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Abstract 

The Tasse basalts of southeastern British Columbia, Canada, are host to a variety of 

mantle xenoliths consisting predominantly of spinel lherzolite with minor dunite and 

pyroxenite. On the basis of REE patterns, the xenoliths are divided into three groups 

reflecting varying degrees of mantle metasomatism: (1) Group 1; concave-up LREE 

patterns; (2) Group 2; flat to moderately LREE-enriched patterns; and (3) Group 3; 

strongly LREE-enriched patterns. The majority of xenolith are enriched in LILE, LREE, 

U, Th, Pb, and Sr, and depleted in HFSE and HREE. These geochemical characteristics 

are consistent with a sub-arc mantle source. The Tasse lavas are compositionally alkaline 

basalts and display OIB-like trace element patterns. They have positive εNd (+3.8 to 

+5.5) values, with 338−426 Ma depleted mantle model ages, and display OIB-like Nd, Sr 

and Pb isotopic compositions. The Sr−Nd−Pb isotope and trace element characteristics 

suggesting that they originated from an upwelling asthenospheric mantle source. 
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CHAPTER 1 

Introduction 

The mantle has played a major role in the evolution of the Earth (Hofmann, 1997; 

Wang et al., 2007; König et al., 2008). Since the mantle cannot be directly sampled, 

studies of mantle xenoliths have provided significant insights into our understanding of 

the geodynamic and petrological processes that shaped the evolution of the mantle-crust 

system (McCulloch, 1993; McCulloch and Bennett, 1994; Hofmann, 1997; Kerrich et al., 

1999; Condie, 2000; Downes, 2001; Bennett, 2003; Arai et al., 2007; Chin et al., 2012). 

Samples recovered from kimberlites, lamproites and alkaline basalts have placed new 

constraints on the petrogenetic and geodynamic processes operating over the past 3.5 

billion years (Shi et al., 1998; Wyman and Kerrich, 2010; Shirey and Richardson, 2011; 

Tang et al., 2013). These constraints have improved our understanding of plate tectonics, 

mantle plumes, and mantle composition (Ballhaus, 1993; Putirka, 1999; Beccaluva et al., 

2004; Nkouandou and Temdjim, 2011; Shirey and Richardson, 2011) and provided 

insight into geodynamics, geochemistry, geophysics, and many other branches of Earth 

Sciences. 

Mantle xenoliths hosted in alkaline basalts have been documented world-wide 

(Brearley et al., 1984; Parkinson et al., 2003; Ionov et al., 2006; De Hoog et al., 2010; 

Nkouandou and Temdjim, 2011; Tang et al., 2013; Downes et al., 2014). Alkaline basalts 

are lower in silica content than mid-ocean ridge basalts (MORB) and are characterised by 

high alkali content (Na2O+K2O) (Polat et al., 1997; Nkouandou and Temdjim, 2011; Li et 

al., 2014). The origin of alkaline basalts can be explained by two main processes: (1) low 

degrees of partial melting of mantle (Kay and Gast, 1973; Wilshire et al., 1988); and (2) 

partial melting of enriched mantle (Wilshire et al, 1980; Wilshire et al., 1988; Maury et 
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al., 1992; Polat et al., 1997). Enriched mantle may be produced by metasomatism 

involving hydrous and/or carbonate-rich fluids, intrusion of silicate magmas, or physical 

mixing between ‘normal’ mantle and fertile rocks such as pyroxenite and eclogite. These 

processes can raise the abundances of incompatible elements in the mantle which, in turn, 

can lead to greater alkalinity in derivative magmas (Bailey, 1972, 1982; Wilshire et al., 

1988). British Columbia, Canada, is known to host various locations of alkaline basalts 

within its complex geological history (Fig. 1) (Brearley and Scarfe, 1984; Brearley et al., 

1984; Sun and Kerrich, 1995; Shi et al., 1998; Edwards and Russell, 2000; Peslier et al., 

2000a, 2000b; Ferri and O’Brien, 2002; Peslier et al., 2002; Abraham et al., 2005; 

Sluggett, 2008; Greenfield et al., 2013). 

Several outstanding questions remain in regards to the evolution of the 

subcontinental lithospheric mantle and relationship to subduction and orogenic processes 

beneath southeastern British Columbia. How did the mantle evolve during the subduction 

and orogenic processes? What are the origins of the Miocene to Holocene alkaline lavas 

that emplaced the mantle xenoliths? Is there a relation between the evolution of the 

mantle and the origin of the alkaline basalts? How did continental-scale tectonic 

processes play a role in the origin of alkaline basalts and their mantle xenoliths? In this 

study, we present whole-rock major and trace element data for twenty-two samples of 

mantle xenoliths and twenty-three samples of alkaline basalts collected from the Tasse 

property of Barker Minerals Ltd, near Likely, British Columbia (Figs. 1 and 2). In 

addition, we report whole-rock Sr−Nd−Pb isotope data for seven alkaline basalt samples. 

Using the new and previously published data, we address the questions regarding the 

petrogenesis of the mantle xenoliths and their host alkaline basalts with respect to the 
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subcontinental lithospheric and asthenospheric mantle domains beneath southeastern 

British Columbia. 
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CHAPTER 2 

Regional geology 

The Canadian Cordillera consists of rocks that range in age from Paleoproterozoic 

to Holocene. They are commonly divided into assemblages that originated along the 

western margin of ancestral North America (cratonic), near North America (pericratonic) 

or far from North America (exotic) (Gabrielse et al., 1991; Nelson and Colpron, 2007). In 

the Mesozoic, these assemblages were brought together by subduction, forming a collage 

of accreted terranes (tectonic blocks) and deformed cratonic and pericratonic rocks (Fig. 

3) (Coney et al., 1980; Monger et al., 1982; Gabrielse et al., 1991; Johnston, 2001). These 

events led to westward growth of the North American continent and the formation of a 

new western margin near to that of the present day coastline. By the Cenozoic, most of 

the accretionary tectonism was complete but the Cordillera continued to undergo 

deformation, metamorphism and magmatism (Fig. 3). During the Paleocene and Eocene, 

two or three oceanic plates were subducting beneath the continental margin, leading to 

widespread magmatism, strike-slip deformation, localized extension and core-complex 

formation (Ewing, 1980; Parrish et al. 1988). During this time, magmatism was 

voluminous and subduction processes were modified by the effects of ridge subduction 

and slab window formation (Breitsprecher et al., 2003; Madsen et al., 2006). Offshore 

plate reorganization in the mid-Cenozoic led relative quiescence in the Oligocene and 

restriction of arc magmatism to the northern and southern parts of the Canadian 

Cordillera (Madsen et al., 2006). The sum of all of the aforementioned activity led to the 

recognition of five morphogeologic belts which are characterized by a combination of 

features including terrane type and origin, age, metamorphic grade and geomorphology 

(Fig. 4) (Gabrielse et al., 1991; Monger, 2014). During the Miocene to Holocene, 
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magmatic activity was widespread throughout the region, and was grouped by Bevier et 

al. (1979) into three main regions: the Cascade-Garibaldi arc in the southwest, the 

Aleutian-Wrangell volcanic belt in the northwest, and a broad intervening region of 

varied but largely mafic alkaline volcanism. This intervening volcanic field was regarded 

having a range of causes including back-arc volcanism (Chilcotin Group) and mantle 

plume activity (Anahim belt) (Fig. 1) (Bevier et al., 1979; Kuehn et al., 2015). Edwards 

and Russell (2000) re-examined the northern part of this mafic field, named it the 

Northern Cordilleran Volcanic Province (NCVP) (Fig. 1), and suggested that lithospheric 

extension played a primary role in its development. 

Using a different approach, Thorkelson and Taylor (1989) and Thorkelson et al. 

(2011) regarded the Chilcotin-Anahim-NCVP field as having a common origin related to 

subduction of the Juan de Fuca spreading ridge and formation of an extensive slab 

window in the Late Cenozoic. In this model, the entire region between the Garibaldi and 

Wrangell arcs was affected by upflow of asthenospheric mantle through the slab window, 

leading to low-degree partial melts of mantle peridotite. According to the interpretations 

of Edwards and Russell (2000), Greenfield et al. (2013) and Francis et al. (2010), both 

asthenospheric and lithospheric mantle were involved in the mantle anatexis. As noted by 

Edwards and Russell (2000), Francis et al. (2010) and Thorkelson et al. (2011), the 

previously identified processes of back-arc circulation (developed more fully by Currie 

and Hyndman, 2006), plume activity and lithospheric extension may have contributed 

locally to the various volcanic belts included within the field of slab window magmatism. 

In addition, general westward mantle flow and continental lithospheric delamination may 

have contributed to the magmatic activity (Bao et al., 2014). Importantly, these processes 
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contributed to the current thermal (hot) and rheological (weak) state of the central and 

western Cordillera (Hyndman et al., 2009), in which a thin layer of lithospheric mantle 

underlies a hot crust with high heat flow and a Moho temperature near 800 °C (Harder 

and Russell, 2006; Francis et al., 2010; Greenfield et al., 2013). Thinning of the mantle 

lithosphere is likely to be ongoing (Francis et al., 2010). 
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CHAPTER 3 

Geology of the study area 

The study area is located within the Cariboo district, which lies within the southern 

portion of the Omineca belt (Fig. 4) (Monger and Price, 2002). The region consists of 

various terranes including the Cariboo, Quesnel, Cache Creek and Kootenay terranes 

(Fig. 2) (Ferri and Schiarizza, 2006; Eyles and Miall, 2007). The Cariboo terrane has 

been identified as a representative piece of the ancestral North American margin. This 

portion of the terrane contains carbonate and siliciclastic rocks (Struik, 1986; Ferri and 

Schiarizza, 2006). 

The Barkerville subterrane, of the larger Kootenay terrane, is bounded on both sides 

by thrust faults (Figs. 2 and 5) (Struik, 1986; Ferri and Schiarizza, 2006). To the west of 

the Barkerville subterrane is the Eureka thrust fault that separates the Barkerville 

subterrane from the Quesnel terrane (Figs. 2 and 5). The Pundata thrust and Pleasant 

Valley thrust separate the Cariboo terrane from the eastern edge of the Barkerville 

subterrane (Figs. 2 and 5) (Struik 1986; Ferri and Schiarizza, 2006). 

The Quesnel terrane consists principally of arc volcanic and sedimentary rocks. 

This terrane has been thrust onto the hanging wall of the Eureka thrust and Crooked 

amphibolite of the Slide Mountain terrane (Figs. 2 and 5) (Struik 1986; Ferri and 

Schiarizza, 2006). The sedimentary rocks are of the Nicola Group and characterized by 

phyllitic rocks with interbeds of siltstones to fine-grained sandstone. Minor mafic 

tuffaceous and coarse-grained volcaniclastic rocks have been found to interfinger in the 

Nicola Group (Ferri and O’Brien, 2002; Ferri and Schiarizza, 2006; Thomas, 2009). 

Numerous sills and plutons, granitic to gabbroic, have intruded the stratigraphic units, 

mainly the Snowshoe Group. The Nicola and Snowshoe stratigraphic units are separated 
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by the Eureka thrust fault (Thomas, 2009). Granitic sills are the most extensive of all 

igneous bodies. The Quesnel Lake gneiss protolith consists of megacrystic granite to 

granodiorite (Ferri et al., 1999; Ferri and Schiarizza, 2006). 

The region has undergone various degrees of deformation, magmatism, 

sedimentation, and metamorphism. The highest intensity of deformation took place 

during the Early to Middle Jurassic (Ferri and Schiarizza, 2006). The obduction of the 

Quesnel arc rocks onto the Kootenay terrane appears to have been the cause of the intense 

deformation. This largely occurred along the Eureka thrust in the Northern Kootenay 

terrane (Ferri and Schiarizza, 2006). The ensuing obduction of the Quesnel arc rocks, 

southwest folding was accompanied by greenschist to amphibolite facies metamorphism. 

There have been multiple generations of folding and metamorphism throughout the 

region (Ferri and Schiarizza, 2006). The neighbouring Barkerville-Cariboo terrane 

boundary structures indicate similar fold patterns that postdate other events and are 

associated with a younger metamorphic event (Ferri and Schiarizza, 2006). 

All sampled outcrops of this study are devoid of weathering and volcanic cone 

structures are well preserved in the study area, suggesting a young age for the sampled 

alkaline basalts. Recently, Kuehn et al. (2015) dated the volcanic rocks in the region (e.g., 

the Satah Mountain and Baldface Mountain volcanic fields) using 
40

Ar/
39

Ar 

geochronology. Only one sample was collected from the Tasse basalts and yielded an age 

of 0.174±0.007 Ma. 
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CHAPTER 4 

Sampling 

Sampling was conducted on the Tasse property of Barker Minerals, near the north 

shore of Quesnel Lake (Figs. 1 and 2). A total of 61 samples were collected from six 

alkaline basalt volcanic centres (Fig. 6); 32 mantle xenoliths and 29 alkaline basalts (Fig. 

7; Appendices A and B). The sizes and weights ranged from ~7 cm – 20+ cm and 1 kg – 

7+ kg. The Global Positioning System (GPS) coordinates for sample locations are given 

in Appendices A and B. 
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CHAPTER 5 

Methodology 

5.1  Major and trace element analyses 

A total of 45 samples were selected for both major and trace element analyses 

(Tables 1 and 2). Major elements and specific trace elements (Ba, Sr, Y, Sc, Zr, V) were 

analysed by Thermo Jarrell-Ash ENVIRO II ICP, at Activation Laboratories Ltd. 

(Actlabs) in Ancaster, Ontario. The samples were fluxed using lithium metaborate and 

lithium tetraborate agents followed by digestion with nitric acid, 5% solution 

(http://www.actlabs.com/). 

Trace element analyses includes large ion lithophile elements (LILE; e.g., K, Rb, 

Ba), rare earth elements (REE; e.g., La-Lu), high field strength elements (HFSE; e.g., Zr, 

Hf, Nb, Ta). Analyses were conducted at Geoscience Laboratories (Geo Labs) in 

Sudbury, Ontario, using inductively coupled plasma-mass spectrometry (ICP-MS). The 

samples were digested by using multi-acid techniques (method code IM100) as detailed 

by Burnham et al. (2002). 

Selected elements were normalized to chondrite (cn) (see McDonough and Sun, 

1995) and average normal-mid-ocean ridge basalt (MORB) (see Sun and McDonough, 

1989). The chondrite-normalized anomalies of Ce/Ce* [Cecn/(Lacn x Prcn)
0.5

] and Eu/Eu* 

were calculated with respect to the neighbouring elements (see Tables 1 and 2), following 

the method of Taylor and McLennan (1985). Similarly, N-MORB-normalized Nb/Nb*, 

Pb/Pb*, Zr/Zr*, and Ti/Ti* anomalies were calculated with respect to the neighbouring 

elements (see Tables 1 and 2) using the same method. Mg-numbers were calculated as the 

molar ratio of Mg/(Mg+Fe
2+

), where Fe
2+

 is assumed to be 90 % of total Fe. 
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5.2  Strontium, neodymium and lead isotope analyses 

Seven samples of alkaline basalts were selected for Sr, Nd and Pb isotope analyses 

at the Geological Institute, University of Copenhagen, Denmark. Details of the analytical 

procedure are given in Frei and Polat (2013). The powdered samples were dissolved 

through standard procedures using concentrated HNO3, HF and HCl within Savillex
TM

 

beakers on a hotplate at 130ºC for 3 days. A 
150

Nd/
147

Sm spike was added before 

dissolution. The isotopic ratios of Sm, Nd, Pb and Sr, and of Sm and Nd isotopic dilution 

concentrations were determined from separately dissolved powder aliquots using a VG 

Sector 54 IT Thermal Ionization Mass Spectrometer (TIMS). 

Element separation was carried out using chromatographic columns charged with 

12 ml AG50W-X 8 (100–200 mesh) cation resin, where Sr and REE fractions were 

collected. Rare earth element fractions were further separated over smaller 

chromatographic columns containing Eichrom’s
TM

 LN resin SPS (Part# LN-B25-S). 

Strontium cuts were purified using a standardized 3M HNO3-H2O elution recipe on self-

made disposable mini-extraction columns, following the procedure of Horwitz et al. 

(1992). 
87

Rb/
86

Sr ratios were calculated using ICP-MS Rb and Sr concentrations. 

Samarium isotopes were measured in a static multi-collection mode, whereas Nd 

isotope ratios were measured in a multi-dynamic routine, both on a triple Ta-Re-Ta 

filament setting. The measured Nd isotope ratios were normalized to 
146

Nd/
144

Nd=0.7219. 

The mean value of 
143

Nd/
144

Nd ratios for the JNdi standard runs during the period in 

which the samples were analyzed amounted to 0.512105±5 (2σ; n=8). Precision for 

147
Sm/

144
Nd ratios is better than 2% (2σ). 
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Chemical separation of Pb from the whole-rock aliquot was carried out using 

conventional glass stem and subsequently miniature glass stem anion exchange columns 

containing, respectively, 1 ml and 200µl of 100–200 mesh Bio-Rad AG 1×8 resin. Lead 

isotope ratios were determined in a static multi-collection-mode where fractionation was 

controlled by repeated analysis of the NBS 981 standard using values of Todt et al. 

(1993). Total procedural blanks were below <200 pg Pb which compared to >100 ng Pb 

loads. 
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CHAPTER 6 

Petrography 

6.1  Mantle xenoliths 

The samples were studied using transmitting light microscopy and scanning 

electron microscope (SEM) with energy dispersive spectroscopy (EDS) to determine their 

textural and compositional characteristics. The xenoliths are dominantly spinel lherzolites 

with minor dunite and pyroxenite. They typically display a phaneritic, granoblastic 

texture, with triple junction grain boundaries (Fig. 8). Several associations have been 

identified, such as pyroxene-spinel and melt-fluid inclusions with pyroxene and spinel. A 

small number of samples exhibit small bands of neoblasts with a mosaic-like texture. 

Olivine comprises the largest modal abundances (40−70%) in the xenoliths. They are 

typically subhedral, homogeneous, one to two millimeters in size, colourless to pale 

yellow-green (Figs. 8 and 9), and are of forsterite (Fo87−93) composition. 

Pyroxene grains are anhedral to subhedral, often fractured, constitute 30−50% of 

the samples and are dominated by ca. one millimeter orthopyroxene (enstatite) and 

clinopyroxene (diopside). Orthopyroxene grains are light brown and in some samples 

show evidence of mineral-melt chemical reactions (resorption). Clinopyroxene grains are 

tinted green and contain, on average, 0.8 wt.% Cr. Clinopyroxene also shows evidence of 

mineral-melt chemical reactions (resorption) displaying a mottled texture associated with 

fluid and/or melt inclusions (Figs. 8 and 9). 

Spinel is the only major aluminous phase present and the least abundant mineral, 

comprising approximately 5% of the samples. Spinel grains are homogenous, reddish 

brown to dark brown, 250−300 micrometers in size, and compositionally Cr-rich. The 

majority of spinel grains are anhedral and sporadically display xenomorphic and skeletal 
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textures (see also Mercier and Nicolas, 1975). Spatially spinel is associated with 

clinopyroxene and occasionally displays diffuse grain boundaries (Fig. 8). 

Other studies of mantle xenoliths from within British Columbia reported similar 

mineralogical and textural characteristics, with only minor differences (Littlejohn and 

Greenwood, 1974; Brearley and Scarfe, 1984; Brearley et al., 1984; Sun and Kerrich, 

1995; Peslier et al., 2002; Greenfield et al., 2013). Some studies documented exsolution 

lamellae of clinopyroxene within the orthopyroxene (Littlejohn and Greenwood, 1974; 

Peslier et al., 2002). Augite-bearing mantle xenoliths were identified in numerous 

locations (Littlejohn and Greenwood, 1974; Brearley and Scarfe, 1984; Peslier et al., 

2002), as well as harzburgites (Littlejohn and Greenwood, 1974; Peslier et al., 2002; 

Greenfield et al., 2013). A sample containing pargasitic amphibole (mode <5%) was 

found in a Cr-diopside spinel lherzolite by Brearley and Scarfe (1984) from Lightning 

Peak in British Columbia. 

 

6.2  Alkaline basalts 

The host rocks compositionally range from basanites to alkaline basalts and are 

very fine-grained and vesicular (Fig. 10). Due to the fine-grained nature it is difficult to 

determine its exact mineralogical composition. Plagioclase (± nepheline) and pyroxene 

and Fe-Ti oxide phases were identified. Olivine fragments from the mantle xenoliths are 

also present. Olivine and plagioclase display various skeletal textures (Fig. 10d). Several 

samples contain quartz xenocrysts with a reaction rim of unknown fine-grained minerals. 
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CHAPTER 7 

Results 

7.1  Mantle xenoliths 

The mantle xenoliths are characterized by 42.8−45.2 wt.% SiO2, 37.5−42.7 wt.% 

MgO, 8.2−9.7 wt.% Fe2O3 (Table 1). Al2O3 (0.85−4.61 wt.%) and TiO2 (0.02−0.16 wt.%) 

show moderate variations, resulting in super-chondritic Al2O3/TiO2 (21−72) ratios (Table 

1). CaO concentrations range from 0.61−3.8 wt.%, whereas the CaO/Al2O3 possess a 

narrow range (0.71−0.92). They have rather restricted Mg-numbers (89−92%) but are 

strongly depleted in incompatible elements (Ba=2−11 ppm; Sr=3−31 ppm; Zr=6−21 ppm, 

K2O=0.01−0.07 wt.%) and variably depleted in transitional metals (V=41−95 ppm; 

Sc=6−17 ppm) (Table 1). Yttrium (1−3 ppm) is also strongly depleted. Both Zr/Hf and 

Nb/Ta ratios show sub- to super-chondritic values (Zr/Hf=34−60 and Nb/Ta=13−32) 

whereas Y/Ho (25−31) retains a near-chondritic value (Fig. 11; Table 1). 

On the basis of chondrite-normalized REE patterns, samples are divided into three 

groups: (1) Group 1 has concave-up LREE patterns (La/Smcn=0.48−1.16; 

Gd/Ybcn=0.71−0.92) (Fig. 12a); (2) Group 2 is characterized by flat to moderately LREE-

enriched patterns (La/Smcn=1.14−1.92; Gd/Ybcn=0.87−1.09) (Fig. 12b); and (3) Group 3 

displays strongly LREE-enriched patterns (La/Smcn=1.53−2.45; Gd/Ybcn=1.00−1.32) 

(Fig. 12c). All three groups display negative Ti anomalies (Ti/Ti*MORB=0.68−0.95) 

relative to Eu and Gd (Table 1; Figs. 12e-g and 13). In all Groups, Zr displays positive 

anomalies (Zr/Zr*MORB=1.11−2.13) relative to Sm and Eu (Table 1; Figs. 12e-g and 13). 

Two outlier samples (TA-2012-14, TA-2012-25) do not fit into the initial three groupings 

and display separate geochemical signatures (Fig. 12d and h). These two outlier samples 

represent the highest Mg-numbers of 90.6 and 91.9, as well, La/Smcn ratios 5.65 and 6.65, 
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respectively (Table 1). TA-2012-14 possesses the highest Al2O3/TiO2 ratio of 72 (Table 

1). The outlier samples also have larger positive Zr anomalies (Zr/Zr*MORB= 3.37−4.78) 

than the rest of samples (Fig. 12h). All samples have negative Nb anomalies 

(Nb/Nb*MORB=0.18−0.89) relative to U and K (Fig. 12). 

 

7.2  Alkaline basalts 

The Tasse alkaline basalts are characterized by low SiO2 (44.2−46.0 wt.%) values. 

They have moderately variable MgO (6.5−10.2 wt.%), CaO (7.5−8.6 wt.%), Fe2O3 

(12.9−14.9 wt.%), and Al2O3 (13.6−15.0 wt.%) contents (Table 2). Mg-numbers (%) vary 

between 47 and 59. High total alkaline element values (Na2O+K2O=5.1−6.6 wt.%) (Table 

2) are consistent with an alkaline basalt composition. They have highly fractionated REE 

patterns (La/Smcn=3.15−3.80; Gd/Ybcn=3.42−4.61) (Fig. 14a), consistent with an alkaline 

basalt affinity. They are strongly enriched in incompatible elements (e.g., TiO2=2.38−3.1 

wt.%; Ba=580−797 ppm; Sr=872−993 ppm; Zr=302−383 ppm) (Fig. 14b). High Zr and 

low Y (24−27 ppm) concentrations resulting in high Zr/Y=12−14. The basalts display 

positive anomalies of Zr (Zr/Zr*MORB=1.32−1.51) and negative Ti 

(Ti/Ti*MORB=0.80−0.96) anomalies (Table 2). Niobium shows slight positive anomalies 

(Nb/Nb*MORB=0.98−1.18) (Table 2). The samples are uniform in composition and exhibit 

very narrow ranges amongst major and trace elements. 

 

7.3  Strontium, neodymium and lead isotopes of the alkaline basalts 

The Tasse basalts have very small ranges of 
87

Sr/
86

Sr (0.703346−0.703591). 

87
Rb/

86
Sr ratios range from 0.1185 to 0.1269 (Table 3). They have uniform 

143
Nd/

144
Nd 
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(0.512834−0.512922) and 
147

Sm/
144

Nd (0.1093−0.1117) ratios, yielding large positive 

εNd (+3.8 to +5.5) values (Table 4). Depleted mantle model ages range between 338 and 

474 Ma. Like Sr and Nd isotopes, Pb isotopes also display very narrow variations 

(
206

Pb/
204

Pb=19.40−19.58; 
207

Pb/
204

Pb=15.57−15.60; 
208

Pb/
204

Pb=38.99−39.14) (Table 5). 

Figure 15 compares the Sr, Nd and Pb isotopic compositions of the Tasse alkaline basalts 

with MORB, OIB, HIMU, and FOZO, and with basalts from various arcs, forearcs, back-

arcs and continental flood basalt provinces. On 
87

Sr/
86

Sr versus 
143

Nd/
144

Nd, 
206

Pb/
204

Pb 

versus 
207

Pb/
204

Pb, 
206

Pb/
204

Pb versus 
208

Pb/
204

Pb, and 
206

Pb/
204

Pb versus 
87

Sr/
86

Sr 

diagrams, the alkaline basalts plot in the OIB field. They also plot close to the FOZO 

field. 
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CHAPTER 8 

Discussion 

8.1  Source characteristics of the mantle xenoliths 

The concave-upward LREE patterns of Group 1 xenoliths are similar to those of 

Phanerozoic boninites and forearc peridotites, reflecting the addition of La, Ce and Pr to a 

strongly LREE-depleted mantle domain (see Pearce et al., 1992; König et al., 2010). 

Similarly, Group 1 xenoliths share the super-chondritic Al2O3/TiO2 (32−34) ratios, 

MORB-normalized  negative Nb (0.14−0.34) and Ti (0.84−0.93), and positive Rb, U, K, 

Pb (4.51−5.12) and Zr (1.37−2.13) anomalies of Phanerozoic boninites (see Pearce et al., 

1992; König et al, 2010). These geochemical characteristics are collectively consistent 

with the enrichment of a highly depleted mantle domain by subduction-derived melts 

and/or fluids in a sub-arc mantle wedge. Although Group 2 and Group 3 xenoliths share 

the enrichment of LILE (Rb, Ba, K), LREE, Th, U, Pb, Zr, Hf of Group 1 xenoliths, they 

have higher abundances of all these elements than Group 1 xenoliths (Fig. 12), suggesting 

that the sources of Group 2 and Group 3 xenoliths underwent more extensive 

metasomatic enrichment than the source of Group 1 xenoliths by subduction-derived 

melts and/or fluids. Different degrees of enrichment in the sources of Groups 1, 2 and 3 

xenoliths are consistent with the existence of a heterogeneous mantle domain beneath the 

Omineca belt (Fig. 4) and differential metasomatic enrichment processes in the sub-arc 

mantle wedge beneath southeastern British Columbia. 

The distinct geochemical characteristics of samples TA-2012-14 and TA-2012-25 

are also consistent with heterogeneous mantle domain beneath the Omineca belt. Sample 

TA-2012-14 is a spinel lherzolite and shows evidence of extensive melt metasomatism 

modifying clinopyroxene (Fig. 8e-f), resulting in a resorption texture and an LREE-
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enriched, U-shaped pattern with mild MREE depletion (Fig. 12d). Sample TA-2012-25 is 

a dunite and dominated by high LREE and lower HREE typical of LREE-enriched 

dunitic samples (Fig. 12d). These samples display strong U, K, Pb, P, Zr and Hf 

anomalies, as well as Th. Negative anomalies are associated with Nb (Ta) and Ti (Fig. 

12h). 

Mantle xenoliths have been identified globally and in different tectonic 

environments (Ionov et al., 2006; Arai et al., 2007; Zheng et al., 2007; Lu et al., 2013). It 

is well known that the Canadian Cordillera has been formed through many periods of 

accretion due to subduction and arc related tectonism (Gabrielse et al., 1991; Price, 1994; 

Hart, 1999; Monger and Price, 2002; Eyles and Miall, 2007; Monger, 2014). Ultramafic 

rocks occurring in different geodynamic settings have distinct rock associations and 

geochemical signatures (Bodinier and Godard, 2003; Beccaluva et al., 2004; Ishizuka et 

al, 2014; Khedr et al., 2014). In order to constraint their origin, the geochemistry of the 

mantle xenoliths in the Canadian Cordillera are compared with those of ultramafic rocks 

formed in forearcs, ophiolites and orogenic massifs. 

 

8.1.1  Comparison with other Phanerozoic ultramafic rocks 

Forearc ultramafic rocks are commonly represented by serpentinized harzburgites 

and dunites with subordinate pyroxenites and lherzolites (Ishii et al, 1992; Pearce et al., 

1992; Parkinson and Pearce, 1998; Pearce et al., 2000; Hyndman and Peacock, 2003; 

Beccaluva et al., 2004; Ishizuka et al, 2014). Harzburgites and dunites are characteristics 

of a highly depleted mantle source and have high Mg-numbers (92−94) (Ishiwatari, 1985; 

Ishii et al., 1992; Artemieva, 2011). Chondrite-normalized patterns indicate strongly 
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depleted sources (Parkinson and Pearce, 1998), with heavy LREE-depletion and positive 

incline towards the HREE component, leading to lower MREE/HREE and LREE/HREE 

values (Fig. 16b). Strong depletion of LREE, relative to HREE, and high Mg-numbers 

have been attributed to high degrees of partial melting and multiple stages of melt 

extraction (Ishiwatari, 1985; Ishii et al., 1992; Pearce et al., 2000; Artemieva, 2011). 

Ophiolites are representative sections of oceanic lithosphere (crust and upper 

mantle) that have been accreted to the continental lithosphere (Bodinier and Godard, 

2003; Metcalf and Shervais, 2008; Pearce, 2008; Dilek and Furnes, 2014; Furnes et al., 

2014, 2015; Pearce, 2014). Many major orogenic belts, such as the Himalayan, 

Appalachian, Altaids, and Alpine orogenic belts, contain numerous ophiolite complexes 

(Bodinier and Godard, 2003; Şengör and Natal’in, 2004; Eyuboglu et al., 2007; Hanghøj 

et al., 2010; Dilek and Furnes, 2011, 2014; Uysal et al., 2012; Santosh et al., 2013; Khedr 

et al., 2014, Pearce, 2014). The ultramafic basal section of ophiolites may contain 

lherzolitic (Internal Ligurides, Western Alps) and/or harzburgitic (Semail ophiolite, 

Oman) rock types (Bodinier and Godard, 2003; Hanghøj et al., 2010; Dilek and Furnes, 

2014). Most ophiolites do not have the complete rock association as defined in the 

Penrose Conference in 1972 (Anonymous, 1972), as their mantle section tend to be 

fragmented and destroyed during their accretion (Kusky, 2004; Dilek and Furnes, 2011, 

2014; Furnes et al., 2014, 2015). Ophiolitic lherzolites are more commonly distinguished 

by ‘N-MORB’ type patterns, demonstrated by LREE-depletion in chondrite-normalized 

plots (Fig. 16b) (Bodinier and Godard, 2003; Hanghøj et al., 2010; Khedr et al., 2014). 

Similar to harzburgites, ophiolitic lherzolites occasionally exhibit minor to moderate 
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positive slope towards the HREE, which differs from the 'N-MORB' type flat MREE to 

HREE patterns (Fig. 16b) (Bodinier and Godard, 2003; Khedr et al., 2014). 

Orogenic peridotite massifs are characterized by a predominance of lherzolites with 

minor harzburgites and dunites (Bodinier and Godard, 2003). Contrasting with ophiolitic 

peridotites, orogenic massifs do not show specific structural sequences (Bodinier and 

Godard, 2003). Orogenic massifs are representative of fertile mantle (>10% 

clinopyroxene) and commonly dominated by spinel peridotites of intermediate pressure 

(Bodinier and Godard, 2003). Petrologically and geothermobarometrically orogenic 

massifs are divided into three types: (1) high-(ultra-high)-pressure (garnet-bearing) 

peridotites, (2) intermediate pressure (spinel-bearing) peridotites, and (3) low pressure 

(plagioclase-bearing) peridotites (Bodinier and Godard, 2003). Serpentinized massifs are 

of low pressure within the plagioclase stability field and have been known to show 

evidence of recrystallization within the lower pressure environment (Bodinier and 

Godard, 2003). 

The major element composition of the Tasse lherzolites is comparable to other 

spinel lherzolites from various localities in British Columbia (Fig. 16b) (Peslier et al., 

2002; Francis et al., 2010; Greenfield et al., 2013). Similarly, the lherzolites studied by 

Peslier et al. (2002) are akin to the Tasse xenoliths, by showing distinctive groupings of 

LREE-depleted and moderately to more strongly LREE-enriched (Figs 12 and 16). 

Lherzolites reported by Peslier et al. (2002) show negative Zr, Hf, Ti, Nb, Ta anomalies 

and are variable in LILE. The negative Zr and Hf anomalies are not common with the 

Tasse suite, which may be due to heterogeneity in source composition or metasomatism. 

The LREE enrichment factors also differ. The most depleted lherzolites studied by Peslier 
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et al. (2002) show no LREE enrichment compared to the Tasse Group 1 lherzolites (Fig. 

16b). The sources of LREE enrichment may be attributed to metasomatism by either melt 

or subduction fluids and are variable in extent. The Tasse xenoliths are representative of 

pieces of a variably metasomatized sub-arc mantle emplaced by alkaline basalt 

upwelling. 

The major difference between the Tasse mantle xenoliths and ultramafic rocks from 

a forearc setting, ophiolites and massif peridotite is that the latter rocks are strongly 

serpentinized. In contrast to the dry nature of the Tasse mantle xenoliths (LOI <1 wt.%), 

ultramafic rocks from forearc settings, ophiolites and massif peridotites are strongly 

hydrated (LOI >8 wt.%). 

Forearc harzburgites and dunites (Parkinson and Pearce, 1998) contain notable 

geochemical differences compared with the Tasse xenoliths. Izu–Bonin–Mariana forearc 

samples contain higher MgO and lower Fe2O3, CaO, Al2O3 and Na2O values. 

Distinctively lower Zr (<0.3 ppm) and greater Ni (2400–3100 ppm) values are also 

notable compared with the Tasse lherzolites (Table 1). Along with Zr, other HFSE, and 

Th and U are more enriched in the Tasse xenoliths. Both the Tasse and Izu–Bonin–

Mariana xenoliths show comparable fluctuations in LILE (e.g., K, Rb, Sr, Ba), as seen in 

many arc environments (Pearce et al., 2000; Arai et al., 2007; Ishizuka et al., 2014). 

Chondritic Y/Ho (~28) and sub- to superchondritic Nb/Th values (2–13) are 

representative of the Tasse xenoliths. Izu-Bonin-Mariana forearc samples display larger 

variation in Y/Ho (15–35) and subchondritic Nb/Th (1–5). The Tasse xenoliths represent 

a less depleted source with less alteration and notably there is an absence of harzburgites 

and serpentinization (serpentine minerals; e.g., antigorite, chrysotile). 



23 

 

The most depleted Tasse xenoliths (Group 1), show higher LREE 

(La/Smcn=0.48−1.16) and enriched HREE (Gd/Ybcn=0.71−0.92) patterns compared with 

ophiolitic lherzolites (La/Smcn=0.29–0.78 and Gd/Ybcn=0.27–0.65) (Khedr et al., 2014). 

Ophiolites, similar to forearc settings, represent a more depleted source than is seen in the 

Tasse suites, although geochemical similarities are notable. Both ophiolitic and Tasse 

lherzolites contain similar MgO (43–46 wt.%) and CaO (2.0–3.7 wt.%) content. The 

Tasse lherzolites contain higher TiO2, Al2O3, Fe2O3 and Na2O compared with ophiolites. 

Ophiolitic xenoliths contain similar Cr and slightly lower V and Ni contents. The greater 

variability of Eu/Eu*cn in ophiolitic lherzolites is not seen in the Tasse xenoliths 

(Eu/Eu*cn= avg. 1.01). 

Studies from China have shown an abundance of mantle xenoliths present, brought 

to the surface by both basaltic rocks and kimberlites (Menzies et al., 1993; Wang et al., 

1998; Wu et al., 2003, 2006; Xu et al., 2003; Chu et al., 2009). The majority of mantle 

xenoliths found throughout China are spinel lherzolites, harzburgites, dunites, wehrlites 

and pyroxenites (Wu et al., 2003, 2006; Xu et al., 2003; Chu et al., 2009). Garnet-bearing 

xenoliths are also present and are more commonly sampled by kimberlites from deeper 

mantle sources (Menzies et al., 1993; Wang et al., 1998; Chu et al., 2009). Lherzolites 

found within China share the major and trace element characteristics of the Tasse 

xenolith suite (see Chu et al., 2009). The more refractory dunites and harzburgites from 

the Mengyin kimberlites show evidence of LREE-enrichment (Chu et al., 2009), as the 

dunite sample from the Tasse suite. Spinel lherzolites hosted by the Penglai basalts 

exhibit similar enrichment patterns to the Group 2 and Group 3 spinel lherzolites of the 

Tasse suite (Chu et al., 2009). The trace element patterns indicate variable metasomatic 
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enrichment throughout the lithospheric mantle beneath China (Menzies et al., 1993; 

Wang et al., 1998; Wu et al., 2003, 2006; Xu et al., 2003; Chu et al., 2009). 

Mineralogically, mantle xenolith samples from China show evidence of both melt and 

hydrous metasomatism (Wu et al., 2003, 2006; Xu et al., 2003; Chu et al., 2009). 

Evidence of hydrous metasomatism is supported by the presence of phlogopite-, 

amphibole- and apatite-bearing mantle peridotites (Xu et al., 2003; Wu et al., 2006), 

which differs from the Tasse suite wherein no hydrous minerals have been recognized. 

The Tasse xenoliths more closely resemble orogenic spinel lherzolites of the Lanzo 

and Lherz massifs (Le Roux et al., 2007; Riches and Rogers, 2011; Guarnieri et al., 

2012). Field relationships of the Tasse xenoliths did not exhibit any particular structure or 

patterns. The xenoliths appeared as nodules or massif bodies emplaced within the alkaline 

basalts. Geochemically ophiolites and orogenic massifs share similarities; however, the 

LREE patterns of the Tasse lherzolites are more representative of the orogenic Lherz 

lherzolites showing elevated signatures and a moderate incline towards the HREE 

(Riches and Rogers, 2011; Khedr et al., 2014). Major element signatures and Mg-

numbers compared with the orogenic North Lanzo spinel lherzolites (Guarnieri et al., 

2012) are virtually identical. Cardinal differences include Fe2O3, HFSE, Th and U which 

are higher in the Tasse xenoliths. The elevated abundance in the aforementioned elements 

can be attributed to arc processes. There are no distinctive differences amid Y/Ho values 

(28) or Eu/Eu*cn (~1.0). 
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8.2  The petrogenetic origin of the Tasse alkaline lavas 

The Tasse basalts are uniform in composition. They have La/Smcn (3.15–3.80), 

Gd/Ybcn (3.42–4.61), Zr/Y (13–14), Nb/Y (2.6–3.0) and Th/Yb (3.04–3.80) ratios (Table 

2), and high alkaline element (e.g., Na2O, K2O, Rb) contents, consistent with an 

incompatible-element enriched mantle source. The trace element systematics suggests a 

homogeneous mantle source or homogenized magma chamber(s). Negative Ti anomalies 

(0.80–0.96) may have resulted from a Ti-bearing mineral fractionation, possibly ilmenite 

or magnetite, as they are common accessory minerals in mafic rocks (see Barnes and 

Roeder, 2001). Eu/Eu* values are constant; and average 1.01, indicating that plagioclase 

was not a major fractionating phase. 

The alkaline lavas are Cenozoic and scattered throughout British Columbia 

(Brearley et al., 1984; Carr, 1995; Sun and Kerrich, 1995; Peslier et al., 2002; Abraham et 

al., 2005; Sluggett, 2008; Kuehn et al., 2015). The origin of the alkaline basalts is 

attributed to partial melting of an enriched mantle source by either metasomatism or 

crustal contamination (Wilshire et al, 1980; Wilshire et al., 1988). Considering the 

metasomatic nature of the mantle xenoliths, the partial melting of an enriched mantle 

source model is highly probable, although the aforementioned models remain heavily 

debated. Kuehn et al. (2015) attributed the origin of alkaline basalts in the Satah 

Mountain and Baldface Mountain volcanic fields to a hot spot beneath central British 

Columbia. 

On 
87

Sr/
86

Sr versus 
143

Nd/
144

Nd, 
206

Pb/
204

Pb versus 
87

Sr/
86

Sr, 
206

Pb/
204

Pb versus 

207
Pb/

204
Pb, and 

206
Pb/

204
Pb versus 

208
Pb/

204
Pb diagrams, the Tasse alkaline basalts plot in 

the OIB field, and are located between MORB and FOZO fields, consistent with an 
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asthenospheric mantle source (Fig. 15). They plot away from the Turkish-Iranian Plateau, 

the Andean southern Volcanic Zone, the Izu-Bonin forearc, the Kuril arc, the Aleutian arc 

and the Scotia Ridge basalts on the Sr−Nd−Pb isotope diagrams (Fig. 15), suggesting that 

they are not derived from a subduction- modified mantle source. 

The following trace element and Sr−Nd−Pb isotope characteristics are inconsistent 

with significant crustal contamination of the Tasse alkaline basalts: (1) La/Nb (0.68–

0.73); (2) low Th/Nbcn (0.61–0.72); (3) low Al2O3/TiO2 (4.6–5.7); (4) Eu/Eu* (avg. 1.02); 

(5) Nb/Nb* (avg. 1.06); (6) large positive εNd (+3.8 to +5.5) values; and (7) low 
87

Sr/
86

Sr 

values (0.703346−0.703591) (Tables 2-4) (cf., Taylor and McLennan, 1995; Hofmann, 

1997; Polat et al., 1997; Rudnick and Gao, 2003; Kamgang et al., 2008; Yanagi, 2011; Li 

et al., 2014). 

 

8.2.1  Comparison with other Cenozoic alkaline lavas 

Cenozoic alkaline magmatism was not only common in British Columbia but also 

widespread globally (Wilshire et al., 1988; Polat et al., 1997; Colgan et al., 2006; Camp 

and Hanan, 2008; Hidas et al., 2010; Nkouandou and Temdjim, 2011; Putirka and Platt, 

2012; Camp et al., 2013). Many of these alkaline basaltic lavas (e.g., Argentina, 

Cameroon, China, Hungary, Oman) host mantle xenoliths (Chen et al., 2007, 2014; 

Dantas et al., 2009; Grégoire et al., 2009; Hidas et al., 2010; Nkouandou and Temdjim, 

2011; Liu et al., 2012; Li et al., 2014). 

The Tasse alkaline lavas in British Columbia share many geochemical 

characteristics of the Cenozoic alkaline lavas erupted in different parts of the world (Chen 

et al., 2007; Dantas et al., 2009; Grégoire et al., 2009; Hidas et al., 2010; Nkouandou and 
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Temdjim, 2011; Liu et al., 2012; Li et al., 2014). Nkouandou and Temdjim (2011) 

studied the geochemistry of both spinel lherzolite and alkaline lavas associated with the 

Adamawa Massif, Cameroon Line, Cameroon, Africa. The basaltic flows in the region 

are of alkaline to peralkaline nature and appear to have been derived by low degrees of 

partial melting (1−2%) from a FOZO-mantle source at approximately 80 km depth, 

leaving a residual garnet source (Nkouandou and Temdjim, 2011). Chondrite-normalized 

REE patterns (Fig. 17c) of the Cameroon Line basalts are similar to those of the Tasse 

alkaline lavas. N-MORB multi-element patterns (Fig. 18c) of the Cameroon Line basalts 

show differences with highly negative K and P (sample C-10) anomalies. The Cameroon 

Line samples show two distinct trace element patterns with NG-130 more closely 

resembling characteristics of the Tasse basalts. Positive Ba, Ta and Zr are shared between 

both Cameroon Line and Tasse samples (Figs. 17c and 18c). 

The Bohai Bay Basin, northeast China, contains >1 km thick, compositionally 

uniform alkaline basaltic flows displaying several eruption cycles (Li et al., 2014). On N-

MORB-normalized diagrams, these flows display positive Nb anomalies as well, negative 

Th, U, Sm and Hf anomalies (Fig. 18b) (Li et al., 2014). The basaltic flows each contain 

specific signatures that appear to be unrelated to continental input or metasomatic 

reaction due to low Th and Nb (Rudnick and Gao, 2003; Li et al., 2014) and positive Nb 

and Ta anomalies, respectively (Fig. 18b). The basaltic flows are ascribed to lithospheric 

thinning to thickening throughout the eruption cycles (Li et al., 2014). 

All three Bohai Basin basalt sequences contain similar Al2O3 and lower Fe2O3 and 

alkali (K2O+Na2O) content than the Tasse basalts. The Guantao group contains lower 

MgO and higher SiO2 content than the other two basaltic series of the Bohai Bay Basin 
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and Tasse samples. The Guantao group also shares similar Zr/Y (11−16) ratios as the 

Tasse basalts. On N-MORB multi-element plots Tasse alkaline basalts show positive 

anomalies in Ba, Sr and Zr with variable Ti negative anomalies most comparable to the 

Guantao group basalts from the Bohai Bay Basin. The Tasse basalts do not show large 

Nb anomalies as seen in the Bohai Basin basalts. All three Bohai Basin bay basalt suites 

are slightly less enriched in LREE and MREE than the Tasse basalts (Fig. 17b). 

Quaternary basalts studied by Polat et al. (1997) in Turkey, contain two suites of 

alkaline basalts, Ceyhan-Osmaniye plain basalts (COPB) and Hassa graben basalts 

(HGB). The two suites of basalts originated from a metasomatized asthenospheric source, 

show OIB characteristics and are associated with the East Anatolian and Dead Sea fault 

zones. The COPB basalt can be further subdivided into two groupings, but overall they 

contain similar SiO2, Al2O3, higher CaO and lower Fe2O3 and alkali (K2O+Na2O) content 

than the Tasse basalts. Group 1 COPB contain higher Zr/Y (~10) values than those of 

Group 2 (Zr/Y = 6.5-7.6). HGB have comparable TiO2, Al2O3, MgO and CaO contents 

with higher alkali (K2O+Na2O) and lower Fe2O3 contents in contrast to Tasse basalts. 

Neither the COPB nor HGB share similar Zr/Y ratios to the Tasse xenoliths. Both COPB 

and HGB basalts show less LREE enrichment compared with the Tasse basalts (Fig. 17c), 

with HGB being significantly lower. The COPB and HGB sequences contain positive Ti 

anomalies which differ from the Tasse basalts (Fig. 18c). Positive Ba, Sr and Zr and 

negative Sm anomalies are seen amongst all basalt sequences (Fig. 18c). 

Alkaline lavas in many of these locations share some geochemical similarities to 

the Tasse alkaline basalts but originated in differing tectonic settings. The Tasse alkaline 

basalts are compositionally more akin to those of the Guantao group and NG-130 of the 
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Cameroon Line, although the degree of source enrichments and geodynamic processes 

may differ (see Nkouandou and Temdjim, 2011). 

The Tasse alkaline basalts possess higher 
143

Nd/
144

Nd but lower 
87

Sr/
86

Sr ratios than 

the Deccan Trap and the Turkish-Iranian Plateau basalts, signifying less interaction with 

the continental crust (Fig. 15). In addition, the Tasse basalts have higher 
206

Pb/
204

Pb ratios 

than basalts in the North Queensland, the Turkish-Iranian Plateau and the Payenia 

Volcanic Province of the southern Andes (Fig. 15), suggesting higher 
238

U/
204

Pb values in 

source of the Tasse basalts than in those of the North Queensland, the Turkish-Iranian 

Plateau and the Payenia Volcanic Province counterparts. 

 

8.3  Geodynamic constraints on the origins of Cenozoic alkaline lavas in British 

Columbia 

An early framework for the Late Cenozoic volcanism in the Canadian Cordillera 

was provided by Bevier et al. (1979) and Souther (1991) who divided the region into a 

series of belts and fields, each with a distinctive rationale such as subduction, extension 

or mantle plume activity. Since then, numerous studies of the volcanic belts have 

provided additional information on age and petrogenesis (e.g., Edwards and Russell, 

2000; Preece and Hart, 2004; Abraham et al., 2005; Sluggett, 2008; Manthei et al., 2010; 

Mullen and Weis, 2013; and Kuehn et al., 2015).  Studies of subducted slab geometry 

(Breitsprecher et al., 2003; Madsen et al., 2006) and mantle tomography (Frederiksen et 

al., 1998; Audet et al., 2008; Mercier et al., 2009; and Bao et al., 2014) have provided 

additional constraints and insights into the crustal and mantle environments and the 

processes responsible for the magmatism. 
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The most fundamental geological elements in the region are the subducted slabs 

and the intervening Northern Cordilleran Slab Window which divide the region into two 

volcanic arcs and an intervening field of slab window-associated volcanoes (Thorkelson 

and Taylor, 1989; Madsen et al., 2006). The slab window-related field is approximately 

2000 km long and is characterized by mafic, alkalic compositions with intra-oceanic trace 

element profiles. Localized magmatism in this field began in the Oligocene, became 

widespread during the Miocene to Pliocene, and contracted to fewer localities in the 

Pleistocene and Holocene (Edwards and Russell, 2000). Clearly, the absence of slab 

beneath this region was a fundamental control on the compositions of the volcanoes, few 

of which bear supra-subduction zone signatures. 

Thorkelson et al. (2011) suggested that diffuse upwelling through the slab window 

resulted in low-degree decompressional anatexis of both asthenospheric and lithospheric 

reservoirs and was the primary mechanism of the magmatism. However, the field of 

intraplate volcanism is both wide and long, and additional causes of magmatism have 

been proposed and deserve exploration. Focused mantle upwelling in the form of a small 

plume may have been responsible for the Anahim belt (Souther, 1986; Kuehn et al., 

2015), although the younging of volcanism from west to east (Kuehn et al., 2015) is not 

as consistent as might be expected, the topographic elevation of the region is modest, and 

tomographically identified slowness anomalies (Audet et al., 2008; Mercier et al. 2009) 

are not particularly deep or well defined. 

Lithospheric extension related to intervals of divergence between the Pacific and 

North American plates (Edwards and Russell, 2000) has also been proposed and appears 

to be particularly relevant to the central part of the intraplate field where Neogene graben 



31 

 

development and faulting have been documented (Souther, 1991; Edwards and Russell, 

2000). However, many of the intraplate volcanoes are located where no extensional 

structures have been identified, and the degree of extension within most of the Canadian 

Cordillera during Miocene and later times appears to be low and unlikely to trigger 

mantle melting. Nevertheless, localized extensional faulting may have provided conduits 

for magma that was produced by other means such as upwelling and decompression. 

Back-arc style mantle convection and melting behind the Garibaldi arc in southern 

British Columbia remains as a viable mechanism to form the Chilcotin Group (Bevier et 

al., 1979). However, these back-arc lavas are broadly similar to those found elsewhere in 

the intraplate belt, suggesting a common mechanism. Appealing solely to mantle stirring 

by the subducting Juan de Fuca slab for these lavas may be problematic, however, 

because the Chilcotin Group extends northward beyond the modeled extent of subducted 

slab of the Juan de Fuca plate and merges with the so-called Anahim hot-spot track. The 

back-arc model for this area, however, is strongly supported by the geophysical modeling 

of Currie and Hyndman et al. (2006) who invoked small-domain mantle convection 

within the asthenosphere behind the arc. That model may be broadly applicable to 

magmatism and high heat flow in southern British Columbia, but appears to be unable to 

account for Miocene to Holocene volcanism in the central and northern parts of the 

intraplate belt which have not lain behind a volcanic arc since the Paleogene (Madsen et 

al., 2006). Moreover, some of the magmatism and high heat flow in southern British 

Columbia may be related to tears and breaches in the downgoing slab (Madsen et al., 

2006; Sluggett, 2008; Mullen and Weis, 2013). 
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Another model for high heat flow and magmatism in the intraplate field is 

lithospheric delamination and orogenic collapse in the Paleogene (Ranalli et al, 1989; 

Bao et al., 2014). In this model, delamination removed much of the previously extant 

lithospheric mantle in the central and western Cordillera, contributing to Paleocene to 

Eocene magmatism and leaving behind a thin layer of lithospheric mantle. As noted by 

Francis et al. (2010), the mantle lithosphere appears to have undergone thinning in the 

Neogene, a process that would require additional thermal erosion, albeit of a mantle 

lithosphere that may have been catastrophically thinned during the Paleogene. 

 

8.4  Characteristics of the lithospheric mantle beneath southeastern British Columbia  

Understanding the origin of the Tasse alkaline basalts and their mantle xenoliths 

requires the assessment of the degrees of partial melting, source characteristics and the 

nature of metasomatism associated with subduction and arc generating processes in 

southeastern British Columbia. 

The Tasse mantle xenoliths represent a section of mantle beneath southeastern 

British Columbia. The major element characteristics of the xenoliths indicate the mantle 

has emanated from melt extraction of a relatively fertile source (Fig. 19) (Canil and Lee, 

2009). Modal clinopyroxene has been used to estimate mantle fertility (Parkinson and 

Pearce, 1998). The Tasse lherzolites contain ~10−15% clinopyroxene. Depletion of 

LREEs in the Tasse lherzolites reflects extraction of basaltic melts from their sources (cf., 

Peslier et al., 2002; Pearce and Stern, 2006). There is no evidence to suggest a single 

partial melting event and based on subduction and arc forming history of British 

Columbia, the removal of basaltic partial melts may have occurred over a large time span. 
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The elevated Mg-numbers are also indicative of a source that underwent various degrees 

of partial melting (cf., Ishiwatari, 1985; Ishii et al, 1992; Parkinson and Pearce, 2008). 

Although the Tasse xenolith suite contains only one representative dunite sample, 

harzburgites have been found in other localities within British Columbia (Peslier et al., 

2002; Greenfield et al., 2013). These more refractory mantle xenoliths typically contain 

higher Mg-numbers stemming from high degrees of partial melting (see Ishiwatari, 1985; 

Ishii et al, 1992). The lherzolites within the Tasse property contain rather restricted Mg-

numbers (90). The dunite sample from the Tasse location has the highest Mg-number 

(92) indicating a larger degree of partial melting from the initial fertile source (Figs. 19 

and 20). The semi-quantitative model produced by Ishiwatari (1985), using Mg-numbers 

and major element oxides (wt.%) illustrates the relative degrees of melting in ultramafic 

rocks. When the Tasse samples are plotted, it shows that the lherzolites have undergone 

10−15% partial melting, while the dunite sample resembles those for forearc dunite and 

harzburgites (see Ishii et al., 1992), which indicate higher degrees of partial melting, 

25−30% (Fig. 20). The 10−15% degrees of partial melting are consistent with the Peslier 

et al. (2002) model for Cr-diopside bearing lherzolites from other localities within British 

Columbia. 

Th-REE-LILE-HFSE (e.g., Th/Yb, Th/Nb, La/Nb, La/Sm) ratios are commonly 

used to assess the subduction zone geochemistry, given that Th, LREE and LILE tend to 

be mobilized whereas HFSE are predominantly immobile during slab-dehydration 

processes (Pearce and Parkinson, 1993; Pearce and Peate, 1995; Zack and John, 2007; 

Pearce, 2008, 2014; König et al., 2010; Shervais and Jean, 2012). Chondritic values of 

coupled HFSE ratios, such as Nb/Ta and Zr/Hf, have been used for assessing source 
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characteristics and petrogenetic processes (Jochum et al., 1989). The mantle xenoliths 

sampled during this study show subchondritic to superchondritic values for Y/Ho and 

Nb/Ta, while Zr/Hf chondritic values tend to be superchondritic (Fig. 11; Table 1). The 

spread seen in Zr/Hf and Nb/Ta may in part be due to metasomatic processes, 

fractionation effects or an increase in element mobility. 

It is common for Nb and Ta to substitute into a Ti-bearing phase, such as rutile or 

ilmenite (see Stolz et al., 1996; Plank, 2005; König et al., 2010; Hui et al., 2011), 

resulting in depletion of these elements relative to Th, LREE and LILE. The mantle 

xenoliths do not show any abundance of such phases, which suggests that the Ti-bearing 

phases may have been retained in the subduction slab. The enrichment of Th and La 

relative to Nb and Ta by rutile-saturated melts can also generate negative Nb-Ta 

anomalies as seen in the Tasse xenoliths (see Plank, 2005; König et al., 2010). Island arc 

rocks are commonly depleted in HFSE, although not necessarily Zr and Hf (see Saunders 

et al. 1991; Pearce and Peate, 1995). The Sr/Nd values (15±8) of the Tasse suite are 

similar to global averages (15±5) of other peridotites (Jochum et al., 1989). Island arc 

basalts have elevated Sr/Nd (30−35) (Jochum et al., 1989). The Sr/Nd values seen in the 

Tasse suite are more characteristic of MORBs (10−15) and OIBs (14−22). 

The LREE-enriched characteristics of the Tasse mantle xenoliths are variable from 

slight to more strongly enriched samples (Fig. 12). This has also been seen in lherzolite, 

dunite and harzburgite xenoliths throughout southeastern British Columbia (Brearley and 

Scarfe, 1984; Brearley et al., 1984; Sun and Kerrich, 1995; Peslier et al., 2002; 

Greenfield et al., 2013) indicating that metasomatism has likely been prevalent 

throughout the region. 



35 

 

The nature of the metasomatism is correlated with subduction and arc forming 

processes. Common forms of metasomatism associated with these environments are 

typically slab dehydration and melt percolation. The Tasse xenoliths do not contain any 

hydrous mineral phases, as seen in forearc peridotites (see Ishii et al., 1992; Pearce et al., 

1992; Parkinson and Pearce, 1998; Pearce et al., 2000; Hyndman and Peacock, 2003; 

Ishizuka et al., 2014), commonly associated with serpentinization. One such study, noted 

earlier by Brearley and Scarfe (1984), did find minor amounts of amphibole in one spinel 

lherzolite from British Columbia, but it is not commonly present throughout suites of 

xenoliths studied within British Columbia. It does not appear that hydrous metasomatism 

is prevalent within the subcontinental lithosphere throughout a large extent beneath 

southeastern British Columbia. 

Numerous studies have attributed mantle metasomatism to silicate and carbonatite 

melt percolation and interaction with peridotites (see Yaxley et al., 1998; Coltorti et al. 

1999; Litasov et al., 2000; Downes, 2001; Dixon et al., 2008; Maruyama et al., 2009; 

Martin et al., 2014). Coltorti et al. (1999) suggested that carbonatite melt metasomatism 

results in strong LREE enrichments (La/Ybcn>3−4) and various Ti and Zr negative 

anomalies compared to alkaline-silicate metasomatism. The LREE enrichment, and 

positive Zr and negative Ti anomalies in the Tasse xenoliths (Figs. 12 and 13) likely 

reflect carbonatite- or alkaline-melt metasomatism. Although, no petrographic evidence 

of secondary carbonate phases has been recognized in the Tasse xenoliths, clinopyroxene 

resorption texture (Fig. 8e-f) might reflect the effect of carbonate metasomatism. 

However, geochemical evidence: (1) La/Ybcn<4; (2) Ti/Eu > 3000; (3) positive Zr 

anomalies are consistent with alkalic-silicate metasomatism rather than carbonate-melt 
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metasomatism (Fig. 21) (Coltorti et al. 1999). Clinopyroxene and spinel in the Tasse 

mantle xenoliths might have formed at the expense of Al-rich orthopyroxene during 

alkalic-silicate melt peridotite interaction (cf., Kepezhinskas et al., 1995; Coltorti et al. 

1999). The alkali-silicate melt metasomatism may in part be related to the percolation of 

host alkaline basaltic melts. Although the alkaline basaltic rocks only erupted to the 

surface recently in the Cenozoic (Littlejohn and Greenwood, 1974; Brearley and Scarfe, 

1984; Brearley et al., 1984; Sun and Kerrich, 1995; Peslier et al., 2002; Greenfield et al., 

2013; Kuehn et al., 2015), the melts may have percolated through the mantle for extended 

periods of time prior to the eruption of the alkaline basalts. 

Re-Os studies of mantle xenoliths in British Columbia by Peslier et al. (2000a, b) 

have demonstrated that the lithospheric mantle beneath the Omineca and Intermontane 

belts is likely Precambrian in age. Specifically, the Os isotopic signature of the lherzolites 

indicates partial melting of the mantle during intervals in the late Mesoproterozoic, 

broadly at the time of Grenville orogenesis in eastern and southern North America. This 

interpretation implies continuation of North American subcontinental lithospheric mantle 

below a large swath of the accreted terranes (Peslier et al., 2000a, b) and is consistent 

with seismic interpretations that show westward continuation of North American crust 

under the Omineca and Intermontane belts (Cook et al., 2004). The Re-Os results are also 

consistent with an emerging realization of modest Grenville-age activity that extends in a 

belt from the northern Canadian Cordillera to the northwestern conterminous United 

States (Milidragovic et al. 2011). The interpretation of metasomatic activity in the mantle 

of the Canadian Cordillera is supported by the studies of Brearley and Scarfe (1984), 

Brearley et al. (1984) and Sun and Kerrich (1995). Our findings also suggest that the 
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mantle has undergone various events of partial melting and metasomatism (Figs. 19−21). 

We are unable to determine if the melting and metasomatism in the Tasse suite occurred 

during the Precambrian or Phanerozoic, using our current set of data. 

Studies of the Lherz massif have shown evidence regarding refertilization of 

refractory peridotites (harzburgites) producing secondary lherzolites (Le Roux et al., 

2007). The formation of the secondary lherzolites was shown by detailed structural 

mapping and geochemical analysis. Reaction textures at harzburgite-lherzolite contacts 

suggest refertilization of harzburgite by upwelling asthenospheric partial melts. Our study 

indicates that melt metasomatism played an important role in the origin of LREE- and 

LILE-enriched patterns by refertilizing numerous sections of previously depleted 

lithospheric mantle. This enrichment process is not specific to lherzolites, as harzburgites 

from British Columbia have also shown metasomatic enrichment (Peslier et al., 2002). 

Additional petrographic and geochemical studies of mantle xenoliths in southeast British 

Columbia are needed to better understand the possible refertilization of the mantle and 

secondary lherzolite formation, as seen in the Lherz massif. 
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CHAPTER 9 

Conclusions 

On the basis of new field observations, SEM analyses, and whole-rock major and 

trace element and Sr−Nd−Pb isotope data, the following petrologic and geodynamic 

conclusions are drawn for the Tasse alkaline basalts and mantle xenoliths. 

 

1. Distinct geochemical characteristics of the spinel peridotites analyzed for this study, 

as well as studies conducted by other researchers (e.g., Peslier et al., 2002; Francis et 

al., 2010; Kuehn et al., 2015) in southern British Columbia provide evidence for upper 

mantle heterogeneity. The presence of lherzolites, harzburgites and dunites throughout 

the Omineca and Intermontane belts demonstrate varying degrees of partial melting 

and metasomatism generating upper mantle heterogeneity. Tasse spinel lherzolites 

represent residues of 10–15% partial melt depletion and 20–25% partial melt 

depletion for the dunite sample. 

2. The Tasse xenoliths exhibit three distinctive REE patterns reflecting various degrees 

of metasomatic enrichment in a pre-Miocene sub-arc mantle wedge: (1) Group 1 is 

characterized by concave-upward LREE patterns; (2) Group 2 displays flat to 

moderately LREE enriched patterns; and (3) Group 3 is strongly LREE enriched. Two 

outlier samples exhibit unique patterns indicating further variable degrees of 

metasomatism. Metasomatism in the source of the xenoliths appears to have stemmed 

from percolating alkaline-silicate melts. All xenolith samples share positive Th, Rb K, 

Pb and Zr (Hf) anomalies and negative Nb (Ta) and Ti anomalies on MORB-

normalized trace element diagrams, which is consistent with the formation of the 
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subcontinental lithospheric mantle beneath southern British Columbia above 

subducted oceanic slabs. 

3. The Tasse alkaline basalts are uniform in composition and originated from a well-

homogenized asthenospheric mantle source. The alkaline nature (K2O+Na2O=5.1−6.6 

wt.%), Nb/Y (2.6−3.0) and Zr/Y (13−14) are consistent with an incompatible-element 

enriched source originating from the garnet stability field. 

4. The alkaline basalts have large positive εNd (+3.8 to +5.5) values and 338-426 Ma 

depleted mantle model ages, suggesting a minimal magma-crust interaction and 

mantle melting events between the Silurian to Carboniferous. They display narrow 

ranges of Sr (
87

Sr/
86

Sr=0.703346−0.703591) and Pb (
206

Pb/
204

Pb=19.40−19.58; 

207
Pb/

204
Pb=15.57−15.60; 

208
Pb/

204
Pb=38.99−39.14) isotopic ratios, consistent with a 

homogeneous mantle source. The Tasse basalts are isotopically distinct from 

continental flood basalts and subduction-related basalts, plotting mainly in the ocean 

island basalt (OIB) field on Sr−Nd−Pb isotope ratio diagrams. 

5. The Neogene intraplate volcanic field was generated by a combination of diffuse 

mantle upflow through the Northern Cordilleran Slab Window, localized lithospheric 

extension, slab-induced “back arc” mantle circulation, possible plume activity and 

localized delamination of cratonic lithospheric mantle. 
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Table 1. Whole-rock major (wt.%) and trace (ppm) element concentrations and 

significant element ratios for the mantle xenoliths. 

  Group 1 

 
TA-2012-1 TA-2012-3 TA-2012-8 TA-2012-16 TA-2012-R4 

SiO2 43.4 44.1 45.1 42.8 45.0 

TiO2 0.106 0.093 0.049 0.075 0.125 

Al2O3 3.42 3.18 2.8 2.55 4.03 

Fe2O3 8.66 9.04 8.63 9.02 8.65 

MnO 0.13 0.13 0.13 0.13 0.13 

MgO 39.7 41.2 42.0 41.6 39.1 

CaO 2.97 2.9 1.99 2.35 3.51 

K2O 0.02 0.01 0.01 0.02 0.01 

Na2O 0.28 0.27 0.16 0.23 0.32 

P2O5 0.03 0.02 < 0.01 0.01 0.01 

LOI -0.57 -0.62 -0.56 -0.55 -0.52 

Total 98.2 100.3 100.2 98.2 100.3 

Mg # 90.1 90.0 90.6 90.1 89.9 

      
Cr 2450 2664 3502 2509 2574 

Co 107 109 111 118 101 

Ni 1997 2056 2119 2208 1864 

Rb  0.56 0.34 0.34 0.38 0.19 

Sr 7.7 5.8 3.2 5.5 5.7 

Ba 5.2 2.8 2 3.2 2.4 

Sc 12.2 14.8 13.2 9.2 10.6 

V 73 73 62 89 87 

Nb 0.22 0.101 0.186 0.199 0.138 

Ta 0.007 
   

0.008 

Zr 8 10 6 8 
 

Hf 0.22 0.29 0.15 0.19 0.17 

Th 0.06 0.05 0.02 0.03 <0.018 

U 0.04 0.03 0.02 0.02 0.02 

Y 2.86 3.04 1.57 2.33 3.31 

La 0.35 0.19 0.18 0.23 0.19 

Ce 0.55 0.46 0.38 0.45 0.41 

Pr 0.08 0.08 0.06 0.06 0.10 
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Table 1. Continued. 

  Group 1 

 

TA-2012-1 TA-2012-3 TA-2012-8 TA-2012-16 TA-2012-R4 

Nd 0.49 0.49 0.32 0.40 0.57 

Sm 0.20 0.22 0.09 0.16 0.26 

Eu 0.09 0.08 0.04 0.07 0.11 

Gd 0.35 0.34 0.17 0.27 0.43 

Tb 0.07 0.07 0.03 0.05 0.08 

Dy 0.46 0.51 0.24 0.39 0.56 

Ho 0.11 0.11 0.06 0.09 0.13 

Er 0.33 0.34 0.18 0.26 0.38 

Tm 0.05 0.05 0.03 0.04 0.06 

Yb 0.33 0.33 0.20 0.27 0.38 

Lu 0.05 0.05 0.03 0.04 0.06 

Cu 12.4 8.7 11.5 13.2 22.7 

Zn 50 54 54 53 53 

Ga 3.04 3 2.51 2.53 3.21 

Pb 0.2 0.2 0.2 0.2 <0.18 

La/Smcn 1.16 0.56 1.31 0.93 0.48 

La/Ybcn 0.77 0.41 0.66 0.60 0.36 

Gd/Ybcn 0.90 0.84 0.71 0.82 0.92 

Eu/Eu*cn 0.99 0.95 1.09 1.00 0.99 

Ce/Ce*cn 0.82 0.91 0.92 0.91 0.74 

Al2O3/TiO2 32 34 57 34 32 

CaO/Al2O3 0.87 0.91 0.71 0.92 0.87 

Nb/Ta 31 
   

17 

Zr/Hf 36 34 40 42 
 

Pb/Pb*MORB 10 11 14 12 
 

Nb/Nb*MORB 0.19 0.14 0.34 0.23 0.28 

Zr/Zr*MORB 1.37 1.62 2.13 1.70 
 

Ti/Ti*MORB 0.93 0.84 0.87 0.84 0.89 

MORB: Normal Mid-Ocean Ridge Basalt; cn: Chondrite. Pb/Pb* values were calculated 
relative to Ce and Pr. Nb/Nb* values were calculated relative to U and K. Zr/Zr* values were 
calculated relative to Sm and Eu. Ti/Ti* values were calculated relative to Eu and Gd. 
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Table 1. Continued. 

  Group 2 

 
TA-2012-6 TA-2012-13 TA-2012-18 TA-2012-19 TA-2012-45 

SiO2 44.7 44.7 43.4 43.6 44.7 

TiO2 0.123 0.113 0.101 0.11 0.117 

Al2O3 3.69 3.35 3.25 3.13 3.61 

Fe2O3 8.77 8.9 8.67 9.5 9.01 

MnO 0.13 0.13 0.12 0.14 0.13 

MgO 39.3 40.8 40.2 39.4 40.5 

CaO 3.31 2.73 2.88 2.34 2.85 

K2O 0.06 0.03 0.04 0.01 0.01 

Na2O 0.36 0.27 0.33 0.23 0.27 

P2O5 0.01 0.02 0.01 0.04 0.02 

LOI -0.58 -0.6 -0.53 -0.58 -0.61 

Total 99.9 100.5 98.5 97.9 100.6 

Mg # 89.9 90.1 90.2 89.1 89.9 

      
Cr 2665 2709 3275 2845 2615 

Co 107 106 107 108 106 

Ni 2019 1970 2030 1915 1962 

Rb  1 0.62 0.58 0.31 0.33 

Sr 12 16.4 14.6 14.5 17 

Ba 6.9 4.2 3.4 1.9 3.9 

Sc 16.4 14.1 11.4 14.9 13.5 

V 76 80 86 83 74 

Nb 0.755 0.632 0.463 0.552 0.562 

Ta 0.039 0.04 0.022 0.037 0.029 

Zr 9 12 10 14 11 

Hf 0.26 0.28 0.25 0.34 0.26 

Th 0.06 0.09 0.06 0.07 0.07 

U 0.03 0.04 0.03 0.03 0.03 

Y 3.35 2.87 2.84 2.63 2.94 

La 0.47 0.67 0.53 0.76 0.72 

Ce 1.18 1.48 1.13 1.79 1.43 

Pr 0.17 0.20 0.15 0.26 0.21 
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Table 1. Continued. 

  Group 2 

 

TA-2012-6 TA-2012-13 TA-2012-18 TA-2012-19 TA-2012-45 

Nd 0.77 0.83 0.67 1.15 0.97 

Sm 0.27 0.25 0.23 0.32 0.28 

Eu 0.12 0.10 0.09 0.11 0.11 

Gd 0.42 0.36 0.36 0.38 0.39 

Tb 0.08 0.06 0.07 0.07 0.07 

Dy 0.55 0.46 0.48 0.46 0.50 

Ho 0.12 0.10 0.10 0.09 0.10 

Er 0.39 0.30 0.31 0.29 0.33 

Tm 0.06 0.04 0.04 0.04 0.05 

Yb 0.39 0.32 0.30 0.29 0.32 

Lu 0.06 0.05 0.05 0.05 0.05 

Cu 10.9 16.3 8.6 8.8 12.1 

Zn 53 52 57 65 55 

Ga 3.29 3.16 3.09 3.21 3.25 

Pb 0.2 0.4 
 

0.2 
 

La/Smcn 1.14 1.77 1.51 1.56 1.66 

La/Ybcn 0.87 1.50 1.27 1.88 1.64 

Gd/Ybcn 0.89 0.92 0.98 1.09 1.03 

Eu/Eu*cn 1.09 1.04 0.99 1.01 1.01 

Ce/Ce*cn 1.03 1.00 0.99 0.99 0.90 

Al2O3/TiO2 30 30 32 28 31 

CaO/Al2O3 0.90 0.81 0.89 0.75 0.79 

Nb/Ta 19 16 21 15 19 

Zr/Hf 35 43 40 41 42 

Pb/Pb*MORB 5 8 
 

3 
 

Nb/Nb*MORB 0.44 0.44 0.32 0.84 0.89 

Zr/Zr*MORB 1.12 1.69 1.54 1.64 1.39 

Ti/Ti*MORB 0.85 0.91 0.85 0.81 0.87 
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Table 1. Continued. 

  Group 2 

 
TA-2012-46 TA-2012-49 TA-2012-56 TA-2012-62 

SiO2 43.7 43.7 45.2 43.5 

TiO2 0.107 0.1 0.15 0.078 

Al2O3 2.89 3.25 4.61 2.52 

Fe2O3 8.96 9.17 9.36 8.86 

MnO 0.13 0.13 0.14 0.13 

MgO 41.0 40.8 37.5 41.4 

CaO 2.58 2.76 3.77 2 

K2O 0.01 0.02 0.02 0.01 

Na2O 0.25 0.29 0.39 0.2 

P2O5 0.01 0.03 0.02 0.01 

LOI -0.61 -0.58 -0.57 -0.6 

Total 99.1 99.7 100.6 98.1 

Mg # 90.1 89.8 88.8 90.2 

     
Cr 2593 2312 2936 2347 

Co 106 104 98 110 

Ni 1953 1901 1814 2054 

Rb  0.56 0.33 0.5 0.27 

Sr 19.1 9.8 18.5 11.9 

Ba 6.5 3.9 3.5 3.5 

Sc 12.5 10.4 8.6 10.8 

V 72 71 88 66 

Nb 0.316 0.346 0.606 0.511 

Ta 0.01 0.02 0.046 0.029 

Zr 9 8 14 9 

Hf 0.24 0.22 0.34 0.21 

Th 0.04 0.12 0.11 0.04 

U 0.03 0.04 0.04 0.02 

Y 2.56 2.74 3.49 1.83 

La 0.68 0.52 0.87 0.44 

Ce 0.96 1.02 2.07 1.02 

Pr 0.15 0.13 0.28 0.14 

 



69 

 

Table 1. Continued. 

  Group 2 

 
TA-2012-46 TA-2012-49 TA-2012-56 TA-2012-62 

Nd 0.74 0.63 1.32 0.64 

Sm 0.23 0.23 0.39 0.17 

Eu 0.09 0.09 0.14 0.07 

Gd 0.33 0.34 0.51 0.25 

Tb 0.06 0.06 0.09 0.04 

Dy 0.43 0.47 0.67 0.30 

Ho 0.10 0.10 0.14 0.06 

Er 0.29 0.32 0.43 0.21 

Tm 0.04 0.05 0.06 0.03 

Yb 0.28 0.32 0.40 0.22 

Lu 0.04 0.05 0.06 0.03 

Cu 11.9 14 15.4 7.7 

Zn 52 52 66 50 

Ga 2.85 2.8 3.8 2.32 

Pb 
 

0.2 0.2 
 

La/Smcn 1.92 1.47 1.44 1.71 

La/Ybcn 1.73 1.17 1.58 1.42 

Gd/Ybcn 0.97 0.87 1.07 0.94 

Eu/Eu*cn 0.99 1.01 0.96 1.05 

Ce/Ce*cn 0.74 0.95 1.02 1.01 

Al2O3/TiO2 27 33 31 32 

CaO/Al2O3 0.89 0.85 0.82 0.79 

Nb/Ta 32 17 13 18 

Zr/Hf 38 36 41 43 

Pb/Pb*MORB 
 

6 3 
 

Nb/Nb*MORB 0.45 0.30 0.54 0.90 

Zr/Zr*MORB 1.39 1.22 1.33 1.85 

Ti/Ti*MORB 0.95 0.87 0.86 0.90 
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Table 1. Continued. 

  Group 3 

 
TA-2012-2 TA-2012-10 TA-2012-15 TA-2012-44 

SiO2 44.5 44.6 44.3 45.1 

TiO2 0.135 0.143 0.159 0.121 

Al2O3 3.11 3.84 3.33 3.82 

Fe2O3 9.05 8.69 9.72 8.69 

MnO 0.13 0.13 0.14 0.13 

MgO 40.8 39.0 40.0 39.5 

CaO 2.45 3.11 2.78 3.17 

K2O 0.02 0.03 0.04 0.03 

Na2O 0.27 0.32 0.34 0.35 

P2O5 0.05 0.02 0.02 0.02 

LOI -0.59 -0.55 -0.59 -0.55 

Total 99.9 99.3 100.3 100.3 

Mg # 89.9 89.9 89.1 90.0 

     
Cr 2239 2981 2486 2647 

Co 107 105 110 101 

Ni 2002 1881 2027 1875 

Rb  0.42 0.66 0.69 0.78 

Sr 18.3 21.3 31.1 25.2 

Ba 4.9 11.4 6 8.8 

Sc 12.2 16.7 13.4 14.7 

V 60 95 84 77 

Nb 0.549 1.061 0.813 0.958 

Ta 0.041 0.055 0.059 0.064 

Zr 13 14 21 14 

Hf 0.37 0.34 0.47 0.34 

Th 0.04 0.18 0.10 0.11 

U 0.02 0.06 0.03 0.04 

Y 2.75 3.45 3.17 3.24 

La 1.04 1.25 1.51 1.26 

Ce 2.92 2.37 3.79 2.55 

Pr 0.43 0.30 0.51 0.32 
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Table 1. Continued. 

  Group 3 

 
TA-2012-2 TA-2012-10 TA-2012-15 TA-2012-44 

Nd 1.82 1.30 2.16 1.35 

Sm 0.44 0.33 0.51 0.33 

Eu 0.15 0.13 0.18 0.13 

Gd 0.47 0.48 0.54 0.43 

Tb 0.08 0.09 0.09 0.08 

Dy 0.49 0.57 0.58 0.53 

Ho 0.10 0.12 0.12 0.11 

Er 0.29 0.39 0.37 0.35 

Tm 0.04 0.06 0.05 0.05 

Yb 0.29 0.37 0.36 0.35 

Lu 0.05 0.06 0.05 0.06 

Cu 5.6 13.8 9.8 17.3 

Zn 54 57 57 53 

Ga 3.46 3.9 3.89 3.36 

Pb 0.2 0.3 
  

La/Smcn 1.53 2.42 1.90 2.45 

La/Ybcn 2.55 2.42 3.04 2.58 

Gd/Ybcn 1.32 1.07 1.26 1.00 

Eu/Eu*cn 1.03 1.03 1.04 1.04 

Ce/Ce*cn 1.08 0.95 1.06 0.98 

Al2O3/TiO2 23 27 21 32 

CaO/Al2O3 0.79 0.81 0.83 0.83 

Nb/Ta 13 19 14 15 

Zr/Hf 35 41 45 41 

Pb/Pb*MORB 2 4 
  

Nb/Nb*MORB 0.63 0.62 0.58 0.74 

Zr/Zr*MORB 1.11 1.46 1.53 1.51 

Ti/Ti*MORB 0.77 0.86 0.78 0.79 
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Table 1. Continued. 

  Group 3   Outliers 

 
TA-2012-48 TA-2012-55 

 
TA-2012-14 TA-2012-25 

SiO2 44.3 44.3 
 

43.6 43.0 

TiO2 0.125 0.099 
 

0.033 0.017 

Al2O3 3.54 2.97 
 

2.37 0.85 

Fe2O3 9.31 9.48 
 

8.78 8.18 

MnO 0.14 0.14 
 

0.13 0.12 

MgO 39.9 41.4 
 

42.7 47.1 

CaO 2.92 2.31 
 

2.12 0.61 

K2O 0.03 0.03 
 

0.07 0.03 

Na2O 0.32 0.26 
 

0.26 0.11 

P2O5 0.02 0.02 
 

0.04 0.03 

LOI -0.62 -0.64 
 

-0.6 -0.57 

Total 100.0 100.3 
 

99.5 99.5 

Mg # 89.5 89.6 
 

90.6 91.9 

      
Cr 2586 2384 

 
2899 2931 

Co 102 112 
 

111 122 

Ni 1927 2078 
 

2141 2505 

Rb  0.63 0.52 
 

1.24 0.76 

Sr 25.8 16.2 
 

13.9 11.5 

Ba 8 3.1 
 

10.3 2.8 

Sc 13.8 6.3 
 

12.9 7.5 

V 78 64 
 

72 41 

Nb 1.058 0.485 
 

0.486 0.309 

Ta 0.069 0.033 
 

0.035 0.021 

Zr 14 11 
 

11 9 

Hf 0.3 0.27 
 

0.21 0.15 

Th 0.09 0.04 
 

0.20 0.11 

U 0.03 0.02 
 

0.06 0.03 

Y 3.32 2.31 
 

1.29 0.44 

La 1.54 0.85 
 

0.7 1.03 

Ce 3.72 2.27 
 

1.17 1.83 

Pr 0.51 0.34 
 

0.10 0.18 
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Table 1. Continued. 

  Group 3   Outliers 

 
TA-2012-48 TA-2012-55 

 
TA-2012-14 TA-2012-25 

Nd 2.09 1.49 
 

0.34 0.66 

Sm 0.46 0.34 
 

0.08 0.10 

Eu 0.16 0.12 
 

0.03 0.03 

Gd 0.50 0.39 
 

0.12 0.09 

Tb 0.08 0.06 
 

0.02 0.01 

Dy 0.57 0.43 
 

0.19 0.07 

Ho 0.12 0.09 
 

0.05 0.01 

Er 0.37 0.28 
 

0.14 0.05 

Tm 0.05 0.04 
 

0.02 0.01 

Yb 0.35 0.26 
 

0.18 0.05 

Lu 0.05 0.04 
 

0.03 0.01 

Cu 8.7 12.6 
 

9 4.4 

Zn 64 65 
 

52 51 

Ga 3.34 2.7 
 

2.15 1.14 

Pb 
 

0.2 
 

0.2 0.2 

La/Smcn 2.17 1.60 
 

5.65 6.65 

La/Ybcn 3.17 2.33 
 

2.81 15.08 

Gd/Ybcn 1.19 1.23 
 

0.55 1.57 

Eu/Eu*cn 0.99 1.03 
 

1.02 1.11 

Ce/Ce*cn 1.03 1.04 
 

1.08 1.03 

Al2O3/TiO2 28 30 
 

72 50 

CaO/Al2O3 0.82 0.78 
 

0.89 0.72 

Nb/Ta 15 15 
 

14 15 

Zr/Hf 47 41 
 

52 60 

Pb/Pb*MORB 
 

2 
 

6 4 

Nb/Nb*MORB 0.83 0.50 
 

0.18 0.25 

Zr/Zr*MORB 1.16 1.18 
 

4.78 3.37 

Ti/Ti*MORB 0.68 0.69   0.81 0.46 
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Table 2. Whole-rock major (wt.%) and trace (ppm) element concentrations and significant 

element ratios for the alkaline basalts. 

 
TA-2012-26 TA-2012-27 TA-2012-29 TA-2012-30 TA-2012-31 

SiO2 45.8 45.4 45.5 45.3 45.2 

TiO2 2.55 2.56 2.62 2.53 2.57 

Al2O3 13.4 14.2 13.8 13.6 13.7 

Fe2O3 14.3 14.4 14.2 14.0 14.2 

MnO 0.19 0.19 0.19 0.19 0.19 

MgO 10.24 9.27 9.39 9.59 9.53 

CaO 7.82 7.85 7.73 7.65 7.77 

K2O 1.71 1.74 1.69 1.74 1.72 

Na2O 3.97 4.22 4.05 4.15 4.14 

P2O5 0.8 0.82 0.81 0.82 0.8 

LOI -0.29 -0.64 -0.29 -0.62 -0.57 

Total 100.5 100 99.69 98.99 99.22 

Mg # 58.7 56.1 56.6 57.5 57.1 

      
Cr 387 338 345 377 357 

Co 53 51 51 51 49 

Ni 318 263 276 289 276 

Rb  37 38 39 37 36 

Sr 933 907 906 882 881 

Cs 0.46 0.53 0.60 0.55 0.54 

Ba 719 734 755 732 737 

Sc 16 15 15 14 15 

V 161 157 152 146 146 

Nb 71 72 72 71 71 

Ta 4.07 4.09 4.09 4.09 4.10 

Zr 328 324 324 319 317 

Hf 6.81 6.79 6.83 6.67 6.81 

Th 5.75 5.92 6.03 5.90 5.94 

U 1.61 1.65 1.69 1.68 1.68 

Y 26 25 25 25 24 

La 49 51 52 51 51 

Ce 99 101 104 102 101 

Pr 12 12 12 12 12 
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Table 2. Continued. 

 
TA-2012-26 TA-2012-27 TA-2012-29 TA-2012-30 TA-2012-31 

Nd 46 48 49 48 49 

Sm 8.84 8.97 9.17 8.86 9.07 

Eu 2.77 2.86 2.88 2.83 2.81 

Gd 7.34 7.65 7.74 7.54 7.66 

Tb 0.97 1.02 1.04 1.02 1.01 

Dy 5.35 5.63 5.55 5.48 5.42 

Ho 0.91 0.95 0.94 0.94 0.94 

Er 2.37 2.37 2.39 2.38 2.37 

Tm 0.29 0.30 0.30 0.30 0.30 

Yb 1.75 1.75 1.79 1.75 1.77 

Lu 0.24 0.24 0.25 0.24 0.24 

Cu 41 41 40 39 39 

Zn 122 119 120 116 116 

Ga 22 21 21 21 21 

Pb 3.2 3.1 3.2 3.1 3.1 

La/Smcn 3.61 3.68 3.67 3.74 3.64 

La/Ybcn 20.3 21.0 20.9 21.0 20.7 

Gd/Ybcn 3.47 3.62 3.57 3.56 3.58 

Eu/Eu*cn 1.05 1.05 1.04 1.06 1.03 

Ce/Ce*cn 1.00 1.00 1.00 1.00 0.99 

Al2O3/TiO2 5.3 5.6 5.3 5.4 5.3 

K2O+Na2O 5.7 6.0 5.7 5.9 5.9 

Zr/Y 12.8 12.9 12.9 12.8 13.0 

Nb/Y 2.8 2.9 2.9 2.9 2.9 

Nb/Ta 17 18 18 17 17 

Zr/Hf 48 48 47 48 47 

Y/Ho 28 26 27 26 26 

Pb/Pb*MORB 1.0 0.9 0.9 0.9 0.9 

Nb/Nb*MORB 1.07 1.06 1.07 1.04 1.04 

Zr/Zr*MORB 1.47 1.42 1.40 1.41 1.39 

Ti/Ti*MORB 0.86 0.84 0.85 0.84 0.85 

MORB: Normal Mid-Ocean Ridge Basalt; cn: Chondrite. Pb/Pb* values were calculated relative to 
Ce and Pr. Nb/Nb* values were calculated relative to U and K. Zr/Zr* values were calculated 
relative to Sm and Eu. Ti/Ti* values were calculated relative to Eu and Gd. 
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Table 2. Continued. 

  TA-2012-33 TA-2012-34 TA-2012-35 TA-2012-37 TA-2012-38 

SiO2 45.5 45.4 45.1 45.7 46.0 

TiO2 2.59 2.54 2.56 2.70 2.54 

Al2O3 13.6 13.6 13.4 14.2 13.4 

Fe2O3 14.1 14.3 14.0 14.6 14.2 

MnO 0.19 0.19 0.19 0.19 0.19 

MgO 9.59 9.84 9.35 7.99 9.84 

CaO 7.76 7.75 7.81 8.01 7.88 

K2O 1.69 1.7 1.7 1.91 1.78 

Na2O 4.03 3.99 4.1 4.32 4.16 

P2O5 0.82 0.78 0.8 0.9 0.8 

LOI -0.4 -0.52 -0.66 -0.38 -0.62 

Total 99.43 99.52 98.27 100.1 100.3 

Mg # 57.3 57.7 56.9 52.1 57.8 

      
Cr 340 354 363 260 408 

Co 49 51 52 47 51 

Ni 275 301 281 198 289 

Rb  36 36 37 40 37 

Sr 880 883 886 965 878 

Cs 0.46 0.54 0.52 0.48 0.50 

Ba 723 716 725 797 714 

Sc 14 15 16 14 15 

V 148 152 161 151 152 

Nb 70 69 70 76 69 

Ta 4.08 3.96 3.98 4.33 4.02 

Zr 314 309 315 342 312 

Hf 6.75 6.63 6.66 7.20 6.64 

Th 5.92 5.73 5.70 6.40 5.63 

U 1.67 1.60 1.68 1.69 1.57 

Y 24 24 25 26 25 

La 51 50 50 55 49 

Ce 99 99 100 110 99 

Pr 12 12 12 13 12 
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Table 2. Continued. 

  TA-2012-33 TA-2012-34 TA-2012-35 TA-2012-37 TA-2012-38 

Nd 47 47 48 53 47 

Sm 8.90 8.80 8.89 9.57 8.84 

Eu 2.88 2.79 2.84 3.01 2.79 

Gd 7.54 7.38 7.66 7.94 7.27 

Tb 1.03 1.00 1.02 1.06 0.99 

Dy 5.43 5.34 5.47 5.74 5.35 

Ho 0.92 0.92 0.94 0.98 0.92 

Er 2.35 2.29 2.38 2.47 2.36 

Tm 0.30 0.29 0.30 0.31 0.29 

Yb 1.74 1.72 1.73 1.85 1.72 

Lu 0.25 0.24 0.24 0.26 0.24 

Cu 37 34 40 38 39 

Zn 115 115 117 122 123 

Ga 20 21 21 22 20 

Pb 3.1 3 3.1 3.4 3 

La/Smcn 3.69 3.65 3.66 3.72 3.61 

La/Ybcn 21.1 20.7 20.9 21.4 20.6 

Gd/Ybcn 3.60 3.54 3.67 3.56 3.49 

Eu/Eu*cn 1.07 1.06 1.05 1.06 1.06 

Ce/Ce*cn 0.98 0.99 0.99 1.00 1.00 

Al2O3/TiO2 5.2 5.4 5.2 5.3 5.3 

K2O+Na2O 5.7 5.7 5.8 6.2 5.9 

Zr/Y 12.8 12.9 12.8 13.1 12.6 

Nb/Y 2.9 2.9 2.8 2.9 2.8 

Nb/Ta 17 17 18 18 17 

Zr/Hf 47 47 47 48 47 

Y/Ho 27 26 26 27 27 

Pb/Pb*MORB 0.9 0.9 0.9 0.9 0.9 

Nb/Nb*MORB 1.04 1.05 1.03 1.07 1.04 

Zr/Zr*MORB 1.37 1.38 1.39 1.41 1.39 

Ti/Ti*MORB 0.85 0.86 0.84 0.84 0.86 
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Table 2. Continued. 

  TA-2012-39 TA-2012-41 TA-2012-42 TA-2012-43 TA-2012-47 

SiO2 45.7 44.6 44.7 45.4 45.2 

TiO2 2.59 2.60 2.48 2.55 2.55 

Al2O3 14.3 13.6 13.6 13.9 13.8 

Fe2O3 14.5 14.1 13.7 14.1 13.9 

MnO 0.19 0.19 0.19 0.20 0.19 

MgO 9.27 9.41 8.51 8.57 8.25 

CaO 7.84 8.09 7.89 7.71 7.68 

K2O 1.81 1.73 1.89 1.91 1.91 

Na2O 4.11 3.72 3.97 4.4 4.42 

P2O5 0.81 0.83 0.9 0.91 0.91 

LOI -0.48 0.56 0.56 -0.41 -0.43 

Total 100.6 99.38 98.42 99.21 98.4 

Mg # 55.9 57.0 55.1 54.7 54.1 

      
Cr 343 364 299 307 288 

Co 50 50 48 48 46 

Ni 267 268 233 231 213 

Rb  39 38 43 42 42 

Sr 890 876 928 948 962 

Cs 0.48 0.54 0.60 0.58 0.57 

Ba 739 726 778 794 792 

Sc 15 15 14 14 14 

V 152 152 145 148 144 

Nb 72 70 75 76 77 

Ta 4.14 3.99 4.36 4.37 4.54 

Zr 329 317 346 345 357 

Hf 6.89 6.66 7.22 7.25 7.51 

Th 5.93 5.74 6.49 6.44 6.50 

U 1.56 1.62 1.83 1.82 1.82 

Y 26 25 26 26 27 

La 51 50 55 56 56 

Ce 102 101 109 110 111 

Pr 12 12 13 13 13 
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Table 2. Continued. 

  TA-2012-39 TA-2012-41 TA-2012-42 TA-2012-43 TA-2012-47 

Nd 48 47 50 51 51 

Sm 9.00 8.80 9.31 9.34 9.58 

Eu 2.84 2.78 2.90 2.94 2.96 

Gd 7.43 7.28 7.77 7.71 7.83 

Tb 1.00 0.97 1.02 1.03 1.07 

Dy 5.54 5.27 5.55 5.49 5.72 

Ho 0.94 0.92 0.95 0.95 0.98 

Er 2.43 2.34 2.41 2.43 2.51 

Tm 0.30 0.29 0.31 0.30 0.32 

Yb 1.76 1.69 1.79 1.80 1.83 

Lu 0.25 0.23 0.25 0.25 0.25 

Cu 51 39 38 38 34 

Zn 126 124 129 131 131 

Ga 21 21 21 22 22 

Pb 3.2 3.1 3.4 3.4 3.5 

La/Smcn 3.67 3.66 3.80 3.85 3.78 

La/Ybcn 20.9 21.2 21.9 22.2 21.9 

Gd/Ybcn 3.49 3.57 3.58 3.54 3.54 

Eu/Eu*cn 1.06 1.06 1.04 1.06 1.04 

Ce/Ce*cn 1.01 1.01 1.01 1.01 1.00 

Al2O3/TiO2 5.5 5.2 5.5 5.4 5.4 

K2O+Na2O 5.9 5.5 5.9 6.3 6.3 

Zr/Y 12.7 12.7 13.3 13.2 13.3 

Nb/Y 2.8 2.8 2.9 2.9 2.9 

Nb/Ta 17 17 17 17 17 

Zr/Hf 48 48 48 48 48 

Y/Ho 28 27 27 27 27 

Pb/Pb*MORB 1.0 0.9 1.0 0.9 1.0 

Nb/Nb*MORB 1.08 1.04 1.01 1.02 1.03 

Zr/Zr*MORB 1.44 1.42 1.47 1.46 1.48 

Ti/Ti*MORB 0.86 0.88 0.80 0.82 0.81 
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Table 2. Continued. 

  TA-2012-50 TA-2012-52 TA-2012-53 TA-2012-54 TA-2012-58 

SiO2 45.1 44.8 44.9 44.2 44.6 

TiO2 3.10 3.13 2.51 2.38 2.90 

Al2O3 14.3 14.8 14.0 13.5 14.6 

Fe2O3 14.7 14.6 13.9 12.9 14.7 

MnO 0.19 0.19 0.19 0.19 0.19 

MgO 6.98 6.51 8.82 8.87 7.55 

CaO 8.32 8.26 7.59 7.46 8.45 

K2O 2 2.11 1.75 1.48 1.82 

Na2O 4.21 4.51 4.29 3.58 4.2 

P2O5 0.84 0.93 0.8 0.81 0.79 

LOI 0.77 0.61 0.08 2.9 -0.74 

Total 100.4 100.4 98.85 98.2 99.09 

Mg # 48.5 46.9 55.7 57.7 50.5 

      
Cr 179 161 351 295 181 

Co 49 47 48 51 52 

Ni 134 108 255 256 129 

Rb  47 49 48 51 37 

Sr 940 993 884 887 890 

Cs 0.61 0.67 0.58 0.66 0.52 

Ba 581 636 751 763 721 

Sc 14 13 14 15 17 

V 187 181 140 105 182 

Nb 68 76 72 72 68 

Ta 4.11 4.60 4.21 4.18 3.91 

Zr 351 383 323 328 311 

Hf 7.47 8.02 6.96 6.88 6.78 

Th 4.98 5.67 6.21 6.29 5.42 

U 1.48 1.78 1.78 1.58 1.54 

Y 25 25 25 25 26 

La 46 52 52 53 49 

Ce 95 107 104 103 98 

Pr 12 13 12 12 12 
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Table 2. Continued. 

  TA-2012-50 TA-2012-52 TA-2012-53 TA-2012-54 TA-2012-58 

Nd 47 52 49 49 48 

Sm 9.48 10.06 9.18 8.93 9.16 

Eu 3.04 3.15 2.90 2.79 2.92 

Gd 8.02 8.32 7.72 7.30 7.92 

Tb 1.05 1.12 1.03 0.99 1.07 

Dy 5.59 5.75 5.48 5.38 5.66 

Ho 0.92 0.95 0.94 0.93 0.97 

Er 2.20 2.23 2.39 2.35 2.44 

Tm 0.26 0.27 0.30 0.30 0.30 

Yb 1.48 1.49 1.76 1.77 1.77 

Lu 0.19 0.19 0.25 0.24 0.25 

Cu 49 44 43 30 46 

Zn 149 164 124 136 126 

Ga 25 25 21 21 23 

Pb 3.3 3.5 3.5 2.3 3.2 

La/Smcn 3.15 3.37 3.68 3.80 3.44 

La/Ybcn 22.3 25.2 21.3 21.3 19.8 

Gd/Ybcn 4.48 4.61 3.63 3.42 3.71 

Eu/Eu*cn 1.07 1.05 1.05 1.06 1.05 

Ce/Ce*cn 1.01 1.00 1.00 0.99 0.99 

Al2O3/TiO2 4.6 4.7 5.6 5.7 5.1 

K2O+Na2O 6.2 6.6 6.0 5.1 6.0 

Zr/Y 14.1 15.0 13.0 13.1 12.0 

Nb/Y 2.7 3.0 2.9 2.9 2.6 

Nb/Ta 17 17 17 17 17 

Zr/Hf 47 48 46 48 46 

Y/Ho 27 27 26 27 27 

Pb/Pb*MORB 1.0 1.0 1.0 0.7 1.0 

Nb/Nb*MORB 0.99 0.98 1.03 1.18 1.01 

Zr/Zr*MORB 1.45 1.51 1.38 1.45 1.33 

Ti/Ti*MORB 0.96 0.93 0.81 0.81 0.92 
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Table 2. Continued. 

  TA-2012-59 TA-2012-60 TA-2012-61 

SiO2 45.5 45.5 44.3 

TiO2 2.96 2.89 2.81 

Al2O3 14.7 15.0 13.8 

Fe2O3 14.9 14.8 14.8 

MnO 0.19 0.19 0.19 

MgO 7.73 7.52 7.43 

CaO 8.59 8.43 8.37 

K2O 1.83 1.93 1.74 

Na2O 4.12 4.28 3.96 

P2O5 0.76 0.85 0.76 

LOI -0.58 -0.64 1.68 

Total 100.7 100.8 99.88 

Mg # 50.7 50.1 49.8 

    
Cr 176 175 175 

Co 52 50 52 

Ni 124 121 125 

Rb  36 39 37 

Sr 873 923 874 

Cs 0.39 0.48 0.56 

Ba 700 742 710 

Sc 17 16 17 

V 183 172 182 

Nb 66 70 67 

Ta 3.81 4.05 3.87 

Zr 302 320 308 

Hf 6.51 6.89 6.72 

Th 5.33 5.75 5.44 

U 1.51 1.59 1.49 

Y 26 26 26 

La 47 51 48 

Ce 96 102 98 

Pr 12 13 12 
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Table 2. Continued. 

  TA-2012-59 TA-2012-60 TA-2012-61 

Nd 47 50 48 

Sm 8.94 9.19 9.14 

Eu 2.85 2.97 2.93 

Gd 7.77 7.96 7.86 

Tb 1.04 1.09 1.04 

Dy 5.55 5.64 5.68 

Ho 0.95 0.99 0.97 

Er 2.38 2.46 2.40 

Tm 0.30 0.30 0.30 

Yb 1.72 1.81 1.79 

Lu 0.24 0.24 0.25 

Cu 46 45 46 

Zn 125 127 127 

Ga 22 23 22 

Pb 3.1 3.4 3.2 

La/Smcn 3.41 3.58 3.40 

La/Ybcn 19.7 20.3 19.3 

Gd/Ybcn 3.74 3.65 3.63 

Eu/Eu*cn 1.05 1.06 1.05 

Ce/Ce*cn 1.00 0.99 1.00 

Al2O3/TiO2 5.0 5.2 4.9 

K2O+Na2O 6.0 6.2 5.7 

Zr/Y 11.8 12.5 12.0 

Nb/Y 2.6 2.7 2.6 

Nb/Ta 17 17 17 

Zr/Hf 46 46 46 

Y/Ho 27 26 27 

Pb/Pb*MORB 1.0 1.0 1.0 

Nb/Nb*MORB 1.00 1.00 1.05 

Zr/Zr*MORB 1.32 1.36 1.32 

Ti/Ti*MORB 0.96 0.91 0.90 
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Table 3. Sr isotope data for the alkaline basalts. 
 

  Rb (ppm) Sr (ppm) 87Sr/86Sr 87Rb/86Sr 

TA 2012-27 38 907 0.703416±11 0.1225 

TA 2012-31 36 881 0.703382±12 0.1185 

TA 2012-35 37 886 0.703393±11 0.1197 

TA 2012-37 40 965 0.703409±09 0.1191 

TA 2012-41 38 876 0.703346±12 0.1269 

TA 2012-43 42 948 0.703347±11 0.1269 

TA 2012-60 39 923 0.703591±11 0.1226 
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Table 4. Sm-Nd isotope composition of the alkaline basalts.      

 
Sm (ppm) Nd (ppm) 147Sm/144Nd 143Nd/144Nd TDM (Ma)* eNd(0) 

TA 2012 27 8.752 47.818 0.1108 0.512863±06 426 4.4 

TA 2012 31 9.257 50.929 0.1100 0.512902±05 366 5.1 

TA 2012 35 9.107 49.335 0.1117 0.512834±09 474 3.8 

TA 2012 37 8.770 48.286 0.1099 0.512896±04 374 5.0 

TA 2012 41 9.076 49.780 0.1104 0.512922±06 338 5.5 

TA 2012 43 8.724 48.296 0.1093 0.512888±04 384 4.9 

TA 2012 60 8.251 44.949 0.1111 0.512912±05 355 5.3 

*DePaolo (1981) 
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Table 5. Pb isotopic compositions of the alkaline basalts.      

  
 206Pb/204Pb  ± 2s+  207Pb/204Pb  ± 2s+  208Pb/204Pb  ± 2s+ 

TA 2012-27 19.575 0.0118 15.586 0.0111 39.088 0.0326 

TA 2012-31 19.551 0.0181 15.572 0.0156 39.045 0.0424 

TA 2012-35 19.564 0.0258 15.599 0.0216 39.139 0.0574 

TA 2012-37 19.557 0.0093 15.578 0.0094 39.064 0.0288 

TA 2012-41 19.544 0.0262 15.569 0.0221 39.035 0.0582 

TA 2012-43 19.542 0.0135 15.568 0.0123 39.032 0.0354 

TA 2012-60 19.404 0.0144 15.581 0.0134 38.994 0.0375 
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Figure 1. Location of the Tasse alkaline basalts (study area), current tectonic features, and 

Late Cenozoic volcanic belts (shown schematically) of the Canadian Cordillera (modified 

from Madsen et al., 2006). 
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Figure 2. Geological map of associated terranes (Slide Mountain, Quesnel and Kootenay) 

of the Tasse sampling areas within Southeastern British Columbia. Sampling region is 

denoted by the red circle (modified from Ferri and Schiarizza, 2006). 
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Figure 3. Distribution of lithologies in the five morphogeological belts of British 

Columbia. Distribution is shown spatially and temporally (modified from Gabrielse et al., 

1992). 
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Figure 4. A map of British Columbia showing the distribution of the five 

morphogeological belts of the Canadian Cordillera (modified from Gabrielse et al., 1992 

and Monger and Price, 2002). 
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Figure 5. A rough structural schematic showing the relationship amongst the terranes and 

thrusts (faults) of the Tasse region. The arrows indicate thrust direction (modified from 

Struik, 1986). 

 

 

 

Figure 6. Google Earth overlay of magnetic anomalies for the Tasse and Wasko 

properties of Barker Minerals Ltd. Numbers associated with the Tasse magnetic 

anomalies are assigned to sampling locations. Magnetic highs are seen as purple and red 

(modified from Barker Minerals Ltd.). 
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Figure 7. Representative samples of spinel lherzolites found in the Tasse region of British 

Columbia. (a-c) Spinel lherzolite xenoliths set in host alkaline basalts. (d) Oxidized spinel 

lherzolite sample. (e-f) Spinel lherzolite samples displaying pyroxene-spinel rich bands 

and lherzolite-pyroxenite layers, respectively. 
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Figure 8. Plane (a, c, e) and cross-polarized (b, d, f) photomicrographs of spinel 

lherzolites. (a-d) Representative igneous textures and mineral associations. (e-f) 

Resorption texture of clinopyroxene and associated spinel (Ol: olivine; Opx: 

orthopyroxene; Cpx: clinopyroxene; Spl: spinel). 
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Figure 9. SEM back-scattered electron (BSE) images of spinel lherzolites. (a-b) Spinel 

(white) associated with resorbed clinopyroxene (light grey) and olivine (dark grey). (c-d) 

Common textural features of pyroxenes and olivine (light grey and dark grey) with 

associated spinel (Ol: olivine; Opx: orthopyroxene; Cpx: clinopyroxene; Spl: spinel). 
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Figure 10. Plane and cross polarized photomicrographs of alkaline basalts (a-b) 

Representative fine-grained textures and mantle xenocrysts. (c-d) Quartz xenocryst with 

reaction rim of unknown fine-grained minerals and skeletal textures, respectively. 

(Mineral abbreviations: Ol - olivine; Qtz - quartz) 
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Figure 11. Ratios (a) Nb/Ta, (b) Zr/Hf and (c) Y/Ho of Tasse mantle xenoliths and 

alkaline basalts. Shaded regions represent spinel peridotites, MORB, OIB and PM are 

from Jochum et al. (1989). Chondritic values are represented as the black line crossing 

primitive mantle (PM) shown as a black star. 
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Figure 12. Chondrite- (a-d) and N-MORB- (e-h) normalized patterns for (a and e) Group 

1 lherzolites, (b and f) Group 2 lherzolites, (c and g) Group 3 lherzolites and (d and h) 

Outlier xenolith samples. Chondrite and N-MORB normalization values are McDonough 

and Sun (1995) and Sun and McDonough (1989), respectively. 
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Figure 13. La/Ybcn vs. (a) Ti/Ti*MORB and (b) Zr/Zr*MORB plots. Chondrite and N-MORB 

normalization values are McDonough and Sun (1995) and Sun and McDonough (1989), 

respectively. 
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Figure 14. (a) Chondrite-normalized patterns and (b) N-MORB-normalized patterns of 

the Tasse alkaline basalts. Chondrite and N-MORB normalization values are McDonough 

and Sun (1995) and Sun and McDonough (1989), respectively. 
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Figure 15. Sr−Nd−Pb isotopic plots of the Tasse alkaline basalts and volcanic rocks from 

a range of locations and tectonic settings. The shaded regions indicate isotopic source 

characteristics of mid-ocean ridge basalts (MORB), ocean island basalts (OIB), focal 

zone (FOZO), high-μ (HIMU) and continental crust from Stracke et al. (2005). Data was 

collected from Fretzdorff et al., 2002 (Scotia Ridge); Holm et al., 2014 (Andean Southern 

Volcanic Zone); Kheirkhah et al., 2015 (Turkish–Iranian Plateau); Kuritani et al., 2008 

(Kurile Arc); Pearce et al., 1992 (Izo-Bonin Forearc); Peng et al., 2014 (Deccan Trap); 

Singer et al., 2007 (Aleutian Arc); Søager et al., 2015 (Payenia Volcanic Province); 

Zhang et al., 2001 (North Queensland). Outlier samples were removed from the shaded 

regions and Deccan Traps. 
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Figure 16. Chondrite-normalized comparison plots of the (a) Tasse xenolith groups and 

(b) Izu-Bonin-Mariana forearc harzburgites, Central Oman ophiolite lherzolites, North 

Lanzo lherzolites and xenoliths from other localities in British Columbia. Forearc data 

from Parkinson and Pearce (1998). Ophiolite lherzolite data from Khedr et al. (2014). 

North Lanzo data from Guarnieri et al. (2012). Southern British Columbia data from 

Peslier et al. (2002). Values are normalized to McDonough and Sun, 1995. 
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Figure 17. Chondrite-normalized comparison plots of (a) Tasse basalts (b) Cape Vogel 

boninites, Bohai Basin basalts (LSG, USG, GG) and Southern British Columbia basalts 

(c) COPB, HGB and Cameroon Line basalts. Boninite data from König et al. (2010). 

Bohai Basin basalt data Li et al. (2014). Southern British Columbia data from Sluggett 

(2008). COPB and HGB data from Polat et al. (1997). Cameroon Line data from 

Nkouandou & Temdjim (2011). Values are normalized to McDonough and Sun, 1995. 
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Figure 18. N-MORB-normalized comparison plots of (a) Tasse basalts (b) Cape Vogel 

boninites, Bohai Basin basalts (LSG, USG, GG) and Southern British Columbia basalts 

(c) COPB, HGB and Cameroon Line basalts. Boninite data from König et al. (2010). 

Bohai Basin basalt data Li et al. (2014). Southern British Columbia data from Sluggett 

(2008). COPB and HGB data from Polat et al. (1997). Cameroon Line data from 

Nkouandou & Temdjim (2011). Values are normalized to Sun and McDonough and Sun, 

1989. 
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Figure 19. Primitive mantle evolution plot (Mg/Si vs. Al/Si). Linear relationship indicates 

that the mantle xenoliths originated from a primitive upper mantle source (PM). Major 

element oxide weight percent values are converted to ppm (modified from Canil and Lee, 

2009). 
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Figure 20. Partial melting diagram utilizing Mg# vs. CaO (wt.%). Vertical lines at the top 

indicate the percent of partial melting from a primitive source. The grey shaded region 

represents Torishima and Conical Seamount harzburgite data. The purple shaded region 

represents Torishima and Conical Seamount dunite data. Data for the shaded regions 

were taken from Ishii et al. (1992). 
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Figure 21. Metasomatism discrimination plot between silicate and carbonatite melt 

metasomatism. The shaded region indicates Grand Comore xenoliths (from Coltorti et al., 

1999) which have undergone carbonatite melt metasomatism. The dashed red line 

denotes the field dominated by silicate metasomatism. British Columbia lherzolite data 

was collected from Peslier et al. (2002). 
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Appendix A. Field description and GPS coordinates of the mantle xenoliths     

Sample # Rock Type Eastings Northings Property # 

TA-2012-01 Olivine-Pyroxene-Spinel Peridotite Xenolith 628821 5827460 5 

TA-2012-02 Olivine-Pyroxene-Spinel Peridotite Xenolith 628823 5827469 5 

TA-2012-03 Olivine-Pyroxene-Spinel Peridotite Xenolith 628828 5827458 5 

TA-2012-04 Olivine-Pyroxene-Spinel Peridotite Xenolith 628812 5827480 5 

TA-2012-05 Olivine-Pyroxene-Spinel Peridotite Xenolith 628819 5827457 5 

TA-2012-06 Olivine-Pyroxene-Spinel Peridotite Xenolith 628822 5827463 5 

TA-2012-07 Olivine-Pyroxene-Spinel Peridotite Xenolith 628813 5827460 5 

TA-2012-08 Spinel-bearing Dunite Xenolith 628819 5827447 5 

TA-2012-09 Spinel-bearing Dunite Xenolith 628820 5827447 5 

TA-2012-10 Pyroxene-bearing Dunite Xenolith 628820 5827447 5 

TA-2012-11 Olivine-Pyroxene-Spinel Peridotite Xenolith 628820 5827447 5 

TA-2012-13 Olivine-Pyroxene-Spinel Peridotite Xenolith 628833 5827461 5 

TA-2012-14 Olivine-Pyroxene-Spinel Peridotite Xenolith 628818 5827443 5 

TA-2012-15 Olivine-Pyroxene-Spinel Peridotite Xenolith 628790 5827432 5 

TA-2012-16 Olivine-Pyroxene-Spinel Peridotite Xenolith 628795 5827444 5 

TA-2012-17 Olivine-Pyroxene-Spinel Peridotite Xenolith 628791 5827449 5 

TA-2012-18 Pyroxene- & Spinel-bearing Dunite Xenolith 628791 5827449 5 

TA-2012-19 Olivine-Pyroxene-Spinel Peridotite Xenolith 628787 5827443 5 

TA-2012-20 Olivine-Pyroxene-Spinel Peridotite Xenolith 628787 5827443 5 

TA-2012-21 Olivine-Pyroxene-Spinel Peridotite/Pyroxenite Xenolith 628788 5827431 5 

TA-2012-22 Olivine-bearing Spinel Xenolith 628770 5827424 5 

TA-2012-23 Olivine-Pyroxene-Spinel Peridotite Xenolith 628770 5827424 5 

TA-2012-24 Olivine-Pyroxene-Spinel Peridotite Xenolith + Host Basalt 628770 5827424 5 

TA-2012-25 Spinel-bearing Dunite Xenolith 628955 5827547 5 

TA-2012-44 Dunite Xenolith 628630 5826979 5+ 

TA-2012-45 Dunite Xenolith 628622 5826976 5+ 

TA-2012-46 Dunite Xenolith 628593 5826969 5+ 

TA-2012-48 Dunite Xenolith 628613 5826976 5+ 

TA-2012-49 Dunite Xenolith 628613 5826976 5+ 

TA-2012-55 Olivine-Pyroxene-Spinel Peridotite Xenolith 629565 5828132 6 

TA-2012-56 Olivine-Pyroxene-Spinel Peridotite Xenolith 629565 5828132 6 

TA-2012-62 Olivine-Pyroxene-Spinel Peridotite Xenolith 630012 5827612 7 
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Appendix B. Field description and GPS coordinates of the alkaline basalts 

Sample # Rock Type Eastings Northings Property # 

TA-2012-26 Host Rock - Vesicular Basalt 622827 5827459 5 

TA-2012-27 Host Rock - Vesicular Basalt 628831 5827448 5 

TA-2012-28 Host Rock - Vesicular Basalt 628831 5827448 5 

TA-2012-29 Host Rock - Vesicular Basalt 628832 5827449 5 

TA-2012-30 Host Rock - Vesicular Basalt 628829 5827449 5 

TA-2012-31 Host Rock - Vesicular Basalt 628829 5827447 5 

TA-2012-32 Host Rock - Vesicular Basalt 628819 5827446 5 

TA-2012-33 Host Rock - Vesicular Basalt 628815 5827446 5 

TA-2012-34 Host Rock - Vesicular Basalt 628823 5827440 5 

TA-2012-35 Host Rock - Vesicular Basalt 628823 5827440 5 

TA-2012-36 Host Rock - Vesicular Basalt 628823 5827440 5 

TA-2012-37 Host Rock - Vesicular Basalt 628798 5827448 5 

TA-2012-38 Host Rock - Vesicular Basalt 628894 5827442 5 

TA-2012-39 Host Rock - Vesicular Basalt 628788 5827454 5 

TA-2012-40 Host Rock - Vesicular Basalt 628788 5827449 5 

TA-2012-41 Host Rock - Vesicular Basalt 628790 5827453 5 

TA-2012-42 Host Rock - Vesicular Basalt 628628 5826974 5 

TA-2012-43 Host Rock - Vesicular Basalt 628623 5826978 5 

TA-2012-47 Host Rock - Vesicular Basalt 628623 5826978 5+ 

TA-2012-50 Host Rock - Vesicular Basalt 625948 5828288 2 

TA-2012-51 Host Rock - Vesicular Basalt 625948 5828288 2 

TA-2012-52 Host Rock - Vesicular Basalt 625948 5828288 2 

TA-2012-53 Host Rock - Vesicular Basalt 624577 5830355 1 

TA-2012-54 Host Rock - Vesicular Basalt 624577 5830355 1 

TA-2012-57 Host Rock - Vesicular Basalt 624577 5830355 1 

TA-2012-58 Host Rock - Vesicular Basalt 624577 5830355 1 

TA-2012-59 Host Rock - Vesicular Basalt 624577 5830355 1 

TA-2012-60 Host Rock - Vesicular Basalt 624577 5830355 1 

TA-2012-61 Host Rock - Vesicular Basalt 624577 5830355 1 
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