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Abstract

Subjective Logic is a recently emergent probabilistic logic system that allows for reasoning

under uncertainty. Though algebraically expressive, there is a lack of software tooling to

support computation, such as code libraries, calculators, and software for the development

of decision support systems. With this motivation, we present a complete design for a li-

brary of opinion data structures and operators constructed from higher order functions that

are capable of representing and evaluating well-formed expressions of Subjective Logic.

By leveraging monads, mathematical objects from Category Theory, we have enabled our

operators to detect and propagate run-time errors without sacrificing compositionality. Fur-

thermore, we have conducted a termination analysis on the expression evaluator and a

complexity analysis on a representative subset of the operators. We have also proposed

and implemented extensions to the set of Subjective Logic operators. Lastly, we provide

examples of how to compute the values of Subjective Logic expressions.
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Chapter 1

Introduction

1.1 Motivation

Imagine being in a courtroom where a man is being tried for murder. The prosecution has

brought forth three witnesses who allegedly observed the event. Witness A is a close friend

of the defendant, and has a high opinion of him. Witness B does not like the defendant

at all, and has a very negative opinion of him. The third witness, Witness C, has no prior

opinion of the defendant, and thus is very uncertain about his character.

The judge has never once interacted with the defendant and therefore must base his

entire opinion of him on the evidence brought forth and by the witness testimonies. The

judge does, however, have an opinion about each of the three witnesses. The judge golfs

regularly with witness A, the judge knows witness B is the pastor at a local church, and

witness C is a courtroom regular - always involved in some mischief or other. Therefore,

while the judge can construct an opinion of the defendant by analyzing the opinions of the

three witnesses and forming a consensus, he also takes into account his knowledge of the

1
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Name of Breed % of Total
Silky 25%
American 40%
Peruvian 25%
Mixed 10%

Table 1.1: Imaginary distribution of guinea pig breeds

three, and discounts their opinions by his own opinions of them. The judge places great

weight on the testimonies of witnesses A and B, and can barely belief a word of witness

C’s statement.

Now imagine two sensors designed to measure two orthogonal properties of baby

guinea pigs. Before they reach a certain age, male guinea pigs must be separated from

their mothers (and sisters) because they reach sexual maturity very quickly. Therefore it is

important to be able to measure the sex of the guinea pigs quickly and partition them ac-

cordingly in order to avoid a combinatorial explosion of new children. Another important

measurable trait is the breed of the guinea pig. If the pigs have been brought from many

different litters, then it is important to be able to classify them as Silky, American, or Pe-

ruvian before sending them to the pet store. This classification cannot be carried out with

absolute certainty, as there can be mixed breed guinea pigs as well. Assume for simplicity

that guinea pigs have a male/female birth ratio of 50/50, and that the probability of a guinea

pig having a certain breed is given in Table 1.1.

Given these two sensors, it is possible to classify the guinea pigs into eight categories.

To complicate matters, imagine that your breed-detecting sensor has a tendency to give

back inaccurate results, say, 5% of the time. Any reasoning that is to be done with this

sensor data must be handled with care, as it has a non-zero rate of error.
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M1 M2 M3
You 0.5 0.3 0.1
Bill 0.2 0.6 0.2
Ted 0.7 0.0 0.0

Table 1.2: Movie Preferences

Lastly, suppose you and two of your friends wish to see a movie. There are three

movies currently playing in your local theatre: Star Wars - The Empire Strikes First (M1),

Casablanca 2 (M2), and A Slug’s Life (M3). Each of you has a preference for each of

the three movies, as depicted in Table 1.2. Is it possible for the three of you to come to a

reasonable decision for which movie to see?

The above scenarios all share a common theme: they involve reasoning about uncertain

or incomplete data. Many real-world reasoning scenarios must deal with this kind of data,

and thus any automated system designed to aide decision-makers in these (and many other)

kinds of situations must be able to take uncertainty into account.

This thesis is about the engineering of a library for constructing and evaluating expres-

sions in Subjective Logic, a recently emergent extension to probabilistic logic [23] with

support for reasoning under uncertainty. The library is designed to be a central component

of Unified Data Management and Decision Support System (UDMDSS) [37, 41, 39], a

decision support system that is under active research and development within our lab. We

utilize the Haskell programming language [19] as it supports strong typing, has excellent

support for programming with monads [64], and is overall an elegant purely functional

programming language for implementing mathematical programs.
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1.2 The Problem Addressed

Subjective Logic is a relatively new form of probabilistic logic that is currently under active

development [23]. The novelty of Subjective Logic is that it directly handles uncertainty,

and each and every operator for manipulating subjective opinions - the primary objects of

Subjective Logic - takes this uncertainty into account. The result is a flexible calculus of

opinions that can be used to model many kinds of situations that require reasoning under

uncertainty [65, 32, 45, 55].

As Subjective Logic is still an area of active research, the operators, opinions, and

even nomenclature, are evolving. As a result of this there is, to the best of our knowl-

edge, no implementation of Subjective Logic available for use by application developers

and researchers. Audun Josang has provided an implementation of some Subjective Logic

operators, however the implementation is incomplete. The implementation was constructed

before Subjective Logic had introduced hyper opinions and other operators now found in

the literature.

1.3 Our Proposed Solution

To combat this scarcity of implementations, we have developed a library of Subjective

Logic operators using the Haskell programming language. We represent expressions of

Subjective Logic as functions from an initial world state to some numeric output, and the

operators of Subjective Logic as higher order functions. Therefore simple expressions of

Subjective Logic can be combined to form larger more complex equations.

In order to assist us in combining together these equations, we use monads, in particular
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a state monad. Monads are ubiquitous in Haskell, and are a general design pattern that has

been previously used to represent stateful computations [43], input/output [64], and formal

[20, 44] and natural language [14] parsers.

In order to demonstrate the effectiveness of our library, we utilize it to implement some

example calculations provided by Josang in the literature. Furthermore we prove that our

set of operators terminates for all possible valid input equations. Lastly, we perform a

complexity analysis on a representative subset of the operators.

We expect that our library will be found useful by the research community, and that it

will spur the development of Subjective Logic-based reasoning applications.

1.4 Thesis Contribution

To realize the solution proposed above, in this thesis we have done the following:

• We developed SLHS, a Subjective Logic library that is type-safe, efficient, and com-

positional, using the Haskell programming language (Chapter 4).

• We contributed two additional operators to Subjective Logic (Section 4.4).

• We proved that the evaluator of SLHS (the function that evaluates the Subjective

Logic expressions) terminates for all valid Subjective Logic expressions (Section

5.1).

• We analyzed the time complexity of a representative subset of the Subjective Logic

operators (Section 5.2).
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• We constructed example applications to demonstrate the effectiveness and ease of

use of SLHS (Section 5.5).

1.5 Organization of this Document

The remainder of this document is organized as follows. Chapter 2 introduces the reader

to the relevant background information on decision support systems, automated reason-

ing systems, uncertain reasoning, Subjective Logic, and pure functional programming in

Haskell to allow the proceeding chapters to be better understood. Chapter 3 contains the

thesis problem, hypothesis, objectives, and methodology. Chapter 4 introduces SLHS, a

library of Subjective Logic objects and operators, written in the Haskell programming lan-

guage. Chapter 5 presents a proof of termination, analysis of complexity a sample of op-

erators in SLHS, and a discussion regarding the use of Haskell and monads on the design

of the library. It also contains examples of how one can use SLHS to model situations

that require uncertain reasoning, and lastly, it discusses the library’s role within the larger

UDMDSS decision support system. Chapter 6 concludes this thesis and discusses areas for

future improvement.



Chapter 2

Background

In this chapter we provide an introduction to the relevant background material pertain-

ing to this thesis. We begin with a discussion of decision support systems, followed by

an overview of automated reasoning. Next we discuss uncertain reasoning including

Dempster-Shafer Theory and Subjective Logic. We next discuss various tools for devel-

oping uncertain reasoning applications. We conclude with a brief overview of the Haskell

programming language, as it is the language used for the program examples throughout

this thesis.

2.1 Decision Support Systems

Decision support systems are information systems that are designed to aide users with var-

ious decision-making tasks [74]. Examples of such tasks are those pertaining to manage-

ment, planning, or operations. Typically decision support systems work with the kinds of

unstructured or underspecified problems faced by managers and decision-makers in many

7
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areas; involve the synthesis of models, analytics, and data; are targeted at non-technical

people; and are designed to be flexible and adaptable in the face of new data or changes to

the working environment [74].

In his 2002 book, Decision support systems: concepts and resources for managers [66],

Daniel J Power breaks down Decision support systems into the following taxonomy:

• Communication-driven systems: systems that allow for more than one person to work

on a shared task.

• Document-driven systems: systems that allow for the storage, retrieval and manipu-

lation of unstructured data documents.

• Data-driven systems: systems that facilitate the manipulation of internal company

data.

• Model-driven systems: systems that allow for access and modification of various

models: whether they are financial, simulation, statistical, or other.

• Knowledge-driven systems: systems that contain problem solving expertise for the

task at hand, typically encoded as facts and rules.

As a part of the ongoing research in our lab, we have designed the Unified Data Man-

agement and Decision Support System (UDMDSS) [37, 41, 39]. UDMDSS was designed

to handle the management and analysis of population research surveys. Figure 2.1 shows

an overview of the various components of the system. Of particular interest to this thesis

is the data analysis component. Of the various tools available for uncertain reasoning such

as Fuzzy Set Theory, Bayesian Probability, and Dempster-Shafer Theory, we have chosen
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to base UDMDSS’s reasoning engine on Subjective Logic [38], a recently emergent ex-

tension to probabilistic logic [23]. Each of the mentioned tools have their strengths and

weaknesses, and in the next section we discuss the topic of automated reasoning and how

they and others can be used for deductive, inductive, and abductive reasoning.

Figure 2.1: Unified Data Management and Decision Support System (UDMDSS) [38]

2.2 Automated Reasoning

Automated reasoning is a topic of Artificial Intelligence that has to do with the construc-

tion of systems that can reason with information and draw conclusions. Wos et al define

an automated reasoning program to be one that “employs an unambiguous and exacting

notation for representing information, precise inference rules for drawing conclusions, and
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carefully delineated strategies to control those inference rules” [81]. Reasoning can either

be

• deductive: where from a set of initial facts and rules of the form “if X then Y”, we

can compute the truth or falsity of theorems with absolute certainty through the use

of Modus Ponens [76] For example: suppose we know for absolute certainty that all

professors are cranky, and that Dr. X is a professor. We therefore must conclude that

Dr. X is cranky.

• inductive: where from some observations we formulate a hypothesis and then verify

that hypothesis by testing that it holds for new observations. In contrast with deduc-

tion, inductive conclusions should not be certain, but probable, given the supporting

evidence [6]. For example, a scientist may, after several observations of birds flying,

construct the hypothesis that all birds fly. The scientist must modify her hypothesis

upon observing an ostrich.

• abductive: where we compute the best possible hypothesis that explains some obser-

vation [36]. As an example, physicians must use abductive reasoning every day in

their work, as all that they can observe are symptoms, not the causes of those symp-

toms. Therefore if there exist several competing explanations as to why the patient

has a terrible cough, the doctor must abduce the most likely hypothesis, and then test

that hypothesis to ensure its validity.

Unlike deduction, neither induction nor abduction can be used to reason with absolute

certainty. Since the validity of collected population survey data is not absolutely certain
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(data can be missing or unclear, the clerk may have entered the survey data into the system

incorrectly, or a whole host of other issues) the focus of this thesis is on the development of

a software library that can reason with uncertain information. As will be shown in Section

2.3.4, in the case of Subjective Logic, as the amount of evidence tends toward infinity, the

amount of uncertainty tends to zero, leaving a pure probability.

2.3 Reasoning With Uncertain Information

Since the early days of Artificial Intelligence, researchers have been interested in modeling

how humans perform various kinds of reasoning [70], and more recently (late 1980’s to

early 1990’s) researchers have developed successful techniques for constructing artificial

systems that can reason with uncertain information [70]. Tools that are used by researchers

for handling uncertain or incomplete information include, but are not limited to

• Bayesian Probability

• Fuzzy Logic

• Dempster-Shafer Theory

• and more recently, Subjective Logic

In this section we discuss the above mentioned calculi, and in Section 2.4 we discuss

various languages, workbenches, and tools that are available for researchers.
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2.3.1 Bayesian Probability

Bayesian Probability is an interpretation of the concept of probability that can be seen an

extension of propositional logic [5]. It allows for reasoning with propositions whose truth

values are uncertain. Being an evidential probability, the prior probability of a proposi-

tion (the probability of the proposition being true prior to any evidence being accounted

for) is assigned, and as evidence is accounted for, the probability of the proposition is up-

dated through a mechanism called Bayesian Updating [57]. Unlike a frequentist view of

probability, in which the probability of a proposition represents the frequency of the event

occurring, in Bayesian Probability the probability of a proposition represents a state of

belief [8].

Reasoning with Bayesian Probability amounts to the following:

1. Represent all sources of uncertainty as statistical random variables [12].

2. Determine and assign a prior probability distribution to the random variables.

3. As more evidence is made available, update the probability distributions by applying

Bayes’ Formula:

P(A|B) = P(B|A)×P(A)
P(B)

P(A) represents the prior probability of the proposition A being true, and P(A|B) is the

conditional probability of A being true given B is true. Therefore, as new evidence becomes

available, the probability distributions describing the propositions are updated, and these

updated probabilities are then used as priors for further calculations with new evidence.
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While Bayesian Probability appears to be a fairly simple method of extending propo-

sitional logic to handle uncertainty, one issue that arises is when one wants to carry out

abductive inference. The base rate fallacy occurs when one assumes that P(A|B) = P(B|A)

[42], and therefore when one wants to reason backwards from some observable evidence

to the likely hypothesis, the conditional probabilities must first be inverted [35]. Subjective

Logic, as will be shown, supports both deductive and abductive reasoning as operators, and

thus no confusion can occur so long as the correct operator is chosen.

2.3.2 Fuzzy Logic

Fuzzy Logic is a many-valued logic that supports reasoning with approximate truth val-

ues, rather than exact truths as in classical logic [63]. The term “fuzzy logic” was first

introduced by Zadeh [83] in his description of Fuzzy Set Theory, and since then it has been

applied to fields such as Control Theory, Automated Reasoning, and Machine Learning [3].

Given a predicate P and a variable x, let P(x) be a function that maps x to a value on

the interval [0,1]. This function represents the degree of which x satisfies P. For example,

consider two predicates Red and Yellow. Given the variable orange representing the colour

orange, one observer might say that Red(orange) = 0.4, and that Yellow(orange) = 0.8.

That is, the colour orange is more “yellow” than it is “red”. However a different observer

might assign a different degree of membership to the colour.

Fuzzy Logic supports the operators AND and OR, just like in classical logic, but since

the degrees of truth are continuous values between 0 and 1, a simple truth-table will not

suffice for representing the logical operators. Therefore, Fuzzy Logic defines x AND y to
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be the minimum value of the two degrees of truth, and x OR y to be the maximum value.

The negation of a degree of truth is 1 minus the degree.

Fuzzy Logic has been suggested as a method of handling uncertainty in the design

of expert systems by Zadeh [86]. In fact, Zadeh claims that Fuzzy Logic subsumes both

Probability Theory and Predicate Logic and allows for uncertainty to be handled in one

single conceptual framework. It is claimed, however, by Russell and Norvig in their popular

textbook Artificial Intelligence: A Modern Approach [70] that Fuzzy Logic is not a method

of uncertain reasoning at all, because it simply replaces crisp truth values with approximate

ones. Therefore, they claim that Fuzzy Logic is a method of representing vagueness, not

uncertainty.

2.3.3 Dempster-Shafer Theory

Dempster-Shafer Theory is a mathematical and philosophical theory of evidence [72]. It

is an extension of Bayesian Probability in which probabilities are assigned not to individ-

ual random variables, but to sets of them. The belief of an individual random variable is

bounded above and below by two values: the plausibility of the random variable, and the

belief of it.

Given a frame of discernment, a set containing all mutually exclusive atomic events that

are of interest to our reasoning system, one constructs a basic belief assignment, or BBA,

which assigns a measure of belief between zero and one to subsets of the frame. BBA’s

are additive: if X is a frame of discernment and m is a BBA over X , then ∑x⊂X m(x) = 1.

Furthermore, no mass is assigned to the empty set: m( /0) = 0.
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Given a BBA m over a frame X , one can compute the belief and plausibility of a subset

A of X by the following expressions:

• bel(A) = ∑B⊆A m(B)

• pl(A) = 1−bel(A)

These two values bound the probability of A from below and above. That is, bel(A)≤

P(A)≤ pl(A). The real novelty of Dempster-Shafer Theory, however, is Dempster’s Rule of

Combination, which states how two BBA’s generated by two observations can be combined

together [10]. Let m1 and m2 be two BBA’s over a frame of discernment X . We combine

together the two BBA’s by computing what is referred to as the joint mass, denoted as m1,2,

by the following equation:

m1,2 ( /0) = 0

m1,2 (A) = (m1⊗m2) =
1

1−K ∑
B∩C=A6= /0

m1(B)m2(C)

K, which represents the amount of conflicting belief between m1 and m2, is

∑
B∩C= /0

m1(B)m2(C)

While fairly straight forward to calculate, it has been shown by Zadeh [84, 85] that

Dempster’s Rule generates counter-intuitive results when there is a high degree of conflict

between the two belief masses, and Josang and Pope claimed that Dempster’s Rule actu-

ally represents a method of preference combination while serving as an approximation for
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other forms of belief combination such as the cumulative or average fusion of two beliefs

[34]. Subjective Logic, which we introduce next, contains several operators for combining

beliefs together [22, 31, 27, 26], that serve as better tools for combining evidence from

different sources in different scenarios. Furthermore, Judea Peal has claimed that it is

misleading to interpret belief functions as anything other than the probability that a given

proposition is provable from a set of other propositions that have assigned probabilities

[59, 58, 60].

Despite these criticisms, Dempster-Shafer Theory has seen much success when applied

to problems such as sensor fusion [82, 54, 4] and neural network classification [11, 69].

2.3.4 Subjective Logic

Subjective Logic was introduced by Audun Josang [23] as an extension to probabilistic

logic that fixes some of the issues with Dempster-Shafer Theory [34] that have been men-

tioned in Section 2.3.3. Though it is relatively young and is under constant refinement,

Subjective Logic has been shown to be effective across a range of areas that require un-

certain reasoning, such as trust network analysis [32, 29], modeling trust on mobile ad-hoc

networks [45, 47], and arguing with evidence [55, 30].

Subjective Opinions

The primary building blocks of Subjective Logic expressions are objects called subjective

opinions [23]. Given a frame of discernment Θ, a subjective opinion over Θ is a 3-tuple

consisting of the following elements:
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• A belief vector, bΘ, of assigned belief mass that spans the reduced power set of Θ.

The reduced power set is defined as R(Θ) = 2Θ \{Θ, /0}.

• A scalar, uΘ, that represents the unassigned belief mass uΘ +∑x∈R(Θ) bΘ (x) = 1

• A vector of prior belief, aΘ, that spans the frame Θ

such that the following conditions hold:

1. ∀x ∈ R(Θ) ,bΘ (x) ∈ [0,1]

2. ∀x ∈Θ,aΘ (x) ∈ [0,1]

3. uΘ ∈ [0,1]

4. uΘ +∑x∈R(Θ) bΘ (x) = 1

5. ∑x∈Θ aΘ (x) = 1

Opinions are written as ωA
Θ
= 〈bA

Θ
,uA

Θ
,aA

Θ
〉, where A is the (optional) agent who owns

that particular belief.

Elements of R(Θ) such that bΘ (x) > 0 are called focal elements. Subjective opinions

where the focal elements are all singleton sets - that is, every focal element is simply an

element of Θ - are referred to as multinomial opinions. Multinomial opinions defined over

frames of cardinality 2 are referred to as binomial opinions. The most general of opinions,

subjective opinions, are also referred to as hyper opinions. Lastly, opinions can either be

dogmatic, when uΘ is zero, or uncertain otherwise. The six classes of subjective opinions

are summarized in Table 2.1.
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|Θ|= 2 |Θ|> 2 |R(Θ)|= 2|Θ|−2
u > 0 Uncertain Binomial Uncertain Multinomial Uncertain Hyper
u = 0 Dogmatic Binomial Dogmatic Multinomial Dogmatic Hyper

Table 2.1: Subjective Logic Opinions

Binomial opinions have a special notation that is used to emphasize the binary nature

of the frame of discernment [23]. Given a frame Θ = {x,¬x}, the binomial opinion of x is

written as ωx = 〈bx,dx,ux,ax〉, where

• bx is the belief of event x being true.

• dx is the belief of event x being false.

• ux is the uncertainty of whether x is true or false.

• ax is the belief of x being true prior to the collection of evidence.

Opinions in Subjective Logic can be mapped to and from probability density functions

from Probability Theory [23, 22]. Binomial opinions correspond to beta probability density

functions (PDFs), multinomial opinions correspond to dirichlet PDFs, and hyper opinions

correspond to hyper-dirichlet PDFs. For evidence-based reasoning this is a boon because

the Beta PDF acts as a conjugate prior to the binomial distribution, and the Dirichlet PDF

is prior to the multinomial [71]. This means that through the mapping, subjective opin-

ions can be used anywhere one could use Bayesian Inference, where the Bayesian Update

mechanism updates the opinions to take into account new evidence.
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Subjective Logic Operators

Subjective Logic includes a wealth of operators for working with all classes of opinions. It

includes the traditional binary logic operators such as and, or, and not, which are upgraded

to incorporate uncertainty, as well as the set-theoretic operators union and set-difference.

In the case of absolute belief (bx = 1) or disbelief (dx = 1), these binomial operators behave

the same as they would in traditional logic [50, 33].

Subjective logic also includes operators for working with multinomial opinions, such

as cumulative and averaging fusion and unfusion [31, 26, 27, 22]. These operators allow

for combining multinomial opinions from different sources. Subjective Logic also includes

operators for performing transitive trust analysis [23, 32], where an agent A has an opinion

of agent B, and agent B has an opinion of the event X. Agent A, through its opinion of

agent B, can derive an opinion of event X by using one of several discounting operators.

Subjective Logic also includes an operator for belief constraining [34], which can be used

when multiple agents need to reach a consensus opinion. This operator is in fact equivalent

in meaning to Dempster’s rule of combination [34].

Lastly, Subjective Logic also includes operators for performing uncertain reasoning

[35, 25, 24]. It includes deduction and abduction operators for subjective opinions, thereby

allowing Subjective Logic to be used for intelligence analysis [65], bayesian network anal-

ysis [25], and other actions that require reasoning when uncertainty is present.
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2.4 Languages and Tools for Automated Reasoning

In Section 2.3 we introduced various systems for automated reasoning. In this section we

discuss some languages and tools that have been developed for the previously mentioned

systems. Note however that as far as we know, there do not exist any languages or tools for

working with Subjective Logic.

2.4.1 Weka

Waikato Environment for Knowledge Analysis (WEKA) is a popular workbench for ma-

chine learning [80]. It contains many popular algorithms and visualization techniques for

performing data mining, data analysis, and predictive modeling. It is developed in the JAVA

programming language, and is distributed as Free Software under the GNU General Public

License.

Though freely available, Weka requires all data to be described using a fixed number

of attributes and all data must be stored in a single file or relational table [68]. There exist

tools however for converting data into the format required for Weka [68].

2.4.2 DSI Toolbox

Dempster-Shafer with Intervals (DSI) is a verified MATLAB toolbox for computing with

Dempster-Shafer Theory [1]. The authors claim that DSI introduces intervals to a previ-

ously developed IPP toolbox [46], and that because of this modification they claim that

DSI does not suffer from the same rounding errors that occur in IPP. We follow a similar

approach in the design of our library: in order to avoid the possibility of rounding errors
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in Subjective Logic, we represent each numeric value as a rational number. As will be

explained in Section 4.5, this representation may not always be desirable, as it removes the

ability for prior beliefs to be populated with irrational numbers such as 1
e .

2.4.3 R

R is a programming language and interactive environment for statistical computing [77]. It

is popular among statisticians and data miners [13, 79], and is a powerful and free alterna-

tive to other non-free statistical tools such as SAS [9] and SPSS [67]. R can be extended

through user-defined packages, many of which are available through repositories such as

the Comprehensive R Archive Network (CRAN) and Bioconductor, a project which focuses

on the analysis of genomic data in molecular biology.

Though powerful, we believe the language is best suited for designing statistical soft-

ware, not general purpose programming. For the development of our library for Subjective

Logic, we chose to use the Haskell language over R, as we feel that Haskell has better

support for everyday programming.

2.4.4 Prolog

Prolog is a Logic Programming Language, which means that every computation must be

expressed as a logical statement [75]. Despite this seemingly strange restriction, Prolog is

a general-purpose programming language [75].

As mentioned, all computations in Prolog are expressed as logical statements. In par-

ticular, expressions in Prolog are Horn Clauses: logical expressions of the form
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Name Method of Reasoning Data Representation Notes
Prolog Deduction Horn Clauses Unideal for uncertainty.

All computations repre-
sented as logical deduc-
tions.

R Bayesian Statistics Data tables Powerful for statistical
computation.

Weka Machine learning algorithms Data tables Vast array of tools. Data
must conform to a cer-
tain format to be usable.

DSI Dempster-Shafer Theory Beliefs MATLAB workbench.
Uses intervals instead of
floating point math.

Table 2.2: Summary of Discussed Reasoning Tools

head :−X1,X2, ...XN

meaning the statement head is true only when statements X1 through XN are also true

[17]. As an example of how one can represent computations in Prolog, the following

program computes the factorial of a number:

factorial(0, X) :- X = 1.

factorial(N, X) :- NN = N - 1, factorial(NN, X1), X = X1 ∗ N.

It was the language of choice for Japan’s ambitious fifth generation computing project

[73], and Prolog still sees much use in the Natural Language Processing community [7,

61], as it has excellent support for implementing definite-clause grammars [62]. Prolog,

however, does not have built-in support for uncertainty. Because it is a general purpose

programming language, one could theoretically construct an automated reasoning program

in Prolog that does handle uncertainty, however it would fight against the spirit of the

language.
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2.4.5 Summary

There currently exist many tools for developing automated reasoning systems, and we have

summarized a few of them in the previous section and in Table 2.2. Due to it being quite

young in comparison to other systems, there do not yet exist any comprehensive tools for

developing applications with Subjective Logic. In the next section we present an overview

of the Haskell programming language, our implementation language for a new Subjective

Logic library, and in Chapter 4 we present SLHS: Subjective Logic in Haskell.

2.5 Functional Programming in Haskell

Haskell is a strongly typed, non-strict, pure functional programming language [19] which

was initially developed to be a common language for researchers interested in non-strict,

pure functional programming languages [18]. By non-strict, we mean that Haskell evalu-

ates expressions in a call-by-need manner: expressions are only evaluated if and when they

are required [15]. Haskell is a functional programming language, where the meaning of

functional is the style of programs as described by John Backus in his Turing award lecture:

Can Programming Be Liberated from the von Neumann Style?[2]. Lastly, Haskell is pure

in the sense that all functions are functions in the mathematical sense: they depend only on

their inputs to produce their outputs. Haskell does not support the use of global state when

writing programs.

In this section we will briefly describe the syntax of Haskell in order to give the reader

enough familiarity to understand the code listings of Chapter 4. This section is by no means

exhaustive in its treatment of Haskell. For readers who wish to learn Haskell in more depth,
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we suggest the book Real World Haskell [56].

Functions in Haskell are written as equations, with parameters separated by white space.

For example, the function to compute factorials can be written as

factorial 0 = 1

factorial n = n ∗ factorial (n - 1)

All expressions in Haskell have types. For example, the type of the literal 5 is Int.

Syntactically this is expressed as 5 :: Int. The function factorial above has the type Int→

Int.

Lists in Haskell are enclosed in square braces, and their elements must be of all the

same type. As an example, the following is a valid list:

names :: [String]

names = [’’John’’, ’’Paul’’, ’’George’’, ’’Ringo’’]

whereas the following is invalid:

things = [5, ’’seven’’, 2/3]

Types in Haskell can be organized into Type Classes, where each type in a type class

must have certain required operations defined over it. For example, consider the following

class:

class Monoid n where

id :: n

(<>) :: n → n → n

which states that a type n satisfies the properties of being a Monoid if there exists

a element id of type n, and there exists an operator for combining elements of type n.

Unfortunately the additional requirement of associativity cannot be expressed in Haskell.

Instances of the Monoid class can then be defined for individual types:

instance Monoid Int where

id = 0

x <> y = x + y
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One type class in particular gets special attention in Haskell. Types that are instances

of class Monad are very popular in functional programming, and Haskell in particular

[64]. Monads are mathematical objects from category theory that are prevalent through-

out Haskell. They were first introduced by Eugenio Moggi [52] and have subsequently

been used for parsing [20, 44, 14], modeling state [43], and much more. Most impor-

tantly, Haskell uses monads to handle input/output [64], which allows Haskell to read input

from the user, and send output to the computer screen, while remaining a pure functional

language. Types that are instances of Monad require two operations to be present:

class Monad m where

return :: a → m a

(>>=) :: m a → (a → m b) → m b

The first function, return, injects an object of type a into an object of type ma, where

m is some monad. The second operator takes in an object of type ma on the left hand side,

and a function f from a to mb on the right hand side, and returns an object of type mb.

Informally, the operator unwraps the object of type a from the object of type ma, and then

applies the function to it to obtain a result.

2.6 Summary

In this chapter we discussed the key ideas of decision support systems, followed by an

overview of automated reasoning, and an introduction to various uncertain reasoning sys-

tems. We then introduced Subjective Logic and presented a brief overview of the Haskell

programming language. In the next chapter we present our thesis problem, our thesis hy-

pothesis, our research objectives, and our methodology.
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Thesis Statement

In this chapter we describe the problem that this thesis addresses, our thesis hypothesis,

and our research objectives. Lastly we outline the methodology that we followed in order

to achieve those mentioned objectives.

3.1 Thesis Problem

As mentioned previously, there does not yet exist a comprehensive library of Subjective

Logic operators that can be used for research, development, and experimentation. There

exists a partial implementation of Subjective Logic operators by Audun Josang1, but at the

time of this writing, to our knowledge no complete implementation exists.

We expect that such a library of operators should be efficient, type-safe, and compo-

sitional. The library should be efficient in such a way that values are only computed as

needed. The library should be type-safe in order to catch invalid Subjective Logic expres-

1http://folk.uio.no/josang/sl/Op.html

26
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sions as early as possible. By leveraging a strong type system, the library should be able to

catch many errors at the time of compilation. Finally, the library should be compositional

in a sense that arbitrarily complicated Subjective Logic expressions should be able to be

constructed from a small set of functions and operators.

3.2 Thesis Hypothesis

Motivated by the aforementioned problem, our hypothesis for this thesis is: Using monads

and strong typing, it is possible to construct a general purpose Subjective Logic library that

is type-safe, efficient, and compositional.

3.3 Objectives

The objectives of our research are the following:

• Develop a library of Subjective Logic operators using monadic higher order func-

tions.

• Demonstrate the type safety of the library.

• Prove that the expression evaluator, the run function, terminates for all valid Subjec-

tive Logic expressions.

• Analyze the time complexity of a representative subset of the operators.
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3.4 Methodology

In order to satisfy the objectives of our research, we have done the following:

• We developed the library using the Haskell programming language due to it’s strong

type system and excellent support for monadic programming.

• We discuss how Haskell’s strong type system allows for our library to reject certain

classes of ill-formed Subjective Logic expressions.

• We utilize structural induction on the length of the input Subjective Logic expression

to prove that our operators terminate.

• We analyze the time complexity of the operators based on the cardinality of elements

in the frame of discernment that have non-zero belief mass assigned to them.

In the following chapter we will discuss the implementation of SLHS: Subjective Logic

in Haskell. Then, in Chapter 5 we will provide proofs of termination, complexity analysis,

and discuss how Haskell’s strong type system allows our library to reject a large class of

ill-formed Subjective Logic expressions.
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SLHS: Subjective Logic in Haskell

In this chapter we introduce the library SLHS: Subjective Logic in Haskell. SLHS is a

library for constructing and evaluating expressions of Subjective Logic. It can be embedded

into any existing Haskell project, and, through Haskell’s Foreign Function Interface, can

be utilized by other programming languages, most notably C and C++.

SLHS is designed to be simple to use: all Subjective Logic operators take in Subjec-

tive Logic expressions as input, and return Subjective Logic expressions as output, where

Subjective Logic expressions are represented as functions that map some data (frames of

discernment, belief mass assignments, configuration information) to some value - typically

an opinion. Therefore the operators are higher order functions. It will be shown that these

Subjective Logic expressions, or SLExprs are a kind of monad, and therefore when working

with SLExprs one may leverage Haskell’s excellent support for monadic programming. We

use the monad operators provided by Haskell liberally within the implementation of SLHS,

and we utilize Haskell’s do-notation - a syntactic sugar available when writing monadic

programs - to keep the code concise and easy to read.

29
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4.1 Core Components

In this section we will introduce components that form the nucleus of the library. These

include the implementation details for objects such as the frame of discernment, belief

vectors, as well as the the SLExpr type. The Subjective Logic operators are implemented

as functions that take and return objects of type SLExpr, and the monadic interface of

SLExpr controls how the expressions are combined.

4.1.1 Belief Vectors

We introduce a special type for representing belief vectors - containers whose elements

are belief masses. The reason for introducing a new type instead of simply re-using an

existing container type is so that in the future if analysis proves that a different container

type provides more efficient operations, then the internal represent of our belief vectors can

be changed without affecting any other portion of the SLHS code-base. For the time being

we have chosen to use Haskell’s Map data type, which is a key-value store backed by an

efficient red-black tree. It guarantees O(log2 n) time for looking up individual elements,

and allows us to traverse the entire tree in O(n) time. thus leads to very efficient Subjective

Logic operators.

We start with the definition of the Vector type.

newtype Vector a = Vector { unVec :: M.Map a Rational }

Next we introduce some functions for converting belief vectors to and from standard

Haskell lists.

fromList :: Ord a ⇒ [(a, Rational)] → Vector a

fromList = Vector ◦ M.fromList
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toList :: Vector a → [(a, Rational)]

toList = M.toList ◦ unVec

Finally, we introduce functions for interfacing with vectors.

value :: Ord a ⇒ Vector a → a → Rational

value v x = fromMaybe 0 ◦ M.lookup x $ unVec v

map :: (Rational → Rational) → Vector a → Vector a

map f = Vector ◦ M.map f ◦ unVec

mapWithKey :: (a → Rational → Rational) → Vector a → Vector a

mapWithKey f = Vector ◦ M.mapWithKey f ◦ unVec

fold :: (Rational → b → b) → b → Vector a → b

fold f z = M.fold f z ◦ unVec

focals :: Vector a → [a]

focals = M.keys ◦ unVec

elemsWhere :: (a → Bool) → Vector a → [(a, Rational)]

elemsWhere p = filter (λ(k, _) → p k) ◦ toList

value retrieves the value associated with a particular key. map allows us to apply a

function over each value, returning a new transformed vector. The mapWithKey function

allows us to map a function over the vector that takes the key into account. fold allows us

to accumulate a vector into a single value by applying an operator between each element.

focals returns a list of keys that have non-zero mass. Lastly, elemsWhere returns a list of

key-value pairs, where the key satisfies a certain predicate.

4.1.2 Frames of Discernment

We represent the frame of discernment as a container type that supports set-like operations

such as union and intersection. The reason that we provide our own implementation instead

of relying solely on the Set data type provided by Haskell is to allow for future modifica-

tions to the SLHS library to swap the underlying data structure, either for performance

reasons, or for portability.
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We first introduce a new type representing a frame of discernment:

newtype Frame a = Frame (S.Set a) deriving (Eq, Ord)

By declaring this type using Haskell’s newtype keyword, we are actually creating a kind

of strongly discriminating type alias. That is, representationally Frame a is the same as Set

a, however one cannot use a frame when expecting a set, and vice versa.

We then expose the set-theoretic operators that are required by the rest of the library

implementation.

empty :: Frame a

empty = Frame (S.empty)

isEmpty :: Eq a ⇒ Frame a → Bool

isEmpty f = f == empty

union :: Ord a ⇒ Frame a → Frame a → Frame a

union (Frame s1) (Frame s2) = Frame (s1 ‘S.union‘ s2)

isSubsetOf :: Ord a ⇒ Frame a → Frame a → Bool

isSubsetOf (Frame s1) (Frame s2) = s1 ‘S.isSubsetOf‘ s2

intersection :: Ord a ⇒ Frame a → Frame a → Frame a

intersection (Frame s1) (Frame s2) = Frame (s1 ‘S.intersection‘ s2)

difference :: Ord a ⇒ Frame a → Frame a → Frame a

difference (Frame s1) (Frame s2) = Frame (s1 S.\\ s2)

partition :: (a → Bool) → Frame a → (Frame a, Frame a)

partition p (Frame s) = let (s1, s2) = S.partition p s

in (Frame s1, Frame s2)

partitionMany :: [a → Bool] → Frame a → [Frame a]

partitionMany [] frm = [frm]

partitionMany (p:ps) frm = let (f1, f2) = partition p frm

in f1 : partitionMany ps f2

size :: Frame a → Int

size (Frame s) = S.size s

map :: (Ord a, Ord b) ⇒ (a → b) → Frame a → Frame b

map f (Frame s) = Frame (S.map f s)

fold :: (a → b → b) → b → Frame a → b

fold f z (Frame s) = S.fold f z s

toList :: Frame a → [a]

toList (Frame s) = S.toList s

fromList :: Ord a ⇒ [a] → Frame a

fromList xs = Frame $ S.fromList xs

singleton :: Ord a ⇒ a → Frame a

singleton x = fromList [x]

member :: Ord a ⇒ a → Frame a → Bool
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member x (Frame s) = x ‘S.member‘ s

powerSet :: Ord a ⇒ Frame a → Frame (Frame a)

powerSet (Frame s) = fromList frames

where

frames = Prelude.map fromList (subsequences (S.toList s))

reducedPowerSet :: Ord a ⇒ Frame a → Frame (Frame a)

reducedPowerSet frm@(Frame s) = Frame $ S.map Frame rpset’

where

(Frame pset) = powerSet frm

pset’ = S.map (λ(Frame x) → x) pset

rpset = pset’ S.\\ S.fromList [S.empty]

rpset’ = rpset S.\\ S.fromList [s]

cross :: (Ord a, Ord b) ⇒ Frame a → Frame b → Frame (a, b)

cross (Frame s1) (Frame s2) = fromList [ (x, y) | x ← S.toList s1, y ← S.toList s2 ]

The cross function computes the cartesian product of two frames, and the functions

powerSet and reducedPowerSet compute the powerSet and reduced powerSet of the input

frame.

4.1.3 Belief Holders

Subjective Logic opinions may include an optional belief holder. Belief holders play an

important role for operators such as transitive discounting [32], where an agent’s opinion

of an event is computed through its opinion of a secondary agent, who holds an opinion of

the event in question. Other operators that utilize this information are the various belief fu-

sion operators that are designed to merge opinions of events collected either from different

sensors, or from the same sensor but across different periods of time.

We represent belief holders as a recursive data type in order to be able to capture com-

plex yet ”imaginary” belief holders such as ”the consensus of agents A, B and C.”

data Holder a = None

| Holder a

| Product (Holder a) (Holder a)

| Discount (Holder a) (Holder a)

| Fuse FusionType (Holder a) (Holder a)

| Constraint (Holder a) (Holder a)

deriving (Eq, Ord, Show)
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Since there are different ways in which two belief holders can be fused into an imag-

inary holder, the Fuse data constructor above takes in an argument of type FusionType,

which is shown below.

data FusionType = Cumulative

| Averaging

deriving (Eq, Ord, Show)

4.1.4 Subjective Logic Values

Values in SLHS are represented by the following type:

data SLVal a = SLVal a

| Err String

deriving Show

Objects of type SLVal a either contain a value of type a, via the SLVal data constructor,

or an error message, via the Err data constructor. By wrapping values in this interme-

diate type, we thus allow all operators in SLHS to return either a value on success, or a

detailed error message upon failure. This allows us to report issues with Subjective Logic

expressions that can only be detected at run-time.

Objects of type SLVal a are also monads. The required type class instance is

instance Monad SLVal where

return = SLVal

SLVal x >>= f = f x

Err e >>= _ = Err e

4.1.5 Subjective Logic Expressions

Expressions in Subjective Logic are represented as functions from some input state to some

output, such as an opinion, or a rational number.

newtype SLExpr h a t = SLExpr (SLState h a → SLVal (SLState h a, t))
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The SLExpr type is parametrized over three types:

• The type h represents the type that all belief holders within the Subjective Logic

expression must have. For example, if h is instantiated to Int, then all belief holders

must be represented by objects that inhabit the Int type.

• The type a represents the types that make up the frames of discernment within the

expression. Any given Subjective Logic expression can contain references to many

frames, but for simplicity of implementation, we enforce the rule that all frames must

be made up of elements of the same type. For example, all frames could be inhabited

by elements of type UserDefined, where UserDefined is a type that is created by the

user of the library.

• The type t represents the output type of the function. The output type is, however,

wrapped in the SLVal type so that we can return meaningful error messages to the

users of the library. We also include the updated state in the output.

All functions of type SLExpr map objects of type SLState to a pair: the new state after

evaluation of the expression, and the result of the expression. SLState is a simple aggregate

type that allows us to thread the frames of discernment and the belief mass assignments

over those frames for each belief holder.

data SLState h a =
SLState

{ slsFrames :: [F.Frame a]

, slsBeliefVecs :: M.Map (F.Frame a) (M.Map (Holder h) (BeliefVector (F.Frame a)))

, slsBaseRateVecs :: M.Map (F.Frame a) (M.Map (Holder h) (BaseRateVector a))

} deriving (Show)

We provide a function run that takes as input a Subjective Logic expression and an

initial state, and returns the updated state along with the value computed by the expression.



Chapter 4. SLHS: Subjective Logic in Haskell 36

run :: SLExpr h a t → SLState h a → SLVal (SLState h a, t)

run (SLExpr f) st = f st

If the user does not care about the final state of the computation and only wants to see

the final value, we provide the function run’:

run’ :: SLExpr h a t → SLState h a → SLVal t

run’ (SLExpr f) st = liftM snd $ f st

Lastly, objects of type SLExpr form a monad, and thus we can take advantage of

Haskell’s support for programming with monads. We provide the definitions for bind and

inject below. Furthermore, since all monads are applicative functors, and all applicative

functors are functors, we provide those definitions also. This allows the user of our library

to program in a monadic, applicative, or functorial style.

instance Monad (SLExpr h a) where

return x = SLExpr $ λst → return (st, x)

ma >>= f = SLExpr $ λst → case (run ma st) of

Err e → Err e

SLVal (st’, a) → let mb = f a in case run mb st’ of

Err e → Err e

SLVal r → SLVal r

instance Applicative (SLExpr h a) where

pure = return

(<∗>) = ap

instance Functor (SLExpr h a) where

fmap = liftA

4.2 Opinions

In this section we discuss the implementations of the various kinds of subjective opinions.

We start by implementing binomial opinions, and then we present multinomial and hyper

opinions.
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4.2.1 Binomial Opinions

We represent binomial opinions by four rational numbers corresponding to the belief, dis-

belief, uncertainty, and base rate of the opinion, along with some additional meta-data: the

belief holder and the frame of discernment it is defined over. In code, the binomial opinion

looks like the following:

data Binomial h a = Binomial { bBelief :: Rational

, bDisbelief :: Rational

, bUncertainty :: Rational

, bAtomicity :: Rational

, bHolder :: Holder h

, bX :: a

, bNotX :: a

}

Here we use Haskell’s record syntax to define the data constructor. Haskell automati-

cally creates the top-level functions bBelief, bDisbelief, bUncertainty, bAtomicity, bHolder,

bX, and bNotX that provide access to the respective items of the record.

Lastly, we also introduce a special type class called ToBinomial which allows us to

define a range of types that can be converted to a binomial opinion. An example of such a

type could be a Beta PDF. We will re-use this strategy for implementing multinomial and

hyper opinions.

class ToBinomial op where

toBinomial :: op h a → Binomial h a

instance ToBinomial Binomial where

toBinomial = id

4.2.2 Multinomial Opinions

Multinomials are represented as records containing a BeliefVector to represent the amount

of belief assigned to each element of the frame, a scalar rational number to store the un-

certainty mass, a BaseRateVector which assigns each element in the frame to a base rate, a
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belief holder, and a reference to the frame of discernment.

data Multinomial h a = Multinomial { mBelief :: BeliefVector a

, mUncertainty :: Rational

, mBaseRate :: BaseRateVector a

, mHolder :: Holder h

, mFrame :: F.Frame a

}

Just as in the case of binomials, we introduce a type class to represent types that can be

converted to multinomials. We provide the instance for multinomial opinions (the identity

function) as well as an instance for binomial opinions, since binomial opinions are a special

case of multinomial opinions.

class ToMultinomial op where

toMultinomial :: Ord a ⇒ op h a → Multinomial h a

instance ToMultinomial Multinomial where

toMultinomial = id

instance ToMultinomial Binomial where

toMultinomial (Binomial b d u a h x y) = Multinomial b’ u a’ h f

where

b’ = V.fromList [ (x, b), (y, d) ]

a’ = V.fromList [ (x, a), (y, 1 - a) ]

f = F.fromList [x, y]

4.2.3 Hyper Opinions

Hyper opinions share a similar structural layout to multinomial opinions except the belief

vector spans the reduced power set of the frame, and is thus represented as a BeliefVector

with sub-frames as the keys, instead of elements of the frame.

data Hyper h a = Hyper { hBelief :: BeliefVector (F.Frame a)

, hUncertainty :: Rational

, hBaseRate :: BaseRateVector a

, hHolder :: Holder h

, hFrame :: F.Frame a

}

class ToHyper op where

toHyper :: Ord a ⇒ op h a → Hyper h a

instance ToHyper Hyper where

toHyper = id

instance ToHyper Multinomial where

toHyper (Multinomial b u a h f) = Hyper b’ u a h f
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where

b’ = V.fromList ◦ map (first F.singleton) ◦ V.toList $ b

instance ToHyper Binomial where

toHyper = toHyper ◦ toMultinomial

4.2.4 The Opinion Type Class

There are certain operations that are common amongst all opinions. One example of such

operation is the probability expectation: for binomials, the probability expectation is a

simple scalar, whereas for multinomial and hyper opinions the probability expectation is a

vector over the frame of discernment, and the reduced power set of the frame, respectively.

class Opinion op h a where

type ExpectationType op h a :: ∗

expectation :: op h a → ExpectationType op h a

getFrame :: op h a → F.Frame a

In order to accomodate a function such as probability expectation that returns a value of

a different type depending on the type of the opinion, we use an indexed type family [40].

For each opinion type, we associate an ”expectation type”, which is the type one would

obtain when querying the probability expectation of the opinion. The instances for each of

the three opinion types follows.

instance Ord a ⇒ Opinion Binomial h a where

type ExpectationType Binomial h a = Rational

expectation (Binomial b d u a _ _ _) = b + a ∗ u

getFrame (Binomial _ _ _ _ _ f1 f2) = F.fromList [f1, f2]

instance Ord a ⇒ Opinion Multinomial h a where

type ExpectationType Multinomial h a = V.Vector a

expectation (Multinomial b u a _ f) = V.fromList vals

where

vals = map (λk → (k, V.value b k + V.value a k + u)) keys

keys = F.toList f

getFrame (Multinomial _ _ _ _ frm) = frm

instance Ord a ⇒ Opinion Hyper h a where

type ExpectationType Hyper h a = V.Vector (F.Frame a)

expectation (Hyper b u a _ f) = V.fromList vals
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where

vals = map (λk → (k, V.value b k + aval k + u)) keys

keys = F.toList ◦ F.reducedPowerSet $ f

aval k = sum ◦ map (V.value a) ◦ F.toList $ k

getFrame (Hyper _ _ _ _ frm) = frm

4.2.5 Belief Coarsening

Coarsening is an operation that takes a hyper opinion and converts it into a binomial opin-

ion. The inputs are an arbitrary hyper opinion and a subset of the frame of discernment

for which the hyper opinion is defined over. Coarsening is a two-stage operation: First the

frame of discernment is partitioned into two sets: the subset given as input, and everything

else. These two subsets, taken together as a set, form a new binary frame with which the

new binomial opinion will be defined over. Secondly, the belief masses associated with

elements of the power set of the original frame via the hyper opinion input are split up and

assigned to the elements of the new frame. The resulting belief mass assignment preserves

additivity, and thus the new binomial opinion is valid. The operation for coarsening is given

below.

coarsen :: (ToHyper op, Ord b)

⇒ SLExpr h a (op h b)

→ F.Frame b → SLExpr h a (Binomial h (F.Frame b))

coarsen op theta = liftM2 coarsen’ op (return theta)

where

coarsen’ op theta = Binomial b d u a holder theta (frm ‘F.difference‘ theta)

where

b = sumSnd ◦ V.elemsWhere subset $ belief

d = sumSnd ◦ V.elemsWhere emptyIntersect $ belief

u = 1 - b - d

a = sum ◦ F.toList ◦ F.map baseRate $ theta

belief = hBelief ◦ toHyper $ op

baseRate = V.value (hBaseRate ◦ toHyper $ op)

holder = hHolder ◦ toHyper $ op

frm = hFrame ◦ toHyper $ op

sumSnd = sum ◦ map snd

subset = (‘F.isSubsetOf‘ theta)

emptyIntersect = F.isEmpty ◦ (‘F.intersection‘ theta)
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As a convenience, we also offer a function to coarsen a hyper opinion, not by an explic-

itly given sub-frame, but by those elements of the frame that satisfy a given predicate.

coarsenBy :: (ToHyper op, Ord b) ⇒ SLExpr h a (op h b)

→ (b → Bool) → SLExpr h a (Binomial h (F.Frame b))

coarsenBy op pred = op >>= λop’ →
let (theta, _) = F.partition pred ◦ getFrame ◦ toHyper $ op’

in coarsen op theta

As an example, consider a frame of discernment containing the integer values one

through twenty, and a hyper opinion ωA defined over the frame. We can then construct

a binomial opinion ωA
P(x) = 〈bP(x),dP(x),uP(x),aP(x)〉, where the predicate P(x) denotes ”x

is even” by utilizing the coarsenBy function:

isEven :: Int → Bool

isEven n = n ‘mod‘ 2 == 0

evenOpinion = coarsenBy isEven oldOpinion

where oldOpinion is the initial hyper opinion.

4.2.6 Accessing Opinions

SLHS is built around combining together objects of type SLExpr, which are functions from

some world state to some value. Since Subjective Logic operators rely on opinions as in-

puts, we require a method of obtaining the opinions stored in the state that is being threaded

through behind the Subjective Logic expressions. The following functions do just that.

We start with fetching hyper opinions, as they are the most general. Given a belief

holder h and an index idx corresponding to the idx’th frame of discernment in the state,

getHyper returns either a hyper opinion held by h over the idxth frame, or a run-time error

message.

getHyper :: (Ord h, Ord a) ⇒ h → Int → SLExpr h a (Hyper h a)

getHyper holder idx = do

frames ← liftM slsFrames getState
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vecs ← liftM slsBeliefVecs getState

rates ← liftM slsBaseRateVecs getState

if idx > length frames

then err "getHyper: index out of range"

else do let frm = frames !! idx

m ← do case M.lookup frm vecs of

Nothing → err "getHyper: no mass assignments for that frame"

Just m → do

case M.lookup (Holder holder) m of

Nothing → err "getHyper: no mass assignment for that holder"

Just m’ → return m’

a ← do case M.lookup frm rates of

Nothing → err "getHyper: no base rates for that frame"

Just a → do

case M.lookup (Holder holder) a of

Nothing → err "getHyper: no base rate for that holder"

Just a’ → return a’

let u = 1 - V.fold (+) 0 m

return $ Hyper m u a (Holder holder) frm

While the above function looks fairly complicated, it simply unwraps the relevant state

data from the SLExpr monad, checks to see if the index is within the bounds of the array of

frames, and then looks to see if there are any mass assignments for that particular frame. If

there are mass assignments for that frame, then we look up the particular mass assignment

owned by the belief holder. If one exists, we return it, else we return an error message. We

perform a similar unwrapping for checking for base rates, and then compute the uncertainty

and return the resulting hyper opinion.

Next we have a way of obtaining multinomial opinions. Since multinomial opinions are

a special case of hyper opinions, we first obtain the hyper opinion via a call to getHyper, and

then check to see if we can safely convert that hyper opinion into a multinomial opinion. If

so, we return it, else we return an error message.

getMultinomial :: (Ord h, Ord a) ⇒ h → Int → SLExpr h a (Multinomial h a)

getMultinomial holder f = do

h ← getHyper holder f

case maybeToMultinomial h of

Nothing → err "getMultinomial: not a multinomial opinion"

Just m → return m

where

maybeToMultinomial (Hyper b u a h f) =
let fs = V.focals b

in if all (λf → F.size f == 1) fs

then let bv = V.toList b
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bv’ = map (λ(a, r) → ((F.toList a) !! 0, r)) bv

in Just $ Multinomial (V.fromList bv’) u a h f

else Nothing

The same trick applies to obtaining binomial opinions. We first obtain the relevant

multinomial opinion and then see if we can safely convert it into a binomial opinion. If so,

great! Otherwise we return an error message to the user.

getBinomial :: (Ord h, Ord a) ⇒ h → Int → a → SLExpr h a (Binomial h a)

getBinomial holder f x = do

m ← getMultinomial holder f

case maybeToBinomial x m of

Nothing → err "getBinomial: not a binomial opinion"

Just b → return b

where

maybeToBinomial x (Multinomial b u a h f) = do

guard (F.size f == 2)

guard (x ‘F.member‘ f)

let y = fst ◦ head ◦ V.elemsWhere (/= x) $ b

let b’ = V.value b x

let d’ = V.value b y

let u’ = 1 - b’ - d’

let a’ = V.value a x

return $ Binomial b’ d’ u’ a’ h x y

In the above code for maybeToBinomial we utilize the fact that the Maybe type is an

instance of the type class MonadPlus, which gives us access to the guard function. Mon-

adPlus can be thought of the set of types that are monads, but also have the additive prop-

erties of monoids: a zero element (in the case of Maybe, the Nothing data constructor),

and a method of combining two MonadPlus objects together, which in Haskell is called

mplus [21]. Unfortunately the rules for identity and associativity cannot be enforced in the

language itself.

4.3 Operators

In this section we discuss the implementation details of the Subjective Logic operators that

are provided by SLHS. The following notation is used for the operators:
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• We denote binary operators with a trailing exclamation mark ! in order to avoid con-

flicting with Haskell’s mathematical operators. For example, binomial addition is

denoted as +!.

• We use tildes as a prefix to denote co− operations. For example, the binomial co-

multiplication operator is denoted as ∼ ∗!.

• All n-ary operators, where n> 2 are denoted as simple functions, instead of symbolic

operators.

Every operator is presented in its most general form. For example, instead of presenting

two operators for averaging fusion (one for multinomial opinions, and another for hyper

opinions) we implement only the version for hyper opinions. In order to achieve this level

of code reuse, each operator accepts as parameters any object that can be converted into

the correct opinion type by virtue of the ToBinomial, ToMultinomial, and ToHyper type

classes.

4.3.1 Binomial Operators

We begin our treatment of the Subjective Logic operators by looking at those operators

designed to work with binomial opinions. We split this section into two parts: logical and

set-theoretical operators, and trust transitivity operators. The former contains the operators

that are generalizations of those found in logic and set theory, such as conjunction, and set

union. The latter operators are for modeling trust networks, where agents can formulate

opinions based on reputation and trust.
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Logical and Set-Theoretical Operators

The logical and set-theoretical binomial operators are those that have equivalent operators

in logic and set theory. We will start with binomial addition. Addition of binomial opinions,

denoted as ωx∪y = ωx +ωy, is defined when x and y are disjoint subsets of the same frame

of discernment [50]. Binomial addition is implemented as follows:

(+!) :: (ToBinomial op1, ToBinomial op2, Eq h, Eq b, Ord b)

⇒ SLExpr h a (op1 h (F.Frame b))

→ SLExpr h a (op2 h (F.Frame b))

→ SLExpr h a (Binomial h (F.Frame b))

opx +! opy = do

opx’ ← liftM toBinomial opx

opy’ ← liftM toBinomial opy

require (bHolder opx’ == bHolder opy’) "opinions must have same holder"

require (getFrame opx’ == getFrame opy’) "opinions must have the same frame"

return $ add’ opx’ opy’

add’ :: Ord a

⇒ Binomial h (F.Frame a) → Binomial h (F.Frame a) → Binomial h (F.Frame a)

add’ opx@(Binomial bx dx ux ax hx xt xf) (Binomial by dy uy ay _ yt yf) =
Binomial b’ d’ u’ a’ hx (xt ‘F.union‘ yt) (xf ‘F.union‘ yf)

where

b’ = bx + by

d’ = (ax ∗ (dx - by) + ay ∗ (dy - bx)) / (ax + ay)

u’ = (ax ∗ ux + ay ∗ uy) / (ax + ay)

a’ = ax + ay

Here we see a pattern that we will re-use for all operator implementations. We start

with a function whose inputs are of type SLExpr h a t, where t is some type. Within that

function, we unwrap the values from the SLExpr monad, verify that some requirements are

met, and then send those values to a worker function that does the actual computation. We

then wrap the result back into the SLExpr monad via the return function.

Binomial subtraction is the inverse operation of addition. In set theory it is equivalent

to the set difference operator [50]. Given two opinions ωx and ωy where x∩ y = y, the

difference, ωx\y is calculated as follows:

(-!) :: (ToBinomial op1, ToBinomial op2, Eq h, Eq b, Ord b)

⇒ SLExpr h a (op1 h (F.Frame b))

→ SLExpr h a (op2 h (F.Frame b))

→ SLExpr h a (Binomial h (F.Frame b))
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opx -! opy = do

opx’ ← liftM toBinomial opx

opy’ ← liftM toBinomial opy

require (bHolder opx’ == bHolder opy’) "opinions must have same holder"

require (getFrame opx’ == getFrame opy’) "opinions must have the same frame"

return $ subtract’ opx’ opy’

subtract’ :: Ord a

⇒ Binomial h (F.Frame a) → Binomial h (F.Frame a) → Binomial h (F.Frame a)

subtract’ (Binomial bx dx ux ax hx xt xf) (Binomial by dy uy ay _ yt yf) =
Binomial b’ d’ u’ a’ hx ft ff

where

b’ = bx - by

d’ = (ax ∗ (dx + by) - ay ∗ (1 + by - bx - uy)) / (ax - ay)

u’ = (ax ∗ ux - ay ∗ uy) / (ax - ay)

a’ = ax - ay

ft = xt ‘F.difference‘ yt

ff = xt ‘F.union‘ xf ‘F.difference‘ ft

Negation is a unary operator that switches the belief and disbelief and inverts the atom-

icity of a binomial opinion [23]. Given a binomial opinion ωx over a frame X = {x,¬x},

the negated opinion ωx = ω¬x.

negate :: ToBinomial op ⇒ SLExpr h a (op h b) → SLExpr h a (Binomial h b)

negate op = do

op’ ← liftM toBinomial op

return $ negate’ op’

negate’ :: Binomial h a → Binomial h a

negate’ (Binomial b d u a h x y) = Binomial d b u (1 - a) h y x

Multiplication of two binomial opinions is equivalent to the logical and operator [33].

Given two opinions ωx and ωy over distinct binary frames x and y, the product of the

opinions, ωx∧y, represents the conjunction of the two opinions.

(∗!) :: (ToBinomial op1, ToBinomial op2, Eq h, Ord b, Ord c)

⇒ SLExpr h a (op1 h b)

→ SLExpr h a (op2 h c)

→ SLExpr h a (Binomial h (F.Frame (b, c)))

opx ∗! opy = do

opx’ ← liftM toBinomial opx

opy’ ← liftM toBinomial opy

require (bHolder opx’ == bHolder opy’) "opinions must have same holder"

return $ b_times’ opx’ opy’

b_times’ (Binomial bx dx ux ax hx xt xf) (Binomial by dy uy ay _ yt yf) =
Binomial b’ d’ u’ a’ hx t f

where

b’ = bx ∗ by + ((1 - ax) ∗ bx ∗ uy + (1 - ay) ∗ ux ∗ by)

/ (1 - ax ∗ ay)

d’ = dx + dy - dx ∗ dy

u’ = ux ∗ uy + ((1 - ay) ∗ bx ∗ uy + (1 - ax) ∗ ux ∗ by)

/ (1 - ax ∗ ay)
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a’ = ax ∗ ay

t = F.singleton (xt, yt)

f = F.fromList [(xt, yf), (xf, yt), (xf, yf)]

The resulting frame of discernment is a coarsened frame from the cartesian product of

{x,¬x} and {y,¬y}, where the element whose belief mass is designated the role of ”belief”

for binomial opinions is {(x,y)}, and the element whose belief mass is given the role of

”disbelief” is {(x,¬y),(¬x,y),(¬x,¬y)}.

Binomial co-multiplication is equivalent to the logical or operator [33]. Given two

opinions, again on distinct binary frames, ωx and ωy, the disjunctive binomial opinion

ωx∨y = ωxtωy is computed by the following function:

(~∗!) :: (ToBinomial op1, ToBinomial op2, Eq h, Ord b, Ord c)

⇒ SLExpr h a (op1 h b)

→ SLExpr h a (op2 h c)

→ SLExpr h a (Binomial h (F.Frame (b, c)))

opx ~∗! opy = do

opx’ ← liftM toBinomial opx

opy’ ← liftM toBinomial opy

require (bHolder opx’ == bHolder opy’) "opinions must have same holder"

return $ cotimes’ opx’ opy’

cotimes’ (Binomial bx dx ux ax hx xt xf) (Binomial by dy uy ay _ yt yf) =
Binomial b’ d’ u’ a’ hx t f

where

b’ = bx + by - bx ∗ by

d’ = dx ∗ dy + (ax ∗ (1 - ay) ∗ dx ∗ uy + (1 - ax) ∗ ay ∗ ux ∗ dy)

/ (ax + ay - ax ∗ ay)

u’ = ux ∗ uy + (ay ∗ dx ∗ uy + ax ∗ ux ∗ dy)

/ (ax + ay - ax ∗ ay)

a’ = ax + ay - ax ∗ ay

t = F.fromList [(xt, yt), (xf, yt), (xt, yf)]

f = F.singleton (xf, yf)

Binomial multiplication and co-multiplication are duals to one another and satisfy De-

Morgan’s law: ωx∧y = ωx∨y and ωx∨y = ωx∧y, but they do not distribute over one another

[33]. Josang and McAnally claim that binomial multiplication and co-multiplication pro-

duce good approximations of the analytically correct products and co-products of Beta

probability density functions [33]. Therefore, if one were to construct a Beta data type in

Haskell representing a beta PDF and create an instance of the ToBinomial type class for
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it, one could use the above operators to generate good approximations to the products and

co-products of beta PDFs with minimal effort.

We next discuss binomial division and co-division, which are the inverses of binomial

multiplication and co-multiplication. The binomial division of an opinion ωx by another

opinion ωy is denoted as ωx∧y = ωx/ωy [33], and is computed as follows:

(/!) :: (ToBinomial op1, ToBinomial op2, Eq c)

⇒ SLExpr h a (op1 h (F.Frame (b, c)))

→ SLExpr h a (op2 h b)

→ SLExpr h a (Binomial h c)

opx /! opy = do

opx’ ← liftM toBinomial opx

opy’ ← liftM toBinomial opy

require (lessBaseRate opx’ opy’) "ax must be less than ay"

require (greaterDisbelief opx’ opy’) "dx must be greater than or equal to dy"

require (bxConstraint opx’ opy’) "Division requirement not satisfied"

require (uxConstraint opx’ opy’) "Division requirement not satisfied"

return $ divide’ opx’ opy’

where

lessBaseRate x y = bAtomicity x < bAtomicity y

greaterDisbelief x y = bDisbelief x ≥ bDisbelief y

bxConstraint x y = bx ≥ (ax ∗ (1 - ay) ∗ (1 - dx) ∗ by) / ((1 - ax) ∗ ay ∗ (1 - dy))

where

(bx, dx, ux, ax) = (bBelief x, bDisbelief x, bUncertainty x, bAtomicity x)

(by, dy, uy, ay) = (bBelief y, bDisbelief y, bUncertainty y, bAtomicity y)

uxConstraint x y = ux ≥ ((1 - ay) ∗ (1 - dx) ∗ uy) / ((1 - ax) ∗ (1 - dy))

where

(bx, dx, ux, ax) = (bBelief x, bDisbelief x, bUncertainty x, bAtomicity x)

(by, dy, uy, ay) = (bBelief y, bDisbelief y, bUncertainty y, bAtomicity y)

divide’ (Binomial bx dx ux ax hx xt xf) (Binomial by dy uy ay _ yt yf) =
Binomial b’ d’ u’ a’ hx zt zf

where

b’ = ay ∗ (bx + ax ∗ ux) / ((ay - ax) ∗ (by + ay ∗uy))
- ax ∗ (1 - dx) / ((ay - ax) ∗ (1 - dy))

d’ = (dx - dy) / (1 - dy)

u’ = ay ∗ (1 - dx) / ((ay - ax) ∗ (1 - dy))

- ay ∗ (bx + ax ∗ ux) / ((ay - ax) ∗ (bx + ay ∗ uy))

a’ = ax / ay

[(_, zt)] = F.toList xt

zf = head ◦ filter (/= zt) ◦ map snd ◦ F.toList $ xf

Lastly co-division, the inverse operation of co-multiplication [33], is denoted as ωx∨y =

ωxtωy and is computed as follows:

(~/!) :: (ToBinomial op1, ToBinomial op2, Eq c)

⇒ SLExpr h a (op1 h (F.Frame (b, c)))

→ SLExpr h a (op2 h b)

→ SLExpr h a (Binomial h c)

opx ~/! opy = do

opx’ ← liftM toBinomial opx
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opy’ ← liftM toBinomial opy

require (greaterBaseRate opx’ opy’) "ax must be greater than ay"

require (greaterBelief opx’ opy’) "bx must be greater than or equal to by"

require (dxConstraint opx’ opy’) "Division requirement not satisfied"

require (uxConstraint opx’ opy’) "Division requirement not satisfied"

return $ codivide’ opx’ opy’

where

greaterBaseRate x y = bAtomicity x > bAtomicity y

greaterBelief x y = bBelief x ≥ bBelief y

dxConstraint x y = dx ≥ (ay ∗ (1 - ax) ∗ (1 - bx) ∗ dy) / ((1 - ay) ∗ ax ∗ (1 - by))

where

(bx, dx, ux, ax) = (bBelief x, bDisbelief x, bUncertainty x, bAtomicity x)

(by, dy, uy, ay) = (bBelief y, bDisbelief y, bUncertainty y, bAtomicity y)

uxConstraint x y = ux ≥ (ay ∗ (1 - bx) ∗ uy) / (ax ∗ (1 - by))

where

(bx, dx, ux, ax) = (bBelief x, bDisbelief x, bUncertainty x, bAtomicity x)

(by, dy, uy, ay) = (bBelief y, bDisbelief y, bUncertainty y, bAtomicity y)

codivide’ (Binomial bx dx ux ax hx xt xf) (Binomial by dy uy ay _ yt yf) =
Binomial b’ d’ u’ a’ hx zt zf

where

b’ = (bx - by) / (1 - by)

d’ = ((1 - ay) ∗ (dx + (1 - ax) ∗ ux)

/ ((ax - ay) ∗ (dy + (1 - ay) ∗ uy)))

- (1 - ax) ∗ (1 - bx) / ((ax - ay) ∗ (1 - by))

u’ = ((1 - ay) ∗ (1 - bx) / ((ax - ay) ∗ (1 - by)))

- ((1 - ay) ∗ (dx + (1 - ax) ∗ ux)

/ ((ax - ay) ∗ (dy + (1 - ay) ∗ uy)))

a’ = (ax - ay) / (1 - ay)

zt = head ◦ filter (/= zf) ◦ map snd ◦ F.toList $ xt

[(_, zf)] = F.toList xf

In this section we have introduced those binomial operators that have analogs to logic

and set theory. In the next section we discuss the binomial operators for modeling trust

transitivity.

Trust Transitivity Operators

In this section we present the Subjective Logic operators for trust transitivity. If two agents

A and B exist such that agent A has an opinion of agent B, and agent B has an opinion

about some proposition X, then A can form an opinion of X by discounting B’s opinion of

x based on A’s opinion of B.

Subjective Logic offers three methods of discounting: uncertainty favouring discount-

ing, opposite belief favouring discounting, and base rate sensitive discounting [28]. We



Chapter 4. SLHS: Subjective Logic in Haskell 50

begin by constructing a simple data type to represent the three kinds of discounting.

data Favouring = Uncertainty | Opposite | BaseRateSensitive

By doing so, we are able to expose a single discounting function to the user that selects

the kind of discounting based on an input parameter of type Favouring:

discount :: (ToBinomial op1, ToBinomial op2, Ord h, Ord b)

⇒ Favouring

→SLExpr h a (op1 h h)

→ SLExpr h a (op2 h b)

→ SLExpr h a (Binomial h b)

discount f opx opy = do

opx’ ← liftM toBinomial opx

opy’ ← liftM toBinomial opy

return $ case f of

Uncertainty → discount_u opx’ opy’

Opposite → discount_o opx’ opy’

BaseRateSensitive → discount_b opx’ opy’

Depending on the first parameter, the discount function dispatches to one of three im-

plementations: discount u, discount o, or discount b. Their definitions follow below.

discount_u :: Binomial h h → Binomial h a → Binomial h a

discount_u (Binomial bb db ub ab hx _ _) (Binomial bx dx ux ax hy fx fy) =
Binomial b’ d’ u’ a’ (Discount hx hy) fx fy

where

b’ = bb ∗ bx

d’ = bb ∗ dx

u’ = db + ub + bb ∗ ux

a’ = ax

discount_o :: Binomial h h → Binomial h a → Binomial h a

discount_o (Binomial bb db ub ab hx _ _) (Binomial bx dx ux ax hy fx fy) =
Binomial b’ d’ u’ a’ (Discount hx hy) fx fy

where

b’ = bb ∗ bx + db ∗ dx

d’ = bb ∗ dx + db ∗ bx

u’ = ub + (bb + db) ∗ ux

a’ = ax

discount_b :: (Ord a, Ord h) ⇒ Binomial h h → Binomial h a → Binomial h a

discount_b op1@(Binomial bb db ub ab hx _ _) op2@(Binomial bx dx ux ax hy fx fy) =
Binomial b’ d’ u’ a’ (Discount hx hy) fx fy

where

b’ = expectation op1 ∗ bx

d’ = expectation op1 ∗ dx

u’ = 1 - expectation op1 ∗ (bx + dx)

a’ = ax

In this section we have presented the operators of Subjective Logic for working with

binomial opinions. We first introduced the operators that have analogs to the classical
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Name SL Notation SLHS Notation
Addition ωX∪Y = ωX +ωY opx+!opy
Subtraction ωX\Y = ωX −ωY opx−!opy
Negation ωx̄ = ¬ωx negateopx
Multiplication ωX∧Y = ωX ·ωY opx∗!opy
Co-multiplication ωX∨Y = ωX tωY opx ∗!opy
Division ωX∧̄Y = ωX/ωY opx/!opy
Co-division ωX∨̄Y = ωX t̄ωY opx /!opy
Discounting ωA:B

x = ωA
B ⊗ωB

x discount t opaopb

Table 4.1: Summary of binomial operators

operators of logic and set theory, and then introduced operators for modeling transitive trust

networks. These operators are summarized in Table 4.1. In the next section we introduce

the operators of Subjective Logic for working with multinomial and hyper opinions.

4.3.2 Multinomial and Hyper Operators

In this section we present the multinomial and hyper operators. We start with multino-

mial multiplication and describe how it differs from binomial multiplication [33], then we

introduce the various operators for belief fusion and unfusion [22, 31, 27, 26]. We then

introduce the deduction and abduction operators for reasoning [35, 25, 24], and lastly we

introduce the belief constraint operator [34].

Multinomial Multiplication

The multiplication of two multinomial opinions is a separate operator than the product

operator defined over binomial opinions. Whereas the binomial product operator is equiv-

alent to the logical and operator, multinomial multiplication constructs an opinion over a

new frame which is the cartesian product of the frames of the input opinions [33]. In order
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to avoid symbolic naming conflicts, we have chosen to name the binomial operator with

the symbol ∗!, and we have used the name times to denote the multinomial operator.

times :: (ToMultinomial op1, ToMultinomial op2, Eq h, Ord b, Ord c)

⇒ SLExpr h a (op1 h b) → SLExpr h a (op2 h c)

→ SLExpr h a (Multinomial h (b, c))

times opx opy = do

opx’ ← liftM toMultinomial opx

opy’ ← liftM toMultinomial opy

return $ m_times’ opx’ opy’

m_times’ :: (Ord a, Ord b) ⇒ Multinomial h a → Multinomial h b → Multinomial h (a, b)

m_times’ (Multinomial bx ux ax hx fx) (Multinomial by uy ay hy fy) =
Multinomial b’ u’ a’ (Product hx hy) (fx ‘F.cross‘ fy)

where

b’ = V.fromList bxy

u’ = uxy

a’ = V.fromList axy

bxy = [ ((x, y), f x y) | x ← xKeys, y ← yKeys ]

where

f x y = expect x y - (V.value ax x ∗ V.value ay y ∗ uxy)

axy = [ ((x, y), f x y) | x ← xKeys, y ← yKeys ]

where

f x y = V.value ax x ∗ V.value ay y

uxy = minimum [ uxy’ x y | x ← xKeys, y ← yKeys ]

uxy’ x y = (uIxy ∗ expect x y) / (bIxy x y + V.value ax x ∗ V.value ay y ∗ uIxy)

uIxy = uRxy + uCxy + uFxy

where

uRxy = sum [ ux ∗ V.value by y | y ← yKeys ]

uCxy = sum [ uy ∗ V.value bx x | x ← xKeys ]

uFxy = ux ∗ uy

bIxy x y = V.value bx x ∗ V.value by y

expect x y = (V.value bx x + V.value ax x ∗ ux) ∗ (V.value by y + V.value ay y ∗ uy)

xKeys = F.toList fx

yKeys = F.toList fy

Fusion, Unfusion, and Fission

Hyper opinions can be fused together using two different operators: cumulative fusion and

averaging fusion. Each operator should be used under different circumstances depending

on the meaning of the fused opinions [31, 22].

cFuse :: (ToHyper op1, ToHyper op2, Ord b)

⇒ SLExpr h a (op1 h b) → SLExpr h a (op2 h b) → SLExpr h a (Hyper h b)

cFuse opa opb = do

opa’ ← liftM toHyper opa
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opb’ ← liftM toHyper opb

return $ cFuse’ opa’ opb’

cFuse’ :: Ord a ⇒ Hyper h a → Hyper h a → Hyper h a

cFuse’ (Hyper ba ua aa hx fx) (Hyper bb ub ab hy _)

| ua /= 0 | | ub /= 0 = Hyper b’ u’ a’ (Fuse Cumulative hx hy) fx

| otherwise = Hyper b’’ u’’ a’’ (Fuse Cumulative hx hy) fx

where

b’ = V.fromList ◦ map (λk → (k, bFunc k)) $ keys

u’ = ua ∗ ub / (ua + ub - ua ∗ ub)

a’ = aa

b’’ = V.fromList ◦ map (λk → (k, bB k)) $ keys

u’’ = 0

a’’ = aa

bFunc x = (bA x ∗ ub + bB x ∗ ua) / (ua + ub - ua ∗ ub)

keys = nub (V.focals ba ++ V.focals bb)

bA = V.value ba

bB = V.value bb

aFuse :: (ToHyper op1, ToHyper op2, Ord a)

⇒ SLExpr h a (op1 h a) → SLExpr h a (op2 h a) → SLExpr h a (Hyper h a)

aFuse opa opb = do

opa’ ← liftM toHyper opa

opb’ ← liftM toHyper opb

return $ aFuse’ opa’ opb’

aFuse’ :: Ord a ⇒ Hyper h a → Hyper h a → Hyper h a

aFuse’ (Hyper ba ua aa hx fx) (Hyper bb ub ab hy _)

| ua /= 0 | | ub /= 0 = Hyper b’ u’ a’ (Fuse Averaging hx hy) fx

| otherwise = Hyper b’’ u’’ a’’ (Fuse Averaging hx hy) fx

where

b’ = V.fromList ◦ map (λk → (k, bFunc k)) $ keys

u’ = 2 ∗ ua ∗ ub / (ua + ub)

a’ = aa

b’’ = V.fromList ◦ map (λk → (k, bB k)) $ keys

u’’ = 0

a’’ = aa

bFunc x = (bA x ∗ ub + bB x ∗ ua) / (ua + ub)

keys = nub (V.focals ba ++ V.focals bb)

bA = V.value ba

bB = V.value bb

Cumulative unfusion is defined for multinomial opinions [26]. It has yet to be general-

ized to hyper opinions. Given an opinion that represents the result of cumulatively fusing

together two opinions, and one of the two original opinions, it is possible to extract the

other original opinion.

cUnfuse :: (ToMultinomial op1, ToMultinomial op2, Ord a)
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⇒ SLExpr h a (op1 h a) → SLExpr h a (op2 h a)

→ SLExpr h a (Multinomial h a)

cUnfuse opc opb = do

opc’ ← liftM toMultinomial opc

opb’ ← liftM toMultinomial opb

return $ cUnfuse’ opc’ opb’

cUnfuse’ :: Ord a ⇒ Multinomial h a → Multinomial h a → Multinomial h a

cUnfuse’ (Multinomial bc uc ac (Fuse Cumulative hx hy) fx) (Multinomial bb ub ab _ _)

| uc /= 0 | | ub /= 0 = Multinomial ba ua aa hx fx

| otherwise = Multinomial ba’ ua’ aa’ hx fx

where

ba = V.mapWithKey belief bc

ua = ub ∗ uc / (ub - uc + ub ∗ uc)

aa = ac

ba’ = bb

ua’ = 0

aa’ = ac

belief x b = (b ∗ ub - V.value bb x ∗ uc) / (ub - uc + ub ∗ uc)

Likewise, averaging unfusion is the inverse operation to averaging fusion [26].

aUnfuse :: (ToMultinomial op1, ToMultinomial op2, Ord a)

⇒ SLExpr h a (op1 h a) → SLExpr h a (op2 h a)

→ SLExpr h a (Multinomial h a)

aUnfuse opc opb = do

opc’ ← liftM toMultinomial opc

opb’ ← liftM toMultinomial opb

return $ aUnfuse’ opc’ opb’

aUnfuse’ :: Ord a ⇒ Multinomial h a → Multinomial h a → Multinomial h a

aUnfuse’ (Multinomial bc uc ac (Fuse Averaging hx hy) fx) (Multinomial bb ub ab _ _)

| uc /= 0 | | ub /= 0 = Multinomial ba ua aa hx fx

| otherwise = Multinomial ba’ ua’ aa’ hy fx

where

ba = V.mapWithKey belief bc

ua = ub ∗ uc / (2 ∗ ub - uc)

aa = ac

ba’ = bb

ua’ = 0

aa’ = ac

belief x b = (2 ∗ b ∗ ub - V.value bb x ∗ uc) / (2 ∗ ub - uc)

Fission is the operation of splitting a multinomial opinion into two multinomial opin-

ions based on some ratio φ [27] We refer to this as the split operator. Like unfusion, fission

has not yet been generalized to hyper opinions.

cSplit :: (Ord a, ToMultinomial op) ⇒ Rational → SLExpr h a (op h a)

→ SLExpr h a (Multinomial h a , Multinomial h a)

cSplit phi op = do

op’ ← liftM toMultinomial op

return $ cSplit’ phi op’
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cSplit’ :: Rational → Multinomial h a → (Multinomial h a, Multinomial h a)

cSplit’ phi (Multinomial b u a (Fuse Cumulative h1 h2) fx) = (op1, op2)

where

op1 = Multinomial b1 u1 a h1 fx

op2 = Multinomial b2 u2 a h2 fx

b1 = V.map (λx → phi ∗ x / norm phi) b

u1 = u / norm phi

b2 = V.map (λx → (1 - phi) ∗ x / norm (1 - phi)) b

u2 = u / norm (1 - phi)

norm p = u + p ∗ V.fold (+) 0 b

Deduction and Abduction

Deduction and abduction of multinomial opinions allows for one to do conditional rea-

soning with Subjective Logic [35, 25, 24]. We first introduce the operator for performing

deduction, which we call deduce, and then discuss the operator abduce for performing

abduction.

Because of the nature of these operators, the frames of discernment which the opinions

are defined over must satisfy two properties: they must be bounded, and the must be enu-

merable. These constraints on the type of frames allowed is expressed via the type classes

Bounded and Enum. Boundedness simply means that there exists a least and greatest ele-

ment, and enumerability means that the values of the type must be enumerable.

We begin by introducing deduction.

deduce :: (ToMultinomial op, Ord a, Bounded a, Enum a, Ord b, Bounded b, Enum b)

⇒ SLExpr h a (op h a)

→ [(a, Multinomial h b)]

→ SLExpr h a (Multinomial h b)

deduce opx ops = do

opx’ ← liftM toMultinomial opx

return $ deduce’ opx’ ops

deduce’ :: forall a. forall b. forall h.

(Ord a, Bounded a, Enum a, Ord b, Bounded b, Enum b)

⇒ Multinomial h a

→ [(a, Multinomial h b)]

→ Multinomial h b

deduce’ opx@(Multinomial bx ux ax hx _) ops = Multinomial b’ u’ a’ hx f

where
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expt y = sum ◦ map f $ xs

where

f x = V.value ax x ∗ V.value (expectation (findOpinion x)) y

expt’ y = sum ◦ map f $ xs

where

f x = V.value (expectation opx) x ∗ V.value (expectation (findOpinion x)) y

tExpt y = (1 - V.value ay y) ∗ byxs + (V.value ay y) ∗ (byxr + uyxr)

where

(xr’, xs’) = dims y

byxr = V.value (mBelief xr’) y

uyxr = mUncertainty xr’

byxs = V.value (mBelief xs’) y

xs = [minBound .. maxBound] :: [a]

ys = [minBound .. maxBound] :: [b]

ay = mBaseRate ◦ snd ◦ head $ ops

uYx x = maybe 1 mUncertainty ◦ lookup x $ ops

findOpinion x = case lookup x ops of

Nothing → Multinomial (V.fromList []) 1 ay hx f

Just op → op

f = mFrame ◦ snd ◦ head $ ops

dims :: b → (Multinomial h b, Multinomial h b)

dims y = (xr’, xs’)

where

(_, xr’, xs’) = foldl1’ minPair (dims’ y)

minPair a@(u, _, _) b@(u’, _, _) | u < u’ = a

| otherwise = b

dims’ y = do xr’ ← xs

xs’ ← xs

let xr’’ = findOpinion xr’

xs’’ = findOpinion xs’

byxr = V.value (mBelief xr’’) y

uyxr = mUncertainty xr’’

byxs = V.value (mBelief xs’’) y

val = 1 - byxr - uyxr + byxs

return (val, xr’’, xs’’)

triangleApexU y

| expt y ≤ tExpt y = (expt y - byxs) / V.value ay y

| otherwise = (byxr + uyxr - expt y) / (1 - V.value ay y)

where

byxr = V.value (mBelief ◦ fst ◦ dims $ y) y

uyxr = mUncertainty ◦ fst ◦ dims $ y

byxs = V.value (mBelief ◦ snd ◦ dims $ y) y

intApexU = maximum ◦ map triangleApexU $ ys

bComp y = expt y - V.value ay y ∗ intApexU
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adjustedU y | bComp y < 0 = expt y / V.value ay y

| otherwise = intApexU

apexU = minimum ◦ map adjustedU $ ys

b’ = V.fromList [ (y, expt’ y - (V.value ay y) ∗ u’) | y ← ys ]

u’ = (apexU -) ◦ sum ◦ map (λx → (apexU - uYx x) ∗ V.value bx x) $ xs

a’ = ay

Subjective Logic abduction is a two step procedure. Given an opinion over a frame X

and a list of conditional opinions over X given Y, we first must invert the conditionals into

a list of conditional opinions over Y given X, and then perform Subjective Logic deduction

with the new list and the opinion over X.

abduce :: (ToMultinomial op, Ord a, Bounded a, Enum a, Ord b, Bounded b, Enum b)

⇒ SLExpr h a (op h a)

→ [(b, Multinomial h a)]

→ BaseRateVector b

→ SLExpr h a (Multinomial h b)

abduce opx ops ay = do

opx’ ← liftM toMultinomial opx

return $ abduce’ opx’ ops ay

abduce’ :: forall a. forall b. forall h.

(Ord a, Bounded a, Enum a, Ord b, Bounded b, Enum b)

⇒ Multinomial h a

→ [(b, Multinomial h a)]

→ BaseRateVector b

→ Multinomial h b

abduce’ opx@(Multinomial bx ux ax hx fx) ops ay = deduce’ opx ops’

where

ops’ = map multinomial xs

multinomial x = (x, Multinomial b’ u’ a’ hx (F.fromList ys))

where

b’ = V.fromList bs

u’ = uT x

a’ = ay

bs = map (λy → (y, f y)) ys

f y = expt y x - V.value ay y ∗ uT x

expt y x = numer / denom

where

numer = V.value ay y ∗ V.value (expectation (findOpinion y)) x

denom = sum ◦ map f $ ys

f y = V.value ay y ∗ V.value (expectation (findOpinion y)) x

uT x = minimum ◦ map f $ ys

where

f y = expt y x / V.value ay y

ax = mBaseRate ◦ snd ◦ head $ ops
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xs = [minBound .. maxBound] :: [a]

ys = [minBound .. maxBound] :: [b]

findOpinion y = case lookup y ops of

Nothing → Multinomial (V.fromList []) 1 ax hx (F.fromList xs)

Just op → op

Belief Constraining

The final operator we discuss is the belief constraint operator [34]. This operator takes

as input two objects that are convertible to hyper opinions and returns a hyper opinion as

output. This function is equivalent in meaning to Dempster’s rule of combination from

Dempster-Shafer Theory [34].

constraint :: (ToHyper op1, ToHyper op2, Ord b)

⇒ SLExpr h a (op1 h b)

→ SLExpr h a (op2 h b)

→ SLExpr h a (Hyper h b)

constraint op1 op2 = do

op1’ ← liftM toHyper op1

op2’ ← liftM toHyper op2

return $ constraint’ op1’ op2’

constraint’ :: (Ord a) ⇒ Hyper h a → Hyper h a → Hyper h a

constraint’ h1@(Hyper bA uA aA hx fx) h2@(Hyper bB uB aB hy _) =
Hyper bAB uAB aAB (Constraint hx hy) fx

where

bAB = V.fromList ◦ map (λk → (k, harmony k / (1 - conflict))) $ keys

uAB = (uA ∗ uB) / (1 - conflict)

aAB = V.fromList $ map (λk → (k, f k)) keys’

where

f x = (axA ∗ (1 - uA) + axB ∗ (1 - uB)) / (2 - uA - uB)

where

axA = V.value aA x

axB = V.value aB x

harmony x = bxA ∗ uB + bxB ∗ uA + rest

where

bxA = V.value bA x

bxB = V.value bB x

rest = sum ◦ map combine $ matches

matches = [(y, z) | y ← keys, z ← keys, F.intersection y z == x]

conflict = sum ◦ map combine $ matches

where

matches = [(y, z) | y ← keys, z ← keys, F.intersection y z == F.empty]

combine (y, z) = V.value bA y ∗ V.value bB z

keys = F.toList $ F.reducedPowerSet fx

keys’ = nub (V.focals aA ++ V.focals aB)



Chapter 4. SLHS: Subjective Logic in Haskell 59

Name SL Notation SLHS Notation
Multiplication ωX∪Y = ωX +ωY opx ‘times‘ opy
Deduction ωY ||X = ωX }ωY |X deduce opx ops
Abduction ωY ||X = ωX}ωX |Y abduce opx opys a

Cumulative Fusion ω
A♦B
X = ωA

X ⊕ωB
X opx ‘cFuse‘ opy

Cumulative Unfusion ω
A♦B
X = ωA

X 	ωB
X opx ‘cUn f use‘ opy

Averaging Fusion ω
A♦B
X = ωA

X⊕ωB
X opx ‘aFuse‘ opy

Averaging Unfusion ω
A♦B
X = ωA

X	ωB
X opx ‘aUn f use‘ opy

Fission ωX∪Y = ωX +ωY split phi opx
Belief Constraining ωA&B

X = ωA
X �ωB

X opx ‘constraint‘ opy

Table 4.2: Summary of multinomial and hyper operators

The operators for multinomial and hyper opinions are summarized in table 4.2.

4.4 Extensions to Subjective Logic

In this section we describe new Subjective Logic operators that do not yet appear in the pub-

lished literature. While Subjective Logic contains a wealth of operators for reasoning with

uncertainty [25, 24], modeling transitive trust networks [23], and analyzing hypotheses

[65], the set of all theoretically possible operators is incomplete. If we assume that binomial

opinions alone are represented as four 32-bit numbers, then the set of all possible unique

operators for binomials would be of cardinality 232×232 = 264 = 18446744073709551616.

Whether any or all of these additional operators are meaningful is up to interpretation, of

course.
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4.4.1 Hypernomial to Multinomial Coarsening

The first extension to the set of Subjective Logic operators we present is a generalized form

of coarsening discussed in section 4.2.5. Currently coarsening is defined to be an operation

from multinomials to binomials where a subset of the frame of discernment is chosen to be

a new element in a binary frame, and the remaining elements of the frame are taken to be

the second element, or the not of the first element. We generalize this operation to allow

for arbitrary hyper opinions to be coarsened into multinomial opinions defined over frames

of cardinality N ≥ 2.

hyperCoarsen :: (Ord a, ToHyper op)

⇒ op h a → [F.Frame a] → Multinomial h (F.Frame a)

hyperCoarsen op thetas = Multinomial b’ u’ a’ h f’

where

(Hyper b u a h f) = toHyper op

b’ = V.fromList [ (t, bel t) | t ← thetas ]

u’ = 1 - V.fold (+) 0 b’

a’ = V.fromList [ (t, br t / norm) | t ← thetas ]

f’ = F.fromList thetas

norm = sum [ br t | t ← thetas ]

bel = sum ◦ map snd ◦ overlaps b

br = F.fold (+) 0 ◦ F.map (V.value a)

overlaps v t = V.elemsWhere (λu → u ‘F.isSubsetOf‘ t) v

Given a hyper opinion and a list of frames of discernment, we construct a new multi-

nomial opinion over a new frame made up of frames as elements. Focal elements that are

contained entirely within one of the listed frames contribute their belief mass to the new

multinomial opinion, and the remaining mass is lumped into the uncertainty. The new base

rates are simply the sums of the base rates multiplied by the normalizing constant

1
∑t∈T hetas ∑x∈t a(x)

where a(x) is the base rate of x from the input hyper opinion.
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We do not claim that this is the only method that one could use to coarsen a hyper

opinion to a multinomial opinion. We present this as simply one method that one could

employ.

4.4.2 Uncoarsening from Binomial to Multinomial

In the case of when a binomial opinion is defined over a binary partitioning of a frame, we

can uncoarsen it into a multinomial opinion with the following procedure:

uncoarsen :: Ord a ⇒ Binomial h (F.Frame a) → Multinomial h a

uncoarsen (Binomial b d u a h xs ys) = Multinomial b’ u a’ h f

where

f = xs ‘F.union‘ ys

b’ = V.fromList $

[ (x, r) | x ← F.toList xs, let r = b / toRational (F.size xs) ]

++
[ (y, r) | y ← F.toList ys, let r = d / toRational (F.size ys) ]

a’ = V.fromList $

[ (x, r) | x ← F.toList xs, let r = a / toRational (F.size xs) ]

++
[ (y, r) | y ← F.toList ys, let r = (1 - a) / toRational (F.size ys) ]

4.5 Limitations

While SLHS is a robust implementation of the opinions and operators of Subjective Logic,

our decision to represent all numbers as arbitrary-precision rational numbers imposes a

fundamental restriction on the kinds of data that the library can handle. Any computation

that involves the assignment of irrational numbers as belief masses cannot be represented

directly in our system. However, it is possible to modify SLHS to be able to handle such

values: one simply needs to either change the belief vectors to use values of type Double

instead of Rational, or better yet, represent the numeric type as an additional type parameter

to the belief vector. The latter would allow the user to use any numerical type of his or her
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choosing.

4.6 Summary

In this chapter we introduced SLHS: Subjective Logic in Haskell, a library for representing

and evaluating Subjective Logic expressions. We discussed the core components of the

library including the monads that represent the expressions, the battery of Subjective Logic

opinions and operators, and we concluded with a new operator that is unique to the library.

We have done our best to ensure that the operators implemented in SLHS mirror the

definitions found in the literature; however any errors that may arise are the sole respon-

sibility of the author. As is true for many complex software components, it is expected

that errors and deficiencies will be found by the users of SLHS. As the famous computer

scientist C.A.R. Hoare said during his 1980 Turing Award lecture [16]:

There are two ways of constructing a software design: One way is to make it

so simple that there are obviously no deficiencies, and the other way is to make

it so complicated that there are no obvious deficiencies. The first method is far

more difficult.

In the next chapter we present a termination analysis of the library, analyze the com-

plexity of a representative subset of the operators, discuss how we leveraged the strong

type system to catch errors at compile time, discuss the role that monads have played in

the design of the library, demonstrate the expressive power of the library through example

programs, and discuss how SLHS fits within the larger UDMDSS system.
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Results and Analysis

In this chapter we analyze SLHS by proving that the run function terminates for all valid

input Subjective Logic expressions, analyze the complexity of a representative subset of the

Subjective Logic operators, discuss how Haskell’s strong type system and its support for

monads has affected the design of SLHS, and finally we demonstrate the power of SLHS

by showcasing some example computations and discuss how the library fits into the Unified

Data Management and Decision Support System (UDMDSS) [38, 37].

5.1 Proof of Termination

In this section we perform a termination analysis of the run function. The run function takes

in a Subjective Logic expression and an initial state, and returns either the computed value

or an error message. We prove that run terminates for valid Subjective Logic expressions

of arbitrary length.

Our strategy for proving termination is as follows: we utilize a function | · | that maps

63
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each Subjective Logic expression e to a natural number. We let |e| denote the number of

sub-expressions contained in e, including e itself. As run recursively computes the values

of the sub-expressions, we will show that the value of |e| decreases at each step, concluding

when |e| is 1, when run simply returns the final value. Therefore we can conclude that run

terminates because the set of naturals, along with the < relation, is well-founded. That is

there cannot exist infinitely descending chains [53].

Lemma 5.1.1. The return function introduces a new sub-expression.

Proof. The function return in Haskell has the following signature:

return :: Monad m ⇒ a → m a

That is, for any monad m, for every object x of type a, return x constructs an object of

type m a. Since SLExpr is a monad, return constructs a new subjective logic expression

containing a single value. We will use this result to assist us in showing that the run

function’s measure decreases at every step.

Theorem 5.1.2. For every subjective logic expression e = e1 · e2 · · · · · ek, where · can be

any binary subjective logic operator, the computation run e terminates.

Proof. By induction on the length of e. If we can show that |rune1 · · · · ·ek|< |e1 · · · · ·ek ·ek|

for all k ≥ 0, then run terminates.

Base Case e = e1: In this case, |e|= 1, and since run simply applies the initial state to

the function contained within e without adding any new objects of type SLExpr, in other

words |rune|= 0, run e terminates.

Inductive Hypothesis: Assume run terminates for the expression e = e1 · e2 · · · · · ek.

Given the expression e′ = e · ek+1, we must prove that |rune′|< |e′|.
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Inductive Proof: Since we are adding exactly one new sub-expression to e to form e′,

|e′|= |e|+1. Now, all binary operators of SLHS essentially have the same form:

op e1 e2 = e1 >>= λe → e2 >>= λe’ → return (combine e e’)

That is, we unpack each expression and then combine them together in some mean-

ingful way to produce a new value of type SLExpr. Let us analyze the first monadic bind

operator.

e1 >>= λe → e2 >>= λe’ → return (combine e e’)

first calls run on e1, then passes the result of that computation to the lambda function

λe → e2 >>= λe’ → return (combine e e’)

and calls run on the result. Inside the nested lambda expression, the second monadic

bind operator calls run on e2, passing the result into the lambda expression

λe’ → return (combine e e’)

and then invoking run on that result. The innermost invocation of run makes a call

to return, thus inserting a new object of type SLExpr. Combined together with the two

invocations of run on the input expressions, we have

|rune · ek+1|= |rune|+ |runek+1|+ |returnx|

= |rune|+0+1

< |e|+1

= |e · ek+1|
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5.2 Analysis of Complexity

In this section we analyze the time complexity of a representative subset of the SLHS opera-

tors. We analyze the complexity of belief constraining to demonstrate how computationally

expensive it is to work with hyper opinions, which are defined over the reduced power set

of the frame of discernment. Next we analyze the complexity of belief fission, an opera-

tor defined over multinomial opinions. Lastly, we analyze the complexity of multinomial

multiplication.

We do not claim that the implementations of the operators are optimal. In fact, our

implementations are very sensitive to our choice of data structure for representing belief

assignments: the red-black tree. Iterating through the entire belief mass assignment takes

O(n) time, but finding an individual element takes O(logn) time. Alternative representa-

tions may possibly be more efficient, and we leave that for future work.

It is also worthy to note that every operator that is implemented solely for binomial

opinions has complexity O(1) with respect to the size of the frame of discernment. Recall

that binomial opinions are either defined as opinions over a frame of cardinality 2, or are

defined over binary partitions of frames. In either case, each equation involves calculating

new values for b, d, u, and a without any regard to the actual size of the frame. Therefore

each calculation on binomial opinions will be carried out in a constant amount of time.

Theorem 5.2.1. Belief constraining has time complexity O((2n−2)3 log(2n−2)), where n

is the cardinality of the frame of discernment.

Proof. Since belief constraining is defined over hyper opinions, let m = 2n−2 be the car-

dinality of the reduced power set of the frame. Computing the conflict requires finding
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all elements of the power set that share overlap and adding together their assigned belief

masses. This operation takes O(m2) time for the iteration, and O(logm) for looking up the

belief masses. Therefore conflict takes O(m2 logm) time.

Computing the new belief mass requires computing the Harmony for every element of

the power set. Computing the harmony takes O(m2) time per element, resulting in a time

complexity of O(m3 logm) for computing the new belief mass.

Computing the uncertainty requires computing the conflict, which we have already

computed as a part of the new belief mass.

Atomicity requires iterating over the entire reduced power set, and thus requires O(m logm)

time.

Therefore the total time complexity for belief constraining is O(m3 logm+m2 logm+

m logm) = O(m3 logm) = O((2n−2)3 log(2n−2)).

Theorem 5.2.2. Multinomial fission has time complexity O(n), where n is the cardinality

of the frame of discernment.

Proof. Computing the normalizing constant takes O(n) time. Since computing the new

beliefs and uncertainties requires iterating over each element of the frame of discernment,

each takes O(n) time. Therefore, the time complexity for fission is O(n).

Theorem 5.2.3. Multinomial multiplication has time complexity O(m logm×n logn).

Proof. The expect x y function takes O(logm+ logn) time, since it needs to perform look-

ups on each frame. Computing the uncertainty takes O(m logm×n logn) time, computing

the new atomicity takes O(m logm×n logn) time, and computing the new belief also takes

O(m logm×n logn) time. Therefore the entire time complexity is O(m logm×n logn).
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5.3 The Use of Haskell’s Type System

In this section we discuss how SLHS leverages Haskell’s type system to catch many errors

at compile time, instead of at run time. With SLHS we have taken the motto of catch what

we can at compile time, report what we must at run time. There are certain properties of

well-formed Subjective Logic expressions that can only be caught at run time, such as

• the inputs to the binomial addition operator are subsets of the same frame of discern-

ment.

• the inputs to the transitive discounting operator have different belief owners.

• the subset relation required for binomial subtraction is satisfied.

For other issues however, such as restricting addition to work on binomial opinions

only, we can leverage Haskell’s strong typing to stop those invalid expressions from even

compiling.

Consider the type signature for the binomial addition operator:

(+!) :: (ToBinomial op1, ToBinomial op2, Eq h, Eq b, Ord b)

⇒ SLExpr h a (op1 h b)

→ SLExpr h a (op2 h b)

→ SLExpr h a (Binomial h b)

What this tells us is that addition takes in two parameters, op1 and op2, each wrapped

in the SLExpr monad. These two opinion types must be convertible to binomials, as they

must belong to the type class ToBinomial. This signature also tells us that the elements of

the frame must be of the same type. Therefore, if any one of the opinions is constructed

over the cartesian product of two frames, then both opinions must be constructed over the
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cartesian product of two frames. Checking whether the two frames are in fact the same

must be deferred until run time, however.

5.4 The Use of Monads

In this section we describe the role that monads have played in the design of SLHS. As

mentioned previously, the SLExpr type, which is the type used to represent Subjective

Logic expressions within SLHS, is a function from a world state, SLState, to some output

value. SLExpr forms a monad, and thus we are able to use all of Haskell’s built-in support

for monads when writing computations involving objects of type SLExpr. In particular,

SLExpr is a special kind of state monad, where the state carried through the computation is

an SLState object.

Because they are monads, objects of type SLExpr can be glued together using the vari-

ous operators and functions in the Haskell standard library. One function that we use quite

frequently in the implementation of SLHS is the liftM function, which takes an ordinary

function from some type a to type b, and converts it into a function from type M a to M b,

where M is any monad. This allows us to use functions such as toBinomial directly on

objects of type SLExpr without having to unwrap them first.

Another benefit of SLExpr being a monad is that we are able to use Haskell’s do-

notation in order to simplify our code. Do-notation allows us to write code of the form

z = mx >>= λx → my >>= λy → return (x + y)

where each and every invocation of the bind operator must be explicitly written, as

z = do x ← mx

y ← my

return (x + y)
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This syntactic sugar not only allows the implementation of SLHS to be written more

concisely in many cases, but it also extends to users of SLHS as well. Complicated Sub-

jective Logic expressions can be broken down into smaller pieces, and then glued together

in a style that looks very imperative:

expr = do e1 ← getMultinomial ‘‘Alice’’ 0

e2 ← getMultinomial ‘‘Bob’’ 0

e3 ← e1 ‘times‘ e2

e4 ← e3 ‘cFuse‘ (getHyper ‘‘Clark’’ 0)

return e4

which may help programmers who are more accustomed to writing programs in more

mainstream structural languages such as Python [78] or Ruby [49]. In the next section we

demonstrate how problems involving Subjective Logic can be modeled and executed using

SLHS.

5.5 Example Computations

In this section we demonstrate the use of SLHS on a selection of examples provided in the

Subjective Logic literature.

5.5.1 Going to the Movies

The first situation is taken from the draft Subjective Logic book1 and it involves three

friends trying to figure out which movie they want to see. We start with defining the belief

holders as strings:

holders = ["Alice", "Bob", "Clark"]

1http://folk.uio.no/josang/papers/subjective_logic.pdf



Chapter 5. Results and Analysis 71

and then define the frame of discernment. Here we use a special type to denote the three

possible movie choices, where BD stands for Black Dust, GM stands for Grey Matter, and

WP stands for White Powder:

data Movie = BD | GM | WP deriving (Eq, Ord, Show, Bounded, Enum)

frame = [BD, GM, WP]

Now that we have the belief holders and the frame of discernment, we can define the

belief vectors. Since Subjective Logic expressions can involve many frames, we define our

data set to be a list of tuples: the first argument is the frame which we will associate the data,

and the second argument is another list of tuples. This second list of tuples is comprised of

the belief owner, and a list of tuples containing subsets of the frame and associated belief

mass. The base rate data is defined similarly: for each frame we associate a list of tuples:

the first element being the belief holder, and the second element being a list of elements of

the frame paired up with a-priori mass.

vectors =
[ (frame,

[ ("Alice", [([BD], 99%100), ([GM], 1%100), ([WP], 0), ([GM, WP], 0)])

, ("Bob", [([BD], 0), ([GM], 1%100), ([WP], 99%100), ([GM, WP], 0)])

, ("Clark", [([BD], 0), ([GM], 0), ([WP], 0), ([GM, WP], 1)])

])

]

baseRates =
[ (frame,

[ ("Alice", [(BD, 1%3), (GM, 1%3), (WP, 1%3)])

, ("Bob", [(BD, 1%3), (GM, 1%3), (WP, 1%3)])

, ("Clark", [(BD, 1%3), (GM, 1%3), (WP, 1%3)])

])

]

In the above code, the % operator constructs a rational number from the numerator and

denominator. Therefore, 1%3 results in the value 1
3 .

Once our data model has been defined, we can now perform calculations. We start by

constructing an initial state of the world, and then an expression. The expression in this

case is a simple application of the belief constraint operator. We fetch the hyper opinions
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owned by the three belief holders for frame 0 (the first and only frame in our list of frames)

and constrain the resulting hyper opinions.

initial = makeState holders [frame] vectors baseRates

expr = getHyper "Alice" 0 ‘constraint‘

getHyper "Bob" 0 ‘constraint‘

getHyper "Clark" 0

Lastly, we can run the expression over the initial state of the world. The resulting

value is of type SLVal (Hyper String Movie), meaning it is either a hyper opinion with

belief owners modeled as strings and frame elements being movies, or a run-time error

diagnostic.

result = initial >>= run’ expr

When we run the command print result we obtain the following:

Hyper:

Holder: Constraint (Constraint (Holder "Alice") (Holder "Bob")) (Holder "Clark")

Frame: {BD,GM,WP}

Belief: <({BD},0 % 1),({BD,GM},0 % 1),({BD,WP},0 % 1),({GM},1 % 1),

({GM,WP},0 % 1),({WP},0 % 1)>
Uncertainty: 0 % 1

Base Rate: <(BD,1 % 3),(GM,1 % 3),(WP,1 % 3)>

The resulting hyper opinion is held by the imaginary owner made up by applying the

Constraint holder data constructor twice, defined over the frame BD,GM,WP, and has

100% belief allocated to the movie GM, and each movie has a base rate of 1
3 .

Note that the result of the calculation, that the three friends should see the movie Grey

Matter, does not seem to be the intuitively correct answer. This can be attributed to Clark’s

opinion, while it seemingly neglects to take into account that neither Alice nor Bob seem

to really want to see that movie. One method of fixing this issue could be to introduce a

weighted constraint operator that places more emphasis on different opinions. Since Alice

and Bob seem much more certain regarding which movie they want to see, perhaps more
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weight should be given to their opinions, and less to Clark’s.

5.5.2 Observing Genetic Mutations

This example also comes from the draft Subjective Logic book. Assume through a process

of genetic engineering that we can produce two kinds of chicken eggs: male, or female.

Each egg, regardless of gender, can also have genetic mutation S or T. The first sensor

determines whether an egg is male or female, and the second sensor measures whether the

egg has genetic mutation S or T. This scenario can be modeled by using two frames of

discernment

type Gender = Int

type Mutation = Int

m = 0

f = 1

s = 2

t = 3

gender = [m, f]

mutation = [s, t]

and two belief holders

data Sensor = A | B deriving (Eq, Ord, Show)

sensors = [A, B]

Due to a limitation of SLHS, we must use the same underlying type for all frames,

hence we use integers to represent both genders and mutations.

Since the two sensors measure orthogonal aspects of the eggs, we can combine their

observations through multinomial multiplication to produce an opinion over the cartesian

product of the two frames. Assume we have two observations:

obs1 = [(gender, [(A, [([m], 8%10), ([f], 1%10)])])]

obs2 = [(mutation, [(B, [([s], 7%10), ([t], 1%10)])])]

observations = obs1 ++ obs2

with the following base rates:
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baseRates = [ (gender, [(A, [(m, 1%2), (f, 1%2)])])

, (mutation, [(B, [(s, 1%5), (t, 4%5)])])

]

We can then compute the opinion over the cartesian product by evaluating the following

expression:

expression = getMultinomial A 0 ‘times‘ getMultinomial B 1

state = makeState sensors [gender, mutation] observations baseRates

opinion = state >>= run’ expression

We can see the resulting multinomial opinion by running the command print opinion,

which displays the following:

Multinomial:

Holder: Product (Holder A) (Holder B)

Frame: {(0,2),(0,3),(1,2),(1,3)}

Belief: <((0,2),37823 % 61000),((0,3),11297 % 61000),

((1,2),249 % 2440), ((1,3),39 % 12200)>
Uncertainty: 273 % 3050

Base Rate: <((0,2),1 % 10),((0,3),2 % 5),((1,2),1 % 10),((1,3),2 % 5)>

The fractions are a little messy, but with a trusty pocket calculator we can verify that

the beliefs plus the uncertainty sums to 1. This result is in fact displayed with slightly more

accuracy than the result in Josang’s draft book.

5.6 Utilization Within UDMDSS

As mentioned in Section 2.1, we have participated in a team effort to design the Unified

Data Management and Decision Support System (UDMDSS) as a part of our ongoing re-

search into the development of decision support systems for the management and analysis

of population research surveys [37, 39, 41]. SLHS was designed to aide in the development

of automated reasoning systems that utilized Subjective Logic, and though it has not been

integrated yet, we expect that SLHS will find a place in the heart of the UDMDSS system.
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Further development on UDMDSS will see SLHS put to the test of analyzing real health

care data using the tools of Subjective Logic.

5.7 Summary

In this chapter we presented a termination analysis for the run function of SLHS, proving

that it terminates for all valid expressions. We then provided a complexity analysis for a

selection of Subjective Logic operators. We also discussed how Haskell’s type system is

leveraged in SLHS to catch problems with Subjective Logic expressions at compile time,

and how the use of monads facilitated a sound design. We also provided some example

calculations with SLHS, and we discussed its position within the larger UDMDSS system.

In the next chapter we conclude this thesis and discuss areas in which we feel SLHS can

be improved.
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Conclusion

In this chapter we present our concluding remarks, as well as discuss possible avenues for

future improvements to the SLHS library.

6.1 Conclusion

For this thesis we constructed a Subjective Logic library, SLHS, that uses monadic higher

order functions to represent subjective expressions. Subjective Logic is a relatively new

extension to probabilistic logic [23] that directly handles uncertainty in each and every

operator. The fundamental unit for computation is the subjective opinion, which is a com-

bination of belief mass assigned to a frame of discernment, plus a scalar value representing

uncertainty.

Within this thesis, we have shown the construction of SLHS in Chapter 4, discussed

its current limitations in Section 4.5, shown its termination in Section 5.1, and analyzed

a representative subset of the operators in Section 5.2. Furthermore we have discussed
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the role that Haskell, our language of implementation, has had on SLHS in Section 5.3,

and how the use of monads simplified our code (Section 5.4). In totality, we have shown

that it is possible to construct a Subjective Logic library that is type-safe, efficient, and

compositional.

6.2 Future Work

In this section we discuss areas for future experimentation or improvement to SLHS.

6.2.1 Modifications to the Vector Representation

In our implementation of SLHS we chose to represent belief vectors as red-black trees in

order to avoid storing the entire frame of discernment in memory: elements of the frame

that have zero belief mass assigned to them are simply not stored in the tree. While this

representation has some nice theoretical properties, such as the ability to map functions

across the vector in O(n) time, and the ability to determine whether an element is or is not

a focal element in O(logn) time, we believe that improvements in the actual run-time of

the library may be achieved by switching to using a contiguous array.

6.2.2 Implementing Memoization

We have shown how some of the operators of Subjective Logic scale with respect to the car-

dinalities of the frames of discernment involved. As we deal with larger and larger frames,

computing the results of the individual operators will become more and more time consum-

ing. If a single sub-expression appears many times throughout a more complex subjective



Chapter 6. Conclusion 78

logic expression, it would be beneficial to re-use a previously computed value. Instead,

currently we would waste valuable time recomputing the output for the same expression

over and over.

One technique to avoid this costly re-computation is memoization [51]. At every oper-

ator invocation, we compute the value and store it in a table. If at any time we require the

same expression to be computed, we first look answer up in the table. In a sense we would

use additional memory in order to save time.

6.2.3 Exploiting Parallelism

Many operators of Subjective Logic appear to be easily made to run in parallel, as the new

opinions are computed by combining together the belief masses of individual elements of

the reduced power set without depending on any other elements. Therefore, attempting to

introduce parallelism to the implementations of the operators should be as easy as modify-

ing the underlying SLExpr monad to utilize one of the many Haskell libraries for parallel

and concurrent computing [48]. Then the operators can be rewritten to compute their re-

sults in parallel without any modification to the external interface to the library. While we

did not address the issue of parallelism in this thesis, it appears, at least to the authors, to

be a useful area of future research.
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