
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2014

Optical Character Recognition of Printed Persian/Arabic Optical Character Recognition of Printed Persian/Arabic

Documents Documents

Mahnaz Shafii
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Shafii, Mahnaz, "Optical Character Recognition of Printed Persian/Arabic Documents" (2014). Electronic
Theses and Dissertations. 5179.
https://scholar.uwindsor.ca/etd/5179

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/5179?utm_source=scholar.uwindsor.ca%2Fetd%2F5179&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Optical Character Recognition of Printed Persian/Arabic Documents

By

Mahnaz Shafii

A Dissertation

Submitted to the Faculty of Graduate Studies

through the department of Electrical and Computer Engineering

in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy

 at the University of Windsor

Windsor, Ontario, Canada

2014

© 2014 Mahnaz Shafii

Optical Character Recognition of Printed Persian/Arabic Documents

by

Mahnaz Shafii

APPROVED BY:

__

Dr. M. O. Ahmad (External Examiner)

Concordia University

__

Dr. B. Boufama

School of Computer Science

__

 Dr. J. Wu

 Department of Electrical and Computer Engineering

__

Dr. H. Wu

Department of Electrical and Computer Engineering

__

Dr. M. Sid-Ahmed, Advisor

Department of Electrical and Computer Engineering

September 18, 2014

iii

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this dissertation and that no part of this

dissertation has been published or submitted for publication.

I certify that, to the best of my knowledge, my dissertation does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my

dissertation, published or otherwise, are fully acknowledged in accordance with the

standard referencing practices. Furthermore, to the extent that I have included

copyrighted material that surpasses the bounds of fair dealing within the meaning of the

Canada Copyright Act, I certify that I have obtained a written permission from the

copyright owner(s) to include such material(s) in my dissertation and have included

copies of such copyright clearances to my appendix.

I declare that this is a true copy of my dissertation, including any final revisions, as

approved by my dissertation committee and the Graduate Studies office, and that this

dissertation has not been submitted for a higher degree to any other University or

Institution.

iv

ABSTRACT

Texts are an important representation of language. Due to the volume of texts generated

and the historical value of some documents, it is imperative to use computers to read

generated texts, and make them editable and searchable. This task, however, is not trivial.

Recreating human perception capabilities in artificial systems like documents is one of

the major goals of pattern recognition research. After decades of research and

improvements in computing capabilities, humans’ ability to read typed or handwritten

text is hardly matched by machine intelligence. Although, classical applications of

Optical Character Recognition (OCR) like reading machine-printed addresses in a mail

sorting machine is considered solved, more complex scripts or handwritten texts push the

limits of the existing technology. Moreover, many of the existing OCR systems are

language dependent. Therefore, improvements in OCR technologies have been uneven

across different languages. Especially, for Persian, there has been limited research.

Despite the need to process many Persian historical documents or use of OCR in variety

of applications, few Persian OCR systems work with good recognition rate.

Consequently, the task of automatically reading Persian typed documents with close-to-

human performance is still an open problem and the main focus of this dissertation.

In this dissertation, after a literature survey of the existing technology, we propose new

techniques in the two important preprocessing steps in any OCR system: Skew detection

and Page segmentation. Then, rather than the usual practice of character segmentation,

we propose segmentation of Persian documents into sub-words. The choice of sub-word

segmentation is to avoid the challenges of segmenting highly cursive Persian texts to

v

isolated characters. For feature extraction, we will propose a hybrid scheme between

three commonly used methods and finally use a nonparametric classification method.

A large number of papers and patents advertise recognition rates near 100%. Such claims

give the impression that automation problems seem to have been solved. Although OCR

is widely used, its accuracy today is still far from a child’s reading skills. Failure of some

real applications show that performance problems still exist on composite and degraded

documents and that there is still room for progress.

vi

DEDICATION

I dedicate this dissertation to my family, especially…

to my husband for his patience and understanding;

to Dad and Mom for teaching me the importance of hard work and higher

education;

and finally to my lovely son, who inspired me to achieve a big milestone in my

life while being a mom!

vii

ACKNOWLEDGEMENTS

First and foremost I want to thank my advisor Dr. Maher Sid-Ahmed. It has been an

honor to be his last Ph.D. student. He has taught me, both consciously and un-

consciously, to become an independent researcher. I appreciate all his contributions of

time, ideas, and funding to make my Ph.D. experience productive and stimulating. The

joy and enthusiasm he has for his research was contagious and motivational for me, even

during tough times in the Ph.D. pursuit.

For this dissertation, I would like to thank my reading committee members: Professors J.

Wu, H. Wu, B. Boufama and the chair of defense professor H. Hu. I would also like to

thank my external examiner professor Omair Ahmad from Concordia University.

I am also very grateful to Professor Majid Ahmadi for his guidance and support at the

beginning of my Ph.D. work. My appreciation extends to Andria Ballo from the

Department of Electrical Engineering for her support, reminders, and advice. She truly

helped me to minimize frequency of my long commute to school for 4 years.

I gratefully acknowledge the funding sources that made my Ph.D. work possible. I was

supported by research and teaching assistantships by the University of Windsor and

NSERC funding.

Lastly, I would like to thank my family for all their love and encouragement. For my

parents, who raised me with a love of science and supported me in all my pursuits. For

my sisters’ and my brother’s encouragements and supports during tough times. And most

of all for my loving, supportive, encouraging, and patient husband Amir whose selfless

support during my Ph.D. study is so appreciated. Thank you!

viii

TABLE OF CONTENTS TABLE OF CONTENTS

DECLARATION OF ORIGINALITY iii

ABSTRACT iv

ACKNOWLEDGEMENTS vii

LIST OF TABLES xi

LIST OF APPENDICES xv

CHAPTER 1 BACKGROUND ON TEXT RECOGNITION 1

1.1. Introduction ..1

1.2. OCR Classifications ...1

1.2.1. Online text recognition ..2

1.2.1.1. Handwriting recognition development 3

1.2.2. Offline text recognition ...4

1.2.2.1. Evolution of offline text recognition 5

1.3. OCR Systems Classical Flow ..6

1.3.1. Preprocessing Phase ..6

1.3.2. Recognition Phase ...11

CHAPTER 2 SKEW DETECTION AND CORRECTION OF SCANNED

DOCUMENTS 15

2.1. Introduction ..15

2.2. Skew Angle Detection Methods ..15

2.2.1. Projection Profile ...16

2.2.2. Hough Transform [HT] ...18

2.2.3. Nearest Neighbor [N-N] ..22

2.2.4. Fourier Transform ...25

ix

2.3. Skew correction mechanism ..29

2.4. Skew Detection based on an axes-parallel bounding rectangle29

2.4.1. The proposed algorithm and its implementation30

2.5. Our method compared to existing methods ...34

2.5.1. Typical Samples ..34

2.5.2. Extreme Samples ...35

2.5.1. Experimental Results ...38

2.6. Conclusions ..41

CHAPTER 3 PAGE SEGMENTATION 42

3.1. Introduction ..42

3.2. Introduction ..42

3.2.1. Top-Down Analysis Methods ...43

3.2.2. Bottom-Up Analysis Methods ...46

3.3. Page Segmentation Using Resampling Technique ..48

3.3.1. Image Resampling ...48

3.3.2. Sampling Rate ...50

3.3.3. Determination of Sampling Rate for Page Segmentation51

3.3.4. Work Flow of Our Resampling Method ..52

3.4. Validations and Examples..53

3.5. Text/Non-text Classification ..56

3.5.1. Proposed method for text/non-text classification57

3.6. Conclusions ..59

CHAPTER 4 PRINTED PERSIAN/ARABIC TEXT RECOGNITION 60

4.1. Introduction ..60

x

4.2. Characteristics of Persian Texts ...60

4.3. Segmentation of Persian Scripts ..61

4.3.1. Proposed Algorithm ..63

4.3.2. Label Settings ..65

4.3.3. Experimental Results ...66

4.4. Algorithm for Segmentation of a Text Page ..67

4.5. Feature extraction...70

4.6. Classification..71

4.7. Hybrid labeling decision ..72

4.8. Conclusions ..73

CHAPTER 5 CONCLUSION AND FUTURE WORK 74

5.1. Overview of the Dissertation and Conclusions ..74

5.2. Future Work ...76

REFERENCES/BIBLIOGRAPHY 77

Appendix A. Projection Profile skew detection MATLAB source code86

Appendix B. Hough transform skew detection MATLAB source code87

Appendix C. Nearest-Neighbor skew detection MATLAB source code88

Appendix D. Fourier method skew detection MATLAB source code89

Appendix E. Our skew detection method MATLAB source code..................................91

Appendix F. Our Page Segmentation MATLAB source code ..96

VITA AUCTORIS 105

xi

LIST OF TABLES

Table 1: Comparison of commonly used OCR’s feature extraction methods 13

Table 2: Success rate and average skew correction time .. 35

Table 3: Skew detection success rate comparison .. 37

Table 4: Error rate and processing time for five page segmentation algorithms [75] 56

xii

LIST OF FIGURES

Figure 1: Optical Character Recognition Classifications .. 2

Figure 2: Offline text containing just special information (left), online text containing

temporal sequence of points traced out by the pen (right) .. 2

Figure 3: Timeline of handwriting recognition ... 4

Figure 4: Offline Optical Character Recognition Classic process flow 6

Figure 5: Hierarchy of Offline segmentation step of Optical Character Recognition 9

Figure 6: A skewed text line ... 15

Figure 7: Histograms of a skewed document (top) and a non-skewed document (bottom)

... 16

Figure 8: A skewed image of a page (left), Hough Transform lines with the highest

accumulator values (right) .. 19

Figure 9: Hough Parameter space for the skewed page in Figure 8 20

Figure 10: A skewed image of a page (left), HT lines with highest accumulator values

(right) .. 21

Figure 11: A skewed image of a page (left), connected components used for N-N skew

detection method (right) .. 23

Figure 12: Histogram of the image in Figure 11... 23

Figure 13: A skewed image of a page (left), connected components used for N-N skew

detection method (middle), incorrect skew correction (right) .. 24

Figure 14: Histogram of the image in Figure 13... 25

Figure 15: A skewed image of a page (left), original image sliced into 4 equal blocks

(right) .. 26

xiii

Figure 16: Fourier spectrum of the 4 blocks in Figure 15 .. 27

Figure 17: Histogram of the integrals of normalized value of the peaks in the Fourier

spectrum (Left), corrected skew of the image in Figure 15 using Fourier transform 27

Figure 18: A skewed image of a Japanese text (top-left), outcome of the skew correction

algorithm (top-right), Fourier spectrum of one of the image blocks (bottom-left), and

histogram of the normalized value of the peaks in the Fourier spectrum (bottom-right) . 28

Figure 19: Left: An angled rectangle embedded in an axes-parallel rectangle. Right: A

rectangle at zero angle .. 30

Figure 20: Corner pixels detection of a text .. 31

Figure 21: Comparison of success rate and average skew correction time 35

Figure 22: Sample images in the extreme samples category .. 36

Figure 23: Skew correction of a page of an English technical paper 38

Figure 24: Skew correction of a page of an English book with graphical images 38

Figure 25: Skew correction of a page of an English book with a table at 209° 39

Figure 26: Skew correction of a Japanese text .. 39

Figure 27: Skew correction of a Japanese text .. 40

Figure 28: Skew correction of an English text .. 41

Figure 29: Illustration of image upsampling and required interpolation for missing

information .. 49

Figure 30: Illustration of image degrading in a sequence of downsampling-upsampling 50

Figure 31: Segmentation of an image with different sampling rates 50

Figure 32: White space transition peaks of a vertical scan of an image 51

Figure 33: Workflow of our resampling algorithm... 52

xiv

Figure 34: Examples of complex page segmentation using our algorithm 55

Figure 35: Examples of complex page segmentation and labeling................................... 58

Figure 36: Our proposed algorithm for segmentation of a word to its sub-words 63

Figure 37: An example of labeling change when two components are the same 66

Figure 38: Examples of Persian word segmentation to its sub-words 66

Figure 39: Examples of overlapping sub-words ... 67

Figure 40: Our proposed algorithm for segmentation of a text page 67

Figure 41: Initial labeling of a sample Persian text .. 68

Figure 42: An example for sorting sub-words based on their maximum row values 68

Figure 43: Examples for δ calculation for different components 69

Figure 44: An example for sorting sub-words based on their maximum column values . 69

Figure 45: Extracted feature vectors of labeled sub-words training images 70

Figure 46: Extracted feature vectors of connected components of the document image . 71

Figure 47: A selection of our library of sub-words used in evaluation of feature extraction

methods. Highlighted yellow cells indicate incorrect classification for each feature

extraction method.. 73

xv

LIST OF APPENDICES

 Appendix A: Projection Profile skew detection MATLAB source code 86

Appendix B: Hough transform skew detection MATLAB source code 87

Appendix C: Nearest-Neighbor skew detection MATLAB source code 88

Appendix D: Fourier method skew detection MATLAB source code 89

Appendix E: Our skew detection method MATLAB source code 91

Appendix F: Our Page Segmentation MATLAB source code 96

1

CHAPTER 1

 BACKGROUND ON TEXT RECOGNITION

1.

1.1. Introduction

Optical Character Recognition (OCR) is a field of research in artificial intelligence,

pattern recognition, and computer vision. OCR is a common method of digitizing pictures

of printed or handwritten texts so that they can be electronically edited, searched, and

stored more compactly and efficiently. Despite a century long research and development

in this field, machines are still nowhere near human’s reading capabilities. The goal of an

OCR system is recognition of text (same as humans) in a complex document.

In this chapter, we look into OCR classifications and their classic process flow. For each

step we give a brief overview of the historical background and common methods used.

1.2. OCR Classifications

OCR systems are mainly classified into online text recognition and offline text

recognition. Subsequently, offline OCR is classified into two subcategories of

handwritten and typed text recognition (Figure 1).

2

Figure 1: Optical Character Recognition Classifications

1.2.1. Online text recognition

In online text recognition, characters and words are recognized real time as soon as they

are written, and therefore, contain temporal information. Online systems obtain the

position of the pen as a function of time directly from the interface. This is usually done

through pen-based interfaces where the writer writes with a special pen on an electronic

tablet.

Figure 2: Offline text containing just special information (left), online text containing

temporal sequence of points traced out by the pen (right)

Dynamic information, which are usually available for online text recognitions, are

number of strokes, order of strokes, direction for each stroke, and speed of writing within

each stroke. This valuable information assists in recognition of documents and frequently

leads to better performing systems compared to offline recognition. Some of applications

OCR

Online Text Recognition Offline Text Recognition

Typed Text Handwritten Text

X(t)

Y(t)

X

Y

3

of online optical recognition are in PDAs, smart phones, and Tablet computers. The

advantage of online recognition system over offline systems is interactivity, adaptation of

writer to digitizer (or vice versa), less prone noise, and available temporal information.

The disadvantage is that the whole document is not available for processing; and

therefore, information needs to be processed dynamically.

1.2.1.1. Handwriting recognition development

Figure 3 shows major milestones in the development of handwriting recognition systems.

The effort dates back to 1915 when Goldberg filed the first patent in handwriting

recognition. Today, after a century of research and commercial developments, reliable

systems exist in online text recognition. Today, handwritten texts on a screen of an iPAD

can be quickly digitized and stored efficiently. One caveat is that handwriting recognition

in non-Roman text suffers a lag in technology and challenges that are language specific.

Therefore, there is a lot of room for research and development in improving OCR for

non-Roman text.

4

Figure 3: Timeline of handwriting recognition

1.2.2. Offline text recognition

An Offline text recognition system processes a static representation of a document.

Offline text recognition is divided to two subcategories of typed and handwritten

documents. In both subcategories, an image of the document obtained from a scanner or

camera is processed. Obviously, due to the variety of handwriting styles and non-standard

nature of handwritings, the problem of offline handwriting recognition is the most

challenging problem in OCR and it usually requires language specific methods. On the

other hand, OCR of typed documents are very much in demand for practical applications

such as historical document analysis, official letter and document processing, and vehicle

plate recognition.

Optical character recognition of typed document for English has become one of the most

successful applications of technology in pattern recognition and artificial intelligence.

1915 U.S. Patent on handwriting recognition user interface with a stylus by Hyman Goldberg

1938 U.S. Patent on machine recognition of handwriting by George Hansel

1957 Tom Dimond invents the first handwriting recognition tool (Stylator Tablet)

1961 RAND Tablet invention: the first two-dimensional Tablet (more advanced than Stylator)

1969 GRAIL system: handwriting recognition with electronic ink , gesture commands

1973 Newman and Sproull developed “The Ledeen Character Recognizer"

1980 First retail handwriting recognition systems: Pencept, CIC, Inforite point-of-scale terminal

1989 Portable handwriting recognition computer by GRiD systems

1997 Address interpretation system deployed by United States Postal Service

2001 Windows XP Tablet PC with handwriting recognizer

2007 CEDAR-FOX: a commercial Forensic comparison of handwriting

5

Most of the active research in this field is to deal with very complex documents, noisy

and skewed documents, as well as improving recognition rates for non-Roman based

texts.

1.2.2.1. Evolution of offline text recognition

Research in OCR of documents started at the beginning of the 1960s with the

development of the digital computers. It is the first time OCR was considered as a viable

data processing application with a wide commercial use. The first generation machines

used special letter shapes which the OCRs could read. These shapes were specially

designed for machine reading, and they appeared like symbols. The first commercialized

OCR of this generation was from IBM, which could read a special IBM font. This OCR

worked based on template matching, which compared the character image with a library

of prototype images for each character of each font. In early 1970s, OCR systems were

able to recognize regular typed and handwritten characters with limited numerals and a

few letters and symbols. The first automatic letter-sorting machine for postal code

numbers from Toshiba was developed during this period. The early OCR systems were

mostly based on the structural analysis approach or standardization. In late 1970, an

American standard OCR character set OCR-A font was defined, which was designed to

facilitate optical recognition while still readable to humans. In 1980s, OCR systems faced

the challenge of improving recognition rate for documents of poor quality and large

printed and handwritten character sets. Today, a reliable OCR system should be able to

perform accurately on complex documents intermixing with text, graphics, tables and

mathematical symbols, color documents, low-quality noisy and skewed documents, etc.

6

1.3. OCR Systems Classical Flow

The input of an OCR system is an image. The image can be from a scanner, a camera, or

simply a print-screen of a page. The image may contain not just the text but pictures,

equations, tables, etc. Therefore, the first step of any OCR system is preprocessing.

Figure 4: Offline Optical Character Recognition Classic process flow

The goal of preprocessing is to extract the text and convert the raw image of the text to

segmented components. Then, in the recognition phase, the features of these segmented

components are extracted and fed into a classification module. Finally, the outcome of

the algorithm is a machine editable text (Figure 4).

1.3.1. Preprocessing Phase

Typical preprocessing includes the following steps, not necessarily in this order:

o Noise removal

Documents may contain noise for many reasons. One type of noise is the marginal noise

which appears as a large dark region around the document image. Another type of noise

Image

Binarization

Noise Removal

Skew Detection

Page Analysis

Segmentation

Feature Extraction

Classification

Digitized Document

p
rep

ro
cessin

g

reco
gn

itio
n

7

is background noise which appears from uneven contrast, background spots, printer and

scanner malfunctions. Finally, page rule lines are another source of noise interfering with

text objects. There are several methods in dealing with each noise type.

For page rule lines, mathematical morphology based methods trace line like structures as

candidate for rule lines [1]. Hough transform [2] can also be used to find imperfect

instances of objects with certain class of shapes using a voting procedure. Finally,

projection profile based methods work by creating a horizontal histogram in which the

hills of the histogram are the center locations of the horizontal rule lines [3].

For marginal noise, there are two groups of methods. One group aims at identifying noise

components. In this method, the noise patterns in an image are searched by extracting

noise features [4]. For example Peerawit’s method [5] uses Sobel edge detection and

identifies noises to be removed by comparing the edge density of marginal noise and text.

Another group for marginal noise removal is by Identifying Text Components [6].

For background noise, many techniques have been introduced. One common method is to

use a low-pass filter to remove as much of the noise as possible while retaining the entire

foreground pixels. More advanced methods are Binarization and Thresholding Based

Methods [7], Fuzzy Logic Based Methods [8], Histogram Based Methods [9], and

morphology based methods [10].

o Binarization

Binarization is the process of converting gray scale images to binary images. A large

number of methods have been proposed for binarization. These methods generally fall

into two main approaches. One approach is based on global thresholding and the other is

based on local thresholding.

8

In global thresholding, based on statistical attributions of a document, a single value is

used as threshold between background and foreground pixels. Otsu method [11] is one of

the most commonly used global binarization techniques. The main drawback of this

method is that it cannot adapt well to noise and illuminations. A recent work by Lazzara

[12] focuses on Sauvola binarization method. This method performs relatively well on

classical documents, however, three main defects remain: the window parameter of

Sauvola’s formula does not fit automatically to the contents, it is not robust to low

contrasts, is not invariant with respect to contrast inversion.

In local thresholding, the threshold value is varied based on the local content of the

image. Commonly used Niblack binarization method [13] is based on local thresholding.

o Skew detection and correction

This step is an important preprocessing step discussed in chapter 2. After overview of

common skew detection methods in chapter 2.2, a new technique in skew detection and

correction of documents is introduced.

o Page Analysis

Page Analysis is the process of identifying and categorizing regions of interest in the

image of a document. In this step, the text regions are labelled and then fed into the OCR

flow. In chapter 3, we focus on this important preprocessing step and propose a new

method in segmenting different regions of a document.

o Segmentation

This step is another important preprocessing step. Segmentation performance of an OCR

system directly affects the recognition performance, as the output of the segmentation

9

step is directly fed into the recognition engine. Figure 5 depicts hierarchy of offline

segmentation step.

Figure 5: Hierarchy of Offline segmentation step of Optical Character Recognition

Text segmentation of Persian text is not a trivial step as characters could overlap, slant,

and have different styles and fonts. Some researches skip the segmentation step entirely

and instead take a holistic approach. The idea is to recognize whole words against a

dictionary. The obvious problem of such an approach is the number of classes present in

the recognition phase. In Persian there are 114 contextual forms of its 32 alphabets.

Characters in the Persian language can have different shapes depending on its position

within a word. A character that is used in the beginning of a word will have a different

appearance than one that is in the middle or end of a word and these might be different in

appearance than stand-alone characters. A technique that segments a Persian word into

characters and then uses a classifier trained on all 114 shapes can potentially recognize

any text.

On the other hand a holistic classifier needs to learn as many classes as the number of

dictionary words, names of individuals and countries. Therefore in holistic approach,

training of a classifier for many classes is one of the major issues. Based on this

limitation, segmentation based approach is more practical than the holistic approach for

real world problems. Many techniques have been developed for holistic approaches.

Text Recognition

Segmentation Free Segmentation based

Subword segmentation Recognition basedDissection

10

Benouareth [14] used holistic method for Arabic word recognition. To build a feature

vector sequence, two segmentation schemes are incorporated to divide a word into

frames. The first one is uniform segmentation, which vertically divides a word into equal

sized frames. The second one is non-uniform segmentation, which has variable frame

size. After segmenting word into frames, statistical and structural features are extracted

by capturing ascenders, descenders, concavity, dots, and stroke direction. Vinciarelli [15]

used similar technique in which prior to the information retrieval, the individual words on

the handwritten document need to be recognized correctly. Using a fixed size sliding

window, density feature is extracted for HMM to perform recognition by calculating the

likelihood of a word against dictionary. To reduce the computational cost of holistic

approach, Mozaffari [16] proposed a lexicon reduction scheme for offline Farsi

handwriting recognition by analyzing dots within characters.

Segmentation based approaches, can be performed by either the dissection or recognition-

based technique. Dissection is decomposition of the image into a sequence of sub-images

using general features. Projection analysis, connected component processing, and white

space are some of the common dissection techniques used by OCR systems [17]. These

techniques are suitable for scripts which have spaces between characters.

The basic principle of recognition-based character segmentation is to use a mobile

window of variable width to provide the tentative segmentations. Characters are by-

products of the character recognition for systems using such a principle to perform

character separation. The main advantage of this technique is that it bypasses serious

character separation problems.

11

In some language scripts, like Persian, segmenting words to characters is a very difficult

task as characters overlap. For this reason, in chapter 4 in segmenting Persian texts, we

neither segment words to their characters nor skip the segmentation step entirely. Instead,

we try to get the best of each method by segmenting text to its sub-words, a much easier

process with a much better success rate. On the other hand, rather than dealing with a

huge class size, we deal with a more manageable database of sub-words. The largest

Persian sub-words dictionary reported in literature [18] contains 7317 subwords, which is

just a small fraction of more than a million words in Persian language.

1.3.2. Recognition Phase

In this phase, segmented text is fed into a feature extraction algorithm and finally to

classification module.

o Feature extraction

Feature extraction is to find a set of features that define the shape of the underlying

character as precisely and uniquely as possible. Selection of feature extraction method is

probably the most important factor in achieving high performance in recognition. Feature

extraction methods are very much application specific and there is no universally

accepted set of feature vectors in document image recognition. Some of the available

methods in feature extraction include image invariant, projection histograms, zoning, and

n-tuples. Image invariant features are popular choice in many OCR systems. Image

invariant methods can be categorized to boundary-based and region-based methods.

A classical boundary-based method is Discrete Fourier Transform. In this method,

Fourier transform is used to analyze a closed planar curve. Several variations of Fourier

Transform for feature extraction have been introduced. For examples, Zahn [19] applies

12

the Fourier transform to the sequence of angular differences between line segments in the

curve.

In chapter 4, we apply the Discrete Fourier Transform (DCT) to segmented sub-words

coordinate components. Transformation of images to Fourier domain provides important

information about their structure. In the Fourier domain, there are low and high frequency

components. High frequency components denote the fine details of a shape; whereas, low

frequency components denote to basic shape structure. For feature extraction of

characters, usually limited number of lowest frequency components in the image

spectrum is considered and higher frequency components are discarded, as they mostly

represent image noise.

In region-based methods, moments of different points present in a character are used as a

feature. Hu [20] introduced the concept of classical moment invariant in 1962. Hu’s other

moments are statistical measure of the pixel distribution about the center of gravity of the

character. In 1982, Teh [21] defined a set of moments called Zernike based on theory of

orthogonal polynomials. Zernike moments have been used successfully in many OCR

systems as well. The advantage and disadvantage of each of these methods is tabulated in

Table 1.

13

Table 1: Comparison of commonly used OCR’s feature extraction methods

In chapter 4, we introduce a hybrid approach based on Hu, Zernike, and Discrete Fourier

Transform for feature extraction of Persian sub-words.

o Classification

In classification stage, based on the features extracted and relationships among the

features, an OCR process assigns labels to character images. This step is the final stage of

the OCR system in which characters or sub-words are recognized and are output to

machine editable form. Classification methods can be divided into two categories:

learning-based and non-parametric classifiers. The learning-based classifiers require an

intensive learning phase of the classifier parameters. Neural network [22, 23], Support

Vector Machine (SVM) [24], Boosting [25], and decision tree [26] are examples of

commonly used classifiers in this category.

Decision tree is used to create an expansive classifier ensemble. Different types of

decision trees are discussed in [27]. Since in decision tree each node asks a question on

14

only one feature, the learning phase is quicker compared to other methods in this

category.

SVM is a binary classifier with discriminant function being the weighted combination of

kernel functions over all training samples. After learning by quadratic programming, the

samples of nonzero weights are called support vectors. For multi-class classification,

binary SVMs are combined in either one-against others or one-against-one scheme [24].

Due to the high complexity of training and execution, this method is not suitable to

classify a big set of data.

Learning-based classifiers, such as Artificial Neural Networks, usually offer more

accuracy in performance; however, they impose a high computational cost for OCR

systems. Nonparametric classifiers base their classification decision solely on the data,

and require no learning of parameters. The most commonly used non-parametric method

is Nearest-Neighbor (N-N) method [28], which classifies an image by the class of its

nearest image in the database. These classifiers are suitable to handle a huge number of

classes and do not suffer from over-fitting of parameters, which is a major issue in

learning-based methods. More importantly, these methods do not require training.

Although training is a one-time preprocessing step, retraining of parameters in large

dynamic databases is a big overhead on the system. For smaller database however,

learning based classifiers are recommended as they provide unsurpassed accuracy.

15

CHAPTER 2

SKEW DETECTION AND CORRECTION OF SCANNED DOCUMENTS

2.

2.1. Introduction

A text document consists of several text lines. To estimate the skew angle of a text line, a

straight line can be drawn through its characters. The angle of this straight line with the

horizontal edges of the page is the skew angle of the text line (Figure 6).

Figure 6: A skewed text line

The dominant skew angle of the text lines in a page determines the skew angle of that

page. A document originated electronically with a text editor has skew angle of zero.

However, when a document is printed, photocopied or scanned, a non-zero skew angle

will be introduced. Since document analysis algorithms such as text recognition or page

layout analyzers usually assume a zero skewed page, skew detection and correction is

considered a required preprocessing step. Moreover, to improve the quality of scanned

documents, many scanners perform document skew correction immediately after a scan

and before a document image is displayed on a computer monitor.

2.2. Skew Angle Detection Methods

Skew angle detection methods mainly fall into one of the following four categories:

α

16

2.2.1. Projection Profile

This method was initially proposed by Postl [29]. In this method, histograms of the

number of black pixels along horizontal parallel sample lines through the document for a

range of angles are calculated. For a non-skewed document, horizontal projection profile

will have peaks whose width are equal to the characters’ height with maximum peak

heights at the text lines and valleys whose width are equal to the between-the-line

spacing. Therefore, for each angle a measure of the variation in the bin heights (such as

variance) along the projection profile is tracked and the angle with the most variation

gives the skew angle.

Figure 7: Histograms of a skewed document (top) and a non-skewed document (bottom)

of black pixels

600

500

400

300

200

100

0

700

600

500

400

300

200

100

0

0 50 100 150 200 250 300 350

17

Figure 7 shows histograms of a document for two different skew angles. As shown, when

a document has a non-zero skew angle, the horizontal histogram is spread at different row

numbers. However, in a zero skewed page the histogram is clearly discreet with strong

peaks and separated by valleys. Also, since the number of black pixels in a document is

constant, the spectrum energy of the histogram is constant. Therefore, for a non-skewed

page, the same amount of energy has to spread in a smaller area (sum of each line’s

height in a page). That is why for a non-skewed page, histogram peaks are much stronger

than the peaks on a skewed page. Refer to Appendix A for a MATLAB source code.

Projection Profile Limitations:

The limitation of this method is that the document needs to be free from images,

diagrams and graphs as these have greater contribution than text lines in the profile,

therefore compromising the accuracy of angle detection. Moreover, this method is not

very efficient, as projection profile of all possible angles need to be calculated.

Additionally, projection profile methods are limited to estimate skew angle within ±10°

to 15° and the accuracy of skew detection depends upon the angular resolution of the

projection profile. Finally, projection profile methods are very sensitive to noise.

Improved Projection Profile Methods

In order to reduce high computational costs, several variations of Postl’s original method

have been proposed:

Baird [30] proposed a technique to select a subset of the points to be projected. He

suggested finding the connected components and projecting only the bottom-centers of

the connected components bounding box parallel to set of angles. For each angle, the sum

18

of squares of the values in the projection profile is used as a criterion function. Finally, by

using least squares procedure, the peak of the criterion function is approximated.

Ciardiella [31] selected a sub-region of a text based on high density of black pixels per

row and used projection profile of this selected sub-region. The criterion function used in

this method is the mean square deviation of the profile. Since, only a sub-region of the

whole document is selected, the computational cost of the algorithm reduces.

Ishitani [32] selected a cluster of parallel lines on the image and the bins of the profile

stored the number of black to white transitions along the lines. Again, the aim of this

modification was to improve the high computational cost of rotating the whole document

for a wide range of angles.

Bloomberg [33] extracted a sample image in the skewed document. Skew angle was

calculated by sample image rather than whole document which supposedly results in a

faster skew estimation method. Same as Ciardiella’s method, the goal is to apply the

algorithm on a section of a page.

2.2.2. Hough Transform [HT]

The Hough transform was first introduced by Duda [34], who generalized the idea of

Paul Hough [35]. In 1981, Ballard [36] applied the HT method to detect arbitrary shapes.

In 1988, Illingworth [37] used HT to correct skew angle of a page. In this method, each

point in Cartesian space (x,y) is mapped to a sinusoidal curve in ρ- θ Hough space using

transform function . When multiple points are on the same line,

their transformation will intersect at the same point on the transform plane. Therefore, an

accumulator is defined to track number of intersections that sinusoidal curves have at

various ρ and θ values. As the number of intersections increases at a particular value of θ

19

so does the possibility of having a line in the original image corresponding to that θ

value. Finally, peaks at each ρ value give the angles at which straight lines can be fit

through the original pixels. The skew angle of the documents is found by averaging the

 s with highest accumulator peaks.

Figure 8: A skewed image of a page (left), Hough Transform lines with the highest

accumulator values (right)

Figure 8 shows detected lines with highest HT accumulator peaks on a skewed page. The

average skew angles of these lines are considered the skew angle of the page. Figure 9 is

the Hough parameter space for the skewed page shown in Figure 8. In this space, each

black pixel of the page transforms to a sinusoid. The point of intersect between two

sinusoids indicates the parameters of the line passing through both points. The white

squares in Figure 9 show the five points in HT space with the most values of Hough

accumulator, corresponding to the lines found in Figure 8. Please refer to Appendix A for

the MATLAB source code used in this dissertation for HT method skew angle correction.

20

Figure 9: Hough Parameter space for the skewed page in Figure 8

Hough Transform Limitations

Even though this technique has shown high accuracy but it has its own shortcomings.

Figure 10 shows an example of HT unsuccessful skew detection. Having different page

columns and existence of a title and a foot note makes skew detection of this sample page

particularly difficult. As shown, in this case, highest values of the accumulator do not

represent the skew angle of the page.

21

HT is known as a skew detection method with high accuracy but relatively slow. As

explained earlier, in this method every black pixel of a page needs to transfer to Hough

space which makes this method computationally expensive. Also, this method is slow in

the presence of noise, and in case of sparse text; it is difficult to choose a peak in Hough

space [38], [39], [40]. Moreover, due to high computational cost, usually the skew is

assumed within a range and relatively coarse angle intervals (are calculated.

Figure 10: A skewed image of a page (left), HT lines with highest accumulator values

(right)

Improved Hough Transform Methods

Hinds [38]: In order to decrease the amount of data within a binary image, Hinds [38]

suggested using “burst image”. “Burst image” is a gray scale image in which each pixel’s

intensity represents the vertical run-length of a column of black pixels in the original

binary image. After finding “burst image”, Hough transform is applied to either vertical

or horizontal burst image. The drawback is that in order to increase the speed of the

algorithm, the resolution of the document image has to be decreased before creating

22

“burst image”. Also, this method does not perform well when the majority of the

document is non-textual [39].

Manjunath [41] reduced number of Hough transforms by taking centroids of connected

components instead of using all image pixels.

Le [42] and others used the bottom pixels of the candidate objects within a selected

region for Hough transformation.

Most of the improvements to the HT method aim at reducing input data to the Hough

space; however, they usually increase the complexity of the algorithm and reduce the

accuracy of the skew angle detection.

2.2.3. Nearest Neighbor [N-N]

This method is based on connected components in which the first nearest-neighbors of all

connected components are found and the histogram of the direction vectors for all

nearest-neighbors is obtained [43].

By using Histogram peak, the skew angle can be found. Here are the main steps in the

NN algorithm (refer to Appendix C for the MATLAB source code):

Step 1. Determine connected components

Step 2. Find nearest neighbor of each component using Euclidean distance

Step 3. Find the angle between centroids of nearest neighbor components

Step 4. Accumulate the angles in a histogram

Step 5. The dominant peak in the histogram indicates the skew angle

Figure 11 is an example of connected components detected on a skewed page and Figure

12 is the histogram of the accumulated angles.

23

Figure 11: A skewed image of a page (left), connected components used for N-N skew

detection method (right)

Figure 12: Histogram of the image in Figure 11

θ°

24

The histogram clearly show a strong peak at °, therefore, by rotating the image by

 ° the skew of the image is corrected. Please note that by correcting the skew of the

image, the image is going to be up-side-down. Therefore, an orientation correction

algorithm is needed to correct the image orientation. Figure 13 is another example of

applying N-N method on a skewed page. In this case, however, the image skew angle is

not correctly identified. This example demonstrates one of the weaknesses of the N-N

method as its accuracy decreases when the image includes graphical pictures.

Figure 13: A skewed image of a page (left), connected components used for N-N skew

detection method (middle), incorrect skew correction (right)

Figure 14 shows the histogram of this image. From the histogram, we observe that due to

the presence of the graphical picture, the N-N accumulator has several strong peaks,

which leads to an incorrect skew detection of the image.

25

N-N method limitations

The advantage of N-N method is that it is not limited to any range of skew angles.

However, in the presence of noise and subparts of characters, accuracy of this method

decreases significantly. In addition, this method requires special attention for dealing

with different scripts, and connected or broken characters, and heavily depends on the

quality of the binarization process output. This dependency can be very problematic

when dealing with complex or degraded data, such as historical documents.

Figure 14: Histogram of the image in Figure 13

2.2.4. Fourier Transform

In this method first 2-D Fourier transform will be applied to the image plane. Then,

coefficients of the power spectrum are calculated and stored in a spectrum [29]. A

directional criterion for each angle is then calculated. The angle that maximizes the

directional criterion is assumed to give the skew angle of the image. Peake [44] extended

θ°

26

the earlier work of Postl [29] by calculating skew angle from Fourier spectrums

calculated from a number of equally sized blocks of the original image. Peake noted that

a directional alignment of energy occurs in Fourier space along an angle corresponding to

the skew of the image. He speculates this directional alignment is due to spacing with the

lines of a text.

Figure 15: A skewed image of a page (left), original image sliced into 4 equal blocks

(right)

To evaluate the Fourier transform in skew detection of documents, we implemented

Peake’s method (refer to Appendix D). Based on this method, we slice an image to 4

blocks of equal size (Figure 15). Then, using FFT, the Fourier spectrum is computed for

each block. Based on Peak’s recommendation, a small window of size , centered

at the origin, is removed to improve the accuracy of the skew detection (Figure 16).

For consistency between the blocks, all values are normalized and 5 highest pairs of

peaks are found and the angle of the line connecting each point and the center of the

block with respect to the vertical axis is calculated.

Block#4Block#3

Block#1Block#2

27

Figure 16: Fourier spectrum of the 4 blocks in Figure 15

Finally, in a histogram, integrals of normalized value of the peaks in the Fourier spectrum

for each angle are collected. In the histogram, the bin with the highest peak is assumed to

give the skew angle (Figure 17).

Figure 17: Histogram of the integrals of normalized value of the peaks in the Fourier

spectrum (Left), corrected skew of the image in Figure 15 using Fourier transform

θ°

Block#1

Block#4Block#3

Block#2

θ°

28

Limitations of Fourier Transform method

For large images, this method is computationally expensive since 2D Fourier transform

of each pixel in the document has to be computed.

Also very often for a document image, the largest density direction of Fourier space may

be different than the true skew direction. Figure 18 shows a skewed Japanese text which

Fourier transform failed to correct.

Figure 18: A skewed image of a Japanese text (top-left), outcome of the skew correction

algorithm (top-right), Fourier spectrum of one of the image blocks (bottom-left), and

histogram of the normalized value of the peaks in the Fourier spectrum (bottom-right)

θ° θ°

Block#4

29

2.3. Skew correction mechanism

Once the skew angle is identified, the document is simply rotated by a rotation matrix:

 [

] (1)

2.4. Skew Detection based on an axes-parallel bounding rectangle

In this dissertation, we propose a new method based on geometrical features of a skewed

document. In this method, we calculate the area of an axes-parallel rectangle bounding

box (Figure 19 and Figure 20). By rotating only the peripheral pixels of a text using a

simple numerical method (explained in page 30), the area of the axes-parallel rectangles

is minimized. The angle with the least area of the axes-parallel rectangle represents the

skew angle. We would like to mention that our algorithm differs from typical minimum

area bounding box methods such as the ones offered in [45] and [46]. Safabakhsh’s

method [45] is based on minimizing the area of a bounding box found from boundary

pixels of connected components in the text. This method is computationally intensive, as

all connected components of a text is held in memory for bounding box area calculation

and for all possible angles. In the patent filed by Rudak [46], the boundary pixels are used

to create a polygon and at each rotational angle a criterion is defined as the difference

between the area of the polygon and the bounding box. Again, Rudak’s method requires

several computationally intensive calculations like creating the encompassing polygon,

calculating the area of the polygon, vertex transformations for each rotation and more

importantly not a methodological approach to search for its criterion minimization.

30

In our method however, only the outer peripheral pixels of a document are used to form

an axes-parallel rectangle. Then, using the Bisection numerical method, skew angle is

detected efficiently in a few iterations.

Figure 19: Left: An angled rectangle embedded in an axes-parallel rectangle. Right: A

rectangle at zero angle

2.4.1. The proposed algorithm and its implementation

Our algorithm relies on correcting the skew angle of a text using the outer peripheral

pixels; and therefore, can correct the skew of a text regardless of the script or the contents

of the text. This method performs well compared to many of the available techniques

because it can correct texts containing images, diagrams, etc. and works in wide range of

angles.

Underlying Trigonometry

The following theorem is proposed as the basis of our skew correction methodology:

Theorem: In Euclidean plane geometry, assume a rectangle centered at origin and

rotated by angle α. Using 4 corner vertices of this rectangle; create another rectangle

oriented parallel to the axes. The area of this axes-parallel rectangle is minimum when α

is a multiple of ⁄ .

The proof of the above theorem is trivial, as a skewed rectangle can always be “fitted” in

a rectangle parallel to the axes made from its vertices (demonstrated in Figure 19). In our

α

α=0

31

algorithm, we use this basic trigonometry fact, to minimize the area of the rectangle

created from four most corner pixels of an image and parallel to the axes. In other words,

we rotate the text in a way to eliminate the gray regions of the picture in Figure 19.

Figure 20: Corner pixels detection of a text

Step-by-step description of our algorithm:

Step 0: Preprocessing: After image binarization, apply noise removal and border

elimination techniques to prepare the image for skew detection [47], [48], and [49].

Step 1: Text border detection: Simply scan the document row by row to detect the first

and the last black pixel in each row. From this point forward just use the text border

pixels as a representative of the document.

Step 2: Corner pixel detection (refer to Figure 20):

minRow: From step 1, find pixels with the minimum row number. Among them, the pixel

with the minimum column number is our minRow pixel (Point A in Figure 20).

maxRow: From step 1, find pixels with the maximum row number. Among them, the

pixel with maximum column number is our maxRow pixel (Point C in Figure 20).

A

B

C

D

minRow

maxRow

m
in

C
o

l

m
axC

al

32

maxCol: From step 1, find pixels with the maximum column number. Among them, the

pixel with minimum row number is our maxCol pixel (Point B in Figure 20).

minCol: From Step 1, find the pixels with the minimum column. Among them, the pixel

with maximum row number is our minCol pixel (Point D in Figure 20).

Step 3: Calculate the area of a rectangle parallel to axes (dashed rectangle in Figure 20):

 (((2)

Step 4: Find direction of rotation to minimize the area:

Rotate border pixels .

If then direction is positive (CCW)

If then direction is negative (CW)

Otherwise, there is no direction. Skip Step 5 and set

Step 5: Rotate the picture in a loop in the direction found in Step 4 and monitor area of

the rectangle.

If then , exit the loop.

Step 6: Use Bisection method with steps of 0.5 to find the angle giving the minimum

area:

step size=8

while step size>0.125 //we are targeting 0.125° accuracy

step size=step size/2

Rotate original border pixels .

 (and .

Set to the corresponding angle of A.

loop

Step 7: is the skew angle. Rotate the original picture by to correct the skew angle

of the text (refer to skew correction mechanism described in section 2.3).

33

Based on theorem mentioned in section 2.4.1, the result of the skew correction by

minimizing the calculated area may be a multiple of ⁄ . In step 8 we correct a possible

 turned document.

Step 8: Scan the document row-wise between rowMin and rowMax and column-wise

between minCol and maxCol. If column-wise scan had more white columns than row-

wise white rows, then the picture need to be rotated . If the direction obtained from

step 4 was positive, rotate and if the direction obtained from step 4 was negative or

it was no direction, rotate .

Performance and limitations

Angle Limitation: Our algorithm corrects skews of any angle. This is a big advantage

over existing algorithms. However, if the original text is between 135° to 225° or exactly

at 270°, our algorithm corrects the skew but not its orientation (the document will be

180° flipped). Fixing document orientation requires language specific algorithms. For

example, orientation of a Roman script can be fixed based on the fact that ascenders
1
 are

more likely to occur than descenders
2
.

Text Content Dependency: Our algorithm is content independent. Since we only use the

outer periphery of a text, the content of the text does not matter. Therefore, the skew of a

text with graphs, tables, diagrams, etc. can be corrected.

Speed: Our algorithm works very fast (in average less than 1 second on a typical PC) as

it only works with the periphery pixels and number of rotations has been optimized using

a binary search.

1
 The ascenders are the parts of lowercase characters that lie above the mean line.

2
 A descender is the portion of a letter that extends below the baseline of a font.

34

Accuracy: Our algorithm corrected skews of our tested documents with accuracy of 0.06

degrees. There is no need to correct for lesser angles as angles less than 0.1 degree have

minimal effect on performance of character recognition algorithms.

2.5. Our method compared to existing methods

To compare our algorithm to the existing state-of-the-art skew detection algorithms, we

programmed 4 conventional skew detection techniques: PP, HT, 1
st
-NN, FT (source

codes provided in Appendix A to Appendix D) and compared them against our axes-

parallel bounding rectangle method. Test environment consisted of a PC with Intel i5-

2540M CPU @ 2.60GHz with 16 Gb of memory and the tests were performed in

MATLAB. To measure the computing time, MATLAB’s “clock” function was used.

Total of 130 images were used from the following sources:

 Our database of 30 images

 University of Maryland Tobacco800 image database

 www.mediateam.oulu.f-i image data base

We categorized our database to two groups of “Typical Samples” consisted of 100

images obtained from online sources and “Extreme Samples” consisted of 30 images.

2.5.1. Typical Samples

Table 2 and Figure 21 show the results of our method compared with the other

conventional methods. As indicated in Figure 21, the goal is to approach a 100% success

rate as fast as possible. It is clear that our method is superior compared to other methods

both in the success rate and average time required for skew correction.

35

Table 2: Success rate and average skew correction time

As mentioned earlier, our method is very efficient as it works only with the peripheral

boundaries of the text. On the other hand, the success of our method is highly dependent

to a successful noise removal preprocessing.

Figure 21: Comparison of success rate and average skew correction time

2.5.2. Extreme Samples

In the extreme samples category we created skewed pages in which typical skew

correction techniques usually perform poorly. One example is when a page is skewed

more than 45 degrees, includes images/tables, and consists of more than one column.

Each image in this category was carefully scanned, then corrected in Photoshop for a 0˚.

PP 1st-NN HT FT Our Method

Success Rate 86% 48% 92% 82% 95%

Avg. time (s) 16.8 2.5 4.9 2.8 1.56

Goal

36

Then, each image was arbitrarily rotated using the rotate function in Photoshop. Success

is assumed when the difference between the estimated skew angle and the tagged skew

angle is less than 1˚. Figure 22 shows samples of the images in this category.

Figure 22: Sample images in the extreme samples category

Table 3 shows the results of our method compared with the other conventional methods.

As shown, our method is successful in correcting all 30 images in this category.

37

However, in some cases the orientation of the image is not corrected. Among the

conventional methods, PP performed best but not so much successful when images

include pictures. 1st-NN method performed poorly as this method works best in simple

text images.

Table 3: Skew detection success rate comparison

“Y” indicates a successful detection, “N” indicates an unsuccessful detection, and ±

indicates deviations from the correct skew angle.

Img# Skew Angle PP HT 1st-NN FT Our Method

1 25 Y-90 Y Y Y Y

2 9.5 N Y N N Y

3 15 Y Y Y Y Y

4 15 Y N Y N Y

5 59 N Y Y Y Y

6 -29 Y Y N Y Y

7 -76 Y N N N Y

8 -68 Y N N N Y

9 7 Y+90 Y N Y Y

10 36 Y Y Y Y Y

11 7 N Y N Y Y

12 36 Y Y N Y Y

13 82.5 N Y-90 Y Y-90 Y-90

14 -9.3 Y+180 Y-180 N Y-180 Y-90

15 12 Y+90 Y+180 N Y+180 Y+180

16 -3.5 N N N Y Y+180

17 88.3 Y N N Y Y

18 89 N N N N Y+90

19 -2 Y+180 Y+180 Y Y+180 Y+90

20 -4 Y-90 N N Y Y-90

21 -44 Y Y N Y Y-90

22 -12 Y Y+180 N N Y

23 23 Y N N Y Y

24 1 Y Y Y Y Y

25 10 Y Y N N Y

26 -7 Y N Y N Y

27 2 Y Y N Y Y

28 -43.5 Y+180 Y Y Y Y+180

29 20 N Y N N Y

30 -10 Y Y N Y Y

38

2.5.1. Experimental Results

Below are some selected examples showing the skewed image (left) and the skew

corrected image using our method (right).

First page of an English technical paper: As shown below the skew of the image is

corrected accurately.

Figure 23: Skew correction of a page of an English technical paper

A page of English book including several pictures: The page is de-skewed correctly.

Figure 24: Skew correction of a page of an English book with graphical images

39

A page of English book including a table: As shown the page is de-skewed correctly.

However, the page is upside down. As noted above, if the original text is between 135° to

225° or exactly at 270°, our algorithm corrects the skew but not its orientation. Here the

image is at 209°, therefore it gets de-skewed to an upside down orientation.

Figure 25: Skew correction of a page of an English book with a table at 209°

A Japanese text: As shown below, the text is de-skewed correctly. However since this

Japanese text is written column-wise, its orientation is not correct. Here, an orientation

correction algorithm specific to Japanese script is needed. This correction algorithm

could be a simple smearing algorithm such as the one used in step 8, tuned for a top-to-

bottom documents.

Figure 26: Skew correction of a Japanese text

40

A scanned image of an English document with graphical image: As shown, the image is

de-skewed correctly. The preprocessing step of our algorithm removed the black borders

and then the algorithm finds and corrects the skew of the image. However, because the

original image is skewed 170°, our algorithm de-skews the image to an upside down

orientation. Please note that the complexity of this document image as it includes an

embedded table and picture and a wide bordered header. Also, the image has three

columns with page number and footer. Other state-of-the-art algorithms such as

projection profile were not successful in de-skewing this image.

Figure 27: Skew correction of a Japanese text

A scanned image of an English document with a graphical image next to the text, a title,

and a page number: The image is de-skewed correctly from 36 degrees skew angle. As

shown in the right picture, our algorithm detects four corners of the image; and then,

finds the area of the bounding box, parallel to the axes.

41

Figure 28: Skew correction of an English text

2.6. Conclusions

In this chapter we presented a novel technique for skew correction of a document. Our

technique is based on an axes-parallel bounding box and works regardless of the content

of the document. Therefore, our algorithm works in existence of graphical images, tables,

charts, etc. with no angle limitations. A comparison of this algorithm with the existing

state-of-the-art skew angle algorithms proved a reliable and fast algorithm, outperforming

the compared methods.

A

B

C

D

42

CHAPTER 3

 PAGE SEGMENTATION

3.

3.1. Introduction

Page segmentation is a crucial step for a successful document image analysis. Published

page segmentation algorithms often rely on some predetermined parameters such as font

sizes, skews, and document scan resolutions. Variations of these parameters greatly affect

the performance of the segmentation algorithms. In this dissertation, we introduce a new

technique for page segmentation of complex documents in any format or skew angle. Our

method simply performs a down-sampling followed by up-sampling. The sampling scale

factor is calculated by estimating the white spaces between the rows. Our extensive

evaluations confirm an efficient and robust technique for page segmentation capable of

segmenting complex images.

3.2. Introduction

An image of a document is composed of not just pure text but a variety of segments such

as pictures, tables, background, etc. For automatic text recognition of an arbitrary image

of a document, segments of the image need to be separated and then analyzed. This

process is called page layout analysis. The algorithms for layout analysis are classified

primarily into two groups depending on the approach used. Top-down algorithms [50, 51,

52, 53, 54, 55, 56] start with the complete document image and divide it repeatedly to

form smaller and smaller regions. In contrast, Bottom-up algorithm [57, 58, 59, 60, 61]

start with the smallest components of a document (pixels or connected components) and

repeatedly group them to form larger, homogenous, regions. Each approach has its own

43

advantage and work well in specific situations. In addition, one could employ a hybrid

approach that uses a combination of top-down and bottom-up strategies [62, 63, 64, 65].

There are a variety of algorithms that has been proposed to perform layout analysis of

documents.

3.2.1. Top-Down Analysis Methods

Typical top-down approaches proceed by dividing a document image into smaller regions

using the horizontal and vertical projection profiles.

Horizontal and vertical projection profile [50, 52] is a top-down method. In this method

histograms of the number of black pixels along both horizontal and vertical sample lines

through the document will be used for page layout analysis. Based on observations, it can

be concluded that blank spaces between paragraphs are greater that the interline spacing.

Therefore, by evaluating these spaces (valleys) in horizontal projection profile of a text,

paragraphs and text lines within each paragraph can be located. In reality however, in

order to improve efficiency and results, some sort of smoothing algorithm is used to

decrease the original resolution of an image.

The Run Length Smearing Algorithm (RLSA) [53] is another Top-down algorithm which

works only on binary images. This method consists mainly of two steps: block

segmentation and classification. In block segmentation step, two bitmaps of an image one

horizontally and one vertically are created. In order to create these bitmaps, the document

image will be scanned vertically and horizontally. For each scan, sequences of white

pixels that their run-length are less than or equal to a predefined threshold will be

changed to black pixels in the current bitmap and all black pixels existed in the original

image will be unchanged. Usually the threshold values for horizontal and vertical scans

44

are different. The effect of this process is that all the neighboring characters will be

merged into words, and words into text lines, and text lines into paragraphs depending on

the value of the specified threshold and the distribution of white and black pixels within a

document. In order to merge characters within a word, the threshold has to be chosen

greater than character spacing within a word and less than between words spacing. After

finding two bitmaps of the document image, bitmaps are then combined using logical

AND operation. An extra horizontal smoothing may apply for finer segmentation. After

finding all regions within the document, the algorithm moves on to classification step

which calculates some features from each block and uses linear classifier to discriminate

between text and non-text areas. The algorithm is fast but the values of thresholds have to

be known in advance and the document should have a Manhattan page layout, that is, all

columns can be isolated by a set of horizontal and vertical line-segments drawn through

white spaces.

The Recursive X-Y Cut (RXYC) [54] is a tree-based top-down method which uses

vertical and horizontal projection profiles alternatively to segment a page document to its

smaller sub-blocks. In this method the whole document page is considered as a root of a

tree and then based on the valleys on horizontal or vertical projection profiles the

algorithm recursively split the documents into smaller blocks, representing the nodes of

the tree. At each step of recursion, all valleys of the projection profile with values larger

than predefined threshold will be found and based on the occurrence of valleys the

chosen block will be segmented into smaller blocks. At each level of recursion the value

of threshold may be different which requires some level of knowledge about the

document structure. Therefore, in this method the threshold value and a criterion for

45

stopping the recursion are required. Beside the disadvantage of requiring a threshold, the

RXYC algorithm is only suited to pages where the layout is Manhattan. Furthermore, this

method is sensitive to page skew.

Whitespace Analysis is another typical top-down algorithm. Since in many languages

white space is used in similar ways as a delimiter of the layout, using background white

space provides an advantage over foreground text. Another advantage of using

background white space is that fewer parameters need to be specified. On the other hand,

choice of maximal rectangles depends on the document format. This algorithm was

proposed first by Baird [55]. In this method all the maximal white rectangular blocks

whose union will cover the whole document background will be found. Then for each

cover a sort key will be calculated which uses the area of the cover and a weighting

function. After that, covers will be sorted based on their key values. The goal of using

weighting function in calculating keys for covers is to assign higher weight to tall and

long rectangular blocks which act as separators in the document. In the next step, the

rectangular blocks one by one are combined and every time the uncovered area left by the

union of the covers will be added to the segmentations sequence. The segmentations

sequence is empty in the beginning and as the covers start merging the sequence will

grow as well. The unification of rectangular covers continues until stopping rule has been

met. Finally, after the unification process ends, the candidate text regions are the

connected components within remaining uncovered sections. Baird algorithm is very

complicated to implement. Also, it is sensitive to the stopping condition. If algorithm

stops too early it results in a higher number of merge errors. And if it stops too late it will

results in greater split errors. Shafait [56] also used background white rectangles to find

46

text-lines in the document. In this method which is analogous to quicksort or branch-and-

bound method, all tall whitespace rectangles in order of decreasing area are found. Then

the whitespace rectangles which lines of text do not cross will be considered as obstacles.

After finding obstacles a least square globally optimal text-line detection algorithm will

be used to detect the text lines and eventually compute the bounding boxes of all

characters making the text-line. In this method the page must have a Manhattan layout

and by vertical and horizontal run must be separable into blocks. Also the choice of

“maximal” rectangle might be non-intuitive for differently formatted documents.

Advantage of this method is that it is language independent.

3.2.2. Bottom-Up Analysis Methods

Bottom-up approaches need to define primitive components to start the grouping process.

The Docstrum algorithm by O’Gorman [59, 60] method is based on bottom-up k-nearest

neighbor clustering of connected components of the page. Before implementing this

algorithm, the page needs to be preprocessed. To do so, first kFill filter will be used to

remove all salt and paper noises and then all the connected components will be found and

the histogram of their bounding box sizes is made. By analyzing the histogram, the large

font size components can be detected and handled separately by the Docstrum algorithm.

The reason for this step is that within line and between line spacing will be different

when the characters’ font sizes become very large compared to the rest of the page. After

preparing the page, the components are sorted based on their x value, and after that, for

each component its k nearest neighbors are found. For each neighboring pair the angle

and the distance between the components’ centers will be kept. Next, the nearest-

neighbor angle histogram will be compiled and the peak in the angle histogram will

47

specify the rotation angle of the text. Then, two spacing histograms will be found: One

histogram of nearest-neighbor distances for all angles within estimated orientation angle,

and the other one for angles perpendicular to the orientation angle. The first histogram is

called within-line histogram or between-line histogram. The peak found in above

histograms gives within-line and between-line spacing. In order to find the text lines, a

transitive closure is performed on within line neighbors to group them together. Then to

find the text lines the centroids of the connected components are fed to the regression fit

algorithm. Finally, pairs of text lines will be examined to determine if they belong to the

same block or different blocks based on the approximately parallel criteria. If the criteria

have been satisfied for each pair of lines they will be assigned to the same block. Some

advantages of this method are robustness with respect to input parameters, independency

from page orientation, relatively tolerant to random noises of an image. Disadvantages

include; computationally more expensive compared to top-down approaches, the title and

body text with larger font sizes have to be analyzed separately due to the larger font size

spacing, the document image needs to be picture free before using Docstrum algorithm,

the characters have to be well separated since the algorithm uses nearest-neighbor pairs to

measure some features.

The Voronoi Diagrams algorithm [61, 62] is another bottom-up algorithm. In this method

first all the connected components in a document image are found and sample points

from connected components boundaries will be extracted using a predefined sample rate

Rs. Then using a maximum noise size threshold Tn and other thresholds like width,

height, aspect ratio, all noises will be extracted from the document. After that using

sample points the Voronoi diagram will be generated and then the area Voronoi diagram

48

is constructed by deleting the Voronoi edges that pass through a connected component.

Finally the superfluous Voronoi edges that satisfy some specified criterion will be deleted

to obtain boundaries of document components. An advantage of using this method is that

it works with non-Manhattan layout documents. The disadvantages are that this algorithm

is computationally expensive and causes split errors in case of varying font sizes and

styles within a document.

Recent works [66, 67, 68, 69, 70, 71, 72, 73, 74, 75] in the area of page segmentation

mostly focus on improvement of the classical methods or combining different methods to

create new hybrid methods. In this document, we present a new method which does not

use any aspect of the classical methods; instead, it is based on sampling technique as will

be described next.

3.3. Page Segmentation Using Resampling Technique

In page segmentation the goal is to separate a document image into homogeneous zones,

each consisting of only one physical layout structure. To achieve this goal, we eliminate

or reduce white spaces in a segment to form a blob. Blobs then are separated using a

simple connected component algorithm. In our technique we perform downsampling

(zooming out) of the image followed by upsampling (zooming in) using a calculated

scaling factor.

3.3.1. Image Resampling

Digital images consist of pixels which are measurements or samples of light from a

subject. The original samples are usually obtained using a digital camera or a scanner by

averaging the amount of red, green, and blue light that falls on the sensitive area of each

of its sensing elements. Resampling is the mathematical technique used to create a new

49

version of the image with a different number of pixels. Reducing the image size is called

downsampling and increasing its size is called upsampling. When images are

downsampled, information in the original image has to be discarded. When images are

upsampled, the number of pixels increases however, new image details cannot be created

(Figure 29). As a result, images normally become softer with upsampling. The reason is

that the amount of information per pixel goes down. Thus downsampling followed by

upsampling causes information loss or picture degrading (Figure 30).

Figure 29: Illustration of image upsampling and required interpolation for missing

information

In our technique for page segmentation, we take advantage of this fact to let the picture

degrade in a downsampling-upsampling sequence (Figure 30). With an appropriate

sampling rate the picture converts to a set of blobs which can then be separated using a

simple connected component algorithm.

? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ?

50

Figure 30: Illustration of image degrading in a sequence of downsampling-upsampling

3.3.2. Sampling Rate

Sampling rate or scaling factor is a number by which an image is resized. An optimized

sampling rate is a requirement for our technique as too much sampling rate will smear

blobs and in an extreme case the whole image becomes a single blob. On the other hand,

not enough sampling will cause blob separation within a segment, leading to incorrect

page segmentation. Figure 31 demonstrates effect of sampling rate in forming image

blobs.

Figure 31: Segmentation of an image with different sampling rates

Over SamplingUnder Sampling Correct SamplingOriginal Image

51

In our technique, sampling rate is calculated by a simple white space analysis of the

image, as explained in the next section.

3.3.3. Determination of Sampling Rate for Page Segmentation

An optimal sampling rate is just enough sampling to let each segment form a continuous

blob and prevent neighboring blobs to connect. The idea is to reduce or eliminate white

spaces within a blob by estimating the distance between the rows of the text segments of

an image. A sampling rate higher than the gap between the rows but lower than the space

between the paragraphs results in correctly segmented blobs.

Figure 32: White space transition peaks of a vertical scan of an image

To calculate the sampling rate, we use a simple white gap counting algorithm. In this

algorithm, after determining the outer boundaries of the image and filling in the

connected components, we run a vertical white gap counting algorithm. The strongest

peak in the spectrum corresponds to the gap between the rows. Our sampling rate is the

number of pixels corresponding to the largest peak plus 1 pixel. By sampling at this rate,

gaps between the words and lines are eliminated and blobs of texts will form. Figure 32

row spacing

Sampling rate=11

52

shows an example of white space transition peaks of a vertical scan of an image. For up-

down languages, instead of vertical, a horizontal scan of the image is performed.

3.3.4. Work Flow of Our Resampling Method

Our algorithm starts with making the image gray scale. Then, the image is downsampled

(zoomed out) with the scale factor determined from our white gap transition algorithm.

Then, the resulting image is upsampled (zoomed in) with the same scaling factor. Finally,

the image is binarized by converting all gray pixels to black. The resulting image is a set

of blobs which are separated after a simple connected component analysis. Figure 33

illustrates the workflow of our resampling method.

Figure 33: Workflow of our resampling algorithm.

 Downsampling

In this stage of our algorithm, we downsample the image with the scaling factor

determined from our white space gap transition algorithm. Downsampling involves

computing a weighted average of the original pixels that overlap each new pixel. Many

different resampling schemes are possible [73]. Most techniques work by computing new

pixels as a weighted average of the surrounding pixels. The weights depend on the

distance between the new pixel location and the neighboring pixels. The simplest

methods consider only the immediate neighbors; more advanced methods examine more

Conversation to gray scaleImage import Determination of

resampling scale

Downsampling

UpsamplingBinarization

Connected

Component

Separated

Blobs out

53

of the surround pixels to attempt to produce a more accurate result. For our algorithm, we

tested several methods such as Nearest Neighbor (N-N), Bilinear, BiCubicle, and

Lanczos. Except the N-N, other methods achieved similar segmentation results. For our

evaluation tests we used the BiCubicle method. Bicubic resampling computes new pixels

using cubic splines. When upsampling, this method operates on a 4 by 4 cell of pixels

surrounding each new pixel location. This is the recommended resampling method for

most images as it represents a good trade-off between accuracy and speed [74].

Upsampling

The resulting image from the downsampling stage is upsampled using the same factor

used for downsampling. Upsampling involves interpolating between the existing pixels to

obtain an estimate of their values at the new pixel locations. In this stage, we effectively

replace the white gaps between the words and the rows with interpolated gray pixels. We

used the same BiCubicle sampling method for upsampling.

Binarization

To eliminate or reduce the gap between words and text rows, all gray pixels are replaced

with black. This operation forms a continuous blob for each text segment.

Connected Component

In this stage, the image consists of several continuous blobs which can be separated using

a connected components algorithm. Separated blobs boundaries are then used to separate

the original image.

3.4. Validations and Examples

We performed extensive validation tests of our segmentation technique. For our

validation we used total of 230 images from the following sources:

54

• University of Maryland Tobacco800 image database

• www.mediateam.oulu.f-i image data base.

• Our database of 30 complex images

On the 200 random images from the online resources, our method achieved success rate

of 98% (4 images not segmented correctly). The cause of the errors was the very low

resolution (75 dpi) of some of the images, which led to incorrect calculation of the

sampling factor. Since the images of the online resources were “typical”, we created our

own database of very complex images. Our algorithm perfectly detected the areas of

different blobs for 29 out of 30 images. Moreover, due to a simple algorithm with no

complex mathematical calculations, our algorithm works very efficiently, detecting

images in less than 1 second on a typical PC.

Existing performance evaluations in the literature for different segmentation methods

report much lower success rate for state-of-the-art page segmentation algorithms. For

example, Mao [75] performed an empirical performance evaluation of five different page

segmentation algorithms with three representative research algorithms and two well-

known commercial products on a 978 image database. Table 1 shows the error rates

reported by Mao.

Despite a more complex database, our algorithm outperforms algorithms reported by Mao

both in error rate and processing time. Our algorithms’ error rate, on a more challenging

database, is about 2% with average processing time of less than a second on a personal

computer.

55

Figure 34: Examples of complex page segmentation using our algorithm

56

Table 4: Error rate and processing time for five page segmentation algorithms [75]

3.5. Text/Non-text Classification

Given the segmented document zones, correctly identifying the type of a zone is

important for subsequent processes within any OCR system. One common method in

separating text/non-texts blocks in document images including both text and non-text

blocks is by representing the connected components of a block as feature vectors. Each

feature vector consists of a set of measurements of pre-defined properties. Then a

probabilistic model like decision tree [76] could be used in classifying each zone on the

basis of its feature vector.

Most of the text components are smaller than non-text components. Therefore, size

information is an important feature for classification. But size only information is not

enough for classifying the big text and the small non-text components. One additional

feature that could be used is that the shapes of non-text connected components are

irregular and random. On the other hand, the shapes of text components are uniformly

structured. Here are some commonly used feature vectors of bounding rectangles of the

connected components for text/non-text classification: area of the connected components

of the block, number of black pixels in the block in the original document image, mean

Algorithm Error Rate (%) Average Processing Time (sec)

X-Y cut 14.7 2.1

Docstrum 5.0 4.1

Voronoi 4.7 2.8

Caere 6.0 2.0

ScanSoft 12.7 3.1

57

horizontal black run lengths of the original image within the blocks, and the height and

width of the bounding rectangles of the block [77].

For testing and evaluation purpose, the feature vector for each connected component of a

test document image is extracted and then a class label is assigned to each connected

component based on classification probabilities of text and non-text. For example, a

decision tree classifier makes the assignment through a hierarchical decision procedure.

The classification process can be described by means of a tree, in which at least one

terminal node is associated with each class and non-terminal nodes represent various

collections of mixed classes [76].

3.5.1. Proposed method for text/non-text classification

Since in our page segmentation method a page has already been segmented, the

remaining task is to identify each segment as text or non-text. We use three criteria to

decide if a segment is text or not.

A) Connected Component Area: One useful discriminator for texts in images is the

variation in connected components area. Characters’ size in most languages do not

change much compared to variations in size of components in images. Therefore, we

define a feature as

 (

 (

Feature d effectively calculates variations in the area of connected component of an

image. We calculated this feature on segments extracted from images in our library of

500 images and found that this feature is less than 1.5 for texts segments and greater than

50 for image segments. Therefore, the threshold is not too sensitive and therefore we used

 as our text identifier.

58

B) Stroke Width: Characters in most languages have similar stroke width or thickness

throughout. Therefore, segments which exhibit too much variation in stroke width are

identified as non-text [78].

 (

 (

C) Finally, in our algorithm, we require a minimum of 10 connected components to

identify a segment as text. Some images are just few connected components which may

skew the decision making on connected component or stroke width criteria. Moreover, in

most cases a text segment has at least 10 connected components.

Figure 35 shows segmentation and labeling of two complex document images using our

segmentation method and text/non-text classification.

Figure 35: Examples of complex page segmentation and labeling

59

3.6. Conclusions

In this chapter, we proposed a new segmentation technique based on image resampling

method. Our method simply performs a downsampling (zoom-out) flowed by upsampling

(zoom-in) with a calculated scaling factor. The sampling scale is calculated by utilizing a

white gap transition algorithm and determining between the text rows gaps. This process

converts the image to blobs of segments which are then separated using a simple

connected component algorithm. Finally, each segment is identified as text or non-text

using three criteria. Our extensive evaluations confirmed an efficient segmentation

method capable of segmenting complex images.

60

CHAPTER 4

PRINTED PERSIAN/ARABIC TEXT RECOGNITION

4.

4.1. Introduction

Arabic is spoken by over 200 million people in Middle East and Africa and belongs to the

Afro-Asiatic language family. Persian is spoken by over 100 million people in Middle

East and belongs to Indo-European language family. Although, Persian and Arabic are

from different language families, they share similar scripts. Modern Persian is written

using a modified variant of the Arabic alphabet. Although Persian alphabet was derived

from Arabic, minor yet important differences exist in their alphabets and their styles of

writing. For example, Persian script has four more alphabets than Arabic. Also, Persian

has many exclusive fonts and cursive styles of writing.

Due to similarities of the two scripts, an OCR system could usually work on both scripts

with little modifications. Since the author of this dissertation is a native Persian, and

therefore more familiar with Persian script, she puts more emphasis on OCR of Persian

script. Moreover, Arabic OCR has been published and introduced internationally;

however, most of the research in Persian OCR has been presented only in Persian

Journals and Iranian conferences.

4.2. Characteristics of Persian Texts

Some characteristics of Persian scripts make it especially challenging for segmentation

and recognition:

1- Persian is Right-to-Left. However, most work in OCR is based on English and other

languages that are written from Left-to-Right.

61

2- Persian script is very sensitive to dots. For example, two sets of four stand-alone

Persian characters have the same basic shape but differ only in the absence or presence,

location and number of dots (ج چ ح خ or ث ب ت پ).Five Persian characters when used as

part of a connected sub-word or word differ only in location and number of dots (ب ت پ

 .(ن ث

3- Existence of oblique strokes like ک گ creates problem of overlapping components.

4- Persian and Arabic are highly cursive and connected components make sub-words.

In both of these scripts, the position of each letter in the word and its preceding or

following letter in the same word are the factors that determine the shapes of the letter. In

the Persian alphabet, similar to the Arabic alphabet, a letter can appear in four different

forms: detached, initial, middle and final. All Persian letters with the exception of seven

can be connected to other letters from both the right and the left sides. The seven

exceptional characters can only be connected to other letters from the right side.

Therefore, if any of those seven letters appear in the middle of a word, there will be a gap

in connectivity [79, 80, 81].

5- Existence of some diacritics marks written above or below the letters (more common

in Arabic than Persian). These diacritics indicate vowels, where consonant letters are

connected together to make their pronunciation easier.

4.3. Segmentation of Persian Scripts

As explained in Chapter 1.3.1, one important preprocessing stage of OCR is

segmentation, which directly affects the recognition success rate. For a Persian text, this

step is specifically challenging due to special characteristics of Persian scripts, as

explained in section 4.2. Much work has been done in segmentation, especially for

62

English to the point that segmentation in English is considered a solved problem [82].

However, many algorithms developed do not apply to Persian [83, 84]. Although many

attempts have been made in segmentation of Persian texts [85, 86], based on our search,

Persian text segmentation techniques that work for different font styles and sizes have

relatively low success rates, consequently limiting the success rate of the recognition

system. For example, Jelodar [79] used morphological hit/miss transformation for OCR

of Persian text. Although, they claim a very high success rate, their experimental analysis

is limited to specific font sizes and their method is very sensitive to noise. A more recent

work from Broumandnia [87] successfully identifies texts from other regions of a Persian

document such as pictures or tables. This method is based on pyramidal image structure

which provides several resolutions of an image [88]. This method stays short of offering

a solution in segmentation of the identified texts to characters or sub-words.

To avoid the challenges of the character segmentation, one unique approach is to

segment a text into its component sub-words. Few recent works in offline Persian OCR

have been focused in sub-word recognition. Nasrollahi [18] used Wavelet packet

descriptors to recognize sub-words. They report a 97.6% recognition rate but using

Wavelet packet descriptor is inherently slow for a large class of data and relatively

complex to implement [89]. Fouladi [90] proposes a writer-dependent approach in which

the system is trained to recognize the sub-words written by a particular writer. A contour

alignment is the central part of their proposed algorithm.

In this chapter we propose a simple yet fast and accurate sub-word segmentation

algorithm. Later in this chapter, we propose a hybrid feature extraction algorithm and 1
st

63

Nearest Neighbor classification technique for successful recognition of Persian sub-

words.

4.3.1. Proposed Algorithm

Figure 36 shows our proposed algorithm to segment a Persian word to its sub-words

components.

Figure 36: Our proposed algorithm for segmentation of a word to its sub-words

In this algorithm, first, simply all connected components of an image of a word are found.

For example, the below Persian word consists of five components.

Find all connected
components in an image

Components
overlap column-wise?

Components
overlap completely

column-wise?

Different Objects
no

no

Same Object

64

Components of a word may or may not overlap column-wise, with the following three

possibilities:

Possibility 1: Components do not overlap column-wise

In this case, the following condition must be satisfied:

, where is the maximum column number of component i and

 is the minimum column number of the subsequent component j.

The following example shows components #2 and #4 of the above Persian word are not

overlapping:

Decision: based on Figure 36, when two components do not overlap, they are considered

as two different objects.

Possibility 2: Components overlap partially column-wise

For two components overlap partially, these conditions must be satisfied:

Here, components #4 and #5 are partially overlapping:

65

Decision: based on our proposed algorithm, partially overlapping components are

considered as different objects.

Possibility 3: Components overlap completely column-wise

Two components are completely overlapping, if the following conditions are satisfied:

In this example, components #1 and #2 are completely overlapping:

Decision: this possibility is the only case that our proposed algorithm considers the two

components as one object.

4.3.2. Label Settings

Based on the decisions made from our proposed algorithm (Figure 36), current labels of

components may change. Since columns are scanned from left to right, the components

are labeled from left to right, as shown in Figure 37. When our algorithm determines two

components are the same, we change the label for one to match the other. Figure 37

shows how labeling for our example is changed.

66

Figure 37: An example of labeling change when two components are the same

Finally, the algorithm puts the labels in sequential order.

4.3.3. Experimental Results

Our several tests of the proposed segmentation algorithm using four different fonts

resulted in 100% segmentation success rate. Here are some examples of word

segmentation using our proposed algorithm:

Figure 38: Examples of Persian word segmentation to its sub-words

67

Please note that this algorithm is especially designed to correctly segment words with

overlapping components:

Figure 39: Examples of overlapping sub-words

 Although, in the above left example, “می” overlaps with “ک “of “کنم” and in the right

example, “ی” of “قدیری” overlaps with “ر”, the segmentation algorithm works accurately.

4.4. Algorithm for Segmentation of a Text Page

Figure 40: Our proposed algorithm for segmentation of a text page

Find all connected
components in an image

Same line

No Components
Minimum row-wise

Distance > δ

Sort CCs based on their
maximum row values

and change their labels

For each line, sort CCs
based on their maximum

column values and
change their labels

68

The goal of our recognition system is to digitalize a typed text. Therefore, we expand our

proposed algorithm to segment a page of a Persian text to its sub-words, a necessary step

before feature extraction.

Similar to the word segmentation, first, we find all components of a text. The initial

labeling of these components is based on the columns order from top left corner to

bottom right corner. Figure 41 is an example for initial labeling.

Figure 41: Initial labeling of a sample Persian text

The next step in our algorithm is sorting sub-words based on their maximum row values

and changing their labels accordingly. After sorting, all the sub-words in the first line will

be labeled before the second line and so on. Figure 42 shows an example for applying

this step of our algorithm.

Figure 42: An example for sorting sub-words based on their maximum row values

69

Then, we need to classify components to their respective row number. To achieve this

goal, we define a constant δ equal to the height of the longest component times a

multiple :

 { (}

δ is an indicator for the font size of the text and can be adjusted to define the distance

between rows. Therefore, in our algorithm, we compare the difference between the

maximum row and the minimum row of two consecutive components with δ to

differentiate rows. Figure 43 shows how δ is calculated for different components.

Figure 43: Examples for δ calculation for different components

Since Persian script is written from right to left, in the final step, we sort and re-label

components based on their maximum column values. In this step, when a sub-word is

located on the right side of another sub-word, its column number will be larger.

Therefore, it will be labeled first. Figure 44 shows this step, in an example.

Figure 44: An example for sorting sub-words based on their maximum column values

70

After setting the labels, components are passed to our sub-word segmentation, as

described in 4.3.1. We tested the above algorithm for several Persian texts with 4

different fonts and achieved error free segmentations for tested cases.

4.5. Feature extraction

Feature extraction step is applied on two sets of training and testing samples. For the

training set, we created a library of 500 labeled Persian sub-words with 5 different

samples for each sub-word.

In chapter 1.3.2, we discussed the feature extraction step of an OCR system and

described three commonly used methods of Hu, Zernike, and DCT. In the training phase,

for each labeled sub-word image, three feature extraction methods of Hu, Zernike, and

DCT were applied and their respective feature vectors were calculated (Figure 45).

Figure 45: Extracted feature vectors of labeled sub-words training images

Hu Zernike DCT

Feature
1

Feature
1

Feature
1

Feature
2

Feature
2

Feature
2

. . .

. . .

. . .

. . .

. . .

Hu Zernike DCT

Feature
1

Feature
1

Feature
1

Feature
2

Feature
2

Feature
2

. . .

. . .

. . .

. . .

. . .

Hu Zernike DCT

Feature
1

Feature
1

Feature
1

Feature
2

Feature
2

Feature
2

. . .

. . .

. . .

. . .

. . .

TRAINING SET

71

Similarly, in the testing phase, each feature extraction method was applied to every

connected components of the document image and their respective feature vectors were

stored to be used in classification phase (Figure 46).

Figure 46: Extracted feature vectors of connected components of the document image

4.6. Classification

As explained in chapter 1.3.2, although learning-based classifiers usually offer more

accuracy in performance compared to nonparametric classifiers, they are not suitable for

large classes of data. Since in our sub-word recognition method a relatively large library

of sub-words is maintained, the 1
st
 Nearest-Neighbor (1-N-N) classifier is a practical

choice. The 1-N-N classifier is one the oldest method known. The idea is very simple: to

classify X find its closest neighbor among the training points (call it X’) and assign to X

the label of X’. Here are the steps in applying 1-N-N method in the recognition phase of

our OCR system for each feature extraction method:

TESTING SET

Connected Components
of an image

For each CC

Hu Zernike DCT

Feature
1

Feature
1

Feature
1

Feature
2

Feature
2

Feature
2

. . .

. . .

. . .

. . .

. . .

72

 Calculate Euclidean distances of previously extracted feature vector of each testing

connected component with respect to every feature vector of the training set.

 Find the closest distant neighbor of each testing connected component.

 Assign the nearest neighbor’s label from the training set to the corresponding testing

connected component.

4.7. Hybrid labeling decision

The classification results for each feature extraction method proved DCT as the most

accurate method with 92.8% accuracy (accuracy is defined as percent of correct

classifications). Hu had accuracy of 79.7% and Zernike had accuracy of 86%. Based on

the results of this study, we implemented a hybrid labeling decision, based on the

following observation of the results:

a) When DCT is incorrect the other two methods are correct.

b) When Hu and Zernike disagree, DCT gives the correct class-tag.

Therefore, in our labeling decision, if Hu and Zernike give identical results, that result is

labeled; otherwise, DCT’s label is applied.

By implementing this simple labeling method in our library of 500 sub-words, we

achieved 97% accuracy (fifteen missed classifications in our library of 500 sub-words).

Figure 47 shows a selection of sub-words in our library with the results of each feature

extraction method and the assigned label by our hybrid method.

73

Figure 47: A selection of our library of sub-words used in evaluation of feature extraction

methods. Highlighted yellow cells indicate incorrect classification for each feature

extraction method

4.8. Conclusions

To avoid the challenges of segmenting Persian texts to isolated characters, we segment a

Persian document only to its sub-words and then we recognize sub-words from a library

of sub-words. In this chapter, we proposed an error free algorithm to segment words to its

component sub-words. Then, we expand our algorithm to successfully segment a page of

a Persian text to sub-words, placing them in their respective rows.

In recognition phase of our Persian OCR system, three feature extraction methods of Hu,

Zernike, and DCT were used in a simple yet accurate 1
st
 nearest neighbor classification

method. Finally, based on a hybrid method, connected components of the testing set were

labeled. We tested the recognition phase of our OCR system on a library of 500 Persian

sub-words and achieved 97% accuracy.

74

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.

5.1. Overview of the Dissertation and Conclusions

Optical Character Recognition is an active area of research in the field of pattern

recognition. Despite several decades of research and development, even an elementary

school student’s reading skills outperforms the most advanced OCR systems. For

example, while through a simple observation, human brain simply extracts the text from

very complex documents, complicated algorithms are needed to replicate the very same

task using computers.

In this dissertation, we made a brief introduction to the field of Optical Character

Recognition. After discussing different branches of OCR, we narrowed down our focus to

the recognition of typed offline documents. After a brief overview of history and

evolution of different OCR systems, we explained in detail the classical flow of OCR

systems. We explained that a typical OCR system is divided to two phases. The 1
st
 phase

is the preprocessing phase and the 2
nd

 phase is the recognition phase. Then, we explained

typical steps in preprocessing and recognition phase. For each step, we reviewed

literature and gave our opinion on the best approach. According to the literature, quite

diverse research directions are still being explored and standard procedures for building

offline handwriting recognizers could not be established so far. However, some trends

toward unified approaches can be identified, for example, the quite widely used Otsu

method is mostly used for the binarization step or more recent efforts in Persian word

segmentation focus on sub-word segmentation rather than isolated character

segmentation.

75

In chapter 2, the important preprocessing step of skew detection is studied. After a

literature review and brief description of four commonly used skew detection methods,

we proposed a new technique in skew detection of documents using an axes-parallel

bounding box. A comparison of this algorithm with the existing state-of-the-art skew

angle algorithms proved a reliable and fast algorithm, outperforming the compared

methods.

In chapter 3, we proposed a new segmentation technique based on image resampling

method. Our method simply performs a downsampling (zoom-out) flowed by upsampling

(zoom-in) with a calculated scaling factor. The sampling scale is calculated by utilizing a

white gap transition algorithm and determining between the text rows gaps. This process

converts the image to blobs of segments which are then separated using a simple

connected component algorithm. Our extensive evaluations confirmed an efficient

segmentation method capable of segmenting complex images.

In chapter 4, we focused on recognition of Perso-Arabic scripts with emphasis on Persian

scripts. After reviewing the characteristics of Persian texts, we explained that due to the

highly cursive nature of Persian texts, typical segmentation algorithms have poor success

rates. Therefore, to avoid the challenges of segmenting Persian texts to isolated

characters, we segment a Persian document only to its sub-words and then we recognize

sub-words from a library of sub-words. Based on our 500 library of sub-words, our

algorithm is capable for segmenting Persian words to sub-word without error and it is

computationally very efficient. In the recognition phase, due to a relatively large library

of sub-words, we use a hybrid scheme among Hu, Zernike, and DCT methods and use 1
st

76

nearest neighbor for classification. Our experimental tests on our library of 500 words

result in 97% recognition rate.

In conclusion, the main contributions of this dissertation are in extensive research in two

preprocessing steps of an OCR system: skew detection and page segmentation. In each

step, we proposed state-of-the-art methods improving the performance of OCR systems.

In addition, we focused on developing a Persian OCR system by segmenting words to

sub-words and proposed new sub-word segmentation technique with 100% success rate.

We introduced a hybrid scheme for feature extraction and chose a nonparametric

classification technique to achieve 97% sub-words recognition accuracy.

5.2. Future Work

Although substantial progress has already been made toward the ultimate goal of

automatic reading systems, still many challenges exists and OCR systems compared to

human reading capabilities are primitive.

In the preprocessing phase of OCR systems in general, a single algorithm to deal with all

sorts of imperfections in a document such as noise, skew, and page complexities needs to

be developed. An OCR system needs to be so efficient that it works fast on small

processors like mobile phones.

As for the Persian OCR, typical English or Chinese OCR systems do not work efficiently.

Specific to Persian script methods, such as the ones introduced in this dissertation, are

needed to improve Persian OCR systems and narrow the gap between the successes of

Roman based script recognition systems and Persian OCR systems.

77

REFERENCES/BIBLIOGRAPHY

[1] J. Said, M. Cheriet and C. Suen, "Dynamic morphological preprocessing: a fast

method for baseline extraction," ICDAR, pp. 8-12, 1996.

[2] L. Xu, E. Oja and P. Kultanen, "A new curve detection method: Randomized Hough

Transform (RHT)," Pattern Recognition Letters, vol. 11, pp. 331-338, 1990.

[3] H. Cao, R. Prasad and P. Natarjan, "A stroke regeneration method for cleaning rule

lines in handwritten document images," in Proceeding of the international workshop

on multilingual OCR, pp. 1-10, New York, NY, 2009.

[4] T. Hoang, E. Smith and S. Tabbone, "Sparsity-based edge noise removal from

bilevel graphical document images," International Journal on Document Analysis

and Recognition, vol. 17, no. 2, pp. 161-179, 2014.

[5] W. Peerawit and A. Kawtrakul, "Marginal noise removal from document images

using edge density," in Proceeding of fourth information and computer engineering,

2004.

[6] F. Shafait, J. van Beusekom and D. Keysers, "Document cleanup using page frame

detection," IJDAR, vol. 11, no. 2, pp. 81-96, 2008.

[7] J. Sauvola and M. Pietikainen, "Adaptive document image binarization," Pattern

Recognition, vol. 33, no. 2, pp. 225-236, 2000.

[8] R. Parvathi, N. Javanthi and et al., "Intuitionistic fuzzy approach to enhance text

documents," in Proceedings 3rd IEEE international conf. on intel. systems, 2006.

[9] C. Leung, H. Chan and et al., "A new approach for image enhancement applied to

low-contrast low-illumination documents," Pattern Recognition Letters, vol. 26, no.

6, pp. 769-778, 2005.

[10] S. Nomura, K. Yamanaka and et al., "Morphological preprocessing method to

thresholding degraded word images," Pattern Recognition Letters, vol. 30, no. 8, pp.

729-744, 2009.

78

[11] N. Otsu, "A threshold selection method from gray-level histograms," IEEE Itrans.

Syst., vol. 9, no. 1, pp. 62-66, 1979.

[12] G. Lazzara and T. Géraud, "Efficient multiscale Sauvola’s binarization,"

International Journal on Document Analysis and Recognition, vol. 17, no. 2, pp.

105-123, 2014.

[13] W. Niblack, An introduction to digital image processing, Englewood Cliffs: Prentice

Hall, N. J., pp. 115-116, 1995.

[14] A. Benouareth, ,. A. Ennaji and M. Sellami, Semi, "Semi-continuous HMMs with

explicit state duration for Arabic word modeling and recognition," Pattern

Recognition Letters, vol. 29, pp. 1742-1752, 2008.

[15] A. Vinciarell, "Application of information retrieval techniques to single writer

documents," Pattern Recognition Letters, vol. 22, pp. 1043-1050, 2001.

[16] S. Mozaffari, K. Faez and et al., "Lexican reduction using dots for off-line

Farsi/Arabic handwritten word recognition," Pattern Recognition Letters, pp. 724-

734, 2008.

[17] H. Al-Youse and S. S. Udpa, "Recognition of Arabic character," IEEE Trans.

Pattern. Anal. Mach. Intell. , vol. 14, no. 8, pp. 853-857, 1992.

[18] S. Nasrollah and A. Ebrahimi , "Printed Persian Subword Recognition Using

Wavelet Packet Descriptors," Journal of Engineering (Open Access), vol. Article ID

465469, 2013.

[19] C. T. Zahn and R. Z. Roskies, "Fourier descriptors for plane closed curves," IEEE

Transactions on Computers, 1972.

[20] M. K. Hu, "Visual pattern recognition by moment invarients," IRE Trans. info.

theory, vol. 8, pp. 179-187, 1962.

[21] C. H. Teh and R. T. Chin, "Invariant image recognition by Zernike moments," IEEE

transactions on pattern analysis and machine inteligence, vol. 10, no. 4, 1988.

[22] Y. LeCun and B. Boser, "Handwritten digit recognition with a back-propagation

79

network," in Advances in neural information processing (NIPS 89), pp. 396-404,

1990.

[23] C. Burges, O. Matan and et al., "Shortest path segmentation: a method for training a

neural network to recognize charac. strings," in International Joint Conf. on Neural

Networks (IJCNN), Baltimore, MD, 1992.

[24] A. Bosch, A. Zisserman and X. Munoz, "Representing shape with a spatial pyramid

kernel," in CIVR, 2012.

[25] A. Opelt, M. Fussenegger and et al., "Weak hypotheses and boosting for generic

object detection and recognition," in ECCV, 2004.

[26] A. Bosch, A. Zisserman and X. Munoz, "Image classification using random forests

and ferns," in ICCV, 2007.

[27] L. Breiman and J. Friedman, Classification and Regression Trees, Belmont,

California.: Wadsworth International, 1984.

[28] B. V. Dasarathy, "Nearest Neighbor (NN) norms: NN pattern classification

techniques," in IEEE Computer Society Press, 1991.

[29] W. Postl, "Detection of linear oblique structures and skew scan in digitized

documents," in Proc. 8th international conference on pattern recognition, 1986.

[30] H. Baird, "The skew angle of printed documents," in Proc. SPSE 40th symposium

hybrid imaging, Rochester, NY, 1987.

[31] G. Ciardiello, G. Scafuro, M. T. Degrandi and e. al., "An experimental system for

office document handling and text recognition," in Proc. 9th international

conference on pattern recognition, 1988.

[32] Y. Ishitani, "Document skew detection based on local region complexity," in Proc.

2nd international on document analysis and recognition, Japan, 1993.

[33] D. S. Bloomberg, G. E. Kopec and L. Dasari, "Measuring document image skew and

orientation," in Document recognition II SPIE, 1995.

[34] R. O. Duda and P. E. Hart, "Use of Hough transformation to detect lines and curves

80

in pictures," Comm. ACM, vol. 15, pp. 11-15, 1972.

[35] P. Hough, "Machine Analysis of bubble chamber pictures," in 2nd International

conference on high-energy accelerators, 1959.

[36] D. H. Billard, "Generalizing the Hough Transform to Detect Arbitrary Shapes,"

Pattern recognition, vol. 13, pp. 111-122, 1981.

[37] J. Illingworth and J. Kittler, "A survery of the Hough transforms," Computer

graphics and image processing, vol. 44, pp. 87-116, 1988.

[38] S. C. Hinds, J. L. Fisher and D. P. D'Amoto, "A document skew detection method

using run-length encoding and Hough transform," in Proc. 10th Int'l conf. on pattern

recognition, New York, 1990.

[39] B. Yu and A. Jain, "A robust and fast skew detection algorithm for generic

documents," Pattern recognition, vol. 29 (10), pp. 1599-1629, 1996.

[40] S. N. Srihari and V. Govindaraju, "Analysis of textual images using the Hough

transform," Machine vision and applications, vol. 2, pp. 141-153, 1989.

[41] V. N. Manjunath, G. H. Kumar and P. Shivakumara, "Skew detection technique for

binary document images based on Hough transform," International journal

technologies, vol. 13 (3), pp. 194-200, 2006.

[42] D. X. Le, G. R. Thoma and H. Wechsler, "Automated page orientation and skew

angle detection for binary document," vol. 27 (10), 1997.

[43] A. Hashizume, P.-S. Yeh and A. Rosenfeld, "A method of detecting the orientation

of aligned components," Pattern recognition letters, vol. 4, pp. 125-132, 1986.

[44] G. S. Peake and T. N. Tan, "A general algorithm for document skew angle

estimation," in International conference on image processing, 1997.

[45] R. Safabakhsh and S. Khadivi, "Document skew detection using minimum-area

bounding rectangle," in Information Technology: Coding and Computing, 2000.

[46] P. Rudak, Y. Lee and T. Morgan, "Method for determining skew angle and location

of a document in an over-scanned image". Patent US 7,027,666 B2, 2006.

81

[47] B. T. Avila and R. D. Lins, "Efficient removal of noisy borders from monochromatic

documents," in International conference on image analysis and recognition,

Portugal, 2004.

[48] D. X. Le, G. R. Thoma and H. Wechsler, "Automated borders detection and adaptive

segmentation for binary document images," in 13th international conference on

pattern recognition, Austria, 1996.

[49] K. C. Fan, Y. K. Wang and T. R. Lay, "Marginal noise removal of document

images," Pattern Recognition, vol. 35, 2002.

[50] H. S. Baird, S. E. Jones and S. Fortune, "Image Segmentation by Shape-Directed

Covers," in Proc. Int'l Conf. Pattern Recognition, pp. 820-825, 1990.

[51] A. Antonacopoulos and D. Karatzas, "Semantics-Based Content Extraction in

Typewritten Historical Documents," in Eighth International Conference on

Document Analysis and Recognition, pp. 48-53, 2005.

[52] A. Antonacopoulos and R. T. Ritchings, "Representation and classification of

complex-shaped printed regions using white tiles," in Proceedings of the 3rd

International Conference on Document Analysis and Recognition (ICDAR’95),

Montreal, Canada, Vol. 2, pp. 1132-1135, 1995.

[53] F. Wahl, . K. Wong and R. Casey, "Block Segmentation and Text Extraction in

Mixed Text/Image Documents," Graphical Models and Image Processing, vol. 20,

pp. 375-390, 1982.

[54] G. Nagy and S. Seth, "Hierarchical representation of optically scanned documents,"

in Proceedings of International Conference on Pattern Recognition, Vol 1, pp. 347–

349, 1984.

[55] H. S. Baird, "Background structure in document images," Advances in Structural

and Syntactic Pattern Recognition, p. 253–269, 1992.

[56] F. Shafait, D. Keysers and T. M. Breuel, "Performance comparison of six algorithms

for page segmentation," 7th IAPR Workshop on Document Analysis Systems, p. 368–

379, 2006.

82

[57] A. Jain and B. Yu, "Document Representation and Its Application to Page

Decomposition," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20,

pp. 294-308, 1998.

[58] L. Fletcher and R. Kasturi, "A Robust Algorithm for Text String Separation from

Mixed Text/Graphics Images," IEEE Trans. Pattern Analysis and Machine

Intelligence, vol. 10, pp. 910-918, 1988.

[59] L. O'Gorman, "The document spectrum for page layout analysis," IEEE Tras. on

Page Analysis, vol. 15, no. 11, pp. 1162-1173, 1993.

[60] M. Agrawal and D. Doermann, "Voronoi++: A Dynamic Page Segmentation

Approach Based on Voronoi and Docstrum Features," in 10th International

Conference on Document Analysis (ICDAR), pp. 1011-1015, 2009.

[61] K. Kise, A. Sato and M. Iwata, "Segmentation of page images using the area voronoi

diagram," Computer Vision and Image Understanding, vol. 70, no. 3, pp. 370-382,

1998.

[62] K. Chen, F. Yin and C. Liu, "Hybrid Page Segmentation with Efficient Whitespace

Rectangles Extraction and Grouping," in 12th international Conf. on Document

Analysis (ICDAR), pp. 958-962, 2013.

[63] R. W. Smith, "Hybrid page layout analysis via tab-stop detection," in Document

Analysis and Recognition,10th International Conference on Document Analysis and

Recognition(ICDAR), pp. 241–245, 2009.

[64] T. Pavlidis and J. Zhou, "Page segmentation and classification," CVGIP:Graphical

Models and Image Processing, vol. 54, pp. 484-496, 1992.

[65] A. Antonacopoulos, C. Clausner and . C. Papadopoulos, "Historical document layout

analysis competition," in Proc. 11th ICDAR, pp.1516-1520, 2011.

[66] Y. Wang, X. Ding and C. Liu, "Topic Language Model Adaption for Recognition of

Homologous Offline Handwritten Chinese Text Image," IEEE Signal Processing

Letters, vol. 21, no. 5, p. 550–553, 2014.

[67] S. Bukhari, F. Shafait and T. Breuel , "Coupled snakelets for curled text-line

83

segmentation from warped document images," International Journal on Document

Analysis and Recognition (IJDAR), vol. 16, no. 1, pp. 33-53, 2013.

[68] A. Winder, T. Andersen and E. H. B. Smith, "Extending Page Segmentation

Algorithms for Mixed-Layout Document Processing," in 2011 Internation Conf. on

Document Analysis (ICDAR), pp. 1245-1249, 2011.

[69] F. Zirari and A. Ennaji, "A simple text/graphic separation method for document

image segmentation," in 2013 ACS International Conf. on Computer Systems

(AICCSA), pp. 1-4, 2013.

[70] D. Deryagin, "Unified Performance Evaluation for OCR Zoning: Calculating Page

Segmentation's Score, That Includes Text Zones, Tables and Non-text Objects," in

12th Internation Conf. on Document Analysis (ICDAR), pp. 953-957, 2013.

[71] A. Gordo, M. R. usinol and e. al., "Document Classification and Page Stream

Segmentation for Digital Mailroom Applications," in 12th Internation Conf. on

Document Analysis (ICDAR), pp. 621-625, 2013.

[72] E. Kostopoulou, E. Zacharia and D. Maroulis, "Accurate segmentation of 2D-PAGE

images," in 2012 Proceedings of the 20th European Signal Processing Conference

(EUSIPCO) Signal Processing Conference (EUSIPCO), pp. 2258-2262, 2012.

[73] J. Parker, R. Kenyon and D. Troxel, "Comparison of Interpolating Methods for

Image Resampling," IEEE Trans Med Imaging, vol. 2, no. 1, pp. 31-39, 1983.

[74] J. Wakerly, Digital Design: Principles and Practices, 3rd ed., Prentice Hall, New

Jersey, 2001.

[75] S. Mao, A. Rosenfeld and T. Kanungo, "Document structure analysis algorithms: a

literature survey," International Society for Optics and Photonics Electronic

Imaging., pp. 197-207, 2003.

[76] R. Haralick and L. Shapiro, Computer and Robot Vision, Reading, MA: Addison

Wesley, 1997.

[77] R. M. Haralick, "Document Image Understanding: Geometric and Logical Layout,"

in Proc. of the Conference on Computer Vision and Pattern Recognition, 1994.

84

[78] C. Huizhong and et al., "Robust Text Detection in Natural Images with Edge-

Enhanced Maximally Stable Extremal Regions," in 18th IEEE International

Conference on Image Processing (ICIP), 2011.

[79] M. Jelodar and e. al., "A Persian OCR System using Morphological Operators,"

World Academy of Science, Engineering and Technology, no. 4, 2005.

[80] J. Sadri, S. Izadi and et al., "State-of-the-art in Farsi scripts recognition," in 9th

International Symposium on Signal Processing and Its Applications, 2007, Sharjah,

2007.

[81] N. Tagougui, M. Kherallah and A. Alimi, "Online Arabic handwriting recognition: a

survey," International Journal on Document Analysis and Recognition, vol. 16, no.

3, pp. 209-226, 2013.

[82] A. Mao and M. Kanungo, "A Methodology for Empirical Performance Evaluation of

Page Segmentation Algorithms," IEEE Transaction on Pattern Analysis and

Machine Intelligence, vol. 23, no. 3, pp. 242-256, 2001.

[83] M. Shridhar, J. CAO and M. Ahmadi, "Recognition of Handwritten Numerals with

Multiple Feature and Multistage Classifier," Pattern Recognition Society, 1995.

[84] Q. Trier, A. Jain and T. Taxt, "Feature Extraction Methods for Character

Recognition–A SURVEY," Pattern Recognition, vol. 29, no. 4, pp. 641-662, 1996.

[85] A. Johnston, Classifying Persian Characters with Artificial Neural Networks and

Inverted Complex Zernike Moments, PhD Thesis, Imperial College of London, 2005.

[86] G. Amayeh, S. Kasaei and A.R. Tavakkoli, "A Modified Algorithm to Obtain

Translation, Rotation and Scale Invariant. Zernike Moment Shape Descriptors," in

International Workshop on Computer Vision, IPM, Tehran, 2004.

[87] M. A. Broumandnia, "Persian/Arabic Document Segmentation Using Hybrid

Methods," International Journal of Advanced Computer Science, vol. 1, no. 2, pp.

65-71, 2011.

[88] R. Gonzalez and R. Woods, Digital Image Processing, Second Edition, Prentice-

Hall, 2002.

85

[89] X. Qian and et al., "Object Categorization Using Hierarchical Wavelet Packet

Texture Descriptors," in 11th IEEE International Symposium on Multimedia, 2009.

[90] K. Fouladi, B. Araabi and E. Kabir, "A fast and accurate contour-based method for

writer-dependent offline handwritten Farsi/Arabic subwords recognition,"

International Journal on Document Analysis and Recognition, vol. 17, no. 2, pp.

181-203, 2014.

[91] M. Badreldin and S. A., "High Accuracy Character Recognition Algorithm Using

Fourier and Topological Descriptors," Pattern Recognition, vol. 17, 1984.

[92] L. O. Gorman, "The document spectrum for page layout analysis," IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 11, p.

1162–1173, 1993.

[93] N. Singh, N. Bhatia and A. Kaur, "Hough transform based fast skew detection and

accurate skew correction methods," Pattern Recognition, vol. 41, no. 2, 2008.

.

86

APPENDICES

Appendix A. Projection Profile skew detection MATLAB source code

function my_prjprofile(BImg,i)
tic
Theta = -90:89;
horizproj_var = cell(1,1);
for T = -90:89
 RImg = imrotate(BImg,T,'bilinear');
 horizproj= sum(RImg == 0,2);
 horizproj_var{1} = cat(1, horizproj_var{1},var(horizproj));
end

 [~,Locs] = findpeaks(horizproj_var{1},'NPEAKS',1);
Rotation_Angle = Theta(Locs)
if(Rotation_Angle ~= 0)
 Img = imrotate(BImg,Rotation_Angle,'bilinear');
else
 Img = BImg;
end
toc

87

Appendix B. Hough transform skew detection MATLAB source code

function [H, P , theta, Rotation_Angle] = my_hough(Img,i)
 %find edges
 tic
 sigma=1;
 [g3, t3]=edge(Img, 'canny', [0.04 0.10], sigma);
 %Do the Hough transform
 [H t r] = hough(g3,'RhoResolution',0.5,'Theta',-90:0.5:89.5);

 %Display the transform in such a way that we can draw points on it

later...
 imshow(H, [], 'XData', t, 'YData', r);

 %Add axis labels to the picture
 xlabel('\theta'), ylabel('\rho');
 axis on, axis normal;
 P = houghpeaks(H,5);
 %draw peaks over Hough transform
 x = t(P(:,2)); y = r(P(:,1));
 hold on;
 plot(x,y,'s','color','white');
 % Find lines and plot them
 lines = houghlines(Img,t,r,P,'FillGap',5,'MinLength',7);
 figure, imshow(Img), hold on
 theta = cell(1,1);
 for k = 1:length(lines)
 xy = [lines(k).point1; lines(k).point2];
 plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green');

 % Plot beginnings and ends of lines
 plot(xy(1,1),xy(1,2),'x','LineWidth',2,'Color','yellow');
 plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','red');
 theta{1} = cat(1,theta{1},lines(k).theta);
 end
Angle_Range = unique(theta{1}(:));
Accum_Array = hist(theta{1}(:), numel(Angle_Range));
if size(Accum_Array,2)> 1
 Loc = find(Accum_Array == max(Accum_Array))
 Rotation_Angle = Angle_Range(Loc);
else
 Rotation_Angle = Angle_Range(1);
end
toc

88

Appendix C. Nearest-Neighbor skew detection MATLAB source code

function [P1, P2 , theta, Locs,Angle_Range,Rotation_Angle] =

my_nearest_neighbor(BImg,i)

tic

CC = bwconncomp(BImg);

S = regionprops(CC,'Centroid');

centroids = cat(1, S.Centroid); %% centroids(col,row)

figure(1),imshow(BImg)

hold on

plot(centroids(:,1), centroids(:,2), 'b*')

hold off

[idx, dist] =

knnsearch(centroids,centroids,'K',2,'dist','euclidean');

% idx(:,1) includes each centroid and idx(:,2) includes its nearest

neighbor

P1 = centroids(idx(:,1),:);

P2 = centroids(idx(:,2),:);

% Find angle between each centroids and its nearest neighbor

for j = 1: size(P1,1)

 if P1(j,1) > P2(j,1)

 temp = P1(j,:);

 P1(j,:) = P2(j,:);

 P2(j,:) = temp;

 end

end

dp = bsxfun(@minus, P2, P1);

theta = atan2(dp(:,2), dp(:,1));

theta = round((theta*180)./pi);

Angle_Range = unique(theta);

figure(2)

hist(theta, numel(Angle_Range))

Accum_Array = hist(theta, numel(Angle_Range));

[~, Locs] = max(Accum_Array);

Rotation_Angle = Angle_Range(Locs);

% [~,Locs] = findpeaks(Accum_Array,'NPEAKS',2);

% Rotation_Angle = mean(Angle_Range(Locs));

toc

if(Rotation_Angle ~= 0)

 Img = imrotate(BImg,Rotation_Angle,'bilinear');

else

 Img = BImg;

end

89

Appendix D. Fourier method skew detection MATLAB source code

function [T,Real_Angel,Rotation_Angle,val] = my_FFT(Img,i)

figure,imshow(Img)

tStart = tic;

T = cell(1,2);

Real_Angel = cell(1,1);

j = 1;

[m, n] = size(Img);

M = floor(m/2)+1;

N = floor(n/2)+1;

I1 = Img(1:M,N:n);

j = j+1;

figure(j), imshow(I1)

[S1, j,rq,cq] = my_FFT_Spec(I1,j);

j = j+1;

[T,Real_Angel,j] = Accum_Array(S1,j,T,Real_Angel,rq,cq);

I2 = Img(1:M,1:N);

j = j+1;

figure(j), imshow(I2)

[S2, j,rq,cq] = my_FFT_Spec(I2,j);

j = j+1;

[T,Real_Angel,j] = Accum_Array(S2,j,T,Real_Angel,rq,cq);

I3 = Img(M:m,1:N);

j = j+1;

figure(j), imshow(I3)

[S3, j,rq,cq] = my_FFT_Spec(I3,j);

j = j+1;

[T,Real_Angel,j] = Accum_Array(S3,j,T,Real_Angel,rq,cq);

I4 = Img(M:m,N:n);

j = j+1;

figure(j), imshow(I4)

[S4, j,rq,cq] = my_FFT_Spec(I4,j);

j = j+1;

[T,Real_Angel,j] = Accum_Array(S4,j,T,Real_Angel,rq,cq);

% [tmp,ind] = sort(T{1},'ascend');

% T{1} = tmp;

% T{2} = T{2}(ind);

loc = [];

if size(T{2},1) > 2

 [~, loc] = findpeaks(T{2},'npeaks',1);

end

if isempty(loc)

 [~,loc] = max(T{2});

end

% [~,loc] = max(T{2});

[rx, ~] = find(T{1}(loc)- 5 < Real_Angel{1} & Real_Angel{1} <

T{1}(loc)+ 5);

[val ~] = sort(Real_Angel{1}(rx));

val

90

angle = median(val);

figure(j)

hold on;

bar(T{1},T{2})

tElapsed = toc(tStart)

if angle >= 45

Rotation_Angle = -90 + angle;

else

Rotation_Angle = angle;

end

function [S,j,rq,cq] = my_FFT_Spec(I,j)

F = fft2(I);

Fc = fftshift(F);

S = log(1 + abs(Fc));

% j = j+1;

% figure(j), imshow(S, [])

title('Fig.2: Spectrum of the Input Image')

[M,N] = size(S);

rq = floor(M/2)+1;

cq = floor(N/2)+1;

S(rq-13:rq+13,cq-13:cq+13)= 0;

% j = j+1;

% figure(j), imshow(S, [])

mmin = min(S(:));

mmax = max(S(:));

S = (S-mmin) ./ (mmax-mmin);

function [T, RA,j] = Accum_Array(S,j,T,RA,rq,cq)

[r,c,v] = FastPeakFind(S, 'NPEAKS',10);

figure(j),imagesc(S); hold on

plot(c(1:end),r(1:end),'g+')

j = j+1;

t = atan2(c(1:2:end)-cq, r(1:2:end)-rq);

% % t = atan2(r(1:2:end),c(1:2:end));

t = (t*180)./pi;

theta = round(t);

v = v(1:2:end);

for k = 1: size(theta,1)

 RA{1} = cat(1,RA{1},t(k));

 [rx, cy] = find(T{1}(:) == theta(k));

 if(isempty(rx))

 T{1} = cat(1,T{1},theta(k));

 T{2} = cat(1,T{2},v(k));

 else

 T{2}(rx)= T{2}(rx)+v(k);

 end

end

91

Appendix E. Our skew detection method MATLAB source code

clc;

clear all;

close all;

imtool close all; % Close all imtool figures.

cd('C:\Personal\Windsor\Image processing code')

%cd('../')

samplefolder = './Whole_page/';

file_l = dir(samplefolder);

Step = pi/180;

Theta = [];

Area = zeros(size(Theta));

%// the first two in filelist are . and ..

 for i= 15:15% size(file_l,1)

 %// filelist is not a folder

 if file_l(i).isdir ~= true

 fname = file_l(i).name

 Org_Img = imread([samplefolder fname]);

 if length(size(Org_Img))>2 % checking if rgb image;

 Img =rgb2gray(Org_Img);

 Img=im2bw(Img,graythresh(Img));

 else

 Img = Org_Img;

 end

 if Img(1,1) ~= 0

 Img = ~Img;

 end

 figure,imshow(Img)

 cd('C:\Personal\Windsor\Image processing code\Rotated_results')

 fn = sprintf('Original_Image_%s.png',num2str(i-2,'%02i'));

 imwrite(~Img,fn,'png');

 cd('C:\Personal\Windsor\Image processing code')

 Final_Img = zeros(size(Img));

 [n,m] = size(Img);

 Pivot(1)= (n+1)/2;

 Pivot(2)= (m+1)/2;

 PP = Find_perimeter_points(Img);

 [Corners Area_Org] = Find_rec_area(PP);

 crop = Img(

min(Corners{1}(:)):max(Corners{1}(:)),min(Corners{2}(:)):max(Corners{2}

(:)));

 figure,imshow(~crop)

 PP{1}(:) = PP{1}(:)-Pivot(1);

 PP{2}(:) = PP{2}(:)-Pivot(2);

 Rotated_PP = Rotate_Perimeter_Points(PP,Step);

 Rotated_PP{1}(:) = Rotated_PP{1}(:)+Pivot(1);

 Rotated_PP{2}(:) = Rotated_PP{2}(:)+Pivot(2);

 [x Area_Up] = Find_rec_area(Rotated_PP);

 Rotated_PP = Rotate_Perimeter_Points(PP,-1*Step);

 Rotated_PP{1}(:) = Rotated_PP{1}(:)+Pivot(1);

92

 Rotated_PP{2}(:) = Rotated_PP{2}(:)+Pivot(2);

 [x Area_Down] = Find_rec_area(Rotated_PP);

 if Area_Up < Area_Org

 Turn_dir = 1;

 else if Area_Down < Area_Org

 Turn_dir = -1;

 else

 Turn_dir = 0;

 cd('C:\Personal\Windsor\Image processing

code\Rotated_results\My_SkewFun')

 fn = sprintf('Original_Image_%s.png',num2str(i-

2,'%02i'));

 imwrite(~Img,fn,'png');

 end

 end

 Rotation_Step = 4*pi/180;

 R = 0;

 tic

 if Turn_dir ~= 0

 Min_Area = Area_Org;

 R = R + Turn_dir*Rotation_Step;

 RPP = Rotate_Perimeter_Points(PP,R);

 RPP{1}(:) = RPP{1}(:)+Pivot(1);

 RPP{2}(:) = RPP{2}(:)+Pivot(2);

 [Corners Area_maxr] = Find_rec_area(RPP);

 while Min_Area > Area_maxr

 Min_Area = Area_maxr;

 R = R + Turn_dir*Rotation_Step;

 RPP = Rotate_Perimeter_Points(PP,R);

 RPP{1}(:) = RPP{1}(:)+Pivot(1);

 RPP{2}(:) = RPP{2}(:)+Pivot(2);

 [Corners Area_maxr] = Find_rec_area(RPP);

 end

 if R*180/pi~=0

 R = R-Turn_dir*Rotation_Step;

 end

 Rotation_Step = Rotation_Step/2;

 while Rotation_Step >= (0.25*pi/180) && Turn_dir ~= 0

 [R,Min_Area,Rotation_Step] =

Find_Min_Area2(R,Rotation_Step,PP, Min_Area,Pivot);

 end

 end

 t = R*180/pi

 Img1 = imrotate(Img,R*180/pi,'bilinear');

 PP = Find_perimeter_points(Img1);

 Flag = Smearing_Func(Img1,PP);

 if Flag == 0

 Img1 = imrotate(Img1,-1*Turn_dir*90,'bilinear'); %Img1

 t = -1*Turn_dir*90 + R*180/pi;

 end

 toc

 t

 figure,imshow(Img1)

 cd('C:\Personal\Windsor\Image processing

code\Rotated_results\My_SkewFun')

93

 fn = sprintf('Image_%s_%s_%s.png',num2str(i-

2,'%02i'),num2str(t,'%02i'),num2str(toc,'%04f'));

 imwrite(~Img1,fn,'png');

 cd('C:\Personal\Windsor\Image processing code')

 end

 end

cd('C:\Personal\Windsor\Image processing code')

function PPoints = Find_perimeter_points(Img)

% Receives an image and finds only the surrounding pixel's coordinates

PPoints = cell(1,2);

for r = 1:size(Img,1)

 c = find(Img(r,:),1,'first');

 if size(c,2)~= 0

 PPoints{1} = cat(1,PPoints{1},r);

 PPoints{2} = cat(1,PPoints{2},c);

 end

 c = find(Img(r,:),1,'last');

 if size(c,2)~= 0

 PPoints{1} = cat(1,PPoints{1},r);

 PPoints{2} = cat(1,PPoints{2},c);

 end

end

function [CP Area] = Find_rec_area(P)

% Having perimiter points of a text area find the corner points of

% the surrounding rectangle and the coverage area

PP = cell(1,2);

xmin = min(P{1}(:));

ymin = min(P{2}(:));

if xmin < 0

 PP{1}= P{1}(:)-xmin;

else

 PP{1} = P{1}(:);

end

if ymin < 0

 PP{2} = P{2}(:)-ymin;

else

 PP{2} = P{2}(:);

end

% PP{1}(:)

% PP{2}(:)

CP = cell(1,2);

[val ind1]= min(PP{1});

ind2 = find(PP{2}(ind1)== min(PP{2}(ind1)),1,'first');

CP{1} = cat(1,CP{1},PP{1}(ind1(1,ind2)));

CP{2} = cat(1,CP{2},PP{2}(ind1(1,ind2))) ; % Point A

[val ind1]= max(PP{1});

ind2 = find(PP{2}(ind1)== max(PP{2}(ind1)),1,'first');

94

CP{1} = cat(1,CP{1},PP{1}(ind1(1,ind2)));

CP{2} = cat(1,CP{2},PP{2}(ind1(1,ind2))); % Point C

[val ind1]= min(PP{2});

ind2 = find(PP{1}(ind1)== max(PP{1}(ind1)),1,'first');

CP{1} = cat(1,CP{1},PP{1}(ind1(1,ind2)));

CP{2} = cat(1,CP{2},PP{2}(ind1(1,ind2))); % Point D

[val ind1]= max(PP{2});

ind2 = find(PP{1}(ind1)== min(PP{1}(ind1)),1,'first');

CP{1} = cat(1,CP{1},PP{1}(ind1(1,ind2)));

CP{2} = cat(1,CP{2},PP{2}(ind1(1,ind2))); % Point B

CP{1}(:) = ceil(CP{1}(:));

CP{2}(:) = ceil(CP{2}(:));

Area = (CP{1}(2)-CP{1}(1))*(CP{2}(4)-CP{2}(3));

function [MinT,Area,RS] = Find_Min_Area2(MinT,RS,Points,Area,P)

% Rotates inputed points in +RS and -RS degree and calculates the area

of

% the minimum rectangle surrounding the points and returns the theta

value

% that gives the minimum area between two opposite rotations.

% figure,imshow(Img)

 PP1 = Rotate_Perimeter_Points(Points,MinT + RS);

 PP1{1}(:) = PP1{1}(:)+P(1);

 PP1{2}(:) = PP1{2}(:)+P(2);

 [CP1 Area_Up] = Find_rec_area(PP1);

 PP2 = Rotate_Perimeter_Points(Points,MinT - RS);

 PP2{1}(:) = PP2{1}(:)+P(1);

 PP2{2}(:) = PP2{2}(:)+P(2);

 [CP2 Area_Down] = Find_rec_area(PP2);

if Area > Area_Up

 MinT = MinT + RS;

 Area = Area_Up;

 else if Area > Area_Down

 MinT = MinT - RS;

 Area = Area_Down;

 end

 end

 RS = RS/2;

function PP = Rotate_Perimeter_Points(Input_coordinates,theta)

% This function rorates the Input_coordinates, theta degrees.

% % Rotate input coordinates theta degree.

In = cell2mat(Input_coordinates);

m = [cos(theta) -sin(theta);sin(theta) cos(theta)]';

Rotated = In*m;

PP = mat2cell(Rotated,size(Rotated,1),[1 1]);

95

function Flag = Smearing_Func(Img,PP)

% Smearing function checks if the text documents need to be rotated 90

% degree clockwise or counter clockwise. If number of white column

counts

% are more than white row counts the flag will be 0, otherwise it will

be

% 1.

WCC = 0;

WRC = 0;

Flag = 1;

rmin = min(PP{1}(:));

rmax = max(PP{1}(:));

cmin = min(PP{2}(:));

cmax = max(PP{2}(:));

WC = sum(sum(Img(rmin:rmax,cmin:cmax) == 1,2))

WR = sum(sum(Img(rmin:rmax,cmin:cmax) == 1,1))

for c = cmin:cmax

 x = find(Img(rmin:rmax,c),1,'first');

 if(isempty(x))

 WCC = WCC + 1;

 end

end

for r = rmin:rmax

 x = find(Img(r,cmin:cmax),1,'first');

 if(isempty(x))

 WRC = WRC + 1;

 end

end

WCC

WRC

if WCC > WRC

 Flag = 0;

end

96

Appendix F. Our Page Segmentation MATLAB source code

clc;

clear all;

close all;

%// list all the files in some folder

cd('C:\Personal\Windsor\Image processing code')

somefolder = './Images/';

filelist = dir(somefolder);

FV_T = cell(1,2);

imcell = cell(1,((numel(filelist)-2) / 4));

counter = 0;

for i=1:size(filelist,1)

 %// filelist is not a folder

 if filelist(i).isdir ~= true

 fname = filelist(i).name;

 temp = regexp (fname,'_','split');

 classtag = str2double(temp{1,2});

 Img = imread([somefolder fname]);

 %// convert it to grayscale image if tmp is a color

 %// image/picture

 if size(Img,3) == 3

 Img = rgb2gray(Img);

 end

 counter = counter + 1;

 if counter < 2

 imcell{classtag} = Img;

% j = j + 1;

 elseif counter == 4

 counter = 0;

 end

 level = graythresh(Img); % find the threshold based on otsu's

method

 BinaryImg = im2bw(Img,level); % convert intensity image to

binary

 if BinaryImg(1,1) == 1

 BinaryImg = ~BinaryImg;

 end

 BinaryImg = padarray(BinaryImg,[5 5]);

 [r c] = find(BinaryImg == 1);

 Img_b = bound2im([r c]);

 FV_T{1} = cat(1,FV_T{1},invmoments(Img_b));

 FV_T{2} = cat(1,FV_T{2},classtag);

 classtag = [];

 %FV = cat(2,FV,classtag);

 %end

 end

end

% sort the value of the moments based on the classtag

Y = cell(1,2);

B = FV_T(:,2);

[Y{2},ix] = sort(B{1});

Y{1} = FV_T{1}(ix,:);

97

FV_T = Y;

clear Y;

%// Extract feature vectors of the sample data.

cd('C:\Personal\Windsor\Image processing code')

%cd('../')

samplefolder = './S_Images/';

file_l = dir(samplefolder);

FV_S = [];

class = [];

%// the first two in filelist are . and ..

for i=1: size(file_l,1)

% size(file_l,1)

 %// filelist is not a folder

 if file_l(i).isdir ~= true

 fname = file_l(i).name;

 Img = imread([samplefolder fname]);

 %// convert it to grayscale image if tmp is a color

 %// image/picture

 if size(Img,3) == 3

 Img = rgb2gray(Img);

 end

 level = graythresh(Img); % find the threshold based on otsu's

method

 BinaryImg = im2bw(Img,level); % convert intensity image to

binary

 if BinaryImg(1,1) == 1

 BinaryImg = ~BinaryImg;

 end

 BinaryImg = padarray(BinaryImg,[5 5]);

 cd('C:\Personal\Windsor\Image processing code\Results\Hu')

 fn = sprintf('Image_%s.jpeg',num2str(i-2,'%04i'));

 imwrite(BinaryImg,fn,'jpeg');

 cd('C:\Personal\Windsor\Image processing code')

 CC = bwconncomp(BinaryImg,8);

 L = labelmatrix(CC);

 [Regions,R_order] = sort_labels(BinaryImg,L,CC.NumObjects);

 [Match_matrix,Nmobj] =

labeling_dist(Regions,CC.NumObjects,R_order);

 [changed_labled_image,N_obj] =

change_label(Regions,Match_matrix,Nmobj,CC.NumObjects);

 for k = 1:N_obj

 [r,c] = find(changed_labled_image == k);

 q = bound2im([r,c]);

 FV_S = cat(1,FV_S,invmoments(q));

 end

 class = knnclassify(FV_S,FV_T{1},FV_T{2},1);

 for j = 1:numel(class)

 TestImg = imcell{class(j)};

98

 cd('C:\Personal\Windsor\Image processing

code\Results\Hu')

 fn = sprintf('Image_%s_%s.jpeg',num2str(i-

2,'%04i'),num2str(j,'%04i'));

 imwrite(TestImg,fn,'jpeg');

 end

 cd('C:\Personal\Windsor\Image processing code')

 class = [];

 clear TestImg;

 %end

 end

 FV_S = [];

end

 cd('C:\Personal\Windsor\Image processing code')

clear imcell;

close all

function [Z_T_FV,H_T_FV,DCT_T_FV,Tr_classtag,imcell] =

Get_Training_FVs()

cd('C:\Personal\Windsor\Image processing code')

somefolder = './Images/';

filelist = dir(somefolder);

NClass_sample = 4;

order = 1:10;

Tr_classtag = cell(1,1);

Z_T_FV = cell(1,1);

H_T_FV = cell(1,1);

DCT_T_FV = cell(1,1);

imcell = cell(1,((numel(filelist)-2) / 4));

counter = 0;

% classtag = 0;

%// the first two in filelist are . and ..

%size(filelist,1)

for i=1:size(filelist,1)

 %// filelist is not a folder

 if filelist(i).isdir ~= true

 fname = filelist(i).name;

 temp = regexp (fname,'_','split');

 classtag = str2double(temp{1,2});

 Img = imread([somefolder fname]);

 %// convert it to grayscale image if tmp is a color

 %// image/picture

 if size(Img,3) == 3

 Img = rgb2gray(Img);

 end

 counter = counter + 1;

 if counter < 2

 imcell{classtag} = Img;

 elseif counter == NClass_sample

 counter = 0;

 end

99

 level = graythresh(Img); % find the threshold based on

otsu's method

 BinaryImg = im2bw(Img,level); % convert intensity image

to binary

 if BinaryImg(1,1) == 1

 BinaryImg = ~BinaryImg;

 end

 BinaryImg = padarray(BinaryImg,[5 5]);

 [r c] = find(BinaryImg == 1);

 Img_b = bound2im([r c]);

 Img_b = padarray(Img_b,[5 5]);

 Img_b = imresize(Img_b,[200 NaN],'bilinear');

 [Img_trans,~,~] = lans_invariant(Img_b,'scale 1 translation

1');

 [A_nm,~,~] = lans_zmoment(Img_trans,order);

 clear Img_trans;

 Temp = abs(A_nm);

 Z_T_FV{1} = cat(1,Z_T_FV{1},Temp);

 clear A_nm;

 clear Temp;

 H_T_FV{1} = cat(1,H_T_FV{1},invmoments(Img_b));

 [Img_trans,~,~] = lans_invariant(BinaryImg,'scale 1 translation

1');

 B = boundaries(Img_trans); %Trace object boundaries

 b = cat(1,B{:}); % Concatenate all the found boundaries

 DCT_Coef_Train = DCTFVec([b(:,1)', b(:,2)'], 20, 0);

 clear Img_trans;

 DCT_T_FV{1} = cat(1,DCT_T_FV{1},DCT_Coef_Train');

 Tr_classtag{1} = cat(1,Tr_classtag{1},classtag);

 classtag = [];

 clear BinaryImg;

 clear Img_b;

 clear B;

 clear b;

 end

end

function [DCTCoef] = DCTFVec(ExtFVec, fnumb, mode)

% input mode:

% mode = 1 => Simulation & Testing mode

% mode = 0 => Training mode

% Performing Cosine Transform

if (mode ~= 3)

 [c,d] = size(ExtFVec);

 Apat = ExtFVec(:,1:d/2);

 Dpat = ExtFVec(:,(d/2+1):end);

 if (d/2) < fnumb

 Apat = [Apat zeros(c,fnumb - d/2)];

 Dpat = [Dpat zeros(c,fnumb - d/2)];

100

 end

 [m,n]=size(Apat);

 CosTr = cos((pi/n)*(repmat(([1:n]'+1/2),1,n))*diag([1:n]));

 a = Apat*CosTr.*repmat(sqrt(2/n),m,n);

 b = Dpat*CosTr.*repmat(sqrt(2/n),m,n);

 for i = 1:m

 for j = 1:fnumb

 if isnan(a(i,j))

 a(i,j)=0;

 end

 if isnan(a(i,j))

 a(i,j)=0;

 end

 end

 end

 DCTCoef = [a(:,1:(fnumb)) b(:,1:(fnumb))]';

else

 d = size(ExtFVec,2);

 Apat = ExtFVec(:,1:d/3);

 Bpat = ExtFVec(:,(d/3+1):(2*d/3));

 Dpat = ExtFVec(:,((2*d/3)+1):end);

 [m,n]=size(Apat);

 CosTr = cos((pi/n)*(repmat(([1:n]'+1/2),1,n))*diag([1:n]));

 a = Apat*CosTr.*repmat(sqrt(2/n),m,n);

 b = Bpat*CosTr.*repmat(sqrt(2/n),m,n);

 DCTCoef = [a(:,3:(2+fnumb)) b(:,3:(2+fnumb))]';

end

end

function [z_T_FVs,H_T_FVs,DCT_T_FVs] = Extract_Test_FVs(BImg,order)

z_T_FVs = [];

H_T_FVs = [];

DCT_T_FVs = [];

BinaryImg = padarray(BImg,[5 5]);

[changed_labled_image,N_obj] = Extracted_subwords(BinaryImg);

for k = 1:N_obj

 [r,c] = find(changed_labled_image == k);

 q = bound2im([r,c]);

 g = imresize(q,1.5);

 figure,imshow(g);

 H_T_FVs = cat(1,H_T_FVs,invmoments(q));

 Img_b = padarray(q,[5 5]);

101

 [TImg_trans,~,~] = lans_invariant(Img_b,'scale 1 translation

1');

 B = boundaries(TImg_trans); %Trace object boundaries

 b = cat(1,B{:}); % Concatenate all the found boundaries

 Boundary_Img = bound2im([b(:,1), b(:,2)]);

 figure,imshow(Boundary_Img)

 DCT_Coef_Test = DCTFVec([b(:,1)', b(:,2)'], 20, 0); %dct2

 clear TImg_trans;

 DCT_T_FVs = cat(1,DCT_T_FVs,DCT_Coef_Test');

 clear TA_nm;

 Img_b = imresize(Img_b,[200 NaN],'bilinear');

 [TImg_trans,~,~] = lans_invariant(Img_b,'scale 1 translation

1');

 [TA_nm,~,~] = lans_zmoment(TImg_trans,order);

 clear TImg_trans;

 z_T_FVs = cat(1,z_T_FVs,abs(TA_nm));

 clear TA_nm;

end

function [changed_labled_image,N_obj] = Extracted_subwords(BinaryImg)

 CC = bwconncomp(BinaryImg,8);

 L = labelmatrix(CC);

 [Regions,R_order] = sort_labels(BinaryImg,L,CC.NumObjects);

 [Match_matrix,Nmobj] = labeling_dist(Regions,CC.NumObjects,R_order);

 [changed_labled_image,N_obj] =

change_label(Regions,Match_matrix,Nmobj,CC.NumObjects);

function [z,Region_order] = sort_labels(bw,L,num)

% Components are sorted based on their maximum row value. Therefore,

all

% the components with smaller maximum row values will be labeled before

the

% next row's components.

Region_info = cell(1,2);

Region_order = cell(1,1);

for i = 1:num

 [r ~] = find(L == i);

 Region_info{1} = cat(1,Region_info{1},max(r));

end

% Region_info{1}(:,1)

[sorted,sorted_order] = sort(Region_info{1},1);

L2 = zeros(size(L));

for i = 1:num

 L2(L == sorted_order(i)) = i ;

end

clear Region_info

Region_info = cell(1,2);

Region_info{1} = sorted;

for i = 1:num

 [r ~] = find(L2 == i);

 Region_info{2} = cat(1,Region_info{2},min(r));

end

102

Region_order{1} = cat(1,Region_order{1},1);

for i = 1:num-1

 if abs(Region_info{1}(i,1)-Region_info{2}(i+1,1))> 25

 Region_order{1} = cat(1,Region_order{1},i+1);

 end

end

Region_order{1} = cat(1,Region_order{1},num+1);

% Region_order{1}(:,1)

clear Region_info;

clear sorted;

clear sorted_order;

clear r;

clear c;

% Look at the components of each row and sort them from maximum column

% value to minimum.

Region_info = cell(1,2);

z = zeros(size(L2));

for M = 1:num

 [r c] = find(L2 == M);

 Region_info{2} = cat(1,Region_info{2},max(c));

 Region_info{1} = cat(1,Region_info{1},M);

end

 for i = 1: size(Region_order{1})-1

 for j = Region_order{1}(i): (Region_order{1}(i+1))-1

 for k = j+1: (Region_order{1}(i+1))-1

 if(Region_info{2}(j) < Region_info{2}(k))

 temp1 = Region_info{2}(j);

 temp2 = Region_info{1}(j);

 Region_info{2}(j) = Region_info{2}(k);

 Region_info{1}(j) = Region_info{1}(k);

 Region_info{2}(k)= temp1;

 Region_info{1}(k)= temp2;

 end

 end

 end

 end

 for i = 1: num

 z(L2 == Region_info{1}(i)) = i ;

 end

function [L_matrix,Nmatched_obj] = labeling_dist(L,num,Line_seg)

% LABELING labels overlapping objects to the same group.

% [L_matrix,Nmatched_obj] = LABELING(L,NUM)receives a specified

% connected component matrix and

% the number of connected components in an image and figures out

wheather

% either of those objects belong to eachother. If so, it changes the

lables

% to reflect this effect. The output of this function is L_matrix,

% the matrix of the lables that need to be changed, and number of

% overlapped objects that has been found,Nmatched_obj.

%L_matrix = zeros(factorial(num),2);

L_matrix = zeros(num,2);

rp = 1;

103

Nmatched_obj = 0;

% Line_seg{1}(:,1);

for i = 1: size(Line_seg{1})-1

 for k = Line_seg{1}(i): (Line_seg{1}(i+1))-1

 [r, c] = find(L==k);

 for j = k+1: (Line_seg{1}(i+1))-1

 [rj, cj] = find(L == j);

 if (max(c,[],1) >= min(cj,[],1)) && (min(c,[],1)<=

max(cj,[],1))

 if (max(cj,[],1) <=max(c,[],1)) & (min(cj,[],1) >=

min(c,[],1))...

 |(max(c,[],1)<= max(cj,[],1)+ 5)

 if(size(c,1) >= size(cj,1))

 L_matrix(rp,1:2)=[j,k]; % j Label has to change to k

label

 rp = rp+1;

 else

 L_matrix(rp,1:2)=[k,j];

 rp = rp+1;

 end

 end

 Nmatched_obj = Nmatched_obj + 1; % number of matched

objects

 end

 end

 end

end

return

function [LImage,remain_obj] = change_label(LImage,M,N_match,N_obj)

%CHANGE_LABEL changes the label of the objects have to be in the same

group.

%[LImage,remain_obj] = CHANGE_LABEL(LImage,M,N_match,N_OBJ) find the

%objects that need to be in the same group and changes their label to

%match them togheter. Then arrange all the label in sequence.

% It receives the labeled image, LImage, and the matrix contains the

matching

% number of the labels,M, number of matched has been found,N_match, and

the

% total number of objects,N_obj.

% It returns the corrected label matrix ,LImage, and number of objects

% remained in the Image,remain_obj.

if(N_obj > 0)

 for i = 1:N_match

 [r,c] = find(LImage == M(i,1));

 for j = 1:size(r,1)

 LImage(r(j),c(j))= M(i,2);

 end

 end

end

x = zeros(1,N_obj);

remain_obj = 0;

for i = 1:N_obj

 y = find(M(:,1) == i);

 if(size(y,1) == 0)

104

 remain_obj = remain_obj + 1;

 x(remain_obj) = i;

 end

end

% x

for i = 1:remain_obj

 [r,c] = find(LImage == x(1,i));

 for j = 1:size(r,1)

 LImage(r(j),c(j))= i;

 end

end

function class = Voting_Scheme(Z,H,D)

class = cell(1,1);

for i = 1:numel(Z)

 if Z(i) == H(i)

 class{1} = cat(1,class{1},Z(i));

 else

 class{1} = cat(1,class{1},D(i));

 end

end

function [z,H,D,tag] = Sort_Tr_FVs(z,H,D,tag)

% sort the value of the moments based on the classtag

Temp_tag = cell(1,1);

[Temp_tag{1},ix] = sort(tag{1});

Temp_FV{1} = z{1}(ix,:);

z{1} = Temp_FV{1};

Temp_FV{1} = [];

Temp_FV{1} = H{1}(ix,:);

H{1} = Temp_FV{1};

Temp_FV{1} = [];

Temp_FV{1} = D{1}(ix,:);

D{1} = Temp_FV{1};

tag = Temp_tag;

clear Temp_tag;

105

VITA AUCTORIS

NAME: Mahnaz Shafii

PLACE OF BIRTH: Tehran, Iran

YEAR OF BIRTH: 1980

EDUCATION:

Azad University, B.Sc., Tehran, Iran, 2003

Michigan State University, M.Sc., MI,

USA, 2008

University of Windsor, Ph.D., Ontario,

CANADA, 2014

	Optical Character Recognition of Printed Persian/Arabic Documents
	Recommended Citation

	tmp.1418241297.pdf.LcTTg

