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ABSTRACT 
 

The Multiagent Pathfinding problem (MAPF) applies in fields such as video 

games, robotics, warehouse management, etc. MAPF is mainly concerned with 

routing units while avoiding collision. A recent approach by Wilt et al. to MAPF for 

maps with narrow corridors spatially partitions maps into High Contention (HCA) and 

Low Contention areas (LCA). A modified Cooperative A* is used in LCA. 

In our approach we introduce a new algorithm by combining “Cooperative” 

and “Jump Point Search” (JPS) to traverse through the LCA. JPS is modified to 

handle the multiagent environment by incorporating a new stopping rule to identify 

between HCA and LCA called “forced selection”. As JPS jumps from node to node, 

we introduce a “backtracking mechanism” to avoid collision. We evaluate our 

algorithm against Wilt et al.’s algorithm on real video game maps and demonstrate 

significate improvements in terms of makespan, solution time and failure-rate. 
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CHAPTER 1: INTRODUCTION 

Pathfinding problem can be found in many fields from video game industry to ware 

house management. The general problem which is addressed here is to find an optimal 

path for a unit from its start node to goal node on a graph representation of map. 

Based on application in use, the above problem statement can be used for different 

usage such as in field of video game they require the problem to be solved in 

minimum time, but in other application such GPS, the problem would be to find a safe 

and short to the goal. Consider a scenario in one of the Real Time Strategy (RTS) 

games, where the Non Player Control (NPC) has to find a path from its start to goal 

position real quickly to give a realistic feel to the gamer while playing. In figure 1, a 

NPC unit as to travel from tower to its house, so the start position is tower and goal 

position is house. Even though the unit could have travel through the river, but that 

would not be a realistic path. So the unit crosses the bridge and reaches its destination. 

In here we want an algorithm which could solve the pathfinding problem quickly. 

 

Figure 1: Single agent path on a video game [1] 

Similarly we could find the same problem with different objective for solving in 

application like GPS. Consider the figure 2, where a vehicle has to travel from Denver 

to Ohio, he can either take route 1(4->5->6->1) or route2 (3-> 2->1), even though the 
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route2 is shorter compared to route1 the driver takes a longer route1 because it’s safer 

then shorter route2. In this case the main criterion of finding the path from Denver to 

Ohio is to find a safest path rather than shortest path. 

 

Figure 2: Two routes for Truck driver from start point ‘Denver’ to destination ‘Ohio’ 

[2] 

The three basic elements used to solve a pathfinding problem in any of the fields 

are graph representation of map, heuristic to guide the unit to goal and a search 

algorithm to find the route for the unit.  

1.1 Graph representation of map: 

The maps can broadly divided into grids and hierarchical techniques that are 

widely used in many real world applications to find path. Map represented as grids 

consists of polygons grouped together to form a map. Consider a graph G(V, E) where 

V is set of vertices and E is set of edges. The continuous connected graph G, can be 

represented by placing a vertex at the centre of polygon or at each of its corners. In a 

map where the vertex is at the center of polygon, the edges would be the connection 

between polygons and in case where vertex is at the corners, the edges can be sides of 

the polygon. The only disadvantage of using a grid over hierarchical techniques is that 

it consumes a lot of memory to store the entire map.  
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1.1.1 Grids 

Grids are connected graph with vertices and edges to represent a map. Each of 

the polygon on the map is called as the tile/node based on the application it is being 

used. There are two popular grid representation firstly regular grids where all the 

nodes are formed using the same kind of polygons and irregular grids where the map 

could be represented with different types of polygons.  

1.1.1.1 Regular Grids 

Regular grids are the ones where the entire maps are represented using 

uniformed polygons such as square, hexagon and triangle. The regular grids are one 

of the famous map representations which are used in many fields like video games 

such as Pac-man, Pokémon games, sim city etc. and robotics where the mars rover 

robots used regular grids for their exploration [3]. Since our work mainly concerns 

with square grids, we have explained it below. 

Square grid is one of most popular regular grids which are used in many fields 

because of its simplicity in creation and finding the distance between square nodes. 

There are two types of movements for the units on the map. First being 4-way 

movement, where the units can move only horizontal and vertical directions from its 

node as show in figure 3(a) and 8-way movement, apart from horizontal and vertical 

moves, unit can move diagonally as well, as shown in figure 3(b). Most of the 

algorithms such Dijkstra’s [4], A* [5], Jump Point Search (JPS) [6] could be used on 

the square grids to find the path for units. JPS uses the symmetrical natural of square 

grids to reduce number of nodes expanded during the search. 
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Figure 3(a) 4-way movement on square grid      Figure 3(b) 8 way movement on    

square grid 

 

1.2 Heuristic: 

Most of the search algorithm used for solving Pathfinding problem uses a 

heuristic function to direct the unit during node exploration based on the information 

from the heuristic function. A perfect heuristic function is the one in which it never 

over estimates the distance from start to goal node are called as “admissible” heuristic 

functions and the heuristic function which either over estimates or under-estimates the 

distance are called as “non-admissible” heuristic functions. Starting from the simple 

diagonal heuristic function to Manhattan distance heuristic function can be used in 

search algorithms. 

As we are using grid maps, the heuristic functions explained below are based 

only on square grid maps. Manhattan distance heuristic function is perfect to be used 

on a square grid that allows 4 directions movement. Euclidean is best suited on square 

grid that allows any direction movement. 

1.2.1 Manhattan Distance: 

Manhattan distance is considered as a standard heuristic on square grids. The 

minimum cost of moving from one node to its adjacent node is set as cost D and used 

in cost function. In simple case, the cost value D is set to 1.  

http://en.wikipedia.org/wiki/Taxicab_geometry
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Function heuristic (node) = 

dx = abs(node.x – goal.x) 

dy = abs(node.y – goal.y) 

return D * ( dx + dy) [7] 

 

In the above function ‘dx’ represents the horizontal distance between the node 

and goal and ‘dy’ represents the vertical distance between the node and goal. To 

obtain an admissible heuristic the value of D plays an important part; where by cost 

value of D must be set a minimum value. By managing the value of D we could 

generate an optimal path for a search algorithm. The figure 4 shows a path generated 

by a search algorithm on a single unit using Manhattan distance.  

 
Figure 4: Search path calculated using Manhattan distance [7] 

1.2.2 Euclidean Distance: 

When a unit is allowed to travel in any-angle on grid map, then Euclidean 

distance is best suited to handle it. Euclidean distance is based on the Pythagoreans 

theorem of finding the hypotenuse of right angled triangle. So the Euclidean distance 

is the sqrt( dx*dx + dy*dy)* D. The heuristic function is given below: 
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Function heuristic (node) = 

dx = abs(node.x – goal.x) 

dy = abs(node.y – goal.y) 

            return D * sqrt( dx*dx  +  dy*dy)[7] 

 

In the above heuristic function, ‘dx’ represents the horizontal distance between 

the node and goal and ‘dy’ represents the vertical distance between the node and goal. 

In the figure 5, we show the path generated from one a search algorithm using 

Euclidean Distance heuristic. The path obtained using Euclidean distance is much 

smaller compared to Manhattan distance. 

 

 

Figure 5: Search path calculated using Euclidean Distance [7] 

1.3 Search Algorithms: 

 One of the key elements in tackling the pathfinding problem is the usage of 

search algorithms that helps find the optimal route from any of start position on the 

map to goal position while avoiding the collision of obstacles. There are many types 

of search algorithms that could be categorised based on number of units the search 

algorithm can handle. Single agent pathfinding algorithms can handle only one unit at 

a time while Multiagent pathfinding algorithms can handle many units at a time. 
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1.3.1 Single Pathfinding Algorithm:   

 As the name says single agent pathfinding algorithms consists of only one 

unit. Single agent pathfinding algorithm is used to find an optimal path for a unit from 

its start position to goal position on a map using an efficient heuristic while avoiding 

collision of obstacles. There are many types of single agent pathfinding algorithm 

starting from Dijkstra’s to Jump Point Search. The main aim of single agent 

pathfinding algorithms is to find an optimal path for a unit with minimum 

computation time and memory overhead. Dijkstra's algorithm is one of the earlier 

pathfinding algorithms that find the shortest path for a unit. Dijkstra’s algorithm is 

considered as one of the complete and optimal algorithm because it finds the path if 

the path exists. Dijkstra’s algorithm ran on a weighted graph from start node to goal 

node, here the neighbor nodes from start node is search recursively until it reach the 

goal node. A* was an upgrade to Dijkstra’s algorithm in a way that it reduced the total 

number of explored nodes on the graph using heuristic functions. A* is a best first 

type of algorithm which produces a shorter and more effective path compared to 

Dijkstra’s algorithm. Both types of grids can be used as map for searching the path for 

A* algorithm. Over the years there have been many variants A* algorithm such theta* 

which use line of sight checks on map to find any-angle path to the destination, 

Weighted A* that uses the weights while selecting the neighbor node with least 

heuristic function to reach the destination with least computation time compared A* 

but finds a non-optimal path, Jump Point Search considers symmetry breaking 

technique to reduce the number of nodes explored by the unit and thus reducing the 

computation time of search, but Jump Point Search could only be implemented on 

square grids. There are many cost functions used to measure a single agent 

pathfinding algorithm such as pathlength that is total number of nodes between the 
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start to goal node, computation time of search algorithm and number of nodes 

expanded on the map. 

1.3.2 Multiagent Pathfinding Algorithm: 

 Multiagent Pathfinding Algorithm (MAPF) finds the routes for more than one 

unit. MAPF can be defined as finding the route to all the units on the provided map 

without collision among the units and obstacles. There are number of domains which 

require the MAPF such as commercial gaming industry where multiple units in the 

game has to find the route to their respective destination, in warehouse management, 

military where the robots have to find the routes to their respective destinations while 

avoiding collision between the robots. There are two main variants of MAPF such as 

centralized approach and decentralized approach. The centralized approach consists of 

a central controller which manages all the units on map and finds route to all units by 

knowledge sharing.  

The Centralized approach is considered to be complete and optimal solution. 

A complete algorithm will find a solution if one exists and optimal algorithm will find 

a solution that is best. One of first algorithms under centralized approach was 

introduced by Svestka et al. [8] which takes a coordinated approach among the robots 

and the path is found using probabilistic roadmap (to find feasible path for all nodes 

without collision). First step in their approach creates a roadmap for single robots and 

stored in a data structure, following this a composite roadmap is generated for all 

robots and finally all the routes are retrieved from the data structure. In 2008 Ryan [9] 

introduced an abstraction approach of dividing the graph into subgraphs and using 

these subgraphs to find the paths for units in smaller level. They proved their 

algorithm is complete and produces an optimal path for units. Standley [10] 

introduced a first complete and admissible technique to solve the MAPF problem, 



9 
 

where they proposed an “operator decomposition” technique to reduce the branching 

factor of MAPF algorithm. An “independence detection” technique which allows 

units to retain their optimal paths, thus making the entire solution to be optimal. 

Sharon et al. [11] introduced a Conflict Based Search (CBS) which uses a high level 

Conflict Tree (CT) where each node represents the conflicts generated between the 

units and lower single agent search. By using these two techniques the algorithms 

produces an optimal and complete solution. One of cost function used in centralized 

approach is sum-of-cost that is the summation of time steps of all the units. Finding 

the minimum sum-of-cost is considered to be NP-Hard problem. 

Decentralized approach divides the MAPF problem into single agent searches 

and collision is avoided based on the previous agents search path. Stout [12] 

introduced a decentralized approach called “Local Repair A*” (LRA*) where the 

individual paths for all agents is generated using A* and collision is avoided by 

rerouting the path for lower priority unit during conflicts. The rerouting process in 

LRA* is very expensive in terms of computational time for the solution. To avoid the 

above problem Silver [13] introduced a “Cooperative A*” which uses a space-time 

data structure called “Reservation Table” to avoid collision between the units. There 

have been many other algorithms which use map abstraction [14] and map 

decomposition [15] for solving the MAPF problem. Bnaya et al. [16] improved the 

“Windowed Hierarchical Cooperative A*” (WHCA*) [13] in terms of solution quality 

by effective placing the window only during the conflicts. They proposed a “Conflict-

Oriented Windowed Hierarchical Cooperative A*” (CO-WHCA*) algorithm with 

both online and offline approach. Even though CO-WHCA* produce better solution 

quality compared to WHCA* but computational time increases. Saeidianmanesh [17] 

introduced a “Reduced Wait Time” (RWT) algorithm to reduce the overall solution 
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time of search by grouping the units with more waiting time in a narrow corridor and 

taking an alternate route for the grouped units. The algorithm was able decrease the 

solution time but gets in trouble in terms of pathlength of units. There are many cost 

function for decentralized approach such as makespan that is to find worst pathlength 

among units, fuel that is the total amount of pathlength or time taken by all the units 

which is similar to sum-of-cost but fuel does not consider the wait move of units, 

individual cost of units.  

1.4 Problem Statement: 

 Multiagent pathfinding problems occur in many fields such as video games, 

robotics, warehouse management, military, GPS etc. A path is found for each of the 

unit on the map while avoiding collision between the units and obstacles. There has 

been a lot research which has done to address the above problem, but the scenario 

where the units as to travel through a narrow corridor are still not addressed 

efficiently. The “Spatially distributed Muliagent Path Planning” [18] is one of the 

algorithm which tried to address the problem of MAPF travelling through narrow 

corridor. The results obtained using SDP algorithm with “Cooperative A*” [13] 

produces a better results compared to state-of-art algorithms.  

 We introduce a novel algorithm called “Cooperative JPS” which is 

incorporated with SDP framework to produce better results compared to the standard 

“SDP framework with Cooperative A*” [18] in terms of makespan, solution time, 

failure-rate. 

1.5 Motivation: 

 The problem of efficient traversal through a narrow corridor can be found in 

many fields. Considering the gaming industry where the units have to travel from its 

start position to its goal position, we need to find an optimal path while avoiding 



11 
 

collision. In Real-Time Strategy (RTS) games such as StarCraft, non-player Controls 

(NPC) has to find a path from its base to the base of player. NPC in some maps have 

to travel through a narrow bridge to reach player’s base. By using the traditional 

MAPF algorithms the units take too long which gives advantage to the human 

opponent. To provide a realistic feel to the game, the algorithm used to solve MAPF 

problem through narrow corridor must be really fast and produce effective paths. The 

SDP algorithm [18] try to address the problem, but the individual pathlength and 

individual solution time was considerably larger. This motivated us to create a new 

algorithm on the SDP framework which could produce better results in terms of 

individual pathlength and solution time which helps the game more playable for 

gamers. The above mentioned case is one of the examples for MAPF problem through 

narrow corridor, we could see the results from our algorithm can be used in other 

fields such as robotics, military, GPS etc. 

1.6 Thesis Claim: 

 By incorporating Cooperative JPS in SDP framework to traverse units in LCA, 

we saw a significate improvement for cost functions such as makespan, solution time 

and failure rate when compared with SDP framework with Cooperative A*. 

1.7 Thesis Outline: 

 At the beginning of the thesis, a problem statement was presented that speaks 

about the standard pathfinding problem and its application in various fields. In chapter 

1, an introduction to different elements involved in solving pathfinding problem was 

proposed. In chapter 2 a brief literature review on single agent and multiagent 

pathfinding algorithms is introduced. Chapter 3 contains a detailed description of 

“Spatially Distributed Multiagent path planning” [18] algorithm in detail. Chapter 4 

presents the proposed approach about the Cooperative JPS and its impact on different 
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layers in SDP framework. Chapter 5 discuss the experiments that we carried out on a 

benchmark maps. In this chapter, we discuss the experiments setup along with results 

obtained with the comparison of our approach and existing SDP framework. Results 

and discussions on how the performance of our approach with SDP framework was 

improved is shown in chapter 6, followed by concluding remarks on entire research 

and some of future work which could be done on our approach along with SDP 

framework on a whole. 
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2. Literature Review: 

This section tries to give insight into some of important works which has been done to 

address the pathfinding problem. The pathfinding problem can be broadly classified 

into single agent pathfinding and multi agent pathfinding. Research into pathfinding 

initially started by solving for single agent, and then researchers started looking into 

multi agent pathfinding as it is slightly complicated compared to single agent 

pathfinding as it is NP hard problem. [19] 

2.1 Single Agent Pathfinding Algorithms: 

 Single agent Pathfinding problem is to find the route for a single unit from its 

start position to its goal position avoiding collision with the obstacles on a map such 

as grids (triangular, square, hexagonal, octagonal), waypoints and navigational mesh. 

There have been many single agent pathfinding algorithms over time, starting from 

dijkstra’s algorithm to jump point search. We would concentrate only on the 

algorithms which are relevant to our work. 

2.1.1 A*: 

 A* algorithm is one of the efficient single agent pathfinding algorithm 

introduced by Hart et al. [5]. It is a graph based search algorithm which tackles the 

above mention problem of avoiding obstacles and finding optimal path for the unit. 

A* can be considered as a combination of best first search and Dijkstra’s algorithms 

as it explores the adjacent nodes similar to dijkstra’s but only considers the shortest 

among the nodes to goal using a heuristic estimator as best first search. Heuristic 

function are used to find the distance between two nodes on a weighted map (i.e. pre-

set weight between two adjacent nodes, usually for horizontal and vertical nodes its 

set as 1 and for diagonal nodes its set to 1.4). A* uses one heuristic function such as 
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Manhattan distance, Euclidean distance in terms of h(n) where ‘n’ is the current node 

and h(n) is the distance from ‘n’ to the goal position. The evaluation function used by 

A* is show below: 

f(n) = g(n) + h(n) 

Where g (n) = Distance from start node of unit to the current node ‘n’ 

 h(n) = Heuristic distance from current node ‘n’ to goal node of unit 

 f(n) = Overall distance from start node to goal node travelling via current node 

‘n’ 

Using the above evaluation function A* selects the smallest f(n) among all the 

discovered neighbouring nodes  

Cases of A* Algorithm based on Heuristic Function:  

1. If h(n) = 0, then A*  =  Dijkstra’s algorithm. 

2. If h(n) < g(n) then A* is guaranteed to find the shortest path. 

3. If h(n) = g(n) then A* will follow only the best path never expanding anything 

making it very fast which very rare. This is the perfect scenario. 

4. If sometimes h(n) > g(n) then A* is not guaranteed to find the shortest path. 

5. If only h(n) plays a role in finding the best path A* turns to greedy best first 

search. 

Pseudo code for A* algorithm: 

1. Create a Graph G formed using the start node N0. 

2. Push the start node N0 into the OPEN list. CLOSED list shall be empty at this 

point, f(n) = 0 + h’(n). 
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3. If N is the destination node the goal has been reached and the path is obtained 

by tracing the pointers from N0 to N. 

4. If not, Expand N, and generate a set S of its successors that are not already 

ancestors of N and add them to the OPEN list. 

5. Place the above set of successor S to N on the open list and attach a pointer to 

N from each successor node now in the OPEN list. 

6. For each member of the successor node set S either on the OPEN or CLOSED 

list, redirect its pointer through N  if that is the best path to the successor s. For 

each member of the set S on the CLOSED list, redirect the pointers of each of 

its descendants in graph G so they backwards along the best paths found so far 

to these descendants. 

7. Reorder the OPEN list in order of increasing f values. 

8. Go to step 3. 

Closed List - Nodes already explored in the graph G. 

OPEN List - Nodes to be explored in the graph G.  

To explain the A* algorithm with an example, consider a square grid with only 

4-way selection of grid and cost to travel to adjacent node is 1. As from figure 3, the 

start node is ‘A’ (At node 1) and goal node is ‘B’ (At node 11). The black blocks on 

the grid are non-traversal node or obstacles. When the algorithm starts, we add the 

start node to open list, before removing the node for evaluation we add the start node 

closed list as it is already explored. We find all neighbouring nodes to 1 i.e. 4 and 2 

are selection and by using the evaluation function we calculate the h(n) and g(n) 

values for both node. So the f(n) values for node 4 and node 2 comes up to 4. Now we 

add them back to open list to and select the neighbour node with least f(n) value, since 

both node 4 and node 2 have same f(n) we will select the node which is on top in open 
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list for evaluation. We repeat the above process until we reach the goal node ‘B’ (i.e. 

11)  

 

Figure 6.Working diagram of A* algorithm 

By selecting a perfect heuristic function, A* algorithm can produce an optimal 

shortest distance from start to goal node and the algorithm is complete as it can find 

the path if it exists on the map.   

2.1.2 Jump Point Search: 

 Jump Point Search (JPS) is one latest algorithm introduced by Harbour et al. 

[6] which addresses the problem of single agent pathfinding problem. JPS is an online 

symmetry breaking algorithm which eliminates most of the repetitive paths from start 

node to goal node. They consider a concept that moving from start node at bottom 

right corner of a 3x3 grid to goal node at top left corner, we could either move left-

left-left-up-up-up or up-up-up-left-left-left. Since both paths are have same distance 

we can consider only one of them and by doing reduce the time of exploring. (In the 

above example we have an obstacle at centre of grid). As JPS works only with 

repetitive paths we can only use the algorithm on a grid maps. 
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The main focus of JPS is to identify the jump point nodes by recursively 

pruning from selective neighbor node from current node. Similar to A* algorithm, the 

same evaluation function is used to move the unit towards its goal node.  

f(n) = g(n) + h(n) 

Rather than adding all the adjacent neighbors from current node to open list, 

JPS will selectively pick the neighbors based on two lengths. Considering the figure 

7(a), current node which is being is expanded is ‘x’, its neighbors(x) = 1,2,3,6,7,8,9 

and the parent of ‘x’ is p(x) = 4. We select the neighbors based two lengths. First the 

length from parent node p(x) to a neighbor node ‘n’ going via ‘x’ and the  second 

length from parent node p(x) to neighbor node ‘n’ not going through ‘x’. From the 

figure 7(a), the node 5 is not pruned because the length from p(x) to 5 via x is (len (4, 

x, 5) = 2) less than length from 4 to 6 not going through 5 (len (4, ! x, 5) = 2.8). 

Figure 7(b) shows the example of diagonal pruning rule. 

The condition to not select a neighbor for straight move and diagonal move is 

give below: 

Straight move -> len (p(x), !x, n) <= len (p(x), x, n) 

Diagonal move -> len (p(x), !x, n) < len (p(x), x, n) 

     

Figure 7(a): Straight pruning rule  Figure 7(b): Diagonal pruning rule 

Once we identify the neighbors we apply two pruning rules recursively to all the 

neighbors based on their position to current node: 
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Straight pruning rule for Forced neighbor:  

When there is a straight neighbor of current node ‘x’, we continuous move in that 

direction until we encounter the goal node, an obstacle or a forced neighbor for the 

expanded node. 

Consider the figures 8, if node ‘y’ is the goal node we stop the search, if ‘y’ is an 

obstacle we pass a null value which says that the  route from the neighbor useless and 

when there is a forced neighbor ‘z’ we stop the pruning and pass back ‘y’ as jump 

point to ‘x’. The forced neighbor is identified based on two conditions; first it should 

not be a natural neighbor of ‘y’ and second the length from ‘x’ to ‘z’ via ‘y’ must be 

less then length of ‘x’ to ‘z’ not going via ‘y’ i.e. len(x, y, z) < len(x, !y, z)  

 

Figure 8: Forced neighbor for straight move 

Diagonal pruning rule: 

 When there is a diagonal neighbor of current node ‘x’, we continuous move in 

diagonal direction until we encounter the goal node, an obstacle or a forced neighbor 

for the expanded node. Figure 9 shows an example of Forced neighbor for diagonal 

move. 
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Figure 9: Forced Neighbor for diagonal move 

Once we have the jump point nodes for current node ‘x’ we add them to open 

list and select the node which as least f(n) value and repeat the process of pruning 

until we get the goal node. 

 JPS is proved to extremely fast in terms solution time compared to A* as it 

expands fewer nodes and results show that JPS is 10 times faster than A* algorithm. 

The JPS is also proved to be optimal as it produces the shortest path for a unit and it 

requires very less memory. 

2.2 Multiagent Pathfinding Algorithms: 

 Multiagent Pathfinding problem (MAPF) deals with finding the routes to all 

the units from their respective start node to their respective goal node while avoiding 

collision between the units and obstacles on a map. Over the years there have been 

many algorithms addressing MAPF problem using two standard approaches. 

Centralized approach consists of a centralized controller monitoring all the units to 

reach their respective goal nodes while avoiding collision. Decentralized approach 

sub divides the problem into single agent runs to reach goal node while avoiding 

collision by communicating between the units. 

2.2.1 Decentralized Approach: 

One of the earliest decentralized approaches was introduced by Stout [12], 

where the A* algorithm was ran on all the units individually considering only of its 
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current neighbor unit. Once all the route for units is generate, the unit tracks back 

route to check for collision. If there exists a collision with other unit, the current unit 

just reroutes the unit from the node previous to collision node by running A* 

algorithm. The same process is repeated for all the units Since A* algorithm is run for 

every collision there is massive impact on CPU usage. 

 To avoid the problem of running A* for every collision Silver [13] introduced 

a new algorithm called “Cooperative A*”.  A* algorithm is ran on individual units on 

a three dimensional space-time, and considering the routes of other units. The 

individual routes of units are stored in a data structure “reservation table” which 

contains both node on the path and time on which it is being occupied. So while 

searching the route for other units, the nodes on the reservation table will become 

untraversable at that particular time. When there is a collision between the units, the 

unit currently being searched uses a “wait” move. Until the node required by the unit 

will not be available, the unit waits at the previous node before collision. Consider the 

figure 10(a), with two units ‘A’ and ‘B’ on square grid map with 4 way travel. The 

start node and goal node of ‘A’ is S1(0, 0) and G1(3, 3) respectively. And for unit ‘B’, 

the start node is S2(0, 1) and goal node is G2(3, 1). When cooperative A* is used on 

above map, A* algorithm is ran on unit ‘A’ to generate the path, the same path is 

stored in a reservation table along with its time. While running A* on unit ‘B’ all the 

expanded nodes from its start node till it reaches the goal node is cross checked 

against the reservation table. Since there is no collision the two reach their in optimal 

time and path. Consider a similar example as above in figure 10(b), where unit ‘A’ as 

same start and goal node, but unit ‘B’ as start node S2(0, 2) and goal node G2(2, 0). 

Initially the path for unit ‘A’ is stored in reservation table along with its time, while 

finding the path for unit ‘B’ the one expanded node (1,1) at time 2 is occupied by unit 
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‘A’ , so the unit ‘B’ waits at node before collision at (0,1) and moves to node (1,1) 

when it becomes available.  

 

Figure 10(a): Cooperative A* without collision 

 

Figure 10(b): Cooperative A* with collision 

Cooperative A* has some drawbacks in terms of termination of units i.e. the 

units would become inactive after reaching the goal and block other units, there is no 

prioritization, on when each unit is ran which may impact the units which has longer 

path and efficiency of algorithm as the entire path of unit is calculated on a three 

dimensional space time state.  
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 The above problem in cooperative A* were addressed by Silver [13] with a 

“Windowed Hierarchical Cooperative A*”. Here a window of predefined depth is 

used while finding the path for individual units i.e. unit’s search is partially stopped 

when the window limit is reached, thus allowing the units to be prioritized based on 

duration of usage of A* algorithm. By partitioning the search for a unit efficiency of 

entire algorithm is increased in terms of time. And finally by using the window, the 

units which reach their goal node are still active as long as the window limit is 

reached. 

 Jansen et al. [14] introduce an implicit cooperative pathfinding using direction 

maps (DM) which are built on a map. An abstract map is used to run all the units 

individually to capture the path and direction of travel which is later used in DM. 

Direction maps are data structure with collection of all the direction vectors (DV). 

Direction vectors are vectors which give direction to each unit within each traversal of 

node, its value ranges from zero to one. The author’s also use movement vectors 

(MV) to capture the individual movement between the nodes on the map which could 

be any of the 8 directions. Planning of DM is done just the opposite to A* algorithm 

where f-cost is used to expand the nodes, while in DM the cost to travel to adjacent 

node is changed on both nodes. The main objective of DM is used to find the path 

with lower cost when compared shorter path. Thus while traversing on a DM the units 

with same direction are grouped together to move to their respective goal nodes  The 

author’s propose the following formulation using the dot product of DV and MV 

which ranges from -1 to 1 for movement from node ‘a’ to node ‘b’ 

Wab + 0.25 ∙ Wmax (2 - DV a ∙ MV ab - DV b ∙ MV ab) 

And `Wmax' is the penalty for units which move in opposite direction to DV , 

`Wab' is the cost of moving the unit from edge `a' to `b', `MV ab' is the movement 
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vector for moving from node `a' to `b', `DV a' is direction vector associated with node 

`a' and `DV b' is direction vector associated with edge `b'.  Once the DM is built a 

single unit, the next unit can use the previous DM to travel on the map. The author’s 

state that the dynamic direction maps can be used for learning process has the 

direction map will be constantly updated with movements of all units.  

One of the most recent works addressing the MAPF problem is proposed by 

Bnaya et al. [16], where they introduce a upgrade to Silver [13] “Windowed 

Hierarchical Cooperative A*”(WHCA*) called “Conflict oriented Windowed 

Hierarchical Cooperative A*” (CO-WHCA*). WHCA* does not consider conflicts 

between units in some cases where the window is used for each unit and space-time 

node is reserved for the entire path in the reservation table till the window limit. The 

space-time node reserved in reservation table may not have any conflicts with the 

other units. Secondly in case where the conflict may occur at Window + 1 node for 

unit, by then the unit may be physical impossible to avoid the collision. CO-WHCA* 

address the above drawbacks by placing the window only when the conflict occurs. 

Window is placed only during the conflicts as in case of WHCA* a predefined length 

of window size is utilized. One of the conflicting units is selected as a conflict owner 

and that unit is allowed to use the window and reserve space-time node in reservation. 

Following the initial cycle, after the first reservation table is not erased as in case of 

WHCA* and the previous reservation table is utilized while finding routes for next 

units. Thus by managing the window only during the conflicts the CO-WHCA* 

produces better solution in terms of success-rate, solution cost and time compared to 

WHCA*. 

The latest algorithm for solution MAPF problem is introduced by 

Saeidianmanesh [17] called “Reduced Wait Time” (RWT). Here all the units on a 
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map have same direction of travel i.e. on a square grid map of 5x5; all the units have 

start nodes on left-hand side and their goal nodes on right-hand side. The main focus 

of the RWT algorithm is used to reduce the waiting time of units in a narrow passage 

where only few units can pass and rest of units as to wait for their turn to pass. To 

reduce the overall time of all units, RWT propose to divide the group of units when 

there is a shared passage (i.e. two ways to reach the destination). So the some group 

of units take an alternate route then the optimal route to reach their destination. By 

doing so the overall solution time is decreased but takes non optimal route to 

destination. Consider the figure 11, where there is shared passage ‘A’ and ‘B’, if there 

are 20 units entering the large corridor, the RWT algorithm will send 10 units through 

passage ‘A’ and rest of units through passage ‘B’ thus reducing overall solution time.  

 

Figure 11: Passage with path ‘A’ and ‘B’[17] 

2.2.2 Centralized Approach: 

 Most of the algorithms using the centralized approach produce an optimal 

solution to MAPF problem but fail as the number of units increase on the map. One of 

predominate algorithm was introduced by Standley et al. [10], where they introduce 

an “operator decomposition” (OD) technique to reduce the branching factor of a 

standard A* algorithm which is ran on multi agent environment. By reducing the 

number of operation for each od nodes on every timestep the OD reduces number of 
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nodes which would selected during a standard A* run. Even though OD greatly 

reduces the number of explored node space, the algorithm will be still exponential. To 

tackle this, they introduce independence detection (ID) which utilizes the idea of 

decentralized algorithm, by running the units independent to other units. After this 

process, they group the units with conflicts and units without. Thus concentrating only 

on the conflicting units algorithm reduces overall the solution time. There algorithm 

produces an admissible, optimal and complete solution to MAPF problem. Standley et 

al. [20] further improved the solution quality by introducing a Maximum Group Size 

(MGS) algorithm, which is used to set a maximum size for groups which are created 

during ID process, thus allowing conflicting groups to not combine by find a 

alterative path. Neither OD+ID nor MGS algorithms could produces optimal solution 

for a MAPF, so they introduced an Optimal Anytime algorithm by using MSG 

algorithm, where in after finding the solution, the algorithm continues to run until it 

finds an optimal solution or until the algorithm terminates. They compared their 

algorithm against Hierarchical Cooperative A* (HCA*) to see their algorithm 

outperform HCA* in terms of solution quality.  

 Sharon et al [11] introduce the pruning technique to their previous work called 

“Increasing Cost tree Search” (ICTS), where they used increasing cost tree (ICT). By 

partitioning the ICT into High level tree which stores all the independent paths of 

units and low level tree where they compare the unit’s path with high level tree to 

avoid collision and to find optimal solution. There were 4 pruning technique which 

was used to improve the solution quality of ICTS algorithm. First was the “Simple 

Pairwise Pruning” (SPP), considering a pair of agents ai and aj in the list of agents 

from the multi agent problem. Once selected ignoring the rest of the agents the route 

for ai and aj is found with the cost for reaching their respective destination assumed as 
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Ci and Cj. So if there is no immediate solution to the above problem of two agent 

search space of MDDij, then the corresponding ICT(n) node can be considered is not 

a goal. Second “Enhanced Pairwise Pruning” (EPP), by modifying the SPP, the 

pairwise pruning can be improved to perform in worst case also. By modifying the 

searching strategy of SPP from depth first search to breadth first search and also by 

modifying the single agent MDD's, the EPP removes the invalid nodes from all the 

individual MDD. So the k-agent search (higher level search) is improved. Third 

“Repeated Enhanced Pairwise Pruning” (REPP), the EPP is continuously iterated to 

check until there is no solution for a pair of agent's ai and aj or until there is no single 

agent MDD to further iterate in the ICT. Fourth “m-agent Pruning”, where  a group of 

agents ranging from 2 < m < k can be pruning using the m-agent pruning which 

search the m-agent MDD search space using depth first search strategy. So if there is 

no solution for the above m-agent pruning. By implementing the pruning techniques 

the normal ICST was completed out performed by the ICST with pruning technique. 

 One most recent works on MAPF problem using centralized approach was 

done by Mors et al. [21], where they improved the “push and swap” (P&S) [22] 

algorithm. The “push” process is used to move the units towards their respective goals 

and “swap” process allows swapping the units without altering the configuration of 

units. P&S as some shortcoming on some of instance, during the “swap” process, the 

2 swapping units must a node with degree greater than 3 to make perfect swap, 

otherwise the one of unit gets stuck or in other instance as to longer route to its 

destination. To address the above problems and to produce a complete and optimal 

solution, they introduced a “push and rotate” algorithm where in the algorithm is 

divided into three phases. In first phase all the disjoint parts are found in the graph 

and named sub problems by taking into account of number of unoccupied vertices and 
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on whether a unit from one location can be moved to another location in the graph. In 

the second phase, each unit is assigned a sub problem depending on the number of 

empty vertices surrounding the sub problem and on whether the units can be moved 

out of the sub problem easily. Finally the third phase is to prioritize the units placed in 

different sub problems so that the solution can be easily found for the units while 

present in bottle neck. Thus solving the entire instances which were not addressed by 

P&S and producing a complete algorithm. 

2.3 Summary 

In this chapter, we have examined some of the relevant papers to our work. 

We introduced both the single agent pathfinding and multiagent pathfinding 

algorithms. We also examined the two approaches which are employed by various 

researchers to address the MAPF problem called centralized approach and 

decentralized approach. In the next chapter we are going to explain in detail the most 

relevant algorithm Spatially distributed Multiagent Path planning [18] algorithm 

which is used to address MAPF problem while managing the transversal of units 

through narrow corridors. 
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CHAPTER-3: SPATIALLY DISTRIBUTED MULTIAGENT PATH 

PLANNING 

 

To address the issue of traversing of units through the narrow corridors in MAPF 

problem, Wilt et al [18] introduced a “Spatially Distributed Multiagent Path 

Planning” algorithm. The given map is partitioned into Low Contention Area (LCA) 

such as open fields in video games, rooms for cleaning robots etc and High 

Contention Area (HCA) such as narrow hallway for warehouse robots, bridges in 

video games etc. Each of the areas consist of controllers that are responsible for their 

respective areas and have knowledge of their area in terms of number of units, 

obstacles etc. There is a 1-to-1 mapping between the controllers and areas on the map. 

3.1 Spatial Distribution of Map: 

 Spatial distribution is dividing the map graph G (V, E) with controllers C1 to 

Ck where each controller consists of subset of V. The edges connecting within a 

controller are called as internal edges and edges connecting between the controllers 

are referred to as transition edges. Each controller has the knowledge of its respective 

area which is the topology of area and configuration of units within it. There are two 

movements of units within a controller that are internal moves and transition moves. 

Internal moves are classified into 3 types: first to transfer the unit to its goal with 

target macro, second to transfer a unit from current controller to next controller and 

third to accept the unit from other controllers. Transition moves are the single step 

movement of units through transition edge from one controller to next. The figure 12 

shows the two controller1 and controller2. The double ended arrow between the 

controllers represents the transition move of unit showing units can travel in both 

directions. One of the cases of internal move which is to transfer a unit to its goal ‘G’ 

is also shown. 
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Figure 12: Spatial distribution of map into controllers and transition move between 

controllers and internal move 

Since each controller has the  configuration knowledge of units with it, there is 

a need for each controller to know all the units which are arriving and departing from 

it. A heuristic guidance is generated by running an individual search for all unit using 

A*. This high level path would help the controller to transfer the unit to appropriate 

controller and to accept a unit from an appropriate  controller. There could be cases 

where the units start and goal nodes are within a single controller then the high level 

path would consists single controller. In figure 13 we show the high level paths for 

two units U1 and U2 with S1, G1 and S2, G2 as start node and goal node respectively. 

There are three controllers with name controller 1(C1), controller 2 (C2) and 

controller 3(C3). U1 with high level path C1->C2->C3 and U2 with C3 as both its 

start and goal nodes are within C3. 

 

Figure 13: High level paths for units U1 and U2 
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3.2 High Contention Area: 

 All the narrow corridors, bridges, narrow hallways on a given map will be 

HCA’s.  Central core area and buffering area which allows units to wait together 

forms a HCA. For a unit to travel through the HCA first it has to arrive at one of the 

nodes in buffering area then it is moved to central core area and through the opposite 

buffering area. To avoid collision between the units within the HCA, it is divided into 

inbound and outbound areas. Based on the direction of travel a unit can take either the 

inbound or outbound area. 

 The central core area of HCA is identified on a given map. A pattern of 2, 3 

and 4 nodes wide and 8 nodes long both vertical and horizontal is moved over the 

map to find all the central core areas for each of the HCA. All three horizontal 

patterns with 4 nodes long showing both inbound and outbound direction are shown 

in figure 14(a), 14(b) and 14(c).  

                    

Figure 14(a): 2 wide central core HCA Figure 14(b): 3 wide central core HCA 

 

Figure 14(c): 4 wide central core HCA 

 Once the central core area for each HCA is identified, the buffering area must 

be created around the central core area for each HCA. The size of 13 nodes is used for 

buffering area. Since all units cannot travel through central core there must be a 

buffering/waiting area surrounding the central area which allows the units wait for 
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their turn to move. The first step in this process is to divide the central core area of 

HCA, for hortizonal cental core the left to right will be inbound and opposite will be 

outbound. Following this the first N=13 cells on same side of the direction being 

considered will be selected starting from central core area of HCA using Breadth first 

search (BFS). Now the HCA is created on the map. Figure 15 shows a HCA with 2 

size wide and 4 long vertical central core area represented with ‘C’ cells. Using BFS 

on both inbound and outbound direction the buffering area is created around the 

central core area which are represeneted with grey cells. 

 

Figure 15: High Contention Area [18] 

 Each cell in the HCA is given a BFS depth value starting from the first 

buffering cell for each direction through the central core area and to other side of 

central core area of HCA. In the figure 15, for inbound direction i.e. from down to up 

the BFS value for first buffering cell will be 0 and for outbound direction i.e. from up 

to down the lowest BFS depth will be at the top buffereing cell. By using BFS depth 

of cells in HCA, the units are traversed through the HCA. There are some simple rules 

to avoid deadlock and unit starvation such as the prority is always given to unit with 

longer time in the controller by moving other units to a empty cell with lower BFS 

depth value, there is no dead on collision of units as the BFS depth value in each of 
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the direction is different value. Units that are on its way out of HCA can either be 

transferred to adjacent cell of next controller (only if the cell is avilable) or taken to 

end of HCA and then transfer to next controller depending on availability. 

3.3 Low Contention Area: 

 Once the HCA’s are found on map, the rest of area’s can be considered as 

LCA’s. The main responsibility of controller of LCA is to transfer the unit to next 

HCA controller or to send the unit to its local goal node. Since LCA’s are open area’s 

with few obstcales, a modified Cooperative A* [13] is ran for all the units. As the map 

is spatially distributed, the standard Cooperative A* [13] cannot be used because of 

the following problems. In standard Cooperative A* [13] there is a preset goal node 

for each unit and the unit can arrive at its goal at any time, but in spatially distributed 

map, the arrival time of unit to its destination cannot be gurantee. So they have 

considered the destination of a unit as a disjuctive destinations that are locations 

adjacent to existing controller to its next controller. So there could be series of nodes 

along each of controller before reaching its actual destination. The other part to 

consider is the time, as the availability of nodes to transfer a unit would not be 

available at a particular time on a controller. So the disjuctive destination to be 

considered as goal state of unit the controller must accept the unit at a arrival time. 

Once the units reach their respective goal node, in standard Cooperative A* [13] they 

become inactive i.e. they just sit at their goal nodes. Thus making the node not 

available to units on its optimal path. In modified Cooperative A* even after reaching 

the goal node the unit will be active by replanning a route to goal node, thus allowing 

other units to use its goal node. 
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3.4 Spatially Distributed Algorithm: 

 Spatially distributed framework is used to partition the given into High 

Contention Area (HCA) and Low Contention Area (LCA). Each area shows a 1-to-1 

mapping between the controllers. As stated in the earlier discussiones each controller 

communicate with other controller to negotiate the transfer of unit. So there are two 

macros to handle the communication in both HCA and LCA controllers with respect 

to unit to be transferred, node where unit is accepted and time of arrival of unit. The 

pseudo code for both LCA and HCA for accepting a unit is given below. The HCA 

accepts the units at particular node and time only if it can keep the previous promise 

made to other units. If two units request the same node at same time, then the priority 

is given to the unit which asked first and other unit as time wait the transition node for 

its turn. As LCA controller’s main responsibilities is to accept unit from HCA and 

transfer either to local goal node or to next HCA controller, in pseudocode just 

modified Cooperative A* is ran for the particular unit. The location parameter can 

either represent a local goal node or the disjunctive destination for next HCA 

controller. 

 

 

Algorithm 1: Low Contention Area Accepting Unit [18] 

 



34 
 

 

Algorithm 2: High Contention Area Accepting Unit [18] 

3.5 Summary: 

 In this chapter we have examined the working of “Spatially Distributed 

Multiagent Path Planning” (SDP) which address the problem of traversing the units 

through the narrow corridor called High Contention Area’s in a MAPF problem. To 

do the search for units in Low Contention Area’s (LCA) the authors have proposed a 

modified Cooperative A* which is one of earliest algorithm to solve MAPF problem. 

In next chapter we propose a novel algorithm called Cooperative Jump Point Search 

(Cooperative JPS) which is ran on LCA to find path for units. We see the impact of 

Cooperative JPS on the entire SDP framework and modification made to both 

Cooperative and Jump Point Search algorithms to adapt to SDP framework. 
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CHAPTER 4: PROPOSED APPROACH 

The problem of finding the paths for all the units on the map from their respective 

start and goal positions is referred to as MAPF problem. Many researchers have 

addressed the MAPF problem over past few years. Wilt et al [18] tackled the MAPF 

problem with a scenario where the units have to travel through a narrow corridor on 

the map. They partitioned the map into High Contention Area (HCA) and Low 

Contention Area’s (LCA). HCA are the narrow corridors, bridges, narrow hallway 

etc, and LCA are the open areas on the map. Each area has its own controller having 

the local knowledge of its area and units inside it. A modified Cooperative A* [18] 

was used to traverse the units through their paths in LCA and a Breadth First Search 

was used in HCA. Since Cooperative A* [13] is one of the oldest MAPF algorithm, 

we have proposed a novel algorithm called Cooperative JPS which is a combination 

of Jump Point Search (JPS) [6] and the cooperative nature from cooperative A* [13] 

algorithm. We have introduced our new algorithm in place of Cooperative A* on the 

Spatially Distributed Pathfinding framework (SDP) [18] to find the paths of units in 

LCA. In rest of chapter, we introduce all the techniques which was employed to 

combine the Cooperative and JPS. We also see the adjustments done to Cooperative 

JPS to accommodate inside SDP framework.  

4.1 Cooperative JPS: 

 Cooperative JPS is the combination of JPS [6] and Cooperative nature seen in 

Cooperative A*. As we have explained in literature review on the working of JPS [6] 

and Cooperative A* [13], the JPS [6] uses the symmetry breaking techniques to 

reduce the number of nodes explored by a unit in a single agent environment. Instead 

of probing all the nodes surrounding the unit, JPS uses the couple of pruning rules and 

stopping rules to find the next available node on the path for a unit called “jump 
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points”. Thus by using the jump points the JPS finds the path for a unit from its start 

node to goal node. Cooperative A* [13] uses a 3D space and time data structure called 

“Reservation table” to store the paths of units in multiagent environment. The 

collision is avoided by constant lookup into reservation table for each unit. A wait 

macro is used during the collision. The unit which has path already is given priority to 

occupy the node and the other colliding unit would have to wait until the node 

becomes available. Since the reservation table requires the entire path of units, we 

have introduced a “Backtracking mechanism” to get all the nodes in the path for each 

unit, as JPS [6] will only give the jump points from start to goal nodes. While finding 

a path for a unit using JPS [6], the algorithm need to differentiate between High 

Contention Area and Low Contention Area, so we have proposed a new stopping rule 

for JPS [6] algorithm called “Forced Selection”. In some cases the solution time 

becomes more important than finding an optimal path for a unit, so by just using wait 

macro we cannot achieve that. Thus we present a new “Side-way Movement” macro 

along with wait macro to improve the solution time and effective avoid collision 

between units. To decrease the overall solution time of the entire SDP algorithm with 

Cooperative JPS, we use JPS [6] instead of A* algorithm to find the high level path 

which acts as a heuristic guide for controllers. We explain all the above mentioned 

techniques in details later in the chapter. 

4.1.1 Backtracking Mechanism: 

  The backtracking mechanism is very important part when combining 

JPS [6] with cooperation in multiagent environment. As the reservation table requires 

the entire path for each unit to be stored in the table, we propose a backtracking 

mechanism to find the entire path generated using the JPS [6] algorithm. As 

mentioned earlier in the chapter, the JPS [6] will only generate the jump points from 
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start node to goal node as a path. Thus we need to use a backtracking mechanism to 

get all nodes in the path between the jump points. While storing the expanded nodes 

from the JPS [6] algorithm to the reservation table, we consider the current node from 

where we do the search and each jump node expanded by JPS [6]  to find all the nodes 

between the current node to each expand node using backtracking mechanism. We 

need to pass the direction of travel node using below equation in both ‘x’ and ‘y’ 

direction. 

DirectionX = (jumpNode.x – currentNode.x)/max(abs(jumpNode.x – currentNode.x), 1)  

DirectionY = (jumpNode.y – currentNode.y)/max(abs(jumpNode.y – currentNode.y), 1)  

 

The pseudo code for backtracking mechanism is presented below: 

Algorithm 3 Function backtracking 

Require: p: parent node, j: jump node, d: direction 

 

distanceBetweenNodes = euclidenDistance(p, j) 

 a[distanceBetweenNodes] =  null // create an array of size of 

distanceBetweenNodes 

while distanceBetweenNodes ≠ 0 do 

 n = step(p, d) 

 distancebetweenNodes = distancebetweenNodes – 1 

 a[distancebetweenNodes] = n 

return a 

 

Algorithm 3: Backtracking mechanism in Cooperative JPS 

 

For each jump node generated by the JPS [6] algorithm, we pass the jump 

node along with the parent of jump node to the function backtracking mechanism to 

generate all the nodes in between the parent node and jump node. Based on the 

direction of travel of unit we get each node from the parent node by constantly 

incrementing in the direction of travel till we reach the jump node. Once we have all 

the nodes, we check the availability of each node and store it in reservation table. 
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Figure 16: Backtracking Mechanism Example 

In figure 16 we have a unit with start node ‘A’ and goal node ‘B’ on an 8-way square 

grid. When JPS [6] is used to find the path the above unit, the path generated will be 

represented as A->JP1->JP2->B which would only contain the jump points between 

nodes ‘A’ and ‘B’ discarding all the nodes between the nodes on the path. Using the 

above backtracking mechanism on each unit and for each expanded nodes, in our 

example the first jump point from start node is JP1. Once we have JP1, we run the 

backtracking mechanism to find nodes between the parent of JP1, i.e, ‘A’ and add it to 

the reservation table. After applying backtracking mechanism on above unit we have 

all the nodes from start node ‘A’ to goal node ‘B’ via JP1 and JP2.The same process 

applied to all units and for each expanded node.  

4.1.2 Forced Selection: 

 Existing JPS [6] algorithm already has two stopping rules one for 

horizontal or vertical straight movement and one for diagonal movements. Just by 

using these stopping rules JPS [6] algorithm cannot differentiate between the High 

Contention Area (HCA) and Low Contention Area (LCA). Since Spatially Distributed 

Pathfinding framework (SDP) [18] have controllers for each area which allows an 

effective transfer of units from a narrow corridor to open areas. We have introduced a 

new stopping rule called “Forced Selection” which allows the unit to be transferred 

from one controller to other. As we already have high level path for each unit which 

acts as a heuristic guide for controllers on arrival of units to its area. By utilizing the 
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high level path, the JPS [6] algorithm is stopped forcefully at one of the transaction 

nodes in HCA. Depending on the direction of travel of unit from its LCA to HCA, we 

first block all the inbound or outbound directed nodes in HCA. Once done, the search 

is stopped and search algorithm generates a transaction node as an expanded node. 

The pseudocode for forced selection macro is presented below: 

Algorithm 4  Function ForcedSelection 

Require: n: expanded node, hlp: High level path of unit 

 

if hlp contain a HCA then 

       HCA = select all HCA in hlp 

       while till there is no HCA do 

if n ∈ HCA 

     return true 

return false 

 

Algorithm 4: Forced Selection in Cooperative JPS 

For all the nodes expanded by JPS [6], we need to check whether the node 

belongs to a HCA or a LCA, so for each unit we would generate the High level area 

which represents all the areas which would be travelled by the unit. So for units 

travelling from LCA to HCA, we require transferring control of unit to HCA 

controller, to do so we have the forced selection macro which checks each expanded 

node for its correct belonging area. When we encounter a node which is part of HCA, 

we stop the search and transfer the control to that HCA controller. 

 

Figure 17: Forced Stopping on SDP framework  
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In figure 17 consider a unit ‘Z’ with start node ‘A’ and goal node ‘B’ on 8-

way square grid map spatially partitioned  into HCA and LCA.  The greyed part in the 

figure represents the HCA1 and the area side of it is represented as LCA1 and LCA2. 

First we need to block either the inbound nodes or outbound nodes in HCA1 based on 

the direction of travel which can be obtained by the high level path for unit ‘Z’ that 

can be represented as LCA1->HCA1->LCA2(i.e. one of nodes in each area to 

represent the entire area). Using the high level path, we apply a forced selection by 

stopping the JPS [6] algorithm at a transition node ‘P’. The forced selection is 

implemented while expanding the JPS algorithm which checks for the only for the 

nodes in HCA, so the first recognised node in HCA is selected for transferring the 

control of unit from LCA1 controller to HCA1 controller. 

4.1.3 Collision Avoidance: 

  In some real time scenario such as video games where the solution 

time is more important than actual pathlength, we cannot just use the ‘wait’ macro 

used in Cooperative A* [13] for collision avoidance. So we propose new collision 

avoidance technique called “Side-Way Movement” in Cooperative JPS. When there is 

collision between the units, the first preference is given to side-way movement than 

wait macro. In side-way movement the low priority unit i.e. unit which is trying to 

occupy a node which is already occupied by unit in collision, will deviate from its 

optimal path  and occupy one of the nodes on either of side of collision node. There 

are two variants to side-way movement first being the straight movement of unit with 

either horizontal or vertical movement and second is diagonal movement. Consider a 

unit ‘Z’ with ‘N’ nodes as path i.e. n1....ng, where n1 being the start node and ng being 

the goal node which would be generated after the backtracking process. Consider a 

collision node n(x, y) on the path of unit ‘Z’ then for a straight movement we would 
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consider either the node n(x-1, y) or n(x+1, y) for horizontal movement and for 

vertical movement we would either consider n(x, y -1) or n(x, y+1) as save node and 

move the unit to one of the nodes to avoid collision. When the collision node ‘n’ is at 

the diagonal travel of unit then we would consider either the nodes n(x, y-1) and 

n(x+1, y) or n(x-1, y) and n(x, y+1) as save nodes to move the unit to avoid collision. 

Both diagonal and straight side-way movement for collision node n(x, y) is shown in 

figure 18(a) and figure 18(b) respectively.  

    

Figure 18(a): Diagonal side-way movement Figure 18(b): Straight horizontal 

side-way movement 

Depending upon the above discussion we can conclude with 4 main cases:  

 Case 1: Straight side-way movement (either horizontal or vertical) 

   Collision node – n(x, y) 

   Horizontal side-way movement – n(x-1, y) or n(x+1, y) 

Vertical side-way movement – n(x, y-1) or n(x,y+1) 

 Case 2: Diagonal side-way movement  

 Collision node – n(x, y) 

 Diagonal side-way movement – n(x-1, y) and n(x, y+1) or n(x, y-1) 

and n(x+1, y) 

 Case 3: When the side-way movement is not available 

  Collision node – n(x, y) 

Wait node – (n-1) waiting node will always be the node previous to 

collision node 

 Case 4: When both side-way movement and wait node is not available 

  Collision node – n(x, y) 
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Wait node – ((n-1)-1) waiting node will be two nodes way from the 

collision node  

Waiting node – we will iterate from (n-1) till its parent node to find the 

waiting node 

Below is the pseudocode for collision avoidance techniques used in Cooperative JPS. 

Algorithm 5 Function CollisionAvoidance 

Require: c: Collision Node, d : direction of unit, p: previous node to ‘n’,t: time of collision 

 

n = sideWayMovement(c, d)  // based on direction of travel generates the pair of evading  

node/nodes 

if n ≠ 0 then 

 x = Select one of evading node/nodes 

 x.time = t //for diagonal evading nodes the time ‘t’ is added  appropriately  

 return x    

if n = 0 then 

 if waiting at p is available then 

  p.time = t   // we create a new node at ‘p’ with updated time t 

  return wait(p) 

 if waiting at p is not available then 

  q = parent of node p 

  r = all nodes from p to q 

  t = t -1   // since waiting node could be two space before ‘c’  

  for all z ∈ r do 

   if wait(z) is available then      

    z.time = t  

    return wait(z) 

  t = t -1 

 

Algorithm 5: Collision Avoidance in Cooperative JPS 

When we encounter a collision node, the first step is to find the pair of evading 

node/nodes using side-way movement function and return one of the available evading 

node/nodes. The algorithm for side-way movement is presented in algorithm 4. In 

some cases the evading node/nodes are blocked or not available then we resort to wait 

action at node previous to collision node. But when the number of units on the map is 

very high there could be chances that both side-way movement nodes and waiting 

node be unavailable, than we iterate from the previous node to collision node to its 

parent node to find a waiting node. 
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Algorithm 4 Function sideWayMovement 

Require: c: collision node, d: direction of travel of node 

 

if   d     is straight horizontal then 

 n1 = c(x-1, y) 

 n2 = c(x+1, y) 

 return n1 and n2 

if    d    is straight vertical then 

 n1 = c(x, y -1) 

 n2 = c(x, y+1) 

 return n1 and n2 

if    d     is diagonal then 

 n1 = c(x-1, y) and c(x, y+1) 

 n2 = c(x, y-1) and c(x+1, y) 

 return n1 and n2 

 

Algorithm 6: Side-way movement in Cooperative JPS 

4.1.4 High level Path using JPS: 

 Instead of using an expensive A* algorithm to generate the high level 

path for individual units, we use JPS [6] to increase the overall solution time of 

spatially distributed pathfinding algorithm with cooperative JPS. In figure 19; we 

have two unit ‘A’ with start node S1 and goal node G1 and unit ‘B’ with start node S2 

and goal node G2. Unit ‘A’ starts from LCA1 and ‘B’ starts from LCA2. So when JPS 

algorithm is used to find the paths for both units individual, we pick only one node in 

each area to represent the entire area for high level path consideration. In HCA we 

pick the central core nodes for consideration depending on the direction of travel of 

units. So in our example the High level path for unit ‘A’ will be S1->H1->G1 and for 

unit ‘B’  it will be S2->H2->G2.  
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Figure 19: High level path using JPS for two units on SDP framework 

4.2 Summary: 

 In this chapter we introduced a novel MAPF algorithm called Cooperative JPS 

which is implemented on SDP framework. We showed various techniques required to 

incorporate JPS [6] into a Cooperative environment on SDP framework. We proposed 

a backtracking mechanism for JPS [6] algorithm to find all the nodes in the path for 

units. Using the backtracking mechanism we introduce a new stopping rule for JPS 

[6] to differentiate between HCA and LCA. A collision avoidance technique called 

side-way movement was introduced along with wait macro in existing cooperative A* 

[13] to increase the solution time of individual units. And finally to reduce the 

solution time of overall SDP with cooperative JPS algorithm we used JPS [6] instead 

of A*. In the following chapter we compare our work with existing SDP with 

Cooperative A* algorithm [13] to measure the performance of our work in terms of 

makespan, overall solution time, failure-rate. 
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CHAPTER-5: EXPERIMENTAL SETUP AND RESULTS 

We ran our experiments on an ASUS G46V laptop with Intel core i5 processor and 

RAM capacity of 8GB. We compared our Spatially Distributed Pathfinding algorithm 

with Cooperative JPS with the existing Spatially Distributed Pathfinding algorithm 

with Cooperative A* [13]. We would like to thank the authors for providing their 

code for our experiments. There work was completely written in JAVA.  We have 

used the benchmark maps for one of the famous games from Blizzard gaming 

company called Dragon Age: Origins [23]. 

For our experiments we have considered 8 different maps from Dragon Age: 

Origins game with High Contention Area (HCA) ranging from 0 to 20 and number of 

open nodes for units traversal from 925 to 30236. We could not experiment on maps 

with higher open nodes because of laptops constraints. The maps used are square 

grids which allows both 4-way and 8-way traversal.  

Start and goal nodes for each of the unit were randomly generated only on the 

LCA. Since HCA would usually be a narrow corridor, no start or goal nodes are 

placed. It would not be practical to place either the start or goal node in HCA because 

in any real life scenario such as a bridge we won’t have a parking lot, the bridge just 

acts as a passage for vehicles to move.   

The results are represented starting for maps with least HCA to maps with 

higher value. A total of 530 problem instances were considered for our experiments, 

with 5 iterations run for each map which was enough to obtain accurate average 

results. The cost functions used in our experiments are makespan, overall solution 

time of algorithm, failure rate, individual Pathlength of unit causing the makespan.  
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5.1 orz704d.map:  

 The orz704d map has zero HCA in it so the entire map acts as one big 

LCA. Since there is only one LCA our work will just use Cooperative JPS and 

modified Cooperative A* in Wilt et al [18] work. There are 2097 open nodes for units 

traverse on the map. We started with 10 units gradually increasing by 10 units till 100 

units. The figure 20(a) shows the comparison of makespan between our work and 

existing SDP with Cooperative A* [13]. As from the results our work completely 

dominates the existing work by around 59.2%.  In figure 20(b) we have compared the 

overall solution time between the algorithm and by the result we see a decrease in 

solution time by 33%. Number of units failing in each of instance is shown in figure 

20(c). The table 1(a) shows the actual values of makespan and solution time for 

individual unit causing the makespan. We also cumulated the failure rate of units over 

each run in table 1(b). 

 

Figure 20(a): makespan generated for SDP with Cooperative JPS and SDP 

with Cooperative A* on map orz704d.map 



47 
 

 

Figure 20(b): Solution time generated for SDP with Cooperative JPS and SDP 

with Cooperative A*on orz704d map 

 

Figure 20(c): Number of Failed units for SDP with Cooperative JPS and SDP 

with Cooperative A*on map orz704d over each instances 

 

 

Number of 

units 

SDP with Cooperative A* SDP with Cooperative JPS 

Makespan Solution 

time 

(seconds) 

Makespan Solution 

time 

(Seconds) 
Pathlength Unit Pathlength Unit  

10 83 2 0.197 39 6 0.131 

20 83 2 0.25 40 6 0.203 

30 104 29 0.312 63 25 0.281 

40 108 35 0.438 63 25 0.375 

50 108 35 0.562 82 37 0.509 

60 110 35 0.61 82 37 0.578 

70 110 35 0.625 82 37 0.594 

80 173 79 0.915 72 46 0.467 

90 111 86 0.833 75 46 0.486 

100 111 86 0.986 82 37 0.84 

110 111 86 1.052 75 46 0.628 

120 111 86 1.238 82 37 0.936 

Table 1(a): Makespan and solution time on map orz704d 
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Number of 

units 

Number of failed units 

SDP with Cooperative A* SDP with Cooperative JPS 

10 0 0 

20 0 0 

30 0 0 

40 1 0 

50 0 2 

60 0 1 

70 1 2 

80 2 2 

90 2 2 

100 1 4 

110 3 3 

120 7 5 

Table 1(b): Number of failed units on map orz704d 

5.2 den204d.map: 

 The den204d map consists of one HCA and as 15788 open nodes. With 10 

units for each instances; a total of 250 units is ran on the map. The figure 21(a) shows 

makespan between the two algorithms with almost similar decrement in makespan of 

about 59.2%. We saw a massive decrease in solution time by about 117.12% as there 

are two large LCA on the map that allows our algorithm to perform better in figure 

21(b). Similar to previous we also see a decrease in number of failed units in figure 

21(c). The tables 2(a) and 2(b) gives the unit which is causing the makespan along 

with makespan and solution time for particular group of units. 
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Figure 21(a): makespan generated for SDP with Cooperative JPS and SDP with 

Cooperative A* on map den204.map 

              

Figure 21(b): Solution time generated for SDP with Cooperative JPS and SDP 

with Cooperative A*on den204d.map 

            

Figure 21(c): Number of Failed units for SDP with Cooperative JPS and SDP 

with Cooperative A*on map den204d over each instances 
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Number of 

units 

SDP with Cooperative A* SDP with Cooperative JPS 

Makespan Solution 

time 

(seconds) 

Makespan Solution 

time 

(Seconds) 
Pathlength Unit Pathlength Unit  

10 127 1 0.282 51 6 0.1585 

20 127 1 0.406 64 6 0.206 

30 127 1 0.454 64 6 0.255 

40 127 1 0.609 64 6 0.28 

50 127 1 0.672 64 6 0.353 

60 127 1 0.723 66 50 0.439 

70 127 1 0.849 66 50 0.561 

80 127 1 0.958 87 50 0.569 

90 127 1 1.15 87 50 0.612 

100 127 1 1.163 89 60 0.64 

110 127 1 1.492 92 50 0.653 

120 127 1 1.593 89 60 0.68 

130 127 1 1.699 94 50 0.806 

140 127 1 1.716 93 50 0.974 

150 127 1 1.853 93 50 1.008 

160 127 1 2.025 93 50 1.084 

170 127 1 2.208 93 50 1.035 

180 140 173 2.315 93 50 1.131 

190 140 173 2.633 95 50 1.163 

200 140 199 2.878 87 75 1.232 

210 143 100 3.102 85 98 1.206 

220 151 170 3.157 100 60 1.341 

230 156 170 3.238 91 98 1.313 

240 159 170 3.556 97 60 1.343 

250 155 243 3.639 103 60 1.393 

Table 2(a): Makespan and solution time on map den204d 

 

Number of 

units 

Number of failed units 

SDP with Cooperative A* SDP with Cooperative JPS 

10 0 0 

20 0 0 

30 0 0 

40 1 0 

50 1 0 

60 1 1 

70 1 1 

80 0 2 

90 0 1 

100 2 1 

110 2 1 

120 7 2 

130 10 3 

140 13 5 

150 14 3 

160 16 8 

170 21 6 

180 21 9 

190 29 9 
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200 29 14 

210 30 16 

220 52 14 

230 53 15 

240 67 19 

250 85 19 

Table 2(b): Number of failed units on map den204d 

5.3 den401d.map: 

We gradually increase the number of HCA as well the number of open nodes 

on the maps by 11 and 11456 respectively. The experiments conducted are similar to 

the earlier maps, but we see some anomalies as we increase the HCA along with the 

increase in number of units on the map. On maps with higher HCA number we 

observe that when the number of units on the map is smaller our work tends to have 

the solution time close to existing algorithm, but stabilizes with increase in number of 

units. In figure 22(a) we see the makespan on map den401d between 2 algorithms 

with our work showing closer makespan to original work [22] at 15.57%. We still see 

a good decrement in terms of solution time with 75.49% in figure 22(b). Den401d is 

one of the maps consisting of long hallways as LCA, thus making our work less 

immune to failure compared to modified Cooperative A* in SDP [18] as shown in 

figure 22(c). The tables 3(a) and 3(b) gives the unit which is causing the makespan 

along with makespan and solution time for particular group of units. 
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Figure 22(a): makespan generated for SDP with Cooperative JPS and SDP 

with Cooperative A* on map den401d.map 

 

 

Figure 22(b): Solution time generated for SDP with Cooperative JPS and SDP 

with Cooperative A*on den401d.map 

 

Figure 22(c): Number of Failed units for SDP with Cooperative JPS and SDP 

with Cooperative A*on map den401d over each instances 

 

 

Number of 

units 

SDP with Cooperative A* SDP with Cooperative JPS 

Makespan Solution 

time 

(seconds) 

Makespan Solution 

time 

(Seconds) 
Pathlength Unit Pathlength Unit  

10 325 0 0.409 264 0 0.164 

20 358 10 0.564 271 15 0.243 

30 358 10 0.79 271 13 0.423 

40 368 10 1.044 313 33 0.583 

50 368 10 1.05 349 37 0.634 
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60 368 10 1.649 349 37 0.69 

70 372 10 1.69 315 33 0.73 

80 372 10 1.71 290 77 1.03 

90 372 10 2.093 366 33 1.34 

100 383 10 2.193 365 33 1.68 

Table 3(a): Makespan and solution time on map den401d 

 

Number of 

units 

Number of failed units 

SDP with Cooperative A* SDP with Cooperative JPS 

10 0 1 

20 0 1 

30 0 1 

40 1 2 

50 1 2 

60 1 2 

70 1 3 

80 1 3 

90 1 2 

100 1 4 

Table 3(b): Number of failed units on map den401d 

5.4 den505d.map: 

The map den505d is one largest in terms of both HCA and open nodes with 20 

and 30236 respectively. We start our rans with 20 units and increasing with the same 

amount till 360 units. In figure 23(a) we present the makespan for both algorithms 

with our algorithm showing a better result with decreased makespan of about 22.61%. 

As mentioned earlier with increased HCA our work tends to slightly more solution 

time, as we use the blocking mechanism to earlier units. In figure 23(b) we see a 

solution time on map den505d with mean decrement of about 30%.  The failure rate is 

completely proportional to the number of units, so as the number of units increase we 

see a massive failure rate on existing approach compared to our work in figure 23(c). 

The failed units in most cases are the units which have already reached the goal and 

helping other units to have an optimal path through its goal node. The tables 4(a) and 

4(b) gives the unit which is causing the makespan along with makespan and solution 

time for particular group of units. 
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Figure 23(a): makespan generated for SDP with Cooperative JPS and SDP 

with Cooperative A* on map den505d.map 

 

Figure 23(b): Solution time generated for SDP with Cooperative JPS and SDP 

with Cooperative A*on den505d.map 
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Figure 23(c): Number of Failed units for SDP with Cooperative JPS and SDP 

with Cooperative A*on map den505d over each instances 

 

 

Number of 

units 

SDP with Cooperative A* SDP with Cooperative JPS 

Makespan Solution 

time 

(seconds) 

Makespan Solution 

time 

(Seconds) 
Pathlength Unit Pathlength Unit  

20 711 10 1.123 571 10 1.246 

40 711 10 1.46 571 10 2.141 

60 711 10 2.177 571 10 2.788 

80 711 10 2.713 571 10 3.775 

100 711 10 2.847 571 10 3.325 

120 711 10 3.408 571 10 3.986 

140 715 10 3.964 571 10 4.427 

160 715 10 4.095 571 10 4.631 

180 715 10 4.792 571 10 4.761 

200 717 10 5.743 571 10 4.891 

220 717 10 6.289 571 10 5.23 

240 717 10 6.773 603 115 5.76 

260 717 10 8.032 604 115 5.604 

280 717 10 8.902 603 115 5.805 

300 741 283 9.274 609 283 6.37 

320 744 283 12.686 603 115 6.66 

340 743 283 13.748 604 115 7.23 

360 739 283 14.772 665 115 8.23 

Table 4(a): Makespan and solution time on map den505d 

 

Number of 

units 

Number of failed units 

SDP with Cooperative A* SDP with Cooperative JPS 

10 0 0 

20 0 1 

30 0 1 

40 0 7 

50 1 6 
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60 2 9 

70 2 10 

80 3 14 

90 3 12 

100 8 16 

110 15 19 

120 17 22 

130 30 28 

140 35 34 

150 47 38 

160 60 36 

170 79 39 

180 94 44 

Table 4(b): Number of failed units on map den505d 

The results for the remaining 4 maps are provided in Appendix 1. 

5.2 Summary: 

 In this we presented the results of our work while comparing with SDP with 

Cooperative A* [18]. We observed that our work out performs the existing approach 

in terms of makespan, solution time and failure rate on maps with smaller HCA with 

decrement of makespan of about 59.2%, average solution time of  both the maps of 

about 75.09% and failure rate being very less compared to existing work. As we 

increase the HCA we saw having smaller makespan of about 18.78% and solution 

time of about 52.74%. The failure rate tend to be close to existing work when the 

number of units is less but becomes stabilized as the number of units is increased.  

 In the next chapter we will provide the conclusion statement of our thesis 

along with some future work which could be done on both Cooperative JPS and SDP 

framework to improve the overall the framework with Cooperative JPS. 
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CHAPTER-6: CONCLUSION AND FUTURE WORK 

In our thesis, we have proposed a new novel algorithm called Cooperative JPS, which 

is the combination of Cooperative behaviour in Cooperative A*[18] and one of fastest 

single agent pathfinding algorithm Jump Point Search [6]. By combining Cooperative 

and JPS algorithms we have taken advantage of both the algorithms. To implement 

JPS in a multiagent environment we proposed macro’s such as Backtracking 

mechanism which allows capturing all the nodes between the parent node and the 

Jump point from JPS that are placed in the 3D space/time data structure called 

reservation table of Cooperation and new collision avoidance technique which allows 

a side-way movement for units during collision. After doing this we introduce a 

forced selection macro to Cooperative JPS to recognise between High Contention 

Area (HCA) and Low Contention Area (LCA) on SDP framework. 

 The main motivation for our work was to address the Multiagent Pathfinding 

Problem (MAPF) for units traversing on narrow corridor which as much usefulness in 

real work like GPS, video games, warehouse management etc. So we introduced 

Cooperative JPS algorithm on SDP framework that was used to address the above 

problem.  

 By using a new Cooperative JPS algorithm on SDP framework compared to 

existing SDP with Cooperative A* we saw a massive improvement in terms of 

makespan and solution time as per the results. On maps with open LCA’s we got 

better failure rate then on narrow corridors of LCA where we saw a slightly degrade 

on failure rate. We conducted our experiments on benchmark video game map of 

Dragon Age: Origins with HCA ranging from 0 to 20 and open nodes ranging from 

925 to 23572. The maximum number units ran on one of the map was about 360. 
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From the results we saw improvement in terms of makespan of about 59.2% and 

solution time of about 75.09% on lower HCA maps and makespan of about 18.78% 

and solution time of about 52.74% on higher HCA maps. The failure rate were also 

very less on most of the maps. From our results we conclude that by incorporate 

Cooperative JPS in SDP framework we saw a significant improvements in terms of 

makespan, solution time and failure rate. 

 In our future work, we would like to improve the Cooperative JPS to handle 

dynamic environment in scenarios where the map could change while running the 

pathfinding algorithm such as in first person shooter games where a bridge could be 

destroyed that would make the units planning the route through the bridge 

unavailable. By introducing a modified Reduced Wait Time [17] algorithm into 

Cooperative JPS we would be able to do effective reroute of units in terms of solution 

time; when the HCA becomes destroyed. We would like to improve the SDP 

framework, by dynamic assigning the size of buffering area which could increase the 

solution time of overall algorithm. Our approach consumes more time while finding 

routes for units travelling in a narrow LCA hallway, so we would like to modify the 

JPS to handle the above scenario. One of main drawbacks of JPS is that it is only 

compliable for square grid maps; in future we would like to modify the JPS which 

would be capable to find paths for units in other regular grids. 
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APPENDIX 1: 

Results of rest of maps: 

1) isound1.map: HCA is 2 and open nodes is 2976 

 

Figure 1(a): makespan generated for SDP with Cooperative JPS and SDP 

with Cooperative A* on map isound1.map 

 

 

Figure 1(b): Solution time generated for SDP with Cooperative JPS and SDP 

with Cooperative A* on map isound1.map 
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Figure 1(c): Failure rate generated for SDP with Cooperative JPS and SDP 

with Cooperative A* on map isound1.map 

 

 

 

Number of 

units 

SDP with Cooperative A* SDP with Cooperative JPS 

Makespan Solution 

time 

(seconds) 

Makespan Solution 

time 

(Seconds) 
Pathlength Unit Pathlength Unit  

20 95 14 0.367 72 3 0.291 

40 109 30 0.566 85 30 0.47 

60 110 30 0.652 75 3 0.525 

80 114 30 1.082 75 3 0.525 

100 123 99 1.127 82 30 0.598 

120 144 99 1.362 77 99 0.655 

140 139 130 1.671 81 130 0.698 

160 143 66 2.395 81 130 0.818 

Table 1(a): Makespan and Solution time on map isound1 

 

Number of 

units 

Number of failed units 

SDP with Cooperative A* SDP with Cooperative JPS 

20 0 0 

40 1 2 

60 4 5 

80 10 8 

100 14 13 

120 23 25 

140 43 35 

160 54 43 

Table 1(b): Number of failed units on map isound1 
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2) den405d.map: HCA is 3 and open nodes is 925 

 

Figure 2(a): makespan generated for SDP with Cooperative JPS and SDP 

with Cooperative A* on map den405d.map 

 

 

Figure 2(a): Solution time generated for SDP with Cooperative JPS and SDP 

with Cooperative A* on map den405d.map 
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Figure 2(c): Failure rate generated for SDP with Cooperative JPS and SDP 

with Cooperative A* on map den405d.map 

 

 

Number of 

units 

SDP with Cooperative A* SDP with Cooperative JPS 

Makespan Solution 

time 

(seconds) 

Makespan Solution 

time 

(Seconds) 
Pathlength Unit Pathlength Unit  

10 59 0 0.172 45 0 0.123 

20 59 0 0.238 45 0 0.24 

30 60 2 0.285 45 0 0.273 

40 69 34 0.36 54 34 0.296 

50 76 34 0.392 56 28 0.35 

60 73 53 0.532 61 53 0.375 

70 78 38 0.594 62 53 0.39 

80 89 52 0.687 62 53 0.42 

90 91 52 0.8 62 53 0.48 

100 95 52 0.984 62 53 0.6 

Table 2(a): Makespan and Solution time on map den405d 

 

Number of 

units 

Number of failed units 

SDP with Cooperative A* SDP with Cooperative JPS 

10 0 0 

20 0 2 

30 2 3 

40 3 7 

50 1 8 

60 6 13 

70 12 22 

80 16 22 

90 18 22 

100 34 31 

Table 2(b): Number of failed units on map den405d 
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3) orz601d.map: HCA is 6 and open nodes is 1890 

 

Figure 3(a): makespan generated for SDP with Cooperative JPS and SDP 

with Cooperative A* on map orz601d.map 

 

Figure 3(b): Solution time generated for SDP with Cooperative JPS and SDP 

with Cooperative A* on map orz601d.map 

 

 

 

 



67 
 

 

Figure 3(c): Failure rate generated for SDP with Cooperative JPS and SDP 

with Cooperative A* on map orz601d.map 

 

 

Number of 

units 

SDP with Cooperative A* SDP with Cooperative JPS 

Makespan Solution 

time 

(seconds) 

Makespan Solution 

time 

(Seconds) 
Pathlength Unit Pathlength Unit  

10 68 5 0.156 34 1 0.115 

20 90 12 0.234 62 16 0.23 

30 90 12 0.313 62 16 0.281 

40 90 12 0.375 82 37 0.484 

50 94 12 0.437 82 37 0.469 

60 100 21 0.593 82 37 0.516 

70 97 59 0.562 82 37 0.594 

80 102 71 0.641 82 37 0.625 

90 105 71 0.816 82 37 0.625 

100 111 71 0.825 82 37 0.704 

Table 3(a): Makespan and Solution time on map orz601 

 

Number of 

units 

Number of failed units 

SDP with Cooperative A* SDP with Cooperative JPS 

10 0 1 

20 0 1 

30 1 2 

40 0 3 

50 2 5 

60 6 5 

70 5 8 

80 8 8 

90 12 10 

100 14 12 

Table 3(b): Number of failed units on map orz601 
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4) hrt201d.map: HCA is 15 and open nodes is 23572 

 

Figure 4(a): makespan generated for SDP with Cooperative JPS and SDP 

with Cooperative A* on map hrt201d.map 

 

Figure 4(b): Solution time generated for SDP with Cooperative JPS and SDP 

with Cooperative A* on map hrt201d.map 

 

Figure 4(c): Failure rate generated for SDP with Cooperative JPS and SDP 

with Cooperative A* on map hrt201d.map 
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Number of 

units 

SDP with Cooperative A* SDP with Cooperative JPS 

Makespan Solution 

time 

(seconds) 

Makespan Solution 

time 

(Seconds) 
Pathlength Unit Pathlength Unit  

10 661 6 0.729 244 2 0.524 

20 661 6 1.203 244 2 0.903 

30 661 6 1.793 244 2 1.555 

40 803 39 2.534 342 31 2.199 

50 803 39 3.593 342 31 2.968 

60 803 39 2.503 342 31 3.501 

70 661 6 2.227 342 31 4.216 

80 666 6 3.876 398 70 4.341 

90 666 6 4.377 398 70 4.512 

100 666 6 4.218 398 70 4.92 

110 666 6 5.381 398 70 5.21 

120 748 50 6.152 398 70 6.36 

130 666 6 6.268 398 70 6.72 

140 666 6 7.04 398 70 6.79 

150 666 6 7.87 398 70 7.01 

Table 4(a): Makespan and Solution time on map hrt201 

 

Number of 

units 

Number of failed units 

SDP with Cooperative A* SDP with Cooperative JPS 

10 0 0 

20 0 0 

30 0 0 

40 0 0 

50 0 0 

60 0 0 

70 0 0 

80 0 0 

90 1 0 

100 0 0 

110 1 1 

120 1 1 

130 0 0 

140 1 0 

150 1 1 

Table 4(b): Number of failed units on map hrt201 
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