
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

2012 

Design of an Engine Test Cell Control System Design of an Engine Test Cell Control System 

Anthony Joseph Fountaine 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Fountaine, Anthony Joseph, "Design of an Engine Test Cell Control System" (2012). Electronic Theses and 
Dissertations. 5358. 
https://scholar.uwindsor.ca/etd/5358 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5358&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/5358?utm_source=scholar.uwindsor.ca%2Fetd%2F5358&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


 

 

 

 

 

Design of an Engine Test Cell Control System 

 

 

 

 

 

by 

Anthony Fountaine 

 

 

A Thesis 

Submitted to the Faculty of Graduate Studies 

through the Department of Mechanical, Automotive, and Materials Engineering 

in Partial Fulfillment of the Requirements for 

the Degree of Master of Applied Science at the 

University of Windsor 

 

 

 

 

 

 

 

 

Windsor, Ontario, Canada 

2011 

© 2011 Anthony Fountaine 

  



    

 

Design of an Engine Test Cell Control System 

by 

Anthony Fountaine 

APPROVED BY: 

_____________________________________________ 

Dr. Majid Ahmadi, Outside Department Reader 

Department of Electrical and Computer Engineering 

_____________________________________________ 

Dr. Jimi Tjong, Department Reader 

Department of Mechanical, Automotive, and Materials Engineering 

_____________________________________________ 

Dr. Xiang Chen, Advisor 

Department of Electrical and Computer Engineering 

_____________________________________________ 

Dr. Ming Zheng, Advisor 

Department of Mechanical, Automotive, and Materials Engineering 

___________________________________________ 

Dr. Ronald Barron, Chair of Defence 

Department of Mechanical, Automotive, and Materials Engineering 

 

 

November 30, 2011



iii 

 

AUTHOR’S DECLARATION OF ORIGINALITY 

 I hereby certify that I am the sole author of this thesis and that no part of this 

thesis has been published or submitted for publication. 

 I certify that, to the best of my knowledge, my thesis does not infringe upon 

anyone‟s copyright nor violate any proprietary rights and that any ideas, techniques, 

quotations, or any other material from the work of other people included in my thesis, 

published or otherwise, are fully acknowledged in accordance with the standard 

referencing practices.  Furthermore, to the extent that I have included copyrighted 

material that surpasses the bounds of fair dealing within the meaning of the Canada 

Copyright Act, I certify that I have obtained written permission from the copyright 

owner(s) to include such material(s) in my thesis and have included copies of such 

copyright clearances to my appendix. 

 I declare that this is a true copy of my thesis, including any final revisions, as 

approved by my thesis committee and the Graduate Studies office, and that this thesis has 

not been submitted for a higher degree to any other University or Institution. 



iv 

 

LIST OF PUBLICATIONS / PAPERS / PROJECTS 

1. Fountaine A., “Dynamic Servo Current Reduction In ABB S3 Gantry To Reduce 

End Effector Damage”, Ford, TR1998-001, 1998. 

2. Fountaine A., “Engine Block Conveyor RFID Tag Part Tracking System”, Ford, 

TR1998-002, 1998. 

3. Fountaine A., “Ultrasonic Engine Block Measurement for Part Identification”, 

Ford, TR1999-001, 1999. 

4. Fountaine A., “EDDI Logic PLC Conversion To Run On Siemens S5 95U For C4 

Conveyor”, Ford, TR1999-002, 1999. 

5. Fountaine A., “Engine Block Riser Rough Dimensioning Using DVT Vision 

System”, Ford, TR1999-003, 1999. 

6. Fountaine A., “Engine Block Cubing Line Part Identification Using DVT Vision 

System”, Ford, TR2000-001, 2000. 

7. Fountaine A., “Body and Assembly Web Based Returns Tracking and Reporting 

System”, Ford, TR2001-001, 2001. 

8. Fountaine A., “LMS UPA NVH Processing Application”, Ford, TR2002-001, 

2002. 

9. Fountaine A., “Encoder Based Engine Vibration Sampling And Variance 

Analysis Application”, Ford, TR2002-002, 2002. 

10. Fountaine A., “Camshaft Signal Resampling For Engine Vibration Variance 

Analysis Application”, Ford, TR2003-001, 2003. 

11. Fountaine A., “HP Standard Data File Format ATL COM Object”, Ford, TR2003-

002, 2003. 



v 

 

12. Fountaine A., “Using The NVH UPA COM Object”, Ford, TR2004-057, 2004. 

13. Fountaine A., “One Third Octave Viewer Utility”, Ford, TR2004-056, 2004. 

14. Fountaine A., “Scripting For Robot Control And Data Acquisition”, AMTC, 

London Ontario, 2004. 

15. Fountaine A., “Inline Test Station Application For Engine Air Intake Flutter 

Detection”, MarkIV Automotive Inc., TR2004-001, 2004. 

16. Fountaine A., “NVH Color Map Application For Engine Baseline Mapping”, 

Ford, TR2005-028, 2005. 

17. Fountaine A., “Realtime Cylinder Pressure Analysis Guide”, University Of 

Windsor, 2005. 

18. Fountaine A., “Realtime Engine Monitoring And Control Using LabVIEW 

FPGA”, University Of Windsor, 2005. 

19. Fountaine A., “Using DLLs With LabVIEW Real-Time Applications”, Ford, 

TR2006-011, 2006. 

20. Fountaine A., “Real Time Heat Release Analysis”, University Of Windsor, 

Prepared Thesis, 2006. 

21. Fountaine A., Kim S., “Embedded EGR PID Controller With CAN Bus Valve 

Position Output”, Ford, TR2006-007, 2006. 

22. Fountaine A., Fountaine S., “Web Based Ordering And Part Tracking System”, 

Ford, TR2006-001, 2006. 

23. Fountaine A., Kim S., “Embedded Urea Injector PWM Controller For Diesel 

After Treatment Testing”, Ford, TR2007-001, 2007. 



vi 

 

24. Fountaine A., Kim S., “Electronic Pedal Simulator Using Analog Devices 

ADUC7020”, Ford, TR2007-002, 2007. 

25. Fountaine A., Dilaudo N., “Hydraulic Proportional Valve Controller For 

Crankshaft Thrust Bearing Testing Using Delta Computer RCM75 PID 

Controller”, Ford, TR2007-003, 2007. 

26. Fountaine A., “ETAS INCA COM Automation For Engine Test Cell Integration”, 

Ford, TR2007-004, 2007. 

27. Fountaine A., “MDF Measurement Data File Reader”, http://sourceforge.net/ 

projects/mdfdatafile, 2008. 

28. Fountaine A., “Embedded Wind Speed And Direction Monitoring For Tracking 

Environmental Concerns”, Ford, TR2008-001, 2008. 

29. Fountaine A., “Dynamometer Bearing Monitoring Using ICP Tri-axial 

Accelerometer”, Ford, TR2009-001, 2009. 

30. Fountaine A., “Horiba Mexa 9100 HPIB Device Driver”, Ford, TR2009-002, 

2009. 

31. Fountaine A., “California Analytic Gas Analyzer Ethernet Device Driver”, Ford, 

TR2009-003, 2009. 

32. Fountaine A., “Portable Throttle Actuator Replacement For Jordan Actuator”, 

Ford, TR2010-001, 2010. 

33. Fountaine A., “SQLite Database Time History Data Storage”, Ford, TR2010-002, 

2010. 

34. Fountaine A., Kim S., “Conversion Of A New Hermes Engraver To A CNC 

Using Linux EMC2”, Ford, TR2010-003, 2010. 



vii 

 

35. Fountaine A., Kelly C., “Yokogawa WVF File Format COM Object”, Ford, 

TR2011-001, 2011. 

36. Fountaine A., “Time History Data Viewer For MDF, ADACS And SQLite File 

Formats”, Ford, TR2011-002, 2011. 

37. Fountaine A., “DynoDashBoard Engine Cell Status RIA Web Monitoring 

Application”, Ford, TR2011-003, 2011. 

38. Fountaine A., Kim S., “MODBUS TCP/IP Power Monitoring System”, Ford, 

TR2011-004, 2011. 

39. Fountaine A., “Horiba Mexa 7000 Gas Analyzer Ethernet Device Driver”, Ford, 

TR2011-005, 2011. 

40. Fountaine A., Kelly C., “CAS Phoenix Ethernet Device Driver”, Ford, TR2011-

006, 2011. 

41. Fountaine A., Kelly C. “Cam And Crankshaft Synthesis Using An XMOS 

Processor”, Ford, TR2011-007, 2011. 

42. Fountaine A., “Design Of An Engine Test Cell Control System”, University Of 

Windsor, Thesis, 2011. 

  



viii 

 

ABSTRACT 

The work contained in this thesis offers an alternative to the commercial solutions 

available for automatic engine testing.  Both the software and hardware needed for the 

operation of an engine test cell were designed.  The hardware used, employs a distributed 

architecture to move the acquisition devices as close to the sensors as possible.  A test 

sequencer was developed that allows the creation of complex engine tests.  The tests are 

executed on a real time operating system.  This operates in conjunction with a graphical 

user interface, which runs on Windows.  A custom data viewer was created to perform 

test analysis quickly, as well as indentify long term trending in test data. The automated 

system supports both simple and complex alarming for fault detection.  The full solution 

was installed in three eddy current dynamometer test cells at Ford.  It is successfully 

running twenty four hours a day, seven days a week.   
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CHAPTER 1: INTRODUCTION 

Automotive manufacturers are under pressure to reduce design and development 

cycle times for new vehicles.  One of the major parts of the development cycle is 

component testing.  Testing is performed to validate the engineering design.  With the 

increased pressure of competition to produce vehicles faster and cheaper, a large portion 

of testing is often outsourced to an external test facility. 

 There are a number of reasons the outsourcing takes place.  One of the reasons is 

a lack of internal testing expertise within the automotive companies.  As the consumer 

market fluctuates, companies reduce head count and are slow to replace employees when 

the market recovers.  Another reason is the cost of ownership for the state of the art 

testing facilities.  Beyond the initial purchase cost of the test equipment, there is a high 

cost to maintain and staff the testing facilities and keep the facilities updated.  There are 

very few companies in the business of supplying engine test control systems.  Over the 

years, the small number of these companies has been reduced even further due to mergers 

and acquisitions.  These handful of companies have built up a trust in their abilities to 

deliver quality test equipment and software in a timely manner.  However, these services 

are typically associated with very high costs.  As these companies merge, they are also 

under pressure to reduce cost and head count.  These reductions put pressure on the 

suppliers to maintain their level of expertise as well.   

 The Powertrain Engineering Research and Development Center, or PERDC as it 

is called, is one such testing facility where engine and transmission research is conducted.  

The PERDC facility currently consists of nine dynamometer engine test cells.  In an 

effort to keep current in the engine testing world, PERDC is in the process of expanding 
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its facilities and also retrofitting the existing engine test cells.  One of the key costs of 

retrofitting the testing facility is the cost of the engine test cell control system.    

 Many vendors of engine test cell control systems use data acquisition hardware 

that was purchased off the shelf from another vendor.  What distinguishes one vendor 

from another is therefore not the hardware, but the software part of the control system.  

Designing the software for a modern engine test cell seems to be a daunting task.  Martyr 

and Plint went so far as to say that it was beyond the capabilities of any one person, 

regardless of their experience in engine testing [1].  This thesis will, in part, aim to 

challenge this statement by Martyr and Plint.   

 The basic concepts of what is required to develop an engine test cell control 

system can be easily applied.  The integration of all the components into a complete 

working package is the goal of this research.  The following objectives were set for this 

thesis: 

1. Develop and implement an engine testing control system capable of executing 

arbitrary automatic test sequences in real time. 

2. Provide a flexible and intuitive GUI for the control system. 

3. Develop an engine test cell control system that will be cost effective compared 

to the commercially available systems. 

4. Provide engine test data equivalent to the commercially available systems, 

including tools to analyze the data.  

5. Develop a user friendly system that the technicians, engineers and other staff 

members of PERDC can easily use to perform engine testing. 
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CHAPTER 2: METHODOLOGY 

2.1 Engine Test Cell Overview 

An engine test cell is comprised of a large number of inter-related components.  

The two primary components are the engine and the dynamometer.  Each of the 

components requires several key inputs to produce the desired outputs.  The overall 

inputs and outputs of the test cell include physical matter such as fluids and air, energy 

sources such as fuel and electricity, and data inputs and outputs.  The flow of the system 

inputs and outputs is shown pictorially in Figure 2.1.   

 

Figure 2.1: Test Cell Inputs and Outputs. 

 The test cells that were modified as part of this project, have an existing 

infrastructure to provide the needed inputs and dispose of the test by-products.  There is a 

fuel panel, proper air handling and ventilation units, process cooling water, engine 

exhaust treatment, and a source of electricity.  A full explanation of what these systems 

are and the recommended best practices are discussed in Martyr and Plint [1]. 
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 This thesis is primarily concerned with the details of controlling, monitoring, and 

acquiring data from the engine test cell.  The engine being tested will typically be under 

the control of a production powertrain control module (PCM).  The designed control 

system will provide a variable pedal position input to the engine.  This enables control of 

the engine load.  Attached to the engine, in the present configuration, is an eddy current 

dynamometer.   

 The eddy current dynamometer is a dynamic braking device that will be used to 

provide a load for the engine and to control the engine speed.  The dynamometer is used 

to simulate the conditions an engine would undergo when installed in a vehicle.  Eddy 

current dynamometers do not have motoring capability.  The ability to motor an engine 

implies that a dynamometer can rotate an engine that is not powered.  AC and DC 

dynamometers have this ability.  An additional starter motor connected to the rear of the 

eddy current dynamometer is used during engine cranking.  Heat exchangers and process 

control valves are used to maintain engine oil and coolant operating temperatures.  This 

arrangement is depicted in Figure 2.2. 

 

Figure 2.2: Controlled Devices. 
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2.1.1 Eddy Current Dynamometer  

An eddy current dynamometer is used to apply a braking torque to the engine 

being tested and to control its speed.  A braking torque is produced by the rotation of the 

dynamometer‟s rotor in the presence of a magnetic field [2].  The magnetic field is 

generated by a DC current flowing through the exciting coil of the dynamometer.  An 

electrically conductive material, such as iron, copper or aluminum, is used for the rotor 

construction.  As the rotor rotates through the magnetic field, eddy currents will be 

induced in it.  The flow of eddy currents in the rotor, creates a magnetic field in a 

direction that opposes the rotational force and supplies the needed braking force.  The 

eddy current dynamometer and controller signal flow diagram is shown in Figure 2.3. 

 

 

Figure 2.3: Dynamometer Connections. 
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generated.  There is both a pressure and flow switch to ensure that the cooling water is 

flowing at all times.  If the cooling water is not flowing, even for a brief period of time, 

the rotor could overheat and deform.  Both the pressure and the flow switch are 

monitored by the engine control system. 

The eddy current dynamometer housing is mechanically anchored at a single 

point of contact.  If the contact point is removed, the dynamometer housing would rotate 

freely.  This contact point is made through a load cell.  The load cell is able to measure 

the magnitude and the direction of the force or torque imposed on the dynamometer 

housing.  This is the most crucial measurement in the engine test setup [1].  

 The load cell output is calibrated to measure torque using a pair of certified 

calibration levers and masses. This is shown in Figure 2.4 where two equal length levers 

and identical weight trays are installed on the dynamometer housing.  This provides 

perfect balance and is used to calibrate the zero torque measurement. 

 

 

Figure 2.4: Eddy Current Dynamometer. 
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 By applying a mass to one of the weight trays, the force applied to the load cell 

becomes unbalanced resulting in a net output. The force applied to the calibration lever is 

shown in equation (2.1).    

              (2.1) 

 The net torque, τ, on the dynamometer, from the mass, is given in equation (2.2) 

where r is the calibration lever length [3]. 

                 (2.2) 

 

 Using the calibrated masses and lever arms, a known value of torque can be 

applied to the dynamometer.  The output value from the load cell is then calibrated to this 

known value of torque in the engine control system software.  Typically, the length of the 

calibration lever arms are adjusted by the manufacturer so that the torque applied to the 

dynamometer is an integer multiple of the mass applied.     

 Internal to the load cell is a set of four strain gauges in a bridge configuration.  

The impedance of the bridge is typically 350 Ω.  The load cell will normally have a rated 

output of mV/V.  If the rating is 3mV/V, and 10V is used for the supply, the full scale 

output would be 30mV [4].  

 

 

Figure 2.5: Load Cell Strain Gauges.  
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 Six wires are normally connected to a quality load cell.  The two extra wires in 

Figure 2.5, labelled “SENSE”, are for the signal conditioner to measure the supply 

voltage applied to the sensor.  This accounts for any drop in the supply voltage along the 

wires from the conditioner to the load cell.  Either AC or DC supply voltages can be 

used.  

 In order to measure the output power of the engine, an additional sensor is 

required to measure speed.  An example sensor would be a non contact magnetic pickup 

used in conjunction with a 60 toothed wheel [5].  This is shown in Figure 2.6.   

 

 

Figure 2.6: Dynamometer Speed Pickup.  

 The speed sensor detects the teeth on the wheel as it rotates.  The output signal 

from the speed sensor is an input to the dynamometer controller.  For every revolution, 

60 teeth are counted by the dynamometer controller.  The time elapsed while counting the 

60 teeth is used to calculate the engine speed.  

 The specifications for the eddy current dynamometer used to collect data for this 

thesis are given in Table 2.1 and the torque diagram is shown in Figure 2.7. This 

information was reproduced from [2]. 
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Table 2.1: Horiba WTS470 Eddy Current Dynamometer Specifications. 

 Unit Value 

Power kW 470 

Rated Torque N·m 2400 

Minimum Speed for Rated Torque rpm 1000 

Maximum Speed rpm 7000 

Minimum Speed for Maximum Power rpm 1870 

Moment of Inertia Kg·m
2
 2.06 

Maximum Excitation current  A 10 

Weight kg 1350 

Measuring Accuracy of Speed rpm +-0.025% of Max 

Measuring Accuracy of Torque % +- 0.2% of Max 

 

 

Figure 2.7: WTS470 Dynamometer Torque Specification. 
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2.1.2 Thermocouple, Pressure and Vibration Sensors 

 Thermocouples are widely used in engine testing for measuring temperature. 

They are durable, work over a large temperature range and are inexpensive. 

A thermocouple is simply two dissimilar metal wire segments that are connected 

together at one end, as seen in Figure 2.8.  If a temperature difference exists between the 

open (cold junction) and connected (hot junction) ends of the thermocouple, a voltage can 

be measured between the two wires on the open end.  This is called the Seebeck or 

thermoelectric effect [6].  The voltage is proportional to the difference in temperature 

between the two ends.  The relationship between temperature difference and voltage is 

nonlinear.  There are lookup tables or polynomial equations that provide a method to 

convert the voltage measured to a temperature difference.  For a K type thermocouple, 

the voltage ranges from 0V for 0 degrees to 54mV at 1370 degrees Celsius difference [6]. 

 

 

Figure 2.8: Thermocouple Measurement. 
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A thermocouple would normally be measured using a differential analog input.  

This allows for common mode voltage rejection.  Since the thermoelectric voltage is at 

such a low level, thermocouples are susceptible to electrical noise.  If the noise is 

common mode, it can be removed with a differential amplifier.  In addition, a differential 

input amplifier circuit provides the ability to use a broken thermocouple detection circuit.  

One method to do this is shown in Figure 2.9 [7].   

 

 

Figure 2.9: Open Circuit Thermocouple Detection. 

 The thermocouple, connected to the circuit in Figure 2.9, will short out the 

capacitor which results in a common mode voltage on both inputs of the amplifier.  If one 

wire of the thermocouple breaks, the capacitor will charge and a large voltage will be 

present at the input of the differential amplifier [7].  Broken wire detection is important in 

engine testing.  There is a significant amount of vibration during the testing of engines 

which causes thermocouples to break frequently.  Without broken wire detection, the 

input would simply float at some unknown value. 
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 The pressure sensor is equally as important as the thermocouple.  It is often found 

that the two sensors are used together.  For example, to monitor the engine coolant, both 

temperature and pressure sensors are used.  Pressure sensors used for measuring static 

pressures are categorized into four types dependant on the reference pressure the 

measurement is being compared to as discussed by Wilson [4]: 

1. Gauge pressure sensors measure pressure relative to atmospheric pressure. 

2. Absolute pressure sensors measure a pressure value that is referenced to a 

perfect vacuum. 

3. Differential pressure sensors measure the difference between two pressures. 

4. Vacuum gauge pressure sensors measure vacuum pressures relative to 

atmospheric pressure.  

Each of these pressure sensor types is shown pictorially in Figure 2.10. 

 

 

 

 

Figure 2.10: Pressure Sensors Types. 
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 Gauge pressure sensors are the most common.  If using psi units, absolute and 

differential pressures will have units of psia and psid, respectively.  Gauge pressure 

sensors will have units of psig.   

 During the execution of an engine test, a number of issues could expose the 

dynamometer or engine to excessive vibration.  Some of these could be a damaged or 

broken driveshaft, engine failure, unbalanced adapter plates or bearing wear on the 

dynamometer.  When a new engine installation is complete, there may also be resonances 

in the mechanical system.  Extended periods with a high level of vibration can result in 

costly damage to the dynamometer.  An inexpensive vibration monitoring sensor is used 

to sense the vibration level.  The sensor is an Ifm Efector VKV021 [8].  It outputs an 

analog signal proportional to the RMS vibration velocity, in accordance with the ISO 

10816 standard [8].  A reference for acceptable vibration levels, based on ISO 10816, is 

shown in Table 2.2.  The vibration sensor‟s output signal is monitored by the engine 

control system.  The bearings of the dynamometer are also instrumented with 

thermocouples to monitor for bearing damage.  Figure 2.11 shows the vibration sensor 

mounted to the dynamometer bearing housing. 

 

Figure 2.11: Dynamometer Vibration Sensor.  
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Table 2.2: ISO10816 Vibration Level Reference, Reproduced from Ifm Efector [8]. 

Vibration Level Reference Guide (based on ISO 10816) 

Machine Type Class 1 Class 2 Class 3 Class 4 

  mm/s 

Small 

 machines 

(20hp) 

Medium 

 machines 

(100hp) 

Large  

machines 

rigid 

foundation 

Large 
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0.28         

0.45   Good   

0.71         

1.12         

1.80         

2.80   Satisfactory   

4.50         

7.10   Warning   

11.20         

18.00   Unacceptable   

25.00         

 

2.2 PC Based Distributed Control Strategy 

 In order to provide control of the engine and to gather data from the test cell, a 

computer system needs to be developed and utilized.  This control system will make use 

of industrial grade personal computers.  Using personal computers is the most common 

approach taken when implementing an engine test cell control system.  Personal 

computers are inexpensive and can be easily upgraded when higher performance central 

processing units (CPUs) become available. 

Two types of architectures were considered for this control system: the 

centralized control system and the distributed control system.  In a centralized control 

system, all of the inputs and outputs are routed into one main control cabinet.  Today, this 

type of system would typically incorporate a PXI chassis as the main measurement 
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device, with a short MXI cable connecting it to the main control computer.  This 

architecture has been used in a recent upgrade of the ADACS engine test cells at PERDC.  

The PXI architecture provides the ability to perform large bandwidth, low latency data 

acquisition.  In some applications, this benefit is more desirable than having the 

flexibility to move the data acquisition devices closer to the sensors.   

Some centralized measurement systems require long cable runs back to the main 

control cabinet.  The primary disadvantage of long cables is not the cost, but signal 

degradation.  Signals can degrade from the sensor to the measurement device because of 

losses in the cable or noise contamination.  Engine test cells typically have cable lengths 

of at least 15m when using a centralized control system.   

Conversely, a distributed control system aims to distribute measurement devices 

closer to the sensors.  The United States Tinker Air Force Base recently upgraded their jet 

engine test cells using a distributed architecture [9].  A distributed control system was 

chosen for this thesis as well.  Distribution of the control system adds a small amount of 

complexity to the overall project.  However, the added complexity is outweighed by other 

improvements and the ease of future expansion.  Table 2.1 provides an overview of the 

positive and negative points associated with distributed control systems.  

Table 2.3: Distributed Control Arguments. 

Positive Negative 

Low cabling costs Possible Latency in data acquisition 

Easy expansion Communication issues 

Embedded computing More points of failure 

Less chance of noise Poor environmental conditions for DAQ hardware 
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Centralized and distributed I/O configurations are depicted in Figures 2.12 and 

2.13, respectively.  The real time computer is located in the control cabinet for both 

systems.  Only the measurement equipment changes location. 

 

Figure 2.12: Centralized I/O. 

 

Figure 2.13: Distributed I/O. 

 In Figure 2.12, the centralized PXI chassis is located in the control cabinet along 

with the computer, at a distance from the sensors.  The DAQ cube, in Figure 2.13, not 

only brings the I/O closer to the sensors, it also provides the ability to execute custom 

code.  This could be used to execute PID control algorithms directly on the DAQ cube 

instead of the centralized computer. 
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2.3 Real Time Control 

Controlling an engine test cell requires the use of a real time operating system 

(RTOS).  The justification for using an RTOS concerns two issues.  First, there is the 

need for deterministic control and data acquisition.  Secondly, there is the importance of 

protecting the engine being tested.  The expense of not only the engine, but the fuel and 

the time involved, warrants a level of guarantee from the operating system to perform 

timely in the event of a fault.   

An RTOS provides the ability to execute code deterministically with very little 

latency [16].  Determinism is made possible by the use of priority.  The RTOS provides a 

method to assign a priority to each section of code.  These priorities are then used to 

determine which piece of code will execute at any point in time.  Latency is the time from 

when an event is triggered, such as interrupts or timer expiration, until the code handling 

the event actually executes.      

QNX Neutrino was chosen for the real time operating system for a number of 

reasons, as discussed below [10]: 

1. A non-commercial license was free to test the operating system before 

purchasing a license. 

2. It has a proven track record in the industry. 

3. No kernel compiling is needed.  The operating system is simply installed and 

provides real time performance. 

4. Ethernet drivers run in real time, all other drivers do as well. 

5. The learning curve was very quick due to excellent documentation.  The 

development tools were very useful as well. 
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2.4 Graphical User Interface 

There are both positives and negatives with using an RTOS for the control 

system.  Most of the investment into an RTOS is spent perfecting and validating its 

deterministic performance.  There is little effort invested in GUI development.  Many 

RTOS implementations do not even support a graphic display, since they mostly run in 

deeply embedded applications.   

The approach taken in this project was to execute the control and data acquisition 

on the RTOS as a terminal based application.  The real time application provides a 

communication link to a remote computer running Microsoft Windows.  The Windows 

computer is used to provide a user friendly graphical interface for interacting with the 

real time application.  The communication between the two computers is performed over 

an Ethernet connection. 

 Separating the visualization from the control aspects is not uncommon.  It is a 

widely used design pattern in industrial controls.  For example, a human machine 

interface (HMI) is usually not included as part of the same device as a programmable 

logic controller (PLC). If the visualization computer fails or does not respond for an 

extended period of time the control computer will continue to operate independently. 

With this architecture, the real time computer and the visualization computer 

could potentially be miles away from each other.  This is not required for this control 

system, since the two computers are located at the same test cell.  Typically, the two 

computers would be located within 4 meters of each other.  



 

19 

 

2.5 System Overview 

The engine test cell includes many devices that are integrated into a complete 

control system.  Not all of the devices that were integrated into the system will be 

discussed in this thesis. An overall block diagram of most of the devices is shown in 

Figure 2.14.   

The two main components of the system are the QNX real time computer and the 

Windows visualization computer.  The real time computer is responsible for collecting 

data using the data acquisition devices, as well as running all of the test sequences.  Most 

of the data is acquired over Ethernet.  Once an engine test is started, it does not require 

the Windows computer to operate. 

 However, the Windows computer provides the ability to monitor and update the 

status of the real time computer.  It is normally turned on and communicating with the 

real time computer.  The Windows computer contains all of the editing tools for 

configuring the test cell and creating the test sequences. 

 The ATI/ETAS calibration computer is used to communicate to the engine 

powertrain control module.  This is independent of the engine control system developed.  

The ASAP3 protocol is used over Ethernet to integrate the engine test cell with the 

calibration software [11].  A CAN bus connection between the ATI/ETAS computer and 

the visualization computer allows test data to be transferred to the calibration software.  

This is configured using automatically generated, industry standard CAN DBC files [12].   

 The dynamometer controller is configured to communicate using both an RS-232 

serial port and an analog interface.  This provides for a fast analog response, as well as 

noise free digital data.   
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 A device labelled emissions analyzers includes drivers written for different 

exhaust gas and combustion analysis equipment.  The list of devices includes: AVL 

Smoke Meter, AVL Soot Meter, California Analytical Gas Analyzer, Horiba Mexa Gas 

Analyzer and CAS Cylinder Combustion Analyzer.  Most of these drivers were written as 

separate utility applications that return the acquired data to the engine test control system 

over Ethernet.  

 The engine test control system also includes a web based remote monitoring tool.  

This provides the capability to view the status of the test cells from an office computer.  

This is discussed in more detail in Appendix I. 
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Figure 2.14: Control System Layout. 
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CHAPTER 3: IMPLEMENTATION 

3.1 Ethernet DAQ Hardware 

The main data acquisition device used in the design of the engine test cell control 

system was the PowerDNA cube, shown in Figure 3.1.  The same device was used for the 

Tinker Air Force Base jet engine test cell upgrade [13].  This device was purchased from 

the United Electronics Industries Company.  The PowerDNA (Distributed Networked 

Automation) cubes communicate over 1GBit/s Ethernet. Hardware scans are guaranteed 

in less than 1 millisecond, with up to 1000 inputs and outputs.  This device has drivers for 

multiple operating systems, including QNX, Linux, RTX, and Windows.  Each cube 

purchased can hold a total of six I/O cards.  The cube supports a watchdog shutdown 

function.  This function will reboot the cube and reset all its modules in the event of a 

communication interruption.  This functionality offers a layer of security that shuts down 

the engine control system if communication is lost to the host computer.  In addition, the 

PowerDNA cube has an SDK to support the development of applications to run directly 

on the device. 

 

Figure 3.1: PowerDNA Ethernet DAQ, Image Courtesy of UEI Industries. 
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 The cube was configured with I/O cards as listed in Table 3.1.  The selected cards 

include a mix of analog and digital input and output cards.  Should the need arise for 

more I/O in the future, another cube could be purchased and added to the system with 

little effort. 

Table 3.1: PowerDNA Configuration. 

Slot Device Specifications Cost 

1 DNA-AI-207 16- differential channel, 18-bit, 1 kS/s per 

channel, analog input, ±10V input range 

$800 

2 DNA-AI-207 16- differential channel, 18-bit, 1 kS/s per 

channel, analog input, ±10V input range 

$800 

3 DNA-AO-308 8-channel, 16-bit, 100 kS/s per channel, 

±10V analog output Board 

$800 

4 DNA-DI-401 24-channel digital input board, 5-36V logic 

levels, OptoIsolated Input 

$600 

5 DNA-DO-402 24-channel digital output board, 

80mA per channel output drive capacity 

$600 

6 Empty   

 

 The PowerDNA cube supports a mode of operation called real time data map 

(RtDmap).  The cube is configured, through the application software, to sample data at a 

specific rate.  A hardware clock is used to sample the data at the specified rate.  This data 

is then mirrored on the host computer when requested.  This ensures hardware accurate 

sample times, even though the data is transferred over Ethernet.  This is shown with a 



 

24 

 

block diagram in Figure 3.2 where the data values and transfer of Ethernet packets are 

shown [14].   

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Real Time Data Mapping Operation. 
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3.2 Real Time Application  

The primary goal of the real time application is to control the operation of the 

engine, dynamometer and test cell, in a deterministic fashion.  Deterministic means that 

the timing of the software execution is the same each and every cycle.  When dealing 

with a large software project containing many different components, a good strategy is to 

divide the project into smaller sections.  The code for each of the smaller projects is 

written and tested independently.  The individual projects are then put together to form 

the final application.  The real time application is referred to as the real time database, 

and has software components that perform data acquisition, communication, test 

execution and data logging. 

3.2.1 Software Architecture 

 The real time database consists of a single application that executes in a console 

window of the RTOS.  When the application is first started, it spawns a number of 

threads, each of which is shown pictorially in Figure 3.3.  Each of the threads will be 

discussed briefly to provide an understanding of the internal operation of the real time 

application.  Each of the threads is assigned a priority which is used by the operating 

system to decide which thread to run first, when more than one thread is ready to execute.  

Some of the threads execute cyclically based on a timer, others execute asynchronously 

waiting for an event to occur.  The events could be a message from another thread or a 

communication message from an Ethernet or Serial port. 
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Figure 3.3: Real Time Application Overview. 
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The highest number has the highest priority.  If the thread is cyclic, a frequency value is 

included.  Each of the threads performs a specific task.  The configuration for each thread 

comes from a common SQLite database that is managed on the Windows computer.    

All of the threads share access to a common data structure stored in memory.  The 

data structure holds the values of points.  Each point represents one value, such as engine 

coolant temperature (T_EngCoolant) or ignition power (IgnPower).  This data structure 

uses a C++ Standard Library map (std::map) as a lookup table.  The C++ Standard 

Library map is an associative container class [15].  The lookup table provides the ability 

to find the value of a point using its text name.  The data structure itself, is sometimes 

directly referred to as the real time database in this document.  The std::map contains the 
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current value of all of the real time points.  The implementation of points is a very long 

topic which is discussed in full detail in Appendix A. 

Since the std::map is shared with many threads, access to it is restricted to one 

thread at a time.  This is accomplished through the use of a mutex.  The mutex is also a 

global object that is shared among all of the threads.  A mutex is a short form for mutual 

exclusion.  It provides a software locking mechanism so only one thread can access an 

object or objects at a time.  The operating system includes functions to lock and unlock 

the mutex in a safe manner [16]. 

 A mutex is a software lock.  It is the responsibility of the programmer to ensure it 

is being used properly.  The operating system will make sure the mutex is unlocked 

before allowing access to the protected objects.  It will also give the highest priority 

waiting thread access to the objects first. 

3.2.2 Individual Thread Flow Charts 

 The following section will give a brief introduction to the function performed by 

each of the threads.  A thread is a light weight process that shares a memory space with 

the process or application that spawned it. 

 The real time database is the process that gets launched from the operating 

system.  It is responsible for creating all of the other threads during its initialization.  

Once the initialization is complete, it enters an endless loop performing the same 

operation at a rate of 10 Hz, as shown in Figure 3.4.  All control functionality, performed 

by this thread, is defined by the end user in the control.as, user.as and script.as script 

files.  These scripts are written in the AngelScript C++ language [17].  The control.as file 

contains code for the basic operation of the engine test cell.  The user.as file is a generic 
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file containing code that could change frequently.  The script.as file contains an 

automatic test sequence that is created dynamically by a code generator.  The full details 

of all these operations are discussed in many different appendices, including Points 

(Appendix A), Alarms (Appendix B), Scripting (Appendix D), and Test Builder 

(Appendix E). 

 

Figure 3.4: Main Process Flow Chart. 

 The high speed control thread, shown in Figure 3.5, is responsible for controlling 

devices that need to run at a higher cyclic rate, such as the dynamometer speed and 

throttle control loops.  Each control operation that is required is defined within the 

HighSpeed function of the file control.as.  The full details of Scripting are discussed in 

Appendix D. 
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Figure 3.5: High Speed Thread Flow Chart. 

 The host communication thread sits idle, waiting for commands from the GUI 

application which is running on the Windows computer.  This thread is shown in Figure 

3.6.  The commands come in the form of Ethernet UDP packets.  Some of the operations 

could be a point value update or a database copy.  The full set of commands is discussed 

in Appendix F.  The mutex will be locked only if the command updates a point value. 

 

Figure 3.6: Host Communication Flow Chart. 

 The ASAP3 thread sits idle, waiting for commands from an application executing 
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package.  The commands come in the form of Ethernet UDP packets.  The commands are 

discussed in Appendix F. The ASAP3 thread is shown in Figure 3.7.  ASAP3 is a 

communication standard commonly used by engine calibration software packages [11]. 

 

Figure 3.7: ASAP3 Flow Chart. 

 The dynamometer communication thread, shown in Figure 3.8, is a cyclic thread. 

It uses an RS-232 serial port to send and receive commands with a Dyne Systems Dyne 

Loc IV Eddy Current Dynamometer Controller [5]. 

 

Figure 3.8: Dynamometer Flow Chart. 
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 The data logger thread is a cyclic thread that executes once every 5 seconds.  

Figure 3.9 is a flow chart of the data logger thread.  This thread performs write operations 

of engine test data to a SQLite database.  This is a low priority thread, since disk access is 

typically a slow operation.  It waits for approximately 50 write operations to be buffered 

in memory and then opens a transaction in SQLite to dump the data to disk.  The details 

of the data logger are discussed in Appendix H.  SQLite is a public domain, embeddable 

database [18]. 

 

Figure 3.9: Data Logger Flow Chart. 

 The retentive points thread is a cyclic thread that executes once every 10 seconds.  

This is shown in Figure 3.10.  It monitors for changes in points that are required to 

maintain state between an application start and stop.  It then writes them to a SQLite 

database named monitor.db3.  During the application start up, the retentive points are 

initialized to the last value that was stored in the monitor.db3 database.  Details of this are 

located in Appendix A which discusses points. 
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Figure 3.10: Retentive Points Flow Chart. 

 The asynchronous messaging thread, shown in Figure 3.11, sits idle waiting for 

messages from one of the other threads.  It then relays the message data to the Windows 

application running on the visualization computer.  This allows many threads to share a 

single Ethernet socket. 

 

Figure 3.11: Asynchronous Messaging Flow Chart. 
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be done independently of the other threads.  If new functionality is required, a new thread 

can be added that performs the necessary operation.  Extending the real time application 

in this format requires the application to be recompiled. 

 Recompiling the application is not done often.  The application was designed to 

be completely dynamic.  The end user defines the hardware topology, creates points to 

convert voltages to engineering units, and then develops an automatic test sequence.  

Alarms are also defined, to monitor the execution of the automatic test sequence.  Each of 

these items can be modified dynamically while the application is executing.  All of this is 

done in a graphical user interface (GUI) which will be discussed in the next section. 

3.3 GUI Application 

 The entire operation of each component of the GUI application will not be 

discussed in the body of this thesis.  It is important however, to understand the basic 

function that it provides.  The appendices provide more details and explain how some of 

the code was implemented.  Where appropriate, the reader will be directed to a specific 

appendix. 

The GUI provides all the tools necessary to develop an automatic engine test 

sequence which can be executed on the real time controller.  An automatic test sequence 

consists of a set of user defined steps.  Each step consists of a set of instructions for the 

real time application to execute.  In addition, the GUI provides visual controls that enable 

the creation, viewing and updating of points and alarms in the real time database. 

The GUI design was based on existing applications used at PERDC.  PERDC uses 

two engine calibration applications; Vision from ATI and INCA from ETAS.  Both of 
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these applications have what is called a tabbed multiple document interface (MDI) main 

window.  An example of the INCA experiment window is shown in Figure 3.12.   

 

Figure 3.12: INCA Experiment User Interface. 

This style of user interface is very familiar to the engineers and engine technicians 

at PERDC, and was therefore used as the main window design for this application.  This 

can be seen below in Figure 3.13 below which shows the user interface of the engine 

control system developed for this thesis.  This user interface contains a large number of 

visualization controls and tabs similar to the INCA screen.  There are also a number of 

supporting dialogs for creation of points, alarms and data logging. 
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Figure 3.13: User Interface Main Window. 

Each visualization control is assigned to one of the tabs.  The tabs are identified 

with a red rectangle in Figure 3.13.  Clicking a tab will display all of its associated 

controls.  Tabs can be added or deleted using the tab manager shown below in Figure 

3.14.  This allows controls with related information to be grouped and displayed together. 
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Figure 3.14: Tab Manager. 

The positions of the controls, their properties, as well as the tab names are 

grouped together into a screen layout.  A number of customizable controls were 

developed that are available to create the screen layouts.  These controls are discussed 

further in Appendix J.  Screen layouts provide the ability to view and modify data in the 

real time database.  The screen design process is completely dynamic and done by the 

user while the application is running.  There is no code written by the user to create the 

screen layouts.  New controls are added to the screen using the view menu shown in 

Figure 3.15.  Controls are automatically assigned to the currently selected tab.  

Positioning of the controls is performed using the mouse.  This allows complete 

flexibility to quickly build a user interface for monitoring and controlling of the engine 

test. 
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Figure 3.15: Control Creation Menu. 

The screen layouts are serialized to and from a SQLite database.  The Layout 

Manager dialog, used to perform the storage and recall of layout screens, is shown in 

Figure 3.16. 

 

Figure 3.16: Layout Manager. 



 

38 

 

3.3.1 Real Time Database Link 

 The information to be displayed or updated by the controls, resides in the real 

time database.  The real time database however, is executing on the real time computer.  

An ASCII communication protocol was designed to allow the two computers to 

communicate information back and forth.  This communication protocol is fully 

discussed in Appendix F. 

 The protocol designed is based on simple commands.  A command is sent from 

the Windows application to the real time controller, where it is then executed.  If a 

response is required, it will be returned.  For example, the Windows application can get 

the current value of all of the points in the real time database by sending the command 

“1|ListVars” to the real time controller.  Internally, the Windows application has its own 

collection of points which it uses to store the same information locally.  When the 

complete set of points is received, the application notifies the individual controls on the 

screen with an update message.  Each of the controls then refreshes itself with the current 

point value.  There is some optimization that is performed to ensure the screen updates 

are not overloading the CPU. 

Controls that accept user input, such as tables and buttons, send update commands 

to the real time database.  This is done asynchronously and only when an update is 

performed by the user.  Since these controls are updating points, they use the update point 

command.  For example, if a momentary button linked to the point “CrankEngine” is 

clicked, a message “3| CrankEngine |1” is sent to the real time controller.  When the 

button is released, the message “3| CrankEngine |0” is then sent to the real time 
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controller.  The exact values transmitted are configured by the user, without requiring 

manual entry of code.  They do not need to be 1 and 0 as in the example above. 

3.3.2 Point Editor Introduction 

 Data that has been acquired using a data acquisition board is normally in the form 

of a voltage, current, count, frequency, etc.  While these data points are valuable, it would 

be much more intuitive to interpret the data if it was transformed into a pressure, 

temperature, speed, torque, etc.  In order to accomplish this transformation, a number of  

point types have been developed.  The point types range from a simple linear 

transformation, to an interpolated point, to a generic mathematical equation parser from 

the open source project muParser [19].    

 Points are defined using the point editor dialog shown in Figure 3.17.  There are 

currently four point types; Linear, Interpolation, Equation, and Scratchpad.  These point 

types are discussed in Appendix A.  Point definitions can be updated while the real time 

application is running.  This is useful when updating calibration tables of interpolation 

points or when adding a new point.  It is not recommended to do this while the engine is 

running, but it is possible and has been done.  The point editor provides a very intuitive 

and natural way to define points.  There is no cryptic syntax that needs to be learned.  All 

of the points are stored in one location.  The field data for each of the points is stored in a 

table within a SQLite database.   
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Figure 3.17: Point Editor. 

3.3.3 Alarm Editor Introduction 

An important part of the engine control system is the ability to detect fault 

conditions.  An alarm editor was created for the purpose of defining these fault 

conditions.  The alarm editor is shown in Figure 3.18.  Alarms can be updated 

dynamically while the real time application is running.  Appendix B gives full details of 

alarms and how to define complex alarm conditions.  The engine control system is also 
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capable of advanced alarming using parameter monitoring which is discussed in 

Appendix C. 

  

Figure 3.18: Alarm Editor. 

3.3.4 Sequence Editor and Test Creation Introduction 

 In order to create an automatic engine test, test sequences are created using the 

test sequence editor, shown in Figure 3.19.  Each test sequence contains a number of 

steps that are executed by the real time database.  The steps of the test sequence contain 

the setpoints for the engine speed and load, as well as the time length of the step.  

Complex instructions can also be performed at each step using AngelScript C++ code.  

The information entered in the test sequence editor is used by a code generator to create a 

valid test.  The full details of how this is accomplished are contained in Appendix D and 

Appendix E which discuss Scripting and Automatic Code Generation and the Test 

Builder.  Similar applications of scripting and code generation have been used in other 

real time environments [10, 20 - 23]. 
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Figure 3.19: Test Sequence Editor.  

3.3.5 Test Manager 

To execute a test on the real time controller, it must first be loaded using the Test 

Manager shown in Figure 3.20.  The Test Manager will dynamically generate the code 

required to execute the test sequence.  The test information entered into the sequence 
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editor is used during this process.  This code is then transferred to the real time controller 

where it is executed.  During the test execution, the status is continuously updated and 

displayed on the form.  The ability to skip steps or start and stop the test is provided 

through the push buttons on the form.  

 

 

Figure 3.20: Test Manager.  

3.4 Process Control 

 The test sequence editor provides the ability to assign setpoints to control loops at 

any step.  The actual process control is done by separate threads, independently executing 

on the real time controller.  Both manual and automatic modes of operation are available 

for the engine test cell.  In manual mode, the setpoints are entered directly from the GUI 

application.  There is no fixed number of devices that could be controlled by the system.   
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3.4.1 PID Controller 

 A commonly used process control algorithm is the PID controller.  There are 

many different forms of this control algorithm.  The one discussed here is a parallel 

topology, positional form PID controller.  The parallel topology is shown in Figure 3.21.  

Positional form refers to the fact that the output from the PID controller is the actuator‟s 

position command.  The velocity form, on the other hand, calculates an incremental 

change to the actuator‟s position.  This is obtained by taking the derivative of both sides 

of the positional form. 

 

 

 

 

 

 

 

 

Figure 3.21: Parallel PID Topology.  

The continuous time PID equation is shown in equation (3.1), 

                           
     

  
     (3.1) 

where e is an error term defined as: 

                        (3.2) 

The terms KP, KI, and KD are the gains for each component of the PID controller.  

To implement a discrete time version, a first order approximation can be defined using 
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Euler‟s method of numerical integration and the backward difference method of 

differentiation [24].  Using these methods, the discrete PID algorithm shown in equation 

(3.3) is obtained: 

                        
       

           

  
    (3.3) 

The variable Ts is the data sampling period.  In practical applications, a term 

named Bias is also added to the PID equation, as shown in equation 3.4 [24]. 

                        
       

           

  
         (3.4) 

The Bias term can be thought of as the initial condition for the numerical 

integration.  Most control loops provide both a manual and an automatic mode of 

operation.  When switching between the two modes, the output value should not have an 

instantaneous change in value.  This is called bumpless transfer [25].   

The term Bias is used to implement a bumpless transfer from manual to automatic 

mode.  During the transition from manual to automatic, the current manual output value 

is stored in the Bias term.  The summation for the numerical integrator is reset to zero and 

the current setpoint for the PID controller is set to the process value.  The transition from 

automatic to manual simply holds the current output value until a manual change request 

is made.  

When implementing the code for the discrete PID algorithm, care must be taken 

to account for a change in the gain term KI.  When this value is changed, the previous 

integration summation must be scaled using a ratio of the new and the old KI values.  If 

this is not done, a significantly larger or smaller value for the integral term would be 

obtained. 
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Wind up occurs when the output from the PID controller has a value that is 

physically impossible for the actuator to obtain.  If the actuator is unable to force the 

process feedback value to the setpoint, the summation term will increase or decrease 

indefinitely.  Since all actuators contain a physical limit, the summation term should be 

limited in value.  In this thesis, wind up is limited by discontinuing the summation when 

the actuator output value is saturated at its upper or lower limit.  The upper and lower 

limits of the PID output are normalized to a percentage (0% to 100% or -100% to 100%) 

and then scaled back to engineering units.  It is natural to think of an actuator‟s position 

as a value between 0 and 100 percent open. 

 The derivative term will create an impulse output when the setpoint is changed.  

Many practical controller implementations modify the derivative term to act on the 

process value and not the error term.  This is shown in Figure 3.22, where a PI_D 

controller topology is shown [26].  

 

 

 

 

 

 

 

 

Figure 3.22: Parallel PI_D Topology.  

The discrete implementation of the PI_D topology is given in Equation 3.5.   
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        (3.5) 

 The PID controller‟s function is to provide a setpoint for the actuator that will 

move the process in a direction that eliminates error.  For a cooling loop, the actuator will 

often be moving in a positive direction, but will result in a decrease in the process 

temperature.  This is called a reverse acting loop and the error term must be adjusted so 

that the actuator moves in the correct direction.  

 In some instances, a setpoint change should move the process to the new value as 

quickly as possible.  In the case of engine speed and throttle control, it is required to ramp 

the setpoint from one value to another over a desired period of time.  This is implemented 

by providing a ramp generator in front of the PID controller, as shown in Figure 3.23.  

The ramp generator has inputs for the setpoint, as well as the time required to reach the 

desired setpoint.  The output from the ramp generator is incremented by an equal amount 

each sample period, until the setpoint is reached.  

 

  

 

 

 

 

 

Figure 3.23: PI_D with Ramp Generator.  
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CHAPTER 4: RESULTS AND DISCUSSIONS 

This chapter will first discuss the performance of the engine control system and 

the timing of the scripting environment used.  Secondly, an example of the PID controller 

operation will be shown.  Finally, results of test data gathered while running an engine 

using the control system will be discussed.  Where applicable, the results will be 

compared to data from a commercially available system. 

4.1 Real Time Performance 

 The performance of the RTOS can be affected by the hardware used or by errors 

in the software.  In order to evaluate the deterministic performance of the engine test 

system, an eight hour recording of two cyclic timers was saved.  One timer was 

configured to trigger an event every 100 milliseconds and the other every 10 

milliseconds.  The data samples were taken every 100 milliseconds.  Over the eight hour 

period, no over runs were recorded.  An over run is a condition where the computation 

time between time intervals is exceeded.  This would result in a missed sample period.  

Table 4.1 shows the frequency of the time stamps for the 100 millisecond timer and 

Figure 4.2 is the for 10 millisecond timer.  

Table 4.1: 100 ms Time Stamps.  

Bin Frequency 

0.100032 195037 

0.099932 92989 
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Table 4.2: 10 ms Time Stamps.  

Bin Frequency 

0.009973 210882 

0.010073 77102 

0.009874 40 

0.009774 2 

 

 From the data in Tables 4.1 and 4.2, it can be seen that there is a worst case 

latency of 226 microseconds for the times that were recorded over the 8 hour period.  

There is some uncertainty in the 10 millisecond numbers since only every 10
th

 sample 

was recorded.    

There is a trend in the bin values shown in Tables 4.1 and 4.2.  The bin values are 

almost exactly 100 microseconds apart.  This is no coincidence; the operating system has 

an internal tick timer that was programmed to run at 100 microseconds for this 

application [27].  This tick timer usually runs at 1 to 10 milliseconds.  Running at 100 

microseconds adds some additional overhead to the operating system.  It will run a task at 

this interval to determine the highest priority process ready to execute.  

 Other control system applications, similar to this one, would likely use an 

internal PCI card, such as a data acquisition board, for timing purposes.  The PCI board 

would trigger a hardware timed interrupt, instead of using an operating system timer.  

One of the goals of the original project was to have a completely distributed architecture.  

It was decided to only use the operating system timers to control the sample time.  It 
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should be noted that the PCI card approach would reduce the worst case latency to tens of 

microseconds.  

One other thing to note is that the total time for the 100 milliseconds timer adds 

up to 28802.52 seconds.  There were exactly 288026 samples recorded in the data file, 

each with an expected interval of 0.1 seconds, for a total of 28802.6 seconds.  This gives 

a difference in time of 0.08 seconds which is less than one sample, over the eight hour 

period.  This proves that the timer is precise over long periods of time.  

4.1.1 Real Time Application Performance 

One of the interesting aspects of this project was the use of the scripting language 

for the core of the control application.  When the project started, it was questionable if the 

timing constraints could be achieved using the scripting language for the application.  A 

test was performed to determine what kind of computation is possible with the 

application created. Since the threads are all sharing a common mutex, the thread that 

locks the mutex the longest is the limiting factor.  In the current application design, this is 

the main thread.  This thread will be used to determine the possible performance that can 

be obtained.   

The computer on which the data was collected contains an Intel Pentium Dual 

Core E2200 with a CPU speed of 2.20GHz. The code execution time, shown in Figure 

4.1, includes all of the calculations of points, alarms, data logging and script calls made 

in the main thread at each timer event.  The scripts running during the test include all of 

the code that is currently used for the test cell operation. 
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Figure 4.1: Code Execution Timing. 

  At approximately 160 seconds into the data log, a simple function with a loop 

executing 10000 times was dynamically added to the user.as script to stress the system.  

The code executed in the loop is shown below.  The calculation performed is equivalent 

to a linear transformation.  The code was dynamically removed from the script at about 

380 seconds to show the system return to its original performance. 

//Test script performance 
void Stress() 
{ 
 //Local variable 
 double x=0.0; 
 
 //Loop 
 for(int i=0; i<10000; i++) 
 { 
  x += i * 1.23 + 4.56; 
 } 
 
 //Store result in real time database point 
 UserPoint = x; 
 
} 
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 From the code above, the variable UserPoint in the function Stress is a point that 

exists in the real time database.  Its value is correctly calculated by the script as 61539450 

and is shown on the chart in Figure 4.1.  The modified script added approximately 600 

microseconds to the total code execution time.  This is a small price to pay for the 

dynamic nature of the system.  Not only are high execution rates possible, but these 

scripts can be changed on the fly while the application is running.  The script is 

configured in a different thread, so no time is lost when loading a new script.  Once the 

script is compiled successfully, a simple memory pointer is swapped.  All of the points in 

the real time database are exposed to the script when it is compiled. 

4.2 Dynamometer Torque Calibration 

The load cell used to measure torque is connected directly to the dynamometer 

controller which has a built in signal conditioner [5].  The calibration is performed in two 

steps. Calibrating the load cell should be performed with the cooling water supply turned 

on and the engine drive shaft removed from the dynamometer [2].  First, the zero 

calibration is performed with both calibration levers and weight trays attached without 

any mass on the weight trays (refer to Figure 2.4).  Second, the full scale torque is applied 

by loading the weight trays with the full set of calibrated masses.  When this is complete, 

a validation of the calibration is performed using a number of different masses.  PERDC 

has a specification for durability test cells that requires the torque measurement to be 

accurate within 1 Nm below 200 Nm and ±0.5% above this value.  The calibration of 

dynamometer torque is discussed in detail in an SAE paper, along with some 

recommendations to follow when specifications cannot be met [28].  Figure 4.2 below 

shows the results of the dynamometer torque calibration. 
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Figure 4.2: Dynamometer Torque Calibration. 

4.3 Load PID Control  

The control of engine load by throttle presents a number of challenges [1].  The 

complexity is due to the number of controllers and the non linearity of the torque versus 

the speed of the engine.  The powertrain control module may also have a non linear 

output versus pedal position.  This is compounded by the fact that the system must be 

able to control many engine types, each of which has their own characteristics.  A few 

researchers have tried to apply multivariable controllers with limited success [29] [30].  A 

self tuning procedure for dynamometer torque control was evaluated by another 

researcher [31].   

Since the eddy current dynamometer does not have motoring capability, the 

adjustment of throttle position will have an impact on speed, particularly at light loads.  

The application of gain scheduling may be appropriate in some circumstances to reduce 
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light load oscillations.  Many of these dynamics can be shown with a few illustrations.  

Figure 4.3 shows five sections where speed and load are being adjusted.   

1. The engine is idling with zero throttle and produces zero torque output. 

2.  Speed and load are ramped up simultaneously from idle.  This presents a 

difficult situation, since the load controller is running open loop.  The load 

controller starts to ramp the throttle, but does not see any change in the torque 

value that it is monitoring.  This is because the dynamometer controller has 

not started braking the engine.  It will not start to brake until the engine is at 

the desired speed.  When the engine does reach its desired speed, the 

dynamometer controller will quickly start loading the engine.  At this point, 

the load controller sees a very large torque increase and backs off the throttle.  

This causes the speed to drop.  This can lead to uncontrollable oscillation if 

both the load and dynamometer speed controllers are tuned tightly.  

3. The engine is stabilized and is holding load and speed setpoints. 

4. The speed is ramped while the load is held constant.  The dynamometer 

controller will decrease the braking force to allow the speed to increase.  This 

results in a drop in torque.  The load controller will try to reject this 

disturbance by increasing the throttle.  When the engine reaches the speed 

setpoint another jump in torque is seen, since the throttle has over shot its 

value in an attempt to maintain torque.  A similar drop and increase in torque 

would be seen even if the throttle were held constant in manual mode.   

5. The engine speed is held constant while the load is ramped.  This is much 

easier to control since the dynamometer speed controller and load controller 
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are effectively working together.  The load controller increases throttle to 

produce torque, while the dynamometer controller increases the braking force 

to maintain a constant speed.  This braking force creates the torque the load 

controller is looking for. 

 

 

Figure 4.3: Engine Load Control. 

 A low speed and low load condition is shown in Figure 4.4.  The engine speed 

and load are simultaneously ramped from 680 rpm and 50 lb ft.  At the beginning of the 

ramp, the dynamometer and load controller will fight each other which cause the 

oscillations shown.  This effect can be lessened with gain scheduling at low loads.  

Depending on the operating conditions of the test, it may not be required to make these 

modifications. Holding such a low load on an eddy current dynamometer is very 
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challenging.  If the load controller is tightly tuned, there is the possibility of oscillation at 

low loads due to loss of speed when decreasing throttle position.  

 

 

Figure 4.4: Engine Low Load Ramp. 

Although still challenging, the region outside of the low speed and low load is 

easier to control.  A medium speed and load ramp is shown in Figure 4.5.  Here it can be 
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Figure 4.5: Engine Medium Load Ramp. 

4.4 Test Results 

 In order to validate the data acquired from the engine test control system, a 

durability test was performed on an engine of undisclosed specification.  The tests 

performed on this engine included: 

1. Break-in Test 

2. Pre Test Power Test 

3. Engine Fatigue Durability Test 

4. Post Test Power Test 

The execution cycle for this engine was created on-site by another engineer using 
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durability test will be discussed.  The break-in test is simply a test to gradually break-in 
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the mechanical components of the engine.  This test will not be discussed further.  The 

engine successfully finished and passed each of the tests without failure. 

4.4.1 Power Test Results 

The power test is simply a sweep of engine speeds while holding the pedal 

position wide open to produce maximum power output.  One of the criteria for a 

successful test is less than a 5 percent drop in output torque between the pre and post test 

power tests.  The two power test curves are shown together in Figure 4.6.  The percent 

difference in output torque is also plotted.  The data values were generated by averaging 

the corrected torque values at each engine rpm test point.  Average values are typically 

used in this plot, since there will be variation in instantaneous torque readings.  Overall 

there was a drop in torque from the pre to post test power test curves, but it did not 

exceed the specified limit of 5 percent. 

 

Figure 4.6: Pre vs. Post Test Power Test.  
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A different engine, from the same family and specification, was run on a 

commercially available test cell control system.  The test cell used to perform this test 

contains an AC Dynamometer and a control system that was updated in 2010.  All of the 

facilities such as fuel, fluids, electricity, and air handling come from the same source.  

The engines were manufactured and tested in the months of October and November, 

2011.  The engines tested are for different vehicle platforms and two different PCM 

calibrations were used during the tests.  Each test was designed to have an equivalent 

number of engine cycles, but running at slightly different engine speeds.  A different 

number of test hours were run to compensate for the speed difference.  The total engine 

hours for each engine are shown in Table 4.3. 

Table 4.3: Test Engine Hours.  

 Commercial System System Developed 

EFT Test Hours 138 131 

Total Engine Hours 168 152 

 

The results of the pre and post test power tests for this engine, run using a 

commercially available control system, are shown in Figure 4.7. 
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Figure 4.7: Pre vs. Post Test Power Test from Commercial Test Cell. 

There are some minor differences in the performance of each of the engines, 

which will be true with any two engines.  However, the general trend in the loss of output 

torque over the course of the test is similar.  

The pre and post test corrected torque data displayed in Figure 4.6 was averaged 

from the corrected torque data shown in Figure 4.8 below.  Similar data is not available 

from the commercial system since it is not capable of collecting long term data.  The 

correction factor used to calculated corrected torque is based on the SAE Standard J1349 

[32].  Variables such as air temperature, pressure and humidity are accounted for in the 

correction.  The transients visible during the speed transitions are not included in the 

averaged data shown in Figure 4.6.   
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Figure 4.8: Pre vs. Post Test Power Test Corrected Torque Data. 

During the 5750 rpm test point, the pre test torque curve shows an anomaly in 

torque values.  This is the result of a humidity measurement device skewing the 

correction factor.  The raw data showing uncorrected and corrected torque, as well as 

vapour pressure, which is calculated from the humidity measurement, is shown in Figure 

4.9 for the period in question.   

From Figure 4.9 it can be seen that the actual torque curve is relatively flat, while 

the corrected torque and vapour pressure curves both spike at the same time.  It is this 

change in vapour pressure that is responsible for the corresponding spike in the corrected 

torque, since the correction factor takes into account vapour pressure.  This error that was 

detected in the vapour pressure data would not have been found in our commercial test 

cell, since they do not have the ability to store long term data sets. 

0 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

200 

250 

300 

350 

400 

450 

E
n

g
in

e 
S

p
ee

d
 (

rp
m

) 

T
o
rq

u
e 

(l
b

 f
t)

 

Time 

Pre and Post Corrected Torque 

Pre Test Post Test Engine Speed 



 

62 

 

 

  Figure 4.9: Power Test Humidity Error. 
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to show an example of a shutdown alarm sequence.  The actual shutdown sequence 

performs the following operations simultaneously: 

1. Ramp engine speed  to 1250 rpm in 20 seconds 

2. Ramp throttle position to 0% in 10 seconds 

3. Sound buzzer   
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There are two alarms that are shown active in Figure 4.10.  They are the 

AlarmActive and ShutdownActive alarm which were both triggered by an engine over 

speed condition.  The chart is configured so that time 0 coincides with the moment the 

ShutdownActive alarm is triggered.  The alarm values are scaled from 1 to 100 for 

legibility.  AlarmActive is a warning alarm that triggers prior to the shutdown alarm.   

Both alarm values return to zero as soon as the engine speed is lowered below each alarm 

trigger point.  The shutdown sequence continues to execute until completion, even after 

the alarm condition has ended.  This ensures that the engine is brought down to a safe 

operating point until a technician acknowledges the alarm. 

 

Figure 4.10: Engine Over Speed Shutdown. 
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mechanical loading at high engine speeds and cylinder pressures” [33].  This is one of the 

most common tests performed in the eddy current dynamometer test cells at PERDC.  

The test is executed as a number of cycles of a sequence.  The steps of the engine fatigue 

test sequence are illustrated in Figure 4.11 [33]. 

 

Figure 4.11: Engine Fatigue Test Sequence. 

The individual steps from Figure 4.11 are summarized below: 

1. Idle 

2. Peak Torque, Full load 

3. Peak Power, Full load 

4. High speed oscillation, Light load 

5. Intermediate speed #1, Full load 

6. Intermediate speed #2, Full load 

7. High speed oscillation, Full load 

4.4.3 Engine Fatigue Test Results 

Forty cycles of the sequence described above were completed successfully during 

the engine fatigue durability test.  The data from a number of these cycles will be 
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analyzed to show long term stability of the data acquisition and control system.  One of 

the objectives will be to show that the drop in engine torque from the pre to post test 

power test was not related to the measurement system, but to the gradual engine 

degradation.  The test cell, in which this data was collected, uses a Honeywell PID 

temperature controller for both the engine coolant and oil temperature control loops.  

These devices run in automatic mode with a manual setpoint.  The setpoint for the 

coolant temperature was 200 degrees Fahrenheit and the oil temperature setpoint was 265 

degrees Fahrenheit.   

Figure 4.12 shows the controlled coolant temperature.  If the engine does not 

produce enough heat to exceed the setpoint, the temperature will not be controlled.  At 

the beginning of each cycle, the engine is shut off.  This is the reason the coolant 

temperature is low at the beginning of the cycle.  At the end of the cycle, the engine is 

brought down slowly which accounts for the slow decline in temperature.    

 

Figure 4.12: Coolant Outlet Temperatures by Cycle. 
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 The average coolant temperature from a portion of each cycle was extracted and 

is shown in Figure 4.13.  The average is targeting the desired temperature of 200 plus or 

minus 1 degree Fahrenheit. There is a definite shift in temperature at cycle 19.  There 

could be multiple reasons for this shift in temperature.  Some of these will be discussed 

after a review of the engine oil temperature charts.   

 

Figure 4.13: Coolant Outlet Temperature Averages. 

 The cycle by cycle engine oil temperatures are shown in Figure 4.14.  This 
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Figure 4.14: Engine Oil Temperature by Cycle. 

One portion of the curve, highlighted in the chart, where engine oil temperature 

does reach 265 degrees Fahrenheit on most cycles is shown in Figure 4.15.  This curve 

shows the same shift in temperature at cycle 19, as the coolant temperature curve in 

Figure 4.13.  The most probable reason for the shift in temperature was a manual change 

in setpoint.  There is an engine service at cycle 15 that requires the engine technician to 

manually adjust these temperatures.  It is believed that the target temperatures were not 

returned to the original setpoints after the service was completed.  The other possibility is 

a change in position of the engine cooling fans.  Fans are aimed directly at the engine 

during testing.  Changing the angle of the fans can have an effect on these temperatures.    
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Figure 4.15: Engine Oil Temperature Averages. 

 The engine speed for each cycle is shown in Figure 4.16.  The repeatability of 

engine speed from cycle to cycle is very high, so it will not be discussed further. 

 

Figure 4.16: Engine Speed by Cycle. 
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 The corrected torque measurements, for each of the cycles, are shown in Figure 

4.17.  A lot of cycle to cycle variation can be seen in the corrected torque.  The same 

issue, discussed previously, concerning the humidity measurement device is seen on 

many of the cycles.  The sections of the EFT cycle are labelled in Figure 4.17 as 2, 3, 4, 

and 5.  

 

Figure 4.17: Corrected Torque by Cycle. 

Figures 4.18 to 4.21 show the corrected torque for each section of the EFT cycle.  

Each of these figures shows that the variation is not random.  There is a definite decrease 

in output as the cycle number increases.  This indicates that the drop in engine torque is 

gradual, over the course of the test, and most likely caused by decreased engine 

performance after hours of testing. 
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Figure 4.18: Corrected Torque Average Section 2. 

 

Figure 4.19: Corrected Torque Average Section 3. 
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Figure 4.20: Corrected Torque Average Section 4. 

 

 

Figure 4.21: Corrected Torque Average Section 5. 
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4.5 Dynamometer Vibration 

In order to show how the dynamometer vibration condition monitoring system 

behaves at different portions of the EFT test, a single cycle was selected from the EFT 

test.  

The vibration monitoring sensor is used to protect the dynamometer from excess 

vibration that could result in bearing failure or more catastrophic damage.  Figure 4.22 

shows vibration data from the Ifm Efector sensors mounted on the dynamometer during 

the EFT test.  The driveshaft would be connected to the front of the dynamometer.  From 

Figure 4.22, it can be seen that there is a resonance that occurs in the system at an engine 

speed of 5750 rpm.  The resonance is very pronounced on the front of the dynamometer 

and is highlighted with a red circle in the figure.  This is believed to be caused from using 

a long driveshaft (42 inch).  PERDC is in the process of modifying the bedplates that the 

engine and dynamometer rest on, to reduce the length of the driveshaft required. 

 

Figure 4.22: Dynamometer Vibration. 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

This thesis, in part, targeted to challenge Martyr and Plint‟s statement that it 

would be beyond the capabilities of any one person to develop an engine test control 

system [1].  By completing this thesis work, it was demonstrated that an engine test 

system could be created by an individual.  The completed engine test cell control system 

was installed in three of the PERDC eddy current dynamometer test cells.  A number of 

specific objectives were set and each of them will be addressed.  Many aspects of the 

control system created exceeded the expectations of the engineers and engine technicians.  

1. An engine testing control system was successfully developed, installed and 

tested at the PERDC facility.  It has the capability of running automatic test 

sequences in real time.  It is currently being used in three eddy current 

dynamometer test cells twenty four hours a day, seven days a week. 

2. A GUI was developed using a template from existing applications that the 

PERDC personnel are already comfortable operating, thus making the GUI 

very intuitive. 

3. The engine test cell control system was developed with the cost of 

approximately one tenth of that of the commercially available systems.  The 

majority of the cost is contained in the hardware which is flexible in 

configuration. 

4. The data output from the control system is superior to the commercially 

available systems.  It also includes an analysis package that is not available 
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with the other systems.  The 10Hz data logging is now a best practice at 

PERDC. 

5. The engine control system that was developed is easily learned.  The 

operation is made possible by ordinary algebraic syntax and simple logic.  

There is no cryptic or foreign syntax needed to create points or test sequences.  

All of the tests and data used in the results portion of this thesis were created 

and collected by PERDC personnel.   

 This research could not have been completed as efficiently without the 

AngelScript library, muParser, or the SQLite database used in the development of the 

software.  The authors of each of these libraries have generously provided their work in 

source code form for anyone to use.  None of them could have envisioned that their work 

would end up being used as part of a real time engine test cell control system. 

 In a way, Martyr and Plint were ultimately correct; this work could not be 

completed by one person no matter how well versed they are in engine testing.  What 

they might have failed to realize is that generous people have freely provided 

extraordinary tools that can be used to assemble an engine test control system.  By 

harnessing the work made freely available by others, and incorporating it into the 

architecture designed for this thesis, one person was able to finish this project 

successfully.    

5.2 Recommendations 

 Every one of the commercial engine test systems that exist today started with a 

very simple concept and progressed into the massive works that Martyr and Plint 

describe.  This thesis marks the completion of version 1.0 of an engine control system 
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code-named “Katerina”.  More development on this project is currently being pursued.  

Some of these ideas will be discussed below for the next person willing to challenge 

Martyr and Plint in the dynamically changing world of engine testing.   

 The calculation of points was done using an abstract base class that was inherited 

by a number of different point classes.  This concept can be extended to include complex 

calculations, such as a PID type points and many others.  Doing this would provide better 

encapsulation of data.  It would also allow custom dialogs to be opened that access all of 

the points as a group. 

 The choice to use QNX Neutrino as the RTOS for this thesis added some 

additional cost to the project.  There is an ongoing project to provide a real time kernel 

for Linux.  This project is currently in the form of a patch, named Preempt-RT.  Using 

Linux was always a vision for this engine testing control system and the code was written 

to be easily ported when the Preempt-RT patch was complete.  The only code that would 

need to be modified is the timer objects.  Part of the Preempt-RT patch includes support 

for high resolution timers that are compatible with the QNX timers, since they are both 

based on the POSIX standard.  The current home for the Preempt-RT project is located at 

www.osadl.com. 

 One of the original ideas for this project was to implement it on inline test stations 

in manufacturing facilities.  The operation is slightly different, since the data is collected 

only when a part arrives at the test station.  The script environment could easily be 

extended with functions that start and stop data acquisition, as well as analyze the 

collected data.   
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APPENDIX A: POINTS 

Data that has been acquired using a data acquisition board is normally in the form 

of a voltage, current, count, frequency, etc.  While these data points are valuable, it would 

be much more intuitive to interpret the data if it was transformed into a pressure, 

temperature, speed, torque, etc.  In order to accomplish this transformation, a number of a 

point classes have been developed.  The classes range from a simple linear transformation 

to a generic mathematical equation parser, from the open source project muParser [19].    

Each one of these classes, outputs a single value that is called a point.  It would be 

relatively easy to have multiple data types for points using a variant data type.  A variant 

in its simplest form is a union of multiple data types such as integer, float, double, etc.  

However, the decision was made early on in the project that the only data type to be used 

would be double.  A double is a 64 bit value with 52 bits assigned to the fractional 

component, 1 bit for sign and 11 bits for the exponent.  This single data type exceeds the 

precision of a 32 bit float as well as a 32 bit integer.  There is often the belief that integers 

will not be exactly represented in floating point format [34].  When storing an integer 

numeric value of 1 in a double, it is exactly defined and can be used in comparison 

operations.  This is important since a large part of this project uses logical comparisons.  

A.1 Point Containers 

 Having defined what is meant by a point, point transformations and point data 

types, a place to store these values is needed.  In many programming languages there is 

an associative container.  In the C++ standard library one of these associative containers 

is the std::map.  This container will allow one data type as a lookup for another data type.  

In this project, a global std::map is created that maps std::string types to a double data 
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type.  Most implementations of the std::map are based on a Red Black Tree algorithm and 

have lookup and insertion performance of O(log n) [35].  With logarithmic performance, 

a lookup or insertion with 1,000 points would have a worst case performance of about 3 

searches.  In the very unlikely case where 10,000 points have been defined, a lookup 

would be about 4 searches.  It should be noted that the std::map is a sorted container.  The 

insertion order is not the order that would be found when traversing the container in a 

loop. 

 Using the std::map with a string as the lookup, allows indexing of points using 

point names.  This is the foundation for the real time database.  This allows the user to 

define points using English names such as Speed or Torque.  The standard programming 

language restrictions apply for point names; being that they must start with a letter and 

cannot contain spaces.  This restriction is required, since each of the points will be 

exposed directly to the scripting engine.  By exposing the points to the script engine, the 

user has the ability to modify a point‟s value through the execution of custom script code. 

A.2 Conversion Classes 

 The actual point transformation starts with a base class named CConversion.  This 

is the base class for a number of different types of transformation classes.  It contains 

very little code but provides the basic structure that is required for any conversion to be 

equated.  The class contains a pure virtual function named Convert that takes a reference 

to the std::map of data points.  The basic definition is shown below. 

class CConversion{ 
public: 
 CConversion(); 
 virtual ~CConversion(); 

  virtual void Convert(DATAPOINTS &db)=0; 
}; 
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This allows a container of CConversion objects to be created that can hold any of 

the derived transformation classes.  This polymorphic behaviour allows us to abstract 

many conversion types, and simply call the Convert function on each of them.  The actual 

implementation of each of the Convert functions will be completely different for each 

derived conversion class.  The end result of the convert function is to update a single 

point in the real time database.  Each derived conversion class will have its own unique 

set of variables and functions needed to perform the transformation.   

A.2.1 CLinear 

 The CLinear conversion class performs a standard linear transformation of the 

form y = mx +b.  This provides the ability to scale and offset a point.  This conversion 

type could be used in a number of different ways.  A simple copy of a point could be 

made by setting the scaling to 1 and the offset to 0.  If a sensor is known to be linear 

through a range of interest, the proper scaling and offset values could be used to create a 

new point.  The definition of the CLinear class shows that it inherits from the 

CConversion class and implements the Convert function. 

class CLinear : public CConversion{ 
public: 
 CLinear(); 
 virtual ~CLinear(); 
 virtual  void Convert( DATAPOINTS &db); 
 double m; 
 double b; 
 double max; 
 double min; 
 std::string PointName; 
 std::string RawName; 
}; 

 
 

The CLinear class contains the required scaling and offset variables m and b.  In 

addition, hard bounding variables min and max limit the magnitude of the value.  There 
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are two string variables defined that are names of points in the real time database.  The 

variable RawName is the source point and PointName is the output point of the linear 

transformation. The implementation of the Convert function for CLinear is shown below. 

 
void CLinear::Convert(DATAPOINTS &db){ 
 double temp = 0.0; 
 
 temp = m*db[RawName] +b; 
 if (temp>max) {db[PointName] = max;} 
 else if (temp < min) {db[PointName] = min;} 
 else {db[PointName] = temp;}  
} 

 

A.2.2 CScratchPad 

 The CScratchPad conversion class does not perform any mathematical 

conversion.  It was created to allow a point to exist that could be used to control a portion 

of the script.  Typically this would be the script engine or a driver for a gas analyzer.  An 

example of a scratch pad point would be the coefficients of a PID loop.  There is no 

calculation associated with these points; they are simply entered by the user to be used by 

the PID calculations.  The definition of the class is shown below which has only a point 

name variable added to the base CConversion class. 

class CScratchPad: public CConversion{ 
public: 
 CScratchPad(); 
 virtual ~CScratchPad(); 
  
 virtual  void Convert( DATAPOINTS &db); 
 std::string PointName; 
  
}; 

 
 

The implementation of the convert function is a simple copy of the point value to 

itself, as shown in the code below.  This is done to ensure that the point is created within 
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the std::map.  When an index is requested from a std::map that does not exist, the default 

behaviour is to create a new object in the container. 

 
void CScratchPad::Convert(DATAPOINTS &db){ 
 db[PointName] = db[PointName]; 
} 

 

A.2.3 CInterpolate 

 CInterpolate is a class that performs an interpolated lookup conversion.  The use 

of a lookup table has many applications, but primarily as a calibration table for sensors.  

For example, if a pressure sensor with a voltage output is calibrated at ten unique points 

over its operating range, a table would be created that has ten voltage values each 

associated with a unique pressure value, in engineering units such as psi.  In the 

definition of the CInterpolate class there is the addition of the interpolation table, 

coincidentally named table.  This table is a std::vector of CDoublePair objects which is a 

simple structure shown below.  

class CInterpolate : public CConversion{ 
public: 
 CInterpolate(); 
 virtual ~CInterpolate(); 
 virtual  void Convert( DATAPOINTS &db); 
 std::vector<CDoublePair*> table; 
 std::string PointName; 
 std::string RawName; 
 double max; 
 double min; 
}; 
 
struct CDoublePair{ 
 double Raw; 
 double EUUnits; 
}; 

 
 
 

The implementation of the convert function uses the RawName variable, as the 

source point, to lookup in the interpolation table.  When a value is found that exceeds the 
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source point, the lookup index is recorded and the actual interpolation is performed.  

Interpolation is not performed beyond the boundaries of the table.  A saturation function 

is implemented that limits output values to include only values defined by the user in the 

table. 

void CInterpolate::Convert(DATAPOINTS &db) 
{ 
 unsigned int i=0;   

double temp=0.0; 
 double sum=0.0; 
 for( i=0;i<table.size();i++) 
 { 
  if (table[i]->Raw >= db[RawName]) break; 
 } 
 
 if(i==0) temp= table[i]->EUUnits; 
 else if(i== table.size() )  temp= table[table.size() -1]->EUUnits; 
 else  temp= table[i-1]->EUUnits +  

((db[RawName] - table[i-1]->Raw)/(table[i]->Raw - table[i-1]->Raw)) 
* (table[i]->EUUnits - table[i-1]->EUUnits); 

  
 if (temp>max) {db[PointName]= max;} 
 else if (temp < min) {db[PointName]=min;} 
 else {db[PointName]=temp;} 
} 
 

A.2.4 CFormula 

 The CFormula conversion class is the most flexible and powerful of all the 

conversion classes.  The primary purpose of the class is to perform evaluation of 

mathematical equations.  This is a very valuable feature, since it will allow users to enter 

a formula in a standard algebraic format.  For example to calculate observed brake 

horsepower, the equation would be OBhp= ( EngSpeed *  Torque ) / 5252.  EngSpeed 

and Torque are points that are calculated from another point conversion object.  This 

functionality is made possible through the use of the open source muParser project [19].  

muParser is a mathematics parser engine that performs  parsing and evaluation of 

complex algebraic equations.  The CFormula class is shown below which contains a 

mu::Parser class named parser. 
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class CFormula : public CConversion   
{ 
public: 
 CFormula(); 
 virtual ~CFormula(); 
 virtual  void Convert( DATAPOINTS &db); 
 virtual void Init(); 
 
    mu::Parser parser; 
     std::string PointFormula;  
     std::string Message; 
     std::string Name; 
     std::string PointName; 
     std::string MonitorPoint; 
     int Type; 
     double max; 
     double min; 
     double MonitorValue; 
     int AlarmStored; 
     int error; 
}; 

 
 

The implementation of the Convert function for CFormula is simply a call to the 

muParser objects Eval function.  In order for this call to succeed, the muParser object 

needs to first be initialized.  A separate function is used to initialize the muParser object 

during the instantiation of the CFormula object.  This ensures that the equation is valid 

and also performs the one time parsing and conversion to byte code.  The initialization 

function requires two pieces of information.  First, the equation that is to be evaluated is 

required.  The second item is a callback function to a variable factory.  When muParser 

encounters an unknown variable during the parsing process, it will execute the callback 

function.  This is implemented in a function named AddVariable.  AddVariable simply 

returns a pointer to the requested point in the std::map.   
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void CFormula::Init(){ 
 error=0; 
 try 
 { 
  parser.SetVarFactory(AddVariable,&parser); 
  parser.SetExpr(PointFormula); 
  parser.Eval(); 
 } 
 catch(Parser::exception_type &e) 
 { 
  error=1; 

std::cout  << "Equation Parser error for point or alarm: " << 
PointName << e.GetMsg() << std::endl; 

 } 
} 
 
void CFormula::Convert(DATAPOINTS &db){ 
 try 
 {  
  if(error ==0){parser.Eval();} 
   
  if (db[PointName]>max) {db[PointName]= max;} 
  else if (db[PointName] < min) {db[PointName]=min;}  
  
 } 
 catch(Parser::exception_type &e) 
 { 

std::cout  << "Equation error for point or alarm: " << 
PointName << e.GetMsg() << std::endl; 

 } 
} 
 
double *AddVariable(const char_type *a_szName, void *a_pUserData) 
{ 
   return(&dataPoints[a_szName]); 
} 

A.3 CConversion Container 

 In the real time database, each of the CConversion objects is loaded into a 

std::vector container.  The std::vector container is basically an array that has the ability to 

dynamically change size at runtime.  It is not a sorted container, so the order in which 

objects are inserted is the same order in which they are traversed in a loop.  This is 

important since it allows the definition of priority.  If point “xyz” has a dependence upon 

a point “abc”, then the point “abc” should be calculated before “xyz”.  This implies that 
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“abc” would be inserted into the vector before “xyz”.  In the current application, the 

priority or order of operations is defined by the user, using a numeric value.  Many points 

could have the same priority.  The current priority scheme uses numbers such as 10, 20, 

30, 40 etc.  The first points to be evaluated are given the highest priority which is number 

10.  Work is currently being done to automatically order the objects based on knowledge 

of their dependencies. 

 The choice to hold the CConversion objects in a separate container from the data 

values was intentional, to allow point objects to be updated dynamically at runtime.  

Since the point values themselves are stored in a separate container, they will not be 

invalidated if a CConversion object is deleted from memory.  This is important since the 

script object will be holding pointers to the points in memory.  The script engine has no 

knowledge of the CConversion objects.  It simply knows of the output points stored in the 

std::map.  This functionality is important, since it would be tedious to require the 

application to shutdown and restart when modifying parameters of the CConversion 

objects. 

A.4 Retentive Points 

 Some points should be able to maintain value after shutting down and restarting 

the real time database.  To implement this functionality, a property named retentive is 

assigned to each point.  A point that has its retentive property set, will have its value 

updated in a SQLite database every ten seconds, as well as during a shutdown of the 

application.  When the application is restarted, the last value written to the database will 

be the initial value for that point.  This is important for a number of different reasons.  

One would be to maintain calibration values such as the PID coefficients for a control 
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loop.  Another would be to store the state variables of a current running test, such as the 

step, step time, or cycles completed. 

A.5 Point Editor 

The discussion so far has been around the real time implementation aspect of 

points.  A GUI application was created to enter the definition of each point.  This dialog 

manages a table, named points, within a SQLite database.  The basic dialog layout can be 

seen in Figure A.1.  The Conversion combo box, selects the point type from the Linear, 

Interpolation, Equation, or ScratchPad types.  After selecting the point type, the 

appropriate controls are displayed for that type of point.  The current view shows the 

controls for a linear point.  Each point also contains a unit field to define the engineering 

units.    
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Figure A.1: Point Editor. 

As discussed earlier, a linear point requires three pieces of information to perform 

its conversion.  These are the input point, the scaling constant m, and the offset constant 

b.  This is shown in Figure A.2. 

 

Figure A.2: Linear Point Editor. 
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An interpolation point requires the input point as well as the name of a data table 

that stores the actual points for the interpolation calculation.  This is shown in Figure A.3.  

 

Figure A.3: Interpolation Point Editor. 

The edit button, shown in Figure A.3, is used to open the interpolation table editor 

shown in Figure A.4.  If the table does not already exist, it is automatically created.  The 

number of items in the table is not limited.  As a convenience, the value of the input point 

can be copied directly into the Raw value text box with the use of the button labelled 

“<<”.  The table in Figure A.4 contains two items. 

 

Figure A.4: Interpolation Table Editor. 
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The equation point type requires a valid algebraic expression to be entered.  The 

syntax of the equation must be formatted to the specifications defined in the muParser 

manual.  Any other point that is defined can be used in the equation.  This is seen in 

Figure A.5. 

 

Figure A.5: Equation Point Editor. 

A.6 Low Level Points 

 The real time application uses the term point to refer to a single measured or 

calculated value.  The lowest level points are normally hardware I/O points.  Rather than 

give the ability to randomly name these low level points, a structured naming convention 

was designed.  These low level point names are then available to be used in any other 

point calculations.  Fixing the low level point names makes it easier to identify the exact 

origin of a measurement value. 

The prefix for each of the low level points uses the short form name of the 

hardware device used to make the measurement.  Table A.1 contains the short form 

names. 

 

 

 

 



 

93 

 

Table A.1: Hardware Short Form Names. 

Device Short Form Name 

PowerDNA PDNA 

Sensoray IOM 

National Instruments NI 

  

The prefix is followed by a number which indicates the slot or port number that 

the data acquisition device is installed in.  For the PDNA devices, these are slot numbers.  

For the Sensoray boards, these are port numbers.  There is no number associated with the 

National Instruments card since there is only one card being used. 

 The device number is followed by a single letter short form indicating the type of 

measurement that was performed.  Table A.2 lists the short forms. 

Table A.2: Measurement Type Short Form Names. 

Measurement Type Short Form 

Analog A 

Digital D 

Frequency F 

 

 The measurement type is followed by the directional short form for the 

measurement.  These are listed in Table A.3. 
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Table A.3: I/O Type Short Form Names. 

Direction Short Form 

Input I 

Output O 

 

 Finally a channel number is assigned to the point, based on which physical 

channel is being referred to.  The channel numbers start at zero and increment by one to 

the highest available channel.   

An example of a hardware point name would be PDNA1AI06.  From the point 

name it is easy to identify that this is an analog input, connected to the PowerDNA cube 

slot 1, channel 6.  There is no flexibility in this naming convention.  This is simply a case 

of structure overriding freedom.  
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APPENDIX B: ALARMS 

 The objective of engine testing is to perform a requested test sequence while 

acquiring data that leads to a result.  The engines being tested are often prototypes that 

are either very expensive or are assembled with preproduction parts.  The test procedure 

will contain a number of alarm conditions that should be monitored during the execution 

of the test.  The alarm conditions will generally be given as a limit on a parameter such as 

engine coolant temperature or oil temperature.  If one of the alarm limits were exceeded, 

it would expose the test engine to an unsafe condition.  

 The ability to create complex alarm conditions has been added to the engine test 

control system.  The design of the system is such that any alarm created will return a true 

or false condition.  If a true condition is returned as the result of the alarm computation, 

the parameter monitored would have exceeded its acceptable limits.   

Three categories of Alarms have been created.  The Alarm Only category is 

designed for minor fault conditions that should be alerted to the engine technicians.  A 

more serious fault would fall into the Coast Shutdown category.  This is an indication that 

a fault has occurred, but there is no suspected failure of the engine.  A possible action 

would be to bring the engine to an idle condition.  The highest priority alarm is the 

Emergency Shutdown category.  A fault in this category would mean a serious condition 

exists that requires immediate attention.  The engine would be brought to a complete stop 

with all electrical power and fuel source removed. 

An alarm, as defined, is basically a comparison between a measured value and a 

constant.  The constant being the threshold, that if exceeded, would cause a fault 

condition.  This turns out to be a special case type of equation point.  One of the more 
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powerful features of the muParser mathematical parser is the built in ability to perform an 

“if” statement.  The actual implementation of the “if” statement within muParser is an “if 

… then …else… ”.  The format of the muParser “if” statement is shown below.  When 

the logical expression is evaluated, value will be assigned trueResult if the expression is 

true, otherwise falseResult will be assigned to value. 

                                                     

B.1 Alarm Example 

As an example, a test requester may have a condition defined that restricts engine 

coolant temperature from exceeding 225 degrees Fahrenheit. This would be implemented 

in muParser as shown below.  An alarm calculation, as previously defined, should return 

a 1 or a 0.  These are the two result values used in the “if” statement.  The variables 

CoolantOutTemp and a_CoolantOutTempHigh are points in the real time database.  The 

point CoolantOutTemp would be created in the point editor.  This is the measured value 

of coolant temperature.  The point a_CoolantOutTempHigh is defined from within the 

alarm editor.  This represents the result of the comparison between coolant temperature 

and the temperature limit.  It will contain a value of 1 if the coolant temperature is greater 

than 225 degrees Fahrenheit or 0 if it is below.  A standard naming convention has been 

implemented where all alarm points have a prefix of “a_”.  This allows them to be easily 

differentiated from other points. 

                                                   

B.2 Alarm Editor 

 The alarm editor shown in Figure B.1 is the user interface designed to allow easy 

data entry of the alarms into the SQLite database.  The current displayed alarm, in Figure 
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B.1, is for the engine coolant out temperature as discussed above.  Creating a new alarm 

requires a few pieces of information.  The “Name” field is the name of the alarm.  This 

name is used to create a new point in the real time database that gets assigned the output 

value of the logical comparison.  “Monitor” is the name of a point whose current value is 

stored when the alarm is triggered.  As discussed above, the “Formula” field contains the 

equation for the alarm.  An additional “Message” field contains a text message that 

explains the reason for the fault.  Finally, the “Type” field sets the category of the alarm 

to Alarm Only, Coast Shutdown, or Emergency Shutdown.  An alarm can be set inactive 

by simply setting both the true and false conditions to 0.  Any alarm that has been 

disabled is displayed with a red foreground color. 

 

Figure B.1: Alarm Editor. 

B.3 Alarm Monitor 

 The alarm monitor shown in Figure B.2 is a dialog window that allows the user to 

identify active alarms.  The window displays the list of active alarms that were received 

from the real time control application.  This transfer of alarms from the real time control 
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application to the Windows computer is done over Ethernet and is covered in Appendix F 

which discusses the communication protocol. 

The list of active alarms is internally maintained in the Windows application.  The 

time the alarm was first active, as well as the last time the alarm was active, are also 

displayed.  This is useful for glitch alarms, as well as to identify the order in which 

alarms were triggered.  Each alarm listed contains the name of the triggered alarm, as 

well as the value of the point requested to be monitored.  If an item is selected from the 

list, a user friendly message is displayed.  The equation text is also displayed as a 

reference. 

 

Figure B.2: Alarm Viewer. 

B.4 Implementation 

 Internally, every alarm point is associated with a point of the type CFormula.  

Below we can see that the class, CAlarms, has a vector of pointers of type CFormula, 

named alarms.  Each of these items represents one alarm point. 

class CAlarms{ 
public: 
 CAlarms(); 
 virtual ~CAlarms(); 
 virtual void Init(); 
     virtual void UpdatePoints( DATAPOINTS &db); 
     virtual std::string CheckAlarms(DATAPOINTS &db); 
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private: 
 std::vector<CFormula*> alarms;  
}; 
 

 The Init method is used to retrieve each of the defined alarms from the SQLite 

database.  The full details of this are not discussed here.  More information can be found 

in Appendix G which discusses SQLite.  The UpdatePoints method traverses the alarms 

vector and calls the Convert method on each of the CFormula objects.  This executes the 

logical expression that was defined for each alarm.  Lastly the CheckAlarms method, 

shown below, is responsible for inspecting each of the alarm points for a fault condition.  

The returned value from this method is a string containing the list of active alarms and 

the values of the monitored point.  

std::string CAlarms::CheckAlarms( DATAPOINTS &db){ 
 std::string names; 
 std::vector<CFormula*>::iterator it; 
 double currentValue=0.0; 
 db["AlarmActive"]=0.0; 
 db["ShutdownActive"]=0.0; 
 db["EmergencyActive"]=0.0; 
  
 for (it=alarms.begin(); it < alarms.end(); it++) 
 { 
  char buffer[25]={0,}; 
  int size=0; 
  if ( db[(*it)->Name] == 1) 
  { 
    names+= (*it)->Name; 
    names+= "="; 
     
    if ((*it)->AlarmStored==0) 
    { 
     (*it)->AlarmStored=1; 
     currentValue = db[ (*it)->MonitorPoint ]; 
     (*it)->MonitorValue = currentValue; 
    } 
    sprintf(buffer,"%f", (*it)->MonitorValue); 
    buffer[size-1]=0; 
    names+= buffer; 
    names+=","; 
    if ((*it)->Type ==0) db["AlarmActive"]=1.0; 
    if ((*it)->Type ==1) db["ShutdownActive"]=1.0; 
    if ((*it)->Type ==2) db["EmergencyActive"]=1.0; 
  } 
  else 
  { 
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   (*it)->AlarmStored=0;  
  } 
 } 
  
 return names; 
 } 
 

 The CheckAlarms method is also responsible for assigning the value of each 

alarm category point.  If an Alarm Only fault is found, the point AlarmActive will have a 

value of 1 otherwise it will be 0.  The Coast Shutdown alarm condition is stored in the 

point ShutdownActive.  Finally if any alarm configured in the Emergency Shutdown 

category is triggered, the point EmergencyActive will be 1. 
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APPENDIX C: PARAMETER MONITORING 

 While a test is running, it is important to ensure that the engine being tested is 

operating within an envelope of acceptable performance.  Most engine test systems 

provide some form of alarm condition monitoring that compares a measured variable to a 

single defined value.  This is usually accomplished in the form of a less than or greater 

than comparison.  For example, there may be an alarm condition set on engine coolant 

temperature exceeding a preset temperature value.  These types of fault monitoring are 

necessary and quite easy to configure.  This method of fault detection would be global in 

nature and independent of the engine‟s current operating set points. 

Some fault conditions are not easily detected by these global single condition 

comparisons.  An engine may experience a drop in torque due to any number of 

conditions.  The deviation in torque value could be less than ten percent and would more 

than likely go unnoticed, even if a trained technician was monitoring a test.  Durability 

tests are run twenty four hours a day and are typically not monitored continuously by an 

engine technician.   

An engine durability test is normally preceded by a break in test and a power test.  

The break in test is typically not rigorous.  As the name indicates, it is designed to slowly 

break in mechanical components of the engine.  The power test is an engine performance 

test to validate the engine‟s output power against a specification.  The power test will 

ramp the engine speed, in increments of hundreds to thousands of rpm, while holding the 

throttle position at WOT.  There are tolerances on each of the specifications and each 

engine will have slightly different characteristics.  One of these specifications is the 
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torque versus speed.  An example of a torque versus speed curve from a power test is 

shown below in Figure C.1.   

 

Figure C.1: Torque vs. Speed.  

This curve shows that the output torque of an engine is a function of speed with 

the throttle at WOT.  After the break in and power tests have completed, the actual 

durability test will begin.  It is desirable to ensure that the torque measurements from the 

power test are maintained during the durability test.   

C.1 Methodology 

Accomplishing this task with single point monitoring of torque is not possible.  A 

simple modification to the strategy will be effective.  The statement of comparison 

“torque versus speed” is actually the solution to the problem.  By creating a lookup or 

interpolation table, that has speed as the index and torque as the output, the expected 

torque at any speed can be obtained [36].  This torque value can be compared to the 
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current measured torque during the durability test, resulting in a deviation value.  This 

deviation would then be compared to the torque specification deviation allowance.  

The interpolation point type has already been implemented.  This provides the 

required lookup table functionality.  The points for the lookup table are simply copied 

from the power test torque versus speed curve, as shown below in Table C.1 

Table C.1: Torque vs. Speed. 

Engine Speed (rpm) Torque (lb ft) 

1000 308 

1500 342 

2000 359 

2500 373 

3000 377 

3500 404 

4000 413 

4250 417 

4500 415 

5000 393 

5500 378 

6000 321 
 

 

C.2 Implementation 

 Incorporating online parameter monitoring within the test system requires a 

number of small code blocks to be executed at the proper time.  The actual 

implementation of torque monitoring will be discussed.  The same methodology could be 

used to monitor any parameter online.   

 A decision is required of when parameter monitoring should be enabled during a 

test.  In the case of torque monitoring, the actual torque table is only valid when the 

throttle is wide open.  This was the position of the throttle when torque was measured in 
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the power test.  If the throttle opening is fifty percent, it would be unlikely that the engine 

would produced the same torque as it did at WOT.  Therefore during the design of the 

durability test, each step running with the throttle wide open should monitor for torque 

deviations.   

 The first step is to create the points that are required for monitoring the expected 

torque output.  There are two levels of deviation being monitored.  One level is simply a 

warning, and the second is a shutdown.  This requires a total of four points.  The expected 

torque trending point is named ParamTorqueCurve and is defined as an interpolated 

point.  The setup of this point is shown below in Figures C.2 and C.3.   

 

Figure C.2: Parameter Monitoring Point. 
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Figure C.3: Parameter Monitoring Table. 

Another point, named Param_Torque_Limit, is created as a scratch pad point that 

stores the result of the torque monitoring calculations.  The other two points, 

TorqueWarn and TorqueShutdown, are equation points that are configured as constants 

and hold the amount of deviation allowed.  These values are typically 0.95 and 0.90, 

respectively.  This corresponds to an allowed deviation of 5 percent for a warning or 10 

percent for a shutdown. 

 These points are used in an script function named ParMon.  This function is 

normally defined within the global functions of a test, and can be called at any step of a 

test.  The ParMon function contains the required statements for monitoring each 

parameter.  The torque monitoring example is shown below, along with the associated 

function MonitorLowLow.  There are also many functions, like MonitorHigh and 

MonitorLow, which monitor only a single level of deviation.  Other functions could be 

implemented directly within the script that would allow any form of monitoring required 

for a specific application. 
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void Parmon(){ 

 
 Param_Torque_Limit = MonitorLowLow(Torque, 

ParamTorqueCurve * TorqueWarn, 
      ParamTorqueCurve * 
TorqueShutDown); 
 //Insert additional evaluations here  
} 

 

double MonitorLowLow(double paramValue, double Warning, double Shutdown){    
    
   if(paramValue < Shutdown) 
   { 
     return 2; 
   } 
     
   if(paramValue < Warning) 
   { 
     return 1; 
   }   
    
   return 0;   //** OKAY 
} 

 

 When the ParMon function call is complete, the point Param_Torque_Limit will 

hold a value of 0 if the torque is within the specification.  It will hold a value of 2 if the 

deviation is more than 10 percent or a value of 1 if the deviation is more than 5 percent.  

This can be used within the alarm configuration to setup the associated warning and 

shutdown alarms. 

 An additional function was created to help with the alarm configuration, and to 

ensure all conditions are met for parameter monitoring to be enabled.  The 

SetupParamMon function shown below, checks that the throttle is wide open for ten 

seconds and the engine has ramped to its speed setpoint.  The end result of the function is 

to set the point ParamMonitorEnable to 1 or 0 to enable or disable parameter monitoring, 

respectively.  A more complex function is actually implemented that configures many 

different forms of parameter monitoring.  The SetupParamMon function is called outside 
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of the test, since it is common for all tests.  It is called from the Always function within 

the control.as script file. 

void SetupParmMon(){ 
        //Check for WOT Stabilized 
  if( Throttle < 100 || DynoSpeed != DynoSpeedSp) ThrottleWOTcnt                              
=0; 
   
  if (Throttle == 100.0 ) ThrottleWOTcnt += 1; 
   
  if (ThrottleWOTcnt > 100) WOTStable = 1.0;  //At WOT for 10 
seconds 
  else{ 
   WOTStable = 0.0; 
  } 
     

if (ParamMonitorDisable == 0 && IgnitionPwr == 1 && RUN ==1 &&  
HOLD == 0  && WOTStable ==1  &&  DynoSpeed == DynoSpeedSp){ 

   ParamMonitorEnable =1; 
} 

  else{ 
   ParamMonitorEnable =0; 
  }    
} 
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APPENDIX D: SCRIPTING 

For this project, the decision was made to use an open source scripting language 

embedded in the core of the control system software.  This decision was based on the 

successful use of scripts in the gaming industry which must meet many of the same 

performance characteristics needed for engine testing.  Some of the key things considered 

in choosing a scripting language were the ease of integration, syntax similar to the C and 

C++ languages, cross platform capability, and proven use in other applications.  The 

language should be similar to C and C++, since this would allow any of the scripts to be 

compiled into the core, if the performance was poor.  The possibility of dynamically 

compiling the code into a shared library or dll and loading it at runtime was also an 

option that was explored. 

 The scripting language that was chosen for this project was AngelScript.  

AngelScript has a syntax that is based on C and C++.  Unlike most scripting languages, it 

has strict variable typing and does not include support for a variant data type.  It is cross 

platform compatible with many different computer architectures and compilers.  Most of 

the applications to date have been in commercial and indie games.  The zlib license used 

for the AngelScript library is very liberal, allowing use in commercial applications.  The 

only request is that you give recognition to the author, Andreas Jönsson [17].  

D.1 Script Engine Setup 

 AngelScript was embedded and extended within the core of the engine testing 

application.  All of the user configurable logic is executed using the scripting language.  

The core of the application performs all of the input and output, point manipulation, 

alarm monitoring, communication and data logging.  As shown in Figure D.1 below, 
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there are three different scripts executed under the control of the core application: 

control.as, user.as and script.as.  All of the scripts have an extension of .as which is the 

default for AngelScript files.   

 

Figure D.1: Script Files. 

AngelScript was extended to expose functions from the core application that the 

user could call from a script.  Adding a function that can be called from within a script is 

done by registering the function with the scripting engine.  For example, a function that 

returns the current date was registered with the script engine using the code below.  The 

full details of the proper syntax can be found in the AngelScript manual [17].   

engine->RegisterGlobalFunction("string@ Date()", 

       asFUNCTION(GetDate), 

       asCALL_CDECL); 

The Date function takes no parameters and returns a reference to a string.  This 

function could be used in a script as shown below. 

string currDate = Date(); 

An example of some of the functions that were added and a description of the 

action they perform is shown in Table D.1. 

 

Core 
Application 

control.as 

user.as 

script.as 
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Table D.1: Custom Script Functions. 

Function Description 

SetSpeed(double rpm, double rampRate) Change the engine speed setpoint and ramp rate 

SetLoad( double load, double rampRate, 

double percent, double mode) 

Change the engine torque setpoint and control 

mode to throttle position or torque control 

ASAP3UpdateParam(string &in, double 

value) 

Update a calibration parameter in the engine 

controller using ASAP3 

Print(string &in) Send a message to the test manager for display 

Error(string &in) Send a message to the error message window 

InitDataLog(string &in, string &in) Create a new datalog on the real time controller 

WinDataLog(string &in, string &in) Write to a Windows datalog 

string@ Date() Return the current date 

string@ Time() Return the current time 

 

In addition to the functions added, every point in the real time database is directly 

accessible to the script.  Each of the points in the real time database is registered as a 

global point in each of the script engines.  This is done at runtime and does not show up 

in the actual script file.  The actual point registration is done using the code below.  The 

list of points in the real time database is traversed and registered in the script engine, one 

at a time with a double data type.  This means that any point in the real time database can 

be referred to using the exact name defined in the point editor. When registering each 

point, it should be noted that a pointer is actually registered.  This is the reason why the 

values of each point are separated from the calculation objects in the real time database.  
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If a variable from the calculation object was registered and subsequently deleted from 

memory because of a dynamic update, the script would hold a dangling pointer. 

void CRTScript::AddVariables(DATAPOINTS &db) 
{ 
  std::string myPoint; 
  DATAPOINTS::iterator it; 
  
  for (it=db.begin(); it != db.end(); it++) 
  { 
   myPoint.erase(); 
   myPoint = "double  "; 
   myPoint += it->first; 
   engine->RegisterGlobalProperty(myPoint.c_str(),  

      &db[ it->first]) ; 
  } 
} 

 

D.2 Script Files 

The control.as script file is responsible for all low level control functionality, such 

as PID loops, timers, engine starter control, test cell functions and condition monitoring.  

Changes to this file do not take effect unless the application is shutdown and restarted.  

Due to the critical nature of the functions controlled by this script, it was decided not to 

allow it to be reloaded at runtime.  There are two entry points that the core application 

calls continuously in this script.  The function Always is called at a rate of 10Hz and the 

function HighSpeed is called at a rate of 100Hz.  The user can add any required code to 

these functions that needs to be executed at these rates. 

From Appendix B on Alarms, it was stated that the user could configure the 

actions that need to be performed when an alarm is triggered.  These actions are stored in 

the control.as script file as well, and are called only when an alarm is triggered.  These 

functions are listed in Table D.2  
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Table D.2: Alarm Function Definitions.  

Alarm Type Trigger Point Function Called 

Alarm Only AlarmActive AlarmGeneral 

Coast Shutdown ShutdownActive AlarmCoast 

Emergency Shutdown EmergencyActive AlarmShutdown 

 

The Always function contains the base control strategy for the test cell.  A 

reduced example of this function is shown below.  The function starts with a check to see 

if the script is running for the first time, by inspecting the value of initScript.  If this is the 

first run it performs the Initialize function, otherwise it does nothing.  Subsequently, a 

number of functions are called which perform monitoring and control.  Finally, the alarm 

functions are called only if an alarm has been triggered. 

void Always() 
{ 
 if (initScript < 1){ 
  initScript = 1; 
  Initialize(); 
 } 
                
     ExhaustCoolingWater(); 
 UpdateTimers();   
 SetupParmMon();  
 StackLights(); 
 TempCtrl1PID(); 
 TempCtrl2PID(); 
 TempCtrl3PID(); 
  
 if(      EmergencyActive == 1)  { AlarmEmergency();}  
 else if( ShutdownActive  == 1)  { AlarmCoast();}  
 else if( AlarmActive     == 1 ) { AlarmGeneral();}   
} 
 

The user.as file is a general purpose script.  It was created to allow users to add 

any additional functionality required to implement a test procedure.  The script is 

completely dynamic and can be reloaded on the fly at runtime.  This is useful for testing 
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algorithms since the core application does not need to be restarted.  The entry point of 

this script is a function, named User, which is called at a rate of 10Hz by the core 

application. 

The actual test procedure to be executed is stored in the script.as file.  Since a test 

procedure may be modified and need to be reloaded, this script file can be dynamically 

loaded at runtime.  The script.as file contains one function for each step of a test sequence 

defined by the user.  The naming convention developed for the functions is to use the step 

number prefixed with the word Step.  The function name for step number 1 would be 

Step1.  This file also contains any global functions and variables defined in the test 

procedure.  This is described in detail in the code generation and test builder section 

found in Appendix E. 

D.3 Calling Script Functions 

 Earlier it was stated that functions such as Always, HighSpeed, and User in the 

script files were called from the core application at a specified frequency.  In order to call 

these functions, they must exist in the script file.  To call a function that is defined in the 

script, the address of the function must first be found using its signature.  As part of the 

initialization of the script engine for each script file, there is a script validation routine 

that was created to check for the existence of the critical functions.  If these functions do 

not exist, a fault is triggered and the application is shutdown.  The names of each of the 

required functions are loaded into a vector, named funcNames.  While traversing this 

vector in a loop, each function name is requested from the script engine using the method 

GetFunctionIDByDecl.  If the function signature exists in the script, a number greater 
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than or equal to 0 is returned.  The code to check for the existence of functions in the 

script is shown below. 

int CRTScript::CheckFunctions() 
{ 
 std::vector<std::string> funcNames; 
 std::vector<std::string>::iterator Iter; 
 std::string Name; 
  
 funcNames.push_back("void Always()"); 
 funcNames.push_back("void AlarmGeneral()"); 
 funcNames.push_back("void AlarmCoast()"); 
 funcNames.push_back("void AlarmEmergency()"); 
 funcNames.push_back("void HighSpeed()"); 
 
  
 for( Iter = funcNames.begin(); Iter != funcNames.end(); Iter++) 

{ 
  Name= *Iter; 

int funcId = engine->GetModule(0)->GetFunctionIdByDecl( 
Name.c_str()); 

   
  if( funcId < 0) 
  { 

std::cout << "Function " << *Iter  << " must be 
included in the control.as file." << std::endl;  

   ctx->Release(); 
   ctx = 0; 
   engine->Release(); 
   engine = 0; 
   return -1; 
  } 
 } 
  
 return 1; 
} 

 

 All of the functions in each script are also stored in a std::map, named functions, 

during the script initialization phase.  The code below shows how to populate the map. 

std::map<std::string, int> functions; 
 funcCount = engine->GetModule(0)->GetFunctionCount(); 
 for(int theCount =0 ; theCount < funcCount; theCount++) 
 { 
  int theFuncId = engine->GetModule(0)-
>GetFunctionIdByIndex(theCount); 
  functions[engine->GetModule(0)-> 

  GetFunctionDescriptorById(theFuncId)-> 
  GetName()] =  theFuncId; 

 } 
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 A couple of overloaded Run methods have been created that allow the core 

application to call a function defined in a script.  They are shown below, along with the 

supporting RunFunction method.  One method calls Run with a string parameter 

containing the name of the function that is defined in the script.  Another calls Run with 

an integer step number which is used to create the string name of the function to execute 

in the script.  This is used later during the execution of a test sequence. 

void CRTScript::Run(int Number) 
{ 
 char stepNum[128]={0,}; 
 sprintf(stepNum,"Step%d",Number); 
 int functionID = mySteps[stepNum]; 
 RunFunction(functionID); 
} 

 
void CRTScript::Run(char* Name) 
{ 
 int functionID = mySteps[Name]; 
       RunFunction(functionID); 
 
} 
 
void CRTScript::RunFunction(int fID) 
{ 
 r = ctx->Prepare(fID); 
 r = ctx->Execute(); 

} 

It should be noted that all of the error checking code has been removed for 

brevity.  The RunFunction shows an object, named ctx, being used to ultimately call the 

requested function.  The context stores the current state of all the variables and objects, as 

well as preparing the stack for parameters passed or returned to a script function. 

There have been some details left out about how the script engine itself is 

configured and used.  These details are wrapped into the CRTScript class that was 

created.  For a full explanation of what is required the reader should refer to the 

AngelScript manual [17].     
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APPENDIX E: CODE GENERATION AND TEST BUILDER 

Appendix D on scripting described what a script was and how they are used in the 

real time application.  It is possible for a user to code a script.as file from scratch that 

implements a test procedure.  This task would be easier if there was an editor that 

provided a basic template and syntax highlighting, for test entry.  This is the purpose of 

the test manager.  The test manager is a GUI application that provides an easy method to 

enter a test and create the required script.as file.  The tests are stored in a SQLite database 

and can be easily copied or imported from another database.  Figure E.1 shows the main 

dialog for the test manager.  This dialog is used to enter the basic identifying information 

for the test and the engine being tested.   

 

Figure E.1: Test Manager. 

A complete test can be created in the test editor without entering a single line of 

script code.  Much more complex tests can be created if the user adds custom script code.  
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Applications that perform the function of taking user input and outputting source code are 

called code generators.  Code generators are very popular for writing database 

applications.  This is where the basic idea for test manager was derived.  They perform 

the function of relieving the user from entering repetitive code.  This minimizes the 

chance of introducing errors.  

E.1 Sequence Editor 

In order to manage the database records, a few buttons such as New, Delete, 

Copy, etc were created (see Figure E.1).  The button labelled sequence opens the 

sequence editor shown in Figure E.2 below.  This is where each of the steps for the test is 

created. 

 

Figure E.2: Test Sequence Editor.  
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One of the difficult problems to solve with the sequence editor was determining 

how to allow the user to create a jump, without needing to manage the step numbers.  The 

difficultly arises with the insertion and deletion of steps.  The GUI allows the insertion or 

deletion of steps without restriction.  If only the raw step numbers were used, it would be 

left to the user to ensure that jumps were maintained when inserting and deleting steps.  

Internally, the real time application expects the step to be an integer number.  The 

solution was to create global variables in the script file for each step that contained a 

label.  This allows the use of the label name, instead of the step number to perform a 

jump.  Looking at the solution today it seems obvious, but at that time a number of days 

were spent resolving this single item.  

One of the problems when using other engine test software is the inability to 

execute code as part of a step.  Most of the test builders from other test software, refer to 

an “if” instruction as a step.  The basic idea being that each step is a logical, set point or 

flow control step.  Having full control of the design of this software, it was decided to 

make a step nothing more than a number.  Essentially, a test could be created that did 

nothing but go from step to step passing time.  This would never be the case, but it 

illustrates the fact that a step has no meaning unless the user defines actions. 

Using this approach provides the capability to add complex logical condition 

checking and flow control.  Looking at this from an eagle eye view, what was created is 

nothing more than a simple state machine.  By default, the state machine changes steps 

only when the current step time has expired.  If the user adds script to the step, they have 

the ability to perform any logical check and can change steps at will.  There is no 

predefined notion of what can or cannot be performed during a step.   



 

119 

 

There were still some common items that would be performed in most engine test 

sequences.  For example, speed and torque set points would be used in all tests.  These 

items are seen in the sequence builder displayed in Figure E.2.  The fields exist, but are 

completely optional.  If no data is entered into the fields, the code generator does not 

output any code.  If data is entered into the engine speed field, the code generator will 

output proper instructions to perform a speed set point modification.  The only required 

field is the time field which is the basis for the state machine.    

Adding these commonly used fields simplifies the creation of tests.  The fields 

were designed not to be type checked.  This allows for more complexity.  Logically, the 

engine speed should be a numeric value and this should be enforced in the GUI.  

However, doing so puts a restriction on the user to only enter numeric values.  The text 

entered is used by the code generator.  Therefore, the opportunity exists to write code in 

the RPM field as well.  This is a very powerful tool that can be used in many ways.  One 

simple idea is using an array, indexed by a counter, instead of the numeric value.  This 

allows a common test to be designed that takes an array of rpm setpoints as the input.  

The test could then be easily copied and the array modified for a different set of test 

requirements.  

E.2 Global Points 

To create an array, the global portion of the test editor is used.  The global 

variables editor is shown in Figure E.3 below.  This dialog has only two text boxes.  The 

user is free to enter any valid code in the text boxes.  In order to separate the global 

variables from the global functions, two text boxes were created.  In the dialog box, two 
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arrays are declared with 13 values in each.  The RPMArray contains the set points for 

engine speed.  The TorqueArray contains the set points for the load.   

 

Figure E.3: Script Global Variables. 

Since AngelScript has support for the basic set of data types from the C and C++ 

languages, any of these variable types can be used.  This includes support for a string data 

type.  Without the ability to create strings in the script, it would be difficult to argue that 

this project was a complete solution.  It should be noted that the variables declared and 

used in any part of a test are not known to the real time database.  The fact that the script 

has intimate knowledge of the real time database means that the point names cannot be 
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used as variable names in the script.  There are methods to allow this inspection and 

modification of script variables, but this has not yet been implemented. 

E.3 Global Functions 

 The global functions text box shown in Figure E.4, allows the entry of any valid 

script.  However, it was intended to create functions to assist the test.  No function 

defined will be called unless the user specifically makes a call from within a step.  This is 

the portion of the test manager where parameter monitoring was designed and 

implemented.  A number of functions were written to perform checks on parameters.  The 

user is responsible for calling these functions from the steps, if parameter monitoring is 

desired. 

 

Figure E.4: Script Global Functions. 



 

122 

 

E.4 Generating the Script 

 The basic concept of what the test manager‟s function in creating a test has been 

described.  The last item to be discussed is how the script.as file is actually created.  

Naturally, one would think that there was complex and confusing code responsible for 

creating the script.as file.  The truth is, the code generator does nothing more than 

concatenate strings and write them to the file script.as.   

 First, the test header information is read from the SQLite database and written at 

the top of the script.as file.  This provides descriptive information that can be used to 

identify which test was used when the script.as file was created.  This would look like the 

code below where we see valid comment sections used for the information.  

//Script for Test:ZA3726_SS_Aging_Cycle 
//Automatically Generated Date:31/05/2011 2:55:16 PM 
 
/* Description: 
 * 
 */ 
 
/* Comment: 
 * 
 */ 
 
/* Cell Name: 
 * EEP_3 
 */ 
 
/* Engine Type: 
 * Scorpion Diesel 
 */ 
 
/* Engine Displacement: 
 * 6.7 
 */ 

 

 Next, a series of variables are declared that represent any labels that were defined 

by the user.  There is a one to one correlation between the label value and the step 

number.  This is completely managed by the code generator.  This can be seen below. 

//Auto Generated Step Label Defines 
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//DO NOT EDIT 
int Documentation         = 1; 
int Test_Start            = 2; 
int Emissions_Cycle_Start = 3; 
int Block_Start           = 4; 
int Block_Step_Start      = 5; 
int Aging_Cycle_Step      = 6; 
int Aging_Cycle_Loop      = 7; 

 

 This is followed by the user defined global variables.  The code below shows an 

example, along with the descriptive warnings, that are generated.  Only one variable is 

displayed for brevity. 

//All variables declared here a global to the script. 
//They cannot be accessed from outside of the script. 
//Any variables that need to be global to the system need to be 
//    declared in the Point Editor. 
//Any function or Step can access them. 
//Any variable declared locally in a step or function does not 
//  maintain its value from call to call. 
 
int PTHRFL = 0;              // Part Throttle Flag 

 

 Logically, the user defined global functions are inserted next.  The code below 

displays the Parmon function discussed in Appendix C on parameter monitoring.  Again, 

many more functions would exist. 

 ///////////////////////////////////////////////////////// 
//This function is used for Parmon calculations.  Put all 
//functions that you want to execute for every Parmon() call below 
//Author:  Chris Kelly 
//Date:  
//Rev:     1.0 
///////////////////////////////////////////////////////// 
void Parmon() 
{ 
   Param_Torque_Limit = MonitorLowLow(); 
   Param_Spark_Limit  = MonitorHighHigh(); 
   //Insert additional evaluations below 
} 

 

 The final item in the script.as file is each of the functions created from the steps of 

the test sequence.  All of the data and scripts that the user entered for each step are put 
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together in the form of a function.  One function is defined for each step. The name of the 

function is the word Step followed by the integer step number.  For example, the function 

for step 8 is shown in the code below.   

//Comment:Set Engine Rpm/Load and allow to stabilize 
void Step8()    //Regen_Set_RpmLoad 
{ 
   if (FirstScan == 1) 
   { 
      StepTime = 10.0; 
   } 
   StepLength = 10.0; 
   if ((FirstScan == 1) || (CONTINUETEST == 1)) 
   { 
      //SetSpeed( speed RPM, ramp RPM/s) 
      SetSpeed(Regen_Rpm[int (A_Block_Step)], 10.0); 
      //SetLoad(Torque Nm, Ramp s, Throttle Position, Mode 0=Load 
1=Throttle) 
      SetLoad(Regen_Torque[int (A_Block_Step)], 10.0, 0, 0); 
      CONTINUETEST = 0; 
   } 
   NO_TIME = 0; 
// ************************************************************** 
// ************************************************************** 
// 
// This step is used prior to starting Regen to allow Rpm and Load to 
stabilize. 
// 
   if (FirstScan == 1) 
   { 
      Print("Starting Regen"); 
   } 
   NO_TIME = 1; // Set Variable to Turn Test Time OFF 
}   

 

The code generator has added some necessary logic.  The variable FirstScan is set 

during a transition from one step to another.  It contains a value of 1 for precisely one 

scan.  For the remainder of the step, it has value of 0.  This is used to perform any 

initialization that is required for the step.  The variable StepTime holds the current step 

time in seconds.  This value decrements until a value of zero is reached, which will cause 

a step transition.  StepLength contains the total time of the step in seconds.  When a test 

is paused, there is a chance that either the RPM or load set points will be changed by the 

user.  During restart, the variable CONTINUETEST will have a value of 1.  This 
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condition or a step transition will cause the RPM and  load set points to be reset to the 

value configured in the test.  This is performed using the functions SetSpeed and 

SetLoad.  These functions, as well as the Print function were discussed in Appendix D on 

scripting.  Finally, the variable NO_TIME allows a step to execute without the 

accumulated time being added to the test timer.  It appears odd to see the variable 

assigned a value twice in one function.  The assignment of the value 0 is done by the 

code generator as a precaution in the event that a user forgot to implement this.  

Assigning a value of 1 was done by the user.   

 Putting all of these pieces together would create a valid test that could be executed 

by the real time application.  The user can still create the script.as file manually.  

Conversely, the user could also extend the code generator concept to do more automatic 

code generation.  A Ford specific utility has been written that generates functions to 

automatically create a file formatted to a given specification.  
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APPENDIX F: ASCII COMMUNICATION PROTOCOL 

 When developing the control system, it was decided to separate the visual 

components and the control components onto two different computers.  These two 

computers need to communicate data and commands with each other for the system to 

work.  The most obvious choice for communication was selected, which is an Ethernet 

network.  This section will deal primarily with the communication link between the GUI 

application running on Windows and the console application running on the real time 

operating system QNX.   

F.1 Sockets 

The socket API was used to implement the communication link.  The socket API 

provides a library of functions to establish a connection, then send and receive data using 

the Ethernet hardware.  The socket API is available on most operating systems and 

supported by many programming languages.  When a socket is created, three pieces of 

information are required.  These are the IP address, the transport protocol, and a port 

number.  The two most popular transport protocols are TCP and UDP.   

The transmission control protocol (TCP) is very popular and used in many 

applications, especially internet based.  The protocol is connection based and streaming 

in nature.  Two computers must first negotiate a connection.  They are then able to stream 

data back and forth over the connection.  The data is guaranteed to be transferred and 

received in the same order it is sent.  This guarantee can sometimes introduce delays in 

data transfer.  Since the data is streamed, there is no starting or ending point identified in 

the stream.  The two applications must properly locate the beginning and ending of each 

data frame using a well designed protocol. 



 

127 

 

The user datagram protocol (UDP) is also very popular.  It is a message based 

protocol that does not include a guarantee of successful packet transmission.  Basically 

this means there is no error checking or hand shaking to ensure data was sent properly to 

the other computer.  It is equivalent to putting a letter in the mail.  A letter is first 

addressed to the desired recipient and then it is sent.  It is up to the receiver to tell the 

sender that the mail was received.  Sometimes, the sender is not even interested in 

knowing the mail arrived at its destination.  UDP is typically used where smaller amounts 

of data are transferred rapidly between two computers.  UDP is connectionless; so many 

different clients can use the same port to communicate. 

The port number that the applications will use for communication is simply an 

unsigned 16 bit integer value.  There are some reserved port numbers, such as 80 for 

HTTP, 21 for FTP and in general any number less than 1023.  There is also well known 

port numbers above 1023 that certain protocols use.  On a UNIX based system, the used 

port numbers are found in the /etc/services file.  The freely usable port numbers range in 

value from 49152 through 65535. 

In this thesis, the decision was made to use the UDP protocol.  This protocol is a 

much better fit for the way the applications send commands and receive data.  One of the 

useful things about the UDP protocol is the datagram concept.  This basically means that 

data is received the way it was sent, similar to the letter in the mail concept.  There is no 

need to frame the data.  If you send a message “Hello World”, it will be received by the 

other application as a single packet containing the message “Hello World”.  It should be 

noted that there is a restriction on the size of UDP packets.  This varies in range from 512 

bytes to 8192 bytes.  Testing is the best way to find this exact size.  There is a small 
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chance that some packets could be lost, but the chance is very low on a two computer 

network with a 3 foot patch cable.  In addition, the real time application was designed to 

run independently.  In the worst case scenario there will be lost data. 

The IP address, transport protocol and port numbers allow each application to 

open a socket and start transmitting and receiving data.  The difficult part is to decide the 

protocol for the messages being sent between the two computers.  Many different 

protocols exist.  Some of them are text based and some are binary.  Binary protocols can 

be more efficient to parse if the data is packed into a structure that is known to both 

applications.  The benefit of text based protocols is that they are easier to debug and can 

easily be used in a scripting language.  With a packet sniffer application, like Wireshark, 

it is very easy to see the contents of each packet being sent and received.  If the contents 

of the packet are plain text, it makes it much easier to find errors.  A text based protocol 

was chosen for this thesis. 

F.2 ASCII Protocol 

A very simple, text based protocol was designed using an integer number to 

identify commands.  The command is followed by the parameters needed to execute the 

instruction.  Each of the items is separated by a pipe “|” character.  The entire string is 

then appended with a carriage return and line feed.  The full list of commands that the 

real time application will respond to is shown in Table F.1.  For example, the command 

to update a point named Step to a value of 1 would be “3|Step|1\r\n”. 

 

 

 



 

129 

 

Table F.1: ASCII Communication Protocol. 

Command Number Description Parameters 

1 LISTVARS Get the full list of points from the 

real time database including the 

current value 

None 

2 SETTRANSVARS Not implemented None 

3 UPDATEVAR Sets the current value of a point Point Name, value 

4 ALARMTRIG Gets list of triggered alarms None 

5 UPDATEDB Copy the latest database None 

6 RELOADSCRIPT Reload the test script.as file None 

7 CHANGERPM Change the current RPM set point RPM, ramp rate 

8 CHANGELOAD Change the current load set point Value, ramp rate, Mode 

9 GETTEST Get the current test name None 

10 GETLOG Get the current data log name None 

11 SETLOG Create a new data log None 

12 RELOADUSER Reload the user.as file None 

13 GETDATALOGS Get a list of data log files None 

14 GETDATALOG Transfer a single data log to 

Windows 

None 

 

 The real time application has a thread that sits idle waiting for a new command.  

When a command is received, it is executed and a response is sent back to the sender if 

required.  Since this is based on UDP, the commands can come from a number of 

different sources.  This design is sometimes referred to as a master and slave 

configuration.  The real time application would be the slave in this case since it does 

nothing unless commanded.   
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 A small portion of the real time application code that implements the protocol is 

shown below.  Basically, a packet is received and broken into individual commands.  

Each command is then broken into its individual parameters and processed.  The 

command number is selected from a list of valid commands using a switch statement.  

The update variable and update database commands are the only ones shown. 

recvMsgSize = recvfrom(sock, echoBuffer, ECHOMAX, 0, 
                 (struct sockaddr *) &echoClntAddr, &cliAddrLen);   
 StringTokenizer strtok = StringTokenizer(tempStr,"\r\n");    

int cnt = strtok.countTokens(); 
    

for(int i = 0; i < cnt; i++) 
 { 
  int cmdRequest; 
  std::string tempStr =""; 
  std::string retMess=""; 
  tempStr=strtok.nextToken() ; 
  StringTokenizer strmes = StringTokenizer(tempStr,"|"); 
  cmdRequest = strmes.nextIntToken(); 
      

switch (cmdRequest) 
{ 

case UPDATEVAR: 
    
    char buffer[25]={0,}; 
    int size=0; 
    DATAPOINTS::iterator it; 
    std::string varName = strmes.nextToken(); 
    double varValue = strmes.nextFloatToken(); 
    it = dataPoints.find(varName); 
    if ( it != dataPoints.end()) 
    { 
     this->lock(); 
      dataPoints[varName]=varValue; 
      dataPoints["xVars"] += 1.0; 
     this->unlock(); 
     size = sprintf(buffer,"%f",varValue); 
     retMess = "Update Variable: " + varName; 
     retMess += " = "; 
     retMess += buffer; 
    } 
    else 
    { 

retMess = "Update Variable not found : " + 
varName; 

    } 
    break;       
             
   case UPDATEDB: 
    time_t rawtime; 
    time( &rawtime); 
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    system("cp ./katerina.db3 ./katerina.db3.old"); 
    system("cp /root/test/katerina.db3 ./katerina.db3"); 
                
    retMess = "Database update completed."; 
    std::cout << ctime(&rawtime)  << retMess << std::endl; 
    break; 

} 

 

This is a very simple design that can be compared to event based GUI 

applications.  The GUI application sits idle waiting for an event, such as a button click.  

When the button is clicked, the application receives the event and performs the button 

click action.  In the case of this engine control system, the button click from the GUI is 

received and simply retransmitted through a socket to the real time application.  The real 

time application then performs the requested action. 

The design also required the ability for the real time application to transmit data 

asynchronously to the GUI application.  This is required for the implementation of alarm 

notification and data logging.  The design and processing of the protocol is very similar.  

The largest difference being that the commands are actually string based, rather than 

integer numbers. 
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APPENDIX G: SQLITE 

Before explaining the details of how SQLite was used in this project, it should be 

noted that this approach is not how a database would typically be used.  The concepts are 

the same and could be used as a starting point in understanding the basics of databases.  

However, the referential design of the database has been completely ignored in this 

application.  The intended application of SQLite was as a file replacement.  This is one of 

the recommended usages of SQLite [18]. 

SQLite is a tiny embeddable library that can be used in an application to provide 

similar features to those available in a network based database server.  It supports the 

same basic INSERT, UPDATE, SELECT, and DELETE commands.  These commands 

are part of a language known as SQL.  SQLite has tables and each of the tables have 

fields.  Each database is stored in a single file.  The database file and the library are both 

cross platform compatible.  SQLite is very fast and said to be the most widely deployed 

database in the world [14].  Best of all, it is in the public domain and free to use.  

 One of the most beneficial properties of SQLite, is that it is ACID compliant [18].  

Without going into a lot of detail, this means that database writes within a transaction will 

normally not corrupt the database even in the event of a system crash.  This is extremely 

important considering the amount of time that could be consumed putting data into the 

database.  

 The number of files required to support an application such as the engine test 

control software could grow into the hundreds.  Maintaining and organizing this number 

of files can be onerous.  Also, there are two computers required to share the same data.  

Storing all of the same information in one cross platform searchable file solves this 
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problem.  This makes sharing data between the two computers as simple as copying one 

file.  There are free GUI editors available for managing the SQLite databases as well. 

G.1 Table Definitions  

Every piece of configuration data related to the engine test control software is 

stored in one SQLite database file.  This file includes points, alarms, log file definitions, 

screen layouts, tests, etc.  Figure G.1 shows an example of the major table design.   

 

Figure G.1: Database Tables. 

 The points table contains a record for each point created in the point editor.  The 

alarms table contains one record for each alarm.  There is one record in the Tests table for 

each test created.  Following this same pattern, each type of configuration data will be 

stored in its own table.  There are also some dynamically created tables.  For example, 

the BlowBy table is the calibration table for the interpolation point BlowBy.  This table 

was created at runtime using the SQL statement below. 

CREATE TABLE BlowBy (Raw REAL, EUUnits REAL  PRIMARY KEY); 
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 When a new test is created, the test header information is stored in the Tests table.  

There is also a dynamically created table with the name of the test appended with the 

text, Seq.  This table is used to store the sequence data for the test.   The SQL statement 

used to create the sequence table for the test M1V1_FIE_3_TVSeq is shown below.  This 

statement is executed at runtime to create the table when a new test is created. 

CREATE TABLE 'M1V1_FIE_3_TVSeq' (StepNum INT PRIMARY KEY, StepLabel 
VARCHAR(100), StepTime DOUBLE, Comment VARCHAR(255), Speed DOUBLE, 
SpeedRamp DOUBLE, Torque DOUBLE, TorqueRamp DOUBLE, TorqueMode INT, 
CoolantTemp DOUBLE, OilTemp DOUBLE, Script VARCHAR(1024)); 

G.2 Working with Tables 

Searching for points could become tedious if the definition for each point was 

scattered throughout hundreds of configuration files.  In SQLite, the statement to find any 

point in the points table is simplified.  For example, finding a point that contains the text 

„exh‟ is shown below.  The percent signs are wildcards. 

SELECT Name FROM points WHERE Name LIKE '%exh%'; 

 

Grep is a command line utility that can do this, but it is not as efficient when 

updating or deleting points.  Examples of these actions in SQLite are shown below. 

 UPDATE points SET Priority = 20 WHERE Name LIKE '%exh%'; 

DELETE FROM points WHERE Name LIKE '%exh%'; 

G.3 Embedding SQLite 

 SQLite is compiled into a library that can be either statically or dynamically 

linked to an executable.  In this application, the library was statically linked to ensure that 

there is no version conflict should the library be updated.  The SQLite library was coded 

in the C language.  It has with a C header file with definitions of the functions that are 

used to work with the database.   
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 There are alternative wrappers that have been made to use SQLite in other 

languages.  One of the wrappers for C++ was used in this application.  An example of 

how data is queried using this wrapper is shown below.  This is a small portion of the 

code used to load the point definitions from the database table points.    

void CCalc::Init(DATAPOINTS &DB) 
{ 
 CppSQLite3DB db; 
 int Conversion; 
 db.open(gszFile); 
 

CppSQLite3Table t = db.getTable("SELECT Units, Name, Conversion, 
Description, Minimum, Maximum, m, PointLinear, b, PointInterp,  
DataTable, Formula, Average, Priority  

 FROM points 
 ORDER BY priority"); 
 
    for (int row = 0; row < t.numRows(); row++) 
    { 
     t.setRow(row); 
 Conversion=t.getIntField(2); 
 
 switch(Conversion) 
 {  
 case FORMULA: 
  { 
   CFormula* myFormula; 
   myFormula = new CFormula; 
   myFormula->PointFormula = t.getStringField(FORMUL); 
   myFormula->PointName = t.getStringField(POINTNAME); 
   myFormula->min = t.getFloatField(MINFIELD); 
   myFormula->max = t.getFloatField(MAXFIELD); 
   myFormula->isAvg = t.getIntField(AVERAGE); 
   myFormula->Init(); 
   points.push_back(myFormula); 
   break;       
  } 
 } 
    } 
 db.close();  
} 

  

The classes that are directly related to the SQLite C++ wrapper are listed in Table 

G.1.   
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Table G.1: C++ SQLite Classes. 

Class Abstraction 

CppSQLite3DB SQLite database file 

CppSQLite3Table SQLite table 

  

 The class CppSQLite3DB provides methods to open, close, and return table data 

from the database.  The CppSQLite3Table class provides methods to traverse records in a 

table and return data from the fields in standard C++ data types. 
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APPENDIX H: DATA LOGGING AND DATAVIEWER 

 One of the major purposes of testing an engine is to acquire and analyze test data. 

Long term data storage for engine tests are written in a Ford internal file format 

specification, named GDR.  This is basically a modification of a delimited file format.  

The data for this file is typically sampled every five minutes.  

 In order to create this file a utility application, named GDR Function Generator, 

was created.  This application takes a comma delimited file as input and generates a 

series of script functions to be used in a test procedure.  Figure H.1 depicts the main 

screen of the application.  The format for each line of input data is “Data point name, 

GDR point name, Units”.  Data point name is the local point name used at the test cell.  

GDR point name translates the test cell point name into a Ford global point naming 

convention.  Finally, units are the physical units of measurement. 

 

Figure H.1: File Format Script Generator. 
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 The functions exported from this utility are shown in Table H.1.  These functions 

are then inserted into the global function definitions for a test.  

Table H.1: File Format Script Functions. 

Function Description 

WriteDataHeader Writes the GDR Header according to specification 

WriteData Writes a new sample of data to the file 

 

 Typically, the WriteDataHeader function is called during the initialization of a 

test.  The WriteData function would be called at the appropriate time during each step, as 

shown below.  Each of these functions is designed to make use of the WinDataLog 

function that was previously described in Appendix D on scripting. 

// GDR Data Logging every 5 minutes and at end of step 
if (TimeStep > 0)                                                          
{ 
    if (((intStepTime % 3000 == 0) || (intStepTime == 1)) &&                  
        (HOLD == 0) && (FirstScan != 1))                                      
    { 
        WriteData(); 
    } 
} 
 

 The GDR files are sent by FTP to a global server within Ford, so they are 

accessible by other test engineers.  Ford has created many macros for Excel that allows 

test engineers to perform standardized analysis on the data files. 

 In addition to long term storage requirements, it is beneficial to have data sampled 

at a higher frequency for diagnosing faults.  Typically, this data is stored in memory 

using a ring buffer and dumped to a data file when a fault or alarm condition occurs.  

These are small files, sampled at a rate between 1 Hz and 100 Hz, and contain 10 to 30 

seconds of data before and after the fault. 
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 Rather than use this method, it was decided to try a different approach for this 

thesis.  Since the cost of hard drive storage is about 10 cents per gigabyte, it makes sense 

to collect more fault data.  There is no penalty for having too much data, other than the 

time it takes to process it.  A form of a black box recorder was created.  The recorder runs 

continuously during testing and samples data at a rate of 10Hz.  All of the sampled data is 

stored in a SQLite database. 

 The points that are to be logged are added to a data log configuration.  This is 

done using a simple dialog application, named Datalog Manager.  This application is 

shown in Figure H.2.  Multiple data log configurations can be saved and loaded, either 

manually or from within a test script.  A specific data log configuration and file name are 

selected and then loaded into the real time application to start logging data.  

 

Figure H.2: Datalog Manager. 
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 The engine durability test cells run unattended most of the time.  Therefore, the 

real time application will automatically create a new data log after eight hours.  This 

helps to keep the data files within a manageable size for analysis.  After eight hours of 

logging data, the files are normally between 200 to 500Mbytes in size, depending on the 

number of points logged.  A durability test will run between 130 and 300 hours which 

would result in about 19Gbytes of data.  This is equivalent to the cost of a large coffee. 

 The decision to use a database to store test data was met with a lot of scepticism.    

It was not possible to easily analyze the data without first exporting it into another 

format, such as a comma delimited file.  A data viewer application was created that 

allows the database file to be viewed directly.  This makes analyzing faults very easy and 

gives the test engineer an opportunity to see a long trace of historical data before the fault 

occurred.  The data viewer is shown in Figure H.3. 



 

141 

 

 

Figure H.3: Data Viewer Application. 
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APPENDIX I: REMOTE MONITORING 

In a medium to large engine testing facility, such as PERDC, it can be difficult to 

know the status of each test cell at any one point in time.  A remote monitoring 

application was developed to assist with status checks of the cells.  This would be useful 

to those working off site or to test engineer from another facility that may wish to view 

current data from a test cell.   

The engine test cell control system designed for this project is installed in three of 

the nine test cells at PERDC.  The other six test cells use an ADACS control system from 

Horiba.  A document describing how to log data from ADACS to a MySQL database was 

previously written by Horiba [37].  This was used as the starting point for developing the 

remote monitoring web application.  Since two control systems were to be remotely 

monitored by one application, there needed to be congruency between the data each 

system was populating in the MySQL database.   

The Horiba document contains the basic design for how Perl was used to extract 

data from ADACS and insert it into a MySQL database.  It also included the structure of 

the database tables that were used in the design.  First, a MySQL database was 

configured with the table structure defined.  The Perl script was then modified and 

deployed on the ADACS cells. 

I.1 Configuring ADACS 

  The Perl script updates the MySQL database table every 10 seconds.  The points 

that are sent to the database are stored in a table.  This table is queried every 10 minutes 

to inspect for changes to the requested points.  A very simple web administration utility 

was designed to allow the point definitions to be entered online as shown in Figure I.1.  
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There is the ability to edit cell definitions and point definitions.  The table Cells, contains 

one entry for each engine test cell.  The table Points, contains point definitions for each 

individual engine test cell.  This is the set of points that will get inserted into the data 

table.   

 

Figure I.1: Remote Monitoring Administration Site. 

I.2 Merging ADACS and New System 

 The same concept that was laid out for the ADACS control system was also 

extended to this project.  A simple utility was created that polls the real time database for 

the points requested and inserts them into the same MySQL database table.  This basic 

utility is shown in Figure I.2.   
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Figure I.2: Remote Monitoring Data Collector.  

I.3 RIA Application 

 A rich internet application (RIA) was designed to allow monitoring of the data in 

the MySQL database from a remote location.  The application was written in Silverlight 

which allows it to be hosted in a web browser or installed directly on the desktop.  

Silverlight is a relatively new, client side, web technology designed by Microsoft and 

based on Dot Net.  It enables creating web applications using much of the same design 

methods used to create desktop applications.  Since it is a client side application, most of 

the processing is performed on the client machine, thus relieving the web server.  This 

allows the application of rich controls and animation on the client computer and results in 

a much better visual experience for the end user.  A competing product to Silverlight 

would be Adobe Flash. 

 The main screen of the application is shown in Figure I.3.  From this screen an 

overview of all the test cells can be seen.  The application has an internal timer that 

queries new data once every 10 seconds.  Silverlight does not support the ability to query 

a database directly.  A basic web service application was created that queries the MySQL 
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database for the points data, and returns it to Silverlight as a JavaScript Object Notation 

(JSON) object. 

 

Figure I.3: Remote Monitoring Web Application. 

 From the main screen it is possible to view the details of each individual test cell 

by clicking on the header of the cell‟s overview window.  This will display the screen 

shown in Figure I.4.  Live engine parameter data from the selected cell are now 

displayed. 
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Figure I.4: Remote Point Monitoring. 

 The details of which points are visible, and the order they are displayed can be 

configured using the configuration menu.  This is shown in Figure I.5.  Each list box 

corresponds to the same list box in the details view.  Only points that have been 

configured by the administrator are available for viewing.  This configuration is stored on 

the user‟s local machine, along with the option to add personal notes.  The personal notes 

are displayed on the main screen.  This is a handy feature to use for reminders. 
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Figure I.5: Remote Monitoring Configuration. 

 The remote monitoring application was developed using a number of simple web 

and database technologies.  It is used on a regular basis for monitoring both the existing 

ADACS test cells, which had no remote monitoring ability, as well as the new system 

designed for this thesis.  The information provided has been very brief.  This was 

intentional, since the full details would have required a large amount of space.  The idea 

was to show that remote monitoring was developed as part of the complete test cell 

control system, and to illustrate the technologies involved in implementing it. 
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APPENDIX J: GUI CONTROLS 

 The engine test cell control system contains a large number of controls and 

associated configuration dialogs.  A brief overview of some of these will be discussed.  

The general idea of how the other controls would be used and configured is very similar.  

Visualization controls include tables, gauges, and charts.  User input controls, like 

buttons and tables, are used to manipulate values in the real time database. 

J.1 Tables 

 The table control, shown in Figure J.1, is used to display a list of points and their 

current values from the real time database. 

 

Figure J.1: Table Control. 

The displayed points are selected using the table configuration dialog shown in 

Figure J.2.  The left side list box contains the names of all the points in the real time 

database.  The right list box contains the points that have been selected.  There is no limit 

to the number of points that can be added to a table.  Double clicking a point in the table 

will bring up a dialog that allows the value of a point to be updated in the real time 

database. 
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Figure J.2: Table Configuration. 

J.2 Gauges 

 Gauges are used to provide both numerical and visual stimulus, and to attract 

attention to possible fault conditions.  The multiple gauge control is shown in Figure J.3.  

To the left of the gauge controls are the point names, current values and units.  The gauge 

controls have visual markers for low, warning and high conditions.  Low is identified by 

the colour blue, warning is identified by yellow and high is displayed as red.  The actual 

bar gauge will change to one of these colors if the value of the monitored point is outside 

the limits.  This allows for a quick visual to identify fault conditions.  The color green 

indicates no faults exist.  Since color is used for the feedback, it is visible from a long 

distance away from the computer screen.   
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Figure J.3: Gauge Control. 

 This gauge control is used to group a number of related points together, such as 

temperatures or pressures.  Any number of gauges can be added to the control using the 

configuration screen shown in Figure J.4.  The border around the gauges has a Form 

Name and is assigned a text value that gives meaning to the contained information.  The 

configurable properties are self explanatory and will not be discussed further. 
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Figure J.4: Gauge Configuration. 

J.3 Push Buttons  

 Buttons are clickable controls that have two states, on and off.  A physical push 

button is normally classified as either a momentary or a toggle switch.  A toggle switch 

will maintain its state when switched and a momentary switch will not.  A good example 

of a toggle switch is the switch used to turn room lights on and off.  Examples of 

momentary switches are ones used on a power tools, such as a drill or circular saw.  In 

this application, the momentary switches appear as shown in Figure J.5 and toggle 

switches appear as shown in Figure J.6.   
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Figure J.5: Momentary Push Buttons. 

 

 

Figure J.6: Toggle Switches. 

 The properties of the buttons are configured using the dialog shown in Figure J.7.  

A point name from the real time database is assigned to each switch.  There is a limit of 

four buttons on each of these controls.  The control will resize itself according to the 

number of points configured.  The buttons have an “On” and an “Off” value associated 

with them.  The point assigned to a momentary button will always have the “Off” value, 

unless the button is held down with the mouse, and assumes the “On” value.  There is no 

restriction on the values of “On” and “Off”.  This allows the flexibility to create normally 

open and normally closed types of switches.  It also enables one of two decimal values to 

be assigned to a point.  Typically these would be 1 and 0, but there are times when an 

analog value may be required.   
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Figure J.7: Switch Configuration. 

J.4 Line Charts 

 Line charts are a very powerful method to display historical data.  When running 

an engine test cell, the current state of the engine is displayed using tables and gauges.  

These are very useful for obtaining the exact values of points.  With so many of these 

variables on the screen, it would be humanly impossible to discern irregular trends using 

these controls.  The chart control was created to store thirty minutes of historical data on 

the screen.  This provides a long enough history to identify trends, as well as ensure that a 

test is proceeding correctly.  It is also a great learning tool, since interactions between 

variables can be seen while the engine is running.  The chart control is displayed in 

Figure J.8.  
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Figure J.8: Line Charts. 

J.5 Fixed Controls 

 There are a number of fixed controls on the main window of the application.  

These controls are fixed because they are always required regardless of the test being run.  

Since screen real estate is limited, a minimum number of controls were used.  The largest 

of these are the speed, torque and throttle controls.  Only the engine speed controls are 

displayed in Figure J.9. 

 

Figure J.9: Manual Speed Setpoint Control. 
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 Each cluster of these controls contains a gauge with two indicating needles.  The 

red needle shows the current point value and a yellow needle is used to show the 

requested set point.  There is also a numeric input control for entering a setpoint value.  

Finally, two buttons are available to select a slow or fast ramp to the setpoint. 

 The top of the form contains a menu that provides access to all of the features in 

the application.  Just below the main menu are buttons to start and stop communication 

with the real time database, as well as an alarm indicator and message window.  This is 

shown in Figure J.10. 

 

 

Figure J.10: GUI Fixed Form Controls, Top. 

 The bottom of the form contains the tabs, status bar and a number of fixed buttons 

shown in Figure J.11.  The status bar displays the number of Ethernet packets sent and 

received, as well as the response from some of the ASCII commands. 

 

 

Figure J.11: GUI Fixed Form Controls, Bottom. 
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APPENDIX K: DAQ HARDWARE 

K.1 Sensoray 2600 

 The Sensoray 2600 series is a low cost, Ethernet based data acquisition device 

used for slow speed data collection.  These devices are not intended for high speed data 

acquisition, but have some valuable features.  There are drivers for both Linux and 

Windows.  The drivers for Linux are distributed in source code form, which was ported 

to QNX as part of this project.  Table K.1 shows a full list of the devices that were used. 

Table K.1: Sensoray 2600 Modules. 

Module Specifications Cost 

2601 Main communication module $463 

2608-8 

( 3 ) 

16 differential inputs of voltage, thermocouple, or 4-20 mA,16-bit 

A/D 

8 analog outputs 15 -bit D/A with remote sensing 

$532 

2620 Four 32-bit quadrature encoders 

PWM, period, frequency measurement 

Periodic, single-shot outputs 

$345 

 

The 2601 module, shown in Figure K.1, is the main hub which communicates 

over Ethernet.  This module has 16 ports of serial communication for connecting the 

other 2600 series devices.  The 2601 communication module has a watchdog timer that 

can be enabled to reset all of the other modules if communication to the host is lost. 
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Figure K.1: Sensoray 2601 Master Module, Image Courtesy of Sensoray [38]. 

  The 2608 analog modules, shown in Figure K.2, are primarily used for 

thermocouple measurements.  They have cold junction temperature sensors for 

thermocouple measurement compensation.  There is also on board circuitry to enable 

broken thermocouple detection.  Broken thermocouples are common in engine testing 

and sometimes hard to detect if a circuit has heavy filtering.  The device has removable 

terminal blocks for wiring connections directly onto the module. This reduces installation 

issues.   

 

Figure K.2: Sensoray 2608 Analog I/O Module, Image Courtesy of Sensoray [38]. 
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The 2620 module, shown in Figure K.3, is primarily used for frequency measurements.  

The fuel panel in the engine test cell outputs a frequency that is proportional to fuel flow.  

Currently, this is the primary application of this module. 

 

Figure K.3: Sensoray 2620 Timer Counter Module, Image Courtesy of Sensoray [38]. 

K.2 National Instruments PCI 2630 

The National Instruments PCI 2630, is an industrial M-Series data acquisition device 

with bank isolated inputs and outputs.  This card is used for the interface with the 

dynamometer controller.  National Instruments has a limited driver development kit for 

QNX that supports this board [39]. 
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APPENDIX L: THROTTLE ACTUATOR 

 One of the requirements of a test is to control the load of the engine.  The PCM 

uses the accelerator pedal to read the demanded engine load.  The pedal in most engine 

test cells is controlled using a mechanical actuator.  In some cases, the pedal signals are 

simulated using an analog output.  The requirements for the throttle actuator are listed in 

Table L.1. 

Table L.1: Throttle Actuator Requirements. 

Requirements 

Actuator is portable 

Easy pedal setup 

Accurate position control 

  

The final design of the throttle actuator was based on a review of commercially 

available devices [40].  The design uses a combination of a servo motor and a variable 

frequency drive.  The motor output shaft is directly connected to a stroke adjustment arm 

without a gear box. 

  Commonly available parts were purchased to complete the design and 

installation.  The list of major components purchased for the throttle actuator is found in 

Table L.2.  This listing does not include any of the extruded aluminum or casters used for 

the stand.  The aluminum parts for the servo motor fixture and all the details were 

designed and manufactured by PERDC machinists.  The stand was designed and built by 

PERDC tinsmiths.  Finally, the electrical installation was completed by PERDC 

electricians. 
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Table L.2: Throttle Actuator Parts. 

Part # Description Cost 

1414PHM8 Hammond Electrical Enclosure 

14x14x8 inches 

172.40 

MPL-A4540F-MJ22AA Allen Bradley Low Inertia Servo 

Motor 

1552.80 

2098-DSD-020X Allen Bradley Ultra 3000 Servo 

Drive 

1713.00 

2090-XXNPMP-16S03 MP Series Servo Motor Power 

Cable 3 Meters 

86.36 

2090-UXNFBMP-S03 MP Series Servo Motor Feedback 

cable 3 Meters 

103.17 

2090-U3BB2-DM44 Ultra 3000 CN1 Breakout board 87.79 

 Total 3715.52 

 

L.1 Electrical Design 

 The electrical design of the throttle controller had only a couple of requirements.  

First, the design needed an E-Stop for safety.  Secondly, in order to work with the 

existing test cells, the position command needed to be a 0-10VDC signal.  Finally, the 

system needed to run from a 120VAC, 15A receptacle to meet the portability 

requirements.  The final electrical schematic is shown in Figure L.1.   
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Figure L.1: Throttle Actuator Electrical Schematic. 

 The Allen Bradley 3000i servo drive includes a basic motor position controller 

[41].  Although this is not normally a component of a servo drive, it simplified the design 

significantly in this case.  The position controller is normally another device that 

commands the servo drive.   
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L.2 Mechanical Design 

 The throttle actuator is shown mounted on a portable stand in Figure L.2 below. 

 

Figure L.2: Throttle Actuator Mount. 

 The throttle actuator includes mechanical zero and stroke adjustment arms, as 

seen in Figure L.3.  The zero adjustment is used to configure the pedal position to a 

location that registers a value of 0 in the PCM.  The stroke adjustment arm is used to set 

the full travel position of the pedal.   
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Figure L.3: Throttle Actuator Adjustment Arms. 

L.3 Performance Specifications 

The throttle actuator was programmed to perform automatic zero calibration when 

turned on.  This eliminated any need for setup.  The zero calibration is done by driving 

the motor until the zero end stop is reached.  At the point of contact, the motor current 

increases.  This indicates the zero position is reached.  From this point the actuator will 

move 50 counts off of the zero location.  This allows a small amount of over shoot during 

fast ramps.  Table L.3 shows the full specifications for the throttle actuator. 

  

Stroke Adjustment Arm 

Zero Adjustment Arm 
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 Table L.3: Throttle Actuator Specifications. 

Parameter Description 

Encoder Pulses Per Revolution 16000 

Position Command Resolution 14 bit 

Position Counts Per Volt 130 

Homing Current 3.0 Amps 

Homing Velocity 5 RPM 

Angle of Rotation 30 Degrees 

Range of Stroke 1.5 – 7 cm 
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