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ABSTRACT 

 The cell cycle is a highly dynamic and phasic process controlling cell growth, DNA duplication, 

and successful division into two daughter cells.  Regulation of this process is key to avoiding errors and 

activation of cell death.  Tumour suppressor proteins, such as Tuberin, and cell cycle proteins, such as 

Cyclin B1 are highly important in co-ordinating adequate cell growth and properly timed cell division, 

respectively. It is known that mutation, truncation, and misregulation of the Tuberin protein can result in 

diseases like Tuberous Sclerosis and cancer. This study demonstrated that a clinically relevant Tuberin 

truncation, S664Δ, increases cellular proliferation and exhibits aberrant localization compared to wild-

type Tuberin. Additionally, our study showed that S664Δ is able to bind Cyclin B1, which may derange 

proper co-ordination of the G2/M transition. Findings here may have clinical implications towards better 

understanding the progression of disease involving misregulated Tuberin.  
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INTRODUCTION  

I. The Cell Cycle and Control Mechanisms  

The cell cycle is a tightly regulated process through which cell growth and cell division occur. The 

mammalian cell cycle can be divided into two main stages known as interphase and mitosis. Interphase is 

further subdivided into phases of growth (Gap-phases) and DNA synthesis (S-phase). Immediately 

following division, a cell enters its first growth phase (G1) and upon commitment to the cell cycle prepares 

for S-Phase. Following successful DNA replication, the cell begins its second phase of growth (G2) in 

preparation for mitosis (Norbury and Nurse, 1992; Nurse, 2002). Mitosis is a very dynamic process which 

consists of four distinct phases; prophase, metaphase, anaphase and telophase. Chromosome condensation 

occurs at prophase and is followed by organization at the metaphase plate. Anaphase is observed as 

chromosomes separate to opposite ends of the cell. Subsequently, telophase begins and allows for the re-

assembly of a nuclear membrane around the chromosomes (Vermeulen et al., 2003). Beginning at anaphase 

and occurring concurrently to telophase is an extremely important event known as cytokinesis, which 

divides the cell into separate daughter cells by pinching of the cellular membrane. Together, mitosis and 

cytokinesis are referred to as M-phase (Glotzer, 2001). Notably, if a cell is unable to commit to the cell 

cycle during G1, it may enter a phase known as G0. A cell may remain in this quiescent phase indefinitely 

until reaching satisfactory conditions for growth and proliferation (Vermeulen et al., 2003).  

The cell cycle is a vigorous process and many cellular proteins, markedly the cyclins and their cyclin 

dependent kinase (CDK) partners, tightly regulate “checkpoints” as a cell progresses from one phase to the 

next (Morgan, 1995; Pines, 1995). CDKs fall into a family of serine/threonine protein kinases, whose 

activity ultimately leads to cell cycle advancement. CDKs are expressed at relatively constant levels 

throughout the cell cycle and are regulated largely through post-translational modifications. The kinase 

activity of a CDK is dependent upon cyclin binding. In the absence of cyclin binding, a CDK is inactive 

due to blockage of the CDK active site by the T-loop (Jeffrey et al., 1995). CDKs are also regulated by 

phosphorylation and dephosphorylation on conserved tyrosine (Y) and threonine (T) residues. 

Phosphorylation on T14 and Y15 by Myt1 and Wee1 kinases, respectively, render a CDK inactive. 
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Phosphorylation on these residues ultimately inhibits ATP binding and full CDK activation. Phosphatase 

activity by Cdc25 on these two sites is essential for CDK1 activation and cell cycle progression overall 

(Lew and Kornbluth, 1996). Following cyclin binding, CDK-activating enzymes (CAKs) phosphorylate a 

conserved threonine residue within the T-loop. For example, CDK1 requires phosphorylation on residue 

T161 by CAK for its full activation (Jeffrey et al., 1995; Paulovich and Hartwell, 1995). Phosphorylation 

by CAK induces a conformational change in the CDK resulting in enhanced cyclin binding and complete 

activation. Upon complete activation, CDKs are able to phosphorylate specific protein substrates.  

Similarly, cyclins are a family of temporally regulated cell cycle proteins that can be categorized 

by type (Vermeulen et al., 2003). Cyclin proteins are able to interact with CDKs through a conserved protein 

motif, known as the cyclin box. Classically, there are D-type, E-type, A-type, and B-type cyclins 

(Vermeulen et al., 2003). Unlike their CDK partners, many cyclin proteins are expressed in a cyclical 

fashion, with levels rising and falling through progression of the cell cycle (Norbury and Nurse, 1992; 

Nurse, 2002). At the onset of G1, levels of D-type cyclins rise and are able to bind CDK4 and CDK6 (Sherr, 

1994). Following this interaction, Cyclin E-CDK2 interaction allows for the transition from G1 to the onset 

of S-phase (Ohtsubo et al., 1995). Co-currently, through S-phase levels of Cyclin A rise and association 

with CDK2 is observed into G2 (Girard et al., 1991; Walker and Maller, 1991). Subsequently, in late G2, 

the Cyclin A-CDK1 interaction promotes M phase entry (Ford et al., 1994). Continued regulation and 

progression of mitosis is controlled by CDK1 interactions with Cyclin B1 and B2 (Arellano and Moreno, 

1997). Cyclin proteins, with the exception of D-type cyclins (Assoian and Zhu, 1997), are heavily regulated 

first by their synthesis and second through ubiquitin-mediated degradation (Glotzer et al., 1991). 

Degradation of Cyclins A and B is mediated through a domain known as the destruction box (D-box), while 

Cyclin D and E degradation is mediated through a segment rich in proline, glutamic acid, serine, and 

threonine residues; commonly referred to as the “PEST” sequence (Glotzer et al., 1991; Rechsteiner and 

Rogers, 1996).  
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There are additional mechanisms that govern CDK activity, furthering cell cycle control. Binding of CDK 

inhibitor (CKI) proteins negatively regulates Cyclin-CDK complexes (Sherr and Roberts, 1995; Vermeulen 

et al., 2003). CKIs are classified into two main families; the CIP/KIP (CDK inhibiting protein) family and 

the INK4 tumor suppressor family. The INK4 branch of CKIs consists of p15INK4b, p16INK4a, p18INK4c, and 

p19INK4d. The INK4 proteins act to inhibit CDK4 and CDK6 at G1. This inhibition is accomplished by CKIs 

forming a stable complex with the CDK; ultimately preventing Cyclin D binding (Carnero and Hannon, 

1998). Within the branch of the CIP/KIP family are p21Cip1, p27Kip1, and p57Kip2 proteins; which ultimately 

inhibit CDK1 and CDK2 activity (Harper et al., 1995; Hengst et al., 1998; Lee et al., 1995; Polyak et al., 

1994). The CIP/KIP proteins bind at the interface of a Cyclin-CDK complex essentially blocking the 

Adenosine Triphosphate (ATP) region of the CDK. This blockage restricts proper folding of the CDK at 

its catalytic cleft, preventing CDK activation (Sherr and Roberts, 1999). Additionally, Cyclin-CDK 

complexes are inhibited through chaperone proteins and upstream inhibition. Phosphorylated Cdc25 is 

inactive and displays increased binding to the chaperone protein, 14-3-3within the cytoplasm (Dunphy 

and Kumagai, 1991). This interaction has direct consequences on mitotic entry, as the Cdc25-14-3-

3interaction prevents Cdc25 from activating CDK1 and overall Cyclin B1-CDK1 complex formation 

(Hengst and Reed, 1998). Moreover, binding of Cyclin B1 with 14-3-3 actively enhances nuclear export 

(Peng et al., 1997; Yang et al., 1998).  

Cell cycle progression is also regulated spatially, via intracellular Cyclin-CDK localization. For 

example, Cyclin B1 contains a variety of domains and protein modifications, which contribute to its 

fluctuating localization (Figure 1) (Porter and Donoghue, 2003). Cyclin B1 forms a complex with CDK1 

to control mitotic onset. The Cyclin B1 gene, CCNB1, is located on chromosome 5q13.2 and results in a 

62kDa protein (Sartor et al., 1992). The mammalian Cyclin B1 protein, as depicted in Figure 1, contains 

the classical cyclin box domain (aa210-348), which allows for its direct CDK1 interaction. In 1998 Yang 

et al. observed that during interphase, Cyclin B1 is actively shuttled from the nucleus to the cytoplasm until 

prophase begins. From here, Cyclin B1 protein accumulates in the nucleus only when the rate of Cyclin B1 
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import/export is altered (Yang et al., 1998). Surprisingly, Cyclin B1 lacks a classical nuclear localization 

signal (NLS) (Pines and Hunter, 1994), but contains a nuclear export signal (NES) within a region 

classically coined the cytoplasmic retention sequence (CRS). This CRS domain is of key importance since 

it contains five conserved serine residues, which are phosphorylation targets. It was originally thought that 

these sites, when phosphorylated, facilitate nuclear accumulation (Hagting et al., 1999; Hagting et al., 1998; 

Li et al., 1997a). However, later data revealed that phosphorylation prevented the binding of nuclear export 

proteins within the CRS, resulting in nuclear accumulation (Pines and Hunter, 1994). The exportin protein 

chromosome region maintenance 1 (CRM1) is one export protein responsible for the active nuclear export 

of Cyclin B1 (Yang et al., 1998). CRM1 mediated export is an extremely important regulator of Cyclin B1 

localization. Shuttling of Cyclin B1 from the nucleus to the cytoplasm is in a constant equilibrium (Hagting 

et al., 1998; Yang et al., 1998).  

The aforementioned NES is located within the CRS region (aa88-154) of Cyclin B1 (Porter and 

Donoghue, 2003). The Cyclin B1-CDK1 complex is an extremely important cell cycle activator at the G2/M 

transition because it is responsible for chromosome condensation, nuclear envelope breakdown (NEBD), 

and mitotic spindle assembly (Ciemerych and Sicinski, 2005; Draviam et al., 2001; Ianzini and Mackey, 

1997; Jackman et al., 2003). During S-phase, Cyclin B1 protein accumulation begins, peaking at prophase 

and metaphase, and significantly declining at the start of anaphase via degradation by the 

cyclosome/anaphase-promoting complex (APC) (Chang et al., 2003; Hershko, 1999). However, hyper-

phosphorylation of the mentioned serine residues results in hindering of NES activity and promotes nuclear 

accumulation (Hagting et al., 1999; Hagting et al., 1998; Li et al., 1997b). Cyclin B1 residues S126 and 

S128 are known CDK1 targets and are the first residues responsible for promoting B1 nuclear translocation 

(Borgne et al., 1999; Hagting et al., 1999; Izumi and Maller, 1991). S147 is phosphorylated by polo-like 

kinase 1 (Plk1), a kinetochore localizing protein that is a known activator of the APC (Toyoshima-

Morimoto et al., 2001). These events; however, are not fully sufficient to prevent Cyclin B1 export, 

indicating additional mechanisms are involved in this complex process.  
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Figure 1: An illustration of the Cyclin B1 protein and its key domains  

From N to C-terminus, the Destruction Box (residues 42-50), the Nuclear Export Sequence (NES) residing 

in the Cytoplasmic Retention Sequence (CRS) from residues 88-154, and the Cyclin Box (residues 210-

348), which is responsible for correct CDK1 association. The NES also contains 5 serine residues, which 

regulate Cyclin B1 trans-localization.  
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II. Tuberin facilitates the G1/S Transition 

Cell cycle control is regulated through a variety of complex mechanisms regulated by a plethora of 

other proteins not mentioned here. One protein of particular importance to the cell cycle is the tumor 

suppressor protein, Tuberin. The Tuberin protein is encoded by the TSC2 gene located on chromosome 

16p13.3 consisting of 41 exons. The Tuberin protein is comprised of 1804 amino acids and results in a 200 

kDa protein (European Tuberous Sclerosis Consortium, 1993) (1993). This large protein contains a variety 

of conserved domains responsible for its function reviewed by Rosner et al. in 2008. Tuberin specifically 

contains two coiled-coil domains (aa346-371), a leucine zipper (aa75-107), a GTPase activating protein 

(GAP) homology domain (aa1517-1674) and a calmodulin domain (aa1740-1758) (Figure 2) (Rosner et al., 

2008). It is well established that the Tuberin protein plays cell cycle regulatory roles at both the G1/S and 

G2/M transition. 

The most widely known role for Tuberin is to act as a tumor suppressor at the G1/S transition by 

responding to nutrient and growth factor stimuli. Tuberin in a complex with a protein Hamartin form the 

Tuberous Sclerosis Complex (TSC), which negatively regulates cell growth and proliferation (Green et al., 

1994a; Green et al., 1994b; Tee et al., 2003a; van Slegtenhorst et al., 1998). Tuberin, independent of 

Hamartin, is known to interact with the important CKI, p27, which markedly inhibits the G1/S transition. 

Tuberin accomplishes this action by binding to the CDK2 inhibitor, p27, protecting it from ubiquitin-

mediated degradation. Tuberin also allows for nuclear accumulation of p27 by interfering with the 14-3-

3dependent cytoplasmic retention of p27. These results, taken together, demonstrate the ability of Tuberin 

to negatively regulate the cell cycle at the G1/S transition (Rosner et al., 2007a; Rosner et al., 2006).  

The Hamartin protein arises from the TSC1 gene located on chromosome 9q34. The TSC1 gene 

consists of 23 exons and once translated produces a 130kDa protein consisting of 1164 amino acids (van 

Slegtenhorst et al., 1997). Together Tuberin and Hamartin act as a tumor suppressor complex. Hamartin is 

known to bind the N-terminus (aa1-418) of the Tuberin protein (Rosner et al., 2008). Hamartin has a large 

role in the stabilization of Tuberin primarily by inhibiting its interaction with the ubiquitin ligase, HECT 
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and RLD Domain Containing E3 Ubiquitin Protein Ligase Family Member 1, HERC1 (Benvenuto et al., 

2000; Chong-Kopera et al., 2006). 
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FIGURE 2: An illustration of the Tuberin protein and its key domains.  

Structurally, the Tuberin protein contains a leucine zipper region (LZ) from residues 75-107, two coiled-

coil regions (CC) from residues 346-371 and 1008-1021 and a GTPase activating protein domain (GAP) 

from residues 1517-1674. Tuberin also has a variety of functionally important binding domains. From N to 

C terminus, he Hamartin binding domain (residues 1-418), the HERC1 binding domain (residues 1-608), 

CyclinB1 binding domain (pink) (residues 600-746), the Rheb binding domain (residues 965-1807), and 

CaM, Calcium/Calmodulin binding domain (residues 1740-1756). Phosphorylation at an array of residues 

also spans the entire protein, and of particular interest are Erk and Akt phosphorylation residues. (J.Dare 

2015; Adapted from Rosner et al., 2008) 
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III. Tuberin Activity is regulated through Nutrient and Growth Factor Sensing Proteins 

Together, Tuberin and Hamartin integrate levels of nutrients, growth factors, and energy stores to 

regulate cell growth and proliferation (Figure 2 and Figure 3) (Huang and Manning, 2008; Orlova and 

Crino, 2010). This integration is important since it results in the inhibition of the activity of downstream 

Tuberin targets (Gao and Pan, 2001; Inoki et al., 2003; Tee et al., 2002). They accomplish this by responding 

to a variety of upstream proteins that regulate their protein-protein interactions as well as the 

phosphorylation, and subcellular localization of Tuberin. Specifically, energy is sensed in the cell via ATP 

levels. In the event of high energy levels, the cell will be in an ATP high flux. Conversely, if energy levels 

fall low, an adenosine monophosphate (AMP) high flux will result. If high levels of AMP are present within 

the cell, AMP will bind to the AMP-activated protein kinase (AMPK). Activating phosphorylation of 

Tuberin occurs on residues T1227 and S1345 by AMPK, resulting in cell growth inhibition (Corradetti et 

al., 2004; Huang and Manning, 2008; Shaw, 2009; Shaw et al., 2004a; Shaw et al., 2004b).  

Mitogen stimulation in the form of growth factors, cytokines, or hormones is also communicated 

through Tuberin and the TSC. Growth factor levels of insulin and insulin-like growth factor (IGF) are 

transmitted through IGF transmembrane receptors (IGFR) binding. Transmembrane activation results in 

insulin receptor substrate (IRS) recruitment and subsequent phosphoinositide 3-kinase (PI3K) activation 

(reviewed by (Orlova and Crino, 2010)). PI3K exerts its affects through lipids, specifically through 

phosphorylation of membrane associated phosphatidylinostitol 3-phosphate (PtdIns 3). These events recruit 

phosphoinositide dependent kinase-1 (PDK1) to active membrane associated lipids. Once bound, PDK1 

becomes active and is allowed to activate Protein Kinase B (Akt) (Manning and Cantley, 2003; Manning 

et al., 2002). The serine threonine kinase, Akt, has the ability to bind and negatively regulate the Tuberin 

protein. Inhibitory phosphorylation by Akt occurs on S939 and T1462 of the Tuberin protein in the event 

of high nutrient and insulin signalling (Dan et al., 2002; Inoki et al., 2002; Manning et al., 2002; Potter et 
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al., 2002). This inhibition results in decreased binding between Hamartin and Tuberin (Manning et al., 

2002).  

Conversely, cell growth regulation by Tuberin is not only controlled through Akt, but also through 

mitogen activated protein kinase (MAPK)/extracellular signaling related kinase (Erk) signaling (Ma et al., 

2005). Epidermal growth factor (EGF) is known to bind the transmembrane associated epidermal growth 

factor receptor (EGFR). This binding induces intrinsic membrane activation, through tyrosine 

phosphorylation,  resulting in signal transduction events involving the GTPase, Ras. Ras, becomes activated 

in its GTP bound form and is now able activate the kinase activity of Raf. Raf, a serine/threonine protein 

kinase is known to phosphorylate and activate Mek1/2 and ultimately activate Erk via phosphorylation (Ma 

et al., 2005; Payne et al., 1991; Pearson et al., 2001). In 2007, data from Ma et al. identified Tuberin as a 

substrate for Erk on sites S540 and S664, with S664 being the primary and functionally important regulatory 

site on Tuberin. Dual phosphorylation on Tuberin through Erk decreases the affinity of Tuberin for 

Hamartin, resulting in enhanced S6K activity through mTOR and, strikingly, Tuberin modification via Erk 

has significantly increased effects on cell proliferation and oncogenic transformation (Ma et al., 2005; Ma 

et al., 2007). 

IV. Tuberin Regulates Downstream Cell Growth Proteins 

Tuberin is a fundamental player in the regulation of cell growth and protein synthesis through its 

downstream inhibition of mTOR during the G1/S transition (Figure 4) (Tee et al., 2002). Tuberin contains 

a C-terminal GAP domain allowing its GTPase activating functions. Previous research has shown Tuberin 

binds to Ras homolog enriched in brain (Rheb) (Inoki et al., 2003; Tee et al., 2003b). Rheb, a member of 

the Ras super family, functions as small GTPase protein, which shuttles between its active (GTP bound) 

and inactive (GDP bound) form.. GTPases can weakly and slowly hydrolyze their bound GTP to GDP. 

Tuberin acts as a GAP towards Rheb through direct binding. The GAP function of Tuberin accelerates the 

G-proteins built in hydrolysis timer. Specifically, Tuberin binds the G-protein, Rheb, directing a 

conformational change, which allows for nucleophilic attack and quick hydrolysis, rendering Rheb in the 
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inactive GDP form. GDP bound Rheb is unable to bind and activate mTOR, thereby halting an increase in 

cell growth. In this manner, Tuberin GAP activity is prevented by Akt phosphorylation on sites previously 

mentioned (Li et al., 2006; Maheshwar et al., 1997; Tee et al., 2003b; Wienecke et al., 1995).  

 When active, Rheb acts as a mediator, inhibiting mTORs repression, by abrogating the association 

of mTOR with the endogenous inhibitor FKBP38 (Bai et al., 2007). The mTOR protein is a complex protein 

involved in many more cellular events than described here. Briefly, mTOR retains hierarchical control over 

protein synthesis, cell growth and autophagy, by responding to upstream nutrient, growth factor, and amino 

acid stimuli (Beugnet et al., 2003; Tee et al., 2002; Tee et al., 2003b). mTOR is a large serine/threonine 

protein kinase that is composed of two distinct complexes: mTORC1 and mTORC2 (Wullschleger et al., 

2006). Both complexes are known to localize to distinct subcellular components, contributing to their 

differential roles within the cell (Betz and Hall, 2013). The mTORC2 subunit, with its rapamycin insensitive 

partner, rictor, is known to regulate the actin cytoskeleton and provide input to cellular metabolism through 

feedback to Akt (Sarbassov et al., 2004).  

The more described subunit, mTORC1, is known to associate with its rapamycin sensitive partner, 

raptor. Interactions between mTORC1 and raptor are of particular interest because together these proteins 

serve as an interface in the regulation of protein synthesis (Kim et al., 2002). mTORC1 accomplishes the 

activation of protein synthesis by upstream regulation of p70S6K (Ribosomal protein S6 Kinase 1) and 4E 

binding protein 1 (4E-BP1) (Wullschleger et al., 2006). mTORC1 phosphorylates S6K resulting in 

activation of the ribosomal S6 protein subunit leading to increase translation and cellular growth (Garami 

et al., 2003). Concomitantly, mTORC1 phosphorylates and inhibits 4E-BP1, thereby allowing the 

eukaryotic initiation factor 4E (eIF4E) to be free, participate in mRNA stabilization by cap binding and 

initiate 5’ cap dependent translation. These events also lead to an increase in protein synthesis, cell size, 

and cell cycle advancement (Dann et al., 2007; Kim et al., 2002; Rosner et al., 2009; Wullschleger et al., 

2006). 
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FIGURE 3: A schematic depicting the most influential players upstream and downstream of Tuberin 

protein signaling. (J. Dare 2015, Adapted from (Orlova and Crino, 2010)) 
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mTOR involvement in cell growth is heavily dependent on available amino acids and growth factor 

levels; however, when the cell is found in a nutrient poor state, the initiation of events such as autophagy 

may occur. Autophagy is described as a process in which cells undergo rearrangement and sequester a 

portion of cytoplasm, organelles, and intracellular proteins for lysosomal degradation in order to maintain 

cellular homeostasis and to produce energy in times of stress (Parkhitko et al., 2011). Classically, active 

mTOR negatively regulates the onset of autophagy through mammalian autophagy kinase (ULK1/2) 

inhibitory phosphorylation. Inhibitory release of ULK allows downstream activation of Atg13, FIP200, and 

ULK itself; ultimately resulting in a cascade of autophagy associated gene (Atg) activation and biosynthesis 

of the autophagosome (Klionsky et al., 2008). Autophagy can be initiated by AMPK indirectly through 

Tuberin phosphorylation and mTORC1-mediated signals (Kim et al., 2011). Moreover, autophagy is also 

known to be activated downstream and independently of Tuberin, by AMPK dependent raptor 

phosphorylation (Kim et al., 2011). It has been found recently that the autophagy substrate 

p62/sequestosome 1 (SQSTM1) are critical components of TSC/mTORC1 driven tumor development 

(Parkhitko et al., 2011). In particular, the survival of TSC2-Null cells is dependent upon autophagy in an 

mTORC1-dependent fashion (Parkhitko et al., 2011). Nonetheless, it is clear that mTORC1 is a convergent 

mechanism through which autophagy is regulated. It is noteworthy to think about the possibilities that 

Tuberin and the TSC may have on autophagy initiation independently of mTOR.  

V. Tuberin and Cyclin B1 regulate Mitotic Onset 

In addition to inhibitory roles with cell cycle proteins and growth inhibition at the G1/S transition, 

our lab has elucidated a novel and important role for Tuberin at the G2/M transition. Since mitosis is directly 

responsible for cell division, cells must grow to double their original size and have appropriately segregated 

DNA. The exact mechanisms regulating the transition of cell growth to cell division are not fully 

understood.  

In 2011, Fidalgo da Silva et al. observed, through a Yeast 2 Hybrid (Y2H) screen, that Tuberin 

forms a transient complex with Cyclin B1 at the G2/M transition, providing an intriguing mechanism 
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through which Cyclin B1 localization is regulated. Using small fragments of Tuberin (aa 600-746), positive 

interactions were seen with the CRS region of Cyclin B1 protein (Fidalgo da Silva et al., 2011). Fishing 

with a small fragment of Cyclin B1 containing the CRS region yielded a small fragment of Tuberin spanning 

from amino acids 610-746 (Fidalgo da Silva et al., 2011). It is now established that this region of Tuberin 

is responsible for both Cyclin B1 binding and cytoplasmic localization of Cyclin B1. This data presents the 

possibility that Tuberin can regulate premature mitotic onset. The Tuberin-Cyclin B1 complex is known to 

associate with both Hamartin and CDK1, presenting the possibility that feedback can be provided to 

regulate G1/S. Utilizing Cyclin B1 NES variants, it was seen that nearly 100% of the cyclin variant, Cyclin 

B1 5E (which mimics fully phosphorylated Cyclin B1), localizes to the nucleus after 24 hours. Fidalgo da 

Silva et al. (2011) has shown that in the presence of Tuberin, approximately 90% of the Cyclin B1 5E 

variant remains cytoplasmic. This further verifies the interaction and localization of Cyclin B1 and its 

dependence on Tuberin. Moreover, very recent findings from our lab indicate that both low nutrient levels 

and Akt non-phosphorylatable Tuberin mutants, diminishes the Tuberin-CyclinB1 interaction (Fidalgo da 

Silva et al. manuscript in preparation). The factors contributing to the regulation of this novel interaction 

are not fully understood. Further dissection of both upstream regulators and protein complex modifications 

are needed to better understand Tuberin involvement.  

VI. Tuberin is implicated in Tumour Formation 

Tuberous Sclerosis (TS) is known to arise from mutations in both the TSC1 and TSC2 genes; however, 

mutations in TSC2 result in more severe disease related phenotypes compared to that of TSC1 (Dabora et 

al., 2001; Zeng et al., 2011). TS is characterized by the formation of benign tumours, referred to as 

hamartomas, that occur in a variety of organ types such as the brain, heart, skin, kidney, and lung 

(Maheshwar et al., 1997; Orlova and Crino, 2010; Rosner et al., 2008). TS most frequently occurs during 

development and displays itself in early childhood (Webb et al., 1991). Traditionally, TS is considered an 

autosomal-dominate disorder acquired through inheritance; however, approximately two thirds of TS cases 

arise from sporadic germ-line mutations. Disease prevalence affects approximately 1 in 6000 live births 
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annually and is estimated to affect roughly 1.5 million individuals worldwide (Curatolo et al., 2008; Jones 

et al., 1999; Maheshwar et al., 1997). The Tuberin protein has proven itself a fundamental and highly 

important protein. Deletion, truncation, or mutation can result in very severe cellular outcomes. This protein 

is known to be essential for neural tube closure and TSC2 gene deletion results in embryonic lethality at 

day 10.5 in Eker rat models (Rennebeck et al., 1998).  

The severity and prognosis of the disease is widely variable (Wataya-Kaneda et al., 2013). Over 

95% of patients have dermalogical manifestations, such as facial angiofibroma, which often causes no 

detriment to life (Jones et al., 1999; Jozwiak et al., 2005; Kwiatkowski et al., 2015). However, 

manifestations affecting the brain, such as cortical tubers, subependymal nodules (SENs), or subependymal 

giant cell astrocytomas (SEGA) can cause blood vessel obstruction and cerebrospinal fluid accumulation, 

which can be lethal (Han and Sahin, 2011; Henske et al., 1997; Kohrman, 2012; Orlova and Crino, 2010). 

The central nervous system is affected in nearly 50% of TS sufferers and these mentioned brain 

abnormalities can result in forms of autism, epilepsy (in 60-90% of cases), mild to severe learning 

difficulties, and behavioural disorders, such as Attention Deficit Hyperactive Disorder (de Vries and Howe, 

2007; Ehninger et al., 2009; Numis et al., 2011). Conversely, TS outcomes such as angiomyolipomas 

(AMLs) developing within the kidney may lead to kidney failure and impaired function, haemorrhaging 

and possible development of carcinomas (Orlova and Crino, 2010; Rosner et al., 2008). In addition to the 

role of Tuberin in the benign tumours of TS patients, Tuberin mutations have also been found to cooperate 

with oncogenic mutations aiding in the initiation and progression of a number of malignant cancers 

including medulloblastoma (MB), renal cell carcinomas (RCC), and lung, kidney, and breast cancers 

(Bhatia et al., 2009; Dabora et al., 2001; Franz et al., 2010; O'Callaghan et al., 2004; Orlova and Crino, 

2010). 

The tremendous variability in the severity of the tumour formed in TS are ascribed to the fact that 

mutations in TSC2 are known to span the entire length of the gene, resulting in a plethora of possible Tuberin 
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protein mutations. It is notable however that mutational hotspots have been identified, and that one of these 

is located within the Cyclin B1 binding domain of Tuberin (Figure 4) (Fidalgo da Silva et al., 2011). 

 There is data to support that clinically relevant missense mutations within the TSC2 gene do 

abrogate the function of the protein. In 2001, Nellist et al. found that the mutations to Tuberin R611Q, 

R611W, A614D, C696Y, F615S, and V796E all disrupted the chaperone function of Tuberin with respect 

to Hamartin.  Specifically, Tuberin functions as a chaperone protein by maintaining the complex in the 

soluble form and by preventing the self-aggregation of Hamartin (Nellist et al., 2001). In 2005, Nellist et 

al. also found that phosphorylation of known Akt target sites was inhibited in the mentioned Tuberin 

mutants. Data here suggests that clinically relevant Tuberin mutations likely render the Tuberin protein in 

conformations that are unfavourable for important regulatory modifications, indicative of impaired Tuberin 

function (Nellist et al., 2008; Nellist et al., 2005b). Mutations resulting in changes of Tuberin residues 

R611, A614, F615, C696, V769 and Y1571 all exhibit decreased binding to Hamartin (Aicher et al., 2001; 

Astrinidis and Henske, 2005; Nellist et al., 2001). In addition, mutations such as these have been associated 

with increased S6K phosphorylation and increased Rheb-GTPase activity compared to that of wild type 

Tuberin (Nellist et al., 2005a). However, mutations residing outside of the Cyclin B1 binding domain, such 

as N525S, K599M, R905Q, G1556S along with others, do not elicit the same effects and disease severity 

(Nellist et al., 2005a). Moreover, immunofluorescence studies and protein binding densitometry analysis 

confirm that C696Y significantly exhibits more than a 50% decrease in binding affinity to Cyclin B1 

compared to that of wild type Tuberin (Fidalgo da Silva et al., 2011). This finding may indicate increased 

cell cycle progression and may explain the increase in nuclear localization of Cyclin B1. In a recent medical 

study, Yu et al. (2014) performed mutational analysis on a family affected with Tuberous Sclerosis. 

Sequencing analysis revealed a novel Tuberin truncation mutant that arises from a deletion at exon 24 in 

the TSC2 gene. This mutation results in a 946 amino acid protein, which is expected to have intact Hamartin 

binding (Yu et al., 2014). A mutation in the TSC2 gene such as this lacks the C-terminal GAP domain, 

transcriptional activation domains, and many critical phosphorylation sites, including the important 
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regulatory Erk and Akt phosphorylation sites. Naturally, it can be expected that loss of these critical 

domains can impair proper Tuberin function and lead to uncontrolled growth resulting in tumor initiation.  
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FIGURE 4: Mutations occur across the entire TSC2 gene, but the CyclinB1 binding domain exons 

are an area of frequent mutation.  

Exons 1 to 41 of Tuberin are depicted in this schematic. Mutations are indicated by the legend above and 

we can see from this figure that the Cyclin B1 binding domain of Tuberin is found to be a mutational 

hotspot, outlined in pink above. This area is littered with a variety of different classes of mutations. Exon 

17 of the TSC2 gene is an area of interest since a mutation resulting in a stop codon occurs here, resulting 

in a truncated Tuberin protein, S664blue). In addition, the GAP-related domain is also frequently 

mutated, which may be a reason for downstream misregulation and disease pathogenesis. (J. Dare 2015; 

Adapted from Jones et al. 1999) 
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Unfortunately, TS patients have a minimal number of accessible treatment options. The growth of 

these benign tumours must be monitored closely, and, if possible, surgically removed. One of the most 

prevalent treatment options for life threatening manifestations is treatment with mTOR inhibitors such as 

rapamycin, sirolimus, and everolimus (Franz, 2013; Kohrman, 2012; Orlova and Crino, 2010; Sengupta et 

al., 2010; Zeng et al., 2008). Many clinical trials are underway to increase efficacy of these treatments and 

determine additional mTOR inhibitors. As explained, there is a vast amount of research in this field targeted 

towards understanding Tuberin’s role with respect to protein synthesis and regulation of the G1/S transition, 

but it is imperative that we better understand the Tuberin’s cell division regulation at the G2/M transition, 

as traditional measures of treating TS may not be applicable to this transient interaction.  

The involvement of Tuberin at the onset of mitosis is still poorly understood. Given the diversity in the 

phenotypes found with different mutations, this work will focus on one of the most severe mutations found 

within Tuberin, specifically a truncation occurring at serine residue 664 in the Tuberin protein.  This 

truncation in Tuberin will be referred to as S664We will also dissect aspects of the Tuberin-Cyclin B1 

interaction further using this truncated Tuberin protein mutant. e hypothesize that protein modifications 

to both Tuberin and Cyclin B1 will have effects with respect to mitotic onset, binding, and 

localization. 

Objective 1: Elucidate where clinically relevant Tuberin truncation proteins localize and reveal 

possible phenotypic outcomes. To accomplish this, site directed mutagenesis was utilized to create the 

truncated Tuberin protein,S664. Using mammalian cell culture, determination of truncation mutant 

S664activity was assessed through proliferation assays, autophagy marker activation, cell size 

determination through flow cytometry, and pH3 immunofluorescent staining.  

Objective 2: Determine if Tuberin truncation proteins can co-localize and directly bind Cyclin B1 in 

vitro. Using Tuberin and Cyclin B1 in wild-type, truncated and variant forms, we measured protein binding 

using co-immunoprecipitation. Additionally, a Cyclin B1 NES variant was made to determine importance 
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of different serine sites to the Tuberin-Cyclin B1 interaction. We assessed localization through 

immunofluorescent measures.  
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MATERIALS & METHODS 

I. DNA Plasmids 

The following mammalian DNA plasmids were constructed by Dr. Elizabeth Fidalgo da Silva 

and were utilized during transfections: 

 

pCMV Tag2C Mlu-  FLAG (empty control vector)  

pCMV Mlu- FLAG-TSC2 WT  

 

The following mammalian DNA plasmids were constructed by Jessica M. Dare-Shih and were 

utilized during transfections: 

 

pCMV Tag2C Mlu- FLAG-TSC2-S664 (Appendix 1) 

pCMX Cyclin B1-4A-(A126E)-GFP (Appendix 2)  

 

pCMX Cyclin B1-WT-GFP, pCMX Cyclin B1-5A-GFP, pCMX Cyclin B1-5E-GFP vectors 

were given as a kind gift from Dr. A. Hagting.  

 

II. Mammalian Cell Culture of HeLa and Human Embryonic Kidney 293 cells 

(HEK 293) 

HEK 293 cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM) 

supplemented with 10% fetal bovine serum (FBS; Thermo-Fisher, Lot#906532) and 1% Penicillin- 

Streptomycin (Thermo-Fisher; Cat# 15140-1322).  Cells were cultured in a 10 cm tissue culture 

dish in 7mL of complete fresh media at 37oC in 5% CO2.  

III. Overexpression and Protein Concentration Determination 

Transfection protocols varied slightly over the course of several months.  DNA of either 5 

or 10g was incubated with 500L of supplemented DMEM and 20-30g of branched 
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polyethylenimine (PEI) reagent (Sigma; Cat# 408719), immediately vortexed for 10 seconds and 

followed by 10 minutes of incubation at room temperature. After incubation, the DNA mixtures 

were added drop wise onto 10 cm tissue culture plates of cells grown to approximately 80% 

confluency.   

Transfected cells were incubated at 37oC in 5% CO2 for 14-20 hours, followed by 

collection by cell scraping.  Cells were pelleted by centrifugation at 800 xg for 5 minutes at 4oC.  

Based on pellet size cells were resuspended with 200-600 L of 1X LB (0.1% NP-40, 20 mM Tris 

pH 7.5, 100 mM NaCl, 5 mM EDTA and 1 mM PMSF, 5g/mL aprotinin, and 5g/mL leupeptin).  

Cells were lysed on ice for 30 minutes followed by centrifugation for 10 minutes at 10000 rpm at 

4oC.  Cell debris pellets were removed using a sterile toothpick.   

 A standard Bradford Assay was used to determine protein concentrations of collected 

samples.  In short, 995 L of Bradford reagent was added to 5 L of protein sample in a 1.5mL 

Eppendorf Tube and vortexed for 10 seconds.  Protein samples were analyzed in a cuvette and and 

absorbance readings at 595nm were detected by a Thermo Electron Concentration 

Spectrophotometer.  Following protein concentration determination samples were calculated based 

on loading of either 100, 150 or 200 g of protein and added with 4X Sample Buffer with 20% -

mercaptoethanol.  Samples were then boiled to 95oC for 5 to 7 minutes in a standard heat block.  

4X Sample Buffer (LAP recipe): 

0.8g SDS powder, 2.5 mL 1 M Tris pH 6.8, 4mL glycerol, 80 L of bromophenolblue dye (BPB; 

Sigma Aldrich; Cat #B0126-25G), diH2O up to 8mL.  

IV. SDS-PAGE, Western Blotting, and Chemiluminescence Detection Methods  
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After denaturation, samples were subjected to SDS-PAGE and western blotting.  Samples 

were loaded on either a 7.5%, 10% or 12.5% SDS-PAGE (sodium dodecyl sulfate- polyacrylamide 

gel) for 3 to 4 hours at 100-110V and then transferred onto 0.45 m Polyvinyidene fluoride 

(PVDF) membrane (Millipore; Cat# IPVH00010) for 2 hours and 45 minutes at 30V at room 

temperature.  Following transferring, the PVDF membrane was subjected to blocking by shaking 

for 30 minutes to 1 hour at room temperature in 1% milk powder diluted in TSBT (Tris-buffered 

saline- with 10% Tween-20).  Blotted PVDF membrane was incubated with specific primary 

antibodies at a ratio of 1:1000 in 1% milk overnight at 4oC on a rotator or at room temperature 

rotating for 2 hours.  Membranes were then washed in TBST (3X for 10 minutes) and incubated 

with the appropriate species-specific secondary antisera for 45 minutes to 1 hour at room 

temperature.  Following a brief washing (3X 5minutes), Enhanced Chemiluminescent Substrate 

(ECL) and 0.01% H2O2 reagents (Thermo-Fisher; Cat# 32106) were applied to PVDF membranes 

in equal volumes and chemiluminescence was detected by Alphainnotech equipment.  

Densitometric analysis of protein was also conducted with AlphaEase FC software.   

V. Antibodies  

The following antibodies were utilized during Western Blotting, co-immunoprecipitation and 

indirect immunofluorescent analysis:  

Mouse α-CycB1 (monoclonal; Santa Cruz; Cat# H1809), rabbit α -Tuberin (C-4; polyclonal; Santa 

Cruz; Cat# 2210), mouse α-actin (monoclonal; Millipore; Cat# MAB1501), mouse α-FLAG 

(Sigma; Cat# F1365), goat α- mouse IgG (Sigma; Cat# A4416), goat α-rabbit IgG (Sigma; 

Cat#A6154), Alexa 488- conjugated α- mouse IgG (Invitrogen; Cat# 488735), Alexa 568- 

conjugated α- mouse IgG (Invitrogen; Cat# A-11004), rabbit α - phospho-H3 (AbCam 

Technologies; Cat# ab32107), rabbit α-LC3-II (Novus Biologicals; Cat# NB100-2220), rabbit α-
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p62/SQSTM1-(Sigma; Cat# P0067) Agarose conjugated α-FLAG primary antibody affinity gel 

beads (Biotool; Cat# B23101) 

VI. Co-Immunoprecipitation (Co-IP) 

Transfected HEK 293 cells were collected and lysed with 1X LB as described previously.  

5L of α-CyclinB1 mouse was added to 1000g to 1500g of protein and the volume was 

completed to 500L total with 1X LB complete with protease inhibitors and rotated overnight at 

4oC.  5L of Protein G Sepharose beads (Sigma) were added to each sample and were immediately 

rotated for 3.5 hours at 4oC.  Alternatively, protein samples were incubated with 2L of 2X diluted 

Agarose conjugated α-FLAG primary antibody affinity gel beads (Biotool) for 3.5 hours at 4oC.  

Following incubation, samples were centrifuged at 4800 xg for 6 minutes at 4oC, the supernatant 

was aspirated and samples were manually inverted for washing with 1mL of 1X LB supplemented 

with protease inhibitors as described above.  Samples were centrifuged at 4oC for 3 minutes at 

2400 xg to immunoprecipitate protein and washed by inverting and gentle pipeting.  Three cycles 

of washing were undergone and after the final spin, all but 75L of supernatant was aspirated.  To 

the remaining protein, 4X Sample Buffer was added to a final volume of 100L.  Samples were 

then stored at -20oC until being subjected to SDS-PAGE and western blotting as described above.   

VII. Immunofluorescent Microscopy (IF) 

HEK 293 cells were seeded onto sterile baked coverslips in 10 cm cell culture dishes 

containing 7 mL of warmed media.  Cells were grown to approximately 80% confluency and 

transfected with 5 or 10g of DNA as previously described.  After 16-20 hours of incubation at 

37oC in 5% CO2, cell lysates and coverslips were collected.  Coverslips were collected in 12 well 

plates and fixed with 100 L of 4% paraformaldehyde (PFA) for 15 minutes at room temperature.  
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Slips were then washed (3x for 5 minutes) in 100L of 1X PBS (Phosphate buffered saline) and 

permeabilized with 100L of 0.2% Triton-X-100 for 5-7 minutes.  Following washing, slips were 

blocked with 100L of LAP blocker (500L of 100% Triton X, 0.7 5g glycine, 1.25 mL calf 

serum, and 5mL of 10X PBS) for 30 minutes at room temperature and then immediately incubated 

with 100L of primary antibody diluted in LAP blocker for 1 hour.  Slips were then washed (3X 

for 5 minutes) with 1X PBS and incubated with fluorophore conjugated species-specific secondary 

antibody for 30 minutes at room temperature. Slips were aspirated and stained with 100L of 

Hoescht (1:1300) in LAP blocker for 10 minutes to complete nuclear staining.  Slips were again 

washed (3X for 5 minutes) and mounted on glass slides with mounting solution.  Treated coverslips 

were additionally adhered to slides via clear nail polish and allowed to dry for 24 hours in the dark 

before imaging. Slides were then analyzed by fluorescence microscopy using Leica Microsystems 

Microscopy (Leica CTR 6500 microscope / FX360 digital colour camera) and Leica Application 

Suite (LAS) Autofluorescence (AF) accompanying software.   

Alternatively, coverslips were treated and stained as described above and subjected to 

immunofluorescence microscopy using a laser scanning confocal microscope (Olympus FluoView 

FV1000 Confocal Microscope; IX81) laser (Olympus Ix2-UCB and FV10-MARAD) and analyzed 

by accompanying software (Olympus View Ver.2.1c). Images were taken at a 60x objective with 

oil and non-artificially zoomed to scale. 

VIII. Quantification of Immunofluorescent Protein Localization 

Slides with fixed and appropriately stained protein were analyzed by fluorescence 

microscopy under equal exposure times and saved as numbered .tiff files. Number labelled images 

were analyzed by an unbiased researcher. Images of protein localization were counted as 
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cytoplasmic if protein was observed as very spread out and elongated within the cell, whether it 

was free in the cytosol (diffuse), or organelle bound (punctate). Perinuclear localization was 

classified as protein being very concentrated around, but not within the nucleus and this form of 

localization was mainly observed in mutated versions of Tuberin protein. Nuclear localization was 

classified as protein that was found within the nucleus (overlapping with DAPI filters) and 

appeared very condensed. Quantification in this manner was used for Figures 7 and 10 and 

Appendices 2 and 3.  

IX. Flow Cytometry and Cell Cycle Profile Analysis 

 

 HEK 293 cells were cultured, treated and collected as described previously. Following 

initial centrifugation, cell pellets were fixed with ice cold 70% ethanol while vortexing on medium 

speed until completely re-suspended.  Fixed cells were then stored at -20oC or immediately 

prepared for immune-intracellular flow cytometry.  Fixed HEK 293 cells were washed once with 

2 mL of 1X PBS and pelleted by centrifugation for 5 minutes at 1000rpm at 4oC.  Cell pellets were 

then subjected to a staining protocol and treated with fixation/permeabilization/washing 

procedures using the BD Biosciences (Pharmingen) Flow Cytometry Transcription Factor Buffer 

Set following manufacturer’s instructions (Cat# 562574).  Cells were dual immuno-labelled with 

100 L of diluted antibody (1:100) mouse anti-FLAG primary antibody (1:300) and species 

specific Alexa 488 anti-mouse fluorescent secondary antibody (1:800) for 1 hour at 4oC in the 

dark).  Using BD Biosciences LSR Fortessa X-20 Cell Analyzer, cells were gated based on 

presence of Alexa 488 (green) fluorescence above a set threshold to control.  Cell cycle profiles 

were collected based on DNA content assessed by propidium iodide (PI) staining.  Overall mean 

cell area was acquired from a G2/M subpopulation using forward/side scatter ratios.  
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RESULTS  

 I. Characterizing the effects of Tuberin truncation S664 over-expression.  

To analyze the effects of a clinically relevant Tuberin truncation S664 in vitro, over-expression 

of this protein was performed using HEK 293 cells under normal culture conditions (Figure 5). To verify 

over-expression levels of FLAG tagged wild-type and FLAG tagged S664 Tuberin protein, western 

blotting analysis was used (Figure 5A). Cells transfected for 24 hours were counted via trypan blue 

exclusion and graphed as total cell numbers of alive vs. dead cells (Figure 5B). This proliferation assay 

demonstrates that S664 over-expression results in significantly increased alive cell numbers compared to 

Tuberin WT or pCMV control. Over-expression of proteins was confirmed (Figure 5A) and protein levels 

were analyzed by densitometry (Figure 5C). Analysis of protein band intensity confirms that Tuberin 

truncation S664 is expressed 75% less compared to that of Tuberin WT. 

To validate proliferation results (Figure 5B), immunofluorescent techniques analyzing phospho-

Histone 3 (pH3) protein, were used to assess mitotic index (Figure 6). Mitotic index of cells over-expressing 

Tuberin WT or S664 in regular nutrient conditions, containing 10% FBS (Figure 6A) or starvation 

conditions, containing 0.5% FBS (Figure 6B) was of particular interest. Over-expression of protein was 

confirmed by western blot analysis (Figure 6C). pH3 positive FLAG over-expressing cells were counted 

and graphed as a percent of mitotic cells over total FLAG positive cells counted (Figure 6D). In FLAG 

over-expressing cells, results indicate that S664 significantly increases mitotic index compared to Tuberin 

WT in normal serum conditions. Additionally, in starvation conditions, this increased mitotic effect is 

significantly exaggerated by approximately 40%. These data confirm increased proliferation results from 

the presence of the S664 mutant. 
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Figure 5. Over-expression of the Tuberin truncation, S664 significantly increases cell numbers 

compared to Tuberin WT and empty control. HEK 293 cells were seeded in equal numbers and 

transiently transfected for 24 hours with mammalian expression vectors containing pCMV control, Tuberin 

WT, or truncation S664. (A) Tuberin WT and S664 over-expression was confirmed by FLAG tag 

presence via western blot analysis. Actin served as a loading control. (B) 24 hours post-transfection cells 

were collected and were subsequently counted via trypan blue exclusion. Total cell numbers of alive cells 

(white bars) and dead cells (black bars) are depicted. (C) Over-expression intensity (protein levels) was 

measured via western blot and densitometry analysis to determine transfection efficiency and consistency 

among treatments. **p<0.01. Statistical significance was assessed using student’s unpaired t-test.  
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Figure 6. Over-expression of S664 significantly increases mitotic activity compared to Tuberin WT. 

HEK 293 cells were seeded onto cover slips and transiently transfected with indicated vectors, treated with 

10% or 0.5% serum 24 hours later and collected 48 hours post transfection. Cell pellets and coverslips were 

immediately collected. Coverslips were subjected to immunofluorescence and treated with fluorescent 

antibodies. (A) Immunofluorescence images depicting nuclei (blue), FLAG protein over-expression (red), 

and phospho-Histone3 (pH3) protein (green) of 10% FBS treated cells at 20x objective. (B) 

Immunofluorescence images depicting nuclei (blue), FLAG protein over-expression (red), and phospho-

Histone 3 (pH3) protein (green) of 0.5% FBS treated cells at 20x objective. (C) Representative western blot 

depicting immunoblot for FLAG over-expression (top two panels) and actin control (bottom panel). (D) 

Mitotic activity depicted in the graph was measured as a function of pH3 positive-FLAG over-expressing 

cells. **p<0.01,*p<0.03. Statistical significance was assessed using student’s unpaired t-test.  
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Protein localization of the clinically relevant mutant S664 was determined using 

immunofluorescent studies (Figure 7). FLAG tagged Tuberin WT or S664 were over-expressed in regular 

nutrient conditions (Figure 7A) or starvation conditions (Appendix 2). Over-expression of protein was 

confirmed by western blot analysis (Figure 7B). FLAG over-expressing cells were counted based on cellular 

localization (cytoplasmic vs. perinuclear) (Figure 7C and 7D) and graphed as a percentage. Wild-type 

Tuberin protein is known to localize primarily to the cytoplasm (Figure 7A; pink arrows), but can also be 

observed in the nucleus under certain conditions (York et al. 2006, Rosner et al. 2007). In normal culture 

conditions, S664 significantly increases perinuclear localization (white arrows) compared to its WT 

counterpart (Figure 7A; right panels). This perinuclear localization was significantly attenuated under 

starvation conditions in S664 over-expressing cells (Appendix 2A; lower panels). Moreover, after 

immunofluorescent examination, it was observed that cells over-expressing the Tuberin truncation display 

a unique “clustered”, condensed or aggregated phenotype, mainly located around the nucleus (Appendix 

3).  
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Figure 7. Mutant Tuberin S664 exhibits perinulcear localization significantly more than WT 

Tuberin protein. HEK 293 cells were seeded onto glass cover slips and transiently transfected with 

indicated vectors, treated with 10% serum 24 hours later and collected 48 hours post-transfection.  Cell 

pellets and coverslips were immediately collected and treated with fluorescent antibodies. (A) 

Immunofluorescence images depicting FLAG protein over-expression (red) of 10% FBS treated cells at 

60x oil objective.  Images were zoomed in on this same objective and fully representative of protein 

expression (non-artificial zoom). (B) Representative western blot depicting immunoblot for FLAG over-

expression (top two panels) and actin control (bottom panel). Sub-cellular localization of FLAG WT and 

FLAG S664 protein in normal culture conditions (C) or starvation conditions (D; See Appendix 2) 

depicted as a percentage of cells in a perinuclear (left bars) or cytoplasmic (right bars) phenotype. Example 

of Tuberin cytoplasmic localization identified by pink arrows and example of perinuclear localization of 

Tuberin protein identified by white arrows. *p<0.05, **p<0.01, ***p<0.001.  Statistical significance was 

assessed using a student’s unpaired t-test.   
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Increased proliferation and alterations in subcellular localization as a result of S664 

overexpression may result in changes in cellular characteristics and phenotypes. Our lab has found that 

Tuberin has the ability to regulate cell size independently of mTOR (Fidalgo da Silva, manuscript in 

preparation), which led us to question the ability of a clinically relevant truncation to maintain cell size. To 

assess this, flow cytometry (Figure 8) and physiological assays (Figure 9) were utilized. Cells over-

expressing WT or S664 Tuberin were grown in normal serum or under starvation conditions and were 

analyzed by flow cytometry. Following adequate gating based on singlet cell population expressing FLAG 

tag, forward vs side scatter information generated an average cell size. Cell size is plotted as a percent of 

cell area increase (Figure 8). There are no significant differences in cell area between WT and truncated 

protein over-expression (p=0.14) (Figure 8). This lack of difference holds true for serum condition changes 

as well.  

Since over-expression of S664increases proliferation without changes in cell size, it was 

hypothesized that cells may be continually dividing even in the face of starvation. Moreover, truncation 

S664 lacks regions responsible for downstream mTOR regulation, known to inhibit autophagy, leading 

us to determine if autophagy regulation differs in cells over-expressing this mutant. To assess this, we 

analyzed levels of autophagy associated proteins as a possible physiological outcome of increased cell 

proliferation (Figure 9). Over-expression of WT or truncated protein was confirmed by western blotting 

(Figure 9A, FLAG blot). Levels of p62 protein (Figure 9B) and LC3 protein conversion (Figure 9C) were 

compared using densitometry. When comparing control, Tuberin WT and S664, levels of p62 and LC3 

conversion differ slightly but are not significantly different from one another (p>0.05).  
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Figure 8. Over-expression of S664 does not significantly alter average cell size compared to Tuberin 

wild-type. HEK 293 cells were transiently transfected with pCMV empty control, FLAG TSC2 WT, or 

FLAG S664 and grown in 10% or 0.5% serum. 48 hours post-transfection cells were harvested and fixed 

for flow cytometry analysis. Cells were intracellularly labelled with anti-FLAG/Alexa-488 green and 

subjected to flow cytometry. Cells were also stained with PI, isolated for singlets and gated for green 

fluorescence. This cell population was then analyzed for mean cell area by forward vs. side scatter between 

all treatments. **p<0.01, NS= p>0.05. Statistical significance was assessed using student’s unpaired t-test. 
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Figure 9. S664 over-expression does not result in significantly increased autophagy protein markers 

compared to WT Tuberin or pCMV control. HEK 293 cells were transiently transfected with indicated 

vectors above and cultured in normal serum conditions. (A) Western blotting confirming over-expression 

of indicated vectors and autophagy associated protein markers. Actin was used as a loading control. (B) 

Densitometry analysis of p62 protein expression in cells over-expressing indicated vectors. (C) 

Densitometry analysis of autophagosome associated protein LC3 and corresponding conversion of this 

protein. p>0.05. Statistical significance was assessed using student's unpaired t-test.  
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II. Effects of the clinically relevant truncation S664 on the mitotic transition.  

 Since localization of Tuberin WT and S664 protein were seen to be significantly different, 

alterations to Cyclin B1 co-localization is a possibility. Cyclin B1 localizes to both the nucleus and the 

cytoplasm. (Li et al. 1997, Yang et al. 1998, Fidalgo Da Silva et al. 2011). Based on studies from Fidalgo 

Da Silva, Tuberin WT protein retains Cyclin B1 in the cytoplasm and holds back mitosis. To compare 

possible G2/M effects between Tuberin WT and S664, immunofluorescent studies utilizing Cyclin B1 

WT were performed (Figure 10). pCMV control, FLAG tagged (red) WT or S664 Tuberin were over-

expressed with Cyclin B1 WT (green) and analyzed using immunofluorescent microscopy (Figure 10A). 

Typical cytoplasmic phenotype identified by pink arrows, and traditional perinuclear phenotype identified 

by white arrows (Figure 10A). Protein over-expression was confirmed by western blot analysis (Figure 

10B). Both Tuberin WT and S664 were seen to co-localize with Cyclin B1 WT (yellow in left merge 

panel; Figure 10A). Cyclin B1 WT protein localization (green) was counted as perinuclear/nuclear vs. 

cytoplasmic in FLAG over-expressing cells (red) and graphed as a percentage (Figure 10C). Consistent 

with previous literature, nearly 90% of Cyclin B1 WT protein was found to be retained in the cytoplasm 

(Figure 10C; grey bars) (Fidalgo da Silva et al., 2011). Interestingly, when Cyclin B1 WT is over-expressed 

with S664, Cyclin B1 localization is altered and is significantly more perinuclear than compared to WT 

Tuberin or control cells (Figure 10C; black bars).  
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Figure 10. Tuberin WT and S664 regulate the sub-cellular localization of Cyclin B1 WT.  

HEK 293 cells were seeded onto cover slips and transiently transfected with indicated vector and collected 

24 hours post transfection. Cell pellets and coverslips were immediately collected and treated with 

fluorescent antibodies. (A) Immunofluorescence images depicting nuclei (blue), FLAG protein over-

expression (red), and Cyclin B1 WT protein (green) at 40x objective. (B) Representative blot of successful 

protein over-expression. (C) Graph depicting perinuclear/nuclear localization (black bars) vs. cytoplasmic 

localization (grey bars) of Cyclin B1 WT protein (when co-expressed with WT Tuberin or S664) as a 

percentage. Cytoplasmic co-localization phenotype identified with pink arrows and perinuclear/nuclear co-

localization phenotype identified with white arrows in panel A. **p<0.01. Statistical significance was 

assessed using student's unpaired t-test. 
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Co-localization was positively verified between Cyclin B1 WT and the Tuberin proteins used 

above, so direct protein binding studies were assessed by co-immunoprecipitation (co-IP) (Figure 11). 

pCMV control, Tuberin WT, or S664 were over-expressed with Cyclin B1 WT in normal culture 

conditions and confirmed by western blot (Figure 11A). Using FLAG conjugated protein G beads, in vivo 

co-IP experiments yielded successful pulldown of FLAG tagged Tuberin WT and S664 (Figure 11B). 

Interestingly, Cyclin B1 WT protein was seen to successfully pulldown with both Tuberin WT and S664 

(Figure 11B). To determine the strength of binding, levels of over-expression in immunoblot were 

normalized to actin (from Figure 11A). Levels of FLAG and Cyclin B1 precipitate (from Figure 11B) were 

normalized to the level of immunoblot expression. Subsequently, these ratios were divided as Cyclin B1 

WT binding over FLAG and graphed in Figure 11C. Surprisingly, there were no significant differences 

found between the strength of Cyclin B1 to that of FLAG over-expressing Tuberin WT or S664.  

Since Cyclin B1 WT was found to bind both Tuberin WT and S664 (Figure 11), we were 

interested in the possibility of Cyclin B1 NES variant binding with both Tuberin WT and S664. To assess 

this, we performed co-IP experiments using these same Tuberin proteins and the Cyclin B1 NES variants 

(Figure 12). It has been established that Cyclin B1 5A tends to have a cytoplasmic localization and bind 

significantly more to Tuberin WT, while Cyclin B1 5E tends to have nuclear accumulation and bind 

significantly less to Tuberin WT (Fidalgo Da Silva et al. 2011). Therefore, we sought to determine which 

phosphorylation site is more influential in binding to Tuberin WT. A novel Cyclin B1 NES variant 

mammalian expression vector, pCMX Cyc B1 4A (A126E) was constructed to assess this (Appendix 3). 

The Cyclin B1 NES variant 4A is indicative of a Cyclin B1 protein which is only phosphorylated on S126.  

Cells were over-expressed with pCMV control or FLAG Tuberin WT in combination with Cyclin B1 5A, 

5E, or 4A (A126E) and protein over-expression was confirmed by western blot analysis (Figure 12A). 

Using FLAG conjugated protein G beads, in vivo co-immunoprecipitation experiments yielded successful 

pulldown of FLAG tagged Tuberin WT (Figure 12B). Cyclin B1 WT protein was seen to successfully 

precipitate with Tuberin WT and not with control cells (Figure 12B). To determine protein affinity, levels 
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of over-expression in immunoblot were normalized to actin (from Figure 12A). Levels of FLAG and Cyclin 

B1 variant precipitate (from Figure 12B) were normalized to the level of immunoblot expression. 

Subsequently, these ratios were divided as Cyclin B1 variant binding over FLAG and graphed in Figure 

12E. As expected, there were statistically significant differences found between the affinity of Cyclin B1 

5A with Tuberin WT (left bars) compared to that of 5E with Tuberin WT (right bars) (Figure 12E). 

Interestingly, it was found that the Cyclin B1 4A (A126E) variant binds significantly less than 5A, but 

significantly more than 5E (middle bars) (Figure 12E).  

Additionally, since S664 was seen to bind Cyclin B1 WT in vivo (Figure 11), we sought to 

evaluate if Cyclin B1 variants had the ability bind to S664since this truncated protein is known to lack a 

portion of the Cyclin B1 protein binding domain. Cells were over-expressed with pCMV control or FLAG 

S664 in combination with Cyclin B1 5A, 5E, and 4A (A126E) and confirmed by western blot analysis 

(Figure 12C). Using FLAG conjugated protein G beads, in vivo co-IP experiments yielded successful 

pulldown of FLAG tagged S664 Tuberin (Figure 12D). Strikingly, all three Cyclin B1 variant proteins 

were seen to successfully precipitate with S664, but not with control cells (Figure 12D). To determine the 

strength of protein binding, levels of over-expression in immunoblot were normalized to actin (from Figure 

12C). Levels of FLAG and Cyclin B1 variant precipitate (from Figure 12D) were normalized to the level 

of immunoblot expression. Subsequently these ratios were divided as Cyclin B1 variant binding over FLAG 

and graphed in Figure 12E. Interestingly, when comparing degrees of binding, there were no statistically 

significant differences between all three Cyclin B1 variants (Figure 12E). 
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Figure 11. S664 binds Cyclin B1 WT protein less than Tuberin WT in vivo.  

HEK 293 cells transfected with Cyclin B1 WT-GFP were co-transfected with empty control vector, FLAG-

tagged Tuberin WT, or FLAG-tagged S664. (A) Western blots confirming successful over-expression of 

vectors. Actin was used as a loading control. (B) Co-immunoprecipitation blots of FLAG precipitated 

protein and co-immunoprecipitated Cyclin B1 protein. (C) Graph depicting the degree of Cyclin B1 binding 

to that of Tuberin WT or S664. p>0.05. Statistical significance was assessed using student’s unpaired t-

test. 
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Figure 12. Tuberin WT and S664both bind all three Cyclin B1 NES variants to significantly 

different degrees in vivo. HEK 293 cells transfected with wild-type FLAG-Tuberin (black bars) or S664 

(grey bars) were co-transfected with empty control vector, or indicated Cyclin B1 variant vectors. (A) 

Western blots confirming over-expression of indicated vectors with Tuberin WT. Actin was used as a 

loading control. (B) Co-immunoprecipitation blots of FLAG precipitated protein and co-

immunoprecipitated Cyclin B1 variant protein. (C) Western blots confirming over-expression of indicated 

vectors with S664. Actin was used as a loading control. (D) Co-immunoprecipitation blots of FLAG 

precipitated protein and co-immunoprecipitated Cyclin B1 variant protein. (E) Graph depicting the degree 

of Cyclin B1 5A, 4A, 5E variant binding to that of Tuberin WT (black bars) or to that of S664 (grey bars). 

*p<0.05, **p<0.01. Statistical significance was assessed using a student’s unpaired t-test. 
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DISCUSSION  

A wide array of diseases and cancers have misregulated cell growth signalling networks and a 

variety of protein mutations. There is still very little molecular understanding of how clinically relevant 

Tuberin mutations and truncations lead to the onset of Tuberous Sclerosis and cancer. Our investigation of 

a clinically relevant Tuberin truncation, S664 may be able to shed some light onto the mechanistic 

changes involved in the pathways regulated by the tumor suppressor Tuberin. Additionally, work here has 

gained insight on how Tuberin and modified Cyclin B1 proteins may influence the onset of mitosis.  

Tuberin S664 lacks the Rheb binding domain at the C-terminus that is responsible for mTOR 

inhibition thereby allowing for increased cell growth or proliferation. Mammalian cells over expressing 

techniques were utilized in vitro to investigate the effects of Tuberin truncation in the cell cycle regulation. 

As expected, Tuberin WT over-expression exhibits significantly less cell proliferation compared to control 

cells. Furthermore, over-expression of S664showed significantly increased proliferation (total cell 

number) compared to Tuberin WT and control over-expression (Figure 4). However, densitometry analysis 

revealed that over-expression between Tuberin WT and S664was not equal (Figure 5). Since Tuberin 

S664protein is 75% less abundant compared to Tuberin WT, differences here may contribute to the drastic 

increase in proliferation. Although endogenous Tuberin protein is present, we observed significant changes 

in total cell numbers, between S664 and control cells, leading us to believe that S664 does not have the 

ability to act as a tumor suppressor and may have gained additional functions contributing to proliferation, 

perhaps through misregulated binding or mislocalization. Nellist et al. 2001 used a Tuberin protein 

truncation (aa 1-604) to assess Hamartin binding and found that this small N-terminal fragment was able to 

bind Hamartin. From this, we can hypothesize that truncation protein S664may still be able to bind 

Hamartin in vitro, but may not be able to contribute to Tuberin’s known chaperone function towards 

Hamartin. Additionally, since the S664truncation lacks domains known to be important for Hamartin 

binding, it may not be able to undergo proper protein folding to prevent Hamartin’s degradation (Nellist et 

al., 2001). In 2014, Munkley et al. discovered a novel Tuberin isoform which increases cell proliferation in 
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response to androgen stimulation. This isoform is quite different however, it lacks the N-terminal domain 

responsible for Hamartin interactions and only contains a partial Rheb inactivation domain (Munkley et al., 

2014). To date, there are no in vitro Tuberin truncation proliferation studies utilizing only the N-terminal 

domain seen here. 

The rate of S664protein expression may be equal to Tuberin WT; however, since it lacks many 

functional domains, its stability is questionable (Figure 5). Degradation of S664protein compared to 

Tuberin WT protein through ubiquitin mediated processes is still under investigation. It is well established 

that Tuberin is ubiquitinated by HERC1 through N-terminal interactions, and that Hamartin binding 

protects Tuberin from HERC1 mediated degradation (Chong-Kopera et al., 2006).We can hypothesize that 

S664is still target for degradation by HERC1 through the truncations N-terminus and we hypothesize that 

lack of regulation may be leading to accelerated protein degradation.  

To more accurately assess the effect of this clinically relevant truncation on cell proliferation, we 

evaluated cell mitotic index using immunofluorescence and analysis of pH3 (Figure 6). Findings indicate 

that over-expressing Tuberin WT results in less mitotic cells compared to pCMV control cells, as observed 

by Fidalgo et al. 2011. Conversely, S664over-expressing cells have significantly more mitotic cells than 

Tuberin WT and control cells. Moreover, data indicates that S664 regulation of mitotic onset is dependent 

on serum, since we see significantly exaggerated effects with serum starvation. This agrees with and further 

validates the increased proliferation observed with the S664 mutant (Figure 4). These data indicate that 

clinically relevant Tuberin S664 may have lost its ability to act as a tumor suppressor controlling cell 

division; however, this requires further investigation. In quiescent fibroblasts, it is known that silencing of 

endogenous Tuberin results in cell cycle re-entry (Soucek et al., 1997). Moreover, a shortened G1 phase 

results in Tuberin null cell types (Miloloza et al., 2000). We can hypothesize that mTOR activity will not 

be hindered in cells over-expressing S664This clinically relevant truncation lacks its C-terminal GAP 

domain, which is responsible for Rheb binding and downstream mTOR inhibition (Figure 2 and Figure 3) 
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(Dan et al., 2002; Goncharova et al., 2002; Inoki et al., 2002; Manning et al., 2002; Potter et al., 2002; Tee 

et al., 2002). Moreover, it is currently unknown where Tuberin WT and the CKI, p27, bind one another. 

The possibility exists that truncation S664may not be able to sequester p27 and prevent its degradation; 

thereby, leading to enhanced cell cycle progression at the G1/S transition (Dan et al., 2002; Rosner et al., 

2007a; Rosner et al., 2006; Short et al., 2010). It is well established that Tuberin mutations are a large 

contributing factor to misregulated cell growth pathways, like mTOR hyperactivation and development of 

SEGA cells mentioned previously (Henske et al., 1997; Ichikawa et al., 2005; Miloloza et al., 2000; Sancak 

et al., 2005; van Eeghen et al., 2012a; van Eeghen et al., 2012b; van Eeghen et al., 2013). Proliferation data 

found here may be relevant and important with respect to disease pathogenesis, as it is the first of its kind 

to assess a clinically relevant truncation in vitro.  

 Additionally, since S664exhibits unique cellular effects, we were interested in determining 

differences in cellular localization between Tuberin WT and S664. As expected, Tuberin WT was found 

to localize primarily to the cytoplasm in both normal and starvation conditions (Figure 7 and   Appendix 2) 

(Cai et al., 2006; Rosner et al., 2007b; York et al., 2006) (see Materials and Methods for explanation of 

protein localization quantification). Literature shows us that mutated and truncated Tuberin protein has 

been observed to be mislocalized in the cell. Tuberin mutant C696Y was observed to be primarily nuclear 

compared to its wild-type counterpart (Fidalgo da Silva et al., 2011). Similarly, we discovered that 

truncation S664localizes significantly more to a perinuclear region within the cell compared to Tuberin 

WT, but the significance of this altered localization is still under investigation. We know that cellular 

nutrient levels and Tuberin regulation affect Tuberin-Cyclin B1 interactions, localization, and the onset of 

mitosis (Fidalgo da Silva et al., 2011; Rosner et al., 2007b). Rosner et al. 2007 showed that phosphorylation 

by Akt leads to cytoplasmic Tuberin localization. Additionally, it is known that Tuberin nuclear localization 

occurs during times of serum starvation in LAM transfected cells (York et al., 2006) We also wanted to 

investigate if serum alterations could lead to Tuberin WT and truncation protein mislocalization. 

Interestingly, mislocalization was exaggerated to significantly increased perinuclear accumulation in 
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starvation conditions in S664 over-expressing cells compared to Tuberin WT. Although classical C-

terminal domains leading to nuclear accumulation are not present in this truncation (York et al., 2006), 

other mechanisms, such as nutrient conditions may exist leading to mislocalization (Rosner et al., 2007b). 

Gaining knowledge of S664mislocalization may be important in dissecting disease propagation and 

tumorigenesis.  

Although, Tuberin WT and S664localize primarily to different subcellular regions, similar 

unique phenotypes were also observed. It was noted that S664 protein tends to appear in a dense 

“clustered” or aggregated appearance significantly more than Tuberin WT protein (Appendix 3). White 

arrows in images from Appendix 3A and 3B display examples of cells exhibiting clustered wild-type or 

clustered truncated protein. This clustered appearance appears to be mainly perinuclear in high 

magnification (Appendix 3C). This clustering of protein is observed in both Tuberin WT and S664over-

expressing cells. However, clustering is observed significantly more in cells over-expressing S664. The 

percent of cells exhibiting this phenotype, albeit low, may have implications in protein localization and 

binding interactions (Barnes et al., 2010; Liu et al., 1997; Wienecke et al., 1996). Tuberin is known to 

localize to both the lysosome and Golgi apparatus (Demetriades et al., 2014; Jones et al., 2004; Menon et 

al., 2014; Wienecke et al., 1996). These known localizations display themselves in a manner similar to the 

clustered phenotype observed here. We plan to perform additional work involving co-staining of Tuberin 

WT and S664with classical organelle associated proteins. From this we may be able to further elucidate 

if this protein clustering has physiological importance and will help to determine if clustering of WT or 

truncated Tuberin protein is localizing to a specific cellular region in vitro.  

Since Tuberin classically acts to inhibit protein synthesis and proliferation, preventing excess 

cellular growth when conditions are not adequate, we were interested in determining any effects over-

expression of S664had on cell size. To accomplish this, HEK-293 cells were over-expressed with FLAG-

Tuberin WT or FLAG-S664 and subjected to flow cytometry (Figure 8). It is important to note that control 



49 
 

cells did not have a fluorescent label, so their size changes, although significantly smaller, cannot be 

compared equally to Tuberin WT or S664 cells. Samples were subjected to doublet discrimination, only the 

singlet population was analyzed and cells were gated for FLAG over-expression by green fluorescence. 

Surprisingly, data here shows that there are no significant changes in cell size between cells overexpressing 

wild-type or truncated protein. We postulated that S664 over-expression would yield increased cell size, 

due to our suspected lack of mTOR inhibition (Fingar et al., 2002; Rosner et al., 2009; Tee et al., 2002). 

However, it can be noted that cells were only cultured for 24 hours after transfection, and cell size changes 

may take a longer amount (up to 72 hours) of incubation time to develop significant changes (Fingar et al., 

2002). Moreover, there may be additional cell growth regulation contributing to this finding. Assessing 

individual cell cycle phases and altering timing of analysis may help to gather insight regarding if and when 

any cell size changes occur.  

Our interest in the clinically relevant truncation protein also extends to elucidate which other 

pathways may be regulated by Tuberin. To assess this, studies to assess autophagy activation were 

undergone (Figure 9). Since S664over-expressing cells have increased proliferation, we hypothesized 

that these cells may be continually dividing even in the face of low nutrients and growth factors. Under 

normal serum conditions, cells overexpressing pCMV control, Tuberin WT, or S664 were investigated 

for the protein markers of autophagy, such as the protein expression of p62 and protein conversion ofLC3. 

Protein levels indicate there are no significant differences between Tuberin WT or S664treated cells. 

Since S664 lacks a C-terminal Rheb binding domain, this protein likely does not inhibit mTOR to the 

same degree as wild-type. mTOR is known to inhibit the initiators of autophagy signalling (ULK1, Atg13, 

and FIP200) (Alers et al., 2012). We can extrapolate that cells over-expressing S664cannot inhibit mTOR, 

allowing for constitutively active mTOR even in the face of starvation, leading to differences from wild-

type. This was somewhat surprising to us; however, cells were over-expressed for 24 hours and immediately 

collected. Studies revealed that basal autophagy in HEK 293 cells mechanistically mimics events which 

occur with mTOR inhibition (Musiwaro et al. 2013). Autophagy markers are known to be elevated and 
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fluctuating as soon as 2-6 hours after starvation or with the addition of autophagy initiating drugs, such as 

Bafilomycin A1 (Klionsky et al., 2008; Mizushima, 2010; Mizushima and Levine, 2010; Tanida, 2011; 

Tanida et al., 2008; Tanida and Waguri, 2010; Zhang et al., 2013). Perhaps if cultured in normal serum and 

collected over a short and long-time course, we would have observed a more pronounced effect on 

autophagy protein marker variations (Tanida and Waguri, 2010).   

It is well established that Tuberin WT protein has the ability to bind Cyclin B1 in vivo. We wanted 

to assess if clinically relevant truncation S664can also bind to or interact with Cyclin B1 in vivo. To 

assess this we used a variety of immunofluorescence and immunoprecipitation techniques (Figures 10 and 

11). As expected, Cyclin B1 WT protein was found to be approximately 90% cytoplasmic when over-

expressed with Tuberin WT protein. It is known that Tuberin is able to retain Cyclin B1 in the cytoplasm, 

in both its wild-type and hyper-phosphomimic form (Cyclin B1 5E) (Fidalgo da Silva et al., 2011). The 

consequences of this enhanced binding interaction at G2 ultimately allows for slower progression and an 

increase in cell size (Fidalgo et al. 2015 manuscript in preparation).  

Conversely, we observed a significant change in Cyclin B1 WT to a perinuclear/nuclear 

localization when co-expressed with S664protein. Moreover, recent data from our lab indicates that 

Cyclin B1 localization is altered when co-expressed with mutant forms of Tuberin (C696Y, GAP) and in 

changing nutrient conditions (Fidalgo da Silva et al., 2011), so it was not surprising to us that Cyclin B1 

protein localization was altered with S664Figure 10). These data indicate that S664protein may not be 

able to bind and interact with Cyclin B1 WT and retain it in the cytoplasm in a manner similar to Tuberin 

WT. Furthermore, we learned earlier that S664protein is itself localized primarily to a perinuclear region, 

so perinuclear co-localization between S664and Cyclin B1 proteins is a tangible possibility (Figure 10A; 

yellow in merged images).  

To accurately determine if Cyclin B1 WT and S664protein can bind in vivo, co-

immunoprecipitation experiments were performed (Figure 11). Y2H screens previously showed that a 
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147aa fragment (aa 600-746) of Tuberin was sufficient for Tuberin-Cyclin B1 binding (Fidalgo da Silva et 

al., 2011). Presence of Cyclin B1 co-immunoprecipitation was confirmed by immunoblotting back for 

Cyclin B1 (Figure 11B). Surprisingly, we observed Cyclin B1 pulldown in both Tuberin WT and 

S664sample lanes. S664 protein does contain some overlapping residues with the Tuberin fragment, 

and since we see successful binding, data here may indicate that residues 610-664 of Tuberin have a 

significantly important role in binding and securing Cyclin B1 protein. We were interested in comparing 

the affinity of Tuberin WT and S664to bind Cyclin B1 WT protein (Figure 11C). Although differences 

in degrees of binding are not significant, it does suggest that S664likely has lower affinity to Cyclin B1 

than does Tuberin WT. These results are rather preliminary and this experiment likely has an outlier from 

Tuberin WT IP. In the future, repeating co-immunoprecipitation experiments to have larger sample sizes 

will truly help in validating results, especially since this is such a sensitive set of experiments. Moreover, it 

is important to comment on this surprising result. We have shown that S664over-expression leads to 

increased cell proliferation, but it is known that Tuberin binding to Cyclin B1 ultimately hold back mitosis 

and prevents premature division (Fidalgo da Silva et al., 2011). It is possible that S664and Cyclin B1 

protein binding occurs because of decreased protein size and lack of regulation due to the truncation within 

Tuberin. Although, for Cyclin B1 WT did not significantly differ between Tuberin WT and truncation, the 

interaction of S664may be very low and not have substantial effects on cell division. Physiological and 

mechanistically important roles for the observed S664-Cyclin B1 WT complex within the cell is still under 

investigation.  

Our lab is highly interested in Cyclin B1 NES variant binding with Tuberin WT and variant proteins 

(Fidalgo da Silva et al., 2011). As previously noted, Cyclin B1 5A (5A) binds to Tuberin WT significantly 

more than it does to Cyclin B1 5E (5E). Our lab is currently designing and cloning additional Cyclin B1 

variants, in which each individual phosphorylation site will be mutated a glutamic acid (E) to mimic the 

charge of phosphorylation. Since, serine reside S126 is one of the first sites phosphorylated by Cdk1 on 

Cyclin B1, we decided to use site-directed mutagenesis and create a new Cyclin B1 binding variant, Cyclin 
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B1 4A (A126E) (termed 4A) (Appendix 3). There is currently very little known about which 

phosphorylation site on Cyclin B1 in the NES region is most important with respect to Tuberin binding. 

We want to fully elucidate this using this new variant (4A) and other variants currently in progress (Figure 

12). Our results suggest that Tuberin WT binds Cyclin B1 5A significantly more than 5E, which is in 

agreeance with work demonstrated by Fidalgo da Silva et al. 2011. To further validate this, we plan to 

assess protein affinity using increasing gradients of protein over-expression (of  Cyclin B1) and determining 

maximum protein binding values in a manner similar to Fidalgo da Silva (Fidalgo da Silva et al., 2011). 

Interestingly, we discovered that 4A binds to Tuberin WT protein significantly more than 5E but 

significantly less the 5A. These exciting results may indicate to us that S126 on Cyclin B1 is a site of critical 

importance for Tuberin WT binding. Based on these data, we can extrapolate that when Cyclin B1 becomes 

phosphorylated by Cdk1 on S126, alterations between Tuberin-CyclinB1 binding dynamics occurs. 

Specifically, we can expect to observe a decrease in complex binding affinity and perhaps advanced mitotic 

onset. These hypotheses need to be confirmed through future protein binding work. We can use a the novel 

G2/M report vector, pCCNB1-ECFP, developed in our lab to accurately measure the rate of mitosis when 

4A and other Cyclin B1 variants still in progress are present within the cell (Fidalgo da Silva et al., 2014).  

Concomitantly, we were interested in determining if S664protein is able to bind Cyclin B1 

variants in the same manner as Tuberin WT (Figure 13). Experiments here were performed in a similar 

manner as Figure 12. We observed that the clinically relevant truncation S664is able to successfully bind 

all three Cyclin B1 variants. To no surprise, no significant differences were found between Cyclin B1 

treatments. Computational proteomic data from our lab indicates that Tuberin protein folding is likely very 

important in Cyclin B1 binding (Market 2015, undergraduate thesis). Since this truncation lacks the C-

terminal domain that is predicted to fold over when Tuberin binds to Cyclin B1, we can hypothesize that 

post-translational modifications such as Cyclin B1 phosphorylation cannot be monitored by this truncation 

protein. We can assume that the lack of predicted conformational changes may account for the lack of 

difference noted between the three Cyclin B1 NES variants used here.  
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It is a recurring theme that longer transfection incubation periods may be necessary to better assess 

disease pathology related to clinically relevant truncations. Moreover, transfection is not an optimal choice 

for most assays utilizing mutant over-expression, since endogenous protein is still present in the cell and 

may be able to offset or hinder mutant affects. It is also well established that mammalian DNA transfection 

is transient, unstable and can be uneven. To overcome this, we hope to use new genetic manipulation 

techniques including the very current crispr/cas9 system in future experiments to gain reliable protein 

expression and be able to consistently carry out long course experiments (Cong et al., 2013; Mali et al., 

2013; Sander and Joung, 2014; Wiles et al., 2015). We also have developed a set of viral knock-down/over-

expression vectors, which have been designed to silence endogenous Tuberin and over-express the desired 

mutant cloned into this vector. Our lab has recently developed a Bimolecular Fluorescence 

Complementation system (BIFC), utilizing both Tuberin and Cyclin B1, that can be used with confocal and 

live cell microscopy to assess binding in vivo. We plan to experiment with the timing of complex formation 

and can also alter nutrient conditions to assess binding affinity. Moreover, Tuberin and Cyclin B1 mutants 

can be inserted into these vectors allowing for a plethora of studies to be performed.  

Changing of nutrient conditions in cells over-expressing Tuberin WT and Cyclin B1 NES variants 

is also of interest since we know that levels of nutrients and Tuberin protein modifications by Akt 

phosphorylation have significant effects on Cyclin B1 binding (Fidalgo et al. 2015 manuscript in 

preparation). We plan to culture cells under high and low nutrient conditions and assess binding of Cyclin 

B1 4A and other Cyclin B1 NES mutant currently under construction. Furthermore, binding studies using 

Tuberin protein with modifications to Erk phosphorylation sites (S540 and S664) in conjunction with 

Cyclin B1 WT and Cyclin B1 NES protein variants may shed light on how growth factor signalling effects 

G2/M progression.  

This is the first study of its kind to assess how clinically relevant truncations contribute to disease 

manifestation in vitro. In summary, S664over-expression leads to significantly increased cell 

proliferation compared to Tuberin WT, significant changes to protein localization compared to Tuberin WT 
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and we learned that this truncation can successfully bind Cyclin B1 WT and Cyclin B1 variants in vivo. 

Together, these findings provide insight into how Tuberin related diseases may develop and the signalling 

networks that may be involved in this process.  
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APPENDIX 1 

Construction of a novel, clinically relevant Tuberin truncation vector, pCMV-FLAG-TSC2-S664 by Site-

Directed Mutagenesis  

In order to assess the mechanistic role of a clinically relevant truncation protein of Tuberin, we 

utilized site directed mutagenesis (SDM) and molecular cloning techniques to produce a new mammalian 

expression vector. Our aim was to positively clone a premature stop codon into the TSC2 gene of the parent 

vector, to ultimately produce a truncated Tuberin protein, at serine residue 664 (S664 upon successful 

mammalian over-expression using transient transfection. We began with the pCMV Tag2C FLAG-TSC2-

WT-Mlu- mammalian expression vector (the parent vector) (Stratagene & E. Fidalgo Da Silva) (Appendix 

1A). A SDM oligo was designed to anneal to the TSC2 WT gene and create a stop codon at serine 664 

(Appendix 1B). Upon successful PCR and parent strand destruction by Dpn1 restriction enzyme digest, 

PCR product was transformed into Stbl3 E.coli bacteria, colonies were selected, and screened. Successfully 

cloned vector was analyzed by DNA sequencing with the T7 promoter (Eurofins). The resulting vector we 

cloned, pCMV-Tag2C-FLAG-TSC2-S664 contains the full length TSC2 gene with a successfully 

inserted stop codon at S664. Additionally, we evaluated if cloning was successful by transfection of newly 

synthesized DNA and western blotting to ensure successful truncated protein over-expression (right-most 

lane, 68kDa protein) (Appendix 1C). 
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Appendix 1. Site-Directed Mutagenesis and cloning of the novel, clinically relevant Tuberin 

truncation vector, pCMV-FLAG-TSC2-S664. (A) pCMV FLAG TSC2 WT DNA was utilized as the 

parent vector. (B) The parent vector was subjected to SDM PCR with the stop codon mutation designed 

oligo at residue S664 (orange DNA fragment). PCR product was screened by DNA sequencing for the 

acquired stop codon and truncation mutation. (C) A depiction of resulting mammalian expression vector 

product, pCMV-FLAG-TSC2-S664. (D) Protein over-expression analysis by western blot to confirmation 

stop codon insertion and truncated protein product. S664 protein over-expression results in a 68kDa 

protein.  
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APPENDIX 2 

 

Phenotypic evaluation of the clinically relevant Tuberin truncation, S664 

Protein localization of the clinically relevant mutant S664 was determined using 

immunofluorescent studies (Figure 7 and Appendix 2). FLAG tagged WT or S664 Tuberin were over-

expressed in regular nutrient conditions (Appendix 2A) or starvation conditions (Appendix 2B). Over-

expression of protein was confirmed by western blot analysis (Appendix 2B). FLAG over-expressing cells 

were counted based on cellular localization (cytoplasmic vs. perinuclear) (Appendix 2D and 2E) and 

graphed as a percentage. Wild-type Tuberin protein is known to localize primarily to the cytoplasm, but 

can also be observed in the nucleus under certain conditions (York et al. 2006, Rosner et al. 2007). In 

normal culture conditions, cells over-expressing S664 exhibit perinuclear localization significantly more 

than the WT counterpart (Appendix 2D). Cells treated with the same over-expression and faced with 

starvation conditions exhibit the same trend, but have a significantly exaggerated effect on perinuclear 

localization (Appendix 2E). Moreover, after immunofluorescent examination, it was observed that cells 

over-expressing the Tuberin truncation display a unique phenotype that appears “clustered”, condensed or 

aggregated, mainly located near the nucleus or perinuclear (Appendix 3).  
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Appendix 2. Mutant Tuberin S664 exhibits perinuclear localization significantly more than WT 

Tuberin protein. HEK 293 cells were seeded onto cover slips and transiently transfected with indicated 

vectors, treated with 10% or 0.5% serum 24 hours later and collected 48 hours post-transfection. Cell pellets 

and coverslips were immediately collected and treated with fluorescent antibodies. (A) 

Immunofluorescence images depicting nuclei (blue) and FLAG protein over-expression (red) of 10% FBS 

treated cells at 20x objective. (B) Immunofluorescence images depicting nuclei (blue) and FLAG tagged 

protein over-expression (red) of 0.5% FBS treated cells at 20x objective. (C) Representative blot of 

successful protein over-expression. Subcellular localization of FLAG WT and FLAG S664 protein in 

normal culture conditions (D) or starvation conditions (E) depicted as a percentage of cells in a perinuclear 

(left bars) or cytoplasmic (right bars) phenotype. Example of Tuberin cytoplasmic localization identified 

by pink arrows and example of perinuclear/nuclear localization of Tuberin identified by white arrows. 

*p<0.05, **p<0.01, ***p<0.001. Statistical significance was assessed using student’s unpaired t-test.  
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APPENDIX 3 

Phenotypic evaluation of the clinically relevant Tuberin truncation, S664 

To determine protein localization of the clinically relevant mutant S664, immunofluorescent 

studies were undergone (Figure 7). During this localization study, S664 protein presented itself in a unique 

or “clustered” form (Appendix 3A and 3B; white arrows). FLAG tagged WT or S664 Tuberin were over-

expressed in regular nutrient conditions (10% FBS) (Appendix 3A) or starvation conditions (0.5% FBS) 

(Appendix 3B). Clustered phenotype example of FLAG tagged S664over-expressed protein in 10% 

nutrient conditions (Appendix 3C; white arrows). Over-expression of protein was confirmed by western 

blot analysis (Appendix 3D). FLAG over-expressing cells were counted based on protein localization 

(clustered vs. unclustered) (Appendix 3E and 3F) and graphed as a percentage. Wild-type Tuberin protein 

is known to localize primarily to the cytoplasm, but can also be observed in the nucleus under certain 

conditions (Rosner et al., 2007b; Rosner and Hengstschlager, 2007; York et al., 2006). In normal culture 

conditions, over-expressed S664protein (grey bars) exists in a clustered and perinuclear region 

significantly more than its WT counterpart (black bars) (Appendix 3E). Cells treated with the same over-

expression and faced with starvation conditions exhibit the same trend, but have a significantly exaggerated 

effect on clustered localization (Appendix 3F).  
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Appendix 3. Tuberin S664protein is significantly more clustered compared to WT Tuberin protein. 

HEK 293 cells were seeded onto cover slips and transiently transfected with indicated vectors, treated with 

10% or 0.5% serum 24 hours later and collected 48 hours post-transfection. Cell pellets and coverslips were 

immediately collected and treated with fluorescent antibodies. (A) Immunofluorescence images depicting 

nuclei (blue) and FLAG protein over-expression (red) of 10% FBS treated cells at 20x objective. (B) 

Immunofluorescence images depicting nuclei (blue) and FLAG tagged protein over-expression (red) of 

0.5% FBS treated cells at 20x objective. (C) Immunofluorescence images depicting FLAG tagged protein 

over-expression (red) of 10% FBS treated cells at 60X oil objective (white arrows depicting clustered 

phenotype observation). (D) Representative blot of successful protein over-expression. Subcellular 
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localization of FLAG WT and FLAG S664protein in normal culture conditions (E) or starvation 

conditions (F) depicted as a percentage of cells in a clustered (left bars) or unclustered (right bars) 

phenotype. Example of clustered Tuberin WT or truncated protein identified by white arrows. *p<0.05, 

**p<0.01, ***p<0.001. Statistical significance was assessed using a student’s unpaired t-test.  
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APPENDIX 4 

Construction of a novel Cyclin B1 NES variant vector, pCMX-Cyclin B1-4A (A126E) by site-directed 

mutagenesis.  

In order to assess the essentiality of the conserved serine residues found within the NES domain of 

Cyclin B1, we utilized SDM and molecular cloning techniques to produce a new mammalian expression 

vector. Our aim was to assess which phosphorylation site is most detrimental in regulating Tuberin-Cyclin 

B1 protein interactions. We began with the pCMX-Cyclin B1-5A mammalian expression vector (the parent 

vector) (a gift from A. Hagting) (Appendix 4A). The gene and backbone of the parent vector were screened 

for Brsb1 restriction endonuclease cut sites; three sites were positively identified, resulting in three DNA 

fragments after Brsb1 restriction enzyme digestion. Two sites were found in the backbone, and one Brsb1 

site was found near the SDM cloning site, in which the oligo was designed to anneal (Appendix 4B). A 

designed cloning oligo and the parent vector were subjected to PCR (Appendix 4C). The SDM oligo was 

designed to mutate the alanine 126 residue to a glutamic acid 126 residue and to destroy the Brsb1 site 

upstream. The Brsb1 site was destroyed as a tool to positively identify successfully mutated clones. The 

Brsb1 site was destroyed without alteration to the protein coding sequence; commonly referred to as a silent 

site screening mutation. Successful clones that have the SDM sequence should also only contain two Brsb1 

sites and result in two DNA fragments when subjected to Brsb1 digestion (Appendix 4D). Upon successful 

PCR and parent strand destruction by Dpn1 restriction enzyme digest, PCR product was transformed into 

Stbl3 E.coli bacteria, colonies were selected, and screened. Successfully cloned vector was first screened 

by Brsb1 digest, positively identified by 2 DNA fragments and analyzed by DNA sequencing with the 

upstream T7 promoter (Eurofins). The resulting vector we cloned contains four alanine residues and one 

glutamic acid residue at amino acid 126, two Brsb1 cut sites in the backbone and a C-terminal EGFP tag 

(Appendix 4E). 
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Appendix 4. Site-Directed Mutagenesis and cloning of novel Cyclin B1 NES vector, pCMX-Cyclin 

B1-4A (A126E). (A) pCMX-Cyclin B1-5A DNA was utilized as the parent vector. (B) It was subjected to 

BrsbI restriction enzyme digest. (C) Clean parent vector was subjected to SDM PCR with the mutation 

designed oligo (blue DNA fragment). (D) PCR product was screened by BrsbI digest to assess site silent 

destruction of the third BrsbI site. (E) A depiction of newly cloned DNA vector pCMX-Cyc B1-4A (A126E) 

after DNA sequencing results.  
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