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ABSTRACT 

The GABAB receptor is important for the function of neurons in the central auditory 

system. A functional GABAB receptor is a heterodimer of the GABABR1 and GABABR2 

subunits. In this thesis, I used immunohistochemical methods to examine the level and 

localisation of both subunits in the rat’s central auditory system. 

Results revealed that GABABR1 and GABABR2 subunits were expressed throughout the 

auditory system. High levels of immunoreactivity to both subunits were found in the superficial 

layers of the auditory cortex, medial geniculate nucleus, dorsal region of the inferior colliculus, 

and dorsal cochlear nucleus. While the expression of these subunits was generally parallel with 

each other, some differences were observed between the two subunits. Overall, distributions of 

the GABABR1 and GABABR2 subunits in auditory structures are consistent with inputs to these 

structures. The localisation of the subunits supports the contribution of functional GABAB 

receptors that are likely mediating auditory connections. 
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1 INTRODUCTION 

1.1 The auditory system 

Hearing is essential to the biological fitness of mammals. It contributes to behaviours 

such as prey catching, predator avoidance, and species-specific communication. Acoustic signals 

are processed by the auditory system which consists of the peripheral and the central auditory 

systems. The auditory system has the ability not only to recognise and localise sounds, but also 

to differentiate behaviourally significant sounds from ambient noises. 

The peripheral system consists of the outer, middle, and inner ear. The outer ear includes 

the external ear (pinna) and ear canal. The middle ear includes the oscicles and the inner ear 

includes the cochlea. The outer ear and middle ear are separated by the eardrum (tympanic 

membrane) and the middle and inner ear are separated by the oval window of the cochlea 

(Silverthorn, 2007). Sounds are directed by the pinna into the ear canal and the waves hit and 

vibrate the tympanic membrane. The vibrations are then transferred to the oval window through 

three connected oscicles, the malleus, incus, and stapes, which amplify the signal (Silverthorn, 

2007). The vibrations from the oval window create waves within the fluid-filled cochlea causing 

hairs of hair cells to bend. Hair cells receiving mechanical stimulation (bending of hairs) release 

neurotransmitters which consequently excite spiral ganglion cells. Action potentials generated by 

ganglion cells travel by the cochlear nerve to the central auditory system (Silverthorn, 2007). 

The central auditory system consists of six major structures: the cochlear nucleus (CN), 

the superior olivary nucleus (SOC), the nucleus of the lateral lemniscus (NLL), the inferior 

colliculus (IC), the medial geniculate nucleus (MG), and the auditory cortex (AC). These 

structures are organised in a hierarchical manner, with the CN being at the lowest level and the 



2 
 

AC at the highest. Each of these major central auditory structures can be divided into multiple 

subnuclei as seen in Figures 1A and 1B. 

 

1.2 Central auditory structures 

1.2.1 Cochlear Nucleus (CN) 

The CN is located in the hindbrain and receives direct projections from the peripheral 

auditory system. The CN as a whole sends projections to the contralateral CN and IC, SOC, NLL 

and MG, and is the target of descending projections from the AC, IC, ventral NLL, and SOC 

(Schofield and Coomes, 2005). It is comprised of two main subdivisions: the ventral CN (VCN) 

and the dorsal CN (DCN). This can be seen in Figure 1A (upper panel). 

Ventral Cochlear Nucleus (VCN) 

The VCN can be further divided into two major subdivisions: the anterior VCN (AVCN) 

and the posterior VCN (PVCN). The VCN has five distinct cell types: spherical bushy, globular 

bushy, octopus, multipolar, and small cells. Characterisation of these cells can be seen in Figure 

2. These cells receive inputs from the cochlear nerve (Osen et al., 1991). In addition to ascending 

inputs provided by auditory nerve fibres, all cells in the VCN (except for the octopus cells) 

receive descending input from the DCN and AC (Malmierca and Merchán, 2005).  

Octopus cells in the PVCN send projections to the contralateral ventral NLL and 

bilaterally to the dorsal region of the SOC (Weiner and Schreiner, 2005). Globular bushy cells, 

which can be found in the rostral area of the PVCN and the caudal area of the AVCN, project to 

the contralateral ventral SOC (Warr, 1982). Spherical bushy cells in the AVCN project both 

ipsilaterally and contralaterally to the ventral SOC (Merchán et al., 1988). Multipolar and small  

 



Figure 1A. Schematic representations of coronal sections of the rat brain containing the
cochlear nucleus (CN, upper and lower panels) and the superior olivary complex (SOC, lower
panel). The upper panel includes the posterior part of the CN which can be divided into the
DCN (D), PVCN (P), and GCD (G). Lower panel contains the anterior part of the CN and the
SOC. The anterior part of the CN is also called the anteroventral CN (AVCN). The SOC can be
divided into the MNTB (1), SPN (2), LSO (3), VNTB (4), MSO (5), and LNTB (6). [Redrawn
and modified from Paxinos and Watson 2005]
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SOC 1 2
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Figure 1B. Schematic representations of coronal sections of the rat brain containing the
nucleus of the lateral lemniscus (NLL, upper panel), inferior colliculus (IC, upper panel),
medial geniculate nucleus (MG, lower panel), and the auditory cortex (AC, lower panel). The
NLL can be divided into the DNLL and VNLL. The IC can be divided into the ICd, ICx, and
ICc. The MG can be divided into the MGD (D), MGV (V), and MGM (M). The AC can be
divided into layers I, II, III, IV, V, and VI (represented as lines from the lateral to medial axis).
[Redrawn and modified from Paxinos and Watson 2005]
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Figure 2. Schematic representations of cell types in the cochlear nucleus of the rat. Left panel
contains schematic diagrams showing the morphologies of spherical bushy, globular bushy, and
octopus cells respectively. These cells have dendrites that are heavily branched. Right panel
contains schematic diagrams showing the morphologies of multipolar cells and small cells which
have dendrites that are moderately branched. [Redrawn from Malmierca and Merchan 2005]
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cells can be found throughout the VCN and have targets in the ipsilateral ventral IC, SOC, DCN, 

and contralateral CN. 

Dorsal Cochlear Nucleus (DCN) 

The DCN can be divided into 4 layers and a granule cell cap domain (GCD). Out of the 

four layers, the first three are superficial layers that are composed of pyramidal cells that receive 

projections from the VCN (Mugnaini et al., 1980, 1980b). These pyramidal cells send 

projections to the contralateral IC and the medial division of the MG (Schofield and Coomes, 

2005). The fourth layer, referred to as the deep layer, is composed of giant or fusiform cells 

receiving local innervations from interneurons in neighbouring superficial layers and sending 

projections to the contralateral IC and MG (Malmierca et al., 2002). 

The GCD is continuous with the first superficial layer, also known as the molecular layer, 

and can be found just above the DCN/PVCN border. It is made up of small cells that receive 

ascending projections from the cochlear nerve and VCN and the majority of corticocochlear 

projections from the AC (Mugnaini et al., 1980, 1980b). The GCD projects to the pyramidal cells 

in the superficial layers of the DCN, IC, medial MG, and bilaterally to the SOC (Schofield and 

Coomes, 2005). 

 

1.2.2 Superior Olivary Complex (SOC) 

 The SOC is located in the hindbrain and is made up of a group of nuclei that are closely 

associated with one another. This structure consists of the lateral nucleus of the trapezoidal body 

(LNTB), the ventral nucleus of the trapezoidal body (VNTB), the medial nucleus of the 

trapezoidal body (MNTB), the lateral superior olivary nucleus (LSO), the medial superior olivary 



7 
 

nucleus (MSO), and the superior paraolivary nucleus (SPN). This can be seen in Figure 1A 

(lower panel). 

Lateral Nucleus of the Trapezoidal Body (LNTB) 

 The LNTB can be found subjacent to the LSO. The main source of input to this structure 

includes all cell types within the CN except for octopus cells (Warr, 1982). The LNTB returns 

descending projections to the CN, providing a feedback mechanism in the auditory brainstem. 

Other outputs include those to ipsilateral IC as well as the neighbouring MSO (Spangler et al., 

1987).  

Ventral Nucleus of the Trapezoidal Body (VNTB) 

 The VNTB can be found in the most ventral region of the SOC. Inputs to this structure 

include ascending projections from globular bushy and octopus cells within the contralateral 

VCN. The ipsilateral IC and multipolar cells within the ipsilateral and contralateral PVCN 

provide additional inputs to the VNTB (Huffman and Henson, 1990; Warr and Beck, 1996). The 

VNTB has a broad range of outputs including the cochlea and molecular and deep layer of the 

DCN on both sides of the brain, as well as the ipsilateral LSO, IC, and VCN (Warr and Beck, 

1996).  

Medial Nucleus of the Trapezoidal Body (MNTB) 

 The MNTB, lies on the medial edge of the SOC near the vertical midline of the brain. 

This structure almost exclusively contains cells that are elongated in shape. The main source of 

input includes globular bushy cells within the contralateral AVCN. The axons of these bushy 

cells form Calyces of Held terminals that contact neurons in the MNTB (Morest, 1973). The 

MNTB projects to all neighbouring subdivisions of the SOC as well as the VNLL (Grothe and 

Koch, 2011). 
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Lateral Superior Olivary Nucleus (LSO) 

 The LSO is an S-shaped structure that includes a medial and a lateral limb. Within this 

subdivision there are two main types of cells: bipolar and multipolar cells. Inputs include direct 

projections from spherical bushy cells in the ipsilateral AVCN as well as indirect projections 

from globular bushy cells in the contralateral VCN through the MNTB (Grothe and Koch, 2011). 

This convergence of input is important for the localisation of high frequency sounds in the 

horizontal plane using interaural level differences (ILD). An additional input to the LSO includes 

that from the local MSO. Outputs of this structure include ascending projections to the NLL and 

IC on both sides of the brain (Schneiderman and Henkel, 1987). 

Medial Superior Olivary Nucleus (MSO) 

 The MSO can be described as a small oval-shaped structure. It contains multipolar cells 

with dendrites that extend along the medial and lateral axis on either side of the cells (Hassfurth 

et al., 2010). Inputs to this structure include direct as well as indirect projections from spherical 

bushy cells in the ipsilateral and contralateral AVCN. Indirect inputs to the MSO are those 

through neighbouring LNTB and MNTB subdivisions respectively (Grothe and Koch, 2011). 

Outputs of the MSO include those to the ipsilateral dorsal NLL and the ventral IC. Because of 

the binaural sources of input, the MSO contributes to the localisation of low frequency sounds in 

the horizontal plane using interaural time differences (ITD). 

Superior Paraolivary Nucleus (SPN) 

 The SPN is a circular structure. The SPN contains multipolar cells that are among the 

largest in the SOC. Sources of input to this structure includes octopus cells in the ipsilateral VCN 

and multipolar cells within the ipsilateral and contralateral PVCN, as well as the ipsilateral 



9 
 

MNTB (Friauf and Ostwald, 1988; Schofield, 1995). Targets of the SPN include the ipsilateral 

IC (Faye-Lund, 1986; Saldaña and Berrebi, 2000).  

 

1.2.3 Nucleus of the Lateral Lemniscus (NLL) 

 The NLL is a fibrous structure that lies on the lateral edge of the brain and beneath the 

IC. It consists of two main divisions: the ventral division of the NLL (VNLL) and the dorsal 

division of the NLL (DNLL). This can be seen in Figure 1B (upper panel). 

Ventral Nucleus of the Lateral Lemniscus (VNLL) 

 The VNLL contains mainly two cell types: bushy cells and multipolar cells (Merchán et 

al., 1988). These cells receive contralateral inputs primarily from octopus and multipolar cells 

within the VCN (Warr, 1982). Similar to the MNTB, there are Calyx of Held terminals within 

the ventral portion of the VNLL that are believed to originate from octopus cells in the CN 

(Malmierca et al., 1999a, 1999b). Other projections to the VNLL arise from the ipsilateral 

MNTB and SPN that target the dorsal portion of the VNLL (Grothe and Koch, 2011). 

 Interestingly, almost every single neuron in this subdivision projects to the ipsilateral 

ventral IC (Zhao and Wu, 2001). Because of this, it seems more than likely that the primary role 

of this subdivision is to act as a relay point for the ventral IC subdivision. However, this does not 

exclude the possibility of some level of processing occurring within the VNLL.  

Dorsal Nucleus of the Lateral Lemniscus (DNLL) 

 In contrast to the VNLL, the DNLL receives bilateral inputs driven by both ears. This 

suggests a difference in function between the two subdivisions. While the VNLL may serve to 

relay information from the contralateral ear to the IC, the DNLL processes binaural cues for 

sound localisation (Grothe et al., 20011). There are two main cell types in this subdivision: 
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multipolar and small cells (Merchán et al., 1988). This structure is the target of projections from 

the contralateral VCN, LSO, and DNLL as well as the ipsilateral LSO, MSO, SPN and VNLL 

subdivisions (Kelly et al., 2009). The DNLL projects to both sides of the IC as well as the 

contralateral DNLL through the Commissure of Probst (Winer and Schreiner, 2005). 

 

1.2.4 Inferior Colliculus (IC) 

 The IC, located in the midbrain, is a major auditory processing center. The IC receives 

diverse inputs from multiple brainstem sources and high structures. It is the primary source of 

input to the MG, which projects to the AC. The IC can be divided into three regions, including 

the central nucleus of the inferior colliculus (ICc), the external cortex of the inferior colliculus 

(ICx), and the dorsal cortex of the inferior colliculus (ICd). This can be seen in Figure 1B (upper 

panel). 

Central Nucleus of the Inferior Colliculus (ICc) 

 The ICc receives input primarily from lower structures including the ipsilateral VNLL 

and MSO, the contralateral CN, and the DNLL and LSO on both sides of the brain (Beyerl, 

1978). Differences exist in the location of these subcollicular terminals within the ICc. For 

example, afferents from the SOC end in the ventral portion of the ICc while afferents from the 

CN and DNLL end in the dorsal region of the ICc (Malmierca et al., 1999a, 1999b). The ICc also 

receives local inputs from the ICx and the ICd on both sides of the brain (Winer, 2005). Some 

direct inputs to the ICc from higher structures do exist, including a weak projection from the AC 

(Schofield, 2009). Targets of projections of the ICc include the ventral region of the MG on both 

sides of the brain. The ICc also provides weaker projections to the medial and dorsal regions of 

the MG as well as the contralateral IC (Malmierca and Merchán, 2005). As the ICc receives 
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inputs from almost all the important auditory areas, it plays a very important role in central 

auditory processing. It’s noted that while the primary role of the ICc is auditory processing, the 

ICd and ICx contribute to other sensory systems as well (Winer and Schreiner, 2005). 

External Cortex of the Inferior Colliculus (ICx) 

 The ICx is a superficial structure that is located in the lateral region of the IC and can be 

divided into 3 layers. The main sources of input to this structure include the ipsilateral MG, 

neighbouring ICc and ICd, and the AC on both sides of the brain (Malmierca et al., 1999a, 

1999b). The ICx also receives weak projections from the NLL and cerebral cortex (Faye-Lund, 

1985 Huffman and Henson, 1990; Herbert et al., 1991). The ICx projects to the medial and 

dorsal regions of the MG. 

Dorsal Cortex of the Inferior Colliculus (ICd) 

The ICd is divided into 4 layers (Faye-Lund and Osen, 1985). The function of the ICd is 

not yet been established. The main sources of input to this subdivision arise from the ipsilateral 

and contralateral AC (Bajo et al., 2007). Other sources of input include the ipsilateral ICx and 

ICc, contralateral IC, DNLL, SPN, and CN. The ICd projects to the dorsal region of the MG and 

ICc (Malmierca and Merchán, 2005). 

 

1.2.5 Medial Geniculate Nucleus (MG) 

 The MG is a thalamic structure and is the last major structure before the AC in the 

ascending auditory pathway. This structure sends ipsilateral projections almost exclusively to the 

AC (Winer and Schreiner, 2005). The MG has three subdivisions i.e., the ventral division 

(MGv), the dorsal division (MGd), and the medial division (MGm). This can be seen in Figure 

1B (lower panel). 
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Ventral Division of the Medial Geniculate Nucleus (MGv) 

 The MGv is the major source of input to the AC in the ascending pathway. The MGv 

receives inputs primarily from the ipsilateral ICc and a weak input from the contralateral ICc 

(González-Hernádez et al., 1991). The major output of this subdivision is to the ipsilateral AC 

(Winer and Schreiner, 2005). Much like the ICc, the MGv is mainly involved in auditory 

processing while the other auditory geniculate subdivisions are involved in the integration 

between inputs from auditory as well as other sensory systems (Bordi and LeDoux, 1994).  

Medial Division of the Medial Geniculate Nucleus (MGm) 

 The MGm is the smallest of the three divisions of the MG and consists of a thin layer in 

the medial portion of the MG. The MGm has a wide range of ascending inputs including those 

from ICx, CN, SOC, and VNLL (LeDoux et al., 1987). This subdivision also receives 

descending input from the AC and reticular thalamic nucleus (Winer, 2005). The major source of 

output is the ICd, ICx, and AC (LeDoux et al., 1987; Winer, 1992). 

Dorsal Division of the Medial Geniculate Nucleus (MGd) 

 The MGd is the major target of descending projections from the AC as well as ascending 

projections primarily from the ICd and to a lesser extent from the ICx (Winer, 2005). A feedback 

loop may exist between the MGd and the ICx, as the MGd does send projections to the ICx 

(Winer, 1992). 

 

1.2.6 AC 

 The AC is part of the neocortex and is a thin structure that can be found on the dorso-

lateral surface of the brain. The AC is believed to be involved in processing complex auditory 

stimuli that are novel in comparison to ambient noises (Gaese and Ostwald, 1995). It can be 
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divided into six layers, layers I through VI, of which each is anatomically and physiologically 

distinct from another. This can be seen in Figure 1B (lower panel).  

Layers I-IV 

 Layer I is the most superficial layer and contains a very small number of neurons. The 

primary sources of input are those from the MGm and nearby cortical cells within the same layer 

(Winer, 1992; Winer and Schreiner, 2005). Layer II contains many small neurons that are 

pyramidal and non-pyramidal and project to neighbouring layers III and IV (Winer, 1992). Layer 

III also has pyramidal and non-pyramidal neurons. These neurons receive intrinsic connections 

from layer II in the ipsilateral AC. Other inputs to this layer include those from the contralateral 

AC as well as subcortical projections from the MGv. Among all the cortical layers, layer IV is 

the thinnest layer and contains densely packed non-pyramidal small neurons (Games and Winer, 

1988). Layer IV is the target of projections from subcortical structures including the MGv as 

well as direct projections from layer II (Winer and Schreiner, 2005).  

Layer V  

Layer V is the thickest layer in the AC and can be characterised by the numerous 

pyramidal neurons with long apical dendrites perpendicular to the surface of the brain. Inputs to 

this layer are primarily local as dendrites from this layer can be found in layers III and IV. Due to 

the placement of these dendrites, layer V receives indirect projections from the MG as well 

(Huang and Winer, 2000). 

There is some segregation in output among neurons within this layer. Large neurons with 

long apical dendrites that reach towards layer I project to the ICd and ICx on both sides of the 

brain. These neurons are present mostly in the deep region of the layer (Games and Winer, 

1988). Small neurons located in the superficial region of this layer were found to project to the 
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contralateral AC, while medium-sized cells were found to project to both the AC and IC. Only 

pyramidal neurons have been found to project to the IC (Games and Winer 1988). Neurons in the 

most superficial and deepest regions of layer V project to the ipsilateral MGd and MGv (Winer 

and Prieto, 2001). 

Layer VI 

Neurons in layer VI can be either pyramidal or non-pyramidal in shape and are relatively 

small and densely packed (Schofield, 2009). Sources of input to the layer VI include the MGm 

(Winer and Schreiner, 2005). Neurons in this layer project almost exclusively to ipsilateral 

structures including the MGd and MGv as well as the ICd and ICx and possibly weakly to the 

ICc (Schofield, 2009). There are also targets in layer IV of the AC, the SOC and CN. 

 

1.3 Ascending vs. descending auditory systems 

The major central auditory structures form a complex network that is heavily 

interconnected. Within this network there are numerous projections that originate from a lower 

structure and target a higher structure. These projections are referred to as ascending projections. 

There are also projections originating from higher structures and targeting lower structures. 

These projections are referred to as descending projections. These pathways can become quite 

complex and intricate due to the high level of connectivity. Major ascending and descending 

projections can be seen in Figures 3A and 3B. 

Ascending auditory pathways have been extensively studied compared to descending 

pathways. Major projections in the ascending pathway include those from the CN bilaterally to 

the SOC, NLL, and IC; the SOC to the ipsilateral IC; bilateral projections from the NLL to the 

IC; the IC bilaterally to the MG and; the MG ipsilaterally to the AC (Hutson and Morest 1996; 
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Figure 3A. Schematic representation of the major ascending projections in the central auditory
system. Local and commissural connections have been omitted for clarity. [Redrawn and
modified from Winer and Schreiner 2005]
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Figure 3B. Schematic representation of the major descending projections in the central auditory
system. Local and commissural connections have been omitted for clarity. [Redrawn and
modified from Winer and Schreiner 2005]
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Friauf and Ostwald 1988; Gulick et al., 1989; Winer and Schreiner, 2005; Malmierca and 

Merchán, 2005).  

The descending pathway consists primarily of corticofugal, or projections from the AC. 

The possible roles of these projections are include coordination and modulation of subcortical 

activity. Main descending projections include corticofugal projections that target the MG 

ipsilaterally and the IC on both sides of the brain (Schreiner and Winer, 2005; Schofield, 2009).  

Other pathways in the auditory system include local intrinsic connections within the same 

subdivision and structure as well as commissural connections that cross the midline and connect 

the structure counterpart on the other side of the brain. 

 

1.4 Major types of neurotransmission in the auditory system 

 The processing of acoustic information in the central auditory system is dependent on 

both excitatory and inhibitory neurotransmission. Major excitatory neurotransmitters in the 

central auditory system include glutamic acid (glutamate) and major inhibitory neurotransmitters 

include γ-aminobutyric acid (GABA) and glycine. 

1.4.1 Glutamatergic neurotransmission 

 Glutamate is the most abundant excitatory neurotransmitter in the central nervous system 

(Silverthorn, 2007). Glutamate neurotransmitters are stored in the synaptic vesicles of pre-

synaptic cells. Action potentials trigger glutamate release into the synaptic cleft. Receptors for 

glutamate are located post-synaptically and are activated through glutamate binding. These 

receptors can be either ionotropic or metabotropic. There are three major types of ionotropic 

glutamate receptors: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), N-

Methyl-D-aspartic acid (NMDA), and kainate receptors (Silverthorn, 2007). 
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1.4.2 Glutamate receptors 

AMPA- gated channels are permeable to sodium and potassium ions. When activated by 

glutamate, the channel opens to allow sodium ions to flow through the channel into the cell and 

potassium ions to flow out. The net effect of these ion influxes is cell membrane depolarization 

that results in an excitatory post-synaptic potential or EPSP. This EPSP has a fast time course.  

NMDA- gated channels are permeable to calcium in addition to sodium and potassium 

ions. Activation by glutamate results in a net effect of excitation. The ion channel associated 

with an NMDA receptor is normally blocked by magnesium ions. This blockage can be removed 

by a depolarisation event caused by nearby AMPA receptors (Silverthorn, 2007). Increased 

calcium in a neuron upon NMDA receptor activation, can serve as a second messenger that 

triggers an intracellular cascade leading to an elevated excitability of the neuron. This 

neurophysiological change is known as long term potentiation. It has the ability to perpetuate its 

excitatory effect upon the post-synaptic cell for an extended period of time. Longterm 

potentiation is believed to play a major role in learning and memory (Silverthorn, 2007). 

 

1.4.3 GABAergic neurotransmission 

 GABA is one of the main inhibitory neurotransmitters found in the central nervous 

system. In the central auditory system, it has been found that GABAergic neurotransmission 

contributes mostly to ascending pathways; as descending pathways are likely excitatory 

(Feliciano and Potashner, 1995). GABA is a product resulting from the removal of carbon 

dioxide from glutamate by the glutamate decarboxylase catalyst (Caspary et al., 1990).  

GABA is stored in vesicles within pre-synaptic cells, which are usually interneurons 

(Silverthorn, 2007). Upon release, GABA can activate three main classes of receptors including 
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GABAA, GABAB, and GABAC receptors (Enna, 2001). Previous autoradiographical studies 

have found GABAA and GABAB receptors regionally in auditory structures in the rat including 

the brainstem, thalamus, and IC (Bowery et al., 1987; Charles et al., 2001; Milbrandt et al., 1994) 

as well as in other animals (big brown bat: Fubara et al., 1996; guinea pig: Juiz et al., 1994). 

While GABAA and GABAB receptors have been found in the auditory system, GABAC 

receptors are found primarily in the retina of vertebrae (Bormann and Feigenspan, 1995) and 

seem to play an important role in visual processing. 

 

1.4.4 GABAA receptors 

  The GABAA receptor is an ionotropic receptor. The activation of a GABAA receptor 

opens an ion channel to allow chloride ions to flow inside the cell. Binding of the GABAA 

receptor by GABA produces a fast inhibitory response with a short time course preventing an 

action potential from occurring (Huang et al., 2006). 

 

1.4.5 GABAB receptors 

The GABAB receptor is a metabotropic receptor. It is indirectly connected to an ion 

channel by a guanine nucleotide-binding protein or G-protein (Chalifoux and Carter, 2011). The 

binding of a GABAB receptor by GABA activates the G-protein, leading to the opening of an ion 

channel (Silverthorn, 2007). Because its activation requires more steps, the activation of GABAB 

receptors has a relatively slower onset compared to that of GABAA receptors. This process can 

be seen in Figure 4, which illustrates the mechanism of activation of the GABAB receptor upon 

ligand binding. 

 



Figure 4. Mechanism of GABAB receptor activation. Binding of GABA to the GABAB receptor
causes dissociation of G-proteins. The βγ subunits of the G-protein diffuse locally to open
potassium channels and close calcium channels. [Chalifoux and Carter 2011]
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GABAB receptors can be found both pre- and post-synaptically. Pre-synaptically, the 

activation of GABAB receptors can inhibit the release of GABA or glutamate neurotransmitters 

from nerve terminals (Kornau, 2006). Thus, activation of the GABAB receptor can result in a net 

excitatory or inhibitory effect on a post-synaptic cell depending on the neurotransmitter regulated 

by the pre-synaptic GABAB receptor. Post-synaptically, it produces a prolonged inhibition by 

activating K+ channels to induce hyperpolarisation (Ulrich et al., 2007). Because of the ability to 

modulate the release of both excitatory and inhibitory neurotransmitters, the GABAB receptor 

has often been linked to function as a regulator, as seen previously in nociceptive as well as other 

nervous systems (Malcangio and Bowery, 1996). This inhibition is done by preventing calcium 

release through voltage-activated Ca2+ channels (López-Bendito et al., 2002). Additionally, it has 

a longer duration in effects and can contribute to long-term potentiation. Because of these 

characteristics, the GABAB receptor makes a unique contribution to neural processing. 

GABAB receptor subunits 

A functional GABAB receptor is a heterodimer consisting of one GABABR1 and one 

GABABR2 subunit. Both subunits share similar conformations and are about 30% identical in 

sequence (Pin et al., 2004). Each subunit protein contains a venus flytrap (VFT) module and a 

heptahelical domain (HD). The characterisation as well as proposed binding mechanism of the 

two receptor subunits can be seen in Figure 5. 

The GABABR1 subunit has two well-documented splice variants, GABABR1α and 

GABABR1β , which are identical in structure except for the repeating sushi sequence on the N-

terminal of the GABABR1α isoform (Huang et al., 2006). This difference has been attributed to a 

division of roles between the two subunits. It has been found that because of this extra sushi  

  



Figure 5. Binding structure of the GABAB receptor. Proposed binding structure between the
GABABR1 and GABABR2 subunits in the formation of a functional GABAB receptor. The
GABABR1 subunit is depicted on the left in blue. The GABABR2 subunit is depicted on the right
in yellow. Each subunit is composed of a venus flytrap (VFT) module and a heptahelical domain
(HD). The cleft of the VFT in the GABABR1 subunit binds GABA. The HD in the GABABR2 is
involved in G-protein activation. These subunits have been found to interact directly at the level
of the VFT in addition to the level of the HD. [Pin et al. 2004]
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domain, the GABABR1α isoform is targeted towards pre-synaptic terminals to play a major role 

in the release of glutamate (Chalifoux and Carter, 2011). While both isoforms are present at the 

post-synaptic cell membrane, the GABABR1β isoform in particular is necessary for a post-

synaptic GABAB receptor as this splicing variant binds to potassium channels to allow the K+ 

current to flow (Chalifoux and Carter, 2011). 

Previous studies have suggested additional isoforms for GABABR1 and GABABR2 

subunits, but little is known about their characteristics or functions. The GABABR1 subunit 

could have as many as 6 isoforms, GABABR1(α−f), while the GABABR2 is thought to have at 

least 3 isoforms, which have not been properly characterised (Enna, 2001). It is important to note 

that not all potential isoforms necessarily lead to functional receptors. For example, the 

GABABR1e isoform is believed to bind to the GABABR2 subunit as a form of regulation. This is 

because binding between the GABABR1e isoform and GABABR2 subunit does not lead to a 

functional receptor. This binding may limit the availability of the GABABR2 subunit to bind to 

other GABABR1 isoforms that may form a functional GABAB receptor (Enna, 2001). 

Functionality of each GABAB receptor subunit 

Variants of the GABABR1 and the GABABR2 subunits are formed in the endoplasmic 

reticulum (ER) (Ige et al., 2000). As part of a stringent trafficking sequence, the GABABR1 

subunits remain within this structure due to a retention signal located on the protein (Restituito et 

al., 2005). The GABABR2 subunit is necessary for the release of the GABABR1 subunit from 

the ER as the GABABR1 and GABABR2 subunits assemble at the C terminal tail (Pin et al., 

2004). This binding masks the retention signal, allowing the assembled heterodimer to migrate 

towards the plasma membrane (Restituito et al., 2005). 
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In order to study the function of both subunits in forming a functional receptor, previous 

studies have introduced mutations in order to modify specific shapes and/or sequences of each 

subunit. Altering or removing the retention signal in the GABABR1 subunit allows it to migrate 

to the cell surface however its presence alone will not be functional (Pin et al., 2004). This 

demonstrated the necessity of the GABABR2 subunit for proper assembly. The G-protein is 

believed to be associated with the HD of the GABABR2 subunit, which is necessary for receptor 

activation (Enna, 2001). Additionally, upon binding of the two receptor subunits, the GABABR2 

subunit increases the affinity of the GABABR1 subunit for binding GABA (Pin et al., 2004). The 

GABABR1 subunit is also essential for a functional GABAB receptor as the GABA binding 

domain is located on the VFT module of the GABABR1 subunit (Enna, 2001). 

 

1.4.6 Glutamatergic and GABAergic neurotransmission in the auditory system 

 All aforementioned neurotransmitters and receptors play different roles in neural 

processing in the central auditory system. Glutamate is the main excitatory neurotransmitter 

while GABA and glycine are inhibitory neurotransmitters. Previous researchers have tried to 

isolate the types of neurotransmission that mediate connections among neurons in auditory 

structures. Some key pathways are mentioned below. 

 Local GABAergic connections have been found in the DCN that project to neighbouring 

layers (Moore, 1996). Projections from the AVCN to the ipsilateral LSO have been found to be 

glutamatergic. The MSO receives excitatory input from the ipsilateral MNTB and LNTB and 

sends excitatory projections to the NLL (Grothe and Koch, 2011). The SPN sends projections to 

the IC that may be either GABAergic or glutamatergic in nature (Kulesza, 2000). The majority 
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of NLL neurons are GABA-positive. In addition, most neurons in the DNLL send GABAergic 

projections to the ipsilateral and contralateral IC (Wu and Kelly, 1985). 

The MG is the target of GABAergic input from extrinsic sources such as the ICc and 

reticular thalamic nucleus. The MG also receives glutamatergic inputs from the ICc. A large 

portion of glutamatergic projections from the IC to the MG are from GABA-positive neurons 

(Malmierca and Merchán, 2005). While pyramidal neurons in the AC are likely the source of 

excitatory projections to subcortical structures, they are the target of GABAergic innervations by 

local neurons (Winer and Larue, 1989). 

 

1.4.7 The GABAB receptor in the central nervous system 

 Previous studies have been conducted on the localisation and distribution of the GABAB 

receptor in the brain. Autoradiographical studies have found the GABAB receptor throughout the 

central nervous system (Bowery et al., 1987; Chu et al., 1990; Gehlert et al., 1985). One 

autoradiography study looked specifically at the auditory structures in the big brown bat (Fubara 

et al., 1996). Relatively high levels of GABAB receptor expression were found in the AC, MG, 

and the dorsal region of the IC while low levels of expression were found in the ventral region of 

the IC, NLL, SOC, and CN. Several other studies have used autoradiography to quantify the 

level of the GABAB receptor in specific auditory structures in the auditory system of the rat, as 

well as in other animals, and found similar distribution levels among these species (the guinea 

pig’s CN: Juiz et al., 1994; the rat’s IC: Mibrandt et al., 1994).  

A previous immunohistochemical study examined the distribution of the GABAB 

receptor subunits throughout the rat’s central nervous system (Charles et al., 2001). This study 

provided some insight into the distribution of the GABAB receptor subunits in the central 
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auditory system. Results from this study were consistent with those from autoradiography studies 

as high levels of expression were found in the MG and AC and intermediate levels were found in 

the IC. Other immunohistochemistry studies have found the GABAB receptor in the DCN and 

the MSO (Luján et al., 2004; Hassfurth et al., 2010). 

 Previous physiological studies have also supported the existence of the GABAB receptor 

in different structures of the central auditory system. These structures include the CN (Lim et al., 

2000), the SOC (Isaacson, 1998; Sakaba and Neher, 2003; Yamauchi et al., 200), the IC 

(Faingold et al., 1989; Ma et al., 2002; Sun et al., 2006; Sun and Wu, 2009; Vaughn et al., 1996; 

Zhang and Wu, 2000), the MG (Peruzzi et al., 1997; Bartlett and Smith, 1999), and the AC 

(Buonomano and Merzenich, 1998; Metherate and Ashe, 1994; Bandrowski et al., 2001). 

 

1.5 Objectives of my thesis research 

 GABAB receptors likely make important contributions to central auditory processing by 

regulating excitatory and inhibitory neurotransmitters from pre-synaptic terminals and by 

mediating inhibitory post-synaptic potentials. While previous studies have used 

immunohistochemical techniques to localise the GABAB receptor cellularly and sub-cellularly in 

certain structures of the rat’s central nervous system (Panzanelli et al., 2004; Kulik et al., 2003; 

López-Bendito et al., 2002, Ige et al., 2000), knowledge about the level and distribution of the 

GABAB receptor in the central auditory system is yet to be advanced. This knowledge will allow 

for insight into the role of the receptor in auditory processing. Therefore, the major focus of my 

thesis research was to determine the levels and distributions of both the GABABR1 and 

GABABR2 subunits in major auditory structures and their subdivisions. I also wanted to find 

whether the two receptor subunits are co-localised in auditory neurons. 
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2 MATERIALS AND METHODS 

2.1 Tissue preparation 

Experiments were performed on adult male Wistar rats obtained from Charles River 

Laboratories Inc. (St. Constant, QC). All rats used were between 250 to 350 grams in weight and 

were housed in the Animal Quarters at the University of Windsor for at least 1 week prior to 

experimentation. The noise level in the Animal Quarters was about 55-60 decibels (dB) sound 

pressure level (SPL). Four rats were used for Western blotting procedures and thirteen rats were 

used for immunohistochemistry trials. All experimental procedures were approved by the 

University of Windsor Animal Care Committee and were in accordance with the guidelines of 

the Canadian Council on Animal Care. 

 

2.2 Western blotting procedures 

 Western blotting procedures were used to ensure the specificity of primary antibodies for 

probing the GABABR1 and GABABR2 receptor subunits in rat neural tissue. 

2.2.1 Tissue collection 

 A rat was euthanized with an overdose of pentobarbital (120 mg/kg) and the brain was 

extracted immediately. Tissue from the cerebellum and liver was collected into a single 

Eppendorf tube containing homogenization buffer and protease inhibitors (see appendices). 

 

2.2.2 Sample preparation 

The collected tissue was kept on ice and homogenised manually using a plastic pestle. 

The tissue homogenate was centrifuged at 3400 rpm for 20 minutes at 4°C to remove cell debris 

and nuclei. The supernatants were transferred into fresh Eppendorf tubes on ice and centrifuged 

at the same speed for an additional 10 minutes at 4°C. The protein content of the final 
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supernatant was determined using a Bradford assay (Sigma-Aldrich, Oakville, ON, Canada) and 

quantified using a Biomate5 spectrophotometer (Thermo Scientific, Surrey, UK). 

 

2.2.3 Immunoblotting 

Values obtained via the Bradford assay were used to prepare 100 µL samples containing 

30 µg of protein in 4X sample buffer in excess homogenization buffer. The samples were loaded 

and separated using 10% sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-

PAGE). The gel was transferred to a polyvinylidene fluoride PVDF membrane (PVDF)-Plus 

0.45µm membrane (Osmonics Inc., Minnetonka, MN, USA) for 2 hours at 30V. The membrane 

was blocked with 3% bovine serum albumin (BSA) in Tris-buffered saline tween (TBST) (see 

appendices) and then incubated in primary antibody overnight. Following 3 washes in TBST, the 

membrane was incubated in secondary antibody for 2 hours and washed 3 additional times 

before detection using an enhanced chemiluminescence (ECL) kit (Pierce, Rockford, IL, USA). 

Images were acquired using an HD2 gel imaging system and AlphaEase digital analysis software 

(Alpha Innotech, CA, USA). 

 

2.3 Immunohistochemistry 

 Immunohistochemistry was used to examine the cellular localisation and regional 

distribution of the GABABR1 and GABABR2 subunits in the auditory system. Two procedures 

were employed respectively for examinations of immunolabelling using light and fluorescence 

microscopy. 
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2.3.1 Tissue sample collection 

The rat was euthanized with an overdose of pentobarbital (120 mg/kg) and transcardially 

perfused with 200 ml of 0.9% physiological saline followed by 400 ml of 4% paraformaldehyde 

(PFA) in 0.1M phosphate buffer (PB). After the brain was extracted, it was placed in a sucrose 

gradient (10%, 20%, and 30%) until it sank for cryoprotection. It was sectioned using a CM1050 

S cryostat (Leica Microsystems, Heidelberg, Germany) in either the coronal or sagittal plane at a 

thickness of 30 µm. The sections were collected on SuperFrost Plus glass slides (Fisher 

Scientific, Pittsburg, PA, USA) for use in subsequent immunoreactions. 

 

2.3.2 Immunohistochemical procedures for light microscopy 

 Slides were incubated in the primary antibody against either the GABABR1 or 

GABABR2 subunit in 0.1M phosphate buffer saline (PBS) containing 0.05% Triton and 5% 

normal donkey serum (NDS) overnight. After washes in 0.1M PBS, sections were placed in 

keepers with secondary antibody in 0.1M PBS containing 2% NDS at room temperature for 2 

hours. After 3 additional washes in 0.1M PBS, slides were placed in ExtrAvidin®-peroxidase 

(E2886, 1:400, Sigma-Aldrich, Oakville, ON, Canada) in 0.1M PBS for 1.5 hours at room 

temperature. After further washes in 0.1M PBS, the probed subunit was visualised using 0.05% 

3,3’-diaminobenzidine tetrahydrochloride (DAB, G3660, Sigma-Aldrich) in 0.1M PB with 

0.12% H202 as the substrate. The DAB reaction was terminated by immersing the slides in 0.1M 

PBS. The sections were dehydrated through an ethanol gradient (60%, 70%, 95%, 100%, and 

100%) and cleared with xylene twice. The slides were mounted with Permount (SP-500, Fisher 

Scientific) and coverslipped. Sections were examined using a Leica CTR 6500 microscope and 

images were photographed using a DFC 425 digital camera (Leica Microsystems). For 

http://www.sigmaaldrich.com/catalog/ProductDetail.do?lang=en&N4=G3660%7CSIGMA&N5=SEARCH_CONCAT_PNO%7CBRAND_KEY&F=SPEC
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presentation, images were adjusted for contrast and brightness with Photoshop CS4 Extended 

(Adobe Systems, San Jose, CA, USA). 

 

2.3.3 Immunohistochemical procedures for fluorescence microscopy 

 Fluorescence microscopy was used to study the co-localisation of the GABABR1 and 

GABABR2 subunits in auditory neurons. Sections were incubated overnight in solution 

containing both primary antibodies against GABABR1 and GABABR2 subunits in 0.1M PBS 

with 0.05% Triton and 5% NDS. After 3 washes in 0.1 M PBS, slides were placed in secondary 

antibodies against the primary antibody of the GABABR1 subunit in 0.1M PBS with 2% NDS 

for 1 hour at room temperature. After another set of 3 washes, slides were placed in a keeper 

containing Alexa Fluor® 647 streptavidin conjugate (S21374, 1:500, Invitrogen, Burlington, ON, 

Canada) in 0.1M PBS for 45 minutes at room temperature. After 3 further washes in 0.1M PBS, 

slides were placed in the secondary antibody against the primary antibody of the GABABR2 

subunit in 0.1M PBS with 2% NDS for 1 hour at room temperature. After another set of washes 

in 0.1M PBS, slides were exposed to Alexa Fluor® 568 streptavidin conjugate (S11226, 1:500, 

Invitrogen) in 0.1M PBS for 45 minutes at room temperature. The slides were mounted with 

Fluoromount (F4680, Sigma-Aldrich) and coverslipped.  Sections were examined using a Leica 

CTR 6500 microscope and images were photographed using a DFC 380 FX digital camera 

(Leica Microsystems). Subunits tagged with the Alexa Fluor® 568 fluorophore were viewed 

using the Texas Red (TXR) filter cube and were pseudo-coloured red using Leica advanced 

fluorescence (AF) software (Leica Microsystems). Subunits tagged with the Alexa Fluor® 647 

fluorophore were viewed using the far red Y5 filter cube and pseudo-coloured green. Co-

localisation was indicated by yellow, a mixture of red and green when both channels were 
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superimposed on one another or merged. For presentation, images were adjusted for contrast and 

brightness with Photoshop CS4 Extended (Adobe Systems, San Jose, CA, USA). 

 

2.4 Antibodies and control experiments 

2.4.1 Antibodies 

One primary antibody was used to target the GABABR1 subunit and one other primary 

antibody was used to target the GABABR2 subunit in the current study. The antibody used 

against the GABABR1 subunit was rabbit polyclonal GABABR1 antiserum (R-300, 1:1000, 

Santa Cruz Biotechnology Inc., Santa Cruz, CA). The antibody used against the GABABR2 

subunit was affinity purified guinea-pig polyclonal GABABR2 antiserum (AB5394, 1:1000, 

Chemicon, Temecula, CA). Complete information regarding these primary antibodies can be 

found in Table 1. Two additional mouse monoclonal primary antibodies were used in Western 

blotting procedures for detecting Actin (MAB1501, 1:1000, Chemicon) and α-Tubulin (05-829, 

1:1000, Chemicon) respectively. 

Secondary antibodies used in Western blotting experiments were all conjugated to horse-

radish peroxidase (HRP). Goat anti-rabbit IgG-HRP (sc-2004, 1:6000, Santa Cruz Biotechnology 

Inc.) and goat anti-guinea pig IgG-HRP secondary antibodies (AQ108, 1:6000, Chemicon) were 

used for probing GABABR1 and GABABR2 subunits respectively. Anti-mouse IgG (12-349, 

1:5000, Santa Cruz Biotechnology Inc.) was used as a secondary antibody for probing α-Tubulin 

and Actin. For immunohistochemistry procedures, secondary antibodies for the GABABR1 and 

GABABR2 subunits included the biotinylated donkey anti-rabbit IgG (711-005-152, 1:400, 

Jackson ImmunoResearch Laboratories, Burlington, ON, Canada) and biotinylated donkey anti-

guinea pig IgG (706-065-148, 1:400, Jackson ImmunoResearch Laboratories) respectively. 

http://www.scbt.com/search/redirect.php?location=datasheet-2004-goat-anti-rabbit-igg-hrp.html&searchPhrase=goat%20anti-rabbit%20igg&datasheet=sc-2004&tableName=&productType=&page=1
http://www.jacksonimmuno.com/MERCHANT2/merchant.mv?Screen=BASK&Store_Code=JI&Action=ADPR&Product_Code=711-005-152&Attributes=Yes&Quantity=1
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Table 1. Datasheet of primary antibodies used to detect GABABR1 and GABABR2 subunits.  
 
Antibody Anti-GABABR1 Anti-GABABR2 

Format Purified Purified 

Antibody Type Polyclonal Polyclonal 

Host Species Rabbit Guinea Pig 

Vendor Santa Cruz Biotechnology Chemicon (Millipore) 

Target amino acids 929-958 at the C-

terminus 

amino acids 42- 54 at the N-

terminus 

Molecular Size of the Subunit 100 and 130 kDa 120 kDa 

Sequence of the Subunit 960 amino acids 941 amino acids 
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2.4.2 Control experiments 

 Experiments were done to ensure the specificity of the antibodies used against the 

GABABR1 and GABABR2 subunits. In order to make sure that the primary antibodies were 

specific to neural tissue, Western blots were run on tissues collected from the cerebellum and 

liver. Bands corresponding to the molecular weights of each subunit (GABABR1: 130kDa and 

100kDa; GABABR2: 120kDa) should be seen in the lanes containing cerebellar tissue but absent 

in the lanes containing liver tissue as GABAB receptors have been found in the cerebellum and 

not in the liver (Charles et al., 2001). Actin bands were probed on the blot as an even loading 

control between the cerebellum and liver samples, as both structures contain Actin. α-Tubulin is 

found in brain tissue and not in liver tissue and serves as a positive control. 

For immunohistochemistry procedures, the cerebellum was used as a positive control. 

Previous studies have revealed the existence and distribution of the GABABR1 and GABABR2 

receptor subunits in the cerebellum (Charles et al., 2001; Ige et al., 2000). These distributions 

were compared with distribution levels of the receptor subunits obtained in this study. As a 

negative control, the primary antibody was replaced by 0.1M phosphate buffer saline (PBS). This 

ensured that the secondary antibody was unable to bind to tissue in the absence of primary 

antibody. No selective labelling was observed.  For cases where immunofluorescence was used 

for detection of both antibodies within a single section, the order of the subunit exposed to the 

sequence of signal detection was alternated in order to remove any potential biases resulting 

from possible cross-reactivity.  
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2.5 Data analysis 

2.5.1 Densitometry for immunohistochemistry procedures 

 Densitometry was used to assess the level of expression of the GABABR1 and 

GABABR2 receptor subunits in all the major auditory structures. For sections from different 

auditory structures, images were taken using the microscope (Leica Microsystems) under 

identical settings and were exported as tagged image file format (TIFF) files to evaluate 

densitometry values. Pixel intensities were obtained from the subdivisions of the AC, MG, IC, 

NLL, SOC, and CN using ImageJ software (National Institute of Health). Boundaries of the 

auditory structures and their subdivisions were made in reference to the Rat Brain Atlas in 

Stereotaxic Coordinates (Paxinos and Watson, 2007). 

In the cerebellum, labelling is high in the molecular layer and absent in the white matter 

for both GABAB receptor subunits (Ige et al., 2000). Therefore, densitometry values from the 

molecular and white layers of the cerebellum obtained in this study were used as standards to 

calculate the relative level of GABAB receptor subunits in each auditory area within the same 

case. Furthermore, using the cerebellum as a standard allowed for comparisons across different 

cases as well. Relative expression levels within the same case were calculated using the 

following formula: 

L = (Aud-Cw)/(Cm-Cw) 

  where L is the relative level of labelling in an auditory region,  

Aud is the densitometry value of an auditory area,  

Cw is the densitometry value of the white matter of the cerebellum, and  

Cm is the densitometry value of the molecular layer of the cerebellum. 
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Values of L obtained by this equation were assigned scores of ‘+’, ‘++’, ‘+++’, and 

‘++++’ when values were between 0-0.2, 0.2-0.4, 0.4-0.6, and 0.8-1.0, respectively (Jamal et al., 

2011). 

 

 

RESULTS 

3.1 Specificity and effectiveness of the antibodies for the GABABR1 and GABABR2 

receptor subunits 

3.1.1 Specificity and effectiveness of the antibody for the GABABR2 receptor subunit 

 Collaborating Western blotting experiments from a previous colleague confirmed the 

specificity of the primary antibody used to probe the GABABR2 subunit (Jamal et al., 2011). A 

single band at 110 kDa can be seen in the lane containing cerebellar tissue but not in the lane 

containing liver tissue (Figure 6A, upper panel) confirming previous findings (Charles et al., 

2001). In addition, the signal of Actin in each lane was equal, confirming even sample loading 

(Figure 6A, middle panel). Our results also indicated that α-Tubulin can serve as a selective 

control for brain tissue as a band was present in the lane containing brain tissue (cerebellum) but 

absent in the lane containing liver tissue (Figure 6A, lower panel).  

Immunohistochemistry trials conducted in seven independent cases (i.e. seven animals) 

further corroborated the specificity of the primary antibody against the GABABR2 subunit. 

GABABR2 subunit immunoreactivity in the cerebellum was high in the molecular layer, 

moderate in the granule cell layer, and absent in the white matter (Figure 6B). Distinctly labelled 

Purkinje cells were seen in between the molecular and granule cell layers. These results were in  

 

 



Figure 6. Immunoreactivity to the GABABR2 subunit antibody in the cerebellum. (A) Western
blots revealing GABABR2 subunit antibody immunoreactivity in the cerebellum and the liver
(top panel). Actin is used as a general loading control (middle panel) and α-Tubulin is used as a
brain tissue-specific loading control (lower panel). (B) Immunoreactivity to the GABABR2
subunit in a coronal section of the cerebellum showing molecular, Purkinje cell, and granule cell
layers and white matter. Inset in (B) shows a labelled soma of a Purkinje cell as well as adjacent
areas in the molecular and granule layers. Arrow with white outline points toward a labelled
Purkinje cell. Scale bars: 200 µm in the low magnification image; 20 µm in the inset. [Jamal et
al. 2011]
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agreement with previous findings (Ige et al., 2000). No labelling was seen in sections when the 

primary antibody was replaced by 0.1M PBS.  

Therefore, Western blotting and immunohistochemical results confirmed that the primary 

antibody used in this study was effective and specific for detecting the GABABR2 subunit in the 

rat’s neural auditory structures. 

 

3.1.2 Specificity and effectiveness of the antibody for the GABABR1 receptor subunit 

 Western blotting experiments confirmed the specificity of the primary antibody used for 

detecting the GABABR1 subunit. Two bands at 130 kDa and 100 kDa can be seen in the lane 

containing cerebellar tissue but not in the lane containing liver tissue (Figure 7A, upper panel). 

This result is consistent with those reported in previous literature regarding molecular weights of 

the GABABR1α and GABABR1β isoforms (Panzanelli et al., 2004). In addition, the level of 

Actin in each lane was equal, confirming even sample loading (Figure 7A, middle panel). α-

Tubulin can serve as selective control for neural tissue as a band was present in the lane 

containing cerebellum and absent in the lane containing liver (Figure 7A, lower panel). 

Immunohistochemistry in four individual cases (i.e. four animals) further confirmed the 

specificity of the antibody. GABABR1 subunit immunoreactivity in the cerebellum was high in 

the molecular and granule cell layers, and was almost absent in the white matter (Figure 7B). 

Numerous densely labelled Purkinje cells were labelled between the molecular and granule cell 

layers and were even stronger in immunoreactivity to the GABABR1 subunit. This result was in 

agreement with previous findings (Ige et al., 2000). Furthermore, no labelling was seen in 

sections run with 0.1M PBS in place of the primary antibody against the GABABR1 subunit. 

Thus, Western blotting and immunohistochemical results demonstrated that the antibodies used 



Figure 7. Immunoreactivity to the GABABR1 subunit antibody in the cerebellum. (A) Western
blots revealing GABABR1 subunit antibody immunoreactivity in the cerebellum and the liver
(top panel). Actin is used as a general loading control (middle panel) and α-Tubulin is used as a
brain tissue-specific loading control (lower panel). (B) Immunoreactivity to the GABABR1
subunit in a coronal section of the cerebellum showing molecular, Purkinje cell, and granule cell
layers and white matter. Inset in (B) shows a labelled soma of a Purkinje cell as well as adjacent
areas in the molecular and granule layers. Arrow with white outline points toward a labelled
Purkinje cell. Scale bars: 200 µm in the low magnification image; 20 µm in the inset.
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in this study were effective and specific for detecting the GABABR1 subunit in the rat’s neural 

auditory structures. 

 

3.2 The level and distribution of the GABABR2 receptor subunit in the rat’s central 

auditory system 

3.2.1 The level of the GABABR2 receptor subunit in major central auditory structures 

Overall levels of the GABABR2 receptor subunit were compared among auditory 

structures using coronal and sagittal sections. For five of the seven animals, the brain was 

sectioned in the coronal plane. For the other two of the animals, the brain was sectioned in the 

sagittal plane. 

Figure 8 shows low magnification images of four sections obtained from one single 

animal. These sections were corresponding to plates 83, 105, 118, and 123 in The Rat Brain 

Atlas in Stereotaxic Coordinates (Paxinos and Watson, 2007). The first section contains the AC 

and MG (Figure 8, upper left panel), the second section contains the IC and NLL (Figure 8, 

upper right panel), the third section contains the SOC and AVCN (Figure 8, lower left panel), 

and the fourth section contains the DCN and PVCN (Figure 8, lower right panel). These sections 

indicate that the immunoreactivity to the antibody against the GABABR2 receptor subunit was 

high in the AC and MG, moderate in the IC and low in the NLL and SOC and CN.  

Sections from the same animal but at rostrocaudal locations other than plates 83, 105, 118, and 

123 in The Rat Brain Atlas in Stereotaxic Coordinates (Paxinos and Watson, 2007) were also 

used to conduct immunohistochemical experiments. Immunolabelling by the antibody against the 

GABABR2 subunit was analysed in these additional sections. Results from these additional  

  



Figure 8. Low magnification images showing immunoreactivity to the GABABR2 subunit in
auditory structures in coronal sections. Upper left panel contains the auditory cortex (AC, 1) and
the medial geniculate nucleus (MG, 2). Upper right panel contains the inferior colliculus (IC, 3)
and the nucleus of the lateral lemniscus (NLL, 4). Lower left panel contains the superior olivary
complex (SOC, 5) and anterior cochlear nucleus (CN, 6). Lower right panel contains the
posterior CN (6). Scale bar: 2500 µm
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sections (not shown) confirmed those from plates 83, 105, 118, and 123. Scores obtained were 

used to corroborate the scores obtained from the set of sections presented in Figure 8. 

Densitometry scores were obtained from individual auditory areas in the 5 coronal cases. 

A score of labelling is given by using the densitometry value (see section 2.5.1 for method). 

Scores from all the auditory areas are presented in Table 2. Based on the scores obtained, the 

level of labelling was the highest in the DCN, dorsal IC, MG, and the superficial layers of the 

AC, and the lowest in the SOC, and NLL. Moderate scores were found in the ventral IC and 

VCN. 

Two cases were sectioned in the sagittal plane. Results revealed that the GABABR2 

subunit was labelled in all the major auditory structures. Figure 9 shows low magnification 

images of two sections from a single case, with the IC presented in Figure 9A and the MG and 

CN presented in Figure 9B. Results from these sagittal sections regarding the immunoreactivity 

to the GABABR2 subunit are consistent in findings from coronal sections. Labelling was dense 

in the entire MG. In the CN, labelling was high in the DCN and moderate in the anterior and 

posterior regions of the VCN. In the IC, labelling was moderate in the ventral region where the 

ICc is located. High levels of labelling were observed in the rostral and caudal edges as well as 

the dorsal region. These regions are where the ICx and ICd are located respectively. 

In the following subsections, I will present immunohistochemical results from a single 

case regarding the regional distribution and cellular localisation of the GABABR2 receptor 

subunit in major central auditory structures (Figures 10 through 15). Results from this case were 

confirmed by results obtained by the four other cases. 
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Table 2. Densitometry scores of the GABABR2 subunit in the auditory structures. Densitometry 
values of immunoreactivity in auditory structures to the GABABR2 subunit as revealed by 
immunohistochemical labelling and densitometry analysis (n=5). [Jamal et al. 2011] 
 

Auditory structure Subdivision Densitometry value 

AC Layer I +++ 

 Layers II/III ++++ 

 Layer IV +++ 

 Layer V +++ 

 Layer IV ++ 

MG MGd +++ 

 MGv +++ 

 MGm +++ 

IC ICc ++ 

 ICd ++++ 

 ICx +++ 

NLL DNLL + 

 Dorsal VNLL ++ 

 Ventral VNLL + 

SOC LSO ++ 

 MSO ++ 

 SPN + 

 LNTB ++ 

 VNTB ++ 

 MNTB + 

CN DCN molecular/fusiform cell layers ++++ 
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 DCN Deep layers ++ 

 GCD ++++ 

 AVCN ++ 

 PVCN ++ 

CB Molecular/Purkinje cell layers ++++ 

 Granule cell layer ++ 

 White matter - 

 
 



Figure 9. Immunoreactivity to the GABABR2 subunit in a parasagittal section with the inferior
colliculus (IC, A) and a parasagittal section with the medial geniculate nucleus (MG, B) and the
cochlear nucleus (CN, B). Scale bar: 1000 µm. The cross symbol below (B) indicates the
orientation of sections. R: rostral; C: caudal; D: dorsal; V: ventral. [Jamal et al. 2011]
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3.2.2 Regional and cellular distribution of the GABABR2 subunit 

Cochlear Nucleus (CN) 

 Overall, the CN was moderately labelled by the antibody against the GABABR2 subunit 

(Figure 10A and 10B). The lateral edge of the DCN was heavily labelled. In particular, the 

neuropil (i.e., dendrites and axons around cell bodies) and cell bodies of the molecular layer and  

GCD were highly immunoreactive to the antibody for the GABABR2 subunit (Figures 10A, 10C, 

and 10D). In contrast, in the deeper layers, labelling of the neuropil was much lighter. Labelling 

was localised primarily to possible pyramidal and fusiform cells. In the PVCN (Figure 10A) and 

AVCN (Figure 10B), overall labelling was moderate with punctate labelling both on somata and 

in neuropil. Cell bodies resembling globular bushy, octopus, and multipolar cells were labelled in 

the PVCN (Figure 10E). Presumable spherical and globular bushy cells in the AVCN were also 

labelled (Figure 10F). In the AVCN, some large immunoreactive neurons had a fainter labelled 

outline surrounding the cell (Figure 10F). These outlines could suggest the possible existence of 

Calyx of Held synapses. This will be further discussed in section 4.1.4. 

Superior Olivary Complex (SOC) 

 Each subnucleus of the SOC was immunoreactive to the GABABR2 subunit to a certain 

extent (Figure 11A). The MNTB had an overall low level of labelling due to light neuropil 

immunoreactivity as well as an abundance of fibres that reside on the medial side. Cells within 

this region were distinctly labelled (Figure 11B). Like in the AVCN, some neurons with a faint 

outline indicative of a possible Calyx of Held were observed in the MNTB. The SPN also had a 

low overall GABABR2 subunit density due to light punctate neuropil labelling (Figure 11C). 

Unlike neurons in the other subnuclei of the SOC, the SPN has relatively large neurons with 

thick dendrites clearly labelled. The LSO demonstrated a moderate level of labelling (Figure  



Figure 10. Immunoreactivity to the GABABR2 subunit in the cochlear nucleus (CN). Low
magnification images show labelling in the caudal CN (A, with DCN, GCD, and PVCN) and the
rostral CN (B, with AVCN). “g” indicates the GCD. High magnification images show labelling
in areas in the DCN (C), GCD along with ventral DCN (D), PVCN (E), and AVCN (F). Dashed
curves in (A), (B), and (D) indicate boundaries of subdivisions in the CN. Black arrows with
white outlines point toward labelled cell bodies. The white arrow with a black outline in (F)
points toward a weakly labelled area surrounding a cell body. Scale bars: 200 µm in (A, B); 20
µm in (C-F). The cross symbols in (A, B) indicate the orientation of sections. L: lateral; M:
medial; D: dorsal; V: ventral. [Jamal et al. 2011]



Figure 11. Immunoreactivity to the GABABR2 subunit in the superior olivary nucleus (SOC).
Low magnification image shows labelling in the entire SOC (A). High magnification images
show labelling in areas in the MNTB (B), SPN (C), LSO (D), VNTB (E), MSO (F), and LNTB
(G). Enclosed dashed curves indicate subdivisions of the SOC. Black arrows with white outlines
point toward labelled cell bodies. A black arrowhead with a white outline in (C) points toward a
labelled dendrite. Black open arrowheads in (C, D) point towards labelled puncta. A white arrow
with a black outline in (B) points towards a weakly labelled area surrounding a labelled MNTB
cell. Scale bars: 200 µm in (A); 20 µm in (B–G). The cross symbol in (A) indicates the
orientation of the section. L: lateral; M: medial; D: dorsal; V: ventral. [Jamal et al. 2011]
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11D). Cells and neuropil in the lateral and medial limbs of the LSO were clearly labelled. The 

labelled neuropil revealed its structural boundaries. Labelling in the VNTB consisted of 

relatively strong neuropil labelling with possible immunoreactive cells (Figure 11E). The MSO 

demonstrated a moderately light immunoreactivity to the GABABR2 subunit (Figure 11F). 

Distinctively labelled multipolar cells were lined along the middle of this structure including 

associated axons. Both somata and neuropil were labelled in a punctate distribution. The LNTB 

had moderately labelled cells and surrounding neuropil (Figure 11G). 

Nucleus of the Lateral Lemniscus (NLL) 

 The NLL appeared to have an overall low level of immunoreactivity to the GABABR2 

subunit (Figure 12A). This appeared to be partly due to the abundance of fibres in this region. 

The presence of fibres affected the labelling in the DNLL the most among all the subareas of the 

NLL (Figure 12B). In between fibres, the DNLL had somewhat relatively dense labelling in the 

somata and neuropil. The dorsal region of the VNLL had a relatively high level of 

immunoreactivity and cell packing density (Figure 12C). The somata and neuropil of the DNLL 

and dorsal VNLL were labelled relatively more densely compared to the ventral region of the 

VNLL. The ventral region of the VNLL contained labelled cells however the neuropil was the 

lightest in all the three regions (Figure 12D). 

Inferior Colliculus (IC) 

 There were differences in the distribution of GABABR2 subunit immunoreactivity within 

the three subdivisions of the IC (Figure 13A). The ICd and ICx were densely labelled in contrast 

to the moderately labelled ICc. In the ICd, both neuropil and cell body were heavily labelled 

(Figure 13B). Within the ICx, differences existed in the level of labelling, revealing three layers 

of the structure (Figure 13D). The second layer displayed moderate labelling in the neuropil and  



Figure 12. Immunoreactivity to the GABABR2 subunit in the nucleus of the lateral lemniscus
(NLL). Low magnification image shows labelling in the entire NLL (A). High magnification
images show labelling in areas in the DNLL (B), dorsal part of the VNLL (C), and ventral part of
the VNLL (D). Dashed curves indicate subdivisions of the NLL. Within the VNLL, the dashed
curve with an asterisk indicates the boundary between the dorsal and the ventral regions of the
VNLL. Black arrows with white outlines point towards labelled cell bodies. Scale bars: 200 µm
in (A); 20 µm in (B–D). The cross symbol in (A) indicates the orientation of the section. L:
lateral; M: medial; D: dorsal; V: ventral. [Jamal et al. 2011]



Figure 13. Immunoreactivity to the GABABR2 subunit in the inferior colliculus (IC). Low
magnification image shows labelling in the entire IC (A). High magnification images show
labelling in areas in the dorsal part of the ICd (B), the border region between the ICd and the ICc
(C), the ventral part of the ICc (D), and layers I and II of the ICx (E). Dashed curves indicate
subdivisions of the IC as well as layers in the ICx. Numbers in the ICx indicate layers. Black
arrows with white outlines point toward labelled cell bodies. Scale bars: 200 µm in (A); 20 µm
in (B–E). The cross symbol below (A) indicates the orientation of the section. L: lateral; M:
medial; D: dorsal; V: ventral. [Jamal et al. 2011]
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somata in contrast to the high levels of expression in the first and third layers. Labelling in the 

ICc was the lowest in the three subdivisions, with relatively weaker neuropil labelling but strong 

cell body labelling (Figure 13E).  

A gradient existed in the level of labelling between the ICd and ICc. In between these 

two structures, there was a gradual decrease of neuropil labelling along the dorsomedial to  

ventrolateral axis (Figure 13C). While the ICd was heavily labelled, and the ICc was moderately 

labelled, the dorsal region of the ICc bordering the ICd was of intermediate immunoreactivity. 

Between the ICc and ICx, there seemed to be a more defined boundary separating the two 

subdivisions. 

Medial Geniculate Nucleus (MG) 

 Distribution of the GABABR2 subunit appeared to be homogenous across all 

subdivisions of the MG (Figure 14A). In the MGd, somata and neuropil were densely labelled 

with a cluster of cells clearly seen in the dorsal cap region (Figure 14B). In the rest of the MGd, 

as well as the MGv, strong labelling was seen in cell bodies and neuropil (Figure 14B and 14C). 

The MGm contained large highly immunoreactive cell bodies (Figure 14D). 

Auditory Cortex (AC) 

 The AC displayed a laminar distribution in the immunoreactivity to the GABABR2 

subunit (Figure 15A). Layer I appeared moderately labelled with small neurons labelled along 

with numerous fibres (Figure 15B). Layers II and III shared similar distributions and displayed 

the highest neuropil immunoreactivity in all the six layers of the AC. Clusters of pyramidal 

neurons and their apical dendrites as well as non-pyramidal neurons within this layer were 

labelled (Figure 15C and 15D). The neuropil in layer IV was labelled at a similar level to 

neuropil in layer I (Figure 15E). Labelled fibres perpendicular to the lateral surface of the AC  



Figure 14. Immunoreactivity to the GABABR2 subunit in the medial geniculate nucleus (MG).
Low magnification image shows labelling in the entire MG (A). High magnification images
show labelling in the dorsal part of the MGd (B), ventral part of the MGd (C), MGv (D), and
MGm (E). Dashed curves indicate subdivisions of the MG. Black arrows with white outlines
point toward labelled neurons. Scale bars: 200 µm in (A); 20 µm in (B–E). The cross symbol in
(A) indicates the orientation of the section. L: lateral; M: medial; D: dorsal; V: ventral. [Jamal et
al. 2011]



Figure 15. Immunoreactivity to the GABABR2 subunit in the auditory cortex (AC). Low
magnification image shows labelling across six cortical layers (A). High magnification images
show labelling in layers I through VI (B–G), respectively. Black arrows with white outlines point
toward labelled pyramidal neurons. White open arrowheads point toward labelled non-pyramidal
neurons. Black arrowheads with white outlines point toward labelled dendrites. Layers of the AC
are indicated on the left side of (A). Scale bars: 100 µm in (A); 50 µm in (B–G). The cross
symbol at the bottom of (A) indicates the orientation of the section. L: lateral; M: medial; D:
dorsal; V: ventral. [Jamal et al., 2011]
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and not associated with any particular neuron within this layer were also seen. These fibres are 

likely from pyramidal neurons in the layers V and VI of the auditory cortex. The neuropil in 

layer V was not as strongly labelled as the superficial layers (Figure 15F). Neuropil within layer 

VI had the lowest immunoreactivity of the six layers, although labelled pyramidal and non-

pyramidal neurons could be seen (Figure 15G). Pyramidal neurons in layers V and VI had 

labelled dendrites perpendicular to the lateral surface of the AC that extended towards superficial 

layers. 

 

3.3 The level and distribution of the GABABR1 receptor subunit and the co-localisation of 

this subunit with the GABABR2 subunit 

3.3.1 The level of the GABABR1 receptor subunit in major central auditory structures 

Overall levels of the GABABR1 receptor subunit was studied in major auditory structures 

using coronal sections collected from four separate animals. The four sections presented in 

Figure 16 were obtained from one single case. These sections were corresponding to plates 83, 

105, 118, 123 in The Rat Brain Atlas in Stereotaxic Coordinates (Paxinos and Watson, 2007). 

The first section contains the AC and MG (Figure 16, upper left panel), the second section 

contains the IC and NLL (Figure 16, upper right panel), the third section contains the SOC and 

AVCN (Figure 16, lower left panel), and the fourth section contains the DCN and PVCN (Figure 

16, lower right panel). Results from this case indicate that the labelling was high in the AC and 

MG, moderate in the IC and low in the NLL and SOC and CN. This distribution of the 

GABABR1 subunit was parallel to that seen for the GABABR2 subunit.  

 

 



Figure 16. Low magnification images showing immunoreactivity to the GABABR1 subunit in
auditory structures in coronal sections. Upper left panel contains the auditory cortex (AC, 1) and
the medial geniculate nucleus (MG, 2). Upper right panel contains the inferior colliculus (IC, 3)
and the nucleus of the lateral lemniscus (NLL, 4). Lower left panel contains the superior olivary
complex (SOC, 5) and the anterior cochlear nucleus (6). Lower right panel contains the posterior
cochlear nucleus (6). Scale bar: 2500 µm
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Sections from the same animal but at rostrocaudal locations other than plates 83, 105, 

118, and 123 in The Rat Brain Atlas in Stereotaxic Coordinates (Paxinos and Watson, 2007) 

were also used to conduct immunohistochemical experiments. Immunolabelling by the antibody 

against the GABABR1 subunit was analysed in these additional sections. Results from these 

additional sections (not shown) confirmed those from plates 83, 105, 118, and 123. Scores 

obtained were used to corroborate the scores obtained from the set of sections presented in 

Figure 16. 

Densitometry scores were obtained from individual auditory areas in four individual 

cases (i.e. four separate animals). A score of labelling is given by using the densitometry value 

(see section 2.5.1 for method). Scores from all the auditory areas are presented in Table 3. Based 

on the scores obtained, the level of labelling was the highest in the DCN, dorsal IC, MG, and the 

first four layers of the AC, and the lowest in the ventral IC, NLL, and SOC. Moderate scores 

were found in the AVCN and PVCN. The level of expression of the GABABR1 subunit in 

auditory subdivisions was generally in parallel with that of the GABABR2 subunit. 

In the following subsections, I will present results from a single case regarding the 

regional distribution and cellular localisation of the GABABR1 receptor subunit in major central 

auditory structures (Figures 17 through 22, left panels). These results will be presented alongside 

and compared with those from the same case regarding the regional distributions and cellular 

localisations of the GABABR2 receptor subunit (Figures 17 through 22, right panels). 

Immunohistochemical reactions for the GABABR1 and GABABR2 subunits were conducted by 

using alternating sections from this case. Results from this case were confirmed by results 

obtained by the other three cases. 
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Table 3. Densitometry scores of the GABABR1 subunit in the auditory structures. Densitometry 
values of immunoreactivity in auditory structures to the GABABR1 subunit as revealed by 
immunohistochemical labelling and densitometry analysis (n=4). 

Auditory structure Subdivision Densitometry value 

AC Layer I ++++ 

 Layers II/III ++++ 

 Layer IV +++ 

 Layer V ++ 

 Layer IV + 

MG MGd +++ 

 MGv +++ 

 MGm +++ 

IC ICc + 

 ICd +++ 

 ICx ++ 

NLL DNLL + 

 Dorsal VNLL + 

 Ventral VNLL + 

SOC LSO ++ 

 MSO ++ 

 SPN + 

 LNTB ++ 

 VNTB ++ 

 MNTB + 

CN DCN molecular/fusiform cell layers +++ 

 DCN Deep layers ++ 



 58 

 
 
 

 GCD +++ 

 AVCN ++ 

 PVCN ++ 

CB Molecular/Purkinje cell layers ++++ 

 Granule cell layer +++ 

 White matter - 
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3.3.2 Regional and cellular distribution of the GABABR1 subunit 

Cochlear Nucleus (CN) 

 In the CN, the DCN (Figure 17A, left panel), PVCN (17A, left panel), and AVCN 

(Figure 17B, left panel) were all immunoreactive to the GABABR1 subunit. The highest level of 

labelling was in the DCN, due to the molecular layer and GCD (Figure 17C, left panel). Both cell 

body and neuropil were heavily labelled. Abundant labelled puncta were observed. In deeper 

layers, neuropil labelling was significantly weaker. Labelled puncta were also observed (Figure 

17D, left panel). Cells resembling fusiform and pyramidal neurons were clearly labelled. In the 

PVCN (Figure 17E, left panel) and AVCN (Figure 17F, left panel), multiple types of neurons 

were immunoreactive for the GABABR1 subunit and these neurons likely consisted of bushy, 

octopus, and multipolar cells. Both labelled puncta and fibres could be seen in the neuropil 

surrounding the cells in the PVCN and AVCN. In the AVCN, a few neurons demonstrated a 

surrounding faint outline of labelling. This outline might be associated with a possible Calyx of 

Held terminal (Figure 17F, left panel). In general, both regional and cellular distributions of 

labelling within the CN were parallel between the GABABR1 and GABABR2 subunits.  

Superior Olivary Complex (SOC) 

 Most subnuclei in the SOC had relatively low immunoreactivities for the GABABR1 

subunit (Figure 18A, left panel). The cells within the MNTB were not as distinctly labelled by 

the antibody against the GABABR1 subunit as by the antibody against the GABABR2 subunit 

(Figure 18B, right panel). It was difficult to tell whether any labelling was associated with Calyx 

of Held terminals were in the MNTB. The SPN had clearly labelled cells that were surrounded 

by weak punctate neuropil labelling (Figure 18C, left panel). The boundaries of the LSO could 

be seen due to relatively densely labelled neuropil and cell bodies (Figure 18D, left panel). Cell  



Figure 17. Immunoreactivity to the GABABR1 and GABABR2 subunits in the cochlear nucleus
(CN). Low magnification images show labelling in the caudal part of the CN including the DCN
and PVCN (A) and in the AVCN (B). High magnification images showing labelling in areas in
the DCN (C, D), PVCN (E), and AVCN (F). Black arrows with white outlines point toward
labelled neurons.
Scale bars: 200 µm in A and B; 20 µm in C-F.



Figure 18. Immunoreactivity to the GABABR1 and GABABR2 subunits in the superior olivary
complex (SOC). Low magnification image shows labelling in the entire SOC (A). High
magnification images show labelling in areas in the MNTB (B), SPN (C), LSO (D), VNTB (E),
MSO (F), and LNTB (G). Black arrows with white outlines point toward labelled neurons.
Scale bars: 200 µm in A; 20 µm in B-G.
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packing density within the LSO was high, especially in the lateroventral area of the lateral limb. 

The level of GABABR1 immunoreactivity in the VNTB was relatively high as well (Figure 18E, 

left panel). Fibres and cells within this subdivision were densely labelled. The MSO had 

distinctly labelled multipolar cells as well as surrounding neuropil that were punctate in 

distribution (Figure 18F, left panel). Cells in the LNTB were found to contain GABABR1 

subunits (Figure 18G, left panel). However, surrounding neuropil was only weakly labelled. 

Except for the MNTB and LSO, expression of the GABABR1 subunit in the SOC was similar to 

that of the GABABR2 subunit. 

Nucleus of the Lateral Lemniscus (NLL) 

 In the NLL, overall labelling of the GABABR1 subunit was quite low, likely due to the 

abundance of fibres in this region (Figure 19A, left panel). The labelling in all subdivisions of 

the NLL shared similar distributions with somata and neuropil labelling in between fibres 

(Figures 19B, 19C, and 19D, left panel). The somata and neuropil of the dorsal region of the 

VNLL were labelled somewhat more densely compared to the ventral region of the VNLL and 

DNLL. Cell packing density of immunoreactive neurons was also higher in the dorsal region of 

the VNLL compared to the DNLL. Similar to that of the GABABR2 receptor, the level of 

expression was quite low in all NLL subdivisions despite cell body and neuropil labelling in 

these subdivisions. 

Inferior Colliculus (IC) 

 The overall immunoreactivity level to the GABABR1 subunit in the IC was moderately 

high (Figure 20A, left panel). Similar to the distribution of the GABABR2 subunit within this 

structure, there was a contrast in labelling among different subdivisions. The ICd and ICx were 

densely labelled in contrast to the lightly labelled ICc. In the ICd, both neuropil and cell body  



Figure 19. Immunoreactivity to the GABABR1 and GABABR2 subunits in the nucleus of the
lateral lemniscus (NLL). Low magnification image shows labelling in the entire NLL (A). High
magnification images shows labelling in areas of the DNLL (B), dorsal part of the VNLL (C),
and ventral part of the VNLL (D). Black arrows with white outlines point toward labelled
neurons.
Scale bars: 200 µm in A; 20 µm in B-D.



Figure 20. Immunoreactivity to the GABABR1 and GABABR2 subunits in the inferior colliculus
(IC). Low magnification image shows labelling in the entire IC (A). High magnification images
show labelling in areas in the ICd (B), ICc (C), and ICx (D). Black arrows with white outlines
point toward labelled neurons.
Scale bars: 200 µm in A; 20 µm in B-D.
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were heavily labelled. Abundant labelled puncta were observed (Figure 20B, left panel). Not 

unlike the distribution seen with the GABABR2 subunit, three possible layers could be seen in 

the ICx with fainter labelling in the second superficial layer (Figure 20D, left panel). No such 

layers could be seen in the ICd. In the ICc, cell bodies and neuropil were labelled in a punctate 

pattern that was quite light, with cell bodies somewhat distinguishable from surrounding labelled 

neuropil (Figure 20C, left panel). This differed from labelling by the GABABR2 subunit which 

was found to label cell bodies quite strongly and distinctly from the moderately labelled 

neuropil. 

A gradient existed between the ICd and ICc in the level of immunoreactivity to the 

antibody against the GABABR1 subunit, very similar to that of the antibody against the 

GABABR2 subunit. In between these two structures, there was a gradual decrease of 

immunoreactivity in neuropil along the dorsomedial to ventralateral axis (Figure 20C, left panel). 

While the dorsal ICd was heavily labelled, and the ventral ICc was weakly labelled, the dorsal 

region of the ICc bordering the ICd was of intermediate immunoreactivity. Between the ICc and 

ICx, there seemed to be a more defined boundary separating the two subdivisions. 

Medial Geniculate Nucleus (MG) 

 The overall immunoreactivity to the GABABR1 antibody in the MG was relatively high 

(Figure 21A, left panel). Like the distribution seen with the GABABR2 subunit, labelling across 

all subdivisions was quite homogenous. In the MGd, somata and neuropil were densely labelled 

with a cluster of cells clearly seen in the dorsal cap region (Figure 21B, left panel). The rest of 

the MGd also contained numerous labelled cells and abundant labelled neuropil. The labelling 

was punctate (Figure 21C, left panel). In the MGv, strong labelling of a level similar to that in 

the MGd was seen in cell bodies and neuropil (Figure 21D, left panel). The MGm contained  



Figure 21. Immunoreactivity to the GABABR1 and GABABR2 subunits in the medial geniculate
nucleus (MG). Low magnification image showing labelling in the entire MGN (A). High
magnification images show labelling in MGd (B), at the border between the MGd and the MGv
(C), in the MGv (D), and in the MGm (E). Black arrows with white outlines point toward
labelled neurons.
Scale bars: 200 µm in A; 20 µm in B-E.
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relatively irregularly shaped cell bodies that were labelled in a punctate pattern (Figure 21E, left 

panel). Generally, the distribution of the GABABR1 subunit in the MG was very similar to that 

of the GABABR2 subunit. 

Auditory Cortex (AC) 

 Overall immunoreactivity to the GABABR1 subunit was high in the AC (Figure 22A, left 

panel). Similar to that to the GABABR2 antibody, distribution of immunoreactivity to the  

GABABR1 antibody was laminar and varied across different layers. The first three superficial 

layers demonstrated the highest levels of neuropil labelling. In layer I, a few immunoreactive 

cells surrounded by numerous fibres can be seen (Figure 22B, left panel). Layers II and III 

shared similar distributions of cell body and neuropil immunoreactivities to the GABABR1 

subunit (Figures 22C and 22D respectively, left panel). Both contained densely packed 

pyramidal and non-pyramidal cell bodies that were labelled in addition to heavily labelled 

surrounding neuropil. Compared to layers II and II, cell packing density as well as neuropil 

labelling in layer IV were not as strong (Figure 22E, left panel). Labelled cell bodies were round 

in shape and most likely non-pyramidal. Some fibres were seen in this layer perpendicular to the 

surface of the AC and may have arisen from apical dendrites belonging to pyramidal neurons in 

deeper layers (not shown). In layer V, the level of neuropil labelling was somewhat lighter than 

that in layer IV. In this layer, pyramidal and non-pyramidal cells were immunoreactive to the 

GABABR1 subunit (Figure 22F, left panel). Labelled pyramidal cells were large with long apical 

dendrites that extended toward the more superficial layers. Overall neuropil labelling in layer VI 

was lighter than that of layer V, and become progressively lighter towards the white matter 

(Figure 22G, left panel). Similar to layer V, layer VI contained both pyramidal and non-

pyramidal cells that were labelled. In addition, there were numerous cell bodies with elongated  



Figure 22. Immunoreactivity to the GABABR1 and GABABR2 subunits in the auditory cortex
(AC). Low magnification image shows labelling across six cortical layers (A). High
magnification images show labelling in layers I though VI (B-G), respectively. Layers of the AC
are indicated between the two low magnification images. Black arrows with white outlines point
toward labelled pyramidal neurons. White open arrowheads point toward labelled non-pyramidal
neurons. Black arrowheads with white outlines point toward labelled dendrites.
Scale bars: 100 µm in A; 25 µm in B-G.
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forms that were distinctly labelled. These cells were exclusively found in the deepest region of 

this layer, bordering cortical white matter. 

Overall laminar distribution appeared to be parallel between the GABABR1 subunit and 

the GABABR2 subunit. A difference appears to exist in immunoreactivity between the two 

subunits in layer VI. Neuropil labelled by the GABABR1 subunit appears to be relatively lighter 

compared to that labelled by the GABABR2 subunit, similar to what was seen in the ICc.  

 

3.3.3 Co-localisation of the GABABR1 and GABABR2 subunits 

 Immunofluorescence experiments were conducted to localise both subunits in auditory 

neurons. Cell bodies and neuropil labelled by the antibody against the GABABR1 subunit were 

pseudo-coloured in green while those labelled by GABABR2 subunit were pseudo-coloured in 

red. Cell bodies and neuropil labelled by both antibodies appeared yellow (a mixture of green 

and red). Double immunofluorescence experiments were conducted by using sections containing 

auditory structures from two independent cases (i.e. two animals). Preliminary results were 

obtained from these cases about the co-localisation of GABABR1 and GABABR2 subunits in 

neurons in brainstem auditory structures. 

As a positive control, the distributions of the GABABR1 and GABABR2 subunits were 

compared in the cerebellum. In agreement with results from immunohistochemical experiments 

using light microscopy, both subunits had high expression levels in the molecular and granule 

cell layers and little to no expression in the white matter (Figure 23). Although Purkinje cells 

were highly immunoreactive to both subunits, the labelling by the antibody against the 

GABABR1 subunit was clearly stronger in these cells in merged images. The expression levels 

of both subunits in the cerebellum were in agreement with previous findings (Ige et al., 2000).  



Figure 23. Co-localisation of the GABABR1 and GABABR2 subunits in the cerebellum. Coronal
section of cerebellum showing molecular, Purkinje cell, and granule cell layers and white matter.
Black arrow with white outline points towards a cell showing co-localisation of
immunoreactivities to the GABABR1 and GABABR2 antibodies. Black arrowhead with white
outline points towards a cell that is more highly immunolabelled by the GABABR1 subunit than
the GABABR2 subunit.
Scale bar: 200 µm
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Merged
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Cochlear Nucleus (CN) 

 In the CN, the majority of neurons and neuropil were double labelled in all subdivisions 

(Figures 24A and 24B). Pyramidal cells in the DCN were immunoreactive to both subunits 

(Figure 24A). The GCD displayed stronger immunoreactivity to the antibody for the GABABR2 

subunit than that to the antibody for the GABABR1 subunit. Small cells were stained by both 

fluorophores but the staining of the neuropil was more intense for the GABABR2 subunit. In the 

PVCN and AVCN, both subunits were highly co-localised (Figure 24B). 

Superior Olivary Complex (SOC) 

 The GABABR1 and GABABR2 subunits were not always co-localised in the SOC. In the 

MNTB, the majority of cells were co-localised (Figure 25A). There were also some cells that 

were solely labelled for the GABABR1 subunit. Very few neurons were labelled only for the 

GABABR2 subunit. In the LNTB (Figure 25A) and SPN (Figure 25B), cell bodies and neuropil 

labelling demonstrated co-localisation of both subunits. In the MSO, multipolar cells that line the 

dorsal-ventral axis were stained for the GABABR2 subunit more intensely than the GABABR1 

subunit (Figure 25B). In the neuropil surrounding these neurons, the two receptor subunits 

displayed a high level of co-localisation. In the LSO, the majority of cell bodies were 

immunoreactive to both subunits (Figure 25C). In some cells, intensity of labelling by the 

antibody for the GABABR2 subunit appeared to be stronger. The neuropil of the LSO was also 

labelled by both subunits and appeared to have a higher immunoreactivity for the GABABR1 

subunit. Clearly labelled cells could be seen throughout the VNTB (Figure 25C), with a large 

number distributed in the medial region with a high cell packing density. Most cells were double-

labelled with some neurons that were solely labelled by the GABABR2 subunit. Additionally,  

 



Figure 24A. Co-localisation of the GABABR1 and GABABR2 subunits in the dorsal cochlear
nucleus (DCN). Black arrow with white outline points towards a cell showing co-localisation of
the GABABR1 and GABABR2 subunits.
Scale bar: 100 µm
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Figure 24B. Co-localisation of the GABABR1 and GABABR2 subunits in the posterior ventral
cochlear nucleus (PVCN, left panel) and anterior ventral cochlear nucleus (AVCN, right panel).
Black arrow with white outline points towards a cell showing co-localisation of the GABABR1
and GABABR2 subunits.
Scale bar: 100 µm
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Figure 25A. Co-localisation of the GABABR1 and GABABR2 subunits in the medial nucleus of
the trapezoidal body (MNTB, left panel) and the lateral nucleus of the trapezoidal body (LNTB,
right panel). Black arrow with white outline points towards a cell showing co-localisation of the
GABABR1 and GABABR2 subunits. Black arrowhead with white outline points toward a cell
that is more highly immunoreactive to the GABABR1 subunit than the GABABR2 subunit.
Scale bar: 100 µm
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Figure 25B. Co-localisation of the GABABR1 and GABABR2 subunits in the medial superior
olivary nucleus (MSO, left panel) and the superior paraolivary nucleus (SPN, right panel). Black
arrow with white outline points towards a cell showing co-localisation of the GABABR1 and
GABABR2 subunits. Black arrowhead with white outline points towards a cell that is possibly
immunoreactive to the GABABR2 subunit and not the GABABR1 subunit.
Scale bar: 100 µm
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Figure 25C. Co-localisation of the GABABR1 and GABABR2 subunits in the ventral nucleus of
the trapezoidal body (VNTB, left panel) and the lateral superior olivary nucleus (LSO, right
panel). Black arrow with white outline points toward a cell showing co-localisation to the
GABABR1 and GABABR2 subunits. Black arrowhead with white outline points towards a cell
that is immunoreactive to the GABABR2 subunit and not the GABABR1 subunit.
Scale bar: 100 µm
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fibres in this region were double-labelled with a somewhat stronger intensity of GABABR1 

subunit immunoreactivity. 

 

 

4 DISCUSSION 

4.1 The level and distribution of the GABABR1 and GABABR2 receptor subunits 

and their co-localisation in the central auditory system 

Immunohistochemistry and double immunofluorescence techniques were used to study 

the localisation and distribution of the GABABR1 and GABABR2 receptor subunits in the 

central auditory system. The receptor subunits were found in all auditory structures and their 

subdivisions. Overall, the distributions of these subunits were parallel. High levels of labelling 

were found in structures including layers I-V of the AC, MG, ICd, ICx, and DCN while low 

levels of labelling was found in the NLL and SOC. Moderate levels of labelling were found in 

the VCN and low to moderate levels were found in the IC. There were differences in distribution 

between the two subunits in specific subdivisions. GABABR1 subunit immunoreactivity in cell 

bodies and neuropil was relatively lower than that of the GABABR2 subunit in layer VI of the 

AC as well as the ICc. 

Preliminary results from immunofluorescence experiments indicated that the majority of 

auditory neurons in the CN and SOC contained co-localised receptor subunits. However, there 

were instances where cellular distributions differed between the two subunits. Neurons solely 

labelled by the GABABR1 subunit were found in the MNTB. Neurons that were solely labelled 

by the GABABR2 subunit were found in the MSO and LSO. Intensity of neuropil labelling in the 

LSO, MSO, and SPN was higher for the GABABR1 subunit than that for the GABABR2 subunit. 
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4.1.1 Levels of the GABABR1 and GABABR2 receptor subunits across different auditory 

structures 

The overall levels of distribution of both the GABABR1 and GABABR2 subunits are in 

agreement with those of the GABAB receptor previously reported for the big brown bat (Fubara 

et al., 1996). Functional GABAB receptors within the bat’s auditory system were found to be 

expressed at higher levels in the forebrain (AC and MG) versus midbrain (IC) and brainstem 

structures (NLL, SOC, CN).Therefore for both species, the level of the GABAB receptor was 

higher in higher auditory structures and lower in lower structures. This structural dependence of 

GABAB receptor distribution may be a common feature across mammalian species (Jamal et al., 

2011). 

The distribution found in the current study also confirms previous audioradiographical 

findings regarding the level of GABAB receptors in the rat’s central nervous system. Bowery and 

colleagues found the highest concentration of GABAB receptors to be in the molecular layer of 

the cerebellum (Bowery et al., 1987). According to the regional density scores obtained in this 

present study, this layer did receive one of the highest score ratings for both GABABR1 and 

GABABR2 subunits. Additionally, a previous quantitative analysis found the MG to contain high 

levels of GABAB receptor binding sites while lower levels of binding sites were found in the ICc 

and VCN (Chu et al., 1990). 

A previous study using immunohistochemical methods to locate the GABABR1 and 

GABABR2 subunits in the rat’s central nervous system demonstrates trends similar to those 

found by autoradiography studies. High expression levels of both subunits were found in the AC 

and thalamus while moderate levels of expression were found in the IC (Charles et al., 2001). 
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4.1.2 The relation between the expression of the GABAB receptor in auditory structures and 

synaptic inputs 

The regional distribution was parallel between the GABABR1 and GABABR2 receptor 

subunits. Both subunits demonstrated similar variations in expression levels across auditory 

structures and within subdivisions of these structures. This variation corresponds to the 

differences in the inputs and functions of each area within the auditory system. 

Cochlear Nucleus (CN) 

 All the subdivisions of the CN are immunoreactive to both GABABR1 and GABABR2 

receptor subunits. This is in agreement with previous autoradiography studies that found GABAB 

receptors in the entire CN (Bowery et al., 1987; Fubara et al., 1996; Chu et al., 1990). High 

levels of immunoreactivity to both subunits are seen in the DCN, particularly in the molecular 

layer and GCD, while moderate levels of immunoreactivity are seen in the AVCN and PVCN. 

This contrast was also seen in previous studies (Bowery et al., 1987; Chu et al., 1990). Neurons 

within these subdivisions are major targets of GABAergic inputs from both local and extrinsic 

sources. 

Local GABAergic connections to the molecular layer of the DCN likely include those 

from local interneurons that may be GABA-positive (Moore, 1996; Ottersen et al., 1995) as well 

as from pyramidal cells in deeper layers (Adams and Mugnaini, 1987). Pyramidal cells are most 

likely contacted by GABAergic inputs originating from GABA-positive stellate and Golgi cells 

(Mugnaini, 1985). Golgi cells have been found to also contact fusiform (giant) cells in the 

deepest layer of the DCN as well as cells within the GCD (Kolston et al., 1992). 

 Extrinsic sources of GABAergic input to neurons within the CN include those from the 

SOC and VNLL (Schofield and Cant, 1999; Thompson and Schofield, 2000). Large neurons in 



80 
 

the SPN have been found to project to the ipsilateral GCD as well as to other areas in the CN 

(Schofield, 1991; Shore and Moore, 1998). There are also GABAergic bilateral projections from 

the VNTB, LNTB, LSO, and VNLL that innervate the CN (Shore and Moore, 1998; Winter et 

al., 1989; Schofield, 1991). 

 The diverse sources of input may explain the variation in the levels of expression 

between the subdivisions of the CN. 

Superior Olivary Complex (SOC) 

 The immunoreactivity of the VNTB, LNTB, LSO, and MSO to the GABABR1 and 

GABABR2 subunits was relatively strong compared to that of the MNTB and SPN in the SOC. 

This is in agreement with previous reports of GABAB receptor distribution in other species. In 

the cat and gerbil, GABAB receptor staining was found in all subnuclei of the SOC, with 

prominent labelling in the LSO and MSO (Grothe et al., 2011). The difference in staining levels 

in these subdivisions is most likely due to the variation in sources of GABAergic input as well as 

different roles in the modulation of neurotransmission. 

The LSO has been found to contain many neurons that release GABA (Roberts et al., 

1987). The main target of these neurons has been found to be the LSO itself and that this 

connection may act as a feedback circuit (Magnusson et al.., 2008).  

The MSO most likely does not have this feedback loop as the multipolar cells in the MSO 

have been found not to be GABAergic. It does receive GABAergic projections from other 

subnuclei including glycine- and GABA-positive neurons in the LNTB and VNTB (Cant and 

Hyson, 1992; Adams and Mugnaini, 1990; Adams and Wenthold, 1987; Helfert et al., 1989; 

Thompson et al., 1985). Other sources of GABAergic input to the MSO could include the SPN 
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as well as descending fibres from the IC, although these inputs have not yet been confirmed 

(Schwartz et al., 1976; Kiss et al., 1983).  

The LNTB and MNTB receive inputs from GABAergic neurons in the VNTB 

(Thompson and Schofield, 2000; Roberts et al., 1987). Interestingly, the main inhibitory 

projections from the MNTB are glycinergic and have targets in the MSO and LSO and can be 

modulated by GABAB receptors (Kotak et al., 1998; Smith et al., 2000; Nabekura et al., 2004; 

Magnusson et al., 2005). 

While it is clear that the GABAB receptor are distributed across the different subnuclei 

and most likely play major roles in auditory transmission, its specific role in neurotransmission 

among each subdivision is still under investigation. 

Nucleus of the Lateral Lemniscus (NLL) 

In the NLL, the immunoreactivity to both subunits was found to be the highest in the 

dorsal region of the VNLL. The difference in labelling between the dorsal and ventral regions of 

the VNLL and likely reflected a difference in the sources of input to these regions. The main 

sources of input to the dorsal region of the VNLL include projections from the contralateral 

VCN as well as the ipsilateral LSO, MSO, SPN, MNTB, and the neighbouring ventral region of 

the VNLL (Kelly et al., 2009; Sommer et al., 1993; Warr and Beck, 1996). Major projections to 

the ventral region of the VNLL include the contralateral VCN and ipsilateral MNTB which is 

glycinergic (Magnusson et al., 2008). Inputs to the dorsal region of the VNLL include those from 

the LSO and SPN, known to have GABA-positive neurons (Helfert et al., 1989; Kulesza and 

Berrebi, 2000; Kumoi et al., 1993). These GABAergic projections, as well as the multiple 

sources of input, may explain why immunoreactivity is somewhat higher in the dorsal area of the 

VNLL versus the ventral region and the DNLL (Jamal et al., 2011). 
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Inferior Colliculus (IC) 

 Overall expression of both GABABR1 and GABABR2 receptor subunits in the IC is the 

highest in the ICd and ICx and the lowest in the ICc. This is in agreement with the distribution of 

GABAB receptors seen in rats and bats (Milbrandt et al., 1994; Fubara et al., 1996). These 

studies found the dorsomedial region of the IC to have a higher concentration of GABAB 

receptor binding sites compared to the ventral region of the IC.  

Furthermore, Charles and colleagues found that both GABABR1α and GABABR1β 

isoforms and the GABABR2 subunits were expressed at a moderate level in the IC as a whole 

(Charles et al., 2001). Our study supports these previous findings. The levels of both receptor 

subunits were moderate in the entire IC as a whole. Parallel distributions of the two subunits in 

the IC were found in the current study and support that functional receptors require both 

subunits. 

The sources of GABAergic input to the ICd and ICx are unlikely to be from higher 

structures as corticofugal projections are likely glutamatergic (Feliciano and Potashner, 1995) 

and less than 1% of neurons in the MG are GABAergic (Winer and Larue, 1996). Thus the high 

level of expression of both subdivisions is likely from intrinsic sources including the ICc as well 

as possible commissural inputs from the contralateral IC (Moore et al., 1988; Saldaña and 

Merchán, 1992; Yang et al., 2000). 

The difference in the immunoreactivity in the ICd and the ICc formed a gradient that 

decreased in the level of expression of both subunits along the mediodorsal and lateroventral 

axis. This gradient corresponds to the gradient of inputs to this structure (Jamal et al., 2011). The 

highly immunoreactive ICd and ICx subdivisions likely receive GABAergic projections from the 

midbrain itself, while the ICc is the target of afferents from lower brainstem structures including 

http://en.wikipedia.org/wiki/Lori_Salda%C3%B1a
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the CN, SOC, and DNLL. The region of the IC that is moderately stained includes the border 

area between the ICd and ICc. This area has been found to receive an overlap of innervations 

from the midbrain and brainstem structures (Saldaña et al., 1996). 

Within the ICc, the gradient continues to a certain extent where labelling in the dorsal 

region has a relatively higher expression than that of the most ventral area. This could reflect the 

segregation of inputs within this subdivision. The moderately labelled dorsal area receives 

projections from the CN and DNLL while the weakly labelled neuropil ventral area could be 

associated with afferents from the SOC. This difference in labelling could be indicative of 

segregation in the types of neurotransmission, although no conclusions can be made without 

further investigation. 

Medial Geniculate Nucleus (MG) 

 High expression levels of both GABABR1 and GABABR2 subunits were found in this 

structure. This is in agreement with previous studies that have found relatively high 

concentrations of GABAB receptor binding sites in the thalamus (Bowery et al., 1987; Chu et al., 

1990). Additionally, similar to the current study, the immunohistochemical study by Charles and 

colleagues found equally high levels of expression by both subunits among the three 

subdivisions of the MG (Charles et al., 2001). In addition to providing evidence of functional 

GABAB receptors in the MG, this also suggests that the subdivisions of this structure may share 

similar sources of inputs (Jamal et al., 2011). 

The source of GABAergic input to these subdivisions is unlikely to be intrinsic. As 

discussed in the previous section, only 1% of neurons within the MG send GABAergic 

projections. Thus, labelling seen within the MG most likely arises from extrinsic sources (Jamal 

et al., 2011). Possible sources of GABAergic input to the MG include the ICc (Bartlett and 
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Smith, 1999; Bartlett et al., 2000; Peruzzi et al., 1997) as well as the auditory sector of the 

reticular thalamic nucleus (Bartlett and Smith, 1999; Bartlett et al., 2000; Montero, 1983).  

Because all the subdivisions of the MG receive inputs from the IC and reticular thalamic 

nucleus, this could explain the homogenous immunoreactivity that was found to both receptor 

subunits in this structure (Jamal et al., 2011).  

Auditory Cortex (AC) 

In general, the AC has one of the highest expression levels of both receptor subunits of 

all the auditory structures. The distribution of both receptor subunits differed between individual 

layers. Layers II and III were found to have the highest level of immunoreactivity while layer VI 

had the lowest level. This laminar distribution was also found in a previous study of the 

neocortex that looked at the co-localisation of the GABABR1 and GABABR2 subunits in 

different layers (López-Bendito et al., 2002). Moderate to high levels of neuropil labelling was 

found across all layers. Additionally, the same authors had found tangentially migratory cells in 

the deep region of layer VI of the AC. These cells strongly resemble the cells that were found in 

this study that were heavily labelled for the GABABR1 subunit.  

Similar to the previous study by Charles and colleagues (Charles et al., 2001), the layers 

of the AC were found to have high and parallel immunoreactivities to both subunits. However, 

there were differences between their findings and the findings of this study in the distributions of 

both subunits in different layers. They found the immunoreactivities of the GABABR1 and 

GABABR2 receptor subunits to be relatively the same across all layers while scores obtained in 

this study demonstrate a gradient in expression levels. The overall co-localisation of both 

subunits as well as their parallel distribution to the expression levels of functional GABAB 
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receptors, lends further support to the need of both receptor subunits to heterodimerize in order 

to form functional GABAB receptors. 

The majority of GABAergic inputs to the AC most likely do not arise from other auditory 

structures. This is because the MG is the main source of input to the AC but contains few 

GABA-positive neurons. Thus, GABAergic projections likely arise from within the AC 

including interneurons in local layers (Peterson, Prieto and Winer, 1990; Collía et al., 1990; 

Romanski and LeDoux, 1993) as well as inputs from the contralateral AC (Winer and Larue, 

1989). 

 

4.1.3 Co-localisation of the GABABR1 and GABABR2 subunits 

The high level of co-localisation of both subunits supports previous findings that the 

GABABR1 and GABABR2 subunits heterodimerize in order to form functional GABAB 

receptors. This co-localisation has also been found in other brain regions in previous studies 

(e.g., cerebellum: Ige et al., 2000; neocortex: López-Bendito et al., 2002; hippocampus: López-

Bendito et al., 2004; olfactory bulb: Panzanelli et al., 2004).  

In the SOC, there were variations in the levels of co-localisation among subnuclei in this 

structure. The LNTB and VNTB shared similar expression intensities of both subunits. In the 

MNTB, in addition to double-labelled neurons, there were also neurons predominantly labelled 

by the fluorophore tagged to GABABR1 but only weakly to the GABABR2 subunit. This is 

seemingly contrary to the theory that the GABABR2 subunit is required for the GABABR1 

subunit to reach the plasma membrane as a heterodimer. One possibility could be the presence of 

an alternate binding partner that can mask the retention signal of GABABR1 upon binding and 

release it from the ER. Naturally, this binding partner would not be labelled due to the selectivity 
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of the antibody. This possibility has been raised in other studies where this type of labelling has 

been documented (Enna, 2001; Panzanelli et al., 2004). This partner may exist in neurons in the 

MNTB. For instance, GABABR1 subunits have been linked to other functions, including binding 

transcription factors for regulation of protein expression (Nakamura et al., 2011). Further 

experiments are needed to find whether the high level of GABABR1 receptor subunits is 

associated with this function in neurons in the MNTB.  

In the LSO, MSO, and SPN, there were neurons that were labelled strongly by the 

GABABR2 subunit fluorophore and most likely did not represent a functional GABAB receptor. 

As discussed in section 1.4.5, previous knockout experiments have provided strong evidence for 

the necessity of the GABABR1 subunit in the formation of a functional receptor (Billinton et al., 

2001). This could be indicative of a pool of available GABABR2 subunits for future 

heterodimerization and receptor transport (Jamal et al., 2011). Alternatively, like the GABABR1 

subunit, the possibility of binding other partners not recognised by the GABABR1 antibody 

cannot be ruled out. 

 

4.1.4 Cellular expression of the receptor and auditory function 

There were differences in cell body and neuropil labelling across different subdivisions. 

These differences in could possibly be associated with pre- and/or post-synaptic GABAB 

receptor sites that play major roles in auditory function (Jamal et al., 2011).  

As discussed previously, pre-synaptic GABAB receptors regulate the release of 

neurotransmitters. In the MNTB and AVCN, labelling suggestive of the Calyx of Held was 

found to be labelled by both subunits. In addition, these subdivisions had strong cell body 

immunoreactivity but relatively weak neuropil labelling. In the AVCN, pre-synaptic GABAB 
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receptors were found that regulated the release of glycine in bushy cells (Lim et al, 2000). In the 

MSO, labelling also had strong cell body but weak neuropil labelling. This distribution is in 

agreement with a previous immunofluorescence study (Hassfurth et al., 2010). Furthermore, the 

same authors found pre-synaptic GABAB receptors in this subdivision that regulate the release of 

glycine. Pre-synaptic GABAB receptors have been found in the ICc as well (Ma et al., 2002; Sun 

et al., 2006). This coincides with the weak neuropil labelling observed in this subdivision by both 

subdivisions. Nevertheless, overall results from brainstem and midbrain structures that 

demonstrated high immunoreactivity to the subunits in cell bodies but weak in neuropil could 

suggest the presence of pre-synaptic GABAB receptors (Jamal et al., 2011). However, this 

cannot be concluded without further investigation. 

Post-synaptic GABAB receptors have been found on neurons in the MGd and MGv in 

previous studies (Bartlett and Smith, 1999; Peruzzi et al., 1997). In the current study, both these 

regions were observed to have high immunoreactivity to both GABABR1 and GABABR2 

subunits in cell bodies and neuropil. Layers II and III of the AC have been found to contain post-

synaptic GABAB receptors as well (Bandrowski et al., 2001; Metherate and Ashe, 1994). 

Additionally, electron microscopy in the neocortex has found co-localisation of the GABABR1 

and GABABR2 subunits neurons associated with pre- and post-synaptic sites in interneurons and 

pyramidal cells (López-Bendito et al., 2002). In the LSO, the GABAB receptor is found both pre- 

and post-synaptically (Magnusson et al., 2008; Chang et al., 2003). This coincides with the 

moderately strong cell body and neuropil labelling found in this subdivision. Previous research 

has found the ICd to also contain both pre- and post-synaptic GABAB receptors as well (Sun and 

Wu, 2009). This is interesting as the ICd was found to contrast in neuropil labelling to the ICc 

although both contained strong cell body labelling. Based on the examples cited here, labelling 
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of both cell body and neuropil could represent post-synaptic GABAB receptors (Jamal et al., 

2011). Furthermore, the contrast seen in the IC could be an example of the different roles 

GABAB receptors can play within the same structure in addition to different structures of the 

auditory system. These associations raise interesting questions about the function of GABAB 

receptors in different auditory structures that can be addressed by future studies.  

 

 

CONCLUSION AND FUTURE DIRECTIONS 

 This study represents a comprehensive analysis of the localisation and distribution of the 

GABAB receptor subunits in auditory structures in the albino rat. The GABABR1 and 

GABABR2 subunits were found in all subdivisions of auditory structures. In general, the two 

subunits were found to be parallel in distribution, with high levels of expression in higher 

structures and low levels of expression in brainstem structures. Differences in distributions 

across and within structures can be associated with differences in inputs and functions of these 

structures in the central auditory system. 

 GABABR1 and GABABR2 subunits were co-localised in the majority of auditory 

neurons. Co-localisation strongly suggests functional GABAB receptors that could be 

contributing to the mediation of auditory processes. Individual differences seen between the two 

subunits in co-localisation in some structures could be due to alternate functions of each subunit, 

in addition to involvement of the formation of GABAB receptors. 

 Studies in the future can further investigate GABAB receptors and their subunits in order 

to better understand their role in the auditory system. Additional co-localisation experiments of 

the GABABR1 and GABABR2 subunits in higher auditory structures can supplement and 
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confirm findings obtained in the present study. Subcellular distributions of both subunits in all 

auditory structures can be analysed with electron microscopy techniques and provide more 

insight into the localisation of each GABAB subunit pre- and post-synaptically. As well, the role 

of GABAB receptors in mediating auditory neurotransmission can be expanded.  By using 

pharmacological manipulations that isolate responses from activation of GABAB receptors, 

physiological data can be compared to the data obtained here to better understand the function of 

these receptors in specific auditory pathways. 
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APPENDICES 

Solutions used in Western blotting procedures 

Homogenization Buffer 

For 10 ml 

 50 µL Tris base (pH= 7.4) 

 1.095 g Sucrose 

  in dH2O 

Protease Inhibitors 

3 µl/ml aprotinin 

10 µl/ml PMSF (phenylmethanesulfonyl fluoride) 

1 µl/ml leupeptin 

3 µl/ml pepstatin 

Bovine Serum Albumin (BSA) Buffer for the Bradford Assay 

 The original concentration of BSA is 10 mg/ml 

  Standard 1: 1000 µl Bradford Reagent 

  Standard 2: 995 µl Bradford Reagent and 5 µl 0.313 mg/ml BSA 

Standard 3: 995 µl Bradford Reagent and 5 µl 0.625 mg/ml BSA 

Standard 4: 995 µl Bradford Reagent and 5 µl 1.250 mg/ml BSA 

Standard 5: 995 µl Bradford Reagent and 5 µl 2.500 mg/ml BSA 

Standard 6: 995 µl Bradford Reagent and 5 µl 5.00 mg/ml BSA 

Electrophoresis Sample Buffer (4X Loading Buffer) 

For 100 ml 

 40 ml 87% Glycerol 

 10 ml 2-mercaptoethanol 



100 
 

 40 ml 10% SDS (sodium dodecyl sulphate) 

 100 ml 0.5 M Tris HCl 

 4 ml 1% Bromophenol blue 

 6 ml dH2O 

Lower Gel Buffer (pH=6.8) 

For 1 L 

 182 g Tris base 

 4 g SDS 

  in dH2O 

12% Lower Gel 

For about 30 ml 

15 ml dH2O 

7.5 ml lower gel buffer 

7.5 ml acrylamide 

200 µl 10% APS (ammonium persulfate) 

50 µl TEMED (N, N, N, N' - tetramethylenediamine) 

Upper Gel Buffer (pH=6.8) 

For 200 ml 

 12.1 g Tris base 

 0.8 g SDS 

  in dH2O 
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Stacking Gel 

For about 10 ml 

2.5 ml dH2O 

1.1 ml lower gel buffer 

6.4 ml acrylamide 

30 µl 10% APS  

20 µl TEMED 

4X Running Buffer (pH=8.2) 

For 1 L 

 12.11 g Tris base 

 57.60 g Glycine 

  in dH2O  

Transfer Buffer (pH=9.2) 

For 1 L 

 5.82 g 48 mM Tris 

 2.93 g 39 mM Glycine 

 3.73 ml 10% SDS 

 200 ml methanol 

  in dH2O 

Tris Buffered Saline (TBS) (pH=7.6) 

For 1 L 

6.1 g Tris base 

9.0 g NaCl 
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1 L dH2O 

TBS-Tween (TBST) Buffer 

For 1 L 

 5 ml 10% Tween 

995 ml TBS Buffer 

Bovine Serum Albumin (BSA) 

For 100 ml 

 3 g BSA 

 100 ml TBST buffer 

 

Solutions used in immunohistochemistry procedures 

0.5 M Sodium Phosphate Dibasic 

For 1 L 

 70.98 g sodium phosphate dibasic powder (NaH2PO4•H2O) 

 1 L dH2O 

0.5 M Sodium Phosphate Monobasic 

For 1 L 

 68.99 g anhydrous sodium phosphate monobasic (NaH2PO4) 

 1 L dH2O 

0.4 M Sodium Phosphate Buffer (PB) (pH=7.4) 

For 1 L 

 600 ml 0.5 M sodium phosphate dibasic solution 

 200 ml 0.5 M sodium phosphate monobasic solution 
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 200 ml dH2O 

0.1 M Sodium Phosphate Buffer (PB) (pH=7.4) 

For 1 L 

 250 ml 0.4 M PB 

 750 ml dH2O 

0.1 M Sodium Phosphate Buffer Saline (PBS) (pH=7.4) 

For 1 L 

 250 ml 0.4 M PB 

100 ml 9% physiological saline 

 650 ml dH2O 

4% Paraformaldehyde (PFA) in 0.1 M PB (pH=7.4) 

For 1 L  

40 g PFA powder 

1 L 0.1M PB 

1. Dissolve PFA powder into 0.1M PB by heating on a stir plate set to a low heat 

setting 

2. Adjust pH to 7.4 with either HCl or NaOH 

Cryoprotectant Solution 

For 100 ml  

30 g sucrose 

 100 ml PB 
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0.05% Triton in 0.1 M PBS (TPBS) 

For 1 L 

0.05 ml Triton X-100 

 1 L 0.1M PBS 

3,3’ diaminobenzidine tetrahydrochloride (DAB)- nickel solution 

For 20 ml 

5 ml 0.4M PB (pH= 7.4) 

200 ul 0.4% NH4Cl in 0.1M PB solution 

200 ul Glucose 

13.6 ml dH20 

200 ul of 50 mg/ml DAB (D5637, Sigma-Aldrich, Oakville, ON, Canada) in 0.1M PB 

0.8 ml 1% Nickel sulfate in dH20 solution 

20 ul of Glucose oxidase (G3660, Sigma-Aldrich)  

 

 

 

 

 

 

 

 

http://www.sigmaaldrich.com/catalog/ProductDetail.do?lang=en&N4=G3660%7CSIGMA&N5=SEARCH_CONCAT_PNO%7CBRAND_KEY&F=SPEC
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