optimal pH was seen at pH 7.0.  

The addition of SDS shows more pH-dependent enzymatic treatment; 30% more removal 

at optimum pH than at worst-case pH with no addition and 10% more removal than 

worst-case pH with addition.  This behaviour was also observed by Al Ansari et al. 

(2010a) in the SBP treatment of phenol in the presence of SDS.  They speculated that the 

presence of SDS could slightly change the structural conformation of SBP leading to a 

change in the optimum pH. 

To determine the SDS effect on H2O2 to substrate ratio, batch reactors were run for 3 

hours with 0.5 mM recovered o-anisidine, 0.022 U/mL SBP, pH 7.0, and a H2O2 

concentration range of 0.5 to 2 mM in the presence of 50 mg/L SDS.   The results, in 

Figure 4.49 show that the optimal H2O2:substrate was 2.5:1.  This is similar to that 

obtained in the absence of SDS; however, at 0.022 U/mL SBP there was approximately 

100% o-anisdine removal.  Thus experiments were set up to determine SBP dose for the 

95% removal.  As with earlier experiments to optimize SBP dose, all parameters were 

held at optimal concentrations and SBP dose was varied, in this case 0.005 - 0.022 U/mL.  

The results shown in Figure 4.50 indicate that 0.011 U/mL SBP is needed for 95% 

removal of recovered o-anisidine which is 1/3 of enzyme required without SDS.  Thus,  

the  addition  of SDS in SBP-catalyzed treatment is seen to be  very  effective in reducing 
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Figure 4.49 Hydrogen peroxide to substrate ratio optimization of 0.5 mM recovered o-
anisidine at pH 7.0  in presence of 50 mg/L SDS, 0.022 U/mL SBP and reaction time = 3 
hr. 

 

 

Figure 4.50 SBP optimization of 0.5 mM  recovered o-anisidine at pH 7.0 in presence of 
50 mg/L SDS, with 1.25 mM H2O2 and reaction time = 3 hr. 
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reducing enzyme concentration.  The treatment of authentic aniline with SBP was 

enhanced in the presence of SDS, unlike recovered aniline.  This could be due to the 

complex nature of the solution.  A summary of the results are given in Table 4.11. 

 

Table 4.11 Summary of optimal parameters for the treatment of recovered anilines. 

Substrate Additive   pH [SBP] 
U/mL  

[H2O2]:[substrate] 
(mM:mM) 

Recovered Aniline 
 

None 

SDS 

5.0 

No effect 

0.3 

No effect 

3:1 

No effect 

 
 
Recovered o-Anisidine  
 

 

None 

SDS 

 

8.0 

7.0 

 

0.035 

0.011 

 

2-2.5:1 

2.5:1 

* Starting with 0.5 mM recovered anilines and time = 3 hours 

 

Overall, zero-valent iron pre-treatment of COG and AR4 was shown to be effective in 

reducing both colour and recovered anilines.  The results of colour reduction can be seen 

in the UV-VIS spectra of normalized concentrations in Figure 4.51 and 4.52 at λmax = 508 

nm  for AR4 and at λmax = 482 nm for COG.  COG was diluted to 25 µM and AR4 was 

diluted to 50 µM for all curves.  It can be seen that this two-step process was more 

effective in the treatment of AR4 than treatment of COG.  SBP treatment of recovered 

anilines from Fe0 reduced COG, increased colour intensity, whereas, SBP treatment of 

recovered o-anisidine from Fe0 reduced AR4, decreased colour intensity.  
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Figure 4.51  Zero-valent reduction COG decolourization followed by SBP catalyzed 
aniline treatment.  

 

 

Figure 4.52 Zero-valent iron reduction AR4 decolourization followed by SBP catalyzed 
o-anisidine treatment 
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CHAPTER 5 

 

Summary & Conclusions 
 

The results of this study demonstrate the ability of SBP to remove azo-dyes and their 

reduction products during wastewater treatment.  Aniline and o-anisidine were optimized 

for 95% removal through SBP-catalyzed polymerization and additives were able to 

decrease the amount of enzyme needed to achieve these optima.  Both dyes, COG and 

AR4, were successfully decolourized by direct treatment with SBP.   Subsequently, zero-

valent iron reduction of both dyes was carried out; it was possible to decolourize both 

dyes and their reduction product, anilines, were successfully treated with SBP.  

The SBP treatment of authentic aniline and o-anisidine was optimized for pH, 

H2O2:substrate ratio, and enzyme dose.  It was shown that SBP was active over a broad 

range of pH (3.5-7.5) with an optimal range of 4.5 to 5.5 and optimal removal was 

achieved at pH 5.0 for both substrates. However, the treatment of o-anisidine was more 

sensitive to pH changes than aniline.  The SBP concentration required to achieve 95% 

removal of aniline was 0.6 U/mL, while for o-anisidine removal the concentration was 

approximately 50 times lower at 0.0116 U/mL.  The H2O2 to substrate molar ratio 

required for aniline was found to be  1.5, while that for o-anisidine was 1.25.  It was also 

found that the amount of H2O2 required increased with increase in enzyme dose. 
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Additives were shown to be effective in reducing the SBP dose required in SBP-

catalyzed polymerization of aniline and o-anisidine.  Among the different additives 

studied, PEG was the only one that had no effect.  SDS addition decreased the required 

SBP dose by approximately 2-fold and had the additional benefit of improved precipitate 

formation, settling and colour removal, while slowing initial reaction rate and increasing 

SBP catalytic life.  However, the presence of SDS also affected the optimal pH range, 

with a change in pH having more drastic impact on removal than without SDS.  From 

TOC studies, it was concluded that the addition of SDS improved precipitation and 

settling more products than without SDS addition. 

Azo-dyes were decolourized successfully with SBP treatment.  SBP decolourized both 

azo-dyes well at a pH range of 3.5 - 4.0 and 8.0 - 8.5.  Optimization was done at pH 8.0, 

with the addition of 0.75 U/mL SBP and 3.5 mM H2O2 for 1 mM dye when 95%  colour 

removal for COG and 85% colour removal for AR4 were achieved.  An increase in SBP 

or H2O2 concentration did not improve treatment efficiency. 

Zero-valent iron reduction of both azo-dyes was demonstrated to reduce over 95% of the 

colour.  For 40 mL of 1.0 mM COG, optimal conditions were the addition of 1 g iron, 1 

mM sodium sulfite and contact time of 75 min, while optimal conditions for 40 mL at 1.0 

mM AR4 included the addition of 2 g iron, 1 mM sodium sulfite and run for 90 min.  

COG showed lower product recovery than AR4, which indicated more product adsorbed 

on iron in COG reduction than in AR4 reduction.  

Further treatment of the anilines recovered from zero-valent iron reduction of COG and 

AR4 was successful through SBP-catalyzed polymerization.  The products of reduction 
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investigated were aniline for COG and o-anisidine for AR4.  The other products that were 

not part of this investigation were amino naphthol sulfonic acid compounds.  There was a 

preliminary investigation as part of an undergraduate study that showed potential for 

these compounds to be substrates of SBP, however these would be subject to further 

study.  At an optimal pH of 5.0, recovered aniline required the same amount of SBP as 

authentic aniline; however, the amount of H2O2 required was doubled, which indicates 

parallel treatment of the other products of reduction.  SBP treatment of recovered o-

anisidine, did not behave like authentic o-anisidine.  At optimal pH of 8.0, six times the 

amount of SBP and double the amount of H2O2 were required to achieve 95% removal.  

The low purity, 45%, of AR4 was attributed to this change, as well as parallel treatment 

of other products of reduction.  The presence of SDS did not improve the enzymatic 

treatment of recovered aniline; however, 3-fold lower SBP concentration was  required 

for the treatment of o-anisidine at an optimal pH of 7.0. 

It can be concluded from these results that both direct treatment of azo-dyes with SBP or 

pretreatment with iron followed by SBP-catalyzed polymerization provide a successful 

means to decolourize and treat these azo-dyes.  Direct treatment of 1 mM COG at pH 8.0 

with SBP is the preferred method, due to its ability to achieve 95% colour reduction at an 

SBP concentration of 0.75 U/mL and H2O2 concentration of 3.5 mM.  The pretreatment 

of 1 mM COG with iron followed by SBP treatment of 0.5 mM recovered aniline 

required 0.6 U/mL SBP to achieve 95% removal but it increased the residual colour.  

Direct treatment of AR4 with SBP was unable to achieve 95% removal, even at high SBP 

doses.  Thus, 1 mM AR4 can be treated best by zero-valent iron reduction followed by 

SBP-catalyzed polymerization of the recovered o-anisidine in the presence of SDS at pH 
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7.0.  In this method only 0.011 U/mL SBP with 1.25 mM H2O2 was required to achieve 

>95% removal of both 0.5 mM o-anisidine  and colour. 
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CHAPTER 6 

 

Recommendations 
 

The results of this study validate the use of SBP, either directly or after pre-treatment 

with zero-valent iron, to catalyze removal of azo-dyes and their reduction products in 

wastewater treatment.  However, before this treatment can be implemented as an 

alternative to existing wastewater treatment methods, further studies have to be done. 

1. The effect of additives, was only studied on authentic anilines and those recovered 

after zero-valent iron reduction.  Thus the effect in direct enzymatic treatment of 

azo-dyes could potentially reduce SBP dose and enhance decolourization. 

2. Studies on toxicity of both soluble and insoluble products should be conducted 

along with impact of these products on the environment as well as downstream 

treatment. 

3. The mechanism of additive effect on enhancing SBP-catalyzed treatment should 

be further investigated. Such as, quantifying the quality of precipitate formed 

through time for settling, light scattering and UV-Vis spectra.  Studies on enzyme 

activity in the presence of additives at various pH values could be of benefit. 
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4. SBP-catalyzed treatment of composite water containing a mixture of dyes or a 

real wastewater sample from industry should be investigated to determine the 

level of conversion of each substrate and the existence of any matrix effects. 

5. The other reduction products of zero-valent iron treatment of azo-dyes, the 

naphthyl compounds, should be further identified, quantified and the extent of 

their enzymatic treatment should be determined. 

6. Zero-valent iron column reduction studies on azo-dye wastewater should be 

carried out to aid in the design of a system that could be applied in industry. 

7. Desorption of reduction products from iron, as well as regeneration of iron to 

reduce cost, improve process efficiency and column life should be investigated. 

8. Cost analysis of the process is essential in order to promote application in 

industry. 
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APPENDIX A  

Pictures 

 

 

Figure A.1 Treated aniline samples at optimal conditions, no additive, SDS, Triton X-
100,  and SDOD.  
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APPENDIX B 

Standard Curves 

 

Figure B.1 Aniline TNBS standard curve. 

 

 

 

Figure B.2 o-Anisidine TNBS standard curve. 
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Figure B.3 Aniline TOC standard curve. 

 

 

Figure B.4 o-Anisidine TOC standard curve. 
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Figure B.5 SBP concentration TOC standard curve. 

 

 

Figure B.6 Additives concentration TOC standard curve. 
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