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ABSTRACT 

While genetic effects on offspring phenotypic traits are well studied in fish, 

examining all genetic components to variation in traits across developmental stages has 

been rarely explored. Using a full factorial breeding design, I investigated additive and 

nonadditive genetic effects and maternal effects on offspring length, survival and 

swimming ability throughout ontogeny in Chinook salmon (Oncorhynchus 

tshawhytscha), a species with a nonresource-based mating system. I also used existing 

‘high-survival’ and ‘low-survival’ lines of Chinook salmon to determine if these two 

lines still show differences in survival and length, and if the two lines show differences in 

swimming ability. Genetic variation was found for offspring length, survival, and 

swimming ability, where results varied depending on the phenotypic trait examined and 

developmental stage. Future research should continue to follow the genetic architecture 

of phenotypic traits within species throughout ontogeny, and could compare populations 

to further improve conservation efforts of this species.  
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CHAPTER I 

INTRODUCTION 

1.1 Genetic Architecture of Performance Traits 

Investigations of parental effects on offspring fitness-related traits have been of 

ongoing interest to evolutionary biologists, with research across a variety of taxa and 

offspring traits, such as on viability in pygmy grasshoppers (Tetrix subulata) (Caesar & 

Forsman, 2009), on immunocompetence in bluethroats (Luscinia svecica) (Johnsen et al., 

2000), on mortality in two mice strains (Mus musculus) (Gyekis et al., 2011), on 

reproductive performance in bank voles (Clethrionomys glareolus) (Klemme et al., 

2008), and on hatching success in Atlantic halibut (Hippoglossus hippoglossus L. ) 

(Ottesen & Babiak, 2007). Recently, there has been an increased focus on genetic effects 

of offspring traits, specifically on investigating whether the genetic quality of parents 

influences intraspecific variation in offspring fitness characteristics (e.g. Wedekind et al., 

2008; Rodriguez-Munoz & Tregenza, 2009).  ‘Genetic quality,’ or the genetic 

architecture of fitness has two components, ‘good genes’ and ‘compatible genes’ 

(reviewed in Neff & Pitcher, 2005; and in Neff et al., 2011). Good genes are alleles that 

increase fitness separately from the remaining genome, and will show additive genetic 

variation. When good genes cause variation in fitness in a population, the population will 

respond to directional selection. In the good genes model, many females prefer to mate 

with the same male (in species where females are choosy), usually the male with the most 

elaborate trait which may reflect superior alleles (Neff & Pitcher, 2005). Compatible 

genes on the other hand, are alleles that increase fitness only when in combination with 

other alleles, such as through heterozygote advantage (overdominance) or epistasis. 
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Compatible genes will show nonadditive genetic variation, i.e. some dam-sire genetic 

combinations will have higher fitness than other combinations. When compatible genes 

cause variation in fitness in a population, the mechanisms responsible for acquiring 

compatible genes (and not the population itself) will respond to directional selection. In 

the compatible genes model, females do not prefer the same male as her choice depends 

on her own genotype (Neff & Pitcher, 2005).  

Studying both good genes and compatible genes components of genetic quality 

simultaneously on offspring traits is achieved most effectively by performing the North 

Carolina Design II (Lynch & Walsh, 1998) method of breeding. The North Carolina 

Design II method involves the most comprehensive artificial fertilization method, where 

the gametes of a set number of dams and sires are crossed in every pair-wise 

combination. To effectively isolate genetic effects from other factors that affect offspring 

fitness (such as from direct benefits like parental care), investigations on genetic 

architecture of traits must be employed using animals that have nonresource-based 

mating systems (i.e. when only genes are provided to the offspring, and parental care is 

absent) (Neff & Pitcher, 2005; Hettyey et al., 2010). Fishes for instance, are ideal. 

Although fish have the widest variety of reproductive modes of the vertebrates (Green, 

2008), many species of fish have nonresource-based mating systems. Furthermore, many 

fishes are oviparous and fertilize gametes externally, which is convenient for the North 

Carolina Design II as gametes can be extracted and then artificially fertilized. After 

quantifying a desired phenotypic trait in the offspring, a two-way ANOVA can be used to 

determine dam, sire, and dam x sire effects on that trait (Lynch & Walsh, 1998). Many 

studies on parental genetic effects on offspring however have ended at this step (Bang et 
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al., 2006) which is unfortunate as the North Carolina Design II method offers further 

benefits. The design offers further investigation by allowing one to partition the variation 

among additive genetic effects, nonadditive genetic effects and true maternal effects (e.g. 

Wedekind et al., 2008). Assuming one selects a species with a nonresource-based mating 

system, the contributions to phenotypic variance can be calculated as follows. Since sires 

provide only genes to their offspring, additive genetic effects are estimated by calculating 

four times the sire component of variance. Similarly, nonadditive genetic effects are 

calculated from four times the dam x sire component of variance (Lynch & Walsh, 1998). 

The dam component of variance (i.e. female effect) encompasses both maternal additive 

genetic effects and maternal non-genetic effects; this is why studies that end their 

investigation after dam, sire and dam x sire components of variance are achieved are 

hindered in that any significant dam effects can be due to either her genetics or non-

genetic effects, and not segregating the two leaves questions unanswered. ‘Maternal 

effects’ in fish are defined as ‘the non-genetic contribution of a female to the phenotype 

of her offspring’ (reviewed in Green, 2008) and include items such as the amount of 

nutrients provisioned in her eggs, hormones and cytoplasm, and where she chooses to 

deposit her eggs (Green, 2008). The genetic contributions of dams and sires to the zygote 

can be considered equal, and so the contribution of true maternal effects to phenotypic 

variation to a trait can be calculated by the difference between the dam and sire 

components of variance (Lynch & Walsh, 1998; reviewed in Neff & Pitcher, 2005). 

Studies on the contributions of additive and nonadditive genetic effects and maternal 

effects to offspring fitness-related traits in fishes show a wide range of results, which can 

be attributed to the variety of species, populations, stages of ontogeny, and the 
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phenotypic traits examined; such as embryo survival (e.g. Wedekind et al., 2008; 

Rodriguez-Munoz & Tregenza, 2009; Kekalainen et al., 2010a), disease resistance (e.g. 

Balfry et al., 1997), anti-predator behaviour (e.g. Evans et al., 2004), larval spinal 

deformity, (e.g. Evans & Neff, 2009), and growth (e.g. Bang et al., 2006; Pitcher & Neff, 

2007; Evans et al., 2010; Janhunen et al., 2011). Although through analysis of previous 

studies researchers are becoming increasingly aware that the genetic architecture of traits 

vary intra-individually across time (Heath & Blouw, 1998; see Evans et al., 2010 and 

references therein), only a few studies in fish have actually attempted to follow all 

genetic components (additive and nonadditive genetic effects and maternal effects) of 

performance traits across developmental stages (Wedekind et al., 2001; Wedekind et al., 

2008; Evans et al., 2010). To my knowledge, no one study has followed the contributions 

of additive and nonadditive genetic effects and maternal effects to variation in a 

phenotypic trait from the larval stage through to the adult stage of development.     

Of the phenotypic traits that have been chosen by researchers for examining the 

effects of genetic quality, one trait that has surprisingly received little attention is 

offspring swimming ability, a trait that is clearly important for the survival of fishes (see 

Plaut, 2001 and references therein). To my knowledge, only seven studies exist on 

genetic effects on swimming (Nicoletto, 1995; Garenc et al., 1998; Evans et al., 2004; 

Green & McCormick, 2005; Huuskonen et al., 2009; Nadeau et al., 2009; and Kekalainen 

et al., 2010b). Furthermore, in those seven studies, not all used species with nonresource-

based mating systems or studied all components of genetic quality and true maternal 

effects. One way to quantify swimming ability is to measure the critical speed (U-crit) 

(Fisher and Leis, 2009) which is relevant for investigating maximum aerobic capabilities, 



5 

 
5 

especially in fishes that travel upstream or against currents such as the Chinook salmon, 

Oncorhynchus tshawytscha (Plaut, 2001). U-crit can be obtained by swimming a fish 

against water current and incrementally increasing the water speed until fatigue occurs 

(i.e. when the fish can no longer hold its station) (Brett, 1964). Given that variation in 

many offspring fitness-related traits has been attributed to differences in the genetic 

quality of parents, it is likely that genetics influence offspring swimming ability as well.   

 

1.2 Study Species - Biology & Status 

Chinook salmon (Oncorhynchus tshawytscha), the largest of the Pacific salmon, 

are anadromous (i.e. breed in fresh water but spend much of their lives growing at sea) 

and semelparous (i.e. have one breeding season and die shortly after) (Healey, 1991). 

Chinook are external fertilizers and have a nonresource-based mating system, which 

makes them a suitable species for investigating the genetic architecture of offspring 

phenotypic traits (Healey, 1991; Lynch & Walsh, 1998). Female Chinook prepare and 

guard nest sites (Quinn, 2005), provide genes to their offspring as well as other contents 

provisioned into the egg (Quinn, 2005; Green, 2009). Male Chinook compete among 

each other for access to ripe females, and provide only genes to their offspring (Quinn, 

2005). After the endogenous feeding stage, young ocean-type Chinook offspring will 

leave their freshwater natal stream, and begin their downstream migration towards the 

sea, which can be actively directed (Healey, 1991). The now exogenously feeding 

juvenile Chinook can obtain drifting food by holding their station in the water current 

(Childerhose & Trim, 1979). After spending one to seven years at sea, mature Chinook 

will begin a long migration (some even travel thousands of kilometers) using mainly 
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olfaction to return back to their freshwater natal streams where they were born, in order 

to spawn (Childerhose & Trim, 1979; Healey, 1991). Due to their strong sense of homing 

to their natal streams, many sub-populations of Chinook, referred to as ‘stocks,’ have 

formed (Healey, 1991). 

Currently, the socio-economically important Chinook salmon are designated as 

endangered and threatened (depending on population) under the U.S. Endangered Species 

Act (Fullerton et al., 2011). Pacific salmon stocks have been declining drastically, mainly 

due to anthropogenic activities (for reviews see: Araki et al., 2008; Carlson & Seamons 

2008; Fraser, 2008; Waples & Hendry, 2008). Consequently, a great deal has been 

invested into supportive breeding programs which produce salmonids extensively in 

attempts to replenish the depleting stocks (Araki et al., 2008; Swanson et al., 2008). 

What is still uncertain, however, is if such breeding programs can maintain biodiversity, 

fitness and ultimately generate populations in the wild that are successful and 

independent from our intervention (Fraser, 2008). Although with good intentions, the 

outcome of captive-reared progeny for supplementation can be highly unfavorable, 

resulting in both phenotypic and genetic changes (e.g. Reisenbichler & Rubin, 1999; 

Blanchet et al., 2008). As wild populations are locally adapted, captive-reared fish have 

been shown to be inferior to native individuals when released into the wild, suffering 

from maladaptive behaviours like increased aggression (Blanchet et al., 2008), increased 

risk-taking behavior causing higher predation (Kekalainen et al., 2008), and abnormal 

timing of spawning (Swanson et al., 2008). Captive-reared individuals may therefore 

threaten the fitness of wild populations when these inferior counterparts breed with wild 

fish (Swanson et al., 2008), and have even been shown to have carry-over effects on 
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wild-born descendants of captive reared parents (Araki et al., 2009). Although numerous 

studies have shown that genetics play an important role in offspring fitness-related traits, 

and that genetics even play a role in phenotypic plasticity (i.e. the ability to respond to 

changing environments) (Evans et al., 2010), artificial breeding programs have mostly 

ignored the genetic architecture of fitness-related traits and that wild individuals possess 

genetic adaptations to their dynamic environment (Wedekind, 2002; Fraser et al., 2011; 

Neff et al., 2011).   

 

1.3 Thesis Objectives 

1.3.1 Overview of Chinook salmon used for thesis objectives 

The Chinook salmon dams and sires used to accomplish the thesis objectives are 

either 8th generation descendants (Chapter 2) or 7th generation descendants (Chapter 3) 

from crosses between wild females taken from the Robertson Creek Hatchery (Port 

Alberni, B.C.) and wild males taken from Big Qualicum River Hatchery (Qualicum 

Beach, B.C.) in 1985. The study species have since been raised at the Yellow Island 

Aquaculture Ltd (YIAL) hatchery and netcage site on Quadra Island, British Columbia. 

Using these descendants, YIAL initiated a marker-assisted broodstock selection program 

in 1997, creating a ‘high-survival line’ and a ‘low-survival line’ based on variation in 

growth- and survival-related gene markers (Docker & Heath, 2002). Although these two 

lines have been selected for differences in growth and survival, it is unclear when in 

development these differences manifest, and whether the two lines still show differences 

in growth and survival at the present time. Using the North Carolina Design II method to 

cross a set number of dams and sires (some dams and sires from the high-survival line, 
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and some dams and sires from the low survival line), offspring were developed that were 

purebred and hybrid for the high- and low- survival lines. This portion of my thesis has 

applications to aquaculture, if the offspring show differences in size and/or survival. It 

also, however, is interesting for further investigating parental genetic effects on offspring 

fitness-related  traits, concerning whether or not the high- and low- survival lines will 

differ in their influence on the offspring traits depending on whether the dam or the sire is 

of the high- or low-survival line.  

 

1.3.2 Chapter 2 Objectives 

 Chapter 2 has two objectives. The first is to employ the North Carolina Design II 

method using 6 dams and 6 sires in Chinook salmon. This allowed me to determine dam, 

sire, and dam x sire effects on offspring swimming performance (measured as U-crit), 

and to partition the variance in offspring swimming ability to additive and nonadditive 

genetic effects as well as maternal effects. U-crit was measured at two different time-

points during the parr stage of development, to determine if and how the genetic 

architecture of this fitness-related trait changes with age. The second objective is to use 

the same 6 dams and 6 sires which are from the existing ‘high-survival’ and ‘low-

survival’ lines of Chinook salmon to determine if these two lines show differences in 

swimming ability (U-crit). 

 

1.3.3 Chapter 3 Objectives 

Chapter 3 also has two objectives. The first is to follow the genetic architecture of 

two performance traits (body size and survival) throughout ontogeny in Chinook salmon. 
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I used 7 dams and 7 sires crossed in a North Carolina Design II breeding design to 

determine dam, sire, and dam x sire effects on offspring length and survival, and the 

variance in these traits was partitioned into additive and nonadditive genetic effects as 

well as maternal effects. Length was measured at five time-points throughout ontogeny, 

during the larval, parr, juvenile, and twice at the adult stage of development. Survivorship 

was calculated at 4 time-points throughout ontogeny, during the larval, parr, juvenile, and 

adult stages of development. The second objective is to use the same 7 dams and 7 sires 

which are from the existing ‘high-survival’ and ‘low-survival’ lines of Chinook salmon to 

determine if these two lines still show differences in length and survival, and to 

determine when any differences manifest.    
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CHAPTER II 

PATERNAL IDENTITY AFFECTS OFFSPRING SWIMMING PERFORMANCE  

IN OLDER JUVENILE CHINOOK SALMON, ONCORHYNCHUS  

TSHAWHYTSCHA 

 

2.1 Introduction 

Investigating maternal and paternal effects on offspring fitness-related traits has 

been an ongoing interest for evolutionary ecologists, with maternal and paternal effects 

being caused by environmental influences (e.g. Freeman-Gallant, 1998; Gruebler & 

Naef-Daenzer, 2010), genetic differences (e.g. Johnsen et al., 2000; Klemme et al., 

2008), and combinations of the two (e.g. Caesar & Forsman, 2009; Evans et al., 2010). 

Fitness effects have been seen in situations where females choose mates for direct 

benefits like food and care for her offspring (i.e. resource-based mating systems, Neff & 

Pitcher, 2005) and also in situations where parents provide no care but only genes to their 

offspring (i.e. nonresource-based mating systems, Neff & Pitcher, 2005), providing 

systems in which genetic and environmental contributions can be separately assessed. In 

the latter mating system — where offspring receive only genes — the effects of parental 

genetic quality on a particular trait in offspring can be assessed to ask (i) are some dams 

or sires of “better” genetic quality than others (i.e. does the trait under consideration show 

additive genetic variance from good genes), and (ii) are certain parental genomic 

combinations “better” than others (i.e. does the trait in consideration show nonadditive 

genetic variance from compatible genes) (reviewed in Neff & Pitcher, 2005)? In fishes, a 

large variety of mating systems exist, and the roles of dam and sire influences have been 

well studied in offspring traits such as embryo survival (e.g. Wedekind et al., 2008; 



15 

 
15 

Rodriguez-Munoz & Tregenza, 2009; Kekalainen et al., 2010a), disease resistance (e.g. 

Balfry et al., 1997), anti-predator behaviour (e.g. Evans et al., 2004), larval spinal 

deformity, (e.g. Evans & Neff, 2009), and growth (e.g. Bang et al., 2006; Pitcher & Neff, 

2007; Evans et al., 2010; Janhunen et al., 2011), where the results among the studies 

vary, not surprisingly considering the different species, developmental stages, and 

phenotypic traits examined.  

 Surprisingly, parental genetic effects on offspring swimming ability of fishes, a 

rather essential characteristic for survival (e.g. Bailey, 1984; Fisher & Leis, 2009; also 

see Plaut, 2001 and references therein), has rarely been explored, with only seven studies 

to our knowledge on this topic (Table 2.1). Two (Garenc et al., 1998; Green & 

McCormick, 2005) of those seven studies involved offspring that were subjected to 

parental care, which means their results are more likely to be confounded by non-genetic 

parental effects. Furthermore, only four studies (Nicoletto, 1995; Green & McCormick, 

2005; Huuskonen et al., 2009; Kekalainen et al., 2010b) actually examined contributions 

from both good genes and compatible genes, whereas the remaining studies (Garenc et 

al., 1998; Evans et al., 2004; Nadeau et al., 2009) investigated only one component of 

genetic quality.  Thus, the role of parental genetic effects on a critical aspect of fish 

survival remains woefully understudied, and more analyses are needed on both additive 

and nonadditive genetic contributions of parents to this trait to fully understand the 

fitness consequences of both natural and aquacultural mating decisions.   

While knowledge of genetic quality on swimming ability is lacking, other aspects 

of fish swimming (e.g. physiology, types and functions, temperature effects, oxygen 

consumption) and the tools for investigating swim performance are well established, as 
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the swimming performance of fishes has been repeatedly documented in the last half-

century beginning with design of the respirometer by Brett (1964) (for some reviews see: 

Hammer, 1995; Blake 2004; Farrell, 2007; Fisher & Leis, 2009; Kieffer, 2010). One of 

the most common measures of swimming ability of fishes is the critical speed (U-crit) 

(Fisher and Leis, 2009) which is relevant for investigating maximum aerobic capabilities, 

especially in fishes that travel upstream or against currents such as the Chinook salmon, 

Oncorhynchus tshawytscha (Plaut, 2001). The process of measuring U-crit consists of 

swimming a fish against water current and incrementally increasing the water speed until 

fatigue occurs where the fish can no longer hold its station (Brett, 1964).  Although there 

is currently no proof that U-crit is directly correlated with fitness, U-crit is associated 

with the swimming capacities of fishes and other ecologically relevant traits (reviewed in 

Plaut, 2001). Thus, it is plausible to infer that U-crit is a measure of a fish’s ability to 

perform during activities that involve swimming and is thus linked to survival (Plaut, 

2001). Therefore, investigating additive and nonadditive genetic contributions on 

swimming ability could provide valuable information on how this trait could respond to 

selection. Additionally, because only four studies to our knowledge have explored 

contributions from both good genes and compatible genes on swimming performance 

(Table 2.1), investigating the role of genetic quality will add to the limited knowledge on 

the genetic architecture of this trait, and also on whether swimming ability has a heritable 

component in this group. 

 In the current study, I used a fully crossed breeding design to investigate the roles 

of genetic quality and non-genetic maternal effects on offspring swimming performance 

in Chinook salmon. The design allowed me to separate genetic variance in offspring 
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swimming ability into additive and nonadditive genetic effects as well as environmental 

maternal effects (Neff and Pitcher, 2005). The fish used in the current study are also part 

of a ‘high-survival line’ and ‘low-survival line’ of Chinook salmon created from a 

marker-assisted broodstock selection program that identified two separate salmon lines 

based on variation in growth- and survival-related gene markers (Docker & Heath, 2002).  

The two lines were thus also part of the fully crossed breeding design which created 

offspring that were purebred and hybrid for the high- and low-survival lines, which 

allowed me to determine if the different survival lines also possess different swimming 

abilities. Chinook salmon provide an ideal system to investigate parental genetic effects 

on offspring fitness-related traits because they are external fertilizers and have a 

nonresource-based mating system (Healey, 1991). Male Chinook mate with many 

females and provide no parental care, only genes to their offspring (Healey, 1991), thus 

presenting the opportunity to study ‘good genes’ effects (i.e. additive genetic variation) 

on offspring swimming (Neff and Pitcher, 2005). Female Chinook provide genes, but 

also provision nutrients and other contents to the egg (Healey, 1991; Green 2008), thus 

presenting the opportunity to study ‘good genes’ effects (i.e. additive genetic variation) 

and maternal effects respectively on offspring swimming (Neff and Pitcher, 2005). The 

full factorial breeding system crosses all dams and sires in every pair-wise combination, 

which allowed me to also examine ‘compatible genes’ effects (i.e. nonadditive genetic 

variation) on offspring swimming (Neff and Pitcher, 2005).  
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2.2 Methods 

Study Species, Breeding Design and Rearing Conditions 

  Study Species: The Chinook salmon parents I used for the current study are 8th 

generation descendants from crosses between wild females taken from the Robertson 

Creek Hatchery (Port Alberni, B.C.) and wild males taken from Big Qualicum River 

Hatchery (Qualicum Beach, B.C.) in 1985. These fish have since been raised at the 

Yellow Island Aquaculture Ltd (YIAL) hatchery and netcage site on Quadra Island, 

British Columbia. Descendants are also part of a marker-assisted broodstock selection 

program initiated at YIAL in 1997, where a ‘high-survival line’ and a ‘low-survival line’ 

were created based on variation in growth and survival related gene markers, and these 

two lines have since been maintained at YIAL (Docker & Heath, 2002).  All procedures 

were approved by the University of Windsor Animal Use and Care Committee. 

  Breeding Design and Fish Rearing: In the fall of 2009 I haphazardly selected a 

sample of sexually mature adult salmon until I had 6 females and 6 males; 3 females and 

3 males were of the ‘high-survival line’ and 3 females and 3 males of the ‘low-survival 

line’ identified from previously implanted coded wire tags inserted into the nose of each 

fish. I sacrificed the parents via cerebral concussion and extracted eggs and milt for a 6x6 

quantitative genetic breeding design (North Carolina Design II; Lynch & Walsh, 1998) 

creating 36 half- and full-sib families.  Eggs from each female were fertilized by each 

male, and fertilized eggs were split into two cells per family in Heath trays to account for 

location effects. All of the parents I used in the full factorial breeding design were 

purebred for either the high-survival line (H/H) or the low-survival line (L/L), hereon 

referred to as their ‘performance cross’. Thus, the offspring will be one of the following 
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four performance crosses: ‘H/H’ where both parents were of the high-survival line, ‘H/L’ 

where the dam is of the high-survival line and the sire is of the low-survival line, ‘L/H’ 

which is the opposite of the previous, or ‘L/L’ where both parents are of the low-survival 

line (Table 2.2). The incubation trays were exposed to natural, untreated fresh water that 

ranged from 7°C to 9°C. For 30 minutes a day, 3 times a week until hatching, UV treated 

salt water was pumped through the trays to reduce fungus growth. Every other day until 

the end of the endogenous feeding stage, the incubation trays were checked and all 

unfertilized eggs and dead offspring were removed. At the end of the endogenous feeding 

stage, the offspring were transferred to 36 individual 200 L barrels, one family per barrel. 

Using a similar rearing design, Heath et al. (1999) did not find a correlation between 

rearing density (which could be different due to differences in survival among families) 

and growth. The barrels were reared in a common environment given flow-through fresh 

water ranging from 7°C to 10.5°C, aeration, and light from 7am – 5pm. The fish were fed 

daily, barrels were vacuumed every 5 days, and any dead fish were removed. 

Swim Flume Design and Protocol 

Flume Design: I quantified swimming performance by measuring U-crit in a 

Plexiglass flume, based on the design of Stobutzki & Bellwood (1994), with dimensions 

of 63 x 33 x 8.8 cm subdivided into three swimming channels each 45 x 2.5 x 5 cm. I 

used a removable lid (51 x 31 x 1.2 cm) with an opaque cover to allow placement of fish 

into the flume. I secured plastic drinking straws of 5mm outer diameter and 

approximately 6cm in length with silicone at the upstream end of each swim chamber to 

act as flow straighteners providing laminar flow (Stobutzki & Bellwood, 1994). I placed 

mesh screen behind the straws and at the downstream end of each chamber to contain the 
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fish in the swimming channels. With the addition of the straws and screen each channel 

length was reduced to 30 cm. Natural untreated fresh water, at the same temperature as 

the parr barrels, recirculated through the flume pumped by a submersible effluent pump. 

In addition to the recirculating water, an external source of water flowed into the flume 

reservoir to prevent water temperature from increasing due to heat from the submersible 

pump. I manipulated water velocity by using a rheostat (Staco Co., Dayton, Ohio) to 

manipulate voltage applied to the pump. Water velocity at each rheostat voltage was 

subsequently determined by measuring transport time of food dye in the chamber over a 

defined length (Table 2.3), since the chamber was too small to allow use of a current 

meter. The maximum cross-sectional areas of all fish used were less than 10% of the 

cross-sectional area of the channels, and so I did not need to adjust for blocking effect 

(Smit et al., 1971). 

Protocol: For each swimming trial, I used a sample of 3 offspring haphazardly 

selected from one of the 36 families; 1 fish placed into each channel. Before each trial 

began, I let the fish acclimate to the flume for 30 minutes with the water velocity set at 

16.95 cm/s (60 volts) to normalize swimming behaviour (duration and velocity selected 

during preliminary trials). After the acclimation period, I started the trial by increasing 

the water velocity by 5 volts every 15 minutes until the fish fatigued, with ‘fatigue’ 

defined as a fish ceasing swimming and its entire body remaining on the downstream 

mesh screen. I noted the time and voltage when a fish was impinged for 10 seconds, but 

continued the trial increasing water velocity every 15 minutes until impinged for 30 

seconds. This allowed me to determine a value for the critical swimming speed for both 

10 seconds fatigued (U-crit10s) and 30 seconds fatigued (U-crit30s). When all 3 fish 
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fatigued for 30 seconds I ended the trial, removed them from the flume and into 

individual buckets filled with natural fresh water with an airstone and let them recover for 

5 minutes. After the recovery period, I placed the fish in an anaesthetic bath (comprised 

of 0.3mL of clove oil in 5mL of ethanol for every 16L of water) to measure fork length 

and wet weight of each fish. Following this, I provided another recovery period in 

oxygenated fresh water, and then returned the fish to their respective family barrel. I 

repeated the above protocol for all families and considered it ‘round 1’ of swimming 

which occurred at approximately 15 weeks post-hatch.  

After I swam all 36 families, I conducted the entire flow challenge experiment 

again and considered it ‘round 2’ of swimming, which occurred at approximately 18 

weeks post-hatch. Thus, I swam a sample from every family on two instances. On the day 

of a families’ swim trial, I did not feed them, as being fed versus fasted has been shown 

to affect a fish’s critical swimming speed (Thorarensen & Farrell, 2006). I calculated U-

crit for each fish according to Brett (1964) and as explained by Fisher & Leis (2009): U-

crit = U + (t/ti * Ui), where U is the penultimate speed, Ui is the velocity increment, t is 

the time swum in the final velocity increment and ti is the set time interval for each 

velocity increment. 

Statistical Analysis  

  If a fish did not start swimming during the 30 minute acclimation period it was 

regarded as ‘disqualified’ (even if it started swimming when the actual test began), and 

thus was not included in the analysis. In addition, if a family only had 1 fish swim during 

its trial the family was not included in the analysis since there would not be any ‘within 

group’ variation for the ANOVA. To determine if there were parental genetic effects on 
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the number of fish that swam per family (i.e. willingness to swim), I used two-sided 

Fisher’s exact test (Field, 2009). I chose this test instead of the Pearson’s chi-square 

because the maximum number of fish that could swim per family is 3, thus the expected 

frequencies are less than 5 (Field, 2009). The Kolmogorov-Smirnov test confirmed that 

all U-crit10s and U-crit30s data for both rounds of swimming were normal. To determine 

if critical swimming speeds differed among rounds of swimming, I used one-way fixed 

factor ANOVA.  

Parental genetic effects on offspring swimming performance 

  I first used two one-way fixed factor ANOVAs to determine if offspring body size 

(fork length and wet weight) affected U-crit; it did not (for neither U-crit10s nor U-

crit30s, for both rounds) and so I removed offspring body size from the analysis (all P-

values greater than or equal to 0.09). I used a one-way random factor ANOVA to 

determine family effects on critical swimming speed for both U-crit10s and U-crit30s for 

both rounds of swimming. To calculate the variance components I followed formulas 

given in Table 1 from Graham & Edwards (2001), and used the average for the sample 

size since they were unequal due to having to remove individuals from the analysis (as 

detailed above). I followed this by using one-tailed independent t-tests for significant 

results to determine which families were different from one another, with Bonferroni 

correction for multiple t-tests where appropriate (Field, 2009).  

  To further differentiate parental effects on offspring swimming performance (U-

crit), I used two-way random factor ANOVA (for both U-crit10s and U-crit30s, for both 

rounds), to partition variance in offspring swimming to female identity (dam), male 

identity (sire), and their interaction (dam x sire). The variance components were 
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calculated as mentioned above. The contribution of additive genetic effects to offspring 

U-crit was calculated from four times the sire component of variance, the nonadditive 

genetic effects were calculated from four times the dam x sire component of variance, 

and the maternal effects were calculated from the difference between the dam and sire 

components of variance (reviewed in Neff & Pitcher, 2005). I used Tukey’s posthoc on 

paternal results to determine which males sired better performing offspring. 

Effect of performance cross on offspring swimming performance 

   To determine if the differential performance crosses affect U-crit, I used a one-

way ANOVA (for both U-crit10s and U-crit30s, for both rounds) with performance cross 

entered as a fixed factor. The variance components were calculated as mentioned above. I 

then used Tukey’s posthoc on significant results to determine which performance crosses 

differed in swimming ability.  

 

2.3 Results 

 For round 1 of swimming, 83 out of a possible 108 individuals (76.9%) actually 

swam and included individuals from all 36 families. However, since families where only 

1 individual swam had to be taken out of the analysis (due to no variation for the 

ANOVA), the analysis includes 76 individuals representing 29 families. For round 2 of 

swimming, 87 out of a possible 108 individuals (80.6%) actually swam but 4 families had 

to be excluded, again due to having only one swimming member. Thus, the analysis for 

round 2 includes 83 individuals representing 32 families. Two-sided Fisher’s exact test 

on the number of fish that swam per family (i.e. willingness to swim) revealed that there 

was no effect of family (round 1: P = 0.295; round 2: P = 0.577), female (round 1: P = 
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0.153; round 2: P = 0.767) or male (round 1: P = 0.683; round 2: P = 0.369) on the 

number of fish that swam. The critical swimming speeds did significantly improve from 

round 1 to round 2 of swimming for U-crit10s (Round 1: µ = 27.2 ± 0.71 cm/s, n = 76; 

Round 2: µ = 36.2 ± 1.24 cm/s, n = 83; ANOVA: F(1, 157) = 37.42, P < 0.001) and for 

U-crit30s (Round 1: µ = 30.9 ± 0.87 cm/s, n = 76; Round 2: µ = 40.3 ± 1.27 cm/s, n = 83; 

ANOVA: F(1, 157) = 36.39, P < 0.001) (Fig. 2.1).    

Parental genetic effects on offspring swimming performance  

For round 1 of swimming, there was no significant family effect on either U-

crit10s or U-crit30s (Table 2.4). There was however, a significant family effect on both 

U-crit10s and U-crit30s for round 2 of swimming, which explained 23% and 24% of the 

variation in U-crit respectively (Table 2.4) (Fig. 2.2). One-tailed independent t-tests for 

round 2 of swimming showed that for U-crits10s the family with the highest U-crit (µ = 

54.8 ± 0.18 cm/s) was different from the family with the lowest U-crit (µ = 21.1 ± 2.13 

cm/s) (t(1) = -15.74, P = 0.02). Also, for U-crit30s the family with the highest U-crit (µ = 

57.8 ± 3.23 cm/s) was different from the family with the lowest U-crit (µ = 22.9 ± 0.21 

cm/s) (t(1) = -10.79, P = 0.02). No other U-crit pairs were statistically different from one 

another.      

  A two-way random factor ANOVA for round 1 of swimming revealed that none 

of the three effects (dam, sire, and dam x sire) significantly affected offspring swimming 

performance for either U-crit10s or U-crit30s (Table 2.5) (Fig. 2.3a and b; Fig. 2.4a and 

b). However for round 2 of swimming, the sire effect (additive genetic effect) became 

significant for U-crit10s and even more so for U-crit30s (Fig. 2.3c and d), explaining 

14% and 25% of the variation respectively, but the dam (Fig. 2.4c and d) and interaction 
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effects were not significant (Table 2.5). For round 2 of swimming, I estimated that 

additive genetic effects represented 56% of the total phenotypic variance in U-crit10s, 

and 100% for U-crit30s (Table 2.5). Tukey’s posthoc for round 2 for U-crit10s showed 

that offspring sired by male 511 had a significantly higher mean U-crit (µ = 41.4 ± 3.19 

cm/s, n = 16) than offspring sired by male 504 (µ = 27.0 ± 1.75 cm/s, n = 13) (P = 0.006 ) 

(Fig.2.3c). Tukey’s posthoc for round 2 for U-crit30s showed that again offspring sired 

by male 511 had a significantly higher mean U-crit (µ = 46.4 ± 3.37 cm/s, n = 16) than 

offspring sired by male 504 (µ = 30.1 ± 1.93 cm/s, n = 13) (P = 0.001). The posthoc for 

round 2 for U-crit30s also revealed that there is more divergence among sires (3 

homogenous subsets) than U-crit10s where males 504, 506, and 507 are clustered 

together, and males 502, 503, 507 and 511 are clustered together, with some overlap 

between these two groups. (Fig. 2.3d).     

Effect of performance cross on offspring swimming performance 

  For round 1 of swimming, there was no effect of performance cross on either U-

crit10s or U-crit30s (Table 2.6) (Fig. 2.5a). For round 2 of swimming there was no effect 

for U-crit10s, but a significant effect for U-crit30s which explained 61% of the variation 

(Table 2.6) (Fig. 2.5b). Tukey’s posthoc tests for round 2 U-crit30s showed that offspring 

of the H/H performance cross had a significantly higher mean U-crit (µ = 46.1 ± 1. 84 

cm/s, n = 23) than offspring of the L/L performance cross (µ = 35.7 ± 2.44 cm/s, n = 21) 

(P = 0.011). It also revealed 2 homogenous subsets where crosses H/H and L/H are 

clustered together and crosses L/H, H/L, and L/L are clustered together (Fig. 2.5b).  
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2.4 Discussion 

 My study examined the role of genetic quality and maternal effects on offspring 

swimming performance in Chinook salmon, a species that demonstrates a nonresource-

based mating system. I determined the offsprings’ U-crit as a method to compare 

swimming ability among families at two time points for each family, once at approx. 15 

weeks post-hatch (‘round 1’) and then again at approx. 18 weeks post-hatch (‘round 2’). 

Values of U-crit significantly improved from round 1 to round 2 of swimming, indicating 

that even being only approximately 3 weeks older allows Chinook to have enhanced 

swimming ability. Interestingly, U-crit was not affected by offspring body size, similar to 

previous studies outlined in Table 2.1 (Huuskonen et al., 2009; Nadeau et al., 2009; 

Kekalainen et al., 2010b). As Kekalainen et al. (2010b) mention, this could indicate that 

the offspring body size traits measured in our study (fork length and wet weight) and 

swimming performance (U-crit) are separate measures of fitness. However, it is known 

that rapidly growing larvae may benefit from having their sense organs and swimming 

ability more developed, assisting in predator detection and escape (Bailey, 1984; Bailey 

& Batty, 1984; Fuiman et al., 2004). The fact that I found that U-crit was not dependent 

on body size could be due to there not being enough variation in offspring body size to 

detect an effect,  or possibly the measure of swimming ability I chose (U-crit), but 

perhaps the two offspring fitness-related traits are in fact independent of each other.  

The sire component of variance (and not dam or dam x sire effects) was the only 

factor explaining genetic variation in U-crit. Furthermore, and perhaps most interesting is 

that the paternal effect was only significant for round 2 of swimming, suggesting an 

increasing role of paternal effects (i.e. additive genetic effects) on offspring swimming. 
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The fact that paternal identity only had a significant effect on swimming for round 2 

supports the notion that it is important to consider the current age of the offspring when 

examining the genetic architecture of traits (Heath & Blouw, 1998; Wilson & Réale, 

2006; Kruuk et al., 2008; Evans et al., 2010), especially when comparing results between 

studies. The paternal effect only explained 14% of the variation in U-crit10s and 25% of 

the variation in U-crit30s. That I was only able to explain a small amount of variation 

could be due to low sample size creating too much variation with groups. However, since 

the contribution of additive genetic effects to phenotypic variation increased from round 

1 to round 2 of swimming (from 0% to 56% for U-crit10s and from 27% to 100% for U-

crit30s), it would be interesting to see if this trend continues as the offspring age, and 

indicates the necessity of future research on genetic quality throughout ontogeny. The 

only study from Table 2.1 that I can compare my results to is Nadeau et al. (2009), as 

they tested for maternal and paternal effects in offspring of a similar age to ours. They 

did not find a paternal effect on juvenile burst swimming, however their design involved 

four blocks where each block represented one of four males, and so it is possible that the 

effect could have been confounded by block. Evidence for paternal effects later in life 

exists on other traits in offspring, such as on parasite resistance in 3 month old 

sticklebacks (Barber et al., 2001), and on length in juvenile brown trout (Serbezov et al., 

2010). However, it is important to recognize that paternal effects have also been shown to 

play a role on various traits in very young offspring (e.g. Wedekind et al., 2001; Bang et 

al., 2006; Polacik & Reichard, 2009; Huuskonen et al., 2011). Evans et al. (2010) 

followed the survival and growth of Chinook salmon offspring from larval to juvenile 

stage, showing a shift from maternal to additive genetic effects on survival across those 
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developmental stages, and strong additive effects on juvenile length, adding to the 

importance of considering age when examining and comparing the genetic architecture of 

traits.  

That I did not find any dam effects (neither genetic nor maternal environmental) 

is most likely due to the age of the fish when measured, as maternal effects on offspring 

phenotypic traits are known to decrease over time (reviewed in Heath & Blouw, 1998). 

Interestingly, the dam component of variance was actually lower than the sire component 

of variance (for all except for round 1, Ucrit10s), which is theoretically not possible since 

the dam component of variance includes both maternal additive genetic effects and 

maternal environmental effects (Lynch & Walsh, 1998). This finding is therefore 

indicative of negative maternal effects as was found by Heath et al. (1999), which are 

masking additive genetic effects from dams. In Chinook salmon, Heath et al. (1999) 

found that maternal effects were high initially on offspring size during the larval stage of 

development, but then decreased to the point of becoming negative during the next 

developmental stage (fry stage). In their study, the negative maternal effects occurring at 

the fry stage corresponded to a change in offspring growth rate, where offspring at this 

age that hatched from smaller eggs actually had faster growth than offspring from larger 

eggs (Heath et al., 1999). That I found that the dam component of variance was less than 

the sire component of variance at the parr stage of development supports the notion by 

Heath et al. (1999) that the decrease in maternal effects is not always a steady decrease to 

zero, but instead can have a negative effect before finally having no effect. Previous 

genetic studies on offspring swimming (see Table 2.1) that found maternal effects were 

conducted on newly-hatched larvae (Green & McCormick, 2005; Huuskonen et al., 2009; 
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Kekalainen et al., 2010b), whereas I swam my fish at approx. 3.5 and 4 months after 

hatching. Furthermore, Nadeau et al. (2009), which also used older juvenile salmon, did 

not find maternal effects on offspring burst swimming and report that they too may have 

seen maternal influences had they conducted tests sooner after hatching. I also suspect, 

given previous research mentioned above, that I would have seen maternal effects had I 

measured newly-hatched larvae. By reviewing previous research (Table 2.1) and 

combining my results, it seems that dams play the prominent role influencing offspring 

swimming ability at early ages, which switches to sires being the more prominent 

influence later in life.  An exception to the idea of maternal effects early on is Nicoletto’s 

(1995) study on guppies (Poecilia reticulata), where they found maternal effects on U-

crit in adult offspring. A possible explanation for this finding is that guppies are live-

bearers and thus life history (such as oviparity versus viviparity) can affect the role of 

non-genetic maternal effects (Heath & Blouw, 1998). As such, it is likely that when 

comparing the genetic architecture of offspring traits of fishes with varying life histories 

(e.g. an ovoviviparous guppy and an egg laying, semelparous salmonid), the findings 

could be quite diverse. Overall, considering that I found a paternal influence on U-crit 

when older, I suggest that during round 1 I swam the offspring at an ‘intermediate’ age 

where the genetic architecture on this trait was shifting from predominantly maternal 

influences to paternal influences, revealing additive genetic variation from ‘good genes’ 

that are finally detected during round 2 of swimming. Further analyses throughout 

ontogeny are necessary to confirm this given that no one study currently exists that 

follows the genetic architecture of offspring swimming ability throughout life-stages 

(Table 2.1).  
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My finding of a paternal effect on U-crit at a later age ties into my investigation 

on the effect of performance cross on offspring swimming performance. There was no 

effect of performance cross on U-crit for round 1 of swimming, however there was a 

significant effect for round 2, with offspring of the H/H cross having a significantly 

higher mean U-crit than offspring of the L/L performance cross. Interestingly, the L/H 

performance cross (when sires were high performance) had a higher mean U-crit than the 

H/L performance cross (when dams were high performance), providing further evidence 

that additive genetic variation from sires seems to be playing a more important role (on 

U-crit, at this age) than additive genetic variation from dams. Overall, the posthoc tests 

indicate that if offspring acquire an ‘L’ (from either parent) their mean U-crit is no better 

than the ‘L/L’s, but if offspring acquire an ‘H’ from their father they will have a higher 

mean U-crit. This section of my study indicates that indeed, the existing ‘high-survival 

line’ and ‘low-survival line’ of Chinook salmon also show differences in swimming 

ability, and provides further evidence that there is a genetic component to swimming 

ability and that sires have a stronger influence on parr swimming.  

As part of my methodology for measuring swimming performance, I chose to 

measure U-crit when an individual was fatigued for 10 seconds, but continued the test 

and measured U-crit again for that same fish when fatigued for 30 seconds. The purpose 

of this was to evaluate if 10 seconds of rest was enough to identify that an individual was 

fatigued, since I did not use an electrified grid (e.g. Anglea et al., 2004) on the 

downstream screen to stimulate swimming. Other U-crit tests using salmon that did not 

use an electrified grid have used varying criteria for ‘fatigue’, such as being impinged for 

longer than 5 seconds (Peake et al., 1997), for 30 seconds (Wagner et al., 2003), or 
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ceasing to swim after providing decreases in velocity, and then returning to the fatigue 

speed (Alsop & Wood, 1997; Katzman & Cech Jr, 2001). During my swim trials, after 

resting for only 10 seconds, many fish would continue to swim for much longer, 

indicating that 30 seconds of rest is needed to identify actual fatigue. However, all of the 

results for parental genetic effects on swimming were similar for U-crit10s vs. U-crit30s. 

This indicates that 10 seconds of rest may be enough to identify initial fatigue if 

experimental time is limited, however 30 seconds of fatigue might be a more accurate 

estimation of true U-crit. It is also worthwhile to note that the mean U-crit values were 

higher for U-crit30s than for U-crit10s. Therefore, researchers should be cautious when 

comparing the critical swimming speeds of fishes if different methodology is used and I 

suggest that future studies on genetic effects on swimming use a fatigue cut-off closer to 

30 seconds for a more robust indicator of effects.  

Specifically, U-crit is relevant for investigating endurance and aerobic capacity 

(Fisher and Leis, 2009), and as mentioned earlier, is associated with the swimming 

abilities of fishes and thus linked to their survival (Plaut, 2001). One might therefore 

propose the following question; are those individuals with higher critical speeds more fit 

to withstand selection pressures? I swam my study fish (which are ocean-type Chinook) 

at approx. 3.5 and 4 months after hatching. Around this time in the wild, some juvenile 

(ocean-type) Chinook salmon are leaving their freshwater natal stream where they were 

born, and are migrating to the ocean (Healey, 1991). Downstream migration can be 

actively directed in Chinook parr (Healey, 1991), and young Chinook hold their station in 

the water current to obtain drifting food (Childerhose & Trim, 1979). Therefore, 

measuring U-crit for Chinook salmon at the age I did may be an indication of their ability 
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to remain against the current, and thus feed. Perhaps better swimming offspring would 

have higher survival rates and so those genes would be passed on, but this remains to be 

explicitly tested. 

In conclusion, I found increasing paternal effects (additive genetic variation) on 

offspring swimming performance in older juvenile Chinook salmon. Overall, there is a 

severe gap in the knowledge of genetic effects on offspring swimming performance, 

despite the critical importance of swimming to survival. In the few studies that have been 

done (Table 2.1), effects range from no genetic contribution up to and including full 

maternal and paternal effects and both additive and nonadditive genetic variation. Given 

the different life-stages studied and measures of swimming ability used, the range of 

genetic effects seen is perhaps not surprising but highlights that expanded research effort 

is needed in this area. In the future, I would like to see research that explores genetic 

quality on offspring swimming performance throughout ontogeny, from newly-hatched 

larvae though maturation. This would allow one to fully map the changing patterns in the 

genetic architecture of this trait which is so important for the survival of fishes and 

ultimately to explain variation in fitness. Additional future research could also 

incorporate sexual selection by conducting a mate choice experiment, to determine for 

example if female Chinook are able to ‘detect’ the higher quality sires. If so, these 

females could acquire indirect benefits from ‘good genes’ by producing better swimming 

offspring. 
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Table 2.1 Summary of the 7 studies to my knowledge that exist on parental genetic 

effects on offspring swimming ability of fishes. The reference, stage of ontogeny – 

species, if parental care occurred and by who, what the authors used as a measure of 

swimming performance, and the results for each study are given. For the result, if 

maternal, paternal, or interaction effects are not mentioned, it means they were not tested 

for. 

Reference  Stage - Species Parental 

Care? 

Measure of 

Swim 

Performance  

Result 

Nicoletto, 

1995 

Sexually mature 

adults 

-guppy (Poecilia 

reticulata) 

No Critical 

swimming speed 

(U-crit) 

Maternal effects 

(No paternal or 

interaction 

effects) 

Garenc et al., 

1998 

Juveniles   

– threespine 

sticklebacks 

(Gasterosteus 

aculeatus)   

  

Yes – by 

males during 

egg 

incubation 

and early 

post-hatch 

Burst-swimming Inter-family 

differences 

significant at 2 

months but 

NOT at 3.6 

months 

Evans et al., 

2004 

Newborns 

-guppy (Poecilia 

reticulata) 

No Anti-predator 

behaviour 

(schooling, 

Paternal effects 

on capture time 

only 
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swimming speed 

response, & 

ability to evade 

capture  

Green & 

McCormick, 

2005 

Newly-hatched 

larvae 

– tropical 

clownfish 

(Amphiprion 

melanopus) 

Yes – 

paternal egg 

care 

Critical 

swimming speed 

(U-crit) 

Maternal effects 

(No paternal or 

interaction 

effects) 

Huuskonen 

et al., 2009 

Newly-hatched, 

yolk-sac larvae  

– whitefish 

(Coregonus 

lavaretus) 

No Time of fatigue 

against gravity-

driven flow  

 

Maternal and 

family effects 

(No paternal or 

interaction 

effects) 

Nadeau et 

al., 2009 

Juveniles  

– sockeye salmon 

(Oncorhynchus 

nerka) 

No Burst-swimming No maternal or 

paternal effects 

Kekalainen 

et al., 2010b 

Newly-hatched, 

yolk-sac larvae  

-  whitefish 

(Coregonus 

No Time of fatigue 

against gravity-

driven flow 

All 3 parental 

effects 

significant: 

Maternal, 
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lavaretus) paternal, and 

interaction 

effects 
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Table 2.2 6x6 Breeding design with ‘performance crosses’ identified. Dam identification 

numbers and their corresponding performance crosses are displayed vertically and 

bolded; sire identification numbers and their corresponding performance crosses are 

displayed horizontally and bolded. The resulting offsprings’ performance cross for all 36 

families is shown.  

 

      L   H   L   L   H        H 

            Dam/Sire 502 503 504 506 507      511 

L 15  L/L L/H L/L L/L L/H      L/H 

L 26  L/L L/H L/L L/L L/H      L/H 

L 38  L/L L/H L/L L/L L/H      L/H 

H 41  H/L H/H H/L H/L H/H      H/H 

H 46  H/L H/H H/L H/L H/H      H/H 

H 49  H/L H/H H/L H/L H/H      H/H 
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Table 2.3 Velocity of water at each rheostat voltage for swim trials. 

 
Voltage Water velocity (cm/s)        Velocity increment (cm/s) 
 

60           16.95  

   6.13 

65           23.08  

   5.22 

70           28.30  

   4.67 

75           32.97  

   5.49 

80           38.46  

   2.64 

85           41.10  

   10.62 

90           51.72  

   10.78 

95           62.50  

   -1.28 

100          61.22  

   -3.53 

105              57.69 
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Table 2.4 Summary of the one-way random factor ANOVA results for family effects on 

offspring U-crit10s and U-crit 30s, for both rounds of swimming. The table includes the 

source of variation, degrees of freedom (DF, with the numerator and denominator values 

where appropriate), sum of squares (SS), F statistic, P-value, and the variance component 

(σ2) with the percent of total variance (% total var) explained. Significant values (P < 

0.05) are indicated in bold.  

Source of  DF SS MS F P σ2 (% total 
variation        var)   
                                      
 
ROUND 1       
 
U-crit10s       
  Family 28, 47 1225.4 43.8 1.225 0.264 3.1 (8) 
  Residual 47     35.7 (92) 
       
U-crit30s       
  Family 28, 47 2009.6 71.8 1.488 0.112 9.0 (16) 
  Residual 47     48.2 (84) 
       
       
ROUND 2       
 
U-crit10s       
  Family 31, 51 5400.1 174.2 1.765 0.035 29.0 (23) 
  Residual 51     98.7 (77) 
       
U-crit30s       
  Family 31, 51 5745.5 185.3 1.818 0.029 32.1 (24) 
  Residual 51     101.9 (76) 
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Table 2.5 Summary of the two-way random factor ANOVA results for parental effects 

(dam, sire, and their interaction) on offspring U-crit10s and U-crit30s for both rounds of 

swimming. The table includes the source of variation, degrees of freedom (DF, with the 

numerator and denominator values where appropriate), sum of squares (SS), F statistic, 

P-value, and variance component (σ2) with the percent of total variance (% total var) 

explained by each source (negative variance components are treated as zero). The table 

also includes the percent of phenotypic variance (% phenotypic var) from maternal 

effects, and additive and nonadditive genetic effects. Significant values (P < 0.05) are 

indicated in bold.  

Source of  DF SS MS F P σ2 (% total var) % phenotypic  
variation       var 
 

ROUND 1         

U-crit10s         

  Dam 5, 18.2 186.5 37.3 0.729 0.610 -0.9 (0) Maternal          0 

  Sire 5, 18.6 108.4 21.7 0.425 0.825 -1.9 (0) Additive          0 

  Dam x Sire 18, 47 922.9 51.3 1.435 0.160 6.0 (14) Nonadditive   57 

  Residual 47     35.7 (86)   

         

U-crit30s         

  Dam 5, 18.3 357.1 71.4 1.303 0.306 1.1 (2) Maternal          0 

  Sire 5, 18.7 569.9 114.0 2.083 0.113 3.8 (7) Additive         27 

  Dam x Sire 18, 47 987.7 54.9 1.138 0.349 2.5 (4) Nonadditive   18 

  Residual 47     48.2 (87)   
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Table 2.5 continued 

 

ROUND 2         

U-crit10s         

  Dam 5, 21.8 477.2 95.4 0.661 0.656 -3.2 (0) Maternal          0 

  Sire 5, 21.8 2213.2 442.6 3.069 0.030 19.0 (14) Additive         56 

  Dam x Sire 21, 51 3055.3 145.5 1.474 0.130 18.0 (13) Nonadditive   53 

  Residual 51     98.7 (73)   

         

U-crit30s         

  Dam 5, 22.2 769.2 153.8 1.596 0.202 3.7 (3) Maternal          0 

  Sire 5, 22.2 3235.4 647.1 6.713 0.001 35.3 (25) Additive       100 

  Dam x Sire 21, 51 2021.0 96.2 0.944 0.541 -2.2 (0) Nonadditive     0 

  Residual 51                   101.9 (72)  
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Table 2.6 Summary of the one-way fixed factor ANOVA results for performance cross 

effects on offspring U-crit10s and U-crit30s for both rounds of swimming. The table 

includes the source of variation, degrees of freedom (DF, with the numerator and 

denominator values where appropriate), sum of squares (SS), F statistic, P-value, and the 

variance component (σ2) with the percent of total variance (% total var) explained 

(negative variance components are treated as zero). Significant values (P < 0.05) are 

indicated in bold. 

 

Source of  DF SS MS F P          σ2 (% total 
variation                    var) 
             
 
ROUND 1       
 
U-crit10s       
  Performance  3, 72 45.4 15.1 0.381 0.767      -9.4 (0) 
  cross  
  Residual 72                 9.7 (100) 
       
U-crit30s       
  Performance  3, 72 51.7 17.2 0.293 0.830     -15.9 (0) 
  cross  
  Residual 72                56.7 (100) 
       
 
ROUND 2       
 
U-crit10s       
  Performance  3, 79 838.9 279.6 2.302 0.083    60.8 (33) 
  cross  
  Residual 79               121.5 (66) 
       
U-crit30s       
  Performance  3, 79 1754.0 584.7 5.026 0.003   180.1 (61) 
  cross  
  Residual 79                116.3 (39) 
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Fig. 2.1 Critical swimming speeds (U-crit) significantly improved from round 1 to round 

2 of swimming, for both U-crit10s and U-crit30s. The filled circles represent U-crit10s, 

and the open circles U-crit30s.  
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Fig. 2.2 Variation in offspring mean critical swimming speed (U-crit) due to family for 

round 2 of swimming. The filled circles and solid line represent U-crit10s, and the open 

circles and dashed line U-crit30s.  
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Fig. 2.3 Sire effect on offspring mean critical swimming speed (U-crit). Round 1 of 

swimming for (a) U-crit10s and (b) for U-crit30s. Round 2 of swimming for (c) U-crit10s 

and (d) for U-crit30s. The pattern is non-significant for round 1 of swimming but is 

significant for round 2 for both U-crit10s and U-crit30s, with the letters ‘a’, ‘b’, and ‘c’ 

denoting the homogenous subsets. 
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Fig. 2.4 Dam effect on offspring mean critical swimming speed (U-crit). Round 1 of 

swimming for (a) U-crit10s and (b) for U-crit30s. Round 2 of swimming for (c) U-crit10s 

and (d) for U-crit30s. The patterns are non-significant. 
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Fig. 2.5 Effect of performance cross on offspring mean critical swimming speed (U-crit) 

for both U-crit10s and U-crit30s for (a) round 1 of swimming and for (b) round 2 of 

swimming. The filled circles represent U-crit10s, and the open circles U-crit30s. For the 

performance crosses, the first letter indicates the performance line of the dam, and the 

second letter indicates the performance line of the sire. The trend is significant for round 

2 U-crit30s, and the letters ‘a’ and ‘b’ denote the homogenous subsets. 
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CHAPTER III 

VARIATION IN CONTRIBUTIONS OF ADDITIVE AND NONADDITIVE 

GENETIC EFFECTS AND MATERNAL EFFECTS ON LENGTH AND 

SURVIVAL THROUGHOUT ONTOGENY IN CHINOOK SALMON 

(ONCORHYNCHUS TSHAWYTSCHA) 

 

3.1 Introduction 

Phenotypic traits in offspring may show inter-individual variation due to 

differences in the genetic quality of their parents (e.g. Bilde et al., 2008; Klemme et al., 

2008). ‘Genetic quality’ is comprised of two components, both ‘good genes’ and 

‘compatible genes’, whereby offspring traits (e.g. disease resistance) may show additive 

genetic variation from good genes and/or nonadditive genetic variation from compatible 

genes (reviewed in Neff & Pitcher, 2005). Research on either one or both of these 

components of genetic quality are most ideally studied in mating systems where only 

genes are provided to offspring, known as ‘nonresource-based mating systems’ as 

opposed to ‘resource-based mating systems.’ In resource-based mating systems, offspring 

receive not only genes but additional parental care such as food, shelter and protection 

from predators, which can also affect offspring characteristics (Neff & Pitcher, 2005). 

Nonresource-based mating systems are therefore better suited for investigating the effects 

of genetic quality on a desired trait in offspring, as other confounding factors like direct 

benefits influencing intra-specific variation among offspring can be avoided (Neff & 

Pitcher, 2005; Wedekind et al., 2008; Hettyey et al., 2010).  
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Studies on parental genetic effects on offspring performance traits are plentiful in 

fishes (e.g. Wedekind et al., 2001, Wedekind et al., 2008; Huuskonen et al., 2009; 

Polacik & Reichard, 2009; Rodriguez-Munoz & Tregenza, 2009; Jacob et al., 2010), 

perhaps because not only do many species have nonresource-based mating systems, but 

many are also external fertilizers (Hettyey et al., 2010). Thus, investigators can extract 

and artificially cross the gametes of dams and sires to produce full factorial breeding 

designs (i.e. North Carolina Design II) (Lynch & Walsh, 1998). In fishes with no parental 

care, investigators must also however consider maternal (i.e. non-genetic) effects on 

offspring. Although there may be no parental care, dams can influence the quality of her 

offspring by the amount of nutrients provisioned in her eggs, hormones and cytoplasm, 

and by where she chooses to deposit her eggs (reviewed in Green, 2008). Although 

numerous studies exist on parental effects on offspring performance traits in fishes (e.g. 

in whitefish, Coregonus sp., Wedekind et al., 2001; in striped bass, Morone chrysops x 

Morone saxatilis, Wang et al., 2006; in sockeye salmon, Oncorhynchus nerka, Nadeau et 

al., 2009), not all used species with nonresource-based mating systems; thus results are 

likely confounded by parental non-genetic effects (Neff & Pitcher, 2005; Hettyey et al., 

2010). Additionally, not all previous studies further partitioned the observed parental 

effects (dam, sire, and dam x sire) into contributions of additive and nonadditive genetic 

effects and maternal effects to the phenotypic variance in the trait measured (Neff & 

Pitcher, 2005; Bang et al., 2006). Since the ‘dam’ factor includes both genetic and 

maternal effects, failure to partition genetic effects further only allows assessment of 

‘female effects’, a broader term which encompasses both genetic and maternal influences 

(Green, 2008).  Thus without further partitioning one cannot determine if significant 
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female effects are because of the mothers’ genetics, non-genetic contributions, or both 

(Bang et al., 2006; Green, 2008). Using the North Carolina Design II to its full potential 

is advantageous, as one can separate the dam component of variance into its two elements 

(Lynch & Walsh, 1998; for an example on larval spinal deformity see Evans & Neff, 

2009). By performing a full factorial breeding design, all possible crosses are carried out 

between a group of dams and a group of sires. Thus, variance in the measured phenotypic 

trait can be partitioned among additive genetic effects, nonadditive genetic effects, and 

true maternal (non-genetic) effects (Lynch & Walsh, 1998; reviewed in Neff & Pitcher, 

2005; Puurtinen et al., 2009).  

When considering the genetic architecture of phenotypic traits, recent research 

shows that the stage of ontogeny is influential, as the genetic architecture of traits can 

vary within individuals across their life stages (Heath & Blouw, 1998; see Evans et al., 

2010 and references therein). In Chinook salmon (Oncorhynchus tshawytscha), during 

the larval stage maternal effects are the prominent factor affecting survival but by the parr 

stage, additive genetic effects affect survival and maternal effects no longer do, 

presenting evidence for a shift from maternal to genetic influences on offspring survival 

(Evans et al., 2010). Similarly, variation in genetic architecture with age was found in 

early embryo mortality vs. late embryo mortality in Alpine whitefish (Coregonus 

zugensis) (Wedekind et al., 2008). Previous studies have shown significant heritabilities 

and genetic components to performance traits like body size and survival (e.g. Gjerde & 

Schaeffer, 1989; Silverstein & Hershberger, 1995; Choe & Yamazaki, 1998; Hard et al., 

1999; Funk et al., 2005; Bang et al., 2006; Ma et al., 2008; Nielsen  et al., 2010). To my 

knowledge however, no one study currently exists that has followed the contributions of 
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additive and nonadditive genetic effects and maternal effects to variation in a phenotypic 

trait in fish from larva through to sexual maturation. In the current study I used Chinook 

salmon, an externally fertilizing species with a nonresource-based mating system 

(Healey, 1991), in a North Carolina Design II method performing all possible crosses 

between 7 dams and 7 sires to examine dam, sire, and dam x sire effects on offspring 

body size and survival. I followed the two performance traits in the offspring for 3 years 

(from hatching through to the adult stage). I also estimated the contributions of additive 

genetic effects, nonadditive genetic effects, and true maternal effects to offspring length 

and survival at several time points throughout ontogeny. The second part of the current 

study takes advantage of the fact that the dams and sires utilized belong to either a ‘high-

survival line’ or a ‘low-survival line,’ created from a marker-assisted broodstock 

selection program initiated in 1997 that identified two separate salmon lines based on 

variation in growth- and survival-related gene markers (Docker & Heath, 2002). The 

fully crossed breeding design therefore created offspring that were purebred or hybrid for 

the high- and low-survival lines, allowing me to determine if the different survival lines 

currently still possess differences in size and survival. Additionally, since our study spans 

larval stages through to adulthood, I was able to determine at what stage of development 

any differences in survival and size between the two lines manifested.  

 

3.2 Methods 

Study Species, Breeding Design and Rearing Conditions  

 Study Species and Breeding Design: In the fall of 2008, I haphazardly selected 7 

female and 7 male sexually mature (4 year old) Chinook salmon to create 49 half- and 
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full-sib families in a North Carolina Design II, which crosses the gametes of all dams and 

sires in every pair-wise combination (Lynch & Walsh, 1998). The dams and sires used in 

the current study were 7th generation descendants originating from crosses between wild 

females taken from the Robertson Creek Hatchery (Port Alberni, B.C.) and wild males 

taken from Big Qualicum River Hatchery (Qualicum Beach, B.C.) in 1985, and raised at 

the Yellow Island Aquaculture Ltd (YIAL) hatchery and netcage site on Quadra Island, 

British Columbia. In 1997, YIAL began a marker-assisted broodstock selection program 

creating two differential survival lines (termed a ‘high-survival line’ and a ‘low-survival 

line’) based on variation in growth and survival related gene markers (Docker & Heath, 

2002). The descendants I used in the current study were also from these two lines. The 

dams and sires for the current study were haphazardly selected until 3 of the dams were 

from the high-survival line and 4 were from the low-survival line (and same for the sires), 

with identity established from previously implanted coded wire tags inserted into the nose 

of each fish. From here on, the high-survival line (H) and the low-survival line (L) will be 

referred to as ‘performance crosses’. The full factorial breeding design created offspring 

that were one of the following four performance crosses: ‘H/H’ where both parents were 

of the high-survival line, ‘H/L’ where the dam is of the high-survival line and the sire is 

of the low-survival line, ‘L/H’ which is the opposite of the previous, or ‘L/L’ where both 

parents are of the low-survival line. All procedures were approved by the University of 

Windsor Animal Use and Care Committee.  

Rearing Conditions: The selected adult salmon were sacrificed via cerebral 

concussion, and gametes were extracted for artificial fertilizations, where an 

approximately equal amount of eggs from each female were fertilized by each male. I 
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split fertilized eggs from a family into two cells in Heath trays to account for location 

effects, therefore requiring 98 cells (2 per family). During incubation the Heath trays 

were exposed to natural, untreated fresh water (from an artesian well) that ranged from 

7°C to 9°C. UV-treated salt water was pumped through the trays for 30 minutes a day, 3 

times a week to reduce fungus growth until hatching. The incubation trays were checked 

every other day until the end of the endogenous feeding stage to remove all unfertilized 

eggs and dead offspring.  

At the end of the endogenous feeding stage in March 2009, all larvae from a 

family were transferred to a 200 L barrel, therefore requiring 49 barrels. However, if the 

offspring count in a family barrel exceeded 150 individuals, the remainder were 

transferred to a new barrel, but only the original barrels were considered for this study. 

Heath et al. (1999) which used a similar rearing design did not find a correlation between 

rearing density (which could be different due to mortality differences among families) 

and growth. All barrels were cared for equally with flow-through fresh water ranging 

from 7°C to 10.5°C, aeration, and light from 7am – 5pm. Fish care consisted of feeding 

the offspring daily with EWOS feed (EWOS Canada Ltd.), vacuuming the barrels every 5 

days, and removing any dead offspring. 

In June 2009, a sample of 30 parr (unless there were fewer remaining individuals) 

from each family were anaesthetized with clove oil and injected with Passive Integrated 

Transponder (PIT) tags to allow individual identification. All tagged offspring from every 

family were then transferred to one 15 x 15 x 20 ft netpen at YIAL in the Pacific ocean. 

Offspring were reared to adulthood, where in June 2010 all individuals were transferred 

to a bigger netpen 15 x 30 x 30 ft, and then later transferred once again to a new netpen 
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(15 x 30 x 30) in June 2011. In November 2010, any males that had become ‘Jacks’ were 

removed from the netpen; the removal of Jacks is only relevant for this study in terms of 

survival, meaning that I must take into account that fish were removed and thus should 

not be considered ‘dead’. During ocean life, fish were fed twice a day (Taplow Grower, 

Taplow Ventures Ltd.). Any mortalities were retrieved and scanned for their PIT tag, to 

identify their dam and sire.  

Body size measurements 

 As indicators of body size, I measured fork length and wet weight. I measured 

offspring body size 5 times throughout ontogeny as follows: ‘Date 1’ = March 2009/End 

of larval stage; ‘Date 2’ = June 2009/Parr stage; ‘Date 3’ = November 2009/Juvenile 

stage; ‘Date 4’ = June 2010/Adult stage; and ‘Date 5’ = June 2011/Adult stage. For Date 

1, I measured a sample of 20 fish per family. For Date 2 I measured all PIT-tagged fish, 

which was 30 fish per family unless there were fewer remaining individuals. For Dates 3, 

4 and 5 I measured all PIT-tagged fish that were still alive at the sample date. 

Survival measurements 

 To calculate survival, it was important that I accounted for fish that were removed 

artificially during rearing so that they were not considered fish that were lost due to 

natural death. Thus, I calculated offspring percent survival as the # of individuals alive 

per family/ total # of individuals per family initially (after any removal). The 

denominator in this calculation accounts for when individuals were artificially removed 

which occurred at barreling, PIT tagging, and when Jacks were removed as explained 

above. I calculated offspring percent survival for each family at 4 times throughout 
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ontogeny, referred to as ‘Dates A-D’: ‘Date A’ = March 2009; ‘Date B’ = June 2009; 

‘Date C’ = June 2010; and ‘Date D’ = June 2011 (Table 3.1).  

Statistical Analysis 

Body size 

  I was able to collect length data at all sample dates, but I was not able to collect 

weight data at Date 4 when the fish were living in netpens in the ocean. This was due to 

technical difficulties of the scale I had available at the time not being able to tare in rough 

conditions. Thus, I chose to analyze only the length data since I had data for all sample 

dates, and since the length and weight data were highly correlated (see below). When 

testing the fork length and wet weight data for normality, the Kolmogorov-Smirnov test 

confirmed that the data were statistically not normal. However, Field (2009; pg. 144) 

states that a limitation of the K-S test is that it is very easy to get significant results from 

small deviation from normality when there are large sample sizes. Thus, a significant K-S 

test does not necessarily mean that the ‘deviation’ from normality will bias the results 

when analyzing the data and that one should examine the normality plots to view the 

scope of any non-normality (Field, 2009). The current study does indeed have very large 

sample sizes at each date length data were collected, and so I followed up the K-S test by 

viewing histograms and Q-Q plots of the data. Upon inspection of the fork length data, 

histograms showed bell-shaped curves and Q-Q plots revealed observed values that fell 

exactly along the straight line (except for a only a few points at the ends) indicating that 

the data were normal. This was not the case for some of the wet weight data indicating 

deviations from normality.  
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 To confirm that I could use only the fork length data for my analyses, I performed 

a correlation test to determine if the length and weight data were correlated with one 

another. I chose to use the non-parametric Spearman’s correlation coefficient since the 

weight data were not normal. The test confirmed that fork length and wet weight were 

highly correlated, r = .99, p (one-tailed) < .001. Thus, I used only fork length as an 

indicator of body size.  

Parental genetic effects on offspring length 

 I used 5 one-way random factor ANOVAs (one for each sample date) to 

determine family effects on offspring fork length. I adjusted the alpha level to 0.013 

(0.05/4) for all dates to account for the same individuals being measured throughout this 

study. To calculate the variance components I followed formulas given in Table 1 from 

Graham & Edwards (2001), and used the average for the sample size since they were 

unequal due to differences in mortality among families.  

  To further differentiate parental effects (from overall family effects) on offspring 

length, I used 5 two-way random factor ANOVAs (one for each date) using the adjusted 

alpha level of 0.013, to partition variance in offspring fork length to female identity 

(dam), male identity (sire), and their interaction (dam x sire). The variance components 

were calculated as mentioned above. The contribution of additive genetic effects to 

offspring fork length was calculated from four times the sire component of variance, the 

nonadditive genetic effects were calculated from four times the dam x sire component of 

variance, and the maternal effects were calculated from the difference between the dam 

and sire components of variance (reviewed in Neff & Pitcher, 2005). I used Tukey’s 
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posthoc on significant results to determine which dams and sires differed in offspring 

length. 

Performance cross effects on offspring length 

To determine if the differential performance crosses affect offspring length, I used 

5 one-way fixed factor ANOVAs (one for each date, using the adjusted alpha level of 

0.013) with performance cross as the main effect. The variance components were 

calculated as mentioned above. I then used Tukey’s posthoc on significant results to 

determine which performance crosses differed in length. 

Survival  

 I first transformed the percent survival data using the arcsine square-root 

transformation, and tested the survival data for all dates for normality using the K-S test. 

All data were normal.  

Parental genetic effects on offspring survival 

To differentiate parental effects on offspring survival, I used 4 two-way random 

factor ANOVAs (one for each date) which allowed me to partition variance in offspring 

survival to female identity (dam) and male identity (sire). I was unable to obtain the 

interaction effect (dam x sire) for Date A and Date B since there is only one percent 

survival value per family and thus no variation for the ANOVA. I adjusted the alpha level 

to 0.017 (0.05/3) for all dates to account for the same individuals being measured 

throughout this study. Variance components were calculated in the same way as 

described above for length. Because the offspring were PIT tagged in June 2009, I was 

able to follow the survival of each individual from here on and could include this for 

analysis of survival at Date C and Date D. Thus, I performed logistic regression on those 
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last two dates as it is more powerful. Since I have many individuals per family, I can now 

obtain the interaction effect (dam x sire) for Date C and Date D. I used the adjusted alpha 

level of 0.017 (0.05/3) to be conservative. 

In summary for ‘parental genetic effects on offspring survival,’ I used a two-way 

random factor ANOVA for Date A and Date B and then logistic regression for Date C 

and Date D. However, I also performed a two-way random factor ANOVA for Date C 

and for Date D to obtain the mean squares to calculate the variance components. I used 

Tukey’s posthoc for Date A and Date B on results to determine which dams and sires 

produced better performing offspring (denoting homogenous subsets in figures using 

letters). For Date C and Date D logistic regression provided which dams and sires 

produced offspring with significantly higher survival than the dam and sire with the 

lowest offspring survival (denoted by asterisks in figures; P < 0.05).  

Performance cross effects on offspring survival 

To determine if the differential performance crosses affect offspring survival at 

Dates A-D, I followed the same statistical procedures as explained immediately above for 

‘parental genetic effects on offspring survival,’ using both ANOVA and logistic 

regression and the adjusted alpha level of 0.017 (0.05/3). The only difference here is that 

performance cross effects required a one-way fixed factor ANOVA as opposed to a two-

way random factor ANOVA for parental effects. 
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3.3 Results 

Body size 

Parental genetic effects on offspring length 

 Family significantly affected offspring fork length for all dates examined, 

explaining 48% of the variation in length for Date 1, 19% for Date 2, 17% for Date 3, 

10% for Date 4, and 6% of the variation in length for Date 5 (Table 3.2).  

For Date 1 (end of larval stage), dam and dam x sire significantly affected 

offspring fork length, explaining 38% and 12% of the variation respectively, but the sire 

effect was non-significant (Table 3.3). Maternal effects represented 38% of the total 

phenotypic variance in length while nonadditive genetic effects represented 49% of the 

total phenotypic variance in length. Tukey’s posthoc revealed 5 homogenous subsets for 

dam effects. Dam ID # 7 produced offspring with the highest mean length (μ = 4.27 ± 

0.01 cm, n = 115) and dam ID # 12 produced offspring with the lowest mean length (μ = 

3.94 ± 0.01 cm, n = 140) (Table 3.3) (Fig. 3.1a; Fig. 3.2a).   

For Date 2 (parr stage), all three factors (dam, sire and dam x sire) significantly 

affected offspring fork length, explaining 15%, 2% and 4% of the variation respectively 

(Table 3.3). I estimated that maternal effects represented 13% of the total phenotypic 

variance in length. Additive genetic effects represented 8% of the total phenotypic 

variance in length, and nonadditive genetic effects represented 14% of the total 

phenotypic variance in length. Tukey’s posthoc revealed 5 homogenous subsets for dam 

effects and 3 homogenous subsets for sire effects. Dam ID # 7 produced offspring with 

the highest mean length (μ = 8.02 ± 0.04 cm, n = 121) and dam ID # 12 produced 

offspring with the lowest mean length (μ = 7.36 ± 0.03 cm, n = 210). Sire ID # 226 
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produced offspring with the highest mean length (μ = 7.93 ± 0.03 cm, n = 203) and sire 

ID # 227 produced offspring with the lowest mean length (μ = 7.67 ± 0.07 cm, n = 190) 

(Table 3.3) (Fig. 3.1b; Fig. 3.2b).   

For Date 3 (juvenile stage), dam and sire significantly affected offspring fork 

length, explaining 13% and 4% of the variation respectively, and the interaction of dam x 

sire became non-significant (Table 3.3). I estimated that maternal effects represented 9% 

of the total phenotypic variance in length, and additive genetic effects represented 15% of 

the total phenotypic variance in length. Tukey’s posthoc revealed 5 homogenous subsets 

for dam effects and 3 homogenous subsets for sire effects. Dam ID # 9 produced 

offspring with the highest mean length (μ = 16.5 ± 0.06 cm, n = 173) and dam ID # 12 

produced offspring with the lowest mean length (μ = 15.5 ± 0.08 cm, n = 155). Sire ID # 

226 produced offspring with the highest mean length (μ = 16.2 ± 0.08 cm, n = 171) and 

sire ID # 230 produced offspring with the lowest mean length (μ = 15.6 ± 0.08 cm, n = 

144) (Table 3.3) (Fig. 3.1c; Fig. 3.2c).   

For Date 4 (adult stage), dam was the only factor that significantly affected 

offspring fork length explaining 11% of the variation (Table 3.3). I estimated that 

maternal effects represented 10% of the total phenotypic variance in length. Tukey’s 

posthoc revealed 5 homogenous subsets for dam effects. Dam ID # 9 produced offspring 

with the highest mean length (μ = 23.3 ± 0.19 cm, n = 138) and dam ID # 12 produced 

offspring with the lowest mean length (μ = 20.9 ± 0.22 cm, n = 114) (Table 3.3) (Fig. 

3.1d; Fig. 3.2d).   

For Date 5 (adult stage), dam and again sire significantly affected offspring fork 

length explaining 7% and 2% of the variation respectively, and the interaction of dam x 
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sire was non-significant (Table 3.3). I estimated that maternal effects represented 5% of 

the total phenotypic variance in length, and additive genetic effects represented 7% of the 

total phenotypic variance in length. Tukey’s posthoc revealed 3 homogenous subsets for 

dam effects and 2 homogenous subsets for sire effects. Dam ID # 9 produced offspring 

with the highest mean length (μ = 43.7 ± 0.42 cm, n = 82) and dam ID # 12 produced 

offspring with the lowest mean length (μ = 40.5 ± 0.42 cm, n = 69). Sire ID # 227 

produced offspring with the highest mean length (μ = 43.2 ± 0.42 cm, n = 90) and sire ID 

# 230 produced offspring with the lowest mean length (μ = 41.0 ± 0.33 cm, n = 84) 

(Table 3.3) (Fig. 3.1e; Fig. 3.2e).   

Performance cross effects on offspring length 

 Performance cross significantly affected offspring fork length for Date 1, Date 2, 

Date 3 and Date 4 explaining 55%, 22%, 25%, and 16% of the variation respectively, but 

did not significantly affect length for Date 5 (Table 3.4). Tukey’s posthoc revealed 2 

homogenous subsets for Date 1, Date 2, and Date 4, and 3 homogenous subsets for Date 

3.  For Date 1, the L/H performance cross produced offspring with the highest mean 

length (μ = 4.14 ± 0.01 cm, n = 233) and the H/H performance cross produced offspring 

with the lowest mean length (μ = 4.03 ± 0.01 cm, n = 180). For Date 2, the H/H 

performance cross produced offspring with the highest mean length (μ = 7.89 ± 0.02 cm, 

n = 270) and the L/L performance cross produced offspring with the lowest mean length 

(μ = 7.68 ± 0.03 cm, n = 414). For Date 3, the L/H performance cross produced offspring 

with the highest mean length (μ = 16.1 ± 0.06 cm, n = 260) and the H/H performance 

cross produced offspring with the lowest mean length (μ = 15.7 ± 0.06 cm, n = 212). For 

Date 4, the L/H performance cross produced offspring with the highest mean length (μ = 
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22.3 ± 0.18 cm, n = 204) and the H/H performance cross produced offspring with the 

lowest mean length (μ = 21.6 ± 0.14 cm, n = 169) (Table 3.4) (Fig. 3.3).  

Survival 

Parental genetic effects on offspring survival 

For Date A (end of larval stage), dam and sire both significantly affected offspring 

survival explaining 61% and 10% of the variation respectively, with mean survival from 

dams ranging from 13 – 78% and from sires ranging from 46 – 75%. I could not test the 

interaction effect (dam x sire). From the variance components, I estimated that maternal 

effects represented 51% of the total phenotypic variance in survival, and that additive 

genetic effects represented 40% of the total phenotypic variance in survival. Tukey’s 

posthoc revealed 2 homogenous subsets for dam effects and 2 homogenous subsets for 

sire effects (Table 3.5) (Fig. 3.4a; Fig. 3.5a).   

For Date B (parr stage), neither dam nor sire significantly affected offspring 

survival. Although non-significant, mean survival from dams ranged from 85 – 96% and 

from sires ranging from 84 – 95%. I could not test the interaction effect (dam x sire) 

(Table 3.5) (Fig. 3.4b; Fig. 3.5b).   

For Date C (adult stage), logistic regression revealed that dam and dam x sire 

significantly affected offspring survival, and the sire effect was non-significant. By using 

the mean squares from the two-way random factor ANOVA, I calculated that the dam 

effect explained 12% of the variation in survival. I estimated that maternal effects 

represented 12% of the total phenotypic variance in survival. As mentioned previously, I 

could not obtain a value for the mean square for the interaction (dam x sire) effect. Thus, 

I could not calculate that variance component for this effect, or determine what 
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percentage of the total phenotypic variance that the nonadditive genetic effects represent. 

The logistic regression revealed that four of the dams produced offspring that had 

statistically (P < 0.05) higher survival than the dam that produced offspring with the 

lowest survival. The dams produced offspring with survival ranging from 55 – 72%. 

Although non-significant, sires produced offspring with survival ranging from 59 – 68% 

(Table 3.5) (Fig. 3.4c; Fig. 3.5c).   

For Date D (adult stage), logistic regression revealed that the dam effect was the 

only factor significantly affecting offspring survival, explaining 27% of the variation. I 

estimated that maternal effects represented 26% of the total phenotypic variance in 

survival. Four of the dams produced offspring that had statistically (P < 0.05) higher 

survival than the dam that produced offspring with the lowest survival. The dams 

produced offspring with survival ranging from 34 – 57%. Although non-significant, sires 

produced offspring with survival ranging from 35 – 49% (Table 3.5) (Fig. 3.4d; Fig. 

3.5d).   

Performance cross effects on offspring survival 

Performance cross significantly affected offspring survival for Date D only 

explaining 80% of the variation. Logistic regression revealed that for Date D, two of the 

performance crosses (H/H and H/L) produced offspring that had statistically (P < 0.05) 

higher survival than the performance cross that produced offspring with the lowest 

survival (L/H). For Date D due to performance cross, offspring survival ranged from 36 – 

53% (Table 3.5) (Fig. 3.6). 
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3.4 Discussion 

The current study presents the first investigation to follow the contributions of 

additive and nonadditive genetic effects and maternal effects to variation in phenotypic 

traits in fish from larval stages through to adulthood. I used the North Carolina Design II 

(Lynch & Walsh, 1998) breeding design to cross all dams and sires in every pair-wise 

combination, and followed the body size and survival of the offspring for three years in 

Chinook salmon. I determined offspring size (fork length) at five times throughout 

ontogeny, and offspring survivorship at four times throughout ontogeny, and partitioned 

the variation to additive and nonadditive genetic effects, and maternal effects. In previous 

studies that used species with nonresource-based mating systems to determine all three 

contributions (additive, nonadditive and maternal effects) to offspring size and survival, 

the results among studies were variable. For instance, effects on offspring growth range 

from both maternal and additive effects (in Chinook salmon fry, Evans et al., 2010), to 

nonadditive and maternal effects but no additive effects (in larval Lake Ontario Chinook 

salmon, Pitcher & Neff, 2007), to additive effects on length but not on weight showing 

variation due to what measure of size was used (in larval Atlantic herring, Bang et al., 

2006). Similarly, effects on offspring survival range from nonadditive and maternal 

effects (in embryonic sea lamprey, Rodriguez-Munoz & Tregenza, 2009), to all three 

(additive, nonadditive and maternal) (in larval Lake Ontario Chinook salmon, Pitcher & 

Neff, 2007). The differences among the studies in contributions to phenotypic variation 

are likely due to environmental variation, various species used, and developmental stage 

when measured. 
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Body Size 

In the current study, I found that results varied across development, with the 

factors explaining variation in length generally decreasing over time. Interestingly, the 

dam component of variance remained significant on offspring length for all five dates 

measured which at first seems to contradict the statement that maternal effects decrease 

over time (reviewed in Heath & Blouw, 1998; and in Green, 2008). However, when the 

dam component was separated and the maternal effects were estimated, the maternal 

effect went from representing 38% of the phenotypic variation at the larval stage, but 

decreased to 13% by the parr stage and continued to decrease for the remaining dates. 

That I found higher maternal effects early in development supports the established 

concept that maternal effects decrease over time, due to other factors like offspring 

genome and environmental quality increasing in their influence (e.g. Heath et al., 1999; 

reviewed in Heath & Blouw, 1998; and in Green, 2008). The nonadditive (dam x sire) 

effects on length in the current study also decreased over time, suggesting that genetic 

compatibility does affect length but the effects are life-stage specific. Similarly, in a 

previous study on Chinook salmon, maternal and nonadditive effects contributed to larval 

growth (comparable to my Date 1 measurement), which represented 11% and 73%, 

respectively, of the phenotypic variation (Pitcher & Neff, 2007). In the current study, I 

found that nonadditive effects were higher than maternal effects (by 11%) for larval 

length, which was also seen in Pitcher and Neff (2007), although their nonadditive effects 

were much larger than the maternal effects. The sire component of variance was not 

significant (i.e. no additive effects) for larval length, but was significant at the parr stage, 

juvenile stage, and adult stages of development, although the additive effects represented 
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a small portion of phenotypic variance. Additive effects on length have also been found 

at the fry stage in Chinook previously (Evans et al. 2010), however their additive effects 

were much stronger representing 39% for one population of Chinook salmon, and 33% 

for another population of Chinook. That I found no additive effects on larval length is 

also consistent with previous work on larval Lake Ontario Chinook (Pitcher and Neff 

2007). Previous studies have shown that additive genetic effects are important for body 

size in fish and explain for example, 62% and 27% of the variation in early and late 

mortality respectively, in whitefish (Coregonus sp.) (Wedekind et al., 2001); 14% of the 

variation in alevin length in brook charr (Salvelinus fontinalis) (Perry et al., 2004); 57% 

of the variation in larval size in Chinook salmon (Oncorhynchus tshawytscha) (Heath et 

al., 1999); 65% of the variation in larval standard length in Atlantic herring (Clupea 

harengus L.) (Bang et al., 2006) and 39% and 33% of the variation in fry length in two 

populations of Chinook salmon (Oncorhynchus tshawytscha) (Evans et al. 2010). 

Overall, the current study shows changes in contributions of additive and nonadditive 

effects and maternal effects throughout developmental stages. By reviewing our results 

and the findings of similar studies, it seems as though maternal effects and nonadditive 

effects contribute to larval length, which switches to additive effects playing a role when 

older.  

 Although the differences in offspring length among dams and among sires seems 

small, it is well known that the size of offspring, especially in the early stages of 

development is a major influence for survival and recruitment (e.g. Jenkins & King, 

2006; Fontes et al., 2011; reviewed in Chambers & Leggett, 1996). For instance, being 

larger at hatching offers several benefits such as, having more time to find food sources 
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thus being more resistant to starvation (Miller et al. 1988), being too big for smaller 

predators to handle and consume (Bailey, 1984), and having sense organs and swimming 

ability more developed assisting in predator detection and escape (Bailey, 1984; Bailey 

and Batty, 1984; Fuiman et al. 2004). In Pacific salmon specifically, larger smolts also 

possess several advantages including better escape from predators and ability to catch 

prey due to enhanced swimming ability, and ultimately greater survival when migrating 

to and entering the sea (Beckman et al. 2003). In steelhead trout (Oncorhynchus mykiss), 

smolt-to-adult survival had a positive relationship with length (Ward et al. 1989). Thus, it 

would be interesting to see if the differences in offspring length among dams and sires 

seen in the current study would influence the fitness of the offspring if they were in the 

wild.  

Survival 

For survival, I also found that results varied throughout ontogeny, with the factors 

explaining variation generally decreasing over time similar to length. Evans et al. (2010) 

who also used Chinook salmon, found analogous results, as they found that maternal 

effects were high in larval survival for both populations they examined (55% and 61% of 

the phenotypic variation) which decreased drastically when older at the fry stage (4% and 

0%). In the current study, maternal effects contributed more than additive effects to larval 

survival (51% and 40%, respectively), and then decreased drastically with age. My 

finding of maternal effects and additive effects on survival at Date 1 (near the end of the 

endogenous feeding stage) is consistent with Pitcher & Neff’s (2007) study that used 

Lake Ontario Chinook salmon. They found in larvae, which is comparable to our Date 1 

measurement, that maternal effects represented 51% and additive effects represented 56% 
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of the phenotypic variance in survival (and also found that nonadditive effects 

represented 54%), the difference in their study being that additive effects were actually 

slightly higher than maternal effects (Pitcher & Neff, 2007).  Unlike Evans et al. (2010) 

however, I did not find that additive effects played a stronger role in older fish, as the sire 

component was nonsignificant for Dates B, C, and D. I could only test the dam x sire 

component for Dates C and D. Dam x sire was significant for Date C, but I was unable to 

determine how much of the phenotypic variation nonadditive effects represented.  It is 

unfortunate that I could not test nonadditive effects at Dates A and B, as nonadditive 

effects and maternal effects together represented 80% of the phenotypic variation in 

hatching success (additive effects were zero) in sea lamprey (Petromyzon marinus) 

(Rodriguez-Munoz & Tregenza, 2009). Interestingly, in their study nonadditive effects 

played a much larger role than maternal effects, as nonadditive effects represented 65.5% 

whereas maternal effects represented only 14.8% of the phenotypic variation (Rodriguez-

Munoz & Tregenza, 2009). Overall, it seems as though all three effects (additive, 

nonadditive and maternal) contribute to larval survival. Although I did not find additive 

effects later on, Evans et al. (2010) did and it is possible that had I used wild fish I may 

have seen similar results. By comparing the highest quality dam to the lowest for dates 

that the dam effect was significant, survival was increased by 65% for Date A, 16% for 

Date C, and 23% for Date D. By comparing the highest quality sire to the lowest for Date 

A (the only date the sire effect was significant), survival was increased by 29%. Since 

offspring mortality is high in the early stages of development, these genetic influences 

early on may impact subsequent recruitment to the population.  
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Performance cross effects on length and survival 
 
 That the performance crosses affected offspring length early on in the larval 

stages, decreasing through to adult stage means that differences among the high- and low- 

survival lines manifest early on, but decrease throughout development. The L/H 

performance cross produced the longest offspring for all dates except for Date 2. That the 

L/H performance cross (versus the H/L performance cross) produced longer offspring, it 

means that when sires are from the high-survival line, they produce bigger offspring than 

when dams are from the high-survival line, suggesting that sires, or additive genetic 

variance plays a more important role on length, across all stages of ontogeny. Depending 

on stage of development, either the H/H or the L/L performance crosses produced the 

shortest offspring. It is surprising that the H/H performance cross sometimes produced 

the shortest offspring, which indicates that the two survival lines have not maintained 

their integrity in terms of length.   

 For survival, results varied throughout ontogeny but unlike for length, the 

variation explained did not decrease over time but in fact increased. Performance cross 

explained 32% of survival for Date A (end of larval stage), which increased to 58% by 

Date B (parr stage), which decreased to 0% for Date C (adult), but then increased to 80% 

of the variation in survival by Date D (adult) and was only significant for Date D. This 

finding indicates that differences among the lines in terms of survival do not manifest 

themselves until older in the adult stage of development, which may be due to that the 

survival lines were selected based on survival to adulthood. At Date D, the H/L 

performance cross produced offspring with the highest survival, and increased survival 

by 17% compared to the lowest surviving cross (L/H). That the H/L performance cross 
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produced offspring with higher survival indicates that the dam is more important for 

survival. Although I cannot be certain if dams produce offspring with higher survival due 

to her genetic contribution or maternal effects (since dam identity includes both), it is 

likely due to her genetic contribution (additive effects) since maternal effects are known 

to decrease over time (reviewed in Heath & Blouw, 1998; and in Green, 2008), and since 

by Date D the offspring were almost 3 year-old adult salmon. The L/L performance cross 

never produced offspring with the highest survival, and the H/H performance cross never 

produced offspring with the lowest survival indicating that the two survival lines have 

maintained their integrity in terms of survival. 

 For both length and survival, the hybrid performances crosses (either H/L or L/H) 

most often produced offspring that were the longest and had the best survival (Fig. 3.3 & 

Fig. 3.6). This finding suggests that overdominance (i.e. the heterozygotes have higher 

fitness than either homozygote) is occurring, which has thus maintained the genetic 

diversity in terms of the high- and low-performance genotypes throughout the past seven 

generations. Heterozygosity has been positively correlated with several performance 

traits in salmonids, such as body size, disease resistance, viability, egg size, and egg 

number (as reviewed in Wang et al., 2002).  

In the current study, the offspring were reared in a common environment given 

the same amount of food, where predators were absent and where other factors that 

normally influence survival (e.g. competition for resources) were likely minimal due to 

the hatchery setting. This was done to minimize confounding factors so that any 

differences in size or survival seen among the offspring could be attributed to differences 

in genetic quality (and maternal effects).  Thus, perhaps it is possible that had the 
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offspring been reared in the wild where selection pressures (e.g. due to risk of starvation 

or predation) exist more heavily, differences in size and/or survival among the offspring 

could be more pronounced. In a tropical damselfish (Acanthochromis polyacanthus), 

parental condition affected juvenile survival when offspring were reared in a low-food 

environment, but not when reared in a high-food environment (Donelson et al., 2009). It 

is also important to mention that if genotype x environment interaction exists, then the 

different genotypes in the current study would respond differently to changes in the 

environment (Lynch & Walsh, 1998). Heath et al. (1993) found significant dam-by-

incubation temperature and sire-by-incubation temperature (i.e. genotype-by-

environment) effects on growth- and stress-related traits in Chinook salmon fry. Evans et 

al. (2010) also found genotype-by-environment effects on larval and fry survival and on 

fry length in Chinook salmon, whereas Wang et al. (2009) did not find genotype-by-

environment effects on growth performance in yellow perch (Perca flavescens). In 

European seabass (Dicentrarchus labrax), genotype-by-environment effects were found 

for growth rate, but not for weight (Dupont-Nivet et al., 2010).  Genotype-by-

environment interactions have also been reported in other fishes such as coho salmon 

(Oncorhynchus kisutch) (Devlin et al., 2004), and Atlantic salmon (Salmo salar) 

(Darwish & Hutchings, 2009). However genotype-by-environment interactions have been 

shown to be weak for growth traits and timing of maturity in rainbow trout 

(Oncorhynchus mykiss) (Fishback et al., 2002; Kause et al., 2003), for visceral fat in 

gilthead seabream (Sparus auratus L.) (Navarro et al., 2009) and absent for disease 

resistance in Chinook salmon (Balfry et al., 1997). If genotype-by-environment 

interactions exist, then the results in the current study could be specific to their rearing 
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environment, and thus future studies could examine several heterogeneous environments. 

Differences in size and/or survival may have been more evident had I selected dams and 

sires that were obtained directly from the wild or less domesticated. The dams and sires 

in the current study are 7th generation descendants raised in a hatchery setting since 1985. 

Therefore, it is possible that mechanisms of selection that may maintain differences in 

genetic quality of individuals in the wild are lacking in the more domesticated fish used 

in my study. I used these descendants for the purpose of studying the high- and low-

survival lines. However, since hatchery-reared and wild salmon have been shown to have 

many morphological, ecological and  behavioural differences between them (e.g. 

Blanchet et al., 2008; Anttila & Manttari, 2009; reviewed by Reisenbichler & Rubin, 

1999; and in Flagg et al. 2000), future studies could use dams and sires from the wild to 

better understand the genetic architecture of traits naturally occurring. Additionally, it is 

likely that differences in survival may have been more prominent, even in the fish used in 

the current study, if I did not have to ‘reset’ the number of individuals per family due to 

logistical constraints of rearing and amount I could PIT-tag. Ideally, I would have 

preferred to obtain an estimate of survival throughout ontogeny without ever having to 

remove individuals, but it was not feasible.  

In conclusion, my study adds to growing evidence that genetic architecture of 

traits varies within individuals across development. No other study has followed 

contributions of additive and nonadditive genetic effects and maternal effects to variation 

in a phenotypic trait in offspring from larval to adult stages. I found that genetic and 

maternal effects play an important role in larval length and survival, and that these effects 

decrease with age, possibly due to environmental variation masking genetic effects. My 
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study also adds to evidence of nonadditive genetic effects (i.e. genetic compatibility) 

affecting larval length, suggesting that ‘compatible genes’ can play very important roles 

in larval survival. This also suggests that individuals who get to choose their mates may 

benefit by having offspring with higher fitness if they find these more genetically 

compatible individuals. Finally, my study has various applications to conservation. 

Artificial breeding programs for depleting stocks of Pacific salmon currently exist 

(Swanson et al., 2008), although it is unclear how successful the individuals are in the 

wild and if they will be self-sustaining (Araki et al., 2008; Fraser, 2008). My study 

indicates that individuals do differ in their genetic quality, which may cause differences 

in fitness among individuals. Future breeding programs that mate individuals randomly 

may want to consider this. Allowing female Chinook to mate with many males may 

increase her chances of her offspring gaining additive genetic benefits from ‘good genes’, 

and/or finding more genetically compatible mates which would provide her offspring 

with nonadditive genetic benefits from ‘compatible genes.’ 
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Table 3.1 Summary of survival measurements, taken 4 times throughout ontogeny. The 

table shows for each date the offspring’s current stage of development, dates included, 

important notes concerning whether fish removal had occurred or not, and how survival 

was calculated (per family) at that date.  

 
      Stage of    Date Included  Details         Calculation 
      Development  
  
Date A     larval stage   Dec. 08-Mar. 09          before fish were     # of individuals  
       removed from         alive at Mar.09/ 
        barrels           total # of  
                  individuals at  
                  Dec. 08 
 

Date B     from larval to parr  Mar. 09-Jun. 09           after fish were         # of individuals 
       removed from         alive at Jun. 09/  
                 barrels           new # of  
                  individuals after   
                   fish removal 
 

Date C     from parr to adult  Jun. 09-Jun. 10           after PIT tagging    # of individuals    
        occurred                 alive at Jun. 10/ #  
                 of individuals   
                 PIT tagged 
 

Date D     adult   Jun. 10-Jun. 11           after Jacks were    # of individuals 
       removed                alive at Jun. 11/  
                new # of 
                individuals after   
                fish removal 
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Table 3.2 Summary of the one-way random factor ANOVA results for family effects on 

offspring length, for all 5 dates measured. The table includes the source of variation, 

degrees of freedom (DF, with the numerator and denominator values where appropriate), 

sum of squares (SS), F statistic, P-value, and the variance component (σ2) with the 

percent of total variance (% total var) explained. Significant values (adjusted alpha level 

of P < 0.013) are indicated in bold.  

 
Source of  DF SS MS F P σ2 (% total 
variation         var)  
  
Date 1       
  Family 48, 906 14.7 0.307 18.89 < 0.001  1.5 x 10-2 (48) 
  Residual    906     1.6 x 10-2 (52) 
    
Date 2       
  Family 48, 1330 93.1 1.940 7.564 < 0.001  6.0 x 10-2 (19) 
  Residual    1330     2.6 x 10-1 (81) 
   
Date 3       
  Family 48, 1044 236.7 4.931 5.606 < 0.001  1.8 x 10-1 (17) 
  Residual    1044     8.8 x 10-1 (83) 
   
Date 4       
  Family 48, 812 714.0 14.88 3.060 < 0.001  5.6 x 10-1 (10) 
  Residual    812      4.9           (90) 
 
Date 5       
  Family 48, 513 1116.2 23.25 1.670 0.004  8.5 x 10-1 (6) 
  Residual    513      13.92       (94) 
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Table 3.3 Summary of the two-way random factor ANOVA results for parental effects 

(dam, sire, and their interaction) on offspring length, for all 5 dates measured. The table 

includes the source of variation, degrees of freedom (DF, with the numerator and 

denominator values where appropriate), sum of squares (SS), F statistic, P-value, and 

variance component (σ2) with the percent of total variance (% total var) explained by 

each source (negative variance components are treated as zero). The table also includes 

the percent of phenotypic variance (% phenotypic var) from maternal effects, and 

additive and nonadditive genetic effects. Significant values (adjusted alpha level of P < 

0.013) are indicated in bold.  

 

Source of  DF SS MS F P σ2 (% total var) % phenotypic 
variation       var 
         
Date 1         

  Dam 6, 36.0 10.6  1.761 19.26 < 0.001 1.2 x 10-2 (38) Maternal         38  

  Sire 6, 36.1 0.35 0.058 0.641 0.696 -2.5 x 10-4 (0) Additive           0  

  Dam x Sire 36, 906 3.30 0.092 5.635 < 0.001 3.9 x 10-3 (12) Nonadditive    49  

  Residual 906     1.6 x 10-2 (50)    

Date 2         

  Dam 6, 36.2 58.4 9.739 16.74 < 0.001 4.9 x 10-2 (15) Maternal         13  

  Sire 6, 37.6 11.0 1.830 3.220 0.012 6.4 x 10-3 (2) Additive           8 

  Dam x Sire 36, 1330 21.0 0.584 2.277 < 0.001 1.2 x 10-2 (4) Nonadditive    14 

  Residual 1330      2.6 x 10-1 (79) 
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Table 3.3 Continued 

 

Date 3         

  Dam 6, 37.7 137.9 22.99 19.03 < 0.001 1.4 x 10-1 (13) Maternal         9  

  Sire 6, 39.0 45.4 7.569 6.307 < 0.001 4.1 x 10-2 (4) Additive        15 

  Dam x Sire 36, 1044 43.9 1.219 1.386 0.066 1.5 x 10-2 (1) Nonadditive    6 

  Residual 1044      8.8 x 10-1 (82) 

   

Date 4         

  Dam 6, 40.0 464.4 77.41 18.40 < 0.001 5.8 x 10-1 (11) Maternal       10 

  Sire 6, 42.5 66.3 11.05 2.615 0.030 5.5 x 10-2 (1) Additive         4 

  Dam x Sire 36, 812 150.4 4.178 0.859 0.706 -3.8 x 10-2 (0) Nonadditive    0 

  Residual 812      4.9 (88) 

  

Date 5         

  Dam 6, 45.5 526.5 87.76 9.270 < 0.001 1.0 (7) Maternal         5 

  Sire 6, 65.0 186.0 31.00 3.100 0.010 2.8 x 10-1 (2) Additive         7 

  Dam x Sire 36, 513 327.7 9.103 0.654 0.941 -4.4 x 10-1 (0) Nonadditive    0 

  Residual 513     13.9 (91) 
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Table 3.4 Summary of the one-way fixed factor ANOVA results for performance cross 

effects on offspring length, for all 5 dates measured. The table includes the source of 

variation, degrees of freedom (DF, with the numerator and denominator values where 

appropriate), sum of squares (SS), F statistic, P-value, and the variance component (σ2) 

with the percent of total variance (% total var) explained (negative variance components 

are treated as zero). Significant values (adjusted alpha level of P < 0.013) are indicated in 

bold. 

Source of  DF SS MS F P           σ2 (% 
variation                        total var)  
 
 
Date 1       
  Performance  3, 951 2.194 0.731 25.49    < 0.001    3.6 x 10-2 (55) 
  cross  
  Residual 951                2.9 x 10-2 (45) 
 
Date 2       
  Performance   3, 1375 8.355 2.785 8.991    < 0.001     8.8 x 10-2 (22) 
  cross  
  Residual  1375                3.1 x 10-1 (78) 
 
Date 3       
  Performance  3, 1089 25.39 8.464 8.160    < 0.001    3.4 x 10-1 (25) 
  cross  
  Residual 1089                1.0           (75) 
 
Date 4       
  Performance  3, 857 69.62 23.21 4.331       0.005     9.9 x 10-1 (16) 
  cross  
  Residual  857                 5.4          (84) 
 
Date 5       
  Performance  3, 558  55.18 18.39 1.251       0.290       3.3 x 10-1 (2) 
  cross  
  Residual 558                 14.7       (98) 
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Table 3.5 Summary of the two-way random factor ANOVA results for parental effects 

(dam and sire) on offspring survival, for all 4 dates measured. The table includes the 

source of variation, degrees of freedom (DF, with the numerator and denominator values 

where appropriate), sum of squares (SS), F or Wald statistic (W), P-value, and variance 

component (σ2) with the percent of total variance (% total var) explained by each source 

(negative variance components are treated as zero). The table also includes the percent of 

phenotypic variance (% phenotypic var) from maternal effects, and additive and 

nonadditive genetic effects. Significant values (adjusted alpha level of P < 0.017) are 

indicated in bold. For Date A and Date B, the P-values are from the two-way random 

factor ANOVA, and for Date C and Date D, the P-values are from logistic regression (as 

explained in the text). 

Source of  DF SS MS F  or      P σ2 (% total var)  % phenotypic var 
variation    Wald      
 
Date A         
  Dam 6, 36 2.647 0.441 F= 15.64      < 0.001 5.9 x 10-2 (61) Maternal       51 
  Sire 6, 36 0.579 0.096 F= 3.419      0.009 9.7 x 10-3 (10) Additive       40 
  Residual 36     2.8 x 10-2 (29)    
 
 
Date B         
  Dam 6, 36 0.262 0.044 F= 2.144      0.072 3.4 x 10-3 (14) Maternal       10 
  Sire 6, 36 0.163 0.027 F= 1.331      0.269 1.0 x 10-3 (4) Additive       16  
  Residual 36      2.0 x 10-2 (82) 
 
 
Date C         
  Dam 6, 36 0.202 0.034 W= 20.91      0.002 2.4 x 10-3 (12) Maternal       12 
  Sire 6, 36 0.042 0.007 W= 5.636      0.465 -1.4 x 10-3 (0) Additive         0 
  Dam x Sire 36   W= 56.39      0.016    
  Residual 48      1.7 x 10-2 (88) 
   
 
Date D         
  Dam 6, 36 0.322 0.054 W= 44.62      < 0.001 5.6 x 10-3 (27) Maternal       26 
  Sire 6, 36 0.096 0.016 W= 12.34      0.055 1.4 x 10-4 (1) Additive         3 
  Dam x Sire 36   W= 38.94      0.339   
  Residual 48      1.5 x 10-2 (72) 
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Table 3.6 Summary of the one-way fixed factor ANOVA results for performance cross 

effects on offspring survival, for all 4 dates measured. The table includes the source of 

variation, degrees of freedom (DF, with the numerator and denominator values where 

appropriate), sum of squares (SS), F or Wald statistic (W), P-value, and the variance 

component (σ2) with the percent of total variance (% total var) explained (negative 

variance components are treated as zero). Significant values (adjusted alpha level of P < 

0.017) are indicated in bold. For Date A and Date B, the P-values are from the one-way 

fixed factor ANOVA, and for Date C and Date D, the P-values are from logistic 

regression (as explained in the text). 

Source of  DF             SS                MS          F  or          P              σ2 (% 
variation            Wald                           total var)  
 
Date A       
  Performance  3, 45           0.380            0.127         F= 1.474      0.234           4.1 x 10-2 (32) 
  cross  
  Residual 45              8.6 x 10-2 (68) 
 
Date B       
  Performance   3, 45           0.160            0.053         F= 2.397      0.081           3.1 x 10-2 (58) 
  cross  
  Residual  45                                2.2 x 10-2 (42) 
 
Date C       
  Performance  3, 45           0.051            0.017         W= 8.010      0.046           -1.0 x 10-3 (0) 
  cross  
  Residual 45            1.8 x 10-2 (100) 
 
Date D       
  Performance  3, 45           0.240            0.080         W= 37.33     < 0.001        6.4 x 10-2 (80) 
  cross  
  Residual  45              1.6 x 10-2 (20) 
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Fig. 3.1 Dam identity vs. mean fork length (cm) for a) Date 1: March 2009, b) Date 2: 

June 2009, c) Date 3: November 2009, d) Date 4: June 2010, e) Date 5: June 2011 and f) 

all dates. The trend is significant for all dates, with the letters ‘a’, ‘b’, ‘c’, ‘d’ and ‘e’ 

denoting the homogenous subsets.  
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Fig. 3.2 Sire identity vs. mean fork length (cm) for a) Date 1: March 2009, b) Date 2: 

June 2009, c) Date 3: November 2009, d) Date 4: June 2010, e) Date 5: June 2011 and f) 

all dates. The trend is significant for Date 2, Date 3 and Date 5, with the letters ‘a’, ‘b’ 

and ‘c’ denoting the homogenous subsets. 
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Fig. 3.3 Performance cross vs. mean fork length (cm) for a) Date 1: March 2009, b) Date 

2: June 2009, c) Date 3: November 2009, d) Date 4: June 2010, e) Date 5: June 2011 and 

f) all dates. For the performance crosses, the first letter indicates the performance line of 

the dam, and the second letter indicates the performance line of the sire. The trend is 

significant for Date 1, Date 2, Date 3 and Date 4, with the letters ‘a’, ‘b’ and ‘c’ denoting 

the homogenous subsets. 
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Fig. 3.4 Dam identity vs. mean percent survival for a) Date A: March 2009, b) Date B: 

June 2009, c) Date C: June 2010, and d) Date D: June 2011. The trend is significant for 

Date A, Date C, and Date D, with the letters ‘a’ and ‘b’ denoting the homogenous subsets 

for Date A. Logistic regression was used for Date C and Date D, and asterisks for those 

dates indicate dams that produced offspring with significantly higher survival than the 

dam with the lowest survival (dam # 8). Figures were plotted using the untransformed 

percent survival data.  
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Fig. 3.5 Sire identity vs. mean percent survival for a) Date A: March 2009, b) Date B: 

June 2009, c) Date C: June 2010, and d) Date D: June 2011. The trend is significant for 

Date A only, with the letters ‘a’ and ‘b’ denoting the homogenous subset. Figures were 

plotted using the untransformed percent survival data. 
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Fig. 3.6 Performance cross vs. mean percent survival for a) Date A: March 2009, b) Date 

B: June 2009, c) Date C: June 2010, and d) Date D: June 2011. For the performance 

crosses, the first letter indicates the performance line of the dam, and the second letter 

indicates the performance line of the sire. The trend is significant for Date D, with 

asterisks indicating the performance crosses that produced offspring with significantly 

higher survival than the performance cross with the lowest survival (L/H). Figures were 

plotted using the untransformed percent survival data. 
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CHAPTER IV 

GENERAL CONCLUSIONS 

4.1 Summary of findings 

In my thesis, I investigated dam, sire, and dam x sire components of variance and 

the roles of additive and nonadditive genetic effects and maternal effects in three fitness-

related traits (length, survival, and swimming) in Chinook salmon. My thesis is unique in 

that it followed the contributions of additive and nonadditive genetic effects and maternal 

effects to variation in phenotypic traits throughout ontogeny (Chapter 3), a task that has 

not yet been undertaken in fish. My thesis also contributes to knowledge of parental 

genetic contributions to offspring swimming ability (Chapter 2). Previous research has 

shown variation in the roles that good genes, compatible genes and maternal effects play 

within the same trait and within species. Although the estimated contributions of additive, 

nonadditive and maternal effects on traits might differ, there have been some common 

themes among species. Maternal effects (i.e. non-genetic effects) have been widely 

studied in fish, and it is recognized that maternal effects typically play a more important 

role in the early life history stages of fish, and decrease with age (e.g. Heath et al., 1999; 

Perry et al., 2004; for reviews see Heath & Blouw, 1998; Green, 2008; Marshall et al., 

2008). In Chapter 2 on offspring swimming ability, I did not find any maternal effects, 

which is consistent with this theme as I did not swim larvae but swam older individuals 

near the end of their parr stage, meaning that maternal effects that could have existed 

initially, were no longer present by the parr stage of development. For length (Chapter 3), 

maternal effects were most evident at the first sample taken near the end of the larval 

stage, and decreased to hardly any contribution at later stages of development. Similarly 
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for survival (Chapter 3), maternal effects were much more important at the larval stage, 

and decreased drastically throughout development.  

 The importance of sire effects are becoming more recognized in the literature (see 

Rideout et al., 2004 and references therein), and have been reported to be important in 

both the early stages of development (e.g. Wedekind et al., 2001; Bang et al., 2006; 

Polacik & Reichard, 2009; Huuskonen et al., 2011), and also in later stages (e.g. Barber 

et al., 2001; Serbezov et al., 2010). Due to being masked by maternal effects (such as by 

differences in egg size; Rideout et al., 2004), additive genetic effects have sometimes 

been shown to be more prominent in later stages of development (e.g. Evans et al., 2010). 

This is what I found in Chapter 2 on offspring swimming ability; the sire effects were 

significant only for older parr, and the estimated contribution of additive genetic effects 

increased then as well. The dam effect was not significant, therefore attributing all 

additive genetic variation to paternity. I found a similar trend for offspring length in 

Chapter 3, where additive genetic effects were not present in the larval stages, but 

became evident for the parr, juvenile, and adult stages. However, additive genetic effects 

contributed much less to the phenotypic variation in length, than for swimming. Also, 

because the dam component of variance was significant at all dates for length, it means 

that dam additive genetic variation also played a role, as opposed to only sire additive 

genetic variation playing a role in offspring swimming. The theme of additive genetic 

effects not becoming more important than maternal effects until later stages of 

development does not apply to my analysis on survival (Chapter 3). For phenotypic 

variance in larval survival, maternal and additive genetic effects contributed almost 

equally, and I did not find any additive effects on older offspring survival. In summary, 
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my thesis shows that additive genetic effects can be important in both early and later 

stages of development, depending on the phenotypic trait examined.  

Nonadditive effects have also shown to be an important component of offspring 

fitness (e.g. Wedekind et al., 2001; Evans & Neff, 2009; Kekalainen et al., 2010a). My 

analysis on parr swimming ability (Chapter 2) showed some contributions of nonadditive 

effects, but the effect was non-significant. From the analysis on offspring length (Chapter 

3), I found nonadditive effects during the larval stage, which were slightly higher than 

maternal effects. By the parr stage, nonadditive effects were still significant on length but 

decreased to representing only a small amount of the phenotypic variation, and then were 

non-significant for the remaining dates. For survival, I found significant dam x sire 

effects in the adult stage, but I could not estimate the contribution of nonadditive effects. 

Unfortunately, I could not determine dam x sire effects for the larval and parr stages of 

development. Overall, my thesis adds to evidence of the importance of genetic 

compatibility on offspring traits, and that the contribution is life-stage specific.   

The other theme of my thesis was whether two different salmon lines (referred to 

as performance crosses) selected for differential growth and survival in 1997, have 

presently maintained differences in growth and survival, and if the two lines show 

differences in swimming ability. I also determined at which stages of development any 

differences among the lines manifested. Performance cross (i.e. whether the offspring 

were H/H, H/L, L/H or L/L) affected offspring swimming ability only in older parr (and 

not in younger parr). For offspring length, performance cross effects were significant for 

four out of the five dates measured spanning larval, parr, juvenile, and adult stages of 

development. For survival however, performance cross effects were only significant in 
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the adult stage. Interestingly, whether the dam or sire was from the high-survival line 

influenced offspring performance. For instance, the L/H performance cross (when sires 

were high performance) produced longer and better swimming offspring then the H/L 

performance cross (when dams were high performance) indicating the importance of 

additive genetic variation on those traits. For survival however, the opposite trend was 

found, where the H/L performance cross produced offspring with the highest survival, 

emphasizing the role of dam effects. That the two salmon lines created in 1997 still show 

differences in size and survival (and swimming), provides further evidence for 

heritability of these traits. My results showed that the integrity of the two lines have been 

maintained for survival, but not necessarily for length since the H/H performance line 

produced the shortest offspring at some stages of development. Regardless, the results 

indicate that any artificial breeders (such as for aquaculture), could implement a similar 

broodstock selection program if their goal is to increase offspring survival. The 

broodstock selection program would be especially useful for hatchery managers who 

wish to engage in organic farming to diminish the use of harmful substances, which also 

benefits surrounding wild fish.  

 

4.2 Future Directions 

Taken together, the cumulative results of my thesis provide evidence for genetic 

variation in offspring length, survival, and swimming ability in Chinook salmon. My 

thesis also displays how the contributions of additive, nonadditive and maternal effects 

can vary depending on the phenotypic trait examined, and stage of ontogeny. The next 

question might therefore ask, do Chinook dams and sires ‘recognize’ this genetic 
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variation, and sexually select the most appropriate individuals? Since female Chinook 

spawn multiple times in a series of nests (Healey, 1991), her eggs are presumably 

fertilized by more than one male, which may maximize her chances of receiving indirect 

benefits from good genes, and/or also finding more compatible mates. For instance, 

embryonic mortality is lower in polyandrously fertilized offspring (allowing sperm 

competition) than in monandrous fertilizations in a species (Arctic charr, Salvelinus 

alpinus) with a nonresource-based mating system (Kekalainen et al., 2010b). 

Additionally, evidence exists for female Chinook salmon exhibiting mate choice (by 

delaying spawning in the presence of smaller males) (Berejikian et al., 2000) which may 

be another mechanism for females to obtain indirect benefits, and thus increase the fitness 

of their offspring. Offspring mortality is high in fishes, especially during the transitional 

period from larval to juvenile stage (Caley et al., 1996). Since my thesis and previous 

research shows genetic variation in performance traits like body size and swimming 

performance, wild female Chinook may be able to increase the survival of her offspring 

by ‘choosing’ the best mate, since both additive and nonadditive genetic effects play 

important roles.  

 Although there were some common themes for the genetic architecture of traits in 

Chinook, differences among the literature in contributions of good genes and compatible 

genes effects also exist. Thus, another future direction from my thesis might be to 

investigate many wild populations within a species, to determine how similar or different 

the roles of additive and nonadditive effects and maternal effects are on those traits. As 

stated by Sanford & Kelly (2011), local adaptation “results in resident genotypes that 

have a higher fitness in their native habitat than do foreign genotypes from more distant 
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populations.” Subpopulations within the same species of salmon exist (due to natal 

homing) which have shown to exhibit local adaptation (reviewed in Fraser et al., 2011). 

Therefore, following the genetic architecture of fitness-related traits within 

subpopulations seems necessary to capture the genetic influences on the fitness of those 

individuals, as which genes and genotypes are important in one population may not 

necessarily be the case in others. Population-specific knowledge might therefore be 

critical for improving the success of artificial propagation programs for endangered and 

threatened wild Chinook salmon.  
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