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ABSTRACT 

Chinook salmon (Oncorhynchus tshawytscha) exhibit male alternative 

reproductive tactics (ARTs), in which males are either large, dominant hooknoses, or 

small precocious jacks. Multiple mating (or polyandry) is common by females, which 

partly explains the intense sperm competition. I examined whether females benefit 

genetically by mating with multiple males thus promoting sperm competition and 

whether males can use seminal plasma to influence the potential outcome during sperm 

competition. I found that polyandrous females do indeed benefit genetically compared to 

monandrous (singly mated) females through an increase in offspring hatching success. 

The benefits received by polyandrous females varied significantly depending on the 

ARTs used during sperm competition trials, with crosses involving a jack and a hooknose 

producing the offspring with the highest hatching success. I also found that jack seminal 

plasma decreases hooknose sperm velocity, with potential implications on the outcome of 

sperm competition between the two tactics.   
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CHAPTER 1: GENERAL INTRODUCTION 

 Darwin first formalized the term ‘sexual selection’, defined originally as 

sexually dimorphic traits that maximize the success of individuals in reproduction are 

selected upon to explain why animals exhibited a suite of traits (now known as secondary 

sexual characteristics) that clearly would decrease their survival (counter to the logic of 

natural selection), such as: bright coloration, large ornamentation, and elaborate songs. 

However, Darwin failed to grasp the wide-ranging scope of sexual selection, as he 

believed that all selection occurred prior to copulation. Pre-copulatory sexual selection 

entails both intersexual selection (i.e. male-male competition); in which males compete 

and fight for dominance and ultimately access to females, and intrasexual selection (i.e. 

female choice); where females choose which male they prefer; typically based on these 

elaborate secondary sexual characteristics (reviewed in Andersson, 1994). More recently, 

the field has come to realize that sexual selection also occurs after copulation (see 

reviews Birkhead, 2010; Andersson & Simmons, 2006; Birkhead & Pizzari, 2002). Post-

copulatory selection also encompasses both intersexual selection (i.e. sperm competition 

between males) and intrasexual selection (i.e. cryptic female choice), however, the 

processes take place after copulation has occurred (reviewed in Birkhead & Møller, 

1998).                                                                                                                                                                                             

 Sperm competition 

  Parker (1970) was the first to define sperm competition as “competition within a 

single female between the sperm from two or more males for the fertilization of the ova” 

and has since expanded this definition to include external fertilizers as “competition 
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between the sperm from two or more males for the fertilization of a given set of ova” 

(Parker, 1998). An extensive review done by Parker (1970) whereby he presents evidence 

in a number of insect species to support his findings of sperm competition shows that 

because females mate with more than one male and that sperm storage organs exist that 

allow sperm to stay viable for a long period of time, the chance for sperm competition to 

occur is very high and as a result males have adapted a number of strategies to try and 

outcompete other males that mate with the same female. These strategies include sperm 

precedence through the displacement of sperm from the first male to mate by the second 

male (especially prevalent in Drosophila melanogaster; e.g. Lefevre & Jonsson, 1962) 

and mating plugs, which are formed in the genital track of females from secretions by the 

male (seminal plasma or accessory gland) that work to prevent another male from 

depositing their sperm in the female and possibly outcompete the previous male’s sperm 

(Parker, 1970).   

 Parker (1990a) developed mathematical models to explain ways in which males 

can enhance their ejaculates and overcome sperm competition to increase success against 

competitors: the fair raffle and the loaded raffle. The fair raffle assumes that every sperm 

cell in the ejaculate has an equal chance to fertilize the eggs (hence “fair”), therefore in 

species where a fair raffle exists, the male with the most sperm cells in their ejaculate will 

have a greater chance to outcompete other males and have higher success (Parker, 1990a). 

For example, Holman et al. (2011) show that in the leaf-cutting ant (Atta colombica), 

sperm use by females, after sperm was stored from multiple males, was determined by 

sperm numbers alone, which suggests there are no differences in sperm competitive 

ability among males. In contrast, the loaded raffle assumes that each sperm cell does not 
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have an equal chance to fertilize eggs, but instead that there is variation of sperm quality 

within an ejaculate, and therefore male’s with greater sperm quality will be selected for, 

as they have a greater chance to outcompete other males and have higher fitness (Parker, 

1990a). For example, it was shown that bluegill (Lepomis macrochirus) exhibit a loaded 

raffle because sperm from two alternative reproductive tactics (see below) have a 

competitive advantage over the third alternative tactic and because of differences in 

mating position between the different tactics, this must be due to differences in sperm 

quality (Stoltz & Neff, 2006).  

Cryptic female choice 

 Cryptic female choice is the ability of a female to bias paternity towards a 

particular male when mating with multiple males and sperm competition provides the 

female with ejaculates from multiple males to ‘choose’ from. This bias can be 

accomplished using a variety of mechanisms such as inhibiting sperm storage and 

transport to fertilization sites within the genital tract, removal of mating plugs formed by 

males, and the act of remating with other males (Eberhard, 1996). Similar to research on 

sperm competition, all of the early work on cryptic female choice has focused on insects 

(red flour beetle, Tribolium castaneum, Edvardsson & Arnqvist, 2000; black field cricket, 

Teleogryllus commodus, Bussiere et al., 2006; soldier fly, Merosargus cingulatus, 

Barbosa, 2009), which is why it was termed ‘cryptic’, as fertilization occurs inside the 

female’s genital tract and therefore cannot be observed.  

 More recently, studies of cryptic female choice have been focused on externally 

fertilizing species such as fish. Unlike in insects, it is thought that because of the gametes 
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interacting in the environment and not inside the female, the only mechanism a female 

can use to bias paternity is through her ovarian fluid, which accompanies the eggs upon 

release. It has been shown across many fish species that ovarian fluid increases sperm 

activity (sperm longevity, percent motility, and sperm velocity) when compared to the 

absence of ovarian fluid: Arctic charr, Salvelinus alpinus, Turner & Montgomerie (2002); 

Rainbow trout, Oncorhynchus mykiss, Woolsey et al. (2006); Atlantic cod, Gadus 

morhua, Litvak & Trippel (1998); Chinook salmon, Oncorhynchus tshawytscha, 

Rosengrave et al. (2009). Additionally, there has been evidence of potential paternity 

biasing by females using their ovarian fluid to influence sperm velocity, such that in the 

presence of one female’s ovarian fluid, a male’s sperm is faster, but in the presence of a 

different female’s ovarian fluid the same male’s sperm is slower (Rainbow trout, Dietrich 

et al., 2008; Arctic charr, Urbach et al., 2005; Chinook salmon, Rosengrave et al., 2008).  

Potential genetic benefits of polyandry 

Mechanisms of sperm competition and cryptic female choice are especially 

prevalent in species where polyandry occurs, that is where females mate with multiple 

males during a single mating event. Polyandry is common across the entire animal 

kingdom (Jennions & Petrie, 2000; Simmons, 2005) but until recently the reason why 

was not clear. The act of mating is very costly in a number of ways (Rowe, 1994) so why 

do females from many taxa choose to mate with more than one male? In species where 

males offer direct benefits, such as more parental care or nuptial gifts it’s clear why 

polyandry has evolved (Simmons, 2001). However, in species where males offer no 

direct benefits to the female (i.e. only provide females with sperm for fertilization), an 

explanation for polyandry remains elusive. There are a number of hypotheses to why 
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polyandry in these non-resource based mating systems exists (reviewed in Simmons, 

2001; Newcomer et al., 1999), including (among others) two not mutually exclusive 

hypotheses: (i) the intrinsic male quality hypothesis suggests that polyandrous females 

can improve their chances of mating with a male of high genetic quality (presumably 

producing more fit offspring) compared to monandrous (single mating) females. This 

potential benefit of multiple mating can be achieved by both pre-copulatory (i.e. females 

choosing males of high genetic quality determined by their secondary sexual 

characteristics) and post-copulatory (i.e. through sperm competition between the males or 

cryptic female choice) mechanisms (e.g. Madsen et al., 1992); and (ii) the good sperm 

hypothesis, where females have greater fitness, through increased offspring quality, 

because offspring were sired by males of superior sperm quality and are better sperm 

competitors, thus a positive relationship should exist between offspring quality and 

respective sire sperm competitiveness (Yasui, 1997). These hypotheses are not mutually 

exclusive, in that they both state that sperm competition should benefit the female 

through increased offspring fitness, and by mating with multiple males, she can at least 

ensure that a greater proportion of resulting offspring will be sired by the male with the 

higher sperm competitiveness. However, there is limited evidence showing support for 

the good sperm hypothesis (reviewed in Evans & Simmons, 2008), but there is evidence 

that polyandrous females obtain genetic benefits, through increases offspring quality, 

compared to monandrous females. For example, Simmons et al. (2001) showed that 

female Australian field crickets (Teleogryllus oceanicus) had greater hatching success of 

their eggs when mated with multiple males compared to when females were mated to a 

single male multiple times. Additionally, in yellow dung flies (Scathophaga stercoraria) 
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it was shown that male’s sperm that were able to displace previous male’s sperm and thus 

sire more offspring as the second male to mate produced offspring with lower 

developmental time, and because development time and offspring size are not related, 

these offspring are deemed to be of higher fitness (Hosken et al., 2003).  

Alternative reproductive tactics 

 Alternative reproductive tactics are when traits have been selected in two 

divergent ways for individuals within a sex (mostly males) to obtain reproductive success 

(Taborsky et al., 2008). In general, this divergence creates a discontinuous, bimodal 

distribution of traits, which can be seen as size dimorphisms, colour polymorphisms, and 

behavioural alternatives, that allow individuals to allocate resources to alternative ways 

of achieving the same end goal of reproductive success (reviewed in Brockmann, 2001; 

Taborsky et al., 2008).  

 Alternative reproductive tactics are common across all taxa, including, insects 

(e.g. dung beetles, Onthophagus acuminatus; Emlen, 1997), amphibians (e.g strawberry 

poison frog, Oophaga pumilio; Meuche & Proehl, 2011), and mammals (e.g. meerkat, 

Suricata suricatta; Young et al., 2007), but in particular, it is very common among fish 

species. Knapp & Neff (2008) hypothesize why this is the case by outlining three factors 

(also see Taborsky, 2008): (1) the majority of fishes have external fertilization, which 

allows greater access to a female’s eggs compared to internal fertilizers and offers greater 

opportunity for sneak fertilizations and therefore generate higher sperm competition 

between males (Knapp & Neff, 2008; Taborsky, 2008). (2) Fishes have indeterminate 

growth, which can cause there to be immense variation among body size between 
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individuals, which can be selected for to create alternative tactics within these individuals 

(Knapp & Neff, 2008; Taborsky, 2008). (3) Fishes exhibit a large variation in parental 

care provided to offspring, including offering no parental care, shared care by both 

parents, or care provided by only one of the parents, which can create opportunities for 

males to use this variation to adopt alternative tactics (Knapp & Neff, 2008; Taborsky, 

2008).  

Sneak-Guard hypothesis 

One of the most prevalent alternative reproductive tactic systems across the 

animal kingdom is the sneak-guard dichotomy in males. The sneaker male is most often 

smaller in body size, matures precociously, and attempts to mate with a female by 

sneaking into mating events. Whereas the guard males are typically larger in body size, 

mature at an older age, and are behaviorally dominant in mating events, by monopolizing 

resources that are sought out by the female, or by guarding the female herself. Parker 

(1990b) developed the Sneak-Guard model to help explain the evolution of these 

alternative reproductive tactics in the context of polyandry and sperm competition. This 

model assumes that the sneaker male will face sperm competition each time it mates, 

whereas the guard male will only face sperm competition in a proportion of its matings, 

and in addition, guard males cannot predict when sperm competition will occur, as they 

are often unaware when a sneaker male sneaks into a mating event (Parker, 1990b). 

Therefore, the model predicts that each tactic will adopt a strategy to reflect their 

respective sperm competition risk. Sneaker males, due the guaranteed risk of sperm 

competition, should invest relatively more energy into their gonads compared to guard 

males. On the other hand, guard males, due to their unpredictable, lower risk of sperm 
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competition, should invest more energy into their body size and other secondary sexual 

characteristics to be able to monopolize resources or females (Parker, 1990b). The sneak-

guard model is now widely supported by the literature and has been supported in a 

number of studies. For example, in Atlantic salmon (Salmo salar), the precocious parr 

(sneaker male), relative to body size, had larger testes, ejaculate volume, number of 

sperm cells and also the sperm were more motile and lived longer, which all give a 

greater fertilization success than the anadromous (guard) male (Gage et al., 1995; Vladic 

& Jarvi, 2001).  

Study system: Chinook salmon 

The Chinook salmon is a large, externally fertilizing fish exhibiting an 

anadromous and semelparous mating system (Healey, 1991). Male Chinook salmon 

exhibit sneak-guard alternative reproductive tactics, where males either adopt the guard 

tactic, which are referred to as hooknoses due to their large ‘hooked’ snout (kype), or the 

sneaking tactic, referred to as jacks (Berejikian et al., 2000). Chinook salmon are external 

fertilizers and mating occurs seasonally in rivers. This is a non-resource based mating 

system in which males only provide sperm (i.e. genes) to females and offer no parental 

care to offspring or offer any direct benefit to females (Flannery et al., 2013). Females 

dig nests, and a series of these nests comprise a single red; this is accomplished by using 

an oscillating motion with their caudal fin to make depressions in the gravel, where eggs 

can be deposited when the female wants to mate. Females have been shown to prefer to 

mate with the larger hooknose males, as they seem to delay spawning when only smaller 

jack males are present (Berejikian et al., 2000). Hooknoses mature at age 3-4 (in the 

Great Lakes) and use their larger body size to have primary access to females, entering 
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the nesting area first during spawning events and fighting off other males that come near 

spawning females (Flannery et al., 2013; Berejikian et al., 2000). Jacks mature 

precociously at age 2 (in the Great Lakes) and adopt satellite positions either upstream or 

downstream from nesting sites, where they use their small body size and burst speed to 

sneak into spawning events between females and hooknoses. Berejikian et al. (2010) 

recently examined Chinook salmon spawning behavior in semi-natural spawning 

channels and observed that 40% of spawning events involved only one hooknose male, 

while the rest included two to five males, including both hooknoses and jacks. In addition, 

jacks were observed to participate in spawning almost exclusively through sneaking and 

sired approximately 20% of offspring (Berejikian et al., 2010).  

Overview of the thesis 

 The objective of this thesis was to explore polyandry and the resulting sperm 

competition dynamics and its implications on both females and the two male alternative 

reproductive tactics in Chinook salmon.  Chapter two focuses on how sperm competition 

can influence female fitness, specifically looking at whether a female benefits genetically, 

through increased offspring quality, by mating with multiple males and to determine if 

these benefits are tactic-specific. I used an in vitro maternal half-sib breeding design to 

create families that had one or two potential sires in all possible combinations using both 

male alternative reproductive tactics and measured the resulting offspring hatching 

success to gauge offspring quality. In chapter three, I specifically wanted to determine if 

the seminal plasma from each tactic has any effect on sperm performance from males 

adopting the same or the opposite tactic. This was done by using computer assisted sperm 

analysis software and conducting an in vitro experimental manipulation of male 
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ejaculates to create treatments that had sperm in the presence of the seminal plasma from 

another male; from the same or the opposite tactic. These were compared to control 

treatments to determine if sperm competitiveness is affected by another male’s seminal 

plasma. 
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CHAPTER 2: TACTIC-SPECIFIC GENETIC BENEFITS OF POLYANDRY IN 

CHINOOK SALMON 

1. Introduction 

The evolution of multiple mating by females (or polyandry) remains an important 

question for evolutionary biologists (Taylor et al., 2014; Simmons, 2001; García-

González & Simmons, 2005). Although the benefits of polyandry have been well 

documented in mating systems where females derive direct benefits from multiple mating 

(Ridley, 1988; Arnqvist & Nilsson, 2000), the maintenance of polyandry in species where 

females gain no material benefits are less clear. Several hypotheses exist that propose 

mechanisms for indirect genetic benefits to females of multiple mating (Jennions & Petrie, 

2000; Tregenza & Wedell, 2000; Neff & Pitcher, 2005) including the good sperm 

hypothesis (Yasui, 1997). It predicts that polyandrous females will have a selective 

advantage over monandrous females in terms of higher viability of offspring because 

offspring will be sired by males with competitively superior sperm and it also predicts a 

positive correlation between a male’s sperm competitiveness and the viability of both 

sons and daughters. To date, there is limited evidence for the good sperm hypothesis (see 

Evans & Simmons, 2008). For example, Hosken et al. (2003) showed that males which 

were highly competitive in sperm competition produced offspring that had a faster 

development rate in the yellow dung fly (Scatophaga stercoraria). Also, Fisher et al. 

(2006) showed that in the brown antechinus (Antechinus stuartii), males that have high 

paternity (i.e. were competitively superior in sperm competition) sired offspring that have 

greater survival.  
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The highly polyandrous Chinook salmon (Oncorhynchus tshawytscha) is an ideal 

system to test the good sperm hypothesis for several reasons.  First, multiple mating by 

females is common, and additionally, the presence of male alternative reproductive 

tactics (ARTs) make the system interesting to study any possible tactic-specific effects of 

polyandry. The ARTs include large guard type males (known as “hooknoses”, due to the 

curved snout) and precocious sneaky males (known as “jacks”) (see Berejikian et al., 

2010; Butts et al., 2012; Flannery et al., 2013). Jacks have a smaller body size, which 

allows them to hide to elude aggressive hooknose males and employ a sneaking tactic to 

steal fertilizations from hooknoses. Second, a predictor of sperm competition has already 

been established; sperm velocity is positively correlated with male paternity success in 

sperm competition (Flannery, 2011). Third, sperm and eggs can be easily extracted from 

individuals, allowing for powerful maternal half-sib study designs that control for 

maternal effects (see Simmons, 2005). 

To test the good sperm hypothesis in the polyandrous Chinook salmon, we used a 

split-clutch fertilization protocol and produced eggs fertilized by either a single male 

(from each tactic) or multiple males (using two males from each or both tactics). We 

reared the resulting clutches through to emergence and examined offspring viability, as 

measured by hatching success, in the different crosses. As per the good sperm hypothesis, 

we predicted that polyandrous crosses should have offspring with superior hatching 

success compared to monandrous crosses and a positive relationship between sperm 

velocity and hatching success. 
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2. Materials and methods 

 Spawning Chinook salmon were collected between September 29, 2014 and 

October 10, 2014 from the Credit River (Mississauga, Ontario, Canada; 43o35’N, 

79o42’W), which flows into Lake Ontario. Hooknoses (N =30, mean (+/- SE) mass = 8.3 

kg +/- 0.32 kg, range = 5 – 11.4 kg), jacks (N =30, mean mass = 2.0 kg +/- 0.12 kg, range 

= 0.35 – 3.2 kg) and females (N =15, mean mass = 7.0 kg +/- 0.33 kg, range = 4.95 – 

8.85 kg) were collected by standard electrofishing techniques. Small body size and 

absence of secondary sexual characteristic (e.g. hooked snout and large teeth) were used 

to distinguish jacks from hooknoses. Gametes were collected by gently applying 

abdominal pressure on each individual, being careful there was no contamination with 

water, urine or feces. Gametes were kept in a cooler at the river water temperature 

(~11
o
C) until analysis and fertilization occurred (up to four hours later). 

  A total of 61, 289 eggs were collected from fifteen females (mean = 4093 eggs per 

female, range = 3532 – 4270 eggs per female) and were placed in a strainer to separate 

the eggs from the ovarian fluid. Eggs from each female were then divided into 400 ml 

clear, plastic containers (mean +/- SE = 204 ± 3.9; range = 81 – 440 eggs), with each 

container of eggs representing a different cross. For the monandrous crosses, 200 μL of 

sperm from two jacks (J1 & J2) and two hooknoses (H1 & H2) were used to individually 

fertilize subsets of eggs (N = 4 crosses) and for the polyandrous crosses, 100 μL of sperm 

from two of the same jacks and hooknoses were then added to the eggs simultaneously in 

all possible combinations, resulting in two within-tactic (J1 x J2 (N = 1) and H1 x H2 (N = 

1)) and four between-tactic (J1 x H1, J1 x H2, J2 x H1, and J2 x H2; N = 4) crosses, with all 

these crosses being replicated twice resulting, in 20 (10 x 2) crosses per female (see Fig. 
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2.1). A different set of four males (two jacks and two hooknoses) was used for each of 

the fifteen females, with no male being used again in crosses involving a different female. 

It should be noted that this design provides crosses that are both common in the wild (H, 

H x H, and H x J) and crosses that are rare (J, J x J), if they occur at all, in the wild 

(Berejikian et al., 2010). A 25% ovarian fluid solution (50mL of ovarian fluid : 150mL 

river water) was used to activate the sperm; sperm was pipetted into stream of ovarian 

solution mixture as it was poured into eggs. Eggs were then placed into a recirculating 

incubation system held at 11
o 
C. The incubation system contained two stacks of 

incubation trays, with each stack containing up to 8 trays that were each divided into 16 

cells per tray so crosses could remain separate. Eggs were left undisturbed for a week 

after they were fertilized. After that, daily checks were performed where the number of 

non-viable eggs were counted and removed from each cell of the divided incubation 

trays. Non-viable eggs were placed in 5% acetic acid solution (see Hoysak & Liley, 

2001) to determine if eggs were fertilized or not. If the eggs turned completely clear, they 

were deemed to be unfertilized, while fertilized eggs had a visible, small white mass 

inside the egg. Unfertilized eggs (n = 177) were removed from data analyses to avoid any 

confounding effects related to difference in fertility among males.  

 For each male, sperm velocity was assessed using a sperm sample (1.5 μl) that was 

pipetted into a chamber of a 2X-CEL glass slide (Hamilton Thorne, Beverly, MA, USA), 

covered with a glass coverslip (22 x 22 mm), and activated with 15 μL of the 25% 

ovarian fluid solution, using the ovarian fluid of the female that the male was paired with 

during fertilization. Activated sperm were video recorded using a CCD B/W video 

camera module (XC-ST50, Sony, Japan) at 50 Hz vertical frequency, mounted on a 
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microscope (CX41 Olympus, Melville, NY, USA) that was equipped with a 10x 

negative-phase objective (see Flannery et al., 2013). Video-recordings were analyzed 

using the HTM-CEROS sperm tracking software package (CEROS version 12, Hamilton 

Thorne) (see Pitcher et al., 2009 for details). Curvilinear sperm velocity (VCL; average 

velocity on the actual point-to-point track followed by the cell) at 5s post-activation was 

the metric used to represent sperm velocity and these estimates correspond to the mean of 

all motile cells analyzed.   

 All data were analyzed using R software v. 2.15.1 (R development Core Team 

2012). To investigate whether offspring hatching success differed between monandrous 

and polyandrous crosses and whether there was any tactic-specific effects, generalized 

linear mixed models (GLMM) were used for binomial data (eggs that hatched were 

scored as 1, eggs that did not hatch were scored as 0) with a logit-linked function using 

the “glmer” function in the lme4 package in R (Bates et al., 2009). Cross type (monandry 

or polyandry) was the fixed factor in the model while female identity, replicate, and tray 

identities were random factors. Models were compared with and without each random 

factor to determine which factors significantly contributed to the variance observed for 

offspring hatching success, and the percent variance explained was calculated for each 

factor. Next, models were compared with and without the fixed factor to determine the 

effect of treatment on hatching success. To investigate whether male alternative 

reproductive tactic had an effect on hatching success in both monandrous and 

polyandrous matings a similar approach as above was used except the model included 

tactic-specific crosses as the fixed factor. Models were compared as described above and 

Tukey post-hoc analyses were performed to compare differences between cross types. To 
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examine whether there was a positive relationship between sperm competitive ability and 

viability of the offspring, a GLMM was used with hatching success of monandrous 

crosses as the dependent variable, sperm velocity as a fixed factor, and female identity as 

a random factor. Models were compared with and without male sperm velocity to 

determine significance. Due to technical difficulties not all males were used for this test 

because sperm velocity could not be measured for one jack male and four hooknose 

males. All data are presented as means ± standard errors.  

3. Results 

 Offspring from polyandrous crosses had significantly higher hatching success than 

offspring from monandrous crosses (χ
2 

= 73.42, p < 0.001; Fig. 2.2a). All three random 

factors (female ID, tray, and replicate) in the model were significant (see Table 2.1). 

When examining tactic-specific differences within the polyandry and monandry crosses, 

we found a significant tactic effect (χ
2
 = 315.53, p < 0.001; Fig. 2.2b) and again the three 

random factors were significant (see Table S1). Post-hoc analysis showed that there was a 

significant difference (all p < 0.02) between all cross types, with the exception of one 

comparison between the crosses involving a single jack and two jacks (p = 0.86; see Fig. 

2.2b). Both jack and hooknose sperm velocity was significantly related to hatching 

success while controlling for any female identity effects (jack: χ
2
 = 5.9, p = 0.01, Fig. 

2.2a; hooknose: χ
2
 = 8.4, p = 0.004; Fig. 2.2b).  

4. Discussion  

 Our experiment provides support for the good sperm hypothesis in the Chinook 

salmon mating system. The first prediction of the good-sperm hypothesis is that 

polyandrous females should benefit more than monandrous females through increased 
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offspring fitness (Yasui, 1997). Our data supports this prediction; polyandrous females 

had higher hatching success than monandrous females (74.4% and 69.5% respectively). 

By contrast, McNamara et al. (2014) found no support for the good-sperm hypothesis in 

field crickets (Teleogryllus oceanicus), as offspring from polyandrous matings did not 

show an increase in immunocompetence compared to offspring from monandrous 

matings. A meta-analysis revealed that there is a small but significant positive effect of 

polyandry on embryo viability, as measured by hatching success (Simmons, 2005). 

However, elucidating the mechanism for this increase in hatching success was not 

possible for most of the studies because they did not control for maternal effects. Our 

experiment using an external fertilizing species and a maternal half-sib experimental 

design allowed us to control for these potentially confounding maternal effects (also see 

Purchase et al., 2007).  

 Only one study to date has examined tactic-specific effects of monandry and 

polyandry in relation to offspring quality. Johnson & Brockmann (2013) found that 

polyandrous female horseshoe crabs (Limulus polyphemus) garner genetic benefits, 

through increased offspring developmental success, by mating with sneaker males 

compared to when mated with guard males whereas monandrous females, who only mate 

with guard males, received no additional genetic benefits when mated with sneaker 

males. Our study also found tactic-specific effects of polyandry on offspring viability; of 

the crosses that occur most commonly in the wild (i.e. H, HxH and HxJ; Berejikian et al., 

2010), polyandrous crosses had significantly higher hatching success than the 

monandrous cross. In addition, for the experimental crosses that rarely (J) or never occur 

(J x J) in the wild (Berejikian et al., 2010), the polyandrous crosses with two jacks did not 
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have significantly higher hatching success than the monandrous jack crosses, although 

both of these cross types had significantly higher hatching success compared to the 

monandrous and polyandrous hooknose crosses. Over all crosses, the polyandrous 

hooknose-jack cross had the highest hatching success, and this may occur because this 

cross type possesses the broadest genetic continuum of all of the crosses because the two 

male tactics are from different age classes; hooknoses (and females) are four years old 

whereas jacks are two years old (Flannery et al., 2013). In addition, although hooknoses 

and females do not differ significantly, jacks and hooknoses differ significantly in terms 

of their major histocompatibility (MH) genes (Helou, 2010). In theory females could be 

employing post-spawning mechanisms, including effects of ovarian fluid (e.g. Rosenrave 

et al., 2008), to bias paternity to the more genetically superior or compatible male of the 

dyad to increase embryo viability (Neff & Pitcher 2005).  For example, Pitcher and Neff 

(2006) found (in the same Credit River population of Chinook salmon) that MH class IIB 

alleles contribute to both additive (good genes) and non-additive (compatible genes) 

genetic effects on viability, including hatching success and early juvenile survivorship 

(also see Pitcher and Neff 2007).  

 The second prediction of the good sperm hypothesis is that there is a positive 

relationship between sperm quality metrics associated with sperm competition success 

and offspring viability.  We found that there was a positive relationship between sperm 

velocity, a metric correlated with sperm competition success in Chinook salmon 

(Flannery, 2010), and hatching success for both hooknoses and jacks, suggesting females 

could potentially use post-spawning processes to bias fertilization towards males of 

intrinsically higher genetic quality. In a salmonid species (rainbow trout; Oncorhynchus 
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mykiss), DNA integrity is positively correlated with sperm velocity (Dietrich et al., 

2005), suggesting that the promotion of sperm competition, which is determined by 

sperm velocity in salmonids (e.g. Gage et al., 2004; Flannery et al., 2013), by females 

could potentially select for sperm with higher DNA integrity and thus higher hatching 

success. For example, Pérez-Cerezales et al. (2010) found that although DNA-damaged 

sperm of rainbow trout can still fertilize eggs, embryo development, and thus survival, is 

decreased due to damage of spermatozoa DNA.  

 Our experimental fertilization trials and correlational data support the benefits of 

polyandry via the good sperm model, although patterns of paternity and the additive 

genetic variance of sperm competitiveness were not examined in this study.  We suggest 

these are potentially beneficial avenues for future research in order to partition the 

benefits of polyandry among cryptic female choice and sperm competition mechanisms. 
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Table 2.1 Binomial models for hatching success from monandrous and polyandrous 

crosses and cross types involving both reproductive tactics of Chinook salmon 

(Oncorhynchus tshawytscha). Female ID, tray and replicate were treated as random 

effects in the model. Variance components were estimated using restricted maximum 

likelihood, and the significance of variance components were tested using likelihood ratio 

tests. Note that π
2
/3 ≈ 3.3 is the underlying residual variance of a binomial model with 

logit link function (Nakagawa & Schielzeth, 2010; Johnson & Brockmann, 2013). 

 

   

Variance 

Components 

 

Likelihood ratio test 

 

 

 Effect (n) Variance St.Dev χ
2
 P Phenotypic 

Variance (%) 

 

Effect of 

monandry or 

polyandry on 

hatching success 

Female 

ID (15)  

0.64 0.80 2027 < 0.001 15.8 

Tray (20) 0.10 0.32 230.8 < 0.001 2.5 

Replicate 

(2) 

0.001 0.036 5.094 0.02 0.02 

Error π
2
/3    81.7 

 

Effect of cross 

type on hatching 

success 

Female 

ID (15)  

0.64 0.80 1933 < 0.001 15.9 

Tray (20) 0.084 0.29 229.1 < 0.001 2.1 

Replicate 

(2) 

0.0014 0.038 5.642 0.02 0.03 

Error π
2
/3    82.0 
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Figure Captions 

Figure 2.1 Experimental design for the creation of the different monandrous and 

polyandrous crosses of Chinook salmon (Oncorhynchus tshawytscha). For monandrous 

crosses, sperm from a single male from each tactic (Jack (J) or Hooknose (H)) was used 

to fertilize a portion of a female’s eggs, and this was done with two unique, separate 

males (J1, J2, H1, and H2). For the polyandrous crosses, sperm from two males from each 

of these four males was added simultaneously in all combinations, resulting in two 

within-tactic treatments (J1 x J2 and H1 x H2) and four between-tactic treatments (J1 x H1, 

J1 x H2, J2 x H1, J2 x H1). This was done for 15 different females, using a different set of 

four males for each female. This design was done in full replication, resulting in 20 

crosses (10 crosses x 2) per female.  

Figure 2.2 Hatching success (%) from (a) monandrous or polyandrous crosses and (b) 

tactic-specific crosses (J = jack; H = hooknose) of Chinook salmon (Oncorhynchus 

tshawytscha). Bars without a common letter differed significantly (p < 0.05, see text for 

details). Data are presented as means ± standard errors.  

Figure 2.3 Relationship between hatching success (%) of monandrous crosses for 

particular male and female Chinook salmon (Oncorhynchus tshawytscha) crosses and 

each male’s sperm velocity (um/s) for (a) hooknose males and (b) jack males (raw data 

are presented for clarity, see text for details). 
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Figure 2.1 
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Figure 2.2 
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Figure 2.3  
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CHAPTER 3: THE EFFECTS OF OWN AND FOREIGN SEMINAL PLASMA ON 

SPERM PERFROMANCE IN THE ALTERNATIVE REPRODUCTIVE 

TACTICS OF CHINOOK SALMON 

1. Introduction 

Sperm competition occurs when sperm from multiple males compete to fertilize a 

female’s eggs (Parker, 1970). This form of post-copulatory competition is a 

taxonomically widespread phenomenon and a powerful evolutionary force that has 

shaped the evolution of male mating behaviour, morphology and physiology (Birkhead & 

Moller, 1998; Simmons, 2001; Birkhead & Pizzari, 2002). Sperm competition is 

especially prevalent in species in which male alternative reproductive tactics are present 

due to male’s having unequal opportunities to fertilize eggs (e.g. Stoltz & Neff, 2006; 

Taborsky, 1998; Burness et al., 2004). In such species, often the males have had different 

traits selected for to maximize reproductive success (Taborsky et al., 2008). These traits 

can take the form of morphological, behavioural, and life history differences (Taborsky et 

al., 2008).  

A common alternative reproductive tactic system seen across taxa is the sneak-

guard dichotomy in males (see Oliveira et al., 2008 for a taxonomic review). Sneaker 

males usually have small body size and uses covert techniques to sneak into mating 

events between guard males and females to obtain reproductive success. Whereas the 

guard males are typically large in body size and have more pronounced secondary sexual 

characteristics to aid in asserting dominance over other males and females, including 

fighting off other males while protecting and monopolizing females. Parker (1990) 

developed mathematical models for sneak-guard mating systems to help explain their 
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evolution in the context of sperm competition. Those models assume that there is a 

difference in sperm competition risk and perception of such risk between the two 

alternative tactics. Sneaker males have high sperm competition risk and accurate 

‘knowledge’ of this risk because every time they mate there will be at least one other 

male (i.e. guard male(s)) present as well. Whereas the guard males have lower sperm 

competition risk because sneakers do not participate in all mating events and their 

“knowledge” of risk is less reliable because they are often unaware of the presence of 

sneaker males. These models have been supported in a number of empirical studies. For 

example, in Atlantic salmon (Salmo salar), the precocious parr (sneaker male), relative to 

body size, had larger testes, ejaculate volume, number of sperm cells and also the sperm 

were more motile and lived longer, which all provide greater fertilization success per 

spawning event than the anadromous (guard) male (Gage et al., 1995; Vladic & Jarvi 

2001). 

Most of the studies to date that examine sperm competition dynamics have 

focused on either differences in sperm number or sperm quality (see Birkhead & Moller 

1998). However, sperm only make up a portion of the ejaculate and other components, 

such as seminal plasma (or fluid) can have effects on the outcome of sperm competition. 

For example, in the stalk-eyed fly (Cyrtodiopsis whitei), Fry & Wilkinson (2004) found 

that males had a dramatic decrease in fertilization success in the presence of the seminal 

plasma from other males. It has also been shown that males can alter the amount of 

seminal plasma in an ejaculate depending on the level of sperm competition risk (Wigby 

et al., 2009). It is important to note that most of this evidence stems from studies done on 
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insects, there is little known about whether seminal plasma can have similar effects in 

other taxa.  

In fish, there are only two studies that examine the effects on seminal plasma on 

the outcome of sperm competition, and only one of these studies examine the effects in a 

mating system that exhibits alternative reproductive tactics. Within the subordinate males 

of Arctic charr (Salvelinus alpinus), it was found the percent of motile sperm was 

significantly higher in the presence of another male’s seminal plasma, than in the male’s 

own seminal plasma or in lake water, however there was no such effect on sperm velocity 

(Rudolfsen et al., 2015). This result may have little biological relevance however, 

because it is sperm velocity, and not percent motility, that is the best predictor of 

fertilization success in Arctic charr (Liljedal et al., 2008).  Locatello et al. (2013) showed 

that in the grass goby (Zosterisessor ophiocephalus), a species with a sneak-guard 

alternative reproductive tactic mating system, there is a tactic-specific effect of seminal 

plasma on a rival male’s sperm performance. Sneaker males were shown to increase their 

sperm velocity by approximately 9.3 % and thus causing an increase in their own 

fertilization success (by ~10%) by exploiting the guard male’s seminal plasma, and also, 

the presence of sneaker seminal plasma caused a decrease in guard male’s sperm velocity 

by approximately 6.8%, which in turn caused a decrease in fertilization success (of ~9%) 

(Locatello et al., 2013).  

Chinook salmon (Oncorhynchus tshawytscha) exhibit the sneak-guard alternative 

reproductive tactic in males, where the large, dominant hooknose’s (i.e. guards) have 

priority in mating positions with females, while the small, precocious jack males (i.e. 

sneakers) adopt the sneaking tactic  (Berejikian et al., 2000; Heath et al., 1994; Heath et 
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al., 1996). This alternative reproductive tactic mating system with external fertilization 

allows females to mate with multiple males simultaneously and thus promotes intense 

sperm competition between males. It has been shown that in 40% of spawning events, 

only one hooknose is present, while in the other 60% there is anywhere from 2-5 males 

present, including both jacks and hooknoses (Berejikian et al., 2010). Previous work has 

shown that jacks have relatively larger testes and their sperm swims faster in river water 

compared to hooknose sperm in river water (Flannery et al., 2013), which supports the 

theoretical work done by Parker (1990) suggesting that the sneaker (jack) should invest 

more into spermatogenesis instead of other traits. However, investment into testes (as the 

model predicts) does not necessarily mean investment into just sperm cells; it could also 

be an investment into other components of the ejaculate, such as the seminal plasma. The 

objective of this study is to examine whether sperm competition is influenced by seminal 

plasma by examining sperm swimming performance, which included measures of sperm 

velocity, sperm path straightness, and percent of sperm motility because they are 

important for both competitive and non-competitive fertilization success (e.g. Gage et al., 

2004). This was done by analyzing in vitro sperm swimming metrics when a male’s 

sperm was in the presence of seminal plasma from a male of the opposite tactic or from a 

different male adopting the same tactic. This was done by the physical separation and 

manipulation of milt from males to swap out own seminal plasma for seminal plasma 

from other males. This design allows us, through two different experiments, to determine 

how seminal plasma from males adopting a different (experiment 1), and the same 

(experiment 2) tactic interact and if these males use seminal plasma as a mechanism to 

overcome intense sperm competition observed in Chinook salmon. Through sperm 
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competition theory (Parker, 1990), it can be hypothesized that, because of the asymmetry 

in sperm competition risk between tactics, jacks seminal plasma should be selected to 

impair a hooknose’s sperm performance, and/or increase their own sperm performance in 

the presence of hooknose seminal plasma to be more competitive in sperm competition. 

Additionally, it is hypothesized that if there are any within-tactic effects of seminal 

plasma on sperm performance, it will only be found in hooknoses as they often compete 

against other hooknose’s during sperm competition, so it would be beneficial for 

hooknose seminal plasma to cause a decrease in other hooknose’s sperm performance, 

but there won’t be an effect seen within jacks as they, presumably, rarely compete against 

other jack males in sperm competition.  

2. Materials and Methods 

Fish Collection 

 Male Chinook salmon were collected from the Credit River (Mississauga, Ontario, 

Canada; 43
o
35’N, 79

o
42’W) between September 30 and October 11 in 2013 (experiment 

1; Hooknose: mean ± S.E. fork length = 87.3 cm ± 0.76 cm, range = 72 – 102 cm, mean ± 

S.E. mass = 7.7 kg ± 0.2 kg, range = 5.1 – 12.8 kg; Jack: mean ± S.E. fork length = 57.3 

cm ± 0.6 cm, range = 46.8 – 68 cm, mean ± S.E. mass = 2.4 kg ± 0.09 kg, range = 1.3 – 

3.6 kg) and September 29 and October 9 in 2014 (experiment 2; Hooknose: mean ± S.E. 

fork length = 87.4 cm ± 1.2 cm, range = 72.5 – 100 cm, mean ± S.E. mass = 7.8 kg ± 0.3 

kg, range = 4.6 – 11.2 kg; Jack mean ± S.E. fork length = 52.7 cm ± 1.9 cm, range = 10 – 

66.5 cm, mean ± S.E. mass = 2.0 kg ± 0.1 kg, range = 0.4 – 3.7 kg). Fish were collected 

by standard electrofishing and once caught, they were kept alive in pens that were placed 

in the river until length and weight were measured and milt was collected. Small body 
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size and absence of secondary sexual characteristic (e.g. hooked snout and large teeth) 

were used to distinguish jacks from hooknoses. 

Milt Collection 

Fish were humanely euthanized immediately before gametes were to be collected. 

Milt was collected in 532-mL clear whirl-pak sample bags (Nasco, Newmarket, ON, 

Canada) by gently applying abdominal pressure on the fish, being careful there was no 

contamination by water, urine or feces. The milt was then placed in a cooler at the water 

temperature of the river (11
o
C) until analysis took place (two to three hours later).   

Experimental Design 

Experiment 1: There are three treatment groups for this experiment: (1) control, 

(2) sham control and (3) between tactic-swap. The sham control is used to determine if 

the centrifugation process to separate milt into its constituent parts (see below) has any 

effect on the sperm cells through comparison with the control treatment, which consists 

of milt that has not been centrifuged. The tactic-swap treatment is the main experimental 

treatment in which the effect of seminal plasma on the opposing alternative reproductive 

tactic’s sperm performance was observed by swapping the seminal plasma of both tactics 

so that jack sperm cells are combined with hooknose seminal plasma and hooknose 

sperm cells are combined with jack seminal plasma. Fish were tested in jack-hooknose 

pairs (n = 16 unique pairs), so for each of the three treatments they were tested twice, 

once for the jack and once for the hooknose in each pair.  

Experiment 2: A similar design was used as the first experiment, except instead of 

a between tactic-swap treatment, a within-tactic swap treatment was used. Fish were 
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tested in either jack-jack (n = 12) or hooknose-hooknose (n = 14) pairs, where fish were 

not used in more than one pair.  

Treatment preparation 

To swap the seminal plasma between fish (either within or between tactics), 1000 

μL of milt was placed in an ependorf tube and centrifuged (accuSpin Micro 17, Fisher 

Scienctific) at 300xg for 10 minutes (Lahnsteiner et al., 2004). The resulting separate 

seminal plasma and sperm components were carefully pipetted out and placed in separate 

ependorf tubes in a chilling block set at 11
o
C. For the sham control treatment, 75 μL of 

sperm was gently mixed with 25 μL of seminal plasma from the same male. For the 

tactic-swap treatments, 75 μL of sperm was gently mixed with 25 μL of seminal plasma 

of a male from the opposite (experiment 1) or same tactic (experiment 2). These 

concentrations were determined through preliminary data of spermatocrit values from a 

subset of males that resulted in males having ~25% seminal plasma (Mean ± S. E = 25.4 

± 3.4%; Range = 6.7 – 70.7%).  

Sperm performance assessment 

For each treatment in both experiments, a milt sample (1.5 μL) was pipetted into a 

chamber of a 2X-CEL glass slide (Hamilton Thorne, Beverly, MA, USA), covered with a 

glass coverslip (22 x 22 mm), and activated with 15 μL of 11
o
C river water (the 

approximate temperature of the river during spawning; maintained using the chilling 

block). Activated sperm were video recorded using a CCD B/W video camera module 

(XC-ST50, Sony, Japan) at 50 Hz vertical frequency, mounted on a microscope (CX41 

Olympus, Melville, NY, USA) that was equipped with a 10x negative-phase objective 

(see Flannery et al., 2013). Video-recordings were analyzed using the HTM-CEROS 
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sperm tracking software package (CEROS version 12, Hamilton Thorne). We used the 

following recording parameters: number of frames captured in sequence with 1 s = 60 

Hz; total number of sequential images captured for analysis = 60; minimum contrast = 

11; minimum number of pixels that an object must be in order to be counted = 3. The 

following parameters were measured for each male’s sperm: curvilinear velocity (VCL; 

average velocity on the actual point-to-point track followed by the cell, hereafter sperm 

velocity), straightness (STR; measure of the departure of the sperm cell path from a 

straight line), and percent motility (percent of motile sperm in the field of view showing 

propulsive motility) at 5s post-activation (see Hoysak & Liley, 2001). The sperm analysis 

software measures each sperm cell individually and generates an average of these cells 

for each treatment.  

Statistical Analysis 

Data was analyzed using SPSS statistical software analysis software (IBM Corp. 

Released 2013. IBM SPSS Statistics for Macintosh, Version 22.0. Armonk, NY: IBM 

Corp). Residuals were tested for normality (Shapiro-Wilkes test) and homogeneity of 

variance (plot of residuals vs. predicted values). Data are presented as mean ± SE. Effect 

of treatment on sperm performance of jacks and hooknoses in each of the two 

experiments was analyzed using an ANOVA for repeated measures (generalized linear 

model). The different treatments in both experiments were used as within-subject factor 

and the male tactic as between-subject factor. For each experiment, post hoc analysis of 

treatments within a single male tactic (e.g. jack sham control and jack seminal plasma 

swap) was performed using paired t-tests, while comparisons of treatments across male 
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tactics (e.g. jack seminal plasma swap and hooknose seminal plasma swap) were 

performed using independent t-tests.  

3. Results 

Experiment 1: Between-tactic manipulation 

Centrifugation did not significantly affect sperm velocity (comparing control 

treatment with the sham control treatment) for males from either of the alternative 

reproductive tactics (repeated measures ANOVA: male tactic, F1,26 = 1.09, p = 0.31; 

treatment, F1,26 = 1.13, p = 0.30; tactic x treatment, F1,26 = 0.62, p = 0.44; Fig. A.1), 

however, this is not true for the other sperm performance metrics (see Appendix 3 for 

details for both experiments).  

Comparison of sham control treatment and manipulated treatment show a 

significant effect on sperm velocity when sperm were activated in their own seminal fluid 

and that of a male of the opposing tactic (repeated measures ANOVA: male tactic, F1,27  = 

1.28, p = 0.27; treatment, F1,27  = 6.87, p = 0.014; tactic x treatment, F
1,27 

= 0.69, p = 0.42; 

Fig. 3.1). Although the sperm of jack males were not significantly different in terms of 

velocity when exposed to hooknose males’ seminal plasma and their own (jack sham 

control vs. tactic-swap treatment, paired t-test: t13 = 1.1, p = 0.30; Table 3.1; Fig. 3.1), 

hooknose males’ sperm were slower when exposed to jack seminal plasma than when in 

their own seminal plasma (hooknose sham control vs. tactic-swap treatment, paired t-test: 

t14 = 3.03, p = 0.009; Fig. 3.1). However, there is no significant difference between these 

treatments for sperm straightness or percent motility (see Table 3.1; Fig. 3.2 and 3.3 

respectively).  A between-tactics comparison (comparing tactic-swap treatments between 

both tactics) showed that there was no difference between jack sperm velocity in 
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hooknose seminal plasma than hooknose sperm velocity in jack’s seminal plasma (t-test: t 

= 1.32, p = 0.20 Fig. 3.1). 

Experiment 2: Within-tactic manipulation 

A comparison of sham control and manipulated treatments shows that there is no 

effect of seminal plasma of males adopting the same tactic on sperm velocity (repeated 

measures ANOVA: male tactic, F1, 57 = 0.50, p = 0.48; treatment, F1, 57 = 0.12, p = 0.73; 

tactic x treatment, F1, 57 = 6.91, p = 0.01; Table 3.2; Fig. 3.4), sperm straightness 

(repeated measures ANOVA: male tactic, F1, 57 = 0.05, p = 0.82; treatment, F1, 57 = 0.001, 

p = 0.97; tactic x treatment, F1, 57 = 0.60, p = 0.44; Table 3.2; Fig. 3.5), or percent motility 

(repeated measures ANOVA: male tactic, F1, 57 = 0.02, p = 0.88; treatment, F1, 57 = 0.10, p 

= 0.75; tactic x treatment, F1, 57 = 1.7, p = 0.20; Table 3.2; Fig. 3.6).  

4. Discussion 

The sperm competition hypothesis, which suggests that due to an asymmetry in 

sperm competition risk jack males should be selected to have seminal plasma to make 

them better competitors in sperm competition against hooknoses, is supported through the 

results of this study. We found that jack seminal plasma resulted in a decrease in sperm 

velocity, but not sperm straightness or percent motility, in hooknoses, however there is no 

effect on jack sperm performance in the presence of hooknose seminal plasma. In 

addition, we found no within-tactic effect of seminal plasma on sperm performance for 

either alternative reproductive tactic. These tactic-specific results, taken together, provide 

evidence that jack males may use seminal plasma to make themselves more competitive 

during sperm competition by causing a decrease in hooknose sperm velocity; a trait 

correlated with sperm competition success (Gage et al., 2004). In Chinook salmon, it has 
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been shown that, in river water, jack males outcompete and sire a greater proportion of 

offspring than hooknose males when in direct in vitro sperm competition (Flannery, 

2011). Our finding of jack seminal plasma causing a decrease in hooknose sperm velocity 

of approximately 11.9% would cause a decrease in paternity of approximately 18 % when 

extrapolating from the data presented in Flannery (2011). However, because the between-

tactic seminal plasma swap treatments for both jacks and hooknoses were not shown to 

be significantly different from each other, the effect of jack seminal plasma on hooknose 

sperm velocity at best levels the playing field between the two tactics during sperm 

competition.  

 A similar result has been found in the only other study done on fish that exhibit 

alternative reproductive tactics. Locatello et al. (2013) found that sneaker males use a 

two-fold mechanism to be more competitive in sperm competition with guard males: (1) 

sneaker seminal plasma causes a decrease in sperm velocity of guards, and (2) sneaker 

sperm velocity increases in the presence of guard seminal plasma. Although we didn't 

find an increase in jack sperm velocity in the presence of hooknose seminal plasma, both 

of these studies provide evidence that sneaker males increase their sperm competitive 

ability through seminal plasma interactions between reproductive tactics. Our study and 

Locatello et al. (2013) provide data suggesting an additional consideration to Parker’s 

(1990) original sneak-guard model in which sneaker males do not only have to invest 

more into spermatogenesis than guard males, but an investment into seminal plasma and 

other ejaculate components could offer a competitive advantage during intense sperm 

competition between guards and sneakers.  
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 A mechanism by which seminal plasma could be influencing sperm performance 

of other males and ultimately sperm competition would involve seminal plasma proteins. 

There is a large amount of literature on the study of seminal plasma (or fluid) proteins in 

insects (primarily Drosophila spp.) and their effects on male and female reproductive 

success. The majority of these diverse proteins in insects are produced by the accessory 

glands and have a wide range of fitness-related functions, such as sperm storage, sperm 

management and sperm competition, decreased female sexual receptivity and increases in 

egg production (reviewed in Chapman, 2001; 2008). For example, it was shown that one 

protein in particular, Acp36DE, is important in sperm competition in Drosophila because 

this protein is involved in displacing rival male’s sperm (Chapman et al., 2000). Males 

that did not have the protein in their ejaculate sired a significantly lower numbers of 

offspring compared to males that did have the protein in their ejaculate due to their sperm 

being displaced by other males and thus being outcompeted (Chapman et al., 2000). 

Similar seminal plasma protein effects on sperm competition could be happening in 

Chinook salmon, as it has been shown that there are unique protein profiles found in each 

tactic’s seminal plasma (Gombar et al., unpublished), which could provide a mechanism 

for how the seminal plasma has effects on sperm performance as shown in our study. It is 

important to note that in external fertilizers, especially fish, the effects of seminal plasma 

proteins are not expected to be as profound as seen in insects and other internal fertilizers 

because the seminal plasma is not directly transferred to females and with a very dynamic 

spawning environment, there is little time for interaction between sperm and seminal 

plasma. Nevertheless, determining if the effect of seminal plasma on sperm velocity is 
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due to specific proteins would be important to further our understanding of sperm 

competition.  

 Our results offer another interesting question that should be explored further; how 

does the seminal plasma from the different male tactics interact with ovarian fluid from 

females? Such a study would provide answers to the overall questions regarding which 

male tactic would outcompete the other in a more natural setting, as seminal plasma and 

ovarian fluid are present in the natural spawning micro-environment. Additionally, it 

could offer insight into more general sexual selection questions as it would show if there 

is any cryptic female choice occurring through ovarian fluid and if females are showing 

any kind of preference to either male tactic when it comes to sperm competition, or if 

females do not have a preference and instead allow males of both tactics equal 

opportunity during sperm competition to garner genetic benefits of multiple mating (see 

Chapter 2).   



 
 

 47 

References 

Berejikian, B. A., Tezak, E. P. & LaRae, A. L. 2000. Female mate choice and spawning 

 behaviour of chinook salmon under eperimental conditions. J. Fish Biol. 57: 647- 

661. 

Berejikian B. A., Van Doornik, D. M., Endicott, R. C., Hoffnagle, T. L., Tezak, E. P.,  

Moore, M. E., et al. 2010. Mating success of alternative male phenotypes and  

evidence for frequency-dependent selection in Chinook salmon, Oncorhynchus  

tshawytscha. Can. J. Fish. Aqua. Sci. 67: 1933-1941. 

Birkhead T. R. & Møller, A. P. (eds). 1998. Sperm competition and sexual selection.  

Academic Press, London.  

Birkhead, T. R. & Pizzari, T. 2002. Postcopulatory sexual selection. Nat. Rev. Gen. 3:  

262 – 273.  

Burness, G., Casselman, S. J., Schulte-Hostedde, A. I., Moyes, C. D. & Montgomerie, R.  

2004. Sperm swimming speed and energetics vary with sperm competition risk in  

bluegill (Lepomis macrochirus). Behav. Ecol. Sociobiol. 56: 65-70. 

Chapman, T., Neubaum, D. M., Wolfner, M. F. & Partridge, L. The role of male  

accessory gland protein Acp36DE in sperm competition in Drosophila 

melanogaster. P. Roy. Soc. Lond. B 267: 1097-1105.  

Chapman, T. 2001. Seminal fluid-mediated fitness traits in Drosophila. Heredity 87: 511- 

521.  

Chapman, T. 2008. The soup in my fly: Evolution, form and function of seminal fluid  

proteins. PLoS Biology 6(7): e179.  



 
 

 48 

Flannery, E. 2011. Sperm competition and the alternative reproductive tactics of Chinook 

 salmon (Oncorhynchus tsawytscha). Electronic Theses and Dissertations, 

 University of Windsor 

Flannery, E. W., Butts, I. A. E., Słowińska, M., Ciereszko, A. & Pitcher, T. E. 2013.  

Reproductive investment patterns, sperm characteristics, and seminal plasma  

physiology in alternative reproductive tactics of Chinook salmon (Oncorhyncus 

tshawytscha). Biol. J. Linn. Soc. 108: 99-108.  

Fry, C. & Wilkinson, G. 2004. Sperm survival in female stalk-eyed flies depends on  

seminal fluid and meiotic drive. Evolution 58: 1622-1626. 

Gage, M., Stockley, P. & Parker, G. 1995. Effects of alter- native male mating strategies  

on Characteristics of sperm production in the Atlantic salmon (Salmo salar):  

theoretical and empirical investigations. Philos. T. R. Soc. B 350: 391–399. 

Gage, M. J. G., Macfarlane, C. P., Yeates, S., Ward, R. G., Searle, J. B. & Parker, G. A.  

 2004. Spermatozoal traits and sperm competition in Atlantic salmon: Relative 

 sperm velocity is the primary determinant of fertilization success. Curr. Biol. 14:  

44-47.  

Heath, D.D., Devlin, R.H., Heath, J.W. & Iwama, G.K.  1994. Genetic, environmental,  

and interaction effects on the incidence of jacking in chinook salmon 

(Oncorhynchus tshawytscha). Heredity 72: 146-154. 

Heath, D.D., Devlin, R.H., Heath, J.W., Sweeting, R.M., McKeown, B.A. & Iwama, G.K.   

1996. Growth and hormonal changes associated with precocious sexual  

maturation in adult male chinook salmon (Oncorhynchus tshawytscha). J. Exp.  

Mar. Biol. Ecol. 208: 239-250. 



 
 

 49 

Hoysak, D. J. & Liley, N. R. 2001. Fertilization dynamics in sockeye salmon and a  

comparison of sperm from alternative male phenotypes. J. Fish Biol. 58: 1286- 

1300.  

Lahnsteiner, F., Mansour, N. & Berger, B. 2004. Seminal plasma proteins prolong the  

viability of rainbow trout (Oncorhyncus mykiss) spermatozoa. Theriogenology 62:  

801-808. 

Liljedal, S., Rudolfsen, G. & Folstad, I. 2008. Factors predicting male fertilization  

success in an external fertilizer. Behav. Ecol. Sociobiol. 62: 1805-1811.   

Locatello, L., Poli, F. & Rasotto, M. B. 2013. Tactic-specific differences in seminal fluid 

 influence sperm performance. P. Roy. Soc. B 280: 20122891. 

 Oliveira, R.F., Taborsky, M. & Brockmann, J. H. (eds). 2008. Alternative reproductive  

tactics: an integrative approach. Cambridge: Cambridge University Press, 251- 

299. 

Parker, G. 1970. Sperm competition and its evolutionary consequences in the insects.  

Biol. Rev. 45: 525-567. 

Parker, G. 1990. Sperm Competition Games: Sneaks and Extra-Pair Copulations.  P. Roy.  

Soc. B  242: 127-133. 

Rudolfsen, G., Serrano, J. V. & Folstad, I. 2015. Own, but not foreign seminal fluid  

inhibits sperm activation in a vertebrate with external fertilization. Front. Ecol. 

Ecol. 3: 92.  

Simmons, L. W. 2001. The evolution of polyandry: an examination of the genetic  

incompatibility and good‐sperm hypotheses. J. Evol. Biol. 14: 585-594  

Stoltz, J. A. & Neff, B. D. 2006. Sperm competition in a fish with external  



 
 

 50 

fertilization:the contribution of sperm number, speed and length. J. Evol. Biol. 19:  

1873-1881. 

Taborsky, M. 1998. Sperm competition in fish: ‘bourgeois’ males and parasitic spawning.  

Trends Ecol. Evol. 13: 222-227.  

Vladic, T. & Jarvi, T. 2001. Sperm quality in the alternative reproductive tactics of  

Atlantic salmon: the importance of the loaded raffle mechanism. P. Roy. Soc. B  

268: 2375-2381. 

Wigby, S., Sirot, L. K., Linklater, J. R., Buehner, N., Calboli, F. C. F., Bretman, A., et al.  

2009. Seminal fluid protein allocation and male reproductive success. Curr. Biol.  

19: 751-757. 



 
 

 51 

Table 3.1 Summary of statistical analyses for the between-tactic seminal plasma swap experiment (experiment one) for three sperm performance metrics; 

including curvilinear sperm velocity, sperm straightness, and the percentage of motile sperm. Repeated measures ANOVAs were used to compare control 

treatments with sham control treatments as well as to compare sham control treatments to the manipulated between-tactic swap treatments. Models included 

treatment, male tactic (jack or hooknose) and the interaction of treatment x tactic. Paired t-tests were used to for post-hoc analysis of differences between 

treatments within a single tactic when the main model was significant.  

 

   Repeated Measures ANOVA  Paired t-test 

      Jack Hooknose 

Sperm Velocity 

(μm/s) Control - Sham Control Treatment F 1, 26 = 1.1 p = 0.30 

    

   Tactic F 1, 26  = 1.1 p = 0.31     

   Treatment x Tactic F 1, 26 = 0.62 p = 0.44     

  Sham Control - 

Manipulation 

Treatment F 1, 27 = 6.87 p = 0.014 t 13 = 1.1  p = 0.30 t 14 = 3.0  p = 0.009 

  Tactic F 1, 27 = 1.28 p = 0.27     

  Treatment x Tactic F 1, 27 = 0.69 p = 0.42     

         

Sperm 

Straightness Control - Sham Control Treatment F 1, 26  = 7.8 p = 0.01 t 12 = -1.65 p = 0.13 t 14 = -2.4`` p = 0.03 

   Tactic F 1, 26 = 0.35 p = 0.56     

   Treatment x Tactic F 1, 26 = 0.006 p = 0.94     

  Sham Control - 

Manipulation 

Treatment F 1, 27 = 0.007 p = 0.93     

  Tactic F 1, 27 = 0.11 p = 0.75     

  Treatment x Tactic F 1, 27 = 0.34 p = 0.57     

          

Motility (%) Control - Sham Control Treatment F 1, 26  = 8.3 p = 0.008 t 12 = 1.59  p = 0.14 t 14 = 2.49  p = 0.026 

   Tactic F 1, 26  = 0.003 p = 0.96     

   Treatment x Tactic F 1, 26 = 0.76 p = 0.39     

  Sham Control - 

Manipulation 

Treatment F 1, 27 = 2.14 p = 0.16     

  Tactic F 1, 27 = 0.12 p = 0.74     

  Treatment x Tactic F 1, 27 = 0.059 p = 0.81     
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Table 3.2 Summary of statistical analyses for the within-tactic seminal plasma swap experiment (experiment two) for three sperm performance metrics; 

including curvilinear sperm velocity, sperm straightness, and the percentage of motile sperm. Repeated measures ANOVAs were used to compare control 

treatments with sham control treatments as well as to compare sham control treatments to the manipulated between-tactic swap treatments. Models included 

treatment, male tactic (jack or hooknose) and the interaction of treatment x tactic. Paired t-tests were used to for post-hoc analysis of differences between 

treatments within a single tactic when the main model was significant. 

   

Repeated Measures ANOVA Paired t-test 

      

Jack Hooknose 

Sperm Velocity 

(μm/s) Control - Sham Control Treatment F 1, 58 = 16.4 p < 0.001 t 29 = 4.8  p < 0.001 t 29 = 0.81  p = 0.43 

   

Tactic F 1, 58 = 0.26 p = 0.62 

    

   

Treatment x Tactic F 1, 58 = 8.7 p = 0.005 

    

  

Sham Control - 

Manipulation 
Treatment F 1, 57 = 0.12 p = 0.73 

    

  

Tactic F 1, 57 = 0.50 p = 0.48 

    

  

Treatment x Tactic F 1, 57 = 6.9 p = 0.011 

              

Sperm 

Straightness Control - Sham Control Treatment F 1, 58 = 5.5 p = 0.022 t 29 = -1.0 p = 0.33 t 29 = -2.4  p = 0.025 

   

Tactic F 1, 58 = 0.042 p = 0.84 

    

   

Treatment x Tactic F 1, 58 = 0.81 p = 0.37 

    

  

Sham Control - 

Manipulation 
Treatment F 1, 57 = 0.001 p = 0.97 

    

  

Tactic F 1, 57 = 0.051 p = 0.82 

    

  

Treatment x Tactic F 1, 57 = 0.60 p = 0.44 

    

          Motility (%) Control - Sham Control Treatment F 1, 58 = 29.7 p <0.001 t 29 = 5.03  p < 0.001 t 29 = 2.8  p = 0.009 

   

Tactic F 1, 58 = 0.11 p = 0.74 

    

   

Treatment x Tactic F 1, 58 = 1.81 p = 0.18 

    

  

Sham Control - 

Manipulation 
Treatment F 1, 57 = 0.10 p = 0.75 

    

  

Tactic F 1, 57 = 0.022 p = 0.88 

    

  

Treatment x Tactic F 1, 57 = 1.7 p = 0.20 
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Figure Captions 

Figure 3.1 Mean (± standard error) curvilinear velocity of sperm for both alternative 

reproductive tactics (jack and hooknose) in Chinook salmon (Oncorhyncus tshawytscha) 

comparing sperm in own seminal plasma after being spun in centrifuge (sham control; 

gray bars) and sperm in between-tactic’s seminal plasma (manipulated; hashed bars). An 

asterix (*) signifies a significant post-hoc test (p < 0.05) when the main model was 

siginificant, otherwise no post-hoc tests were conducted.  

 

Figure 3.2 Mean (± standard error) straightness (STR) of sperm for both alternative 

reproductive tactics (jack and hooknose) in Chinook salmon (Oncorhyncus tshawytscha) 

comparing sperm in own seminal plasma after being spun in centrifuge (sham control; 

gray bars) and sperm in between-tactic’s seminal plasma (manipulated; hashed bars).  

 

Figure 3.3 Mean (± standard error) percent motility of sperm for both alternative 

reproductive tactics (jack and hooknose) in Chinook salmon (Oncorhyncus tshawytscha) 

comparing sperm in own seminal plasma after being spun in centrifuge (sham control; 

gray bars) and sperm in between-tactic’s seminal plasma (manipulated; hashed bars).  

 

Figure 3.4 Mean (± standard error) curvilinear velocity of sperm for both alternative 

reproductive tactics (jack and hooknose) in Chinook salmon (Oncorhyncus tshawytscha) 

comparing sperm in own seminal plasma after being spun in centrifuge (sham control; 

gray bars) and sperm in combinations with within-tactic seminal plasma (manipulated; 

hashed bars).  
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Figure 3.5 Mean (± standard error) straightness (STR) of sperm for both alternative 

reproductive tactics (jack and hooknose) in Chinook salmon (Oncorhyncus tshawytscha) 

comparing sperm in own seminal plasma after being spun in centrifuge (sham control; 

gray bars) and sperm in combinations with within-tactic seminal plasma (manipulated; 

hashed bars).  

 

Figure 3.6 Mean (± standard error) percent motility of sperm for both alternative 

reproductive tactics (jack and hooknose) in Chinook salmon (Oncorhyncus tshawytscha) 

comparing sperm in own seminal plasma after being spun in centrifuge (sham control; 

gray bars) and sperm in combinations with within-tactic seminal plasma (manipulated; 

hashed bars).  
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Figure 3.1 
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Figure 3.2 
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Figure 3.3 
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Figure 3.4 
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Figure 3.5 
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Figure 3.6 
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CHAPTER 4: GENERAL DISCUSSION 

1. Summary 

 In this thesis I experimentally tested hypotheses related to the benefits of 

polyandry and sperm competition using male (from both alternative reproductive tactics) 

and female Chinook salmon (Oncorhynchus tshawytscha). The purpose of this chapter is 

to summarize the main conclusions and discuss the implications of my research so that 

specific directions of future research can be outlined to expand on the work done in this 

thesis.  

In chapter two, I found that from a female’s perspective, sperm competition, 

through the act of mating with multiple males simultaneously, is beneficial because it 

provides the female with greater fitness by increasing the quality of the offspring, as 

revealed by increased hatching success. By promoting sperm competition between males, 

a female can ensure that the majority of her offspring will be fertilized by the male with 

the highest sperm velocity, as this is a predictor of fertilization success (Flannery, 2011). 

However, these benefits of polyandry differ depending on the alternative reproductive 

tactic the males adopt, with the female receiving the greatest benefit by mating with a 

jack and a hooknose male simultaneously over all other combinations. My research 

further shows that males with faster moving sperm will also produce offspring of higher 

quality, specifically, higher hatching success, and therefore provide the female genetic 

benefits of mating with multiple males. The results from this data chapter show support 

for the good sperm hypothesis (Yasui, 1997) because firstly, polyandrous females 

received greater genetic benefits over monandrous females, and secondly, males with 

superior sperm quality produced offspring of higher quality, measured as hatching 

success.  



 
 

 62 

In chapter three, I show that male’s seminal plasma can potentially impact the 

outcome of sperm competition (and ultimately reproductive success) by altering the 

speed of rival males’ sperm. These results exhibit tactic-specific effects as the impact of 

the seminal plasma on sperm velocity varies with the male alternative reproductive tactic. 

Jacks’ seminal plasma causes a decrease in sperm velocity of hooknose males, but there 

is no effect of hooknose seminal plasma on jack male’s sperm velocity. Finally, I found 

no effect of seminal plasma on sperm velocity of males adopting the same tactic.   

2. Chapter Two 

 To determine if female Chinook salmon obtain genetic benefits of mating 

multiply, which might explain why polyandry is so prevalent, the good-sperm hypothesis 

(Yasui, 1997) was experimentally tested in this chapter. The good-sperm hypothesis has 

rarely been tested and to date has received limited support (but see Hosken et al., 2003; 

Fisher et al., 2006), but that could be mostly because most of the work on the potential 

genetic benefits of polyandry has focused on internal fertilizers, and these mating systems 

make it difficult to distinguish effects due to polyandry and possible confounding 

maternal effects (see Simmons, 2005). By using an external fertilizing species, I avoid 

this problem because maternal effects can be controlled through the use of a maternal 

half-sib experimental design.  

I found that multiply mated females do accrue genetic benefits as offspring from 

polyandrous crosses had a higher hatching success than offspring from monandrous 

crosses. Furthermore, these benefits differed depending on the alternative reproductive 

tactic of the males for each cross. The use of jack males as the contributor of sperm show 

a general increase in offspring hatching success than that of using only hooknose males; 
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even a single jack male produced offspring with greater hatching success than crosses 

using either a single hooknose or two hooknose males. Even though a single jack male 

didn't differ from that of two jack males in terms of offspring hatching success, there 

seems to be some added benefit to the female by mating with a jack male. However, the 

cross that involved both a hooknose and a jack produced the offspring with the greatest 

hatching success, so if the effect of higher hatching success was only because of the jack, 

then we would expect the offspring from this cross to be worse than the cross involving 

one or two jack males.  

 One limitation from this study was that paternity of the offspring was not 

determined, so for the polyandrous crosses it is not known whether the paternity is biased 

towards one male or the other. Having this knowledge would allow me to more 

specifically comment on the tactic-specific effects I found. For example, if the cross 

involving a hooknose and jack (H x J) had the majority of the offspring sired by the jack, 

then this would fall in line with the results of the other crosses, with the jack males 

providing something added to the females to cause an increase in the benefits she 

receives. However, if the hooknose sired the majority of the offspring, then some other 

mechanism may be at play. 

 Future directions for this study, other than determining paternity of the offspring, 

would be to assess different fitness-related traits throughout the lifetime of the fish and 

determine overall fitness, including both survival and reproductive fitness. For example, 

immunocompetence challenges (see McNamara et al., 2014) of the offspring would be an 

important trait to measure, as this would give insight into the quality of the offspring. MH 

(major histocompatibility) genotyping of the offspring and parents would allow us to 
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determine if there is any relationship between offspring and parental MH genes, which 

play a crucial role in the immune response as well as being a potential mate choice 

determinant (e.g. Landry et al., 2001). It would be ideal to allow the offspring to mature 

and also examine gamete quality to determine if they possess high quality gametes, which 

again can be linked back to parental gamete quality and would give a better indication of 

lifetime fitness benefits of polyandry. It would also be interesting to test the sexy-sperm 

hypothesis, which states that males that are superior in sperm competition will produce 

sons that are also superior in sperm competition. This would require offspring to be 

raised until maturity and genotyped to determine sire-offspring relationship in terms of 

sperm quality. Finally, the work completed in this chapter was done on hatchery-raised 

offspring, but it would be beneficial to attempt these experiments in a wild setting. This 

would require eggs to be incubated in native rivers and streams, where hatching success 

could be measured and give insight into the effects of polyandry when there is a more 

realistic selection pressure on eggs, instead of the very relaxed pressure experience 

through hatcheries. In a more extensive project, one could release tagged offspring back 

into the wild and monitor survival and returns to spawning grounds as the fish mature in 

the wild.  

 This chapter has potential implications for both the aquaculture industry and 

supportive breeding programs. It is important to note that often in these programs 

fertilization designs are often simplified and done with little scientific input, which could 

have implications on the quality of offspring produced, depending on the nature of the 

program (whether fish are for production only, or to be released to support wild 

populations). Campton (2004) suggests that sperm competition in these protocols, 
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specifically the common practice of combined milt from random multiple males to 

fertilize a set of eggs, will cause significant unequal genetic contributions from males 

(also see Wedekind et al., 2007). While this may be true, as some males are more certain 

to outcompete other males, the results from this chapter suggest that sperm competition 

may be beneficial by causing an increase in offspring viability as seen via increased 

hatching success, which is an obvious benefit to both aquaculture and supportive 

breeding programs. In addition, programs that are using Chinook salmon are most likely 

only using hooknoses when completing fertilization protocols, but the results from this 

chapter show there may be a great benefit to include jacks into these protocols, as it will 

lead to greater offspring hatching success of approximately 10% when comparing current 

hatchery protocols (a single hooknose = 66.6%) to the proposed new protocol (using a 

cross including both a jack and a hooknose = 76.3%), which could have significant 

positive implications on multi-million dollar per year programs.  

3. Chapter Three 

 In this chapter, I attempt to determine if the alternative reproductive tactics within 

male Chinook salmon can influence the outcome of sperm competition by using seminal 

plasma as a means to alter rival sperm performance. This was done by swapping seminal 

plasma from males of the same and different alternative tactics in a paired design and 

completing an in vitro analysis of sperm performance. My experimental design allowed 

for the direct analysis of how sperm performance changed from natural (control) 

conditions to that of manipulated, where sperm cells were combined with foreign seminal 

plasma as there was no remnants of own seminal plasma in the manipulated treatments.  
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 I found that there were tactic-specific effects of seminal plasma on sperm 

performance. The addition of jack seminal plasma caused a decrease in one metric of 

hooknose sperm performance, specifically, curvilinear velocity (which is correlated with 

sperm competition success), but hooknose seminal plasma had no effect on jack sperm 

performance. There was no effect on sperm performance when seminal plasma from 

males adopting the same tactic was added to the sperm of rival males. These findings 

demonstrate that the supposedly disadvantaged (at spawning; Berejikian et al., 2010) jack 

males can compensate for their less than ideal spawning positions, by at least leveling the 

‘playing field’, with the hooknose males by taking advantage of seminal plasma 

components to alter the sperm velocity of rival males. The fact that there is no effect of 

jack seminal plasma on other jack males further shows that this may be a mechanism to 

aid in sperm competition and not just a general effect on all males, because multiple jacks 

rarely if ever compete against each other in sperm competition (Berejikian et al., 2010).  

Future studies that can build upon the research completed in this chapter could be 

to determine the effect of adding female ovarian fluid has on the impact of seminal 

plasma. In order to determine the direct effects of seminal plasma, I chose to ignore 

female effects, but to determine what actually occurs at the site of fertilization it is 

important to include all components; sperm, egg, ovarian fluid, water, and seminal 

plasma. It is well known that the addition of ovarian fluid to the activation medium, 

instead of just water causes an increase in sperm performance metrics (Turner & 

Montgomerie, 2002; Woolsey et al., 2006; Litvak & Trippel, 1998; Rosengrave et al., 

2009). But it is unknown if the addition of ovarian fluid will change the results found 

here, and it would give insight into possible cryptic female choice mechanisms. This 
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would provide the most realistic results of how all components of the spawning 

microenvironment interact. Another study that could be done to build upon the work done 

in chapter three, would be to create a treatment group that contain seminal plasma of both 

males in a pair with the sperm of just one of the males. This would provide knowledge 

with regards to how the seminal plasma of the two males interacts, as they would in 

natural spawning conditions. A study could be done in which the manipulated treatments 

used in this chapter are used to fertilize eggs in an in vitro sperm competition experiment, 

and eggs can be genotyped to determine paternity and give insight into how the effects of 

seminal plasma will have on fertilization and paternity success. And finally, to build upon 

the work in chapter three, a search for mechanisms needs to be done. One possible 

avenue for this is to look into the proteomics of seminal plasma, and try to determine if 

the results I have shown here are because of proteins in the seminal plasma interacting 

with sperm cells of other rival males. In insects this has been shown to be the case 

(reviewed in Chapman, 2001; 2008), and proteomics is becoming an advancing and 

promising field in studies on fish, with the ovarian fluid (Johnson et al., 2014) and 

seminal plasma (Gombar et al., unpubl. data) proteome being analyzed recently in 

Chinook salmon.  

4. Conclusion 

 Although the study of sexual selection, and specifically sperm competition has 

been an important and popular field of science since the 1970’s, it is still an ever evolving 

field as new approaches and techniques allow more sophisticated and in depth studies to 

be carried out. A major shift in this field has occurred from all work being done on 

internal fertilizing species, mainly insects, to now the use of externally fertilizing species, 
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such fishes, to answer new questions and even ones that have been left unanswered for 

many years. My thesis builds upon a large collection of existing studies of sperm 

competition, but for both of my chapters, studies of this kind have rarely been done on 

fish and by doing so I can find answers to questions that previously went unanswered and 

use these answers to guide future work that can help tackle some overarching questions to 

sexual selection theory that still puzzle scientists
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APPENDICES 

APPENDIX 1: RAW DATA OF OFFSPRING HATCHING SUCCESS FROM 

MONANDROUS AND POLYANDROUS CROSSES FROM CHAPTER 2 

Table A.1 Summary of hatching success of Chinook Salmon (Oncorhynchus 

tshawytscha) offspring from monandrous and polyandrous crosses involving both jack 

and hooknose males. 

Female 
ID 

Cross 
ID 

Monandry/
Polyandry 

Male ID 
#1 

Male ID 
#2 

Replicate Hatching 
Success (%)  

6 H M 22 - 1 66.0 

6 H M 22 - 2 63.0 

6 H M 23 - 1 71.8 

6 H M 23 - 2 69.0 

6 J M 11 - 1 80.4 

6 J M 11 - 2 80.6 

6 J M 12 - 1 26.2 

6 J M 12 - 2 37.1 

6 HxH P 22 23 1 64.1 

6 HxH P 22 23 2 53.5 

6 JxH P 11 22 1 89.3 

6 JxH P 11 22 2 89.2 

6 JxH P 11 23 1 85.8 

6 JxH P 11 23 2 85.1 

6 JxH P 12 22 1 81.8 
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6 JxH P 12 22 2 76.4 

6 JxH P 12 23 1 88.3 

6 JxH P 12 23 2 91.0 

6 JxJ P 11 12 1 84.8 

6 JxJ P 11 12 2 85.5 

7 H M 31 - 1 41.1 

7 H M 31 - 2 38.7 

7 H M 34 - 1 50.9 

7 H M 34 - 2 52.0 

7 J M 13 - 1 52.6 

7 J M 13 - 2 50.0 

7 J M 15 - 1 40.5 

7 J M 15 - 2 50.5 

7 HxH P 31 34 1 60.0 

7 HxH P 31 34 2 56.9 

7 JxH P 13 31 1 36.6 

7 JxH P 13 31 2 40.0 

7 JxH P 13 34 1 53.2 

7 JxH P 13 34 2 62.4 

7 JxH P 15 31 1 54.6 

7 JxH P 15 31 2 54.4 

7 JxH P 15 34 1 59.3 

7 JxH P 15 34 2 54.3 

7 JxJ P 13 15 1 54.0 

7 JxJ P 13 15 2 59.4 

8 H M 41 - 1 60.8 
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8 H M 41 - 2 77.3 

8 H M 42 - 1 48.8 

8 H M 42 - 2 35.3 

8 J M 16 - 1 77.0 

8 J M 16 - 2 70.4 

8 J M 17 - 1 73.3 

8 J M 17 - 2 69.3 

8 HxH P 41 42 1 68.9 

8 HxH P 41 42 2 63.5 

8 JxH P 16 41 1 67.3 

8 JxH P 16 41 2 74.3 

8 JxH P 16 42 1 86.4 

8 JxH P 16 42 2 74.4 

8 JxH P 17 41 1 79.5 

8 JxH P 17 41 2 75.5 

8 JxH P 17 42 1 82.5 

8 JxH P 17 42 2 78.4 

8 JxJ P 16 17 1 62.4 

8 JxJ P 16 17 2 75.0 

9 H M 40 - 1 24.4 

9 H M 40 - 2 10.3 

9 H M 44 - 1 41.6 

9 H M 44 - 2 35.5 

9 J M 18 - 1 45.9 

9 J M 18 - 2 55.3 

9 J M 19 - 1 68.1 
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9 J M 19 - 2 41.3 

9 HxH P 40 44 1 42.2 

9 HxH P 40 44 2 44.4 

9 JxH P 18 40 1 39.3 

9 JxH P 18 40 2 50.9 

9 JxH P 18 44 1 54.2 

9 JxH P 18 44 2 33.5 

9 JxH P 19 40 1 52.7 

9 JxH P 19 40 2 39.7 

9 JxH P 19 44 1 57.9 

9 JxH P 19 44 2 48.6 

9 JxJ P 18 19 1 70.2 

9 JxJ P 18 19 2 67.0 

10 H M 45 - 1 90.3 

10 H M 45 - 2 89.4 

10 H M 46 - 1 85.0 

10 H M 46 - 2 85.8 

10 J M 20 - 1 85.1 

10 J M 20 - 2 90.6 

10 J M 21 - 1 84.1 

10 J M 21 - 2 85.6 

10 HxH P 45 46 1 89.5 

10 HxH P 45 46 2 92.8 

10 JxH P 20 45 1 92.0 

10 JxH P 20 45 2 95.4 

10 JxH P 20 46 1 92.4 
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10 JxH P 20 46 2 88.2 

10 JxH P 21 45 1 91.0 

10 JxH P 21 45 2 92.1 

10 JxH P 21 46 1 91.2 

10 JxH P 21 46 2 88.0 

10 JxJ P 20 21 1 90.6 

10 JxJ P 20 21 2 95.2 

11 H M 48 - 1 57.1 

11 H M 48 - 2 81.8 

11 H M 49 - 1 61.0 

11 H M 49 - 2 82.1 

11 J M 22 - 1 83.1 

11 J M 22 - 2 78.2 

11 J M 23 - 1 72.3 

11 J M 23 - 2 66.2 

11 HxH P 48 49 1 86.1 

11 HxH P 48 49 2 77.7 

11 JxH P 22 48 1 76.6 

11 JxH P 22 48 2 75.1 

11 JxH P 22 49 1 82.7 

11 JxH P 22 49 2 82.0 

11 JxH P 23 48 1 69.7 

11 JxH P 23 48 2 78.7 

11 JxH P 23 49 1 70.0 

11 JxH P 23 49 2 72.8 

11 JxJ P 22 23 1 65.8 
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11 JxJ P 22 23 2 81.1 

12 H M 50 - 1 72.9 

12 H M 50 - 2 72.3 

12 H M 51 - 1 93.5 

12 H M 51 - 2 95.6 

12 J M 25 - 1 63.6 

12 J M 25 - 2 77.8 

12 J M 26 - 1 82.5 

12 J M 26 - 2 60.9 

12 HxH P 50 51 1 84.0 

12 HxH P 50 51 2 86.5 

12 JxH P 25 50 1 83.6 

12 JxH P 25 50 2 81.0 

12 JxH P 25 51 1 84.1 

12 JxH P 25 51 2 88.2 

12 JxH P 26 50 1 92.9 

12 JxH P 26 50 2 88.8 

12 JxH P 26 51 1 93.0 

12 JxH P 26 51 2 92.3 

12 JxJ P 25 26 1 78.9 

12 JxJ P 25 26 2 90.5 

15 H M 69 - 1 71.2 

15 H M 69 - 2 71.2 

15 H M 70 - 1 95.0 

15 H M 70 - 2 90.4 

15 J M 35 - 1 86.6 
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15 J M 35 - 2 98.1 

15 J M 36 - 1 84.7 

15 J M 36 - 2 90.1 

15 HxH P 70 69 1 98.0 

15 HxH P 70 69 2 88.1 

15 JxH P 35 69 1 92.8 

15 JxH P 35 69 2 90.4 

15 JxH P 35 70 1 92.9 

15 JxH P 35 70 2 90.8 

15 JxH P 36 69 1 90.2 

15 JxH P 36 69 2 90.4 

15 JxH P 36 70 1 95.2 

15 JxH P 36 70 2 90.1 

15 JxJ P 35 36 1 92.2 

15 JxJ P 35 36 2 95.7 

16 H M 71 - 1 85.8 

16 H M 71 - 2 93.4 

16 H M 72 - 1 83.8 

16 H M 72 - 2 77.4 

16 J M 37 - 1 93.3 

16 J M 37 - 2 92.0 

16 J M 38 - 1 90.8 

16 J M 38 - 2 86.4 

16 HxH P 71 72 1 83.2 

16 HxH P 71 72 2 78.7 

16 JxH P 37 71 1 89.9 
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16 JxH P 37 71 2 93.2 

16 JxH P 37 72 1 90.0 

16 JxH P 37 72 2 89.3 

16 JxH P 38 71 1 92.9 

16 JxH P 38 71 2 89.7 

16 JxH P 38 72 1 90.2 

16 JxH P 38 72 2 91.8 

16 JxJ P 37 38 1 91.1 

16 JxJ P 37 38 2 95.5 

17 H M 73 - 1 70.5 

17 H M 73 - 2 66.4 

17 H M 74 - 1 81.3 

17 H M 74 - 2 86.0 

17 J M 39 - 1 92.3 

17 J M 39 - 2 91.8 

17 J M 40 - 1 73.3 

17 J M 40 - 2 71.9 

17 HxH P 73 74 1 86.1 

17 HxH P 73 74 2 80.8 

17 JxH P 39 73 1 88.0 

17 JxH P 39 73 2 83.6 

17 JxH P 39 74 1 87.0 

17 JxH P 39 74 2 84.7 

17 JxH P 40 73 1 82.4 

17 JxH P 40 73 2 81.6 

17 JxH P 40 74 1 85.9 
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17 JxH P 40 74 2 84.2 

17 JxJ P 39 40 1 83.9 

17 JxJ P 39 40 2 86.9 

18 H M 75 - 1 67.3 

18 H M 75 - 2 64.2 

18 H M 76 - 1 72.6 

18 H M 76 - 2 72.4 

18 J M 43 - 1 70.8 

18 J M 43 - 2 76.3 

18 J M 44 - 1 55.2 

18 J M 44 - 2 68.3 

18 HxH P 76 75 1 64.0 

18 HxH P 76 75 2 58.0 

18 JxH P 43 75 1 77.4 

18 JxH P 43 75 2 67.3 

18 JxH P 43 76 1 65.1 

18 JxH P 43 76 2 74.1 

18 JxH P 44 75 1 62.5 

18 JxH P 44 75 2 79.6 

18 JxH P 44 76 1 77.9 

18 JxH P 44 76 2 68.9 

18 JxJ P 43 44 1 74.9 

18 JxJ P 43 44 2 78.1 

20 H M 84 - 1 33.2 

20 H M 84 - 2 29.0 

20 H M 85 - 1 67.7 
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20 H M 85 - 2 55.1 

20 J M 47 - 1 64.6 

20 J M 47 - 2 64.3 

20 J M 48 - 1 51.1 

20 J M 48 - 2 43.3 

20 HxH P 84 85 1 37.6 

20 HxH P 84 85 2 37.2 

20 JxH P 47 84 1 47.3 

20 JxH P 47 84 2 39.9 

20 JxH P 47 85 1 68.0 

20 JxH P 47 85 2 51.1 

20 JxH P 48 84 1 56.5 

20 JxH P 48 84 2 46.3 

20 JxH P 48 85 1 62.6 

20 JxH P 48 85 2 58.5 

20 JxJ P 47 48 1 42.2 

20 JxJ P 47 48 2 47.9 

21 H M 86 - 1 83.1 

21 H M 86 - 2 89.3 

21 H M 87 - 1 75.0 

21 H M 87 - 2 71.9 

21 J M 49 - 1 73.7 

21 J M 49 - 2 75.4 

21 J M 50 - 1 85.1 

21 J M 50 - 2 82.9 

21 HxH P 86 87 1 76.7 
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21 HxH P 86 87 2 73.8 

21 JxH P 49 86 1 65.1 

21 JxH P 49 86 2 63.4 

21 JxH P 49 87 1 69.1 

21 JxH P 49 87 2 67.0 

21 JxH P 50 86 1 97.9 

21 JxH P 50 86 2 89.1 

21 JxH P 50 87 1 92.9 

21 JxH P 50 87 2 82.7 

21 JxJ P 49 50 1 96.8 

21 JxJ P 49 50 2 97.3 

22 H M 88 - 1 65.0 

22 H M 88 - 2 73.3 

22 H M 89 - 1 83.0 

22 H M 89 - 2 68.5 

22 J M 52 - 1 52.8 

22 J M 52 - 2 68.2 

22 J M 53 - 1 64.6 

22 J M 53 - 2 69.3 

22 HxH P 88 89 1 76.1 

22 HxH P 88 89 2 62.9 

22 JxH P 52 88 1 89.2 

22 JxH P 52 88 2 90.8 

22 JxH P 52 89 1 92.3 

22 JxH P 52 89 2 88.0 

22 JxH P 53 88 1 86.7 
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22 JxH P 53 88 2 85.7 

22 JxH P 53 89 1 85.5 

22 JxH P 53 89 2 89.1 

22 JxJ P 53 52 1 61.7 

22 JxJ P 53 52 2 31.7 

24 H M 92 - 1 70.0 

24 H M 92 - 2 87.6 

24 H M 93 - 1 86.1 

24 H M 93 - 2 74.4 

24 J M 56 - 1 93.5 

24 J M 56 - 2 93.2 

24 J M 57 - 1 89.6 

24 J M 57 - 2 88.7 

24 HxH P 92 93 1 52.0 

24 HxH P 92 93 2 84.7 

24 JxH P 56 92 1 70.4 

24 JxH P 56 92 2 82.2 

24 JxH P 56 93 1 89.4 

24 JxH P 56 93 2 83.8 

24 JxH P 57 92 1 95.6 

24 JxH P 57 92 2 88.7 

24 JxH P 57 93 1 84.6 

24 JxH P 57 93 2 79.3 

24 JxJ P 56 57 1 89.4 

24 JxJ P 56 57 2 73.7 
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APPENDIX 2: RAW DATA OF OFFSPRING HATCHING SUCCESS FROM 

MONANDROUS CROSSES AND SPERM VELOCITY OF POTENTIAL SIRES 

USED TO CREATE THOSE OFFSPRING FROM CHAPTER 2 

 

Table A.2 Sperm velocity of male Chinook salmon (Oncorhynchus tshawytscha) used 

in monandrous crosses and the resulting offspring hatching success from those 

crosses. 

Male Tactic Male ID Female ID 
Sperm Velocity 

(μm/s) 
Hatching 

Success (%) 

Hooknose H22 6 123 64.5 

Hooknose H23 6 149.3 70.4 

Hooknose H31 7 101.5 39.9 

Hooknose H34 7 105.4 51.5 

Hooknose H40 9 85.85 17.4 

Hooknose H41 8 143.35 69.1 

Hooknose H42 8 119.65 42.1 

Hooknose H44 9 130 38.5 

Hooknose H45 10 180.1 89.8 

Hooknose H46 10 117.45 85.4 

Hooknose H48 11 166.6 69.4 

Hooknose H49 11 173 71.6 

Hooknose H50 12 112.95 72.6 

Hooknose H51 12 190.15 94.5 

Hooknose H69 15 166.1 71.2 

Hooknose H70 15 135.1 92.7 

Hooknose H71 16 158.3 89.6 
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Hooknose H74 17 119.75 83.7 

Hooknose H76 18 95.85 72.5 

Hooknose H84 20 109.4 31.1 

Hooknose H86 21 119.15 86.2 

Hooknose H87 21 108.55 73.5 

Hooknose H88 22 146.35 69.1 

Hooknose H89 22 174.9 75.8 

Hooknose H92 24 136.45 78.8 

Hooknose H93 24 143 80.3 

Jack J11 6 131.65 80.5 

Jack J12 6 121.3 31.6 

Jack J13 7 111.9 51.3 

Jack J15 7 122.05 45.5 

Jack J16 8 135.3 73.7 

Jack J17 8 151.7 71.3 

Jack J18 9 101.55 50.6 

Jack J19 9 116.3 54.7 

Jack J20 10 107.3 87.9 

Jack J21 10 161.1 84.8 

Jack J22 11 123.85 80.7 

Jack J23 11 127.45 69.2 

Jack J25 12 113.8 70.7 

Jack J26 12 97.25 71.7 

Jack J35 15 144.1 92.3 

Jack J36 15 150.4 87.1 

Jack J37 16 145.2 92.6 
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Jack J38 16 147.6 88.6 

Jack J39 17 169.1 92.0 

Jack J40 17 102.15 72.6 

Jack J43 18 183.6 73.6 

Jack J44 18 125.8 61.7 

Jack J47 20 132.45 64.5 

Jack J48 20 130.55 47.2 

Jack J49 21 102.2 74.6 

Jack J50 21 123.9 84.0 

Jack J52 22 117.7 60.5 

Jack J56 24 171.05 93.4 

Jack J57 24 138 89.1 
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APPRENDIX 3: RESULTS FROM THE COMPARISON OF CONTROL AND SHAM 

CONTROL TREATMENTS FROM CHAPTER 3 

 

Experiment 1: Between-tactic manipulation 

There was a significant difference between the control and sham control 

treatments for sperm straightness (repeated measures ANOVA: male tactic, F1, 26 = 0.35, 

p = 0.56; treatment, F1, 26 = 7.8, p = 0.01; tactic x treatment, F1, 26 = 0.006. p = 0.94) and 

percent motility (repeated measures ANOVA: male tactic, F1, 27 = 0.003, p = 0.96; 

treatment, F1, 27 = 8.3, p = 0.008; tactic x treatment, F1, 27 = 0.76, p = 0.39). Post-hoc 

analysis show that for sperm straightness, the sham control treatment is significantly 

higher than the control treatment in hooknoses only (paired t-test: Hooknose, t14 = -2.4, p 

= 0.03; Jack, t12 = -1.65, p = 0.13; Table 3.1; Fig. A.2) and for percent motility, the sham 

control is significantly lower than the control for hooknoses only (paired t-test: Hooknose, 

t14 = 2.49, p = 0.026; Jack, t12 = 1.59, p = 0.14; Table 3.1; Fig. A.3).  

Experiment 2: Within-tactic manipulation 

There was a significant difference between the control and sham control 

treatments for sperm velocity (repeated measures ANOVA: male tactic, F1, 58 = 0.26, p = 

0.616; treatment, F1, 58 = 16.4, p < 0.001; tactic x treatment, F1, 58 = 8.7, p = 0.005), 

however, through post-hoc analysis, it had a negative effect on jack males (paired t-test: 

t29 = 4.76, p < 0.001; Fig. A.4) but no effect hooknose males (paired t-test: t29 = 0.81, p = 

0.425; Fig. A.4). Similarly, there is a significant difference between control and sham 

control treatments for sperm straightness (repeated measures ANOVA: male tactic, F1, 58 

= 0.042, p = 0.84; treatment, F1, 58 = 5.5, p = 0.022; tactic x treatment, F1, 58 = 0.81, p = 
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0.37) and percent motility (repeated measures ANOVA: male tactic, F1, 58 = 0.11, p = 

0.74; treatment, F1, 58 = 29.7, p < 0.001; tactic x treatment, F1, 58 = 1.81, p = 0.18). Post-

hoc analysis shows that there is significant increase in sperm straightness for hooknoses 

only (paired t-test: Hooknose, t29 = -2.4, p = 0.025; Jack, t29 = -1.0, p =0.33; Table 3.2; 

Fig. A.5) and significant decrease in percent motility for both tactics (paired t-test: 

Hooknose, t29 = 2.8, p = 0.009; Jack, t29 = -5.03, p < 0.001; Table 3.2; Fig. A.6).  
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Figure Captions 

Figure A.1 Mean (± standard error) curvilinear velocity of sperm for both alternative 

reproductive tactics (jack and hooknose) in Chinook salmon (Oncorhyncus tshawytscha) 

comparing sperm in own seminal plasma when not spun in centrifuge (control; black 

bars) and sperm after being spun in centrifuge (sham control; grey bars) in the between-

tactic seminal plasma swap experiment (experiment one). An asterix (*) signifies a 

significant post-hoc test (p < 0.05) when the main model was significant, otherwise no 

post-hoc tests were conducted.  

 

Figure A.2 Mean (± standard error) straightness (STR) of sperm for both alternative 

reproductive tactics (jack and hooknose) in Chinook salmon (Oncorhyncus tshawytscha) 

comparing sperm in own seminal plasma when not spun in centrifuge (control; black 

bars) and sperm after being spun in centrifuge (sham control; grey bars) in the between-

tactic seminal plasma swap experiment (experiment one). An asterix (*) signifies a 

significant post-hoc test (p < 0.05) when the main model was significant, otherwise no 

post-hoc tests were conducted. 

 

Figure A.3 Mean (± standard error) percent motility of sperm for both alternative 

reproductive tactics (jack and hooknose) in Chinook salmon (Oncorhyncus tshawytscha) 

comparing sperm in own seminal plasma when not spun in centrifuge (control; black 

bars) and sperm after being spun in centrifuge (sham control; grey bars) in the between-

tactic seminal plasma swap experiment (experiment one). An asterix (*) signifies a 

significant post-hoc test (p < 0.05) when the main model was significant, otherwise no 

post-hoc tests were conducted. 
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Figure A.4 Mean (± standard error) curvilinear velocity of sperm for both alternative 

reproductive tactics (jack and hooknose) in Chinook salmon (Oncorhyncus tshawytscha) 

comparing sperm in own seminal plasma when not spun in centrifuge (control; black 

bars) and sperm after being spun in centrifuge (sham control; grey bars) in the within-

tactic seminal plasma swap experiment (experiment two). An asterix (*) signifies a 

significant post-hoc test (p < 0.05) when the main model was significant, otherwise no 

post-hoc tests were conducted. 

 

Figure A.5 Mean (± standard error) straightness (STR) of sperm for both alternative 

reproductive tactics (jack and hooknose) in Chinook salmon (Oncorhyncus tshawytscha) 

comparing sperm in own seminal plasma when not spun in centrifuge (control; black 

bars) and sperm after being spun in centrifuge (sham control; grey bars) in the within-

tactic seminal plasma swap experiment (experiment two). An asterix (*) signifies a 

significant post-hoc test (p < 0.05) when the main model was significant, otherwise no 

post-hoc tests were conducted. 

 

Figure A.6 Mean (± standard error) percent motility of sperm for both alternative 

reproductive tactics (jack and hooknose) in Chinook salmon (Oncorhyncus tshawytscha) 

comparing sperm in own seminal plasma when not spun in centrifuge (control; black 

bars) and sperm after being spun in centrifuge (sham control; grey bars) in the within-

tactic seminal plasma swap experiment (experiment two). An asterix (*) signifies a 
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significant post-hoc test (p < 0.05) when the main model was significant, otherwise no 

post-hoc tests were conducted. 
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Figure A.1 
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Figure A.2 
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Figure A.3 
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Figure A.4 
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Figure A.5 
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Figure A.6 
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