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ABSTRACT 

The hazard posed by combined sewer overflow (CSO) to receiving water cannot be 

overemphasized due to its significant contribution of pollutants. Ontario’s Procedure F-5-

5 stipulates a minimum treatment limit of 50% reduction in suspended solids (SS) and 

30% reduction in the 5-day biochemical oxygen demand (BOD5) for CSOs discharged in 

Ontario. The City of Windsor, Ontario, currently uses a synthetic polymer (Zetag 7873) 

for CSO treatment at its retention treatment basin (RTB) utilizing a physicochemical 

treatment method. Environmental persistence and potential toxicity are common concerns 

associated with synthetic polymers. These concerns may be limited when plant or animal 

based natural polymers are utilized. 

The effectiveness of commercially available natural polymers were evaluated for 

Windsor CSO treatment. The results show that Tanfloc SG was able to surpass the target 

of Procedure F-5-5 up to removal efficiencies of 91% and 56% for SS and BOD5 

respectively for polymer dosages ranging between 5 mg/L – 30 mg/L. 
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1 INTRODUCTION 

1.1 Background 

Several years back, sewer systems were designed to adequately convey sanitary and 

pretreated industrial wastewater as well as stormwater runoff to a treatment plant in a 

single pipe system. This type of systems are now referred to as a combined sewer systems 

(CSS). Wastewater treatment plants (WWTP) were also designed to adequately treat 

wastewater during dry weather and wet weather events based on the assumption that over 

time, there would be minimal fluctuations and a long-term trends in hydrological 

variables (Denault, et al., 2006). Over the years, however, population growth has 

triggered an increase in wastewater production as well,  increasing trends in precipitation 

have increased stormwater water flow (He, et al., 2011; Denault, et al., 2006; Semadeni-

Davies, et al., 2008), ageing pipes and pipe fittings also enabled the infiltration of 

groundwater into sewer systems. Therefore, depending on the magnitude of a storm event 

and the extent of snowmelt, CSS and WWTP may exceed their design capacity during 

wet weather conditions, which may consequently result in manhole and outfall 

surcharges. Therefore, to prevent basements and streets flooding as a result of these 

surcharges as well as to prevent wastewater treatment plants from receiving an excessive 

hydraulic loads for which it was not designed, the WWTP is bypassed and untreated 

wastewater is discharged directly into a receiving surface water body. This untreated 

water is referred to as combined sewer overflow (CSO) and it contains pathogens, 

organic compounds, solids, metals, and other pollutants that are harmful to the aquatic 

environment. 
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Results of various studies have highlighted the significance of CSO pollutant loadings to 

the environment. For example, based on the study carried out by LaFontaine, Cowie, 

Buratto and Associates Limited in 1994, CSOs contribute less than 5% of the Detroit 

River’s volumetric load, this contributes approximately 27% of the total annual solid load 

and 14% of the total annual 5-day biochemical oxygen demand (BOD5) (Li, et al., 2003). 

These loadings are relatively high when compared to other major sources of pollution in 

the Detroit River (Ahmed, et al., 2008). In addition, CSOs have been identified as a 

significant contributor of bacteria to the Detroit River as compared to wastewater 

treatment plants’ contributions in Michigan and Ontario (Ahmed, et al., 2008). As 

reported in numerous Remedial Action Plans for Great Lakes Areas of Concern, CSOs 

are a possible cause of deterioration in the Great Lakes (Irvine, et al., 2005). CSOs have 

also been linked to the recent algae blooms in Lake Erie due to its substantial 

contribution of phosphorus load to the Lake Erie Basin, with CSOs in Ohio alone 

contributing 90.4 million tonnes of phosphorus annually (IJC, 2014).  

The evident effect of CSO in the environment has led to a new design approach for sewer 

systems. Sewer systems in relatively newly built communities are designed such that 

stormwater sewers are separated from sewage sewers. In older communities, however, 

separating the already existing CSS may not be a feasible option, although it should be 

noted that when a CSS reaches the end of its service life, it is usually replaced by separate 

sewers. Hence, regulations are being implemented by authorities of various communities 

with CSS to reduce the impact of CSOs on receiving waters (Zhu, et al., 2007). In a 

similar light, the Ministry of the Environment and Climate Change, Ontario specifies that 

CSOs should be eliminated during dry weather and treated to a certain limit during wet 
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weather flow, as documented in the Procedure F-5-5 (MOE, 2014), before discharging 

into surface water. Procedure F-5-5 specifies that 90% of wet weather flow should be 

captured and treated such that 50% of total suspended solids (TSS) and 30% of BOD5 are 

removed. In addition, for more than 50% of the time when there is a CSO, the TSS 

concentration must be less than 90 mg/L.  

1.2 CSO Control Strategy 

A number of control strategies have been employed to curtail the threat caused by CSO. 

In-line or off-line storage in tunnels or detention basins are the most commonly used 

approach (USEPA, 1999). They are used to contain the flow upstream of the WWTP 

during peak flow and then return it to the sewer system for treatment at the WWTP after 

the storm event. Storage over time can also facilitate the removal of SS after which the 

supernatant is discharged directly into the receiving water. Since major pollutants often 

adhere to solids (Berndtsson, 2014; Wakida, et al., 2014; Aryal, et al., 2010; Boyd, 1988), 

the removal of solids as a result of sedimentation in the storage facility results in a 

significant removal of the pollutants that bind to them (Stanley, 1996; Booker, et al., 

1996). Pollutant removal can also be achieved through the use of green infrastructure 

such as a bio-retention basins or a constructed wetlands. However, when these 

conventional control strategies are employed, ample storage or detention time as well as 

space for construction of the facility is required for substantial pollutant removal. Thus, 

due to the cost and the limited availability of land required for construction, especially in 

an urban setting, it may not be feasible to construct such a large facility. Therefore, the 

use of a physical-chemical treatment processes is often employed to augment settling in 

smaller storage basins. This entails the real-time addition of a chemical coagulant and/or 
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flocculant during the storm event to primarily increase particle sizes and increase settling 

efficiency. An example of such a treatment process is found in the City of Windsor’s 

Retention Treatment Basin (RTB). 

1.3 Chemicals used for CSO Treatment 

Generally, chemicals commonly used for the physicochemical treatment process are 

synthetic organic polymers as well as inorganic salts of aluminum and iron such as 

aluminum chloride (alum), ferric sulfate, and ferric chloride. Although these commonly 

used chemicals are efficient for pollutants removal, they have a number of drawbacks. 

For example, the effectiveness of inorganic salts are pH dependent; their use results in the 

production of voluminous sludge that contains metal ions thereby increasing the cost of 

dewatering (Ammary & Cleasby, 2004). In addition, metal residue in the effluent may be 

toxic to the receiving water.  

Synthetic polymers on the other hand require lower dosages, and therefore they produce 

less volume of sludge that may reduce the sludge treatment cost. However, there are 

some other factors that should be considered and these include: the high cost of purchase, 

negative impact of the polymer residue in the effluent on the aquatic environment (Kerr, 

et al., 2014); potential toxicity of their monomers; and long-term adverse health effects to 

the public (Wu, et al., 2007; Graham, et al., 2008; Yin, 2010; S, et al., 2012). As such, 

health concerns of synthetic polymers have led to the imposition of strict regulations on 

their use for potable water treatment in many countries including Switzerland and Japan 

(Graham, et al., 2008). 
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To address some of the drawbacks of commonly used chemicals, natural polymers, which 

are plant or animal based, are becoming popular for reasons related to cost and toxicity 

(Graham, et al., 2008). 

1.4 Objectives 

This study is aimed at examining the following: 

1. Determining the characteristics of Windsor CSO. 

2. Evaluating the effectiveness of natural polymers for the treatment of Windsor 

CSO. 

3. Comparing the effectiveness of a selected natural polymer with existing practise. 

1.5 Scope 

1. Windsor CSO characterisation  

• Collect and analyse multiple flow proportional discrete samples for SS, 

BOD and three species of phosphorus. 

2. Natural polymer evaluation  

• Evaluate three natural polymers for the treatment of CSOs based on their 

potential to meet the requirements of Procedure F-5-5. 

• Select one of the natural polymers for further evaluation. 

3. Comparison 

• Compare the cost of the selected natural polymer against the present 

practise. 
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2 LITERATURE REVIEW 

2.1 Impact of Combined Sewer Overflow  

During wet weather, untreated CSO can be a significant non-point source of 

contamination to receiving waters. Its effects on receiving water include reduced oxygen 

levels, increased pathogens and excess nutrients that could result in eutrophication 

(Anderson, et al., 2002). Pollutant loading is also influenced by debris washed from land 

surfaces. In addition, manmade activities, which include contamination from vehicles and 

atmospheric deposition due to industrialization, also contribute to the overall loading 

(Gutteridge, Haskins and Davey Pty Ltd, 1981). The volume of CSO impacted by 

stormwater flow is however more prominent in urban regions due to increased 

imperviousness  (Berndtsson, 2014).  

The threat posed by CSO to water quality cannot be overemphasized. In the Great Lakes 

Region for example, the Detroit River was listed as one of the 43 Areas of Concern 

(AOCs) by the International Joint Commission (IJC) based on the significant influence of 

CSO (Green, et al., 2010). A report to the United States’ congress indicated that of the 

733 water segments within a kilometer downstream of a CSO outfall that were analysed 

for water quality, 75% were impaired, with a high percentage of these impairments 

associated with CSOs (USEPA, 2004).  

A CSO jeopardizes the quality of receiving water due to factors such as the high flow rate 

of discharge, which often causes erosion of the water bank and destabilization of its 

receiving water’s ecology. The aesthetics of such a water body is adversely affected when 

debris, accumulated as a result of surface runoff, is deposited on the water surface. Most 

importantly, CSOs contribute immensely to the pollutant loading of receiving waters in 
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the form of settleable and nonsettleable solids, pathogens, organic matter, nutrients, 

metals, polyaromatic hydrocarbons and other important pollutants.  

Despite the varying concentration of pollutants in a CSO during a storm, there are 

instances when instantaneous pollutant concentrations may become so high that the water 

quality standards are violated (USEPA, 2008). Although there have been reports in the 

literature that the concentration of some pollutants are less in CSOs as compared to 

sanitary sewage, studies have shown that the mass loading of these pollutants is 

significant due to the volume of stormwater runoff (Gutteridge, Haskins and Davey Pty 

Ltd, 1981; Droste & Hartt, 1975).  

The uniqueness of CSO, lies in the variability of its pollutant load from one storm event 

to the other, from region to region, by land use, weather, seasons as well as physical 

structures and maintenance (Berndtsson, 2014; Droste & Hartt, 1975). In a similar light, 

variability within an event cannot be overlooked and it is often explained by the first 

flush phenomenon.  

The first flush phenomenon is described by the initial high pollutant concentration 

immediately after a storm begins that later diminishes as the storm event proceeds. This 

may be because easily removable pollutants are washed off as soon as the storm 

commences or as a result of resuspension of sediments that were in the drainage channel 

before the storm event (Gutteridge, Haskins and Davey Pty Ltd, 1981). The first flush 

effect may also depend on the size and slope of the piping system as well as the time 

interval between successive storms (Shu, 2004). Compared to sanitary sewage, the SS 

concentration in a CSO is typically higher due to resuspension of sediments, but the 

lower concentration of pollutants such as phosphorus, nitrogen, COD and BOD5 in CSO 
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may be due to dilution by the constituent stormwater (Shu, 2004; Metcalf & Eddy, Inc., 

2003). 

2.2 CSO Management 

The environmental impact of CSOs mainly lies in the hydrological and pollution shock 

load. The need to eliminate or otherwise reduce the risk of pollution from CSO has given 

rise to structural and non-structural best management practises (BMPs) (IJC, 2014). A 

suitable combination of structural and non-structural BMPs has achieved an 85% 

reduction in TSS and 50% reduction in total phosphorus (TP) (Pennsylvania DEP, 2006). 

Non-structural BMPs, as the term implies, have fewer structural attributes. They are 

focused rather on policy changes, educational campaigns, planning and implementation. 

This approach can be as simple as street sweeping, water conservation, basing fertilizer 

application on soil tests as opposed to generalised practise, downspout disconnection as 

well as better management of grass clippings and pet waste (Pennsylvania DEP, 2006; 

IJC, 2014). For example, composted manure used as a source of fertilizer can 

significantly reduce TP loading to a receiving water as compared to inorganic fertilizer 

(IJC, 2014). Non-structural BMPs can also involve a more technical approach through 

low impact development. In such a case, reduced imperviousness gives room for 

stormwater infiltration.  

On the other hand, structural BMPs are designed and engineered to reduce runoff 

volumes and/or reduce pollutants in the event of an overflow. An example of this is found 

in the City of Windsor’s RTB; others include bioretention basins, detention and retention 

basins, storage tunnels and constructed wetlands. Although bioretention systems may not 

be entirely reliable for the removal of nitrogen, it has been reported to have efficiently 
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removed dissolved phosphorus when the media is adjusted with iron-enhanced sand 

(LeFevre, et al., 2014). 

2.2.1 City of Windsor’s Retention Treatment Basin 

Based on the requirements of the Great Lakes Water Quality Agreement (GLWQA), 

efforts to restore the Detroit River’s beneficial uses and to delist it as an AOC started in 

1985 with a remedial action plan (RAP). According to the stage 1 report of the RAP 

(MDNR and MOE, 1991), the City of Windsor’s storm and combined sewer overflow 

were identified as a significant non-point source of pollutants to the Detroit River. This, 

initiated the upgrade made to the City of Windsor’s Lou Romano Water Reclamation 

(LRWRP) to include secondary treatment and the construction of the RTB along the 

Riverfront (Green, et al., 2010).  

The RTB was adopted for the city’s CSO treatment based on the recommendation of a 

Windsor CSO characterisation and treatability study (Stantec, 2001). The study reported 

that chemical addition reduces the size requirement of the RTB to about 15% the size of a 

conventional settling facility, while also meeting the requirements of Ontario’s Procedure 

F-5-5.  

Hence, the high-rate RTB is designed for a 7.85 m3/s peak flow using polymer 

flocculation to aid rapid settling. Based on the CSO treatability study, Zetag 7873, which 

is a liquid cationic polymer, was recommended for treatment at a polymer dose of 5 mg/g 

of the influent TSS (Li, et al., 2003),. Polymer dosing is controlled automatically to 

respond to varying influent TSS concentrations as the storm events progress (Stantec, 

2014). During an overflow event, CSO and the pre-mixed polymer are simultaneously 

added to the influent of the RTB. The mixture is henceforth stored in the RTB before it is 
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conveyed back to the sewer system for treatment at the LRWRP. However, if the flow 

exceeds the storage capacity of the RTB before the end of the storm event, treated 

effluent is discharged directly into the Detroit River. 

2.3 Physicochemical Treatment Method 

Total solids in a wastewater stream consists of settleable, suspended, and dissolved 

solids. The dissolved solids are described by their ability to pass through a filter with a 

pore diameter less than or equal to 2 µm while suspended solids on the other hand will 

not pass through a 2 µm filter pore size (USEPA, 2012). The settleable portion of the 

solids is able to settle under gravity alone within a short period of time. However, 

suspended solids may or may not settle under their own weight depending on the 

characteristics of the particles and the design of the sedimentation unit (Metcalf & Eddy, 

Inc., 2003). Colloids, for example, are stable suspensions and are unable to settle out 

solely with gravitational force. 

The primary stage of water treatment entails the physicochemical clarification process 

that involves the coagulation and flocculation of colloidal particles and other suspended 

solids. Coagulation and flocculation reduce the force that binds the respective particles, 

this improves their rate of settling and aids efficient removal. Depending on the 

complexity of the problem, the clarification process may incorporate any or all of 

coagulation, flocculation, flotation, sedimentation (Tacchi & Churchill, 1977), and 

filtration. In a similar light, Mhaisalkar, et al. (1991) described coagulation-flocculation 

and then sedimentation as the most extensively used process for the removal of 

suspended particles during water treatment. 
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2.3.1 Coagulation and Flocculation Mechanism 

Typically, the net charge of particles of colloids in wastewater is negative and they are 

kept in suspension by Brownian motion, under stable conditions. Coagulation, which 

entails the rapid and vigorous mixing of chemical coagulants with the raw wastewater, is 

done to reduce their surface charge of colloid particles. The dispersed colloidal particles 

are thereafter kept in suspension through a constant but reduced mixing to facilitate the 

collision and hence agglomeration of the dispersed particles. The increased particle size 

improves the settling rate of the particles in the sedimentation unit.It also improves the 

quality of the filtrate in the situation where the particles are filtered out. Coagulation-

flocculation mechanisms can be summarized by a combination of any of the following 

methods (Miller, et al., 2008; Menezes, et al., 1996): 

Adsorption and charge neutralization: When inorganic salts of iron and aluminum are 

added as coagulants to the coagulation unit, the hydrolysis products of their metals are 

formed. Colloidal particles therefore adsorb oppositely charged ions of the hydrolysis 

products to form a metal hydroxide precipitate. In the case where polymers are used as 

primary coagulants, cationic polymers are adsorbed to wastewater particles causing the 

charges to be neutralised. The precipitates formed in both cases are enlarged during 

flocculation to floc particles size that are readily settleable.  

Adsorption and interparticle bridging: There can be an attraction between a long 

polymer chain and the surface of a suspended particle. Particles are therefore adsorbed to 

several of the attachment points on the polymer chains. Polymer chains are bridges 

between colloid particles that enable the forming of flocs (Figure 2.1), when there is 

room for attachment to its segment (Bolto & Gregory, 2007). Flocs are formed as a result 
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of a significant number of loops extending from the polymer (Ghosh, et al., 1985). The 

bridging ability of the polymer depends on the length and structure of the polymer chain 

and these in turn depend on the mixing intensity (Young, et al., 2000). 

 

Figure 2.1: Interparticle bridging with polymers  

Adapted from Metcalf & Eddy, Inc., (2003) 

Sweep flocculation: Settling floc particles sweep through wastewater and entrap particles 

in suspension, forming larger flocs while they settle. This mechanism is common with 

particles that are removed through sedimentation (Metcalf & Eddy, Inc., 2003). A 

combination of sweep flocculation and adsorption mechanisms occur when the turbidity 

and coagulant doses are high (Rossini, et al., 1999). 

 Double layer compression: Colloidal particles are primarily surrounded by the stern 

layer and diffuse layer and are referred to as the double layer. The stability of the 

colloidal particles depends on the thickness of the double layer, which in turn depends on 

the zeta potential of the particle. The zeta potential, which is a measure of the ionic 

strength of the particle, reduces as aqueous ion concentration increases due to the 

Floc formation Adsorption 

Particles in wastewater 

Polymer Particles with 
adsorbed polymer 

Floc particle formed 
by particle bridges 
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presence of an inorganic coagulant. As such, the compressed double layer reduces due to 

reduced repulsive forces and consequently, the particles are destabilised.  

2.3.2 Mixing 

Rigorous mixing is often applicable where the effective blending of two or more 

substances is required. In wastewater treatment, mixing is applied in the blending of 

chemicals in the coagulation and flocculation basins. It is also applicable during aeration, 

equalization, and neutralization during pH control. In addition, mixing is done where it is 

important to keep the content of a reactor in suspension, such as in suspended growth 

treatment process, aerobic and anaerobic conditioning of bio-solids and sludge. (Metcalf 

& Eddy, Inc., 2003). 

The unit process of the wastewater treatment dictates the intensity and time of mixing. 

For example, aluminium hydroxide, which is as hydrolysis product required for 

adsorption and charge neutralization in the coagulation unit, takes about 7 seconds to be 

formed (Rossini, et al., 1999). More time is thus required for the sweep flocculation 

mechanism that enables larger flocs to be formed. Hence, it is of great importance to 

rapidly disperse the coagulant in the fluid bulk and thereafter, reduce the intensity of 

mixing to prevent the flocs formed from shearing.  

Mixing of fluid is made possible through natural or forced disturbance of particles 

suspended in the fluid. A natural disturbance occurs as a result of the collision between 

the molecules of the fluid, known as Brownian motion. A forced disturbance, on the other 

hand, can be achieved through the vibration of the fluid stream by pumping a stream of 

fluids into a similar larger fluid body (Rushton, 1952), otherwise known as a hydraulic 

jump, or by passing the fluid through a baffled channel. In addition, mechanical and 
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pneumatic vibrators can also be used to achieve forced disturbances. For effective mixing 

it is important to account for the rate of material transfer. This can be simulated through a 

pilot plant scale model study and thereafter scaled up for the operating parameters of the 

plant scale using a fluid mechanic principle known as similitude (Rushton, 1952). 

2.3.3 Jar Testing  

The coagulation, flocculation, and sedimentation of the water treatment process can be 

simulated on a lab scale using the jar testing apparatus. This is done to evaluate treatment 

parameters such as: the performance of various coagulants and coagulant aids and their 

corresponding optimum dosage (Li, et al., 2003; Ebeling, et al., 2003; Exall & Jiri, 2013), 

mixing intensity (Lai, et al., 1975; Cornwell & Bishop, 1983; Mhaisalkar, et al., 1991); 

rapid mixing time (Kan, et al., 2002; Aktas, et al., 2013); and optimum settling time, as 

well as the sequence of addition in situations where dual coagulants are used (Ammary & 

Cleasby, 2004). A jar test also enable the visual evaluation of variables such as the time 

the first floc was formed, floc size and quality as well as the settling rate of the floc. It 

may also be conducted to determine the effect of plant operating conditions such as the 

temperature variation during the winter and summer (Gilcreas, 1965).  

A conventional jar test is conducted using a jar testing machine that is equipped with jars 

for holding the samples and a stirring device that operates at a variable speed. In runs 

containing more than one jar, the experiment is handled such that there is minimal 

variation in protocol in all the jars. This is so because a slight difference may affect the 

result of the jar test. 

The jar test process primarily consists of three stages: the flash or rapid mix stage which 

represents coagulation; the slow mix representing the flocculation stage; and the settling 
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time, which represents the activity in the sedimentation basin. The data obtained from the 

jar test experiment can be used for a pilot plant design. This can then be scaled up for the 

actual plant design. 

The detention time in the jar and the treatment plant basin may vary as a result of the 

difference in energy transfer between water molecules in the jar and that of the water in 

the treatment plant (Gilcreas, 1965). Rapid mix design is difficult because it is influenced 

by several factors that include raw water characteristics, type and dose of coagulants as 

well as the intensity and duration of mixing (Mhaisalkar, et al., 1991). In fluid mechanics 

the principle of similitude is used to relate performance at one operation size to the 

performance at a different operating size.  

To duplicate the desired mixing efficiency achieved on a smaller scale, it is important to 

replicate the dynamic conditions (Rushton, 1952). This entails keeping the direction of 

flow and the ratio of forces at corresponding positions the same (Rushton, 1952) by 

maintaining a geometrically similar system as well as keeping the power input per unit 

volume constant (Metcalf & Eddy, Inc., 2003). Hence, the jar test is scaled up using the 

product of mixing intensity (G) and time (t), as the scaling factor. 

2.4 Coagulation/Flocculation Treatment Chemicals 

2.4.1 Inorganic Salts  

Inorganic salts of aluminum and iron such as aluminium chloride, ferric chloride and 

ferric sulphate are generally termed as coagulants in the wastewater treatment context. 

Polyaluminum chloride and polyiron chloride are prehydrolysed metals salts used for the 

coagulation purpose as well. The hydrolysis products formed when these salts are added 

to the wastewater stream are responsible for particle aggregation. 
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Although inorganic salts are generally known for efficient pollutant removal, their 

performances is not always consistent owing to the sensitivity of these salts to changing 

raw wastewater pH. Hence, the need for pH adjustment may lead to additional chemical 

costs. The inorganic salts pose a toxicity risk to receiving water due to the presence of 

metal ions in their residue. Also, their use results in the production of voluminous sludge 

that is expensive to dewater. 

2.4.2 Polymers 

Polymers are organic compounds that are composed of smaller molecules known as 

monomers. The vast majority of polymers used in wastewater treatment processes 

originate from synthetic materials and are broadly referred to as synthetic polymers. 

However, some polymers are sourced from natural materials.  

With respect to their ionic charge, polymers can be characterised as cationic, anionic and 

non-ionic. The cationic polymers, being positively charged polymers are either used as a 

coagulants or as a coagulant aids. Anionic polymers are negatively charged and they are 

used mainly as a coagulant aid. The non-ionic polymers have neutral charges and can be 

used as either coagulants or coagulant aids. The molecular weights of polymers, that 

range from <105, 105 – 106, and >106 for low, medium and high weights respectively, 

significantly influences the efficiency of a polymer when used as a coagulant aid (Bolto 

& Gregory, 2007). However, their high molecular weight and equivalent charge density 

distinguish polymer from the conventional inorganic coagulants and flocculants (Tacchi 

& Churchill, 1977; Chang, et al., 2005).  

Compared to inorganic coagulants, polymers are less pH dependent; the concentration of 

dissolved ion in the effluent is reduced; and polymers may be more effective for the 
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removal of natural organic matter (Chang, et al., 2005). The use of polymers as coagulant 

aids also comes with various advantages that include: reduced chemical dosage 

requirement; increased floc size and strength; reduced sludge volume; and an increase in 

the rate of solid-water phase separation (Bolto & Gregory, 2007; Ghosh, et al., 1985), 

which enhances the ease of sludge dewatering.  

2.4.2.1 Synthetic Polymer 

In as much as synthetic polymers have been reported to be highly efficient and help 

address the major drawbacks of inorganic coagulants, they come with a number of 

shortcomings. They are often expensive and are less biodegradable (Graham, et al., 

2008). The ecology of the receiving water body is endangered as the residual polymer in 

discharged effluent poses a toxicity risk. In addition, the build-up of the residual polymer 

on gills of fishes compromises their O2 intake and may eventually lead to death (Kerr, et 

al., 2014). Similarly, residual monomers from the manufacture of certain polymers may 

also have negative impacts on the environment. As such, chlorinated by-products like 

toluene, 1,4-dichlorobenze, and chloroform have been observed in the effluent of 

drinking water purification processes as a result of polymer usage (Lee, et al., 1998). 

Although the effects of residual synthetic polymers on the ecosystems have been 

reported, their long-term health effects on humans still remain unknown (Kawamura, 

1991). This has, therefore, led to the imposition of stringent regulations in their monomer 

content as well as their use for drinking water treatment in some countries such 

Switzerland and Japan (Graham, et al., 2008; Kawamura, 1991).  
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2.4.2.2 Natural Polymers 

Similar to synthetic polymers, natural polymers also address the limitations of inorganic 

coagulants. In addition, they may also help address some of the limitations of synthetic 

polymers such as cost, biodegradability, and toxicity. They were used several years ago 

in developing countries, mainly because of cost considerations (Kawamura, 1991). In 

recent times, however, there has been increasing interest in their use due to health 

concerns posed by conventional coagulants and flocculants (Graham, et al., 2008; 

Renault, et al., 2009; Hsu, et al., 2009).  

Natural polymers are generally extracted directly or modified from natural materials. 

Examples of natural polymers are polysaccharides, such as starch and hydroxyethyl 

cellulose, chitosan, tannins as well as sodium alginate. Chitosan is produced from the 

deacetylation of chitin. Chitins are generally extracted from shells of crustaceans. 

Tannins are polyphenols extracted from the bark of trees while sodium alginate is an 

anionic polymer extracted from brown seaweed. In addition to being used as coagulants, 

chitosan and sodium alginate have a variety of applications in the biomedical industry, 

which include their use as additives in food. 

Although unable to effectively remove colloidal matter (Hu, et al., 2013; Kawamura, 

1991), the effectiveness of chitosan for the removal of other suspended solids has been 

reported under a wide concentration range (Kawamura, 1991; Chung, et al., 2013). 

Hence, its use has been suggested with polyaluminum chloride (PACl) for higher 

turbidity removal efficiency (RE) (Hsu, et al., 2009). A tannin based polymers have also 

been reported to be efficient for the treatment of municipal wastewater as well as for the 

clarification of surface water (Beltran-Heredia, et al., 2011). The effectiveness of 
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Moringa oleifera seeds for pollutant removal has also been reported in various studies 

(Muyibi & Evison, 1995; Ndabigengesere & Narasiah, 1996; Muthuraman & Sasikala, 

2013), 

2.5 Phosphorus  

Nutrients such as phosphorus are important for life. Phosphorus aids the growth of 

terrestrial and aquatic plants, which are essential to the ecosystem. However, as important 

phosphorus is, it is can be detrimental to the environment when present in excessive 

amounts. Being an important factor that causes eutrophication in surface water, it aids the 

growth of phytoplankton such as algae. Phytoplankton competes with aquatic life for 

oxygen, therefore resulting in the killing of fish and loss of biodiversity, when in 

excessive amount. Eutrophication may become a nuisance as a result of its green 

colouration, as well as leading to public beach closures. Hence, a balance of phosphorus 

is important.  

Phosphorus generally enters surface water bodies through point and non-point sources. 

Point sources can be as a result of the direct discharge of municipal and industrial 

wastewater while non-point sources can be the result of stormwater runoff, CSO, 

phosphorus from polluted air, and from weathered rocks. Phosphorus in stormwater and 

CSO results from sources like organic and inorganic fertilizers from cultivated land, 

automobile exhaust detergents, food residue, decaying plants as well as animal excreta 

(Liu & Davis, 2013; Erickson, et al., 2007). 

2.5.1 Phosphorus Speciation 

Phosphorus occurs broadly in dissolved or particulate form as phosphates, in surface 

water; organisms; as well as in soils and sediments. Filtration through 0.45 µm filters 
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distinguishes the dissolved from the particulate fraction, although this type of assumption 

should be made with caution because it is generally accepted that there are smaller 

particles in water and wastewater samples (Spivakov, et al., 1999).  In both dissolved and 

particulate states, phosphate is introduced into the environment in different chemical 

forms such as orthophosphate (reactive phosphorus), condensed phosphate (acid 

hydrolyzable phosphorus) and organically bound phosphorus.  

Unlike acid-hydrolysable and organic phosphorus, reactive phosphorus readily responds 

to chemical reactions processes in water. As such, it does not require prior hydrolysis, 

oxidation or digestion processes before quantification (Spivakov, et al., 1999). However, 

acid-hydrolysable and organic phosphorus are first converted to orthophosphates before 

they are quantified by various techniques. 

The summation of these three forms amounts to the total phosphorus content in both the 

dissolved and the particulate states while the sum of the total dissolved phosphorus and 

total particulate phosphorus yields the overall count of total phosphorus present. The 

significant fractions of phosphorus in the environment are summarised in Table 2.1. 

However, each form may change between their dissolved and particulate states 

(Spivakov, et al., 1999). With approximately 90% of dissolved reactive phosphorus 

(DRP) being readily available for biomass uptake as compared to approximately 30% of 

particulate phosphorus (IJC, 2014), DRP is sometimes referred to as bioavailable 

phosphorus. 
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Table 2.1: Phosphorus Species 

 Particulate Phosphorus Dissolved Phosphorus 

Total Phosphorus Total suspended phosphorus Total dissolved phosphorus 

Total Reactive 
Phosphorus 

Suspended reactive 

phosphorus 
Dissolved reactive 

phosphorus 

Total Acid-hydrolysable 

Phosphorus 

Suspended acid-hydrolysable 

phosphorus 

Dissolved acid-hydrolysable 

phosphorus 

Total Organic 
Phosphorus 

Suspended organic 

phosphorus 
Dissolved organic 

phosphorus 

 

2.5.2 Phosphorus and Eutrophication in the Great Lakes Region  

In the 1960s, eutrophication was a huge water quality issue in the Great Lakes as a result 

of excessive phosphorus input (Environment Canada, 2013). This led to enormous algae 

growth throughout the Great Lakes. To address the issue, the Great Lakes Water Quality 

Agreement (GLWQA) established a total phosphorus (TP) loading target with the aid 

predictive models (Chapra & Dolan, 2012). As such, limits were set for the use of 

phosphorus in detergent and wastewater treatment plants were upgraded. The 1972 

GLWQA successfully led to a decline in phosphorus levels in the Great Lakes 

(Environment Canada, 2013).  

However, there was a re-emergence of excessive algae growth in the Great Lakes in the 

mid-1990s. Although phosphorus is still the main influencing factor for the 

eutrophication, this re-emergence is now perceived to be more complex than in past 

decades (Environment Canada, 2013). It has been hypothesized that the recent resurgence 

is due to invasive aquatic species such as zebra and quagga mussels that established 

themselves in Lake Ontario in the early 1990s (Chapra & Dolan, 2012). These Dresseinid 
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mussels constantly capture and excrete nutrients in areas close to the shore, and therefore 

increase the assimilation of TP (Chapra & Dolan, 2012; Environment Canada, 2013) 

In 2011, Lake Erie experienced its worst algae bloom ever. As in the previous 

occurrence, phosphorus was identified as a major influencing factor. However, dissolved 

reactive phosphorus (DRP) is said to be the major cause of the recent water quality 

decline (IJC, 2014) due to its bioavailability. CSO has thus been identified as a major 

source of pollution and most importantly a major source of phosphorus in the Great 

Lakes Region (USEPA, 2015; IJC, 2014). The 2012 GLWQA, stipulates a revised 

phosphorus reduction target for Lake Erie by February 2016 (USEPA, 2015). 
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3 MATERIALS AND METHODS 

In order to determine the characteristics of the Windsor CSO, influent into the City of 

Windsor’s RTB was sampled. These samples were analysed for suspended solids, 

biochemical oxygen demand, total phosphorus (TP), total reactive phosphorus (TRP) and 

dissolved reactive phosphorus (DRP).  

Jar test experiments were also carried out in order to determine the removal efficiencies 

of commercially available natural polymers. The treatment efficiencies of the natural 

polymers were compared to those of conventional treatment chemicals such as alum and 

Zetag 7873. Alum is a widely used chemical for water and wastewater treatment and 

Zetag 7873 is presently being utilised for Windsor CSO treatment at the RTB.  

Experiments were carried out in the wastewater lab of the University of Windsor as well 

as the pollution control laboratory of LRWRP. 

3.1 Sampling Methods  

3.1.1 Combined Sewer Overflow  

One of the long term control plans for the abatement of CSO recommended by the US 

Environmental Protection Agency, includes the characterisation of the quality and 

quantity of the CSO (Irvine, et al., 2005). Stormwater characterisation is based on 

determining site mean concentrations and their uncertainties as well as the treatability of 

stormwater by monitoring specific pollutant concentration levels. 

The flow proportional sampling method was used to estimate the characteristics of the 

Windsor CSO. The flow proportional sampling method gives a reliable estimate of the 

wastewater characteristics (Henze, et al., 2008) and it is done by collecting samples of 
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wastewater over, time based on a specified volume of wastewater flow. For this study, 

multiple flow proportional discrete samples were collected at the inlet of the Windsor 

Riverfront RTB with the aid of an automatic Supervisory Control and Data Acquisition 

(SCADA) system.  The collecting carousel is shown in Figure 3.1. The logic controller of 

the automatic sampler was programmed such that one sample was collected for every 500 

m3 of flow into the RTB.  A maximum of 24 samples were collected per storm event.  

A composite CSO sample was captured once for polymer evaluation using the jar test 

procedure.  

 
Figure 3.1: Sampling carousel 

Samples collected at the end of each storm event were transported to the laboratory of the 

LRWRP and were transferred into clear wide-mouth sampling glass bottles. They were 

analysed as soon as possible. Where necessary, samples were preserved and stored 

according to the guidelines specified in the Standard Methods for the Examination of 

Water and Wastewater (APHA, 2005) and the analyses were carried out as soon as 

possible.  
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3.1.2 Municipal Wastewater 

This study is fundamentally aimed at the treatment of CSO, but since CSO is a seasonal 

event, limited to when there is rainfall, there may be limitations as regarding the time to 

get samples to be used for a jar test experiment. In order to address this limitation, 

municipal wastewater was used for the jar test experiment during the polymer selection 

process since CSO typically consists of municipal wastewater that has been diluted by 

stormwater. Wet weather flow to the LRWRP has previously been used as a surrogate for 

Windsor CSO during Windsor CSO treatability study (Li, et al., 2003).  

This enabled experiments to be carried out all year round irrespective of the weather 

condition. Thus, grab samples of municipal wastewater used were collected at the grit 

chamber of the LRWRP. The selected polymer was further evaluated with CSO.  

3.2 Materials 

3.2.1 Tanfloc SG and Tanfloc SH 

Tanfloc SG and Tanfloc SH samples were supplied by TANAC SA (Montenegro, Brazil). 

The Tanfloc products are tannin based (Graham, et al., 2008) cationic polymers that were 

extracted from black wattle (Acacia mearnsi) tree bark. According to the product material 

safety data sheet (MSDS), tannin extraction is achieved through a reaction with 

ammonium chloride and formaldehyde.  

The Tanfloc SG and Tanfloc SH came as orange and brown powders, respectively, as 

shown in Figure 3.2. According to the research and development manager of TANAC 

SA, Tanfloc SH has been modified to have a higher molecular weight than Tanfloc SG 

(C. Wolf, personal communication, June 16, 2015). Otherwise, other physical and 

chemical properties of the polymers are the same as on the MSDS.  
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Figure 3.2: Tanfloc SH and Tanfloc SG powder 

Prior to each jar test experiment, 2 g/L of Tanfloc SG and Tanfloc SH stock solutions as 

seen in Figure 3.3, were prepared by dissolving 0.2 g of the product completely in 100 

mL of deionized water.  

 

Figure 3.3: Tanfloc SH and Tanfloc SG stock solution 

3.2.2 Dual Polymer System (DPS) 

The sample of the dual polymer system was supplied by Stormtec Filtration Inc. (Delta 

British Columbia, Canada). The polymer is being marketed as a stormwater treatment 

solution and it is produced by Halosource Inc. (Bothell Washington, USA). The dual 

polymer system is a combination of two products which are LiquiFloc and LBP 2101 

(Figure 3.4).  



27 
 

LiquiFloc and LBP 2101 are similar in terms of being polysaccharides but LiquiFloc is a 

cationic chitosan based polymer while LBP 2101 is anionic. The LiquiFloc solution 

received contained 2% of the active ingredient while LBP 2101 was received in an 

aqueous form containing 1% of the active ingredient. These concentrations are equivalent 

to 20 g/L and 10 g/L for LiquiFloc and LBP 2101, respectively.  

 
Figure 3.4: The dual polymer system 

For ease of dispensing during jar testing, both polymers were further diluted to 1 g/L of 

their active ingredient prior to each experiment. This was achieved by making 5 mL and 

10 mL of LiquiFloc and LBP 2101, respectively up to 100 mL using deionized water. 

3.2.3 Other Treatment Chemicals 

Zetag 7873, Zetag Anionic, and alum were collected from the pollution control laboratory 

of the City of Windsor. Zetag 7873 is presently being used at the City of Windsor’s RTB 

for the treatment of Windsor CSO. It was recommended for its ability to meet the 

requirements of procedure F-5-5 and for having the longest shelf life among the other 

polymers that were evaluated (Li, et al., 2003). Zetag 7873 is a polyacrylamide based 
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cationic polymer. It was received in liquid form as 50% of the active ingredient and was 

diluted to 1 g/L prior to jar testing. 

Zetag anionic is being used in combination with alum at LRWRP for municipal 

wastewater treatment and was received in granular form. The alum received contained 

4.4% of aluminum. Prior to each jar test experiment, Zetag anionic was completely 

dissolved in deionized water to produce 1 g/L of the polymer and the alum was further 

diluted to 1 g (Al)/L. 

3.2.4 Synthetic Wastewater 

Synthetic wastewater was prepared by using bentonite. A stock solution of the synthetic 

wastewater was prepared by adding 10 g of the bentonite powder to 1 litre of water. The 

mixture was made using a magnetic stirrer to achieve uniform dispersion of the bentonite 

particles. The stock solution was further diluted to 200 mg/L to make up suspensions of 

45 NTU turbidity.  

3.3 Experimental Procedures 

3.3.1 CSO Characterisation 

Although there is presently no limit to the discharge of phosphorus as a result of CSO in 

Ontario, the recent influence the DRP may be having on the eutrophication in Lake Erie 

has made it interesting to explore. Hence, a total of 10 events were captured and analysed 

for SS, BOD, TP, TRP and DRP. Table 3.1 gives a summary of event dates, number of 

samples and the parameters analysed, for each of the events.  
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Table 3.1: Analysed Parameters for All CSO Captured 

Event ID Event Date No. of 
Samples 

SS  BOD  TP  DRP  TRP  

Event 1 
 

27 July 2014 16 ü   ü  

Event 2 
 

11 - 12 August 2014 16 ü   ü  

Event 3 
 

2 September 2014 16 ü ü  ü  

Event 4 
 

10 September 2014 16 ü ü  ü  

Event 5 
 

21 April 2015 11 ü ü ü ü ü 

Event 6 
 

18 May 2015 9 ü ü ü ü ü 

Event 7 
 

27 May 2015 10 ü ü ü ü ü 

Event 8 
 

31 May 2015 24 ü ü ü ü ü 

Event 9 
 

20 August 2015 24 ü ü ü ü ü 

Event 10 
 

31 August 2015 14  ü ü ü ü ü 

 

3.3.2 Jar Test Experiments 

A total of three natural polymers were evaluated based on their SS and BOD removal 

efficiencies using the jar test experimental procedure. Prior to the addition of the 

polymers, samples in beakers were continuously agitated at 100 rpm for 5 s to keep the 

solids in suspension. Samples were then rapidly mixed at 100 rpm (G = 90 s-1) for 2 min 

after polymer addition; followed by slow mixing at of 25 rpm (G = 18 s-1) for 5 min; 

samples were then allowed to settle for 5 min. The respective G-values were derived 

based on the graph shown in APPENDIX A. Afterwards, sample sizes 500 mL – 700 mL 

of the sample were collected in wide bore mouth sampling bottles for analysis.  
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3.3.2.1 Preliminary Experiments 

Preliminary experiments were conducted using synthetic turbid water. The evaluation at 

this stage was based on the turbidity removal efficiency of the polymer. This was done to 

estimate the polymer concentration that result in a significant pollutant removal. 

For the preliminary experiment, in addition to evaluating Tanfloc SG; Tanfloc SH; and 

the DPS, LiquiFloc, which is a component of DPS, was also evaluated independently. 

LiquiFloc has been reported (Bailey, et al., 2006; Curtis, 2007) to give the desired 

removal efficiency for solids and turbidity, respectively.  

For each jar test run, controls were used as benchmarks to assess and compare the 

effectiveness of the polymers. In addition to blank control, Zetag 7873 and alum + 

anionic polymers were also used as chemical controls.  

3.3.2.2 Polymer Selection 

Based on the polymer concentration estimated from the preliminary experiment stage, the 

polymers were further evaluated on municipal wastewater between using a wider range of 

polymer concentrations. The evaluation at this stage was aimed at determining if the 

polymers were able to meet the requirements of Procedure F-5-5 guidelines which is 50% 

removal efficiency (RE) for SS and 30% RE for BOD5. For the polymers that met the 

requirements, selection was based on the polymer that performed best based on their SS 

and BOD5 removal efficiencies. The effect of the respective polymers on pH were also 

evaluated at this stage by measuring pH in the jars before and after the experiment. 

Besides using Zetag 7873 as a control parameter for all jar test runs, it was also evaluated 

using a wide range of concentrations. This was done to assess its effectiveness under the 
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same jar test operating conditions as the natural polymers. This also allowed a detailed 

comparison between the efficiencies of Zetag 7873 and the natural polymers. Tanfloc SG, 

Tanfloc SH, and DPS were evaluated more than once as a quality control measure to 

ascertain the performance achieved in the previous experiments.  

As presented in Table 3.2, each polymer was evaluated at least twice except for LiquiFloc 

which was only evaluated once. DPS evaluation in Experiment #2 involved two stages, 

for the first stage, the concentration of LiquiFloc was initially kept constant while the 

concentration of LBP 2101 was varied. For the second stage, the concentration of LBP 

2101 was varied and the concentration of LiquiFloc was kept constant. This was done 

with the aim of evaluating the polymer that most influences the effectiveness of the dual 

polymer system. Experiment #10 was performed to ascertain the difference between the 

treatment efficiencies of Tanfloc SG and Tanfloc SH. 

  Table 3.2: Polymers Assessed for the Preliminary Experiments 

 Polymer used 

Experiment 1 LiquiFloc 

Experiment 2 DPS 

Experiment 3 DPS 

Experiment 4 DPS 

Experiment 5 Tanfloc SH 

Experiment 6 Tanfloc SH 

Experiment 7 Tanfloc SG 

Experiment 8 Tanfloc SG 

Experiment 9 Zetag 7873 

Experiment 10 Tanfloc SH and Tanfloc SG 
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The jar test experiments were performed on various dates between April 2015 and 

September 2015. Due to the limitation of not being able to perform all jar test 

experiments with wastewater with the same characteristics, controls were therefore 

applied as follows:  

• Blank control: samples in the jar went through the jar testing process without the 

addition of polymer. 

• 5 mg (Al)/L alum + 0.3 mg/L Zetag anionic polymer. This is the combination 

commonly used for the CEPT process at the LRWRP (Freund, 2013).  

• 1 mg/L Zetag 7873: Zetag 7873 is presently being used at the Windsor RTB for 

the treatment of Windsor CSO. 

In addition to calculating the pollutant removal efficiencies (RE) in relation to the raw 

wastewater using Equation 3.1, the removal efficiency of the polymers were also 

calculated with respect to treatment in the respective blank control of each jar test 

experiments (Equation 3.2). The adjustment to the removal efficiency was done to 

account for pollutants that are readily removed without the addition of polymer (Bailey, 

et al., 2006; Ebeling, et al., 2005; Miller, et al., 2008).  

Pollutant RE (%) =           X 100      (3.1) 

Corrected Pollutant RE (%) =           X 100      (3.2) 

where:   Cr = Initial pollutant concentration in the raw wastewater 

  Cb = Final pollutant concentration in blank control 

  Cf = Final pollutant concentration in jars 
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3.3.2.3 Further Evaluation of the Selected Polymer 

Additional Experiments, #11 to #14, were performed using the selected natural polymer 

in order to estimate the minimum concentration of the selected natural polymer that 

meets the requirement of procedure F-5-5. However, while Experiments #11 and #12 

were performed using municipal wastewater samples, Experiments #13 and #14 were 

performed using composite CSO samples obtained at the inlet of City of Windsor’s RTB.  

3.3.2.4 Phosphorus Removal 

The effectiveness of Tanfloc SG for phosphorus removal was assessed in Experiments 

#2, #10, #13, and #14. For this purpose, TP and DRP were determined for the respective 

jar test experiments.  

3.4 Analytical Methods 

In this study, analyses of SS, BOD, and all forms of phosphorus were performed 

according to the procedures outlined in Standard Methods based on the respective section 

numbers presented in Table 3.3. 
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Table 3.3: Analytical Methods Used as per Standard Methods (APHA, 2005) 

Parameter Section ID  Method 

Suspended Solids 2540 D Filtration Method 

BOD 5210 B Carbonaceous BOD 

Total Phosphorus 
4500-P B Persulfate Digestion 

4500-P D Stannous Chloride Colourimetry 

Total Reactive Phosphorus  4500-P D Stannous Chloride Colourimetry 

Dissolved Reactive 
Phosphorus 

4500-P D Stannous Chloride Colourimetry 

pH  4500-H+ B Electrometric 

Turbidity 2130 B Nephelometric 

 

DRP was filtered through a 0.45 µm pore size filter paper that had been soaked in 

deionised water for at least 48hours. In addition, prior to filtration, a minimum of 100 mL 

deionized water was filtered through the filter paper before running the sample through it. 

This was done to prevent leaching of pollutants from the filter paper (Khan & Pillai, 

2006).  

To reduce interference of solids with the colourimetry analysis during TP and TRP 

analysis, up to 25 mL aliquot of samples were pretreated based on the quantity of solids 

visually present. TRP was then further analysed according to the procedures outlined in 

Standard Methods. The details of TP analysis is presented in APPENDIX B. 

3.5 Quality Control 

For quality control purposes, reagent blanks, a standard solution and a spiked solution 

were also analysed with each set of samples. The percentage recovery of the spiked 

solution was used as a measure of accuracy. If the measured concentration of the standard 
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solution falls within the 95% confidence interval of the calibration curve, the calibration 

curve is considered accurate. 

Method detection limits (MDL) were determined with 99% confidence according to the 

method recommended by the USEPA (Oblinger Childress, et al., 1999). Measurements 

below the detection limit were recorded as at the method detection limit. 

Calibration curves and method detection limit calculations are presented in APPENDIX 

C. 

3.6 Analytical Equipment 

3.6.1 Jar Test Apparatus 

The Phipps and Bird jar test apparatus was used in this study to simulate the coagulation, 

flocculation and settling process. The apparatus shown in Figure 3.5 has an illuminated 

base and consists of six 2000 mL B-KER2 square jars with corresponding paddle stirrers. 

The jars, which are also referred to as “gator” jars, provide the thermal insulation 

necessary to minimize temperature change during the experiment. 

 

Figure 3.5: Phipps and Bird jar test apparatus  
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3.6.2 Other Equipment  

Other equipment used includes: a UV- VIS spectrophotometer for phosphorus analysis; 

dissolved oxygen meter; HACH turbidimeter meter; pH meter. All the equipment was 

calibrated before analyses.  
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4 RESULTS AND DISCUSSION 

4.1 Windsor CSO Characteristics 

A total of 10 CSO events were captured and characterised for constituent pollutants 

between July 2014 and August 2015. A summary of pollutant concentrations for all 

events sampled is presented in Table 4.1. The concentrations of SS, BOD, TP and TRP 

vary widely within events as indicated by the high standard deviations, which were close 

in value to the mean concentrations of the pollutants. 

Despite the wide variation in pollutant concentrations, a cumulative frequency percentage 

plot, as presented in Figure 4.1, shows that more than 50% of the SS concentrations were 

less than 50 mg/L, while over 80% of the SS concentrations were below 200 mg/L. 
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Table 4.1: Summary of Pollutant Concentrations  

Event ID No. of 
Samples 

Parameters Minimum 
(mg/L) 

Maximum 
(mg/L) 

Average 
(mg/L) 

Standard 
Deviation 

Event 1 
 

16 
 

SS 
DRP 

12 
0.18 

377 
0.47 

106 
0.33 

122 
0.10 

Event 2 
 16 

SS 
DRP 

2 
0.14 

385 
0.46 

110 
0.28 

117 
0.10 

Event 3 
 16 

SS 
BOD 
DRP 

118 
23 
0.22 

908 
121 
0.48 

275 
44 
0.33 

195 
25 
0.08 

Event 4 
 16 

SS 
BOD 
DRP 

21 
14 
0.05 

1199 
88 
0.26 

328 
48 
0.46 

328 
27 
.34 

Event 5 
 11 

SS 
BOD 
TP 
DRP 
TRP 

8 
3.8 
0.22 
0.16 
0.24 

80 
16.4 
1.37 
0.24 
0.44 

30 
8.7 
0.60 
0.22 
0.36 

24 
3.9 
0.39 
0.04 
0.06 

Event 6 
 9 

SS 
BOD 
TP 
DRP 
TRP 

30 
5.0 
0.25 
0.23 
0.31 

100 
22.1 
1.07 
0.39 
0.62 

57 
11.7 
0.69 
0.32 
0.45 

25 
6.5 
0.25 
0.05 
0.10 

Event 7 
 11 

SS 
BOD 
TP 
DRP 
TRP 

8 
3.3 
0.3 
0.13 
0.17 

1674 
224 
6.42 
0.43 
3.38 

309 
50.1 
1.70 
0.24 
0.81 

506 
70.1 
1.50 
0.11 
0.09 

Event 8 
 24 

SS 
BOD 
TP 
DRP 
TRP 

11 
1.9 
0.18 
0.06 
0.16 

85 
17.6 
1.09 
0.44 
0.60 

34 
5.9 
0.42 
0.18 
0.27 

18 
4.0 
0.18 
0.09 
0.09 

Event 9 
 24 

SS 
BOD 
TP 
DRP 
TRP 

4 
8 
0.15 
0.02 
0.02 

334 
80 
1.57 
0.10 
0.33 

57 
30.4 
0.37 
0.04 
0.10 

66 
24.2 
0.30 
0.03 
0.07 

Event 10 
 14 

SS 
BOD 
TP 
DRP 
TRP 

4 
1.7 
0.13 
0.07 
0.13 

64 
9.8 
0.71 
0.19 
0.39 

31 
4.9 
0.30 
0.12 
0.19 

20 
2.8 
0.16 
0.03 
0.07 
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Figure 4.1: Suspended solids cumulative frequency curve 

4.1.1 Categorization of CSO Events 

The SS is commonly used as a control measure for stormwater, and is regarded as one of 

its most important constituents (Maestre & Pitt, 2005). Hence, all 10 events were ranked 

according to their SS event mean concentration (EMC) and divided into low, medium, 

and high concentration events. Since pollutant loading varies from one storm event to 

another (Berndtsson, 2014; Droste & Hartt, 1975), the grouping was based on the 

significant difference between the SS concentration. Hypothesis 1 was therefore, 

developed to determine the difference between the EMC SS for all the events.   

Hypothesis 1 
H01: All the event mean concentrations are equal 

Ha1: At least one of the event mean concentration is different 
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Hypothesis 1 was analysed using the one-way analysis of variance (ANOVA) test. The 

ANOVA test was done at the 95% confidence interval using the Minitab 17 software. To 

maintain the normality distribution assumption requirement of ANOVA, the SS 

concentration data were transformed to a normal distribution. Normalisation was done by 

converting the data to their natural log form.  

Hence, based on the results of the ANOVA analysis of hypothesis 1 presented in 

APPENDIX D, the events were grouped as shown in Table 4.2. As shown in Table 4.2, 

BOD also conforms to the grouping. 

Table 4.2: Events Grouped According to Pollutant Concentrations  

Event Grouping  Events  Mean SS (mg/L) Mean BOD (mg/L) 
High Concentration  Event 4 

Event 7 
Event 3 

328 
309 
275 

48 
50 
44 

Medium 
Concentration  

Event 2 
Event 1 
Event 9 
Event 6 

110 
106 
57 
57 

ND* 
ND* 
30.4 
12 

Low Concentration 
 

Event 8 
Event 10 
Event 5 

34 
31 
30 

6 
5 
9 

* ND: Not determined 

Hypothesis 2, 3, and 4 were also tested to confirm that the event mean concentrations of 

the high, medium, and low events, respectively do not vary significantly. Their null 

hypothesis states that all the means in each of the groups are equal while their 

corresponding alternative hypothesis states that at least one mean is different. The results 

of hypotheses 2, 3, and 4 are presented as follows: 
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Hypothesis 2 

 
Hypothesis 3 
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Hypothesis 4 

 

From the results of hypotheses 2, 3, and 4, all p-values are greater than the 0.05 level of 

significance. Therefore, the null hypothesis that states that all means in each group are 

equal is valid. Hence, the events grouping based on their solids concentration is valid.  

4.1.2 Variability of Pollutant Concentrations 

Multiple flow proportional discrete samples were collected for each CSO event, with one 

1000 mL sample collected for every 500 m3 of flow. The SS and DRP were monitored for 

ten events, BOD for eight events while TP and TRP were monitored for six events.  

As shown in Figures 4.2 - 4.11, all pollutant concentrations vary significantly over time 

which explains the high standard deviations in Table 4.1. 
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Figure 4.2: Pollutant concentration curve for Event 1 

 
Figure 4.3: Pollutant concentration curve for Event 2 
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Figure 4.4: Pollutant concentration curve for Event 3 

 
Figure 4.5: Pollutant concentration curve for Event 4 
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Figure 4.6: Pollutant concentration curve for Event 5 

 
Figure 4.7: Pollutant concentration curve for Event 6 
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Figure 4.8: Pollutant concentration curve for Event 7 

 
Figure 4.9: Pollutant concentration curve for Event 8 
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Figure 4.10: Pollutant concentration curve for Event 9 

 
Figure 4.11: Pollutant concentration curve for Event 10 
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4.1.2.1 First Flush Effect 

The first flush phenomenon is described by an increased pollutant concentration that is 

generally assumed to occur at the beginning of a storm event. As reported by Gutteridge, 

Haskins and Davey Pty Ltd (1981), the first flush effect is more evident in particulate 

pollutants than in soluble pollutants. This is similar to the findings of Droste & Hartt 

(1975) where the concentration of all pollutants except for colour and dissolved 

phosphorus were reported to be higher during the first third of a storm event. The load 

generated by the first flush has been quantified by Droste & Hartt (1975), Gutteridge, 

Haskins and Davey Pty Ltd (1981) and Cheng-qing, et al. (2007) as a function of the 

percentage runoff volume for their respective catchments studied.  

Similar to previous studies, a spike in pollutant concentration is more evident for SS, 

BOD, TP, and TRP which are the pollutants in particulate form and less evident for DRP, 

which dissolved pollutant, as shown in Figures 4.2 – 4.11.  Although the first flush is 

noticeable for events 2, 3, 4 and 7 as shown in Figure 4.3, Figure 4.4, Figure 4.5, and 

Figure 4.8, respectively, the spike in the pollutant concentrations did not always occur at 

the beginning of the storm event as observed in the pollutographs of other events. This is 

contrary to the first flush phenomenon but similar to findings in the literature (Maestre & 

Pitt 2005), in which the source of the contaminants and how fast they travel within the 

watershed were reported as important factors determining if a spike of pollutant arrives at 

the first flush. 

4.1.3 Pollutant Mass Loadings 

The mass loading for each pollutant was calculated using Equation 4.1.It was assumed 

that the measured pollutant concentration for each sample collected is representative of 
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the corresponding 500 m3 of flow. The cumulative loads were then quantified for each 

pollutant and the results are presented in Figures 4.12 – 4.16 for SS, BOD, TRP, TP, and 

DRP, respectively.  

   (  ) = 10      (     )   500 (  )     (4.1) 

where:   mn = pollutant mass load per sample, 

cn = sample concentration  

 
Figure 4.12: Cumulative SS load per event 
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Figure 4.13: Cumulative BOD load per event 

 
Figure 4.14: Cumulative TP load per event 
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Figure 4.15: Cumulative TRP load per event 

 
Figure 4.16: Cumulative DRP load per event 
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4.1.4 Effect of Rainfall Intensity on Pollutant Loadings 

Rainfall characteristics such as runoff volumes and rainfall intensity may have an effect 

on pollutant loadings for storm flows. High rainfall intensity, which is a measure of the 

rainfall energy, may lead to erosion and may subsequently increase pollutant wash off, 

however, a significant runoff volume is required to transport the pollutant (Maestre & 

Pitt, 2005).  

The return period (RP), being a measure of the magnitude and intensity of a storm event, 

was used to classify the captured storm events into low, moderate, and high intensity 

storms. The classification was based on 60 year rainfall Intensity-Duration-Frequency 

(IDF) curve for Windsor (APPENDIX E). The storms with less than 2 years return period 

(RP < 2yrs) were classified as low intensity storm.  Storms with a RP between 2years and 

5years (2yrs < RP > 5yrs) were classified as moderate intensity storms while storms with 

over 5 years RP (RP > 5yrs) were classified as a high intensity storm. 

As shown in Figure 4.17, Event 2 only contributed ~1000kg of solids load despite being a 

high intensity storm. However, Event 4, which is a high load event, resulted from a 

moderate intensity storm while Events 7 and 3 which were similarly high load events 

resulted from low intensity storms. This phenomenon is similar for the BOD load as 

shown in Figure 4.18. Hence, there is no observed significant effect of rainfall intensity 

on the SS loading. 
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Figure 4.17: Cumulative SS load with respect to rainfall return period 

 
Figure 4.18: Cumulative BOD load with respect to rainfall return period 
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4.1.5 Effects of Antecedent Dry Weather Period 

As reported in the literature Droste & Hartt (1975), three of an antecedent dry weather 

period caused an increase in BOD concentration although the SS concentration of the 

same study was not significantly affected by the antecedent dry weather condition. 

Moreover, it has been reported that days and weeks of antecedent dry period did not have 

a significant effect on runoff volumes and total pollutant loading (Gutteridge, Haskins 

and Davey Pty Ltd, 1981). A study (Maestre & Pitt 2005), has indicated that the increase 

in BOD and nutrient concentration as a result of antecedent dry weather periods may, 

however, be dependent on the land use type of the catchment. 

A simple correlation between the antecedent dry days (ADD) and the event mean 

concentration was determined for the all the storm events captured. Similarly, the 

correlation between the ADD and the event mean concentration for the low intensity 

storms, according to the classification in described 4.1.4, was also determined. This was 

done to determine the effect of storm intensity on the relationship between ADD and the 

event mean concentration. This effect was not determined for moderate and high intensity 

storms due to insufficient data.  

As shown in Figures 4.19a – e, when all the storms were considered, there were no 

significant relationships between the ADD and pollutant concentrations for all the 

pollutants sampled. However, as shown in Figures 4.20a – b, an increase in the 

antecedent dry days significantly increased the event mean concentration for SS and 

BOD for the low intensity storms. The effect of the intensity of the storms is thus evident 

in the relationship between the ADD and each of the SS and BOD concentration. For the 

DRP, similar to when all the storm events were considered, an increase in ADD did not 
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have an effect on the event mean concentration for the low intensity storms as shown in 

Figure 4.20e. 

   
Figure 4.19a: SS load vs ADD for all storms Figure 4.19b: BOD load vs ADD for all storms 
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Figure 4.19c: TP load vs ADD for all storms Figure 4.19d: TRP load vs ADD for all storms 

 
Figure 4.19e: DRP load vs ADD for all storms 

Figure 4.19a - e: Pollutant concentrations vs ADD for all storm events 
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Figure 4.20a SS load vs ADD for low  Figure 4.20b: BOD load vs ADD for low  
intensity storms     intensity storms 

  
Figure 4.20c: TP load vs ADD for low  Figure 4.20d: TRP load vs ADD for low  
intensity storms     intensity storms 
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Figure 4.20e: DRP load vs ADD for low storms 

   intensity storms 

Figure 4.20a - Figure 4.20e: Pollutant concentrations vs ADD for low intensity storm events  
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  =   −     .        (4.2) 
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shown in Figure 4.22. PP accounts for 64% ± 23% of the TP, while 54% ± 21% of TP is 

TRP. 

 
Figure 4.21: Various forms of phosphorus for Events 5 - 10 
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Figure 4.22: Probability plot of TRP, DRP and PP as a percentage of TP at 95% CI. 
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Figure 4.23: Relationship between PP and other forms of phosphorus. 
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Figure 4.24a: SS vs BOD.   Figure 4.24b: SS vs TP. 

  

Figure 4.24c: SS vs TRP.   Figure 4.24d: SS vs DRP. 

Figure 4.24a - d: Correlation between pollutant concentrations for all concentration ranges. 
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Since more than 80% of the SS concentration is lower than 200 mg/L, as discussed in 

Section 4.1, samples with a SS concentration greater than 200 mg/L were removed and 

correlation between the pollutants were also determined for the low concentration ranges. 

For the low SS concentration range, there is still a moderate correlation (R2
 = 0.64) 

between the SS and BOD as shown in Figure 4.25a. The correlation between SS and each 

of TP and TRP is lower for the low SS concentration range as shown in Figure 4.25b and 

Figure 4.25c respectively.  

Thus, the high correlation observed when all the pollutant concentrations ranges were 

considered for the relationship between the SS and each of TRP and TP may have been 

influenced by high pollutant concentration.  

  
Figure 4.25a: SS vs BOD.   Figure 4.25b: SS vs TP. 
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Figure 4.25c: SS vs TRP 

Figure 4.25a - c: Correlation between pollutant concentrations for low concentration ranges.  

4.2 Selection of Natural Polymer 

4.2.1 Preliminary Evaluation 

As detailed in section 3.2.4, simulated wastewater was used for preliminary evaluation of 

the selected natural polymers at two concentrations, representing the lower and upper 

limit of a test range. For Tanfloc SH and Tanfloc SG, the test ranges were chosen based 

on results in the literature (Beltran-Heredia, et al., 2011; Sanchez-Martin, et al., 2010; 

Beltran-Heredia, et al., 2010). For the DPS, the range was chosen based on additional 

preliminary experiments (results not shown). The evaluation of the polymers at this stage 

was based on their turbidity removal efficiencies (RE) as well as their efficiencies 

relative to the efficiencies of alum and Zetag 7873 which were used as controls. Table 4.3 

summarises the results of the preliminary experiments.  

R² = 0.0279

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150

TR
P 

Co
nc

en
tr

at
io

n 
(m

g/
L)

SS Concentration (mg/L)



65 
 

The results show that turbidity removal efficiencies for Tanfloc SG and Tanfloc SH at the 

two concentrations were in the range of 85% - 90%. These efficiencies were similar to 

those obtained with alum and Zetag 7873 control while the efficiencies of DPS were 

higher than 90%. Thus, these polymers were selected for further evaluation. For 

LiquiFloc, although its removal efficiencies of 69% and 70% were lower than 85% - 90% 

with the controls, its values were significantly higher than 50% and it was also selected 

for further evaluation.  

Table 4.3: Turbidity Removal Efficiency of Polymers   

Polymer Type Polymer 
Concentration (mg/L) 

Turbidity Removal 
Efficiency (%) 

Alum 3 85 

Alum 5 87 

Zetag 7873 0.5 89 

Zetag 7873 1 90 

Tanfloc SG 10 89 

Tanfloc SG 40 86 

Tanfloc SH 10 90 

Tanfloc SH 40 87 

Liquifloc 6 69 

Liquifloc 10 70 

DPS 2.75 mg/L LBP 2101 + 

6 mg/L Liquifloc 

95 

DPS 5 mg/L LBP 2101 + 6 

mg/L Liquifloc 

95 

 

4.2.2 Polymer Selection 

All the natural polymers were further evaluated using raw municipal wastewater over the 

range selected based on the preliminary experiments. The polymer selection process 
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resulted in nine jar test experiments using wastewater of different characteristics as 

shown in Table 4.4. A tenth experiment was conducted for the evaluation of Zetag 7873. 

Table 4.4: Wastewater Characteristics for Polymer Selection Process 

 Polymer used Initial SS (mg/L) Initial BOD (mg/L) 

Experiment 1 LiquiFloc 114 ND* 

Experiment 2 DPS 127 75 

Experiment 3 DPS 119 105 

Experiment 4 DPS 192 195 

Experiment 5 Tanfloc SH 99 132 

Experiment 6 Tanfloc SH 64 61 

Experiment 7 Tanfloc SG 137 156 

Experiment 8 Tanfloc SG 119 105 

Experiment 9 Zetag 7873 109 76 

Experiment 10 Tanfloc SH & 

Tanfloc SG 

132 101 

*ND: Not determined 

DPS evaluation in Experiment #2 was aimed at determining the individual effects of LBP 

2101 and LiquiFloc on the efficiency of DPS. In Experiment #9, the effectiveness of 

Tanfloc SG was compared to that of Tanfloc SH. The efficiency of all polymers will be 

discussed in the following subsections. 

4.2.2.1 LiquiFloc 

LiquiFloc was assessed at 2 mg/L, 5 mg/L, 10 mg/L, and 15 mg/L concentrations. As 

shown in Figure 4.26, the highest removal efficiency of 47% was reached at a 5 mg/L 

polymer concentration. However, this removal efficiency is lower than the minimum 

50% required by the Ontario’s Procedure F-5-5 guidelines also, it is similar to the 46% 

removal efficiency achieved with the blank control. In addition to these measurements, it 

was observed that no visible flocs were formed within this concentration range. Thus, 
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LiquiFloc was eliminated from any further consideration, except with LBP 2101 as part 

of the DPS evaluation, which will be discussed later. 

 
Figure 4.26: Effect of LiquiFloc concentration on SS removal (Experiment #1). 

4.2.2.2 Dual Polymer System (DPS) 

Since DPS treatment includes two polymers, (LiquiFloc and LBP 2101), the evaluation 

was conducted over three experiments. The results of Experiment #2 presented in Figure 
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LiquiFloc concentration. When the concentration of LBP 2101 was increased, the 

removal efficiency of the SS and BOD removal efficiencies of DPS were reduced as 

shown in Figure 4.27b. Hence, for subsequent DPS evaluation in Experiments #3 and #4, 
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a)      b) 
Figure 4.27: DPS evaluation for Experiment #2: a) 3 mg/L LBP 2101 + varying LiquiFloc 
concentration; b) 3 mg/L LiquiFloc + varying LBP 2101 concentration. 
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The requirements of Procedure F-5-5 were attained in Experiment #4. As shown in Figure 

4.29, the SS and BOD removal efficiencies over the range of DPS concentration used 

were 70% - 73% and 47% - 49%, respectively.  

In comparison, the range of removal efficiencies obtained with DPS polymer in both 

experiments was similar to those of the blank control (no polymer). These results suggest 

that DPS treatment is not expected to be very effective in the treatment of Windsor CSO 

over the range of concentration used.  

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6

SS
 a

nd
 B

OD
 R

em
ov

al
 E

ffi
ci

en
cy

 (%
)

Liquifloc Concentration (mg/L
SS BOD

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6

SS
 a

nd
 B

OD
 R

em
ov

al
 E

ffi
ci

en
cy

 (%
)

LBP 2101 Concentration (mg/L)
SS BOD



69 
 

 
Figure 4.28: DPS evaluation for Experiment #3. 

 
Figure 4.29: DPS evaluation for Experiment #4. 

4.2.2.3 Tanfloc SH  

For Experiment #5, Tanfloc SH was evaluated over a concentration range of 1 mg/L – 10 

mg/L. For Experiment #6, the concentration range evaluated was 5 mg/L – 30 mg/L. In 

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16

Po
llu

ta
nt

s R
em

ov
al

 E
ffi

ci
en

cy
 (%

)

LiquiFloc Concentration (mg/L)
SS Removal Efficiency (DPS) BOD Removal Efficiency (DPS)
SS Removal Efficiency (Blank Control) BOD Removal Efficiency (Blank Control)

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16

Po
llu

ta
nt

s R
em

ov
al

 E
ffi

ci
en

cy
 (%

)

LiquiFloc Concentration (mg/L)
SS Removal Efficiency (DPS) BOD Removal Efficiency (DPS)
SS Removal Efficiency (Blank Control) BOD Removal Efficiency (Blank Control)



70 
 

Experiment #5, the SS removal efficiency of 37%-49% achieved over a polymer range of 

1 mg/L – 7.5 mg/L did not meet the requirements of procedure F-5-5. However, with 10 

mg/L, the SS treatment requirement of Procedure F-5-5 was achieved with 64% removal 

efficiency. For BOD treatment, the Procedure F-5-5 requirements were not achieved for 

concentrations ranging from 1 mg/L – 5 mg/L with BOD removal efficiencies of 21% - 

26%. With polymer concentrations of 7.5 mg/L and 10 mg/L however, the BOD removal 

efficiencies of 33% and 42% were achieved which was more than the required removal 

efficiency, as shown in Figure 4.30. 

 
Figure 4.30: Tanfloc SH evaluation for Experiment #5.   

In Experiment #6, the SS and BOD treatment requirements of procedure F-5-5 were 

achieved for a concentration range of 10 mg/L – 30 mg/L. This polymer range resulted in 
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The SS and BOD removal efficiencies were achieved with a polymer concentration range 

of 10 mg/L – 30 mg/L were higher than those achieved with the blank control. Based on 

these results Tanfloc SH may be suitable for Windsor CSO treatment.  

 
Figure 4.31: Tanfloc SH evaluation for Experiment #6.  
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mg/L – 10 mg/L and 5 mg/L – 30 mg/L respectively.  

From the results of Experiment #7, presented in Figure 4.32, the Procedure F-5-5 SS 
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Figure 4.32: Tanfloc SG evaluation for Experiment #7. 

In Experiment #8, the Procedure F-5-5 SS and BOD treatment requirements were 

achieved for concentration in the ranges of 10 mg/L – 30 mg/L resulting in 82% - 89% 

and 50% – 56% SS and BOD removal efficiencies respectively. However, at 5 mg/L, the 

SS and BOD removal efficiencies were less than the F-5-5 requirements as shown in 

Figure 4.33. 

The SS and BOD removal efficiencies achieved with the Zetag 7873 control were 60% 
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Figure 4.33: Tanfloc SG evaluation for Experiment #8 
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polymers, and the resulting SS and BOD removal efficiencies are presented in Figure 
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Figure 4.34: Zetag 7873 evaluation for Experiment #9 
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based on the adjusted SS removal efficiency. The adjusted SS removal efficiencies of the 

polymers, as shown in Figure 4.35, represent the proportion of pollutants removed due to 

polymer addition while the remaining proportion may be due to settling alone.  

Compared to Zetag 7873, which accounted for 30% to 50% of the solids removed, DPS 

only accounted for less than 20% of the solids removed in the range of the polymer 
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tested. In the case of Tanfloc SG and Tanfloc SH however, over 60% of the solids 

removed were due to polymer additions.  

Of all the natural polymers evaluated, Tanfloc SG and Tanfloc SH performed best in 

terms of their SS and BOD removal efficiencies. However, the results of Experiments #6 

and #8 show that Tanfloc SG and Tanfloc SH exhibited similar treatment efficiencies 

despite being tested with wastewater with slightly different characteristics. Thus, Tanfloc 

SG and Tanfloc SH were further evaluated using wastewater with similar characteristics 

to determine which of the two polymers worked better. 

 
Figure 4.35: Adjusted SS removal efficiency 

4.2.2.7 Comparison of Tanfloc SG and Tanfloc SH 

Further evaluation of Tanfloc SG and Tanfloc SH was required to determine if there is a 

difference between their efficiencies and to ascertain which of them worked better. The 
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Experiment #10 and shown in Figure 4.36a and b the treatment efficiencies of Tanfloc 

SG and Tanfloc SH are comparable. This is similar to the study done by (Wolf, et al., 

2015) where both polymers exhibited the same treatment efficiencies for dairy 

wastewater treatment.  

Of the two polymers used, Tanfloc SG is certified by NSF international for drinking 

water treatment (NSF, 2012). Therefore, Tanfloc SG was selected for further evaluation. 

  
a)      b) 

Figure 4.36: Tanfloc SG vs Tanfloc SH: a) SS removal efficiency; b) BOD removal efficiency  

4.3 Evaluation of Tanfloc SG  

In order to estimate the concentration Tanfloc SG that meets the requirements of 

Procedure F-5-5, additional Experiments #11 - #14 were performed using Tanfloc SG. In 

Experiments #11 and #12, Tanfloc SH raw municipal wastewater was used for the 

evaluation, while in Experiments #13 and #14 CSO samples were used. 
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In Experiment #11, Tanfloc SG was evaluated over a concentration range of 1.5 mg/L – 

10 mg/L, in Experiment #12, it was evaluated over a concentration range of 3 mg/L – 15 

mg/L while for Experiments #13 and #14, the concentration ranges used were 3 mg/L – 

10 mg/L. The SS and BOD removal efficiencies of Tanfloc SG for wastewater and CSO 

treatment are presented in the following subsections. 

4.3.1 Wastewater Sample 

The SS and BOD removal efficiencies of Experiments #2, #7, #10, #11, and #12 have 

been presented in Figure 4.37 and Figure 4.38 respectively. 

As shown, Tanfloc SG did not meet the treatment requirements of procedure F-5-5 for 

concentrations less than 5 mg/L. However, at 5 mg/L, the polymer was sometimes able to 

meet the required removal efficiency for both SS and BOD removal. When the 

concentration was set at 7.5 mg/L the SS removal efficiencies was always above the 

required 50% RE while for BOD, the required 30% RE was not met at all times. For 

polymer concentrations of 10 mg/L and above, Tanfloc SG met the required SS and BOD 

removal efficiencies at all times irrespective of the wastewater sample used. 
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Figure 4.37: Effects of varying Tanfloc SG polymer dose on SS removal. 

 
Figure 4.38: Effects of varying Tanfloc SG polymer dose on BOD removal. 
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4.3.2 CSO Samples  

In section 4.3.1, the evaluation of the selected natural polymer (Tanfloc SG), using 

municipal raw wastewater as a surrogate of Windsor CSO was presented. As discussed in 

section 3.1.2, only one actual CSO sample could be captured to test and confirm the 

effectiveness of Tanfloc for its treatment. The CSO sample was used as sampled in 

Experiment #13 and diluted in Experiment #14 to vary the initial characteristics of the 

sample. The corresponding characteristics are presented in Table 4.5. 

Table 4.5: CSO Characteristic for Experiments #13 and #14 

 Initial SS (mg/L) Initial BOD (mg/L) 

Experiment 13 197 34 

Experiment 14 112 19 

 

The SS and BOD removal efficiencies for Experiments #13 and #14, where CSO samples 

were used for Tanfloc SG evaluation are presented in Figure 4.39 and 4.40 respectively. 

For Tanfloc SG, at a concentration range of 3 mg/L – 10 mg/L, the SS and BOD removal 

efficiencies were greater than 90% and 75% respectively. The unusually high removal 

efficiencies obtained may be due to better settling characteristics of the CSO sample 

captured as compared to the wastewater samples. This is based on the equivalent removal 

efficiencies obtained with the blank control of both experiments (92% and 95% SS 

removal efficiencies and 63% and 73% BOD removal efficiencies). 
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Figure 4.39: SS removal efficiencies for Tanfloc SG with CSO samples. 

 
Figure 4.40: BOD removal efficiencies for Tanfloc SG with CSO samples. 
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4.3.3 Phosphorus Removal  

The TP and DRP concentrations were monitored during the evaluation of Tanfloc SG 

with municipal wastewater in Experiments #5 and #10. The TP and DRP were also 

monitored when Tanfloc SG was evaluated with CSO in Experiments #13 and 14. 

However, since Ontario’s Procedure F-5-5 does not currently regulate phosphorus 

removal in CSO effluent, there is no guideline to compare the phosphorus removal 

efficiencies obtained in this study.  

From the results of Experiments #5, #10, #13 and #14, Tanfloc SG was able to remove 

DRP to a maximum removal efficiency of 2%. Thus, Tanfloc SG has a minimal effect on 

DRP removal. The TP removal efficiency, on the other hand, ranged from 30% to 86% 

for polymer dosages ranging between 5 mg/L – 15 mg/L as shown in Figure 4.41, while 

PP removal efficiency ranged between 32% - 99% for the same polymer range as shown 

in Figure 4.42. 
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Figure 4.41: TP removal efficiency with Tanfloc SG.  
 

 
Figure 4.42: PP removal efficiency with Tanfloc SG. 
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4.3.4 Comparison with Present Practise 

Based on the jar test operating parameters used in this study, the SS removal efficiency of 

all Tanfloc SG and Zetag 7873 evaluations are presented in Figure 4.43. As shown, the 

SS removal efficiency of Zetag 7873 at 5 mg/g, which is the present polymer dose used at 

the City of Windsor’s RTB, is equivalent to 60%. With a minimum of 7.5 mg/L Tanfloc 

SG dose, the removal efficiency of Tanfloc SG was either similar or more than the 

treatment efficiency of Zetag 7873 at 5 mg/g. 

 
Figure 4.43: Comparison between the treatment efficiency of Tanfloc SG and Zetag 7873. 
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2014). Since the Zetag 7873 dose depends on the influent SS, the cost of using Zetag 

7873 was based on the initial SS concentration range of 119 mg/L – 137 mg/L, which is 

the same as the initial SS concentration used for Tanfloc SG evaluation in this study. 

The cost evaluation was based on an estimated cost of USD 1.8 per tonne of Tanfloc SG 

and USD 8.83 per tonne of Zetag 7873. The information about the cost of Tanfloc SG 

was obtained through from the research and development manager of TANAC SA (C. 

Wolf, personal communication, July 21, 2015) and the cost of Zetag 7873 was from 

Promag Enviro Systems Ltd (2015).   

As shown in Table 4.6, despite the low cost of purchase of Tanfloc SG, its cost of 

treatment may be higher than the cost of Zetag 7873 due to the high Tanfloc SG dose 

requirement. 

Table 4.6: Cost Comparison between Tanfloc SG and Zetag 7873 

Polymer  Estimated Polymer 
Dose (mg/L) 

Cost required to Treat 
1 Ml of Sample (USD)  

Tanfloc SG 10 18 

Zetag 7873 0.595 – 0.685 5.3 – 6.0 
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5 CONCLUSIONS AND RECOMMENDATIONS 

5.1 CSO Characterisation 

The following conclusions were drawn based on the results of this study:  

• The SS, BOD, TP as well as TRP concentration in Windsor CSO vary 

significantly within an event and from one storm event to the other. However, the 

DRP did not vary significantly for each storm event and was less than 0.5 mg/L 

throughout the period of the study.  

• Although there are noticeable spikes in pollutant concentrations, especially for 

those in the particulate form, the spikes did not always occur at the beginning of 

the storm event as would be explained by the first flush phenomenon.  

• In general, the antecedent dry weather periods did not have an effect on pollutant 

concentrations. However, for the low intensity storms, there was a significant 

increase in pollutant concentrations as the antecedent dry weather days increased. 

However, rather than determining the individual effect of these factors on the 

pollutant concentrations, the level of pollutant concentrations may be due to a  

combination of factors such as rainfall volume, antecedent dry, and rainfall 

intensity.   

• PP accounts for 64% ± 23% of the TP while TRP and DRP account for 54% ± 

21% and 36% ± 23% respectively. 

• There is a strong relationship between PP and TRP, while DRP exhibits a minimal 

correlation with PP. 
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5.2 Natural Polymer Evaluation 

• Tanfloc SG was able to meet and surpass the requirements of Procedure F-5-5 up 

to a treatment efficiency of 91% and 56% for SS and BOD5 respectively for 

polymer dosages ranging between 5 mg/L – 30 mg/L. However, based on the jar 

test operating parameters used in this study, the minimum dose of  Tanfloc SG 

required for efficient treatment is equivalent to 10 mg/L 

• Tanfloc SG has a minimal effect on DRP removal for polymer dosages ranging 

between 3 mg/L and 15 mg/L. However, the removal efficiencies for TP and PP 

ranged between 30% - 86% and 32% - 99%, respectively for 3 mg/L – 15 mg/L 

polymer range. Since Tanfloc SG has a minimal effect on the DRP removal, the 

majority of the TP that was removed was due to PP removal. Hence, Tanfloc SG 

is expected to significantly reduce the TP in Windsor CSO, since PP accounts for 

64% ± 23% of TP in Windsor CSO based on the results of characterisation study. 

• Based on the evaluation done in this study, the cost of using Tanfloc SG for 

Windsor CSO treatment may be more than the cost of using Zetag 7873.    

5.3 Recommendations 

Based on the results of this study, it is evident that Tanfloc SG is able to meet the 

requirements of Ontario’s procedure F-5-5. The following recommendations are thus 

provided for future research: 

• The use of Tanfloc SG should be optimized for possible reduced dose requirement 

• The effect on initial solids concentration on the effectiveness of Tanfloc SG 

should be determined to better improve polymer dosing for CSO treatment.  

• Further testing of Tanfloc SG should be done with actual CSO.  
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APPENDIX A VELOCITY GRADIENT VS AGITATION 

SPEED 

 
Figure A 1: Velocity gradient vs agitator speed for a 2-litre square Beaker (B-KER2), Using a 

Phipps and Bird stirrer.  

 (Phipps & Bird Inc, 2015) 
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APPENDIX B PRE-TREATMENT FOR TOTAL 

PHOSPHORUS ANALYSIS 

The following procedure was used for all the total phosphorus:  

• Depending on the amount of solids visually present, about 5 mL-25 mL aliquot of 

sample is added to a beaker. 

• 4 mg of potassium persulfate and 1 mL of 30% H2SO4 were added to the sample 

in the beaker. 

• The solution was made up to 50 mL with deionised water while thoroughly 

rinsing the side of the beaker. 

• The mixture was thereafter heated on a hotplate and allowed to digest to about 1 

mL. 

• After complete cooling, the volume was increased slightly by rinsing the side of 

the beaker with deionised water and a drop of phenolphthalein indicator was then 

added. 

• 6N sodium hydroxide was added dropwise until the sample turned slightly pink 

• The solution was transferred to a 50 ml volumetric flask. 

• 4 ml ammonium molybdate was added followed by six drops of stannous 

chloride. Timing starts after the first drop of stannous chloride has been added. 

• The solution was made up to 50 mL and moderately shaken. 

• The absorbance was measured after 10 mins using spectrophotometer at 690 nm 

wavelength.  
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APPENDIX C CALIBRATION CURVES AND DETECTION 

LIMIT 

 
Figure C 1: Orthophosphate calibration Curve 1. 

 
Figure C 2: Orthophosphate calibration Curve 2 
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Figure C 3: Total phosphorus calibration Curve 1. 

 
Figure C 4: Total phosphorus calibration Curve 2. 
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METHOD DETECTION LIMIT (MDL) 

Table C 1: Method Detection Limit for Total Phosphorus and Orthophosphate 

 Total Phosphorus Orthophosphate 

n 10 10 

α 0.01 0.01 

t 2.82 2.82 

M (mg/L) 0.045 0.037 

S (mg/L) 0.0099 0.0059 

MDL (mg/L) 0.028 0.017 

 

   =      (   ,        .  ) 
Concentration of spiked sample = 0.05 mg/L 

n: number of spiked replicates 

m: mean of measured spiked sample 

s: standard deviation of the measured spiked sample 

t: student’s t value at n-1 degree of freedom and 99% confidence level  

α: level of significance 
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APPENDIX D STATISTICAL ANALYSIS OF SUSPENDED SOLIDS DATA 

One-way ANOVA: Event_1, Event_2, Event_3, Event_4, Event_5, Event_6, Event_7, Event_8, Event_9, Event_10  
Null hypothesis         All means are equal 
Alternative hypothesis  At least one mean is different 
Significance level      α = 0.05 
Games-Howell Simultaneous Tests for Differences of Means 
Difference of Levels Difference of Means SE of Difference 95% CI   T-Value   P-Value 
Event_2 - Event_1  -0.160   0.474   (-1.787, 1.468)    -0.34     1.000 
Event_3 - Event_1          1.382         0.302    ( 0.318,  2.445)     4.58     0.005 
Event_4 - Event_1          1.114        0.415    (-0.304,  2.532)     2.68     0.227 
Event_5 - Event_1         -0.927         0.350    (-2.139,  0.286)    -2.65     0.248 
Event_6 - Event_1         -0.124         0.306    (-1.202,  0.955)    -0.40     1.000 
Event_7 - Event_1          0.428         0.591    (-1.735,  2.591)     0.72     0.999 
Event_8 - Event_1         -0.706         0.294    (-1.750,  0.338)    -2.40     0.375 
Event_9 - Event_1         -0.453         0.331    (-1.588,  0.682)    -1.37     0.927 
Event_10 - Event_1        -0.944         0.361    (-2.182,  0.295)    -2.61     0.258 
Event_3 - Event_2          1.541         0.407    ( 0.084,  2.998)     3.78     0.033 
Event_4 - Event_2          1.273         0.497    (-0.428,  2.974)     2.56     0.280 
Event_5 - Event_2         -0.767         0.444    (-2.318,  0.784)    -1.73     0.770 
Event_6 - Event_2          0.036         0.410    (-1.430,  1.502)     0.09     1.000 
Event_7 - Event_2          0.587         0.651    (-1.718,  2.893)     0.90     0.995 
Event_8 - Event_2         -0.546         0.401    (-1.991,  0.898)    -1.36     0.924 
Event_9 - Event_2         -0.294         0.429    (-1.799,  1.212)    -0.68     0.999 
Event_10 - Event_2        -0.784         0.453    (-2.356,  0.788)    -1.73     0.768 
Event_4 - Event_3         -0.268         0.337    (-1.464,  0.927)    -0.79     0.998 
Event_5 - Event_3         -2.308         0.253    (-3.224, -1.392)    -9.12     0.000 
Event_6 - Event_3         -1.505         0.188    (-2.171, -0.840)    -8.01     0.000 
Event_7 - Event_3         -0.954         0.539    (-3.037,  1.130)    -1.77     0.741 
Event_8 - Event_3         -2.088         0.167    (-2.654, -1.522)   -12.49     0.000 
Event_9 - Event_3         -1.835         0.226    (-2.595, -1.075)    -8.12     0.000 
Event_10 - Event_3        -2.325         0.268    (-3.273, -1.377)    -8.67     0.000 
Event_5 - Event_4         -2.040         0.381    (-3.363, -0.717)    -5.35     0.001 
Event_6 - Event_4         -1.237         0.341    (-2.446, -0.028)    -3.62     0.042 
Event_7 - Event_4         -0.686         0.609    (-2.888,  1.516)    -1.13     0.975 
Event_8 - Event_4         -1.820         0.330    (-2.999, -0.640)    -5.51     0.001 
Event_9 - Event_4         -1.567         0.364    (-2.824, -0.310)    -4.31     0.007 
Event_10 - Event_4        -2.057         0.391    (-3.405, -0.709)    -5.26     0.001 
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Difference of Levels Difference of Means SE of Difference 95% CI   T-Value   P-Value 
Event_6 - Event_5          0.803         0.258    (-0.136,  1.741)     3.11     0.128 
Event_7 - Event_5          1.354         0.567    (-0.767,  3.476)     2.39     0.400 
Event_8 - Event_5          0.221         0.244    (-0.673,  1.114)     0.91     0.994 
Event_9 - Event_5          0.473         0.287    (-0.523,  1.470)     1.65     0.812 
Event_10 - Event_5        -0.017         0.321    (-1.140,  1.106)    -0.05     1.000 
Event_7 - Event_6          0.552         0.541    (-1.534,  2.637)     1.02     0.984 
Event_8 - Event_6         -0.582         0.175    (-1.208,  0.043)    -3.33     0.080 
Event_9 - Event_6         -0.330         0.232    (-1.121,  0.462)    -1.42     0.910 
Event_10 - Event_6        -0.820        0.273    (-1.789,  0.149)    -3.00     0.142 
Event_8 - Event_7         -1.134         0.534    (-3.212,  0.944)    -2.12     0.548 
Event_9 - Event_7         -0.881         0.556    (-2.983,  1.220)    -1.59     0.833 
Event_10 - Event_7        -1.371         0.574    (-3.502,  0.759)    -2.39     0.397 
Event_9 - Event_8          0.253         0.215    (-0.472,  0.977)     1.17     0.972 
Event_10 - Event_8        -0.237         0.259    (-1.163,  0.688)    -0.92     0.994 
Event_10 - Event_9        -0.490         0.300    (-1.521,  0.540)    -1.63     0.822 
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Figure D 1: Hypothesis 1 test result. 
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APPENDIX E RETURN PERIOD OF STORM EVENTS 

 
Figure E 1: Return periods of all monitored storm events. 

 (Environment Canada, 2015) 
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