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ABSTRACT  

 

Texts are an important representation of language. Due to the volume of texts generated 

and the historical value of some documents, it is imperative to use computers to read 

generated texts, and make them editable and searchable. This task, however, is not trivial.  

Recreating human perception capabilities in artificial systems like documents is one of 

the major goals of pattern recognition research. After decades of research and 

improvements in computing capabilities, humans’ ability to read typed or handwritten 

text is hardly matched by machine intelligence. Although, classical applications of 

Optical Character Recognition (OCR) like reading machine-printed addresses in a mail 

sorting machine is considered solved, more complex scripts or handwritten texts push the 

limits of the existing technology. Moreover, many of the existing OCR systems are 

language dependent. Therefore, improvements in OCR technologies have been uneven 

across different languages. Especially, for Persian, there has been limited research. 

Despite the need to process many Persian historical documents or use of OCR in variety 

of applications, few Persian OCR systems work with good recognition rate.  

Consequently, the task of automatically reading Persian typed documents with close-to-

human performance is still an open problem and the main focus of this dissertation.  

In this dissertation, after a literature survey of the existing technology, we propose new 

techniques in the two important preprocessing steps in any OCR system: Skew detection 

and Page segmentation. Then, rather than the usual practice of character segmentation, 

we propose segmentation of Persian documents into sub-words. The choice of sub-word 

segmentation is to avoid the challenges of segmenting highly cursive Persian texts to 
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isolated characters. For feature extraction, we will propose a hybrid scheme between 

three commonly used methods and finally use a nonparametric classification method.  

A large number of papers and patents advertise recognition rates near 100%. Such claims 

give the impression that automation problems seem to have been solved. Although OCR 

is widely used, its accuracy today is still far from a child’s reading skills. Failure of some 

real applications show that performance problems still exist on composite and degraded 

documents and that there is still room for progress. 
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CHAPTER 1  

 BACKGROUND ON TEXT RECOGNITION 

1.  

1.1. Introduction 

Optical Character Recognition (OCR) is a field of research in artificial intelligence, 

pattern recognition, and computer vision. OCR is a common method of digitizing pictures 

of printed or handwritten texts so that they can be electronically edited, searched, and 

stored more compactly and efficiently. Despite a century long research and development 

in this field, machines are still nowhere near human’s reading capabilities. The goal of an 

OCR system is recognition of text (same as humans) in a complex document.  

In this chapter, we look into OCR classifications and their classic process flow. For each 

step we give a brief overview of the historical background and common methods used.  

1.2. OCR Classifications 

OCR systems are mainly classified into online text recognition and offline text 

recognition. Subsequently, offline OCR is classified into two subcategories of 

handwritten and typed text recognition (Figure 1).  
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Figure 1: Optical Character Recognition Classifications 

1.2.1. Online text recognition 

In online text recognition, characters and words are recognized real time as soon as they 

are written, and therefore, contain temporal information. Online systems obtain the 

position of the pen as a function of time directly from the interface. This is usually done 

through pen-based interfaces where the writer writes with a special pen on an electronic 

tablet. 

 

Figure 2: Offline text containing just special information (left), online text containing 

temporal sequence of points traced out by the pen (right) 

 

Dynamic information, which are usually available for online text recognitions, are 

number of strokes, order of strokes, direction for each stroke, and speed of writing within 

each stroke. This valuable information assists in recognition of documents and frequently 

leads to better performing systems compared to offline recognition. Some of applications 

OCR

Online Text Recognition Offline Text Recognition

Typed Text Handwritten Text

X(t)

Y(t)

X

Y
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of online optical recognition are in PDAs, smart phones, and Tablet computers. The 

advantage of online recognition system over offline systems is interactivity, adaptation of 

writer to digitizer (or vice versa), less prone noise, and available temporal information. 

The disadvantage is that the whole document is not available for processing; and 

therefore, information needs to be processed dynamically. 

1.2.1.1. Handwriting recognition development 

Figure 3 shows major milestones in the development of handwriting recognition systems. 

The effort dates back to 1915 when Goldberg filed the first patent in handwriting 

recognition. Today, after a century of research and commercial developments, reliable 

systems exist in online text recognition. Today, handwritten texts on a screen of an iPAD 

can be quickly digitized and stored efficiently. One caveat is that handwriting recognition 

in non-Roman text suffers a lag in technology and challenges that are language specific. 

Therefore, there is a lot of room for research and development in improving OCR for 

non-Roman text. 
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Figure 3: Timeline of handwriting recognition 

1.2.2. Offline text recognition 

An Offline text recognition system processes a static representation of a document. 

Offline text recognition is divided to two subcategories of typed and handwritten 

documents. In both subcategories, an image of the document obtained from a scanner or 

camera is processed. Obviously, due to the variety of handwriting styles and non-standard 

nature of handwritings, the problem of offline handwriting recognition is the most 

challenging problem in OCR and it usually requires language specific methods. On the 

other hand, OCR of typed documents are very much in demand for practical applications 

such as historical document analysis, official letter and document processing, and vehicle 

plate recognition. 

Optical character recognition of typed document for English has become one of the most 

successful applications of technology in pattern recognition and artificial intelligence. 

1915     U.S. Patent on handwriting recognition user interface with a stylus by Hyman Goldberg 

1938     U.S. Patent on machine recognition of handwriting by George Hansel

1957     Tom Dimond invents the first handwriting recognition tool (Stylator Tablet) 

1961     RAND Tablet invention: the first two-dimensional Tablet (more advanced than Stylator)

1969     GRAIL system: handwriting recognition with electronic ink , gesture commands

1973     Newman and Sproull developed “The Ledeen Character Recognizer"

1980     First retail handwriting recognition systems: Pencept, CIC, Inforite point-of-scale terminal

1989     Portable handwriting recognition computer by GRiD systems

1997 Address interpretation system deployed by United States Postal Service

2001     Windows XP Tablet PC with handwriting recognizer

2007     CEDAR-FOX: a commercial Forensic comparison of handwriting



 

5 

 

Most of the active research in this field is to deal with very complex documents, noisy 

and skewed documents, as well as improving recognition rates for non-Roman based 

texts. 

1.2.2.1. Evolution of offline text recognition 

Research in OCR of documents started at the beginning of the 1960s with the 

development of the digital computers. It is the first time OCR was considered as a viable 

data processing application with a wide commercial use. The first generation machines 

used special letter shapes which the OCRs could read. These shapes were specially 

designed for machine reading, and they appeared like symbols. The first commercialized 

OCR of this generation was from IBM, which could read a special IBM font. This OCR 

worked based on template matching, which compared the character image with a library 

of prototype images for each character of each font. In early 1970s, OCR systems were 

able to recognize regular typed and handwritten characters with limited numerals and a 

few letters and symbols. The first automatic letter-sorting machine for postal code 

numbers from Toshiba was developed during this period. The early OCR systems were 

mostly based on the structural analysis approach or standardization. In late 1970, an 

American standard OCR character set OCR-A font was defined, which was designed to 

facilitate optical recognition while still readable to humans. In 1980s, OCR systems faced 

the challenge of improving recognition rate for documents of poor quality and large 

printed and handwritten character sets. Today, a reliable OCR system should be able to 

perform accurately on complex documents intermixing with text, graphics, tables and 

mathematical symbols, color documents, low-quality noisy and skewed documents, etc. 



 

6 

 

1.3. OCR Systems Classical Flow 

The input of an OCR system is an image. The image can be from a scanner, a camera, or 

simply a print-screen of a page. The image may contain not just the text but pictures, 

equations, tables, etc. Therefore, the first step of any OCR system is preprocessing.  

 

Figure 4: Offline Optical Character Recognition Classic process flow 

The goal of preprocessing is to extract the text and convert the raw image of the text to 

segmented components. Then, in the recognition phase, the features of these segmented 

components are extracted and fed into a classification module. Finally, the outcome of 

the algorithm is a machine editable text (Figure 4). 

1.3.1. Preprocessing Phase 

Typical preprocessing includes the following steps, not necessarily in this order: 

o Noise removal 

Documents may contain noise for many reasons. One type of noise is the marginal noise 

which appears as a large dark region around the document image. Another type of noise 
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is background noise which appears from uneven contrast, background spots, printer and 

scanner malfunctions. Finally, page rule lines are another source of noise interfering with 

text objects. There are several methods in dealing with each noise type.  

For page rule lines, mathematical morphology based methods trace line like structures as 

candidate for rule lines [1]. Hough transform [2] can also be used to find imperfect 

instances of objects with certain class of shapes using a voting procedure. Finally, 

projection profile based methods work by creating a horizontal histogram in which the 

hills of the histogram are the center locations of the horizontal rule lines [3].  

For marginal noise, there are two groups of methods. One group aims at identifying noise 

components. In this method, the noise patterns in an image are searched by extracting 

noise features [4]. For example Peerawit’s method [5] uses Sobel edge detection and 

identifies noises to be removed by comparing the edge density of marginal noise and text. 

Another group for marginal noise removal is by Identifying Text Components [6].  

For background noise, many techniques have been introduced. One common method is to 

use a low-pass filter to remove as much of the noise as possible while retaining the entire 

foreground pixels. More advanced methods are Binarization and Thresholding Based 

Methods [7], Fuzzy Logic Based Methods [8], Histogram Based Methods [9], and 

morphology based methods [10]. 

o Binarization 

 

Binarization is the process of converting gray scale images to binary images. A large 

number of methods have been proposed for binarization. These methods generally fall 

into two main approaches. One approach is based on global thresholding and the other is 

based on local thresholding.  
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In global thresholding, based on statistical attributions of a document, a single value is 

used as threshold between background and foreground pixels. Otsu method [11] is one of 

the most commonly used global binarization techniques. The main drawback of this 

method is that it cannot adapt well to noise and illuminations. A recent work by Lazzara 

[12] focuses on Sauvola binarization method. This method performs relatively well on 

classical documents, however, three main defects remain: the window parameter of 

Sauvola’s formula does not fit automatically to the contents, it is not robust to low 

contrasts, is not invariant with respect to contrast inversion. 

In local thresholding, the threshold value is varied based on the local content of the 

image. Commonly used Niblack binarization method [13] is based on local thresholding.  

o Skew detection and correction 

This step is an important preprocessing step discussed in chapter 2. After overview of 

common skew detection methods in chapter 2.2, a new technique in skew detection and 

correction of documents is introduced. 

o Page Analysis 

Page Analysis is the process of identifying and categorizing regions of interest in the 

image of a document. In this step, the text regions are labelled and then fed into the OCR 

flow. In chapter 3, we focus on this important preprocessing step and propose a new 

method in segmenting different regions of a document. 

o Segmentation 

This step is another important preprocessing step. Segmentation performance of an OCR 

system directly affects the recognition performance, as the output of the segmentation 
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step is directly fed into the recognition engine. Figure 5 depicts hierarchy of offline 

segmentation step. 

 

Figure 5: Hierarchy of Offline segmentation step of Optical Character Recognition  

Text segmentation of Persian text is not a trivial step as characters could overlap, slant, 

and have different styles and fonts. Some researches skip the segmentation step entirely 

and instead take a holistic approach. The idea is to recognize whole words against a 

dictionary. The obvious problem of such an approach is the number of classes present in 

the recognition phase. In Persian there are 114 contextual forms of its 32 alphabets. 

Characters in the Persian language can have different shapes depending on its position 

within a word. A character that is used in the beginning of a word will have a different 

appearance than one that is in the middle or end of a word and these might be different in 

appearance than stand-alone characters. A technique that segments a Persian word into 

characters and then uses a classifier trained on all 114 shapes can potentially recognize 

any text.  

On the other hand a holistic classifier needs to learn as many classes as the number of 

dictionary words, names of individuals and countries.  Therefore in holistic approach, 

training of a classifier for many classes is one of the major issues. Based on this 

limitation, segmentation based approach is more practical than the holistic approach for 

real world problems. Many techniques have been developed for holistic approaches. 

Text Recognition

Segmentation Free Segmentation based

Subword segmentation Recognition basedDissection
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Benouareth [14] used holistic method for Arabic word recognition. To build a feature 

vector sequence, two segmentation schemes are incorporated to divide a word into 

frames. The first one is uniform segmentation, which vertically divides a word into equal 

sized frames. The second one is non-uniform segmentation, which has variable frame 

size. After segmenting word into frames, statistical and structural features are extracted 

by capturing ascenders, descenders, concavity, dots, and stroke direction. Vinciarelli [15] 

used similar technique in which prior to the information retrieval, the individual words on 

the handwritten document need to be recognized correctly. Using a fixed size sliding 

window, density feature is extracted for HMM to perform recognition by calculating the 

likelihood of a word against dictionary. To reduce the computational cost of holistic 

approach, Mozaffari [16] proposed a lexicon reduction scheme for offline Farsi 

handwriting recognition by analyzing dots within characters.  

Segmentation based approaches, can be performed by either the dissection or recognition-

based technique. Dissection is decomposition of the image into a sequence of sub-images 

using general features. Projection analysis, connected component processing, and white 

space are some of the common dissection techniques used by OCR systems [17]. These 

techniques are suitable for scripts which have spaces between characters.  

The basic principle of recognition-based character segmentation is to use a mobile 

window of variable width to provide the tentative segmentations. Characters are by-

products of the character recognition for systems using such a principle to perform 

character separation. The main advantage of this technique is that it bypasses serious 

character separation problems. 
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In some language scripts, like Persian, segmenting words to characters is a very difficult 

task as characters overlap. For this reason, in chapter 4 in segmenting Persian texts, we 

neither segment words to their characters nor skip the segmentation step entirely. Instead, 

we try to get the best of each method by segmenting text to its sub-words, a much easier 

process with a much better success rate. On the other hand, rather than dealing with a 

huge class size, we deal with a more manageable database of sub-words. The largest 

Persian sub-words dictionary reported in literature [18] contains 7317 subwords, which is 

just a small fraction of more than a million words in Persian language. 

1.3.2. Recognition Phase 

In this phase, segmented text is fed into a feature extraction algorithm and finally to 

classification module.  

o Feature extraction 

Feature extraction is to find a set of features that define the shape of the underlying 

character as precisely and uniquely as possible. Selection of feature extraction method is 

probably the most important factor in achieving high performance in recognition. Feature 

extraction methods are very much application specific and there is no universally 

accepted set of feature vectors in document image recognition. Some of the available 

methods in feature extraction include image invariant, projection histograms, zoning, and 

n-tuples. Image invariant features are popular choice in many OCR systems. Image 

invariant methods can be categorized to boundary-based and region-based methods.  

A classical boundary-based method is Discrete Fourier Transform. In this method, 

Fourier transform is used to analyze a closed planar curve. Several variations of Fourier 

Transform for feature extraction have been introduced. For examples, Zahn [19] applies 
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the Fourier transform to the sequence of angular differences between line segments in the 

curve.  

In chapter 4, we apply the Discrete Fourier Transform (DCT) to segmented sub-words 

coordinate components. Transformation of images to Fourier domain provides important 

information about their structure. In the Fourier domain, there are low and high frequency 

components. High frequency components denote the fine details of a shape; whereas, low 

frequency components denote to basic shape structure. For feature extraction of 

characters, usually limited number of lowest frequency components in the image 

spectrum is considered and higher frequency components are discarded, as they mostly 

represent image noise. 

In region-based methods, moments of different points present in a character are used as a 

feature. Hu [20] introduced the concept of classical moment invariant in 1962. Hu’s other 

moments are statistical measure of the pixel distribution about the center of gravity of the 

character. In 1982, Teh [21] defined a set of moments called Zernike based on theory of 

orthogonal polynomials. Zernike moments have been used successfully in many OCR 

systems as well. The advantage and disadvantage of each of these methods is tabulated in 

Table 1.  
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Table 1: Comparison of commonly used OCR’s feature extraction methods 

In chapter 4, we introduce a hybrid approach based on Hu, Zernike, and Discrete Fourier 

Transform for feature extraction of Persian sub-words. 

o Classification 

In classification stage, based on the features extracted and relationships among the 

features, an OCR process assigns labels to character images. This step is the final stage of 

the OCR system in which characters or sub-words are recognized and are output to 

machine editable form. Classification methods can be divided into two categories: 

learning-based and non-parametric classifiers. The learning-based classifiers require an 

intensive learning phase of the classifier parameters. Neural network [22, 23], Support 

Vector Machine (SVM) [24], Boosting [25], and decision tree [26] are examples of 

commonly used classifiers in this category.  

Decision tree is used to create an expansive classifier ensemble. Different types of 

decision trees are discussed in [27]. Since in decision tree each node asks a question on 
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only one feature, the learning phase is quicker compared to other methods in this 

category.  

SVM is a binary classifier with discriminant function being the weighted combination of 

kernel functions over all training samples. After learning by quadratic programming, the 

samples of nonzero weights are called support vectors. For multi-class classification, 

binary SVMs are combined in either one-against others or one-against-one scheme [24]. 

Due to the high complexity of training and execution, this method is not suitable to 

classify a big set of data. 

Learning-based classifiers, such as Artificial Neural Networks, usually offer more 

accuracy in performance; however, they impose a high computational cost for OCR 

systems. Nonparametric classifiers base their classification decision solely on the data, 

and require no learning of parameters. The most commonly used non-parametric method 

is Nearest-Neighbor (N-N) method [28], which classifies an image by the class of its 

nearest image in the database. These classifiers are suitable to handle a huge number of 

classes and do not suffer from over-fitting of parameters, which is a major issue in 

learning-based methods. More importantly, these methods do not require training. 

Although training is a one-time preprocessing step, retraining of parameters in large 

dynamic databases is a big overhead on the system. For smaller database however, 

learning based classifiers are recommended as they provide unsurpassed accuracy. 
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CHAPTER 2  

SKEW DETECTION AND CORRECTION OF SCANNED DOCUMENTS 

2.  

2.1. Introduction 

A text document consists of several text lines. To estimate the skew angle of a text line, a 

straight line can be drawn through its characters. The angle of this straight line with the 

horizontal edges of the page is the skew angle of the text line (Figure 6). 

 

Figure 6: A skewed text line 

The dominant skew angle of the text lines in a page determines the skew angle of that 

page. A document originated electronically with a text editor has skew angle of zero. 

However, when a document is printed, photocopied or scanned, a non-zero skew angle 

will be introduced. Since document analysis algorithms such as text recognition or page 

layout analyzers usually assume a zero skewed page, skew detection and correction is 

considered a required preprocessing step. Moreover, to improve the quality of scanned 

documents, many scanners perform document skew correction immediately after a scan 

and before a document image is displayed on a computer monitor.  

2.2. Skew Angle Detection Methods 

Skew angle detection methods mainly fall into one of the following four categories: 

α
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2.2.1. Projection Profile 

This method was initially proposed by Postl [29]. In this method, histograms of the 

number of black pixels along horizontal parallel sample lines through the document for a 

range of angles are calculated. For a non-skewed document, horizontal projection profile 

will have peaks whose width are equal to the characters’ height with maximum peak 

heights at the text lines and valleys whose width are equal to the between-the-line 

spacing.  Therefore, for each angle a measure of the variation in the bin heights (such as 

variance) along the projection profile is tracked and the angle with the most variation 

gives the skew angle.  

 

Figure 7: Histograms of a skewed document (top) and a non-skewed document (bottom) 
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Figure 7 shows histograms of a document for two different skew angles. As shown, when 

a document has a non-zero skew angle, the horizontal histogram is spread at different row 

numbers. However, in a zero skewed page the histogram is clearly discreet with strong 

peaks and separated by valleys. Also, since the number of black pixels in a document is 

constant, the spectrum energy of the histogram is constant. Therefore, for a non-skewed 

page, the same amount of energy has to spread in a smaller area (sum of each line’s 

height in a page). That is why for a non-skewed page, histogram peaks are much stronger 

than the peaks on a skewed page. Refer to Appendix A for a MATLAB source code. 

Projection Profile Limitations: 

The limitation of this method is that the document needs to be free from images, 

diagrams and graphs as these have greater contribution than text lines in the profile, 

therefore compromising the accuracy of angle detection. Moreover, this method is not 

very efficient, as projection profile of all possible angles need to be calculated. 

Additionally, projection profile methods are limited to estimate skew angle within ±10° 

to 15° and the accuracy of skew detection depends upon the angular resolution of the 

projection profile. Finally, projection profile methods are very sensitive to noise. 

Improved Projection Profile Methods 

In order to reduce high computational costs, several variations of Postl’s original method 

have been proposed: 

Baird [30] proposed a technique to select a subset of the points to be projected. He 

suggested finding the connected components and projecting only the bottom-centers of 

the connected components bounding box parallel to set of angles. For each angle, the sum 



 

18 

 

of squares of the values in the projection profile is used as a criterion function. Finally, by 

using least squares procedure, the peak of the criterion function is approximated.  

Ciardiella [31] selected a sub-region of a text based on high density of black pixels per 

row and used projection profile of this selected sub-region. The criterion function used in 

this method is the mean square deviation of the profile. Since, only a sub-region of the 

whole document is selected, the computational cost of the algorithm reduces. 

Ishitani [32] selected a cluster of parallel lines on the image and the bins of the profile 

stored the number of black to white transitions along the lines. Again, the aim of this 

modification was to improve the high computational cost of rotating the whole document 

for a wide range of angles. 

Bloomberg [33] extracted a sample image in the skewed document. Skew angle was 

calculated by sample image rather than whole document which supposedly results in a 

faster skew estimation method. Same as Ciardiella’s method, the goal is to apply the 

algorithm on a section of a page. 

2.2.2. Hough Transform [HT] 

The Hough transform was first introduced by Duda [34], who generalized the idea of 

Paul Hough [35]. In 1981, Ballard [36] applied the HT method to detect arbitrary shapes. 

In 1988, Illingworth [37] used HT to correct skew angle of a page. In this method, each 

point in Cartesian space (x,y) is mapped to a sinusoidal curve in  ρ- θ  Hough space using 

transform function              . When multiple points are on the same line, 

their transformation will intersect at the same point on the transform plane. Therefore, an 

accumulator is defined to track number of intersections that sinusoidal curves have at 

various ρ and θ values. As the number of intersections increases at a particular value of θ 
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so does the possibility of having a line in the original image corresponding to that θ 

value. Finally, peaks at each ρ value give the angles at which straight lines can be fit 

through the original pixels. The skew angle of the documents is found by averaging the 

 s with highest accumulator peaks.  

 

Figure 8: A skewed image of a page (left), Hough Transform lines with the highest 

accumulator values (right) 

 

Figure 8 shows detected lines with highest HT accumulator peaks on a skewed page. The 

average skew angles of these lines are considered the skew angle of the page. Figure 9 is 

the Hough parameter space for the skewed page shown in Figure 8.  In this space, each 

black pixel of the page transforms to a sinusoid. The point of intersect between two 

sinusoids indicates the parameters of the line passing through both points. The white 

squares in Figure 9 show the five points in HT space with the most values of Hough 

accumulator, corresponding to the lines found in Figure 8. Please refer to Appendix A for 

the MATLAB source code used in this dissertation for HT method skew angle correction.  
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Figure 9: Hough Parameter space for the skewed page in Figure 8 

Hough Transform Limitations 

Even though this technique has shown high accuracy but it has its own shortcomings. 

Figure 10 shows an example of HT unsuccessful skew detection. Having different page 

columns and existence of a title and a foot note makes skew detection of this sample page 

particularly difficult. As shown, in this case, highest values of the accumulator do not 

represent the skew angle of the page. 
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HT is known as a skew detection method with high accuracy but relatively slow. As 

explained earlier, in this method every black pixel of a page needs to transfer to Hough 

space which makes this method computationally expensive. Also, this method is slow in 

the presence of noise, and in case of sparse text; it is difficult to choose a peak in Hough 

space [38], [39], [40]. Moreover, due to high computational cost, usually the skew is 

assumed within a range and relatively coarse angle intervals (        are calculated.  

 

Figure 10: A skewed image of a page (left), HT lines with highest accumulator values 

(right) 

Improved Hough Transform Methods 

Hinds [38]: In order to decrease the amount of data within a binary image, Hinds [38] 

suggested using “burst image”. “Burst image” is a gray scale image in which each pixel’s 

intensity represents the vertical run-length of a column of black pixels in the original 

binary image. After finding “burst image”, Hough transform is applied to either vertical 

or horizontal burst image. The drawback is that in order to increase the speed of the 

algorithm, the resolution of the document image has to be decreased before creating 
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“burst image”. Also, this method does not perform well when the majority of the 

document is non-textual [39].  

Manjunath [41] reduced number of Hough transforms by taking centroids of connected 

components instead of using all image pixels.  

Le [42] and others used the bottom pixels of the candidate objects within a selected 

region for Hough transformation.  

Most of the improvements to the HT method aim at reducing input data to the Hough 

space; however, they usually increase the complexity of the algorithm and reduce the 

accuracy of the skew angle detection. 

2.2.3. Nearest Neighbor [N-N] 

This method is based on connected components in which the first nearest-neighbors of all 

connected components are found and the histogram of the direction vectors for all 

nearest-neighbors is obtained [43].  

By using Histogram peak, the skew angle can be found. Here are the main steps in the 

NN algorithm (refer to Appendix C for the MATLAB source code): 

Step 1. Determine connected components 

Step 2. Find nearest neighbor of each component using Euclidean distance 

Step 3. Find the angle between centroids of nearest neighbor components 

Step 4. Accumulate the angles in a histogram  

Step 5. The dominant peak in the histogram indicates the skew angle 

Figure 11 is an example of connected components detected on a skewed page and Figure 

12 is the histogram of the accumulated angles. 
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Figure 11: A skewed image of a page (left), connected components used for N-N skew 

detection method (right)  

 

 

Figure 12: Histogram of the image in Figure 11 

θ°
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The histogram clearly show a strong peak at    °, therefore, by rotating the image by 

   ° the skew of the image is corrected. Please note that by correcting the skew of the 

image, the image is going to be up-side-down. Therefore, an orientation correction 

algorithm is needed to correct the image orientation. Figure 13 is another example of 

applying N-N method on a skewed page. In this case, however, the image skew angle is 

not correctly identified. This example demonstrates one of the weaknesses of the N-N 

method as its accuracy decreases when the image includes graphical pictures.  

 

Figure 13: A skewed image of a page (left), connected components used for N-N skew 

detection method (middle), incorrect skew correction (right) 

Figure 14 shows the histogram of this image. From the histogram, we observe that due to 

the presence of the graphical picture, the N-N accumulator has several strong peaks, 

which leads to an incorrect skew detection of the image.  
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N-N method limitations 

The advantage of N-N method is that it is not limited to any range of skew angles. 

However, in the presence of noise and subparts of characters, accuracy of this method 

decreases significantly. In addition, this method requires special attention for dealing 

with different scripts, and connected or broken characters, and heavily depends on the 

quality of the binarization process output. This dependency can be very problematic 

when dealing with complex or degraded data, such as historical documents. 

 

Figure 14: Histogram of the image in Figure 13 

2.2.4. Fourier Transform 

In this method first 2-D Fourier transform will be applied to the image plane. Then, 

coefficients of the power spectrum are calculated and stored in a spectrum [29]. A 

directional criterion for each angle is then calculated. The angle that maximizes the 

directional criterion is assumed to give the skew angle of the image. Peake [44] extended 

θ°
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the earlier work of Postl [29] by calculating skew angle from Fourier spectrums 

calculated from a number of equally sized blocks of the original image. Peake noted that 

a directional alignment of energy occurs in Fourier space along an angle corresponding to 

the skew of the image. He speculates this directional alignment is due to spacing with the 

lines of a text.  

 

Figure 15: A skewed image of a page (left), original image sliced into 4 equal blocks 

(right) 

 

To evaluate the Fourier transform in skew detection of documents, we implemented 

Peake’s method (refer to Appendix D). Based on this method, we slice an image to 4 

blocks of equal size (Figure 15). Then, using FFT, the Fourier spectrum is computed for 

each block.  Based on Peak’s recommendation, a small window of size     , centered 

at the origin, is removed to improve the accuracy of the skew detection (Figure 16).  

For consistency between the blocks, all values are normalized and 5 highest pairs of 

peaks are found and the angle of the line connecting each point and the center of the 

block with respect to the vertical axis is calculated.  

Block#4Block#3

Block#1Block#2
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Figure 16: Fourier spectrum of the 4 blocks in Figure 15 

Finally, in a histogram, integrals of normalized value of the peaks in the Fourier spectrum 

for each angle are collected. In the histogram, the bin with the highest peak is assumed to 

give the skew angle (Figure 17). 

 

Figure 17: Histogram of the integrals of normalized value of the peaks in the Fourier 

spectrum (Left), corrected skew of the image in Figure 15 using Fourier transform 

θ°

Block#1

Block#4Block#3

Block#2

θ°



 

28 

 

Limitations of Fourier Transform method 

For large images, this method is computationally expensive since 2D Fourier transform 

of each pixel in the document has to be computed.   

Also very often for a document image, the largest density direction of Fourier space may 

be different than the true skew direction. Figure 18 shows a skewed Japanese text which 

Fourier transform failed to correct. 

 

Figure 18: A skewed image of a Japanese text (top-left), outcome of the skew correction 

algorithm (top-right), Fourier spectrum of one of the image blocks (bottom-left), and 

histogram of the normalized value of the peaks in the Fourier spectrum (bottom-right) 

θ° θ°

Block#4
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2.3. Skew correction mechanism 

Once the skew angle   is identified, the document is simply rotated by a rotation matrix: 

     [
          
         
   

] (1) 

 

2.4. Skew Detection based on an axes-parallel bounding rectangle 

In this dissertation, we propose a new method based on geometrical features of a skewed 

document. In this method, we calculate the area of an axes-parallel rectangle bounding 

box (Figure 19 and Figure 20). By rotating only the peripheral pixels of a text using a 

simple numerical method (explained in page 30), the area of the axes-parallel rectangles 

is minimized. The angle with the least area of the axes-parallel rectangle represents the 

skew angle. We would like to mention that our algorithm differs from typical minimum 

area bounding box methods such as the ones offered in [45] and [46]. Safabakhsh’s 

method [45] is based on minimizing the area of a bounding box found from boundary 

pixels of connected components in the text. This method is computationally intensive, as 

all connected components of a text is held in memory for bounding box area calculation 

and for all possible angles. In the patent filed by Rudak [46], the boundary pixels are used 

to create a polygon and at each rotational angle a criterion is defined as the difference 

between the area of the polygon and the bounding box. Again, Rudak’s method requires 

several computationally intensive calculations like creating the encompassing polygon, 

calculating the area of the polygon, vertex transformations for each rotation and more 

importantly not a methodological approach to search for its criterion minimization. 
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In our method however, only the outer peripheral pixels of a document are used to form 

an axes-parallel rectangle. Then, using the Bisection numerical method, skew angle is 

detected efficiently in a few iterations. 

 

Figure 19: Left: An angled rectangle embedded in an axes-parallel rectangle. Right: A 

rectangle at zero angle 

2.4.1. The proposed algorithm and its implementation 

Our algorithm relies on correcting the skew angle of a text using the outer peripheral 

pixels; and therefore, can correct the skew of a text regardless of the script or the contents 

of the text. This method performs well compared to many of the available techniques 

because it can correct texts containing images, diagrams, etc. and works in wide range of 

angles. 

Underlying Trigonometry 

The following theorem is proposed as the basis of our skew correction methodology: 

Theorem: In Euclidean plane geometry, assume a rectangle centered at origin and 

rotated by angle α. Using 4 corner vertices of this rectangle; create another rectangle 

oriented parallel to the axes. The area of this axes-parallel rectangle is minimum when α 

is a multiple of    ⁄   . 

The proof of the above theorem is trivial, as a skewed rectangle can always be “fitted” in 

a rectangle parallel to the axes made from its vertices (demonstrated in Figure 19). In our 

α

α=0
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algorithm, we use this basic trigonometry fact, to minimize the area of the rectangle 

created from four most corner pixels of an image and parallel to the axes. In other words, 

we rotate the text in a way to eliminate the gray regions of the picture in Figure 19. 

 

Figure 20: Corner pixels detection of a text 

Step-by-step description of our algorithm: 

Step 0: Preprocessing: After image binarization, apply noise removal and border 

elimination techniques to prepare the image for skew detection [47], [48], and [49]. 

Step 1: Text border detection: Simply scan the document row by row to detect the first 

and the last black pixel in each row. From this point forward just use the text border 

pixels as a representative of the document. 

Step 2: Corner pixel detection (refer to Figure 20): 

minRow: From step 1, find pixels with the minimum row number. Among them, the pixel 

with the minimum column number is our minRow pixel (Point A in Figure 20). 

maxRow: From step 1, find pixels with the maximum row number. Among them, the 

pixel with maximum column number is our maxRow pixel (Point C in Figure 20). 
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maxCol: From step 1, find pixels with the maximum column number. Among them, the 

pixel with minimum row number is our maxCol pixel (Point B in Figure 20). 

minCol: From Step 1, find the pixels with the minimum column. Among them, the pixel 

with maximum row number is our minCol pixel (Point D in Figure 20). 

Step 3: Calculate the area of a rectangle parallel to axes (dashed rectangle in Figure 20):  

    (               (               (2) 

Step 4: Find direction of rotation to minimize the area:  

Rotate border pixels      .   

If             then direction is positive (CCW) 

If          then direction is negative (CW) 

Otherwise, there is no direction. Skip Step 5 and set        

Step 5: Rotate the picture    in a loop in the direction found in Step 4 and monitor area of 

the rectangle.  

If                       then              ,                   exit the loop. 

Step 6: Use Bisection method with steps of 0.5 to find the angle giving the minimum 

area: 

step size=8 

while step size>0.125      //we are targeting 0.125° accuracy 

step size=step size/2 

Rotate original border pixels                . 

      (                and              . 

Set   to the corresponding angle of A. 

loop 

Step 7:   is the skew angle. Rotate the original picture by    to correct the skew angle 

of the text (refer to skew correction mechanism described in section 2.3). 
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Based on theorem mentioned in section 2.4.1, the result of the skew correction by 

minimizing the calculated area may be a multiple of    ⁄  .  In step 8 we correct a possible 

    turned document. 

Step 8: Scan the document row-wise between rowMin and rowMax and column-wise 

between minCol and maxCol. If column-wise scan had more white columns than row-

wise white rows, then the picture need to be rotated    . If the direction obtained from 

step 4 was positive, rotate      and if the direction obtained from step 4 was negative or 

it was no direction, rotate     .  

Performance and limitations 

Angle Limitation: Our algorithm corrects skews of any angle. This is a big advantage 

over existing algorithms. However, if the original text is between 135° to 225° or exactly 

at 270°, our algorithm corrects the skew but not its orientation (the document will be 

180° flipped). Fixing document orientation requires language specific algorithms. For 

example, orientation of a Roman script can be fixed based on the fact that ascenders
1
 are 

more likely to occur than descenders
2
. 

Text Content Dependency: Our algorithm is content independent. Since we only use the 

outer periphery of a text, the content of the text does not matter. Therefore, the skew of a 

text with graphs, tables, diagrams, etc. can be corrected. 

Speed: Our algorithm works very fast (in average less than 1 second on a typical PC) as 

it only works with the periphery pixels and number of rotations has been optimized using 

a binary search.  

                                                 
1
 The ascenders are the parts of lowercase characters that lie above the mean line. 

2
 A descender is the portion of a letter that extends below the baseline of a font. 



 

34 

 

Accuracy: Our algorithm corrected skews of our tested documents with accuracy of 0.06 

degrees. There is no need to correct for lesser angles as angles less than 0.1 degree have 

minimal effect on performance of character recognition algorithms. 

2.5. Our method compared to existing methods 

To compare our algorithm to the existing state-of-the-art skew detection algorithms, we 

programmed 4 conventional skew detection techniques: PP, HT, 1
st
-NN, FT (source 

codes provided in Appendix A to Appendix D) and compared them against our axes-

parallel bounding rectangle method. Test environment consisted of a PC with Intel i5-

2540M CPU @ 2.60GHz with 16 Gb of memory and the tests were performed in 

MATLAB. To measure the computing time, MATLAB’s “clock” function was used. 

Total of 130 images were used from the following sources:  

 Our database of 30 images  

 University of Maryland Tobacco800 image database 

 www.mediateam.oulu.f-i image data base 

We categorized our database to two groups of “Typical Samples” consisted of 100 

images obtained from online sources and “Extreme Samples” consisted of 30 images. 

2.5.1. Typical Samples 

Table 2 and Figure 21 show the results of our method compared with the other 

conventional methods. As indicated in Figure 21, the goal is to approach a 100% success 

rate as fast as possible. It is clear that our method is superior compared to other methods 

both in the success rate and average time required for skew correction.  
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Table 2: Success rate and average skew correction time 

As mentioned earlier, our method is very efficient as it works only with the peripheral 

boundaries of the text. On the other hand, the success of our method is highly dependent 

to a successful noise removal preprocessing.  

 

Figure 21: Comparison of success rate and average skew correction time 

2.5.2. Extreme Samples 

In the extreme samples category we created skewed pages in which typical skew 

correction techniques usually perform poorly. One example is when a page is skewed 

more than 45 degrees, includes images/tables, and consists of more than one column. 

Each image in this category was carefully scanned, then corrected in Photoshop for a 0˚.  

PP 1st-NN HT FT Our Method

Success Rate 86% 48% 92% 82% 95%

Avg. time (s) 16.8 2.5 4.9 2.8 1.56

Goal
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Then, each image was arbitrarily rotated using the rotate function in Photoshop. Success 

is assumed when the difference between the estimated skew angle and the tagged skew 

angle is less than 1˚. Figure 22 shows samples of the images in this category.  

 

 

Figure 22: Sample images in the extreme samples category 

 

Table 3 shows the results of our method compared with the other conventional methods. 

As shown, our method is successful in correcting all 30 images in this category. 
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However, in some cases the orientation of the image is not corrected. Among the 

conventional methods, PP performed best but not so much successful when images 

include pictures. 1st-NN method performed poorly as this method works best in simple 

text images. 

 
 

 

Table 3: Skew detection success rate comparison 

“Y” indicates a successful detection, “N” indicates an unsuccessful detection, and ± 

indicates deviations from the correct skew angle. 
 

Img# Skew Angle PP HT 1st-NN FT Our Method 

1 25 Y-90 Y Y Y Y 

2 9.5 N Y N N Y 

3 15 Y Y Y Y Y 

4 15 Y N Y N Y 

5 59 N Y Y Y Y 

6 -29 Y Y N Y  Y 

7 -76 Y N N N Y 

8 -68 Y N N N Y 

9 7 Y+90 Y N Y Y 

10 36 Y Y Y Y Y 

11 7 N Y N Y Y 

12 36 Y Y N Y Y 

13 82.5 N Y-90 Y Y-90 Y-90 

14 -9.3 Y+180 Y-180 N Y-180 Y-90 

15 12 Y+90 Y+180 N Y+180 Y+180 

16 -3.5 N N N Y Y+180 

17 88.3 Y N N Y Y 

18 89 N N N N Y+90 

19 -2 Y+180 Y+180 Y Y+180 Y+90 

20 -4 Y-90 N N Y Y-90 

21 -44 Y Y N Y Y-90 

22 -12 Y Y+180 N N Y 

23 23 Y N N Y Y 

24 1 Y Y Y Y Y 

25 10 Y Y N N Y 

26 -7 Y N Y N Y 

27 2 Y Y N Y Y 

28 -43.5 Y+180 Y Y Y Y+180 

29 20 N Y N N Y 

30 -10 Y Y N Y Y 
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2.5.1. Experimental Results 

Below are some selected examples showing the skewed image (left) and the skew 

corrected image using our method (right). 

First page of an English technical paper: As shown below the skew of the image is 

corrected accurately.  

 

Figure 23: Skew correction of a page of an English technical paper 

A page of English book including several pictures: The page is de-skewed correctly. 

 

Figure 24: Skew correction of a page of an English book with graphical images 
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A page of English book including a table: As shown the page is de-skewed correctly. 

However, the page is upside down. As noted above, if the original text is between 135° to 

225° or exactly at 270°, our algorithm corrects the skew but not its orientation. Here the 

image is at 209°, therefore it gets de-skewed to an upside down orientation.   

 

Figure 25: Skew correction of a page of an English book with a table at 209° 

A Japanese text: As shown below, the text is de-skewed correctly. However since this 

Japanese text is written column-wise, its orientation is not correct. Here, an orientation 

correction algorithm specific to Japanese script is needed. This correction algorithm 

could be a simple smearing algorithm such as the one used in step 8, tuned for a top-to-

bottom documents. 

 

Figure 26: Skew correction of a Japanese text 
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A scanned image of an English document with graphical image: As shown, the image is 

de-skewed correctly. The preprocessing step of our algorithm removed the black borders 

and then the algorithm finds and corrects the skew of the image. However, because the 

original image is skewed 170°, our algorithm de-skews the image to an upside down 

orientation. Please note that the complexity of this document image as it includes an 

embedded table and picture and a wide bordered header. Also, the image has three 

columns with page number and footer. Other state-of-the-art algorithms such as 

projection profile were not successful in de-skewing this image. 

 

Figure 27: Skew correction of a Japanese text 

A scanned image of an English document with a graphical image next to the text, a title, 

and a page number: The image is de-skewed correctly from 36 degrees skew angle. As 

shown in the right picture, our algorithm detects four corners of the image; and then, 

finds the area of the bounding box, parallel to the axes.  
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Figure 28: Skew correction of an English text 

2.6. Conclusions 

In this chapter we presented a novel technique for skew correction of a document. Our 

technique is based on an axes-parallel bounding box and works regardless of the content 

of the document. Therefore, our algorithm works in existence of graphical images, tables, 

charts, etc. with no angle limitations. A comparison of this algorithm with the existing 

state-of-the-art skew angle algorithms proved a reliable and fast algorithm, outperforming 

the compared methods. 

A

B

C

D
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CHAPTER 3  

 PAGE SEGMENTATION 

3.  

3.1. Introduction 

Page segmentation is a crucial step for a successful document image analysis. Published 

page segmentation algorithms often rely on some predetermined parameters such as font 

sizes, skews, and document scan resolutions. Variations of these parameters greatly affect 

the performance of the segmentation algorithms. In this dissertation, we introduce a new 

technique for page segmentation of complex documents in any format or skew angle. Our 

method simply performs a down-sampling followed by up-sampling. The sampling scale 

factor is calculated by estimating the white spaces between the rows. Our extensive 

evaluations confirm an efficient and robust technique for page segmentation capable of 

segmenting complex images. 

3.2. Introduction 

An image of a document is composed of not just pure text but a variety of segments such 

as pictures, tables, background, etc. For automatic text recognition of an arbitrary image 

of a document, segments of the image need to be separated and then analyzed. This 

process is called page layout analysis. The algorithms for layout analysis are classified 

primarily into two groups depending on the approach used. Top-down algorithms [50, 51, 

52, 53, 54, 55, 56] start with the complete document image and divide it repeatedly to 

form smaller and smaller regions. In contrast, Bottom-up algorithm [57, 58, 59, 60, 61] 

start with the smallest components of a document (pixels or connected components) and 

repeatedly group them to form larger, homogenous, regions. Each approach has its own 
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advantage and work well in specific situations. In addition, one could employ a hybrid 

approach that uses a combination of top-down and bottom-up strategies [62, 63, 64, 65].  

There are a variety of algorithms that has been proposed to perform layout analysis of 

documents.  

3.2.1. Top-Down Analysis Methods 

Typical top-down approaches proceed by dividing a document image into smaller regions 

using the horizontal and vertical projection profiles.  

Horizontal and vertical projection profile [50, 52] is a top-down method. In this method 

histograms of the number of black pixels along both horizontal and vertical sample lines 

through the document will be used for page layout analysis. Based on observations, it can 

be concluded that blank spaces between paragraphs are greater that the interline spacing. 

Therefore, by evaluating these spaces (valleys) in horizontal projection profile of a text, 

paragraphs and text lines within each paragraph can be located. In reality however, in 

order to improve efficiency and results, some sort of smoothing algorithm is used to 

decrease the original resolution of an image.  

The Run Length Smearing Algorithm (RLSA) [53] is another Top-down algorithm which 

works only on binary images. This method consists mainly of two steps: block 

segmentation and classification. In block segmentation step, two bitmaps of an image one 

horizontally and one vertically are created. In order to create these bitmaps, the document 

image will be scanned vertically and horizontally. For each scan, sequences of white 

pixels that their run-length are less than or equal to a predefined threshold will be 

changed to black pixels in the current bitmap and all black pixels existed in the original 

image will be unchanged. Usually the threshold values for horizontal and vertical scans 
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are different. The effect of this process is that all the neighboring characters will be 

merged into words, and words into text lines, and text lines into paragraphs depending on 

the value of the specified threshold and the distribution of white and black pixels within a 

document. In order to merge characters within a word, the threshold has to be chosen 

greater than character spacing within a word and less than between words spacing. After 

finding two bitmaps of the document image, bitmaps are then combined using logical 

AND operation. An extra horizontal smoothing may apply for finer segmentation. After 

finding all regions within the document, the algorithm moves on to classification step 

which calculates some features from each block and uses linear classifier to discriminate 

between text and non-text areas. The algorithm is fast but the values of thresholds have to 

be known in advance and the document should have a Manhattan page layout, that is, all 

columns can be isolated by a set of horizontal and vertical line-segments drawn through 

white spaces. 

The Recursive X-Y Cut (RXYC) [54] is a tree-based top-down method which uses 

vertical and horizontal projection profiles alternatively to segment a page document to its 

smaller sub-blocks. In this method the whole document page is considered as a root of a 

tree and then based on the valleys on horizontal or vertical projection profiles the 

algorithm recursively split the documents into smaller blocks, representing the nodes of 

the tree. At each step of recursion, all valleys of the projection profile with values larger 

than predefined threshold will be found and based on the occurrence of valleys the 

chosen block will be segmented into smaller blocks. At each level of recursion the value 

of threshold may be different which requires some level of knowledge about the 

document structure. Therefore, in this method the threshold value and a criterion for 
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stopping the recursion are required. Beside the disadvantage of requiring a threshold, the 

RXYC algorithm is only suited to pages where the layout is Manhattan. Furthermore, this 

method is sensitive to page skew. 

Whitespace Analysis is another typical top-down algorithm. Since in many languages 

white space is used in similar ways as a delimiter of the layout, using background white 

space provides an advantage over foreground text. Another advantage of using 

background white space is that fewer parameters need to be specified. On the other hand, 

choice of maximal rectangles depends on the document format. This algorithm was 

proposed first by Baird [55]. In this method all the maximal white rectangular blocks 

whose union will cover the whole document background will be found. Then for each 

cover a sort key will be calculated which uses the area of the cover and a weighting 

function. After that, covers will be sorted based on their key values. The goal of using 

weighting function in calculating keys for covers is to assign higher weight to tall and 

long rectangular blocks which act as separators in the document. In the next step, the 

rectangular blocks one by one are combined and every time the uncovered area left by the 

union of the covers will be added to the segmentations sequence. The segmentations 

sequence is empty in the beginning and as the covers start merging the sequence will 

grow as well. The unification of rectangular covers continues until stopping rule has been 

met. Finally, after the unification process ends, the candidate text regions are the 

connected components within remaining uncovered sections. Baird algorithm is very 

complicated to implement. Also, it is sensitive to the stopping condition. If algorithm 

stops too early it results in a higher number of merge errors. And if it stops too late it will 

results in greater split errors. Shafait [56] also used background white rectangles to find 
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text-lines in the document. In this method which is analogous to quicksort or branch-and-

bound method, all tall whitespace rectangles in order of decreasing area are found. Then 

the whitespace rectangles which lines of text do not cross will be considered as obstacles. 

After finding obstacles a least square globally optimal text-line detection algorithm will 

be used to detect the text lines and eventually compute the bounding boxes of all 

characters making the text-line. In this method the page must have a Manhattan layout 

and by vertical and horizontal run must be separable into blocks. Also the choice of 

“maximal” rectangle might be non-intuitive for differently formatted documents. 

Advantage of this method is that it is language independent. 

3.2.2. Bottom-Up Analysis Methods 

Bottom-up approaches need to define primitive components to start the grouping process.  

The Docstrum algorithm by O’Gorman [59, 60] method is based on bottom-up k-nearest 

neighbor clustering of connected components of the page. Before implementing this 

algorithm, the page needs to be preprocessed. To do so, first kFill filter will be used to 

remove all salt and paper noises and then all the connected components will be found and 

the histogram of their bounding box sizes is made. By analyzing the histogram, the large 

font size components can be detected and handled separately by the Docstrum algorithm. 

The reason for this step is that within line and between line spacing will be different 

when the characters’ font sizes become very large compared to the rest of the page. After 

preparing the page, the components are sorted based on their x value, and after that, for 

each component its k nearest neighbors are found. For each neighboring pair the angle 

and the distance between the components’ centers will be kept. Next, the nearest-

neighbor angle histogram will be compiled and the peak in the angle histogram will 
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specify the rotation angle of the text. Then, two spacing histograms will be found: One 

histogram of nearest-neighbor distances for all angles within estimated orientation angle, 

and the other one for angles perpendicular to the orientation angle. The first histogram is 

called within-line histogram or between-line histogram. The peak found in above 

histograms gives within-line and between-line spacing. In order to find the text lines, a 

transitive closure is performed on within line neighbors to group them together. Then to 

find the text lines the centroids of the connected components are fed to the regression fit 

algorithm. Finally, pairs of text lines will be examined to determine if they belong to the 

same block or different blocks based on the approximately parallel criteria. If the criteria 

have been satisfied for each pair of lines they will be assigned to the same block. Some 

advantages of this method are robustness with respect to input parameters, independency 

from page orientation, relatively tolerant to random noises of an image. Disadvantages 

include; computationally more expensive compared to top-down approaches, the title and 

body text with larger font sizes have to be analyzed separately due to the larger font size 

spacing, the document image needs to be picture free before using Docstrum algorithm, 

the characters have to be well separated since the algorithm uses nearest-neighbor pairs to 

measure some features.  

The Voronoi Diagrams algorithm [61, 62] is another bottom-up algorithm. In this method 

first all the connected components in a document image are found and sample points 

from connected components boundaries will be extracted using a predefined sample rate 

Rs. Then using a maximum noise size threshold Tn and other thresholds like width, 

height, aspect ratio, all noises will be extracted from the document. After that using 

sample points the Voronoi diagram will be generated and then the area Voronoi diagram 
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is constructed by deleting the Voronoi edges that pass through a connected component. 

Finally the superfluous Voronoi edges that satisfy some specified criterion will be deleted 

to obtain boundaries of document components. An advantage of using this method is that 

it works with non-Manhattan layout documents. The disadvantages are that this algorithm 

is computationally expensive and causes split errors in case of varying font sizes and 

styles within a document. 

Recent works [66, 67, 68, 69, 70, 71, 72, 73, 74, 75] in the area of page segmentation 

mostly focus on improvement of the classical methods or combining different methods to 

create new hybrid methods. In this document, we present a new method which does not 

use any aspect of the classical methods; instead, it is based on sampling technique as will 

be described next. 

3.3. Page Segmentation Using Resampling Technique 

In page segmentation the goal is to separate a document image into homogeneous zones, 

each consisting of only one physical layout structure. To achieve this goal, we eliminate 

or reduce white spaces in a segment to form a blob. Blobs then are separated using a 

simple connected component algorithm. In our technique we perform downsampling 

(zooming out) of the image followed by upsampling (zooming in) using a calculated 

scaling factor. 

3.3.1. Image Resampling 

Digital images consist of pixels which are measurements or samples of light from a 

subject. The original samples are usually obtained using a digital camera or a scanner by 

averaging the amount of red, green, and blue light that falls on the sensitive area of each 

of its sensing elements. Resampling is the mathematical technique used to create a new 
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version of the image with a different number of pixels. Reducing the image size is called 

downsampling and increasing its size is called upsampling. When images are 

downsampled, information in the original image has to be discarded. When images are 

upsampled, the number of pixels increases however, new image details cannot be created 

(Figure 29). As a result, images normally become softer with upsampling. The reason is 

that the amount of information per pixel goes down. Thus downsampling followed by 

upsampling causes information loss or picture degrading (Figure 30).  

 

 
Figure 29: Illustration of image upsampling and required interpolation for missing 

information 

In our technique for page segmentation, we take advantage of this fact to let the picture 

degrade in a downsampling-upsampling sequence (Figure 30). With an appropriate 

sampling rate the picture converts to a set of blobs which can then be separated using a 

simple connected component algorithm. 
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Figure 30: Illustration of image degrading in a sequence of downsampling-upsampling            

3.3.2. Sampling Rate 

Sampling rate or scaling factor is a number by which an image is resized. An optimized 

sampling rate is a requirement for our technique as too much sampling rate will smear 

blobs and in an extreme case the whole image becomes a single blob. On the other hand, 

not enough sampling will cause blob separation within a segment, leading to incorrect 

page segmentation. Figure 31 demonstrates effect of sampling rate in forming image 

blobs. 

 

 
Figure 31: Segmentation of an image with different sampling rates 

Over SamplingUnder Sampling Correct SamplingOriginal Image                                
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In our technique, sampling rate is calculated by a simple white space analysis of the 

image, as explained in the next section. 

3.3.3. Determination of Sampling Rate for Page Segmentation 

An optimal sampling rate is just enough sampling to let each segment form a continuous 

blob and prevent neighboring blobs to connect. The idea is to reduce or eliminate white 

spaces within a blob by estimating the distance between the rows of the text segments of 

an image. A sampling rate higher than the gap between the rows but lower than the space 

between the paragraphs results in correctly segmented blobs. 

 

Figure 32: White space transition peaks of a vertical scan of an image 

To calculate the sampling rate, we use a simple white gap counting algorithm. In this 

algorithm, after determining the outer boundaries of the image and filling in the 

connected components, we run a vertical white gap counting algorithm. The strongest 

peak in the spectrum corresponds to the gap between the rows. Our sampling rate is the 

number of pixels corresponding to the largest peak plus 1 pixel. By sampling at this rate, 

gaps between the words and lines are eliminated and blobs of texts will form. Figure 32 

row spacing

Sampling rate=11
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shows an example of white space transition peaks of a vertical scan of an image. For up-

down languages, instead of vertical, a horizontal scan of the image is performed. 

3.3.4. Work Flow of Our Resampling Method 

Our algorithm starts with making the image gray scale. Then, the image is downsampled 

(zoomed out) with the scale factor determined from our white gap transition algorithm. 

Then, the resulting image is upsampled (zoomed in) with the same scaling factor. Finally, 

the image is binarized by converting all gray pixels to black. The resulting image is a set 

of blobs which are separated after a simple connected component analysis. Figure 33 

illustrates the workflow of our resampling method. 

 

 
Figure 33: Workflow of our resampling algorithm. 

 Downsampling 

In this stage of our algorithm, we downsample the image with the scaling factor 

determined from our white space gap transition algorithm. Downsampling involves 

computing a weighted average of the original pixels that overlap each new pixel. Many 

different resampling schemes are possible [73]. Most techniques work by computing new 

pixels as a weighted average of the surrounding pixels. The weights depend on the 

distance between the new pixel location and the neighboring pixels. The simplest 

methods consider only the immediate neighbors; more advanced methods examine more 
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of the surround pixels to attempt to produce a more accurate result. For our algorithm, we 

tested several methods such as Nearest Neighbor (N-N), Bilinear, BiCubicle, and 

Lanczos. Except the N-N, other methods achieved similar segmentation results. For our 

evaluation tests we used the BiCubicle method. Bicubic resampling computes new pixels 

using cubic splines. When upsampling, this method operates on a 4 by 4 cell of pixels 

surrounding each new pixel location. This is the recommended resampling method for 

most images as it represents a good trade-off between accuracy and speed [74]. 

Upsampling 

The resulting image from the downsampling stage is upsampled using the same factor 

used for downsampling. Upsampling involves interpolating between the existing pixels to 

obtain an estimate of their values at the new pixel locations. In this stage, we effectively 

replace the white gaps between the words and the rows with interpolated gray pixels. We 

used the same BiCubicle sampling method for upsampling. 

Binarization 

To eliminate or reduce the gap between words and text rows, all gray pixels are replaced 

with black. This operation forms a continuous blob for each text segment. 

Connected Component 

In this stage, the image consists of several continuous blobs which can be separated using 

a connected components algorithm. Separated blobs boundaries are then used to separate 

the original image.  

3.4. Validations and Examples 

We performed extensive validation tests of our segmentation technique. For our 

validation we used total of 230 images from the following sources:  
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• University of Maryland Tobacco800 image database 

• www.mediateam.oulu.f-i image data base. 

• Our database of 30 complex images  

On the 200 random images from the online resources, our method achieved success rate 

of 98% (4 images not segmented correctly). The cause of the errors was the very low 

resolution (75 dpi) of some of the images, which led to incorrect calculation of the 

sampling factor. Since the images of the online resources were “typical”, we created our 

own database of very complex images. Our algorithm perfectly detected the areas of 

different blobs for 29 out of 30 images. Moreover, due to a simple algorithm with no 

complex mathematical calculations, our algorithm works very efficiently, detecting 

images in less than 1 second on a typical PC. 

Existing performance evaluations in the literature for different segmentation methods 

report much lower success rate for state-of-the-art page segmentation algorithms. For 

example, Mao [75]  performed an empirical performance evaluation of five different page 

segmentation algorithms with three representative research algorithms and two well-

known commercial products on a 978 image database. Table 1 shows the error rates 

reported by Mao. 

Despite a more complex database, our algorithm outperforms algorithms reported by Mao 

both in error rate and processing time.  Our algorithms’ error rate, on a more challenging 

database, is about 2% with average processing time of less than a second on a personal 

computer. 
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Figure 34: Examples of complex page segmentation using our algorithm 
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Table 4: Error rate and processing time for five page segmentation algorithms [75] 

3.5. Text/Non-text Classification  

Given the segmented document zones, correctly identifying the type of a zone is 

important for subsequent processes within any OCR system. One common method in 

separating text/non-texts blocks in document images including both text and non-text 

blocks is by representing the connected components of a block as feature vectors. Each 

feature vector consists of a set of measurements of pre-defined properties. Then a 

probabilistic model like decision tree [76] could be used in classifying each zone on the 

basis of its feature vector. 

Most of the text components are smaller than non-text components. Therefore, size 

information is an important feature for classification. But size only information is not 

enough for classifying the big text and the small non-text components. One additional 

feature that could be used is that the shapes of non-text connected components are 

irregular and random. On the other hand, the shapes of text components are uniformly 

structured. Here are some commonly used feature vectors of bounding rectangles of the 

connected components for text/non-text classification: area of the connected components 

of the block, number of black pixels in the block in the original document image, mean 

Algorithm Error Rate (%) Average Processing Time (sec) 

X-Y cut 14.7 2.1 

Docstrum 5.0 4.1 

Voronoi 4.7 2.8 

Caere 6.0 2.0 

ScanSoft 12.7 3.1 
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horizontal black run lengths of the original image within the blocks, and the height and 

width of the bounding rectangles of the block [77]. 

For testing and evaluation purpose, the feature vector for each connected component of a 

test document image is extracted and then a class label is assigned to each connected 

component based on classification probabilities of text and non-text. For example, a 

decision tree classifier makes the assignment through a hierarchical decision procedure. 

The classification process can be described by means of a tree, in which at least one 

terminal node is associated with each class and non-terminal nodes represent various 

collections of mixed classes [76]. 

3.5.1. Proposed method for text/non-text classification 

Since in our page segmentation method a page has already been segmented, the 

remaining task is to identify each segment as text or non-text. We use three criteria to 

decide if a segment is text or not.  

A) Connected Component Area: One useful discriminator for texts in images is the 

variation in connected components area. Characters’ size in most languages do not 

change much compared to variations in size of components in images. Therefore, we 

define a feature as  

  
     (                          

    (                          
 

Feature d effectively calculates variations in the area of connected component of an 

image. We calculated this feature on segments extracted from images in our library of 

500 images and found that this feature is less than 1.5 for texts segments and greater than 

50 for image segments. Therefore, the threshold is not too sensitive and therefore we used 

    as our text identifier.  
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B) Stroke Width: Characters in most languages have similar stroke width or thickness 

throughout. Therefore, segments which exhibit too much variation in stroke width are 

identified as non-text [78].  

     (             

    (             
                    

C) Finally, in our algorithm, we require a minimum of 10 connected components to 

identify a segment as text. Some images are just few connected components which may 

skew the decision making on connected component or stroke width criteria.  Moreover, in 

most cases a text segment has at least 10 connected components. 

Figure 35 shows segmentation and labeling of two complex document images using our 

segmentation method and text/non-text classification. 

 

Figure 35: Examples of complex page segmentation and labeling 
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3.6. Conclusions 

In this chapter, we proposed a new segmentation technique based on image resampling 

method. Our method simply performs a downsampling (zoom-out) flowed by upsampling 

(zoom-in) with a calculated scaling factor. The sampling scale is calculated by utilizing a 

white gap transition algorithm and determining between the text rows gaps. This process 

converts the image to blobs of segments which are then separated using a simple 

connected component algorithm. Finally, each segment is identified as text or non-text 

using three criteria. Our extensive evaluations confirmed an efficient segmentation 

method capable of segmenting complex images. 



 

60 

 

CHAPTER 4  

PRINTED PERSIAN/ARABIC TEXT RECOGNITION 

4.  

4.1. Introduction 

Arabic is spoken by over 200 million people in Middle East and Africa and belongs to the 

Afro-Asiatic language family. Persian is spoken by over 100 million people in Middle 

East and belongs to Indo-European language family. Although, Persian and Arabic are 

from different language families, they share similar scripts. Modern Persian is written 

using a modified variant of the Arabic alphabet. Although Persian alphabet was derived 

from Arabic, minor yet important differences exist in their alphabets and their styles of 

writing. For example, Persian script has four more alphabets than Arabic. Also, Persian 

has many exclusive fonts and cursive styles of writing. 

Due to similarities of the two scripts, an OCR system could usually work on both scripts 

with little modifications. Since the author of this dissertation is a native Persian, and 

therefore more familiar with Persian script, she puts more emphasis on OCR of Persian 

script. Moreover, Arabic OCR has been published and introduced internationally; 

however, most of the research in Persian OCR has been presented only in Persian 

Journals and Iranian conferences. 

4.2. Characteristics of Persian Texts 

Some characteristics of Persian scripts make it especially challenging for segmentation 

and recognition: 

1- Persian is Right-to-Left. However, most work in OCR is based on English and other 

languages that are written from Left-to-Right. 
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2- Persian script is very sensitive to dots. For example, two sets of four stand-alone 

Persian characters have the same basic shape but differ only in the absence or presence, 

location and number of dots (ج چ ح خ or ث ب ت پ).Five Persian characters when used as 

part of a connected sub-word or word differ only in location and number of dots (ب ت پ 

 .(ن ث

3- Existence of oblique strokes like ک گ creates problem of overlapping components. 

4- Persian and Arabic are highly cursive and connected components make sub-words. 

In both of these scripts, the position of each letter in the word and its preceding or 

following letter in the same word are the factors that determine the shapes of the letter. In 

the Persian alphabet, similar to the Arabic alphabet, a letter can appear in four different 

forms: detached, initial, middle and final. All Persian letters with the exception of seven 

can be connected to other letters from both the right and the left sides. The seven 

exceptional characters can only be connected to other letters from the right side. 

Therefore, if any of those seven letters appear in the middle of a word, there will be a gap 

in connectivity [79, 80, 81]. 

5-  Existence of some diacritics marks written above or below the letters (more common 

in Arabic than Persian). These diacritics indicate vowels, where consonant letters are 

connected together to make their pronunciation easier. 

4.3. Segmentation of Persian Scripts 

As explained in Chapter 1.3.1, one important preprocessing stage of OCR is 

segmentation, which directly affects the recognition success rate. For a Persian text, this 

step is specifically challenging due to special characteristics of Persian scripts, as 

explained in section 4.2. Much work has been done in segmentation, especially for 
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English to the point that segmentation in English is considered a solved problem [82]. 

However, many algorithms developed do not apply to Persian [83, 84]. Although many 

attempts have been made in segmentation of Persian texts [85, 86], based on our search, 

Persian text segmentation techniques that work for different font styles and sizes have 

relatively low success rates, consequently limiting the success rate of the recognition 

system. For example, Jelodar [79] used morphological hit/miss transformation for OCR 

of Persian text. Although, they claim a very high success rate, their experimental analysis 

is limited to specific font sizes and their method is very sensitive to noise. A more recent 

work from Broumandnia [87] successfully identifies texts from other regions of a Persian 

document such as pictures or tables. This method is based on pyramidal image structure 

which provides several resolutions of an image [88]. This method stays short of offering 

a solution in segmentation of the identified texts to characters or sub-words.  

To avoid the challenges of the character segmentation, one unique approach is to 

segment a text into its component sub-words. Few recent works in offline Persian OCR 

have been focused in sub-word recognition. Nasrollahi [18] used Wavelet packet 

descriptors to recognize sub-words. They report a 97.6% recognition rate but using 

Wavelet packet descriptor is inherently slow for a large class of data and relatively 

complex to implement [89]. Fouladi [90] proposes a writer-dependent approach in which 

the system is trained to recognize the sub-words written by a particular writer. A contour 

alignment is the central part of their proposed algorithm. 

In this chapter we propose a simple yet fast and accurate sub-word segmentation 

algorithm. Later in this chapter, we propose a hybrid feature extraction algorithm and 1
st
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Nearest Neighbor classification technique for successful recognition of Persian sub-

words.   

4.3.1. Proposed Algorithm 

Figure 36 shows our proposed algorithm to segment a Persian word to its sub-words 

components.  

 

 

Figure 36: Our proposed algorithm for segmentation of a word to its sub-words 

In this algorithm, first, simply all connected components of an image of a word are found. 

For example, the below Persian word consists of five components. 

 

Find all connected 
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Components
overlap column-wise?
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Components of a word may or may not overlap column-wise, with the following three 

possibilities: 

Possibility 1: Components do not overlap column-wise 

In this case, the following condition must be satisfied: 

                         

, where             is the maximum column number of component i and 

            is the minimum column number of the subsequent component j.  

The following example shows components #2 and #4 of the above Persian word are not 

overlapping: 

  

Decision: based on Figure 36, when two components do not overlap, they are considered 

as two different objects. 

Possibility 2: Components overlap partially column-wise 

For two components overlap partially, these conditions must be satisfied: 

                        

                        

                        

Here, components #4 and #5 are partially overlapping: 
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Decision: based on our proposed algorithm, partially overlapping components are 

considered as different objects. 

Possibility 3: Components overlap completely column-wise 

Two components are completely overlapping, if the following conditions are satisfied:  

                        

                        

                        

In this example, components #1 and #2 are completely overlapping: 

  

Decision: this possibility is the only case that our proposed algorithm considers the two 

components as one object. 

4.3.2. Label Settings 

Based on the decisions made from our proposed algorithm (Figure 36), current labels of 

components may change. Since columns are scanned from left to right, the components 

are labeled from left to right, as shown in Figure 37. When our algorithm determines two 

components are the same, we change the label for one to match the other. Figure 37 

shows how labeling for our example is changed. 
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Figure 37: An example of labeling change when two components are the same 

Finally, the algorithm puts the labels in sequential order. 

4.3.3. Experimental Results 

Our several tests of the proposed segmentation algorithm using four different fonts 

resulted in 100% segmentation success rate. Here are some examples of word 

segmentation using our proposed algorithm: 

  

Figure 38: Examples of Persian word segmentation to its sub-words 
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Please note that this algorithm is especially designed to correctly segment words with 

overlapping components: 

  

Figure 39: Examples of overlapping sub-words 

 Although, in the above left example, “می” overlaps with “ک “of “کنم” and in the right 

example, “ی” of “قدیری” overlaps with “ر”, the segmentation algorithm works accurately.  

4.4. Algorithm for Segmentation of a Text Page 

 

Figure 40: Our proposed algorithm for segmentation of a text page 
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The goal of our recognition system is to digitalize a typed text. Therefore, we expand our 

proposed algorithm to segment a page of a Persian text to its sub-words, a necessary step 

before feature extraction.  

Similar to the word segmentation, first, we find all components of a text. The initial 

labeling of these components is based on the columns order from top left corner to 

bottom right corner. Figure 41 is an example for initial labeling. 

  

Figure 41: Initial labeling of a sample Persian text 

The next step in our algorithm is sorting sub-words based on their maximum row values 

and changing their labels accordingly. After sorting, all the sub-words in the first line will 

be labeled before the second line and so on. Figure 42 shows an example for applying 

this step of our algorithm. 

  

Figure 42: An example for sorting sub-words based on their maximum row values 
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Then, we need to classify components to their respective row number. To achieve this 

goal, we define a constant δ equal to the height of the longest component times a 

multiple  :  

       {  (                  } 

δ is an indicator for the font size of the text and   can be adjusted to define the distance 

between rows. Therefore, in our algorithm, we compare the difference between the 

maximum row and the minimum row of two consecutive components with δ to 

differentiate rows. Figure 43 shows how δ is calculated for different components. 

 

Figure 43: Examples for δ calculation for different components 

Since Persian script is written from right to left, in the final step, we sort and re-label 

components based on their maximum column values. In this step, when a sub-word is 

located on the right side of another sub-word, its column number will be larger. 

Therefore, it will be labeled first. Figure 44 shows this step, in an example. 

 

Figure 44: An example for sorting sub-words based on their maximum column values 
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After setting the labels, components are passed to our sub-word segmentation, as 

described in 4.3.1. We tested the above algorithm for several Persian texts with 4 

different fonts and achieved error free segmentations for tested cases.  

4.5. Feature extraction 

Feature extraction step is applied on two sets of training and testing samples. For the 

training set, we created a library of 500 labeled Persian sub-words with 5 different 

samples for each sub-word.  

In chapter 1.3.2, we discussed the feature extraction step of an OCR system and 

described three commonly used methods of Hu, Zernike, and DCT. In the training phase, 

for each labeled sub-word image, three feature extraction methods of Hu, Zernike, and 

DCT were applied and their respective feature vectors were calculated (Figure 45).  

 

Figure 45: Extracted feature vectors of labeled sub-words training images  
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Similarly, in the testing phase, each feature extraction method was applied to every 

connected components of the document image and their respective feature vectors were 

stored to be used in classification phase (Figure 46). 

 

Figure 46: Extracted feature vectors of connected components of the document image  

4.6. Classification 

As explained in chapter 1.3.2, although learning-based classifiers usually offer more 

accuracy in performance compared to nonparametric classifiers, they are not suitable for 

large classes of data. Since in our sub-word recognition method a relatively large library 

of sub-words is maintained, the 1
st
 Nearest-Neighbor (1-N-N) classifier is a practical 

choice. The 1-N-N classifier is one the oldest method known. The idea is very simple: to 

classify X find its closest neighbor among the training points (call it X’) and assign to X 

the label of X’. Here are the steps in applying 1-N-N method in the recognition phase of 

our OCR system for each feature extraction method: 
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 Calculate Euclidean distances of previously extracted feature vector of each testing 

connected component with respect to every feature vector of the training set. 

 Find the closest distant neighbor of each testing connected component. 

 Assign the nearest neighbor’s label from the training set to the corresponding testing 

connected component. 

4.7. Hybrid labeling decision 

The classification results for each feature extraction method proved DCT as the most 

accurate method with 92.8% accuracy (accuracy is defined as percent of correct 

classifications). Hu had accuracy of 79.7% and Zernike had accuracy of 86%. Based on 

the results of this study, we implemented a hybrid labeling decision, based on the 

following observation of the results: 

a) When DCT is incorrect the other two methods are correct. 

b) When Hu and Zernike disagree, DCT gives the correct class-tag. 

Therefore, in our labeling decision, if Hu and Zernike give identical results, that result is 

labeled; otherwise, DCT’s label is applied.  

By implementing this simple labeling method in our library of 500 sub-words, we 

achieved 97% accuracy (fifteen missed classifications in our library of 500 sub-words). 

Figure 47 shows a selection of sub-words in our library with the results of each feature 

extraction method and the assigned label by our hybrid method. 



 

73 

 

 

Figure 47: A selection of our library of sub-words used in evaluation of feature extraction 

methods. Highlighted yellow cells indicate incorrect classification for each feature 

extraction method 

4.8. Conclusions 

To avoid the challenges of segmenting Persian texts to isolated characters, we segment a 

Persian document only to its sub-words and then we recognize sub-words from a library 

of sub-words. In this chapter, we proposed an error free algorithm to segment words to its 

component sub-words. Then, we expand our algorithm to successfully segment a page of 

a Persian text to sub-words, placing them in their respective rows.  

In recognition phase of our Persian OCR system, three feature extraction methods of Hu, 

Zernike, and DCT were used in a simple yet accurate 1
st
 nearest neighbor classification 

method. Finally, based on a hybrid method, connected components of the testing set were 

labeled. We tested the recognition phase of our OCR system on a library of 500 Persian 

sub-words and achieved 97% accuracy. 
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CHAPTER 5  

CONCLUSION AND FUTURE WORK 

5.  

5.1. Overview of the Dissertation and Conclusions 

Optical Character Recognition is an active area of research in the field of pattern 

recognition. Despite several decades of research and development, even an elementary 

school student’s reading skills outperforms the most advanced OCR systems. For 

example, while through a simple observation, human brain simply extracts the text from 

very complex documents, complicated algorithms are needed to replicate the very same 

task using computers. 

In this dissertation, we made a brief introduction to the field of Optical Character 

Recognition. After discussing different branches of OCR, we narrowed down our focus to 

the recognition of typed offline documents. After a brief overview of history and 

evolution of different OCR systems, we explained in detail the classical flow of OCR 

systems. We explained that a typical OCR system is divided to two phases. The 1
st
 phase 

is the preprocessing phase and the 2
nd

 phase is the recognition phase. Then, we explained 

typical steps in preprocessing and recognition phase. For each step, we reviewed 

literature and gave our opinion on the best approach. According to the literature, quite 

diverse research directions are still being explored and standard procedures for building 

offline handwriting recognizers could not be established so far. However, some trends 

toward unified approaches can be identified, for example, the quite widely used Otsu 

method is mostly used for the binarization step or more recent efforts in Persian word 

segmentation focus on sub-word segmentation rather than isolated character 

segmentation.  
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In chapter 2, the important preprocessing step of skew detection is studied. After a 

literature review and brief description of four commonly used skew detection methods, 

we proposed a new technique in skew detection of documents using an axes-parallel 

bounding box. A comparison of this algorithm with the existing state-of-the-art skew 

angle algorithms proved a reliable and fast algorithm, outperforming the compared 

methods.  

In chapter 3, we proposed a new segmentation technique based on image resampling 

method. Our method simply performs a downsampling (zoom-out) flowed by upsampling 

(zoom-in) with a calculated scaling factor. The sampling scale is calculated by utilizing a 

white gap transition algorithm and determining between the text rows gaps. This process 

converts the image to blobs of segments which are then separated using a simple 

connected component algorithm. Our extensive evaluations confirmed an efficient 

segmentation method capable of segmenting complex images. 

In chapter 4, we focused on recognition of Perso-Arabic scripts with emphasis on Persian 

scripts. After reviewing the characteristics of Persian texts, we explained that due to the 

highly cursive nature of Persian texts, typical segmentation algorithms have poor success 

rates. Therefore, to avoid the challenges of segmenting Persian texts to isolated 

characters, we segment a Persian document only to its sub-words and then we recognize 

sub-words from a library of sub-words. Based on our 500 library of sub-words, our 

algorithm is capable for segmenting Persian words to sub-word without error and it is 

computationally very efficient. In the recognition phase, due to a relatively large library 

of sub-words, we use a hybrid scheme among Hu, Zernike, and DCT methods and use 1
st
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nearest neighbor for classification. Our experimental tests on our library of 500 words 

result in 97% recognition rate. 

In conclusion, the main contributions of this dissertation are in extensive research in two 

preprocessing steps of an OCR system: skew detection and page segmentation. In each 

step, we proposed state-of-the-art methods improving the performance of OCR systems. 

In addition, we focused on developing a Persian OCR system by segmenting words to 

sub-words and proposed new sub-word segmentation technique with 100% success rate. 

We introduced a hybrid scheme for feature extraction and chose a nonparametric 

classification technique to achieve 97% sub-words recognition accuracy. 

 

5.2. Future Work 

Although substantial progress has already been made toward the ultimate goal of 

automatic reading systems, still many challenges exists and OCR systems compared to 

human reading capabilities are primitive.  

In the preprocessing phase of OCR systems in general, a single algorithm to deal with all 

sorts of imperfections in a document such as noise, skew, and page complexities needs to 

be developed. An OCR system needs to be so efficient that it works fast on small 

processors like mobile phones.  

As for the Persian OCR, typical English or Chinese OCR systems do not work efficiently. 

Specific to Persian script methods, such as the ones introduced in this dissertation, are 

needed to improve Persian OCR systems and narrow the gap between the successes of 

Roman based script recognition systems and Persian OCR systems. 
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APPENDICES  

Appendix A. Projection Profile skew detection MATLAB source code 

function my_prjprofile(BImg,i) 
tic 
Theta = -90:89; 
horizproj_var = cell(1,1); 
for T = -90:89 
    RImg = imrotate(BImg,T,'bilinear'); 
    horizproj= sum(RImg == 0,2); 
    horizproj_var{1} = cat(1, horizproj_var{1},var(horizproj)); 
end 

  
 [~,Locs] = findpeaks(horizproj_var{1},'NPEAKS',1); 
Rotation_Angle = Theta(Locs) 
if( Rotation_Angle ~= 0) 
    Img = imrotate(BImg,Rotation_Angle,'bilinear'); 
else 
    Img = BImg; 
end 
toc 
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Appendix B. Hough transform skew detection MATLAB source code 

function [H, P , theta, Rotation_Angle] = my_hough(Img,i) 
 %find edges 
 tic 
 sigma=1; 
 [g3, t3]=edge(Img, 'canny', [0.04 0.10], sigma); 
 %Do the Hough transform 
 [H t r] = hough(g3,'RhoResolution',0.5,'Theta',-90:0.5:89.5); 

 
 %Display the transform in such a way that we can draw points on it 

later... 
  imshow(H, [], 'XData', t, 'YData', r ); 

  
 %Add axis labels to the picture 
 xlabel('\theta'), ylabel('\rho'); 
 axis on, axis normal; 
 P  = houghpeaks(H,5); 
 %draw peaks over Hough transform 
 x = t(P(:,2)); y = r(P(:,1)); 
 hold on;  
 plot(x,y,'s','color','white'); 
 % Find lines and plot them 
 lines = houghlines(Img,t,r,P,'FillGap',5,'MinLength',7); 
 figure, imshow(Img), hold on 
 theta = cell(1,1); 
 for k = 1:length(lines) 
    xy = [lines(k).point1; lines(k).point2]; 
    plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green'); 

  

    % Plot beginnings and ends of lines 
    plot(xy(1,1),xy(1,2),'x','LineWidth',2,'Color','yellow'); 
    plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','red'); 
    theta{1} = cat(1,theta{1},lines(k).theta); 
 end 
Angle_Range = unique(theta{1}(:)); 
Accum_Array = hist( theta{1}(:), numel(Angle_Range) ); 
if size(Accum_Array,2)> 1 
    Loc = find(Accum_Array == max(Accum_Array)) 
     Rotation_Angle = Angle_Range(Loc); 
else 
    Rotation_Angle = Angle_Range(1); 
end 
toc  
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Appendix C. Nearest-Neighbor skew detection MATLAB source code 

function [P1, P2 , theta, Locs,Angle_Range,Rotation_Angle] = 

my_nearest_neighbor(BImg,i) 

tic 

CC = bwconncomp(BImg); 

S = regionprops(CC,'Centroid'); 

centroids = cat(1, S.Centroid); %% centroids(col,row) 

figure(1),imshow(BImg) 

hold on 

plot(centroids(:,1), centroids(:,2), 'b*') 

hold off 

[idx, dist] = 

knnsearch(centroids,centroids,'K',2,'dist','euclidean'); 

  

% idx(:,1) includes each centroid and idx(:,2) includes its nearest 

neighbor 

P1 = centroids(idx(:,1),:); 

P2 = centroids(idx(:,2),:); 

  

% Find angle between each centroids and its nearest neighbor 

for j = 1: size(P1,1) 

    if P1(j,1) > P2(j,1) 

        temp = P1(j,:); 

        P1(j,:) = P2(j,:); 

        P2(j,:) = temp; 

    end 

end 

dp = bsxfun(@minus, P2, P1); 

theta = atan2(dp(:,2), dp(:,1)); 

theta = round((theta*180)./pi); 

Angle_Range = unique(theta); 

figure(2) 

hist( theta, numel(Angle_Range)) 

Accum_Array = hist( theta, numel(Angle_Range) ); 

[~, Locs] = max(Accum_Array); 

Rotation_Angle = Angle_Range(Locs); 

% [~,Locs] = findpeaks(Accum_Array,'NPEAKS',2); 

% Rotation_Angle = mean(Angle_Range(Locs)); 

toc 

if( Rotation_Angle ~= 0) 

    Img = imrotate(BImg,Rotation_Angle,'bilinear'); 

else 

    Img = BImg; 

end 
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Appendix D. Fourier method skew detection MATLAB source code 

function [T,Real_Angel,Rotation_Angle,val] = my_FFT(Img,i) 

figure,imshow(Img) 

  

tStart = tic; 

T = cell(1,2); 

Real_Angel = cell(1,1); 

j = 1; 

[m, n] = size(Img); 

M = floor(m/2)+1; 

N = floor(n/2)+1; 

  

  

I1 = Img(1:M,N:n); 

j = j+1; 

figure(j), imshow(I1) 

[S1, j,rq,cq] = my_FFT_Spec(I1,j); 

j = j+1; 

[T,Real_Angel,j] = Accum_Array(S1,j,T,Real_Angel,rq,cq); 

  

I2 = Img(1:M,1:N); 

j = j+1; 

figure(j), imshow(I2) 

[S2, j,rq,cq] = my_FFT_Spec(I2,j); 

j = j+1; 

[T,Real_Angel,j] = Accum_Array(S2,j,T,Real_Angel,rq,cq); 

  

I3 = Img(M:m,1:N); 

j = j+1; 

figure(j), imshow(I3) 

[S3, j,rq,cq] = my_FFT_Spec(I3,j); 

j = j+1; 

[T,Real_Angel,j] = Accum_Array(S3,j,T,Real_Angel,rq,cq); 

  

I4 = Img(M:m,N:n); 

j = j+1; 

figure(j), imshow(I4) 

[S4, j,rq,cq] = my_FFT_Spec(I4,j); 

j = j+1; 

[T,Real_Angel,j] = Accum_Array(S4,j,T,Real_Angel,rq,cq); 

% [tmp,ind] = sort(T{1},'ascend'); 

% T{1} = tmp; 

% T{2} = T{2}(ind); 

loc = []; 

if size(T{2},1) > 2 

    [~, loc] = findpeaks(T{2},'npeaks',1); 

end 

if isempty(loc) 

    [~,loc] = max(T{2}); 

end 

% [~,loc] = max(T{2}); 

[rx, ~] = find(T{1}(loc)- 5 < Real_Angel{1} & Real_Angel{1} < 

T{1}(loc)+ 5); 

[val ~] = sort(Real_Angel{1}(rx)); 

val 
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angle = median(val); 

figure(j) 

hold on; 

bar(T{1},T{2}) 

tElapsed = toc(tStart) 

if  angle >= 45 

Rotation_Angle = -90 + angle; 

else 

Rotation_Angle = angle; 

end 

 

function [S,j,rq,cq] = my_FFT_Spec(I,j) 

  

F = fft2(I); 

Fc = fftshift(F); 

S = log(1 + abs(Fc)); 

% j = j+1; 

% figure(j), imshow(S, []) 

title('Fig.2: Spectrum of the Input Image') 

[M,N] = size(S); 

rq = floor(M/2)+1; 

cq = floor(N/2)+1; 

S(rq-13:rq+13,cq-13:cq+13)= 0; 

% j = j+1; 

% figure(j), imshow(S, []) 

mmin = min(S(:)); 

mmax = max(S(:)); 

S = (S-mmin) ./ (mmax-mmin); 

 

 

function [T, RA,j] = Accum_Array(S,j,T,RA,rq,cq) 

[r,c,v] = FastPeakFind(S, 'NPEAKS',10); 

  

figure(j),imagesc(S); hold on 

plot(c(1:end),r(1:end),'g+') 

j = j+1; 

t = atan2(c(1:2:end)-cq, r(1:2:end)-rq); 

% % t = atan2(r(1:2:end),c(1:2:end)); 

t = (t*180)./pi; 

theta = round(t); 

v = v(1:2:end); 

for k = 1: size(theta,1) 

    RA{1} = cat(1,RA{1},t(k)); 

    [rx, cy] = find(T{1}(:) == theta(k)); 

    if( isempty(rx)) 

        T{1} = cat(1,T{1},theta(k)); 

        T{2} = cat(1,T{2},v(k)); 

    else 

        T{2}(rx)= T{2}(rx)+v(k); 

    end 

end  
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Appendix E. Our skew detection method MATLAB source code 

clc; 

clear all; 

close all; 

imtool close all; % Close all imtool figures. 

  

cd('C:\Personal\Windsor\Image processing code') 

%cd('../') 

samplefolder = './Whole_page/'; 

file_l = dir(samplefolder); 

Step = pi/180; 

Theta = []; 

Area = zeros(size(Theta)); 

%// the first two in filelist are . and .. 

  

 for i= 15:15% size(file_l,1) 

    %// filelist is not a folder 

    if file_l(i).isdir ~= true 

        fname = file_l(i).name 

        Org_Img = imread([samplefolder fname]); 

        if length(size(Org_Img))>2 % checking if rgb image; 

             Img =rgb2gray(Org_Img); 

             Img=im2bw(Img,graythresh(Img)); 

        else 

            Img = Org_Img; 

        end  

  

        if  Img(1,1) ~= 0 

            Img = ~Img; 

        end 

        

        figure,imshow(Img) 

        cd('C:\Personal\Windsor\Image processing code\Rotated_results') 

        fn = sprintf('Original_Image_%s.png',num2str(i-2,'%02i'));  

        imwrite(~Img,fn,'png'); 

        cd('C:\Personal\Windsor\Image processing code') 

  

        Final_Img = zeros(size(Img)); 

        [n,m] = size(Img); 

        Pivot(1)= (n+1)/2; 

        Pivot(2)= (m+1)/2; 

        PP = Find_perimeter_points(Img); 

        [Corners Area_Org] = Find_rec_area(PP); 

        crop = Img( 

min(Corners{1}(:)):max(Corners{1}(:)),min(Corners{2}(:)):max(Corners{2}

(:))); 

        figure,imshow(~crop) 

        PP{1}(:) = PP{1}(:)-Pivot(1); 

        PP{2}(:) = PP{2}(:)-Pivot(2); 

        Rotated_PP = Rotate_Perimeter_Points(PP,Step); 

        Rotated_PP{1}(:) = Rotated_PP{1}(:)+Pivot(1); 

        Rotated_PP{2}(:) = Rotated_PP{2}(:)+Pivot(2); 

        [x Area_Up] = Find_rec_area(Rotated_PP); 

        Rotated_PP = Rotate_Perimeter_Points(PP,-1*Step); 

        Rotated_PP{1}(:) = Rotated_PP{1}(:)+Pivot(1); 
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        Rotated_PP{2}(:) = Rotated_PP{2}(:)+Pivot(2); 

        [x Area_Down] = Find_rec_area(Rotated_PP); 

  

        if Area_Up < Area_Org 

            Turn_dir = 1;          

        else if Area_Down < Area_Org 

                Turn_dir = -1;                

            else 

                Turn_dir = 0; 

                cd('C:\Personal\Windsor\Image processing 

code\Rotated_results\My_SkewFun') 

                fn = sprintf('Original_Image_%s.png',num2str(i-

2,'%02i'));  

                imwrite(~Img,fn,'png'); 

            end 

        end 

        Rotation_Step = 4*pi/180; 

        R = 0;  

        tic 

        if Turn_dir ~= 0 

            Min_Area = Area_Org; 

            R = R + Turn_dir*Rotation_Step; 

            RPP = Rotate_Perimeter_Points(PP,R); 

            RPP{1}(:) = RPP{1}(:)+Pivot(1); 

            RPP{2}(:) = RPP{2}(:)+Pivot(2); 

            [Corners Area_maxr] = Find_rec_area(RPP); 

            while Min_Area > Area_maxr 

                Min_Area = Area_maxr; 

                R = R + Turn_dir*Rotation_Step; 

                RPP = Rotate_Perimeter_Points(PP,R); 

                RPP{1}(:) = RPP{1}(:)+Pivot(1); 

                RPP{2}(:) = RPP{2}(:)+Pivot(2); 

                [Corners Area_maxr] = Find_rec_area(RPP); 

            end 

            if R*180/pi~=0 

                R = R-Turn_dir*Rotation_Step; 

            end 

            Rotation_Step = Rotation_Step/2; 

            while Rotation_Step >= (0.25*pi/180) &&  Turn_dir ~= 0 

                [R,Min_Area,Rotation_Step] = 

Find_Min_Area2(R,Rotation_Step,PP, Min_Area,Pivot);  

            end   

        end 

        t = R*180/pi 

        Img1 = imrotate(Img,R*180/pi,'bilinear'); 

        PP = Find_perimeter_points(Img1); 

        Flag = Smearing_Func(Img1,PP); 

        if Flag == 0 

            Img1 = imrotate(Img1,-1*Turn_dir*90,'bilinear'); %Img1 

            t = -1*Turn_dir*90 + R*180/pi; 

        end 

        toc 

        t 

        figure,imshow(Img1) 

       cd('C:\Personal\Windsor\Image processing 

code\Rotated_results\My_SkewFun') 



 

93 

 

       fn = sprintf('Image_%s_%s_%s.png',num2str(i-

2,'%02i'),num2str(t,'%02i'),num2str(toc,'%04f'));  

       imwrite(~Img1,fn,'png');  

        cd('C:\Personal\Windsor\Image processing code') 

    end 

     

 end 

cd('C:\Personal\Windsor\Image processing code') 

 

 

 

function PPoints = Find_perimeter_points(Img) 

% Receives an image and finds only the surrounding pixel's coordinates 

PPoints = cell(1,2); 

  

for r = 1:size(Img,1) 

    c = find(Img(r,:),1,'first'); 

    if size(c,2)~= 0 

        PPoints{1} = cat(1,PPoints{1},r);  

        PPoints{2} = cat(1,PPoints{2},c); 

    end 

    c = find(Img(r,:),1,'last'); 

    if size(c,2)~= 0 

        PPoints{1} = cat(1,PPoints{1},r);  

        PPoints{2} = cat(1,PPoints{2},c); 

    end 

end 

 

 

function [CP Area] = Find_rec_area(P) 

% Having perimiter points of a text area find the corner points of 

% the surrounding rectangle and the coverage area 

PP = cell(1,2); 

xmin = min(P{1}(:)); 

ymin = min(P{2}(:)); 

if xmin < 0 

    PP{1}= P{1}(:)-xmin; 

else 

    PP{1} = P{1}(:); 

end 

if ymin < 0 

    PP{2} = P{2}(:)-ymin; 

else 

    PP{2} = P{2}(:); 

end 

% PP{1}(:) 

% PP{2}(:) 

  

CP = cell(1,2); 

[val ind1]= min(PP{1}); 

ind2 = find(PP{2}(ind1)== min(PP{2}(ind1)),1,'first'); 

CP{1} = cat(1,CP{1},PP{1}(ind1(1,ind2))); 

CP{2} = cat(1,CP{2},PP{2}(ind1(1,ind2))) ;      % Point A 

  

[val ind1]= max(PP{1}); 

ind2 = find(PP{2}(ind1)== max(PP{2}(ind1)),1,'first'); 
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CP{1} = cat(1,CP{1},PP{1}(ind1(1,ind2))); 

CP{2} = cat(1,CP{2},PP{2}(ind1(1,ind2))); % Point C 

  

  

[val ind1]= min(PP{2}); 

ind2 = find(PP{1}(ind1)== max(PP{1}(ind1)),1,'first'); 

CP{1} = cat(1,CP{1},PP{1}(ind1(1,ind2))); 

CP{2} = cat(1,CP{2},PP{2}(ind1(1,ind2)));        % Point D 

  

[val ind1]= max(PP{2}); 

ind2 = find(PP{1}(ind1)== min(PP{1}(ind1)),1,'first'); 

CP{1} = cat(1,CP{1},PP{1}(ind1(1,ind2))); 

CP{2} = cat(1,CP{2},PP{2}(ind1(1,ind2))); % Point B 

CP{1}(:) = ceil(CP{1}(:)); 

CP{2}(:) = ceil(CP{2}(:)); 

Area = (CP{1}(2)-CP{1}(1))*(CP{2}(4)-CP{2}(3)); 

  

  

 

 

function [MinT,Area,RS] = Find_Min_Area2(MinT,RS,Points,Area,P) 

% Rotates inputed points in +RS and -RS degree and calculates the area 

of 

% the minimum rectangle surrounding the points and returns the theta 

value 

% that gives the minimum area between two opposite rotations. 

% figure,imshow(Img) 

  

 PP1 = Rotate_Perimeter_Points(Points,MinT + RS); 

 PP1{1}(:) = PP1{1}(:)+P(1); 

 PP1{2}(:) = PP1{2}(:)+P(2); 

 [CP1 Area_Up] = Find_rec_area(PP1); 

 PP2 = Rotate_Perimeter_Points(Points,MinT - RS); 

 PP2{1}(:) = PP2{1}(:)+P(1); 

 PP2{2}(:) = PP2{2}(:)+P(2); 

 [CP2 Area_Down] = Find_rec_area(PP2); 

if Area > Area_Up 

     MinT = MinT + RS; 

     Area = Area_Up; 

 else if Area > Area_Down 

         MinT = MinT - RS; 

         Area = Area_Down; 

     end 

 end 

 RS = RS/2; 

  

 

function PP = Rotate_Perimeter_Points(Input_coordinates,theta) 

% This function rorates the Input_coordinates, theta degrees. 

% % Rotate input coordinates theta degree. 

In = cell2mat(Input_coordinates); 

m = [cos(theta) -sin(theta);sin(theta) cos(theta)]'; 

Rotated = In*m; 

PP = mat2cell(Rotated,size(Rotated,1),[1 1]); 
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function Flag = Smearing_Func(Img,PP) 

% Smearing function checks if the text documents need to be rotated 90 

% degree clockwise or counter clockwise. If number of white column 

counts 

% are more than white row counts the flag will be 0, otherwise it will 

be 

% 1. 

WCC = 0; 

WRC = 0; 

Flag = 1; 

        

rmin = min(PP{1}(:)); 

rmax = max(PP{1}(:)); 

cmin = min(PP{2}(:)); 

cmax = max(PP{2}(:)); 

WC = sum(sum(Img(rmin:rmax,cmin:cmax) == 1,2)) 

WR = sum(sum(Img(rmin:rmax,cmin:cmax) == 1,1)) 

for c = cmin:cmax 

    x = find(Img(rmin:rmax,c),1,'first'); 

    if(isempty(x)) 

        WCC = WCC + 1; 

    end 

end 

for r = rmin:rmax 

    x = find(Img(r,cmin:cmax),1,'first'); 

    if(isempty(x)) 

        WRC = WRC + 1; 

    end 

end 

WCC 

WRC 

if WCC > WRC 

    Flag = 0; 

end 
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Appendix F. Our Page Segmentation MATLAB source code 

clc; 

clear all; 

close all; 

%// list all the files in some folder 

cd('C:\Personal\Windsor\Image processing code') 

somefolder = './Images/'; 

filelist = dir(somefolder); 

FV_T = cell(1,2); 

imcell = cell(1,((numel(filelist)-2) / 4)); 

counter = 0; 

for i=1:size(filelist,1) 

    %// filelist is not a folder 

    if filelist(i).isdir ~= true 

        fname = filelist(i).name; 

            temp = regexp (fname,'_','split'); 

            classtag = str2double(temp{1,2}); 

            Img = imread([somefolder fname]); 

             

            %// convert it to grayscale image if tmp is a color 

            %// image/picture 

            if size(Img,3) == 3 

            Img = rgb2gray(Img); 

            end 

            counter = counter + 1; 

            if counter < 2  

                imcell{classtag} = Img; 

%                 j = j + 1; 

            elseif counter == 4  

                counter = 0; 

            end 

            level = graythresh(Img); % find the threshold based on otsu's 

method 

            BinaryImg = im2bw(Img,level);   % convert intensity image to 

binary 

            if BinaryImg(1,1) == 1 

                BinaryImg = ~BinaryImg; 

            end 

            BinaryImg = padarray(BinaryImg,[5 5]);  

            [r c] = find(BinaryImg == 1); 

            Img_b = bound2im([r c]); 

             

            FV_T{1} = cat(1,FV_T{1},invmoments(Img_b)); 

            FV_T{2} = cat(1,FV_T{2},classtag); 

            classtag = []; 

            %FV = cat(2,FV,classtag); 

        %end 

    end 

end 

  

% sort the value of the moments based on the classtag 

Y = cell(1,2); 

B = FV_T(:,2); 

[Y{2},ix] = sort(B{1}); 

Y{1} = FV_T{1}(ix,:); 
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FV_T = Y; 

clear Y; 

  

%// Extract feature vectors of the sample data. 

cd('C:\Personal\Windsor\Image processing code') 

%cd('../') 

samplefolder = './S_Images/'; 

file_l = dir(samplefolder); 

FV_S = []; 

class = []; 

%// the first two in filelist are . and .. 

  

for i=1: size(file_l,1) 

%     size(file_l,1) 

    %// filelist is not a folder 

    if file_l(i).isdir ~= true 

        fname = file_l(i).name; 

            Img = imread([samplefolder fname]); 

            %// convert it to grayscale image if tmp is a color 

            %// image/picture 

            if size(Img,3) == 3 

            Img = rgb2gray(Img); 

            end 

            level = graythresh(Img); % find the threshold based on otsu's 

method 

            BinaryImg = im2bw(Img,level);   % convert intensity image to 

binary 

            if BinaryImg(1,1) == 1 

                BinaryImg = ~BinaryImg; 

            end 

            BinaryImg = padarray(BinaryImg,[5 5]); 

             

            cd('C:\Personal\Windsor\Image processing code\Results\Hu') 

            fn = sprintf('Image_%s.jpeg',num2str(i-2,'%04i'));  

            imwrite(BinaryImg,fn,'jpeg'); 

            cd('C:\Personal\Windsor\Image processing code') 

             

            CC = bwconncomp(BinaryImg,8); 

            L = labelmatrix(CC); 

            [Regions,R_order] = sort_labels(BinaryImg,L,CC.NumObjects); 

            [Match_matrix,Nmobj] = 

labeling_dist(Regions,CC.NumObjects,R_order); 

            [changed_labled_image,N_obj] = 

change_label(Regions,Match_matrix,Nmobj,CC.NumObjects); 

  

             

            for k = 1:N_obj 

                [r,c] = find(changed_labled_image == k); 

                q = bound2im([r,c]); 

                 

                FV_S = cat(1,FV_S,invmoments(q)); 

            end 

             

            class = knnclassify(FV_S,FV_T{1},FV_T{2},1); 

            for j = 1:numel(class) 

                  TestImg = imcell{class(j)}; 
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                  cd('C:\Personal\Windsor\Image processing 

code\Results\Hu') 

                  fn = sprintf('Image_%s_%s.jpeg',num2str(i-

2,'%04i'),num2str(j,'%04i'));  

                  imwrite(TestImg,fn,'jpeg'); 

  

            end 

            cd('C:\Personal\Windsor\Image processing code') 

            class = []; 

            clear TestImg; 

        %end 

    end 

    FV_S = []; 

end 

 cd('C:\Personal\Windsor\Image processing code') 

clear imcell; 

close all 

 

function [Z_T_FV,H_T_FV,DCT_T_FV,Tr_classtag,imcell] = 

Get_Training_FVs() 

cd('C:\Personal\Windsor\Image processing code') 

somefolder = './Images/'; 

filelist = dir(somefolder); 

NClass_sample = 4; 

order = 1:10; 

Tr_classtag = cell(1,1); 

Z_T_FV = cell(1,1); 

H_T_FV = cell(1,1); 

DCT_T_FV = cell(1,1); 

  

imcell = cell(1,((numel(filelist)-2) / 4)); 

counter = 0; 

% classtag = 0; 

  

%// the first two in filelist are . and .. 

%size(filelist,1) 

  

for i=1:size(filelist,1) 

    %// filelist is not a folder 

    if filelist(i).isdir ~= true 

         

        fname = filelist(i).name; 

            temp = regexp (fname,'_','split'); 

            classtag = str2double(temp{1,2}); 

            Img = imread([somefolder fname]); 

             

            %// convert it to grayscale image if tmp is a color 

            %// image/picture 

            if size(Img,3) == 3 

                Img = rgb2gray(Img); 

            end 

            counter = counter + 1; 

            if counter < 2  

                imcell{classtag} = Img; 

            elseif counter == NClass_sample  

                counter = 0; 

            end 
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            level = graythresh(Img); % find the threshold based on 

otsu's method 

            BinaryImg = im2bw(Img,level);   % convert intensity image 

to binary 

            if BinaryImg(1,1) == 1 

                BinaryImg = ~BinaryImg; 

            end 

            BinaryImg = padarray(BinaryImg,[5 5]);  

            [r c] = find(BinaryImg == 1); 

            Img_b = bound2im([r c]); 

            Img_b = padarray(Img_b,[5 5]);     

            Img_b = imresize(Img_b,[200 NaN],'bilinear'); 

            [Img_trans,~,~] = lans_invariant(Img_b,'scale 1 translation 

1'); 

            [A_nm,~,~]  = lans_zmoment(Img_trans,order); 

            clear Img_trans; 

            Temp = abs(A_nm); 

            Z_T_FV{1} = cat(1,Z_T_FV{1},Temp); 

            clear A_nm; 

            clear Temp; 

            H_T_FV{1} = cat(1,H_T_FV{1},invmoments(Img_b)); 

            [Img_trans,~,~] = lans_invariant(BinaryImg,'scale 1 translation 

1'); 

            B = boundaries(Img_trans); %Trace object boundaries 

            b = cat(1,B{:}); % Concatenate all the found boundaries  

            DCT_Coef_Train = DCTFVec([b(:,1)', b(:,2)'], 20, 0); 

            clear Img_trans; 

            DCT_T_FV{1} = cat(1,DCT_T_FV{1},DCT_Coef_Train'); 

            Tr_classtag{1} = cat(1,Tr_classtag{1},classtag); 

            classtag = []; 

            clear BinaryImg; 

            clear Img_b; 

            clear B; 

            clear b; 

    end 

end 

 

 

function [ DCTCoef ] = DCTFVec(ExtFVec, fnumb, mode) 

 

% input mode: 

%   mode = 1 => Simulation & Testing mode 

%   mode = 0 => Training mode 

  

% Performing Cosine Transform 

if (mode ~= 3) 

     

    [c,d] = size(ExtFVec); 

     

    Apat = ExtFVec(:,1:d/2); 

    Dpat = ExtFVec(:,(d/2+1):end); 

    if (d/2) < fnumb 

         

        Apat = [Apat zeros(c,fnumb - d/2)]; 

        Dpat = [Dpat zeros(c,fnumb - d/2)]; 
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    end 

             

    [m,n]=size(Apat); 

     

     

    CosTr = cos((pi/n)*(repmat(([1:n]'+1/2),1,n))*diag([1:n])); 

  

    a = Apat*CosTr.*repmat(sqrt(2/n),m,n); 

    b = Dpat*CosTr.*repmat(sqrt(2/n),m,n); 

 

  

    for i = 1:m 

        for j = 1:fnumb 

            if isnan(a(i,j)) 

                a(i,j)=0; 

            end 

            if isnan(a(i,j)) 

                a(i,j)=0; 

            end 

        end 

    end 

  

    DCTCoef = [a(:,1:(fnumb)) b(:,1:(fnumb))]'; 

     

else 

     

    d = size(ExtFVec,2); 

     

    Apat = ExtFVec(:,1:d/3); 

    Bpat = ExtFVec(:,(d/3+1):(2*d/3)); 

    Dpat = ExtFVec(:,((2*d/3)+1):end); 

    [m,n]=size(Apat);   

    CosTr = cos((pi/n)*(repmat(([1:n]'+1/2),1,n))*diag([1:n])); 

  

    a = Apat*CosTr.*repmat(sqrt(2/n),m,n); 

    b = Bpat*CosTr.*repmat(sqrt(2/n),m,n); 

    DCTCoef = [a(:,3:(2+fnumb)) b(:,3:(2+fnumb))]'; 

end 

end 

  

 

 

function [z_T_FVs,H_T_FVs,DCT_T_FVs] = Extract_Test_FVs(BImg,order) 

z_T_FVs = []; 

H_T_FVs = []; 

DCT_T_FVs = []; 

BinaryImg = padarray(BImg,[5 5]); 

[changed_labled_image,N_obj] = Extracted_subwords(BinaryImg); 

  

for k = 1:N_obj 

    [r,c] = find(changed_labled_image == k); 

    q = bound2im([r,c]); 

    g = imresize(q,1.5); 

    figure,imshow(g); 

    H_T_FVs = cat(1,H_T_FVs,invmoments(q)); 

    Img_b = padarray(q,[5 5]); 
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    [TImg_trans,~,~]    = lans_invariant(Img_b,'scale 1 translation 

1'); 

    B = boundaries(TImg_trans); %Trace object boundaries 

    b = cat(1,B{:}); % Concatenate all the found boundaries  

    Boundary_Img = bound2im([ b(:,1), b(:,2)]); 

    figure,imshow(Boundary_Img) 

    DCT_Coef_Test = DCTFVec([b(:,1)', b(:,2)'], 20, 0); %dct2 

    clear TImg_trans; 

    DCT_T_FVs = cat(1,DCT_T_FVs,DCT_Coef_Test'); 

    clear TA_nm; 

    Img_b = imresize(Img_b,[200 NaN],'bilinear'); 

    [TImg_trans,~,~]    = lans_invariant(Img_b,'scale 1 translation 

1'); 

    [TA_nm,~,~] = lans_zmoment(TImg_trans,order); 

    clear TImg_trans; 

    z_T_FVs = cat(1,z_T_FVs,abs(TA_nm)); 

    clear TA_nm; 

end 

  

 

 

function [changed_labled_image,N_obj] = Extracted_subwords(BinaryImg) 

 CC = bwconncomp(BinaryImg,8); 

 L = labelmatrix(CC); 

 [Regions,R_order] = sort_labels(BinaryImg,L,CC.NumObjects); 

 [Match_matrix,Nmobj] = labeling_dist(Regions,CC.NumObjects,R_order); 

 [changed_labled_image,N_obj] = 

change_label(Regions,Match_matrix,Nmobj,CC.NumObjects); 

 

 

function  [z,Region_order] = sort_labels(bw,L,num) 

  

% Components are sorted based on their maximum row value. Therefore, 

all 

% the components with smaller maximum row values will be labeled before 

the 

% next row's components. 

Region_info = cell(1,2); 

Region_order = cell(1,1); 

for i = 1:num 

    [r ~] = find(L == i); 

    Region_info{1} = cat(1,Region_info{1},max(r)); 

end 

% Region_info{1}(:,1) 

[sorted,sorted_order] = sort(Region_info{1},1); 

L2 = zeros(size(L)); 

for i = 1:num 

    L2(L == sorted_order(i)) = i ; 

end 

clear Region_info 

Region_info = cell(1,2); 

Region_info{1} = sorted; 

for i = 1:num 

    [r ~] = find(L2 == i); 

    Region_info{2} = cat(1,Region_info{2},min(r)); 

end 
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Region_order{1} = cat(1,Region_order{1},1); 

for i = 1:num-1  

   if abs(Region_info{1}(i,1)-Region_info{2}(i+1,1))> 25 

       Region_order{1} = cat(1,Region_order{1},i+1); 

   end 

end 

Region_order{1} = cat(1,Region_order{1},num+1); 

% Region_order{1}(:,1) 

clear Region_info; 

clear sorted; 

clear sorted_order; 

clear r; 

clear c; 

% Look at the components of each row and sort them from maximum column 

% value to minimum. 

Region_info = cell(1,2); 

z = zeros(size(L2)); 

  

for M = 1:num 

    [r c] = find(L2 == M); 

    Region_info{2} = cat(1,Region_info{2},max(c)); 

    Region_info{1} = cat(1,Region_info{1},M); 

end 

 for i = 1: size(Region_order{1})-1 

     for j = Region_order{1}(i): (Region_order{1}(i+1))-1 

         for k = j+1: (Region_order{1}(i+1))-1 

             if(Region_info{2}(j) < Region_info{2}(k)) 

                 temp1 = Region_info{2}(j); 

                 temp2 = Region_info{1}(j); 

                 Region_info{2}(j) = Region_info{2}(k); 

                 Region_info{1}(j) = Region_info{1}(k); 

                 Region_info{2}(k)= temp1; 

                 Region_info{1}(k)= temp2; 

             end 

         end 

     end 

 end 

  

 for i = 1: num 

     z(L2 == Region_info{1}(i)) = i ;      

 end 

 

 

function [L_matrix,Nmatched_obj] = labeling_dist(L,num,Line_seg) 

% LABELING labels overlapping objects to the same group. 

% [L_matrix,Nmatched_obj] = LABELING(L,NUM)receives a specified 

% connected component matrix and 

% the number of connected components in an image and figures out 

wheather  

% either of those objects belong to eachother. If so, it changes the 

lables 

% to reflect this effect. The output of this function is L_matrix, 

% the matrix of the lables that need to be changed, and number of 

% overlapped objects that has been found,Nmatched_obj. 

%L_matrix = zeros(factorial(num),2); 

L_matrix = zeros(num,2); 

rp = 1; 
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Nmatched_obj = 0; 

% Line_seg{1}(:,1); 

for i = 1: size(Line_seg{1})-1 

     for k = Line_seg{1}(i): (Line_seg{1}(i+1))-1 

         [r, c] = find(L==k); 

         for j = k+1: (Line_seg{1}(i+1))-1 

             [rj, cj] = find(L == j); 

             if (max(c,[],1) >= min(cj,[],1)) && (min(c,[],1)<= 

max(cj,[],1)) 

                 if ( max(cj,[],1) <=max(c,[],1)) & (min(cj,[],1) >= 

min(c,[],1))... 

                         |(max(c,[],1)<= max(cj,[],1)+ 5) 

 

                     if(size(c,1) >= size(cj,1)) 

                         L_matrix(rp,1:2)=[j,k]; % j Label has to change to k 

label 

                         rp = rp+1; 

                     else 

                         L_matrix(rp,1:2)=[k,j]; 

                         rp = rp+1; 

                     end 

                  end 

                  Nmatched_obj = Nmatched_obj + 1; % number of matched 

objects 

             end 

         end 

     end 

end 

return 

 

function [LImage,remain_obj] = change_label(LImage,M,N_match,N_obj) 

%CHANGE_LABEL changes the label of the objects have to be in the same 

group. 

%[LImage,remain_obj] = CHANGE_LABEL(LImage,M,N_match,N_OBJ) find the 

%objects that need to be in the same group and changes their label to 

%match them togheter. Then arrange all the label in sequence. 

% It receives the labeled image, LImage, and the matrix contains the 

matching  

% number of the labels,M, number of matched has been found,N_match, and 

the 

% total number of objects,N_obj. 

% It returns the corrected label matrix ,LImage, and number of objects 

% remained in the Image,remain_obj. 

  

if(N_obj > 0) 

    for i = 1:N_match 

        [r,c] = find(LImage == M(i,1)); 

        for j = 1:size(r,1) 

            LImage(r(j),c(j))= M(i,2); 

        end 

    end 

end 

x = zeros(1,N_obj); 

remain_obj = 0; 

for i = 1:N_obj 

    y = find(M(:,1) == i); 

    if(size(y,1) == 0) 
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        remain_obj = remain_obj + 1; 

        x(remain_obj) = i; 

    end 

end 

% x 

for i = 1:remain_obj 

    [r,c] = find(LImage == x(1,i)); 

    for j = 1:size(r,1) 

        LImage(r(j),c(j))= i; 

    end 

end 

 

function class = Voting_Scheme(Z,H,D) 

class = cell(1,1); 

for i = 1:numel(Z) 

    if Z(i) == H(i) 

        class{1} = cat(1,class{1},Z(i)); 

    else 

        class{1} = cat(1,class{1},D(i)); 

    end 

end 

 

 

function [z,H,D,tag] = Sort_Tr_FVs(z,H,D,tag) 

% sort the value of the moments based on the classtag 

Temp_tag = cell(1,1); 

[Temp_tag{1},ix] = sort(tag{1}); 

Temp_FV{1} = z{1}(ix,:); 

z{1} = Temp_FV{1}; 

Temp_FV{1} = []; 

Temp_FV{1} = H{1}(ix,:); 

H{1} = Temp_FV{1}; 

Temp_FV{1} = []; 

Temp_FV{1} = D{1}(ix,:); 

D{1} = Temp_FV{1}; 

tag = Temp_tag; 

clear Temp_tag; 
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