
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1-12-2016

Improving Spatially Distributed Multiagent Pathfinding Using Improving Spatially Distributed Multiagent Pathfinding Using

Cooperative JPS Cooperative JPS

Sanjay Renukamurthy
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Renukamurthy, Sanjay, "Improving Spatially Distributed Multiagent Pathfinding Using Cooperative JPS"
(2016). Electronic Theses and Dissertations. 5663.
https://scholar.uwindsor.ca/etd/5663

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5663&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/5663?utm_source=scholar.uwindsor.ca%2Fetd%2F5663&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

IMPROVING SPATIALLY DISTRIBUTED

MULTIAGENT PATHFINDING USING

COOPERATIVE JPS

By

SANJAY RENUKAMURTHY

A Thesis

Submitted to the Faculty of Graduate Studies

Through the School of Computer Science

In Partial Fulfillment of the Requirements for

the Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada

2016

© 2016 Sanjay Renukamurthy

Improving Spatially Distributed Multiagent Pathfinding using Cooperative JPS

by

Sanjay Renukamurthy

APPROVED BY:

__

Dr. Myron Hlynka, External Reader

Department of Mathematics and Statistics

__

Dr. Imran Ahmad, Internal Reader

School of Computer Science

__

Dr. Scott Goodwin, Advisor

School of Computer Science

January 5, 2016

DEC

iii

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my thesis,

published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

iv

ABSTRACT

The Multiagent Pathfinding problem (MAPF) applies in fields such as video

games, robotics, warehouse management, etc. MAPF is mainly concerned with

routing units while avoiding collision. A recent approach by Wilt et al. to MAPF for

maps with narrow corridors spatially partitions maps into High Contention (HCA) and

Low Contention areas (LCA). A modified Cooperative A* is used in LCA.

In our approach we introduce a new algorithm by combining “Cooperative”

and “Jump Point Search” (JPS) to traverse through the LCA. JPS is modified to

handle the multiagent environment by incorporating a new stopping rule to identify

between HCA and LCA called “forced selection”. As JPS jumps from node to node,

we introduce a “backtracking mechanism” to avoid collision. We evaluate our

algorithm against Wilt et al.’s algorithm on real video game maps and demonstrate

significate improvements in terms of makespan, solution time and failure-rate.

v

DEDICATION

To my loving family:

Father: Renuka murthy

Mother: Kavitha

Brother: Ajay

vi

ACKNOWLEDGEMENTS

 I would like to thank my supervisor, Dr. Scott Goodwin, for giving me the

opportunity to get an exposure of the research field. It has been a great experience

working under his guidance. His constant motivation, support and faith guided me in

successful completion of my thesis.

 I would like to thank my internal reader Dr. Imran Ahmad for his support and

showing interest towards my research. I am also thankful to my external reader Dr.

Myron Hlynka for being flexiable about the schedule time of my defence.

I give my sincere thanks to Mrs. Karen Bourdeau, the graduate secretary, who

always supported and helped me when ever I needed any assistance in various

academic issues and providing a GA position.

Lastly, I would like to thank my family and friends for their utmost faith in me

and for supporting me through the ups and downs of my life.

vii

TABLE OF CONTENTS

DECLARATION OF ORGINALITY…………………………………...…………iii

ABSTRACT……………………………………………………………...…………..iv

DEDICATION………………………………………………………...……………...v

ACKNOWLEDGEMENTS…………………………………………...…………….vi

LIST OF TABLES……………………………………………………………..…….x

LIST OF FIGURES………………………………………………………………....xi

 LIST OF ALGORITHMS……………………………………………..………….xiv

LIST OF ACRONYMS….……………………………………………..…………...xv

CHAPTER-1 INTRODUCTION………………………………………..…………..1

 1.1 Graph Representation of Maps …………………………………………...….2

 1.1.1 Grids…………………………………………………………………..…3

 1.1.1.1 Regular Grids……..…………………………………………...3

 1.2 Heuristic………………... …………………………………………………...4

 1.2.1 Manhattan Distance…………………………………………………..…4

 1.2.2 Euclidean Distance……………………………………………...……….5

 1.3 Search Algorithms …………………………………………………..……….6

 1.3.1 Single Agent Pathfinding………………………………………..………7

viii

 1.3.2 Multiagent Pathfinding……………………………………...…...………8

 1.4 Problem Statement….……………………………..………………….…….10

 1.5 Motivation ……..…………………………………..……………………….10

 1.6 Thesis Claim…..…………………………………………………………….11

 1.7 Thesis Outline…..…………………………………...………………………11

CHAPTER-2 RELATED WORK……………………………………………...…..13

 2.1 Single Agent Pathfinding Algorithms…………………………..…...…...…13

 2.1.1 A*………...…………………………………………………………….13

 2.1.2 Jump Point Search……………………………………….………...…...13

 2.2 Multi-Agent Pathfinding Algorithms………………………………….........19

 2.2.1 Decentralized Approach…………...………………………….…...…...19

 2.2.2 Centralized Apprach………………………………………….………...24

 2.3 Summary……………………………………………………………………27

CHAPTER-3 SPATIALLY DISTRIBUTED MULTIAGENT PATH

PLANNING………………………………………………………………………….28

 3.1 Spatial Distribution of Map……………....…...………………………..........28

 3.2 High Contention Area…….……………...……………..……………...........30

 3.3 Low Contention Area…….……………...…………………………………..32

 3.4 Spatiallly Distributed Algorithm.………...……………….……………........33

 3.5 Summary…….……………...……………………………….........................34

ix

CHAPTER 4 PROPOSED APPROACH………………………………………….35

 4.1 Cooperative JPS.………..…..…………………………..…...........................35

 4.1.1 Backtracking Mechanism………….………………………….….….....36

 4.1.2 Forced Selection…………………...…………………….………..…....38

 4.1.3 Collision Avoidance………..……...………………………….…..…....40

 4.1.4 High level Path using JPS…………………………………….…..…....43

 4.2 Summary………………..…………………………………...........................44

CHAPTER-5 EXPERIMENTAL SETUP AND RESULTS.……………………..45

 5.1 orz704d.map..…………..…..…………………...…………...........................46

 5.2 den204d.map..…………..…..………………..……………...........................48

 5.3 den401d.map..…………..…..……………….……………............................51

 5.4 orz704d.map..…………..…..……………………..………............................55

 5.5 Summary………………..…..…………………..…………...........................56

CHAPTER-8: CONCLUSION AND FUTURE WORK…………………...….....57

REFERENCES………………………………………………………………….…..59

APPENDIX 1………..……………………..…………...………………...................62

VITA AUCTORIS……………...………………..………………………….…........70

x

LIST OF TABLES

1a Makespan and Solution time on map orz704d.………………………………..….47

1b Number of failed units on map orz704d…………………………………………. 48

2a Makespan and Solution time on map den204d ………....……………………...…50

2b Number of failed units on map den204d ……………..………………………..…51

3a Makespan and Solution time on map den401d………………………………...….53

3b Number of failed units on map den401d……………………….………………... 53

4a Makespan and Solution time on map den505d ………....………………………...55

4b Number of failed units on map den505d ……………..…………………………..56

xi

LIST OF FIGURES

1 Single agent path on a video game [1] ………….……………………….….………1

2 Two routes for Truck driver from

 start point ‘Denver’ to destination ‘Ohio’ [2]………………………………..………2

3a 4-way movement on square grid………...…………………………………………4

3b 8-way movement on square grid………...…………………………………………4

4 Search path calculated using Manhattan distance ……………………..……..……..5

5 Search path calculated using Euclidean distance ……………………………..…….6

6 Working diagram of A* algorithm ……………….……………………….…..…...16

7a Straight pruning rule…………………………………..……………………….….17

7b Diagonal pruning rule…………………………………..…..………………….….17

8 Forced neighbor for straight move…………………………….………………..….18

9 Forced neighbor for diagonal move…………………………….………………….19

10a Cooperative A* without collision……………………….…………………...…..21

10b Cooperative A* with collision……………………….………………………......21

11 Passage with path ‘A’ and ‘B’ [17].……………………………………………....24

12 Spatial distribution of map into controllers and

 transition move between controllers and internal move ………………………….29

13 High level paths for units U1 and U2………………..……………………………29

14a 2 wide central core HCA………………………………………………………...30

14b 3 wide central core HCA………………………………………………………...30

14c 4 wide central core HCA………………………………………………………...30

15 High Contention Area [18]………………..………………………………………31

16 Backtracking mechanism example…………………….………………………….38

17 Forced selection on SDP framework example…………………….……………...39

xii

18a Diagonal side-way movement………………………………….………………..41

18b Straight horizontal side-way movement………………………………….……...41

19 High level path using JPS for two units on SDP framework…..…........................44

20a Makespan generated for SDP with Cooperative JPS and

 SDP with Cooperative A* on map orz704.map…………………………………46

20b Solution time generated for SDP with Cooperative JPS and

 SDP with Cooperative A*on orz704d map……………………………...............47

20c Number of Failed units for SDP with Cooperative JPS and

 SDP with Cooperative A*on map orz704d over each instances………………...47

21a Makespan generated for SDP with Cooperative JPS and

 SDP with Cooperative A* on map den204d map……….……………………….49

21b Solution time generated for SDP with Cooperative JPS and

 SDP with Cooperative A*on den204d map…….…………………………….....49

21c Number of Failed units for SDP with Cooperative JPS and

 SDP with Cooperative A*on map den204d over each instances………………..49

22a Makespan generated for SDP with Cooperative JPS and

 SDP with Cooperative A* on map den401d map……….……………………….51

22b Solution time generated for SDP with Cooperative JPS and

 SDP with Cooperative A*on den401d map….…………………………….……52

22c Number of Failed units for SDP with Cooperative JPS and

 SDP with Cooperative A*on map den401d over each instances……….…...…...52

23a Makespan generated for SDP with Cooperative JPS and

 SDP with Cooperative A* on map den505d map……….……………………….54

23b Solution time generated for SDP with Cooperative JPS and

 SDP with Cooperative A*on den505d map…….…………………………….....54

xiii

23c Number of Failed units for SDP with Cooperative JPS and

 SDP with Cooperative A*on map den505d over each instances………………..55

xiv

LIST OF ALGORITHMS

1 Low Contention Area accepting unit [18]………………………………………….33

2 High Contention Area accepting unit [18]…………….………………..………….34

3 Bactracking mechanism in Cooperative JPS…………………………...…………..37

4 Forced Selection in Cooperative JPS…………………………………..…………..39

5 Collision Avoidance in Cooperative JPS………………………………..…………42

6 Side-way movement in Cooperative JPS…………………………………………..43

xv

LIST OF ACRONYMS

JPS – Jump Point Search

RTS – Real Time Strategy

NPC – Non Player Control

GPS – Golbal Positioning System

MAPF – Multiagent Pathfinding

CBS – Conflict Based Search

CT – Conflict Tree

LRA* - Local Repair A*

COWHCA* - Conflict Orientented Windowed Hiearchical Cooperative A*

WHCA* - Windowed Hiearchical Cooperative A*

RWT – Reduced Wait Time

SDP – Spatially Distributed Pathfinding

HCA – High Contention Area

LCA – Low Contention Area

DM – Direction Map

DV – Direction Vector

MV – Movement Vector

OD – Operator Decomposition

ID – Independence Detection

MGS – Maximum Group Size

HCA* - Hierarchical Cooperative A*

ICTS – Increasing Cost Tree Search

SPP – Simple Pairwise Prusing

EPP – Enhanced Pairwise Prusing

xvi

REPP – Repeated Enhanced Pairwise Prusing

P&S – Push and Swap

1

CHAPTER 1: INTRODUCTION

Pathfinding problem can be found in many fields from video game industry to ware

house management. The general problem which is addressed here is to find an optimal

path for a unit from its start node to goal node on a graph representation of map.

Based on application in use, the above problem statement can be used for different

usage such as in field of video game they require the problem to be solved in

minimum time, but in other application such GPS, the problem would be to find a safe

and short to the goal. Consider a scenario in one of the Real Time Strategy (RTS)

games, where the Non Player Control (NPC) has to find a path from its start to goal

position real quickly to give a realistic feel to the gamer while playing. In figure 1, a

NPC unit as to travel from tower to its house, so the start position is tower and goal

position is house. Even though the unit could have travel through the river, but that

would not be a realistic path. So the unit crosses the bridge and reaches its destination.

In here we want an algorithm which could solve the pathfinding problem quickly.

Figure 1: Single agent path on a video game [1]

Similarly we could find the same problem with different objective for solving in

application like GPS. Consider the figure 2, where a vehicle has to travel from Denver

to Ohio, he can either take route 1(4->5->6->1) or route2 (3-> 2->1), even though the

2

route2 is shorter compared to route1 the driver takes a longer route1 because it’s safer

then shorter route2. In this case the main criterion of finding the path from Denver to

Ohio is to find a safest path rather than shortest path.

Figure 2: Two routes for Truck driver from start point ‘Denver’ to destination ‘Ohio’

[2]

The three basic elements used to solve a pathfinding problem in any of the fields

are graph representation of map, heuristic to guide the unit to goal and a search

algorithm to find the route for the unit.

1.1 Graph representation of map:

The maps can broadly divided into grids and hierarchical techniques that are

widely used in many real world applications to find path. Map represented as grids

consists of polygons grouped together to form a map. Consider a graph G(V, E) where

V is set of vertices and E is set of edges. The continuous connected graph G, can be

represented by placing a vertex at the centre of polygon or at each of its corners. In a

map where the vertex is at the center of polygon, the edges would be the connection

between polygons and in case where vertex is at the corners, the edges can be sides of

the polygon. The only disadvantage of using a grid over hierarchical techniques is that

it consumes a lot of memory to store the entire map.

3

1.1.1 Grids

Grids are connected graph with vertices and edges to represent a map. Each of

the polygon on the map is called as the tile/node based on the application it is being

used. There are two popular grid representation firstly regular grids where all the

nodes are formed using the same kind of polygons and irregular grids where the map

could be represented with different types of polygons.

1.1.1.1 Regular Grids

Regular grids are the ones where the entire maps are represented using

uniformed polygons such as square, hexagon and triangle. The regular grids are one

of the famous map representations which are used in many fields like video games

such as Pac-man, Pokémon games, sim city etc. and robotics where the mars rover

robots used regular grids for their exploration [3]. Since our work mainly concerns

with square grids, we have explained it below.

Square grid is one of most popular regular grids which are used in many fields

because of its simplicity in creation and finding the distance between square nodes.

There are two types of movements for the units on the map. First being 4-way

movement, where the units can move only horizontal and vertical directions from its

node as show in figure 3(a) and 8-way movement, apart from horizontal and vertical

moves, unit can move diagonally as well, as shown in figure 3(b). Most of the

algorithms such Dijkstra’s [4], A* [5], Jump Point Search (JPS) [6] could be used on

the square grids to find the path for units. JPS uses the symmetrical natural of square

grids to reduce number of nodes expanded during the search.

4

Figure 3(a) 4-way movement on square grid Figure 3(b) 8 way movement on

square grid

1.2 Heuristic:

Most of the search algorithm used for solving Pathfinding problem uses a

heuristic function to direct the unit during node exploration based on the information

from the heuristic function. A perfect heuristic function is the one in which it never

over estimates the distance from start to goal node are called as “admissible” heuristic

functions and the heuristic function which either over estimates or under-estimates the

distance are called as “non-admissible” heuristic functions. Starting from the simple

diagonal heuristic function to Manhattan distance heuristic function can be used in

search algorithms.

As we are using grid maps, the heuristic functions explained below are based

only on square grid maps. Manhattan distance heuristic function is perfect to be used

on a square grid that allows 4 directions movement. Euclidean is best suited on square

grid that allows any direction movement.

1.2.1 Manhattan Distance:

Manhattan distance is considered as a standard heuristic on square grids. The

minimum cost of moving from one node to its adjacent node is set as cost D and used

in cost function. In simple case, the cost value D is set to 1.

http://en.wikipedia.org/wiki/Taxicab_geometry

5

Function heuristic (node) =

dx = abs(node.x – goal.x)

dy = abs(node.y – goal.y)

return D * (dx + dy) [7]

In the above function ‘dx’ represents the horizontal distance between the node

and goal and ‘dy’ represents the vertical distance between the node and goal. To

obtain an admissible heuristic the value of D plays an important part; where by cost

value of D must be set a minimum value. By managing the value of D we could

generate an optimal path for a search algorithm. The figure 4 shows a path generated

by a search algorithm on a single unit using Manhattan distance.

Figure 4: Search path calculated using Manhattan distance [7]

1.2.2 Euclidean Distance:

When a unit is allowed to travel in any-angle on grid map, then Euclidean

distance is best suited to handle it. Euclidean distance is based on the Pythagoreans

theorem of finding the hypotenuse of right angled triangle. So the Euclidean distance

is the sqrt(dx*dx + dy*dy)* D. The heuristic function is given below:

6

Function heuristic (node) =

dx = abs(node.x – goal.x)

dy = abs(node.y – goal.y)

 return D * sqrt(dx*dx + dy*dy)[7]

In the above heuristic function, ‘dx’ represents the horizontal distance between

the node and goal and ‘dy’ represents the vertical distance between the node and goal.

In the figure 5, we show the path generated from one a search algorithm using

Euclidean Distance heuristic. The path obtained using Euclidean distance is much

smaller compared to Manhattan distance.

Figure 5: Search path calculated using Euclidean Distance [7]

1.3 Search Algorithms:

 One of the key elements in tackling the pathfinding problem is the usage of

search algorithms that helps find the optimal route from any of start position on the

map to goal position while avoiding the collision of obstacles. There are many types

of search algorithms that could be categorised based on number of units the search

algorithm can handle. Single agent pathfinding algorithms can handle only one unit at

a time while Multiagent pathfinding algorithms can handle many units at a time.

7

1.3.1 Single Pathfinding Algorithm:

 As the name says single agent pathfinding algorithms consists of only one

unit. Single agent pathfinding algorithm is used to find an optimal path for a unit from

its start position to goal position on a map using an efficient heuristic while avoiding

collision of obstacles. There are many types of single agent pathfinding algorithm

starting from Dijkstra’s to Jump Point Search. The main aim of single agent

pathfinding algorithms is to find an optimal path for a unit with minimum

computation time and memory overhead. Dijkstra's algorithm is one of the earlier

pathfinding algorithms that find the shortest path for a unit. Dijkstra’s algorithm is

considered as one of the complete and optimal algorithm because it finds the path if

the path exists. Dijkstra’s algorithm ran on a weighted graph from start node to goal

node, here the neighbor nodes from start node is search recursively until it reach the

goal node. A* was an upgrade to Dijkstra’s algorithm in a way that it reduced the total

number of explored nodes on the graph using heuristic functions. A* is a best first

type of algorithm which produces a shorter and more effective path compared to

Dijkstra’s algorithm. Both types of grids can be used as map for searching the path for

A* algorithm. Over the years there have been many variants A* algorithm such theta*

which use line of sight checks on map to find any-angle path to the destination,

Weighted A* that uses the weights while selecting the neighbor node with least

heuristic function to reach the destination with least computation time compared A*

but finds a non-optimal path, Jump Point Search considers symmetry breaking

technique to reduce the number of nodes explored by the unit and thus reducing the

computation time of search, but Jump Point Search could only be implemented on

square grids. There are many cost functions used to measure a single agent

pathfinding algorithm such as pathlength that is total number of nodes between the

8

start to goal node, computation time of search algorithm and number of nodes

expanded on the map.

1.3.2 Multiagent Pathfinding Algorithm:

 Multiagent Pathfinding Algorithm (MAPF) finds the routes for more than one

unit. MAPF can be defined as finding the route to all the units on the provided map

without collision among the units and obstacles. There are number of domains which

require the MAPF such as commercial gaming industry where multiple units in the

game has to find the route to their respective destination, in warehouse management,

military where the robots have to find the routes to their respective destinations while

avoiding collision between the robots. There are two main variants of MAPF such as

centralized approach and decentralized approach. The centralized approach consists of

a central controller which manages all the units on map and finds route to all units by

knowledge sharing.

The Centralized approach is considered to be complete and optimal solution.

A complete algorithm will find a solution if one exists and optimal algorithm will find

a solution that is best. One of first algorithms under centralized approach was

introduced by Svestka et al. [8] which takes a coordinated approach among the robots

and the path is found using probabilistic roadmap (to find feasible path for all nodes

without collision). First step in their approach creates a roadmap for single robots and

stored in a data structure, following this a composite roadmap is generated for all

robots and finally all the routes are retrieved from the data structure. In 2008 Ryan [9]

introduced an abstraction approach of dividing the graph into subgraphs and using

these subgraphs to find the paths for units in smaller level. They proved their

algorithm is complete and produces an optimal path for units. Standley [10]

introduced a first complete and admissible technique to solve the MAPF problem,

9

where they proposed an “operator decomposition” technique to reduce the branching

factor of MAPF algorithm. An “independence detection” technique which allows

units to retain their optimal paths, thus making the entire solution to be optimal.

Sharon et al. [11] introduced a Conflict Based Search (CBS) which uses a high level

Conflict Tree (CT) where each node represents the conflicts generated between the

units and lower single agent search. By using these two techniques the algorithms

produces an optimal and complete solution. One of cost function used in centralized

approach is sum-of-cost that is the summation of time steps of all the units. Finding

the minimum sum-of-cost is considered to be NP-Hard problem.

Decentralized approach divides the MAPF problem into single agent searches

and collision is avoided based on the previous agents search path. Stout [12]

introduced a decentralized approach called “Local Repair A*” (LRA*) where the

individual paths for all agents is generated using A* and collision is avoided by

rerouting the path for lower priority unit during conflicts. The rerouting process in

LRA* is very expensive in terms of computational time for the solution. To avoid the

above problem Silver [13] introduced a “Cooperative A*” which uses a space-time

data structure called “Reservation Table” to avoid collision between the units. There

have been many other algorithms which use map abstraction [14] and map

decomposition [15] for solving the MAPF problem. Bnaya et al. [16] improved the

“Windowed Hierarchical Cooperative A*” (WHCA*) [13] in terms of solution quality

by effective placing the window only during the conflicts. They proposed a “Conflict-

Oriented Windowed Hierarchical Cooperative A*” (CO-WHCA*) algorithm with

both online and offline approach. Even though CO-WHCA* produce better solution

quality compared to WHCA* but computational time increases. Saeidianmanesh [17]

introduced a “Reduced Wait Time” (RWT) algorithm to reduce the overall solution

10

time of search by grouping the units with more waiting time in a narrow corridor and

taking an alternate route for the grouped units. The algorithm was able decrease the

solution time but gets in trouble in terms of pathlength of units. There are many cost

function for decentralized approach such as makespan that is to find worst pathlength

among units, fuel that is the total amount of pathlength or time taken by all the units

which is similar to sum-of-cost but fuel does not consider the wait move of units,

individual cost of units.

1.4 Problem Statement:

 Multiagent pathfinding problems occur in many fields such as video games,

robotics, warehouse management, military, GPS etc. A path is found for each of the

unit on the map while avoiding collision between the units and obstacles. There has

been a lot research which has done to address the above problem, but the scenario

where the units as to travel through a narrow corridor are still not addressed

efficiently. The “Spatially distributed Muliagent Path Planning” [18] is one of the

algorithm which tried to address the problem of MAPF travelling through narrow

corridor. The results obtained using SDP algorithm with “Cooperative A*” [13]

produces a better results compared to state-of-art algorithms.

 We introduce a novel algorithm called “Cooperative JPS” which is

incorporated with SDP framework to produce better results compared to the standard

“SDP framework with Cooperative A*” [18] in terms of makespan, solution time,

failure-rate.

1.5 Motivation:

 The problem of efficient traversal through a narrow corridor can be found in

many fields. Considering the gaming industry where the units have to travel from its

start position to its goal position, we need to find an optimal path while avoiding

11

collision. In Real-Time Strategy (RTS) games such as StarCraft, non-player Controls

(NPC) has to find a path from its base to the base of player. NPC in some maps have

to travel through a narrow bridge to reach player’s base. By using the traditional

MAPF algorithms the units take too long which gives advantage to the human

opponent. To provide a realistic feel to the game, the algorithm used to solve MAPF

problem through narrow corridor must be really fast and produce effective paths. The

SDP algorithm [18] try to address the problem, but the individual pathlength and

individual solution time was considerably larger. This motivated us to create a new

algorithm on the SDP framework which could produce better results in terms of

individual pathlength and solution time which helps the game more playable for

gamers. The above mentioned case is one of the examples for MAPF problem through

narrow corridor, we could see the results from our algorithm can be used in other

fields such as robotics, military, GPS etc.

1.6 Thesis Claim:

 By incorporating Cooperative JPS in SDP framework to traverse units in LCA,

we saw a significate improvement for cost functions such as makespan, solution time

and failure rate when compared with SDP framework with Cooperative A*.

1.7 Thesis Outline:

 At the beginning of the thesis, a problem statement was presented that speaks

about the standard pathfinding problem and its application in various fields. In chapter

1, an introduction to different elements involved in solving pathfinding problem was

proposed. In chapter 2 a brief literature review on single agent and multiagent

pathfinding algorithms is introduced. Chapter 3 contains a detailed description of

“Spatially Distributed Multiagent path planning” [18] algorithm in detail. Chapter 4

presents the proposed approach about the Cooperative JPS and its impact on different

12

layers in SDP framework. Chapter 5 discuss the experiments that we carried out on a

benchmark maps. In this chapter, we discuss the experiments setup along with results

obtained with the comparison of our approach and existing SDP framework. Results

and discussions on how the performance of our approach with SDP framework was

improved is shown in chapter 6, followed by concluding remarks on entire research

and some of future work which could be done on our approach along with SDP

framework on a whole.

CHAPTER-2: LITERATURE REVIEW

13

2. Literature Review:

This section tries to give insight into some of important works which has been done to

address the pathfinding problem. The pathfinding problem can be broadly classified

into single agent pathfinding and multi agent pathfinding. Research into pathfinding

initially started by solving for single agent, and then researchers started looking into

multi agent pathfinding as it is slightly complicated compared to single agent

pathfinding as it is NP hard problem. [19]

2.1 Single Agent Pathfinding Algorithms:

 Single agent Pathfinding problem is to find the route for a single unit from its

start position to its goal position avoiding collision with the obstacles on a map such

as grids (triangular, square, hexagonal, octagonal), waypoints and navigational mesh.

There have been many single agent pathfinding algorithms over time, starting from

dijkstra’s algorithm to jump point search. We would concentrate only on the

algorithms which are relevant to our work.

2.1.1 A*:

 A* algorithm is one of the efficient single agent pathfinding algorithm

introduced by Hart et al. [5]. It is a graph based search algorithm which tackles the

above mention problem of avoiding obstacles and finding optimal path for the unit.

A* can be considered as a combination of best first search and Dijkstra’s algorithms

as it explores the adjacent nodes similar to dijkstra’s but only considers the shortest

among the nodes to goal using a heuristic estimator as best first search. Heuristic

function are used to find the distance between two nodes on a weighted map (i.e. pre-

set weight between two adjacent nodes, usually for horizontal and vertical nodes its

set as 1 and for diagonal nodes its set to 1.4). A* uses one heuristic function such as

14

Manhattan distance, Euclidean distance in terms of h(n) where ‘n’ is the current node

and h(n) is the distance from ‘n’ to the goal position. The evaluation function used by

A* is show below:

f(n) = g(n) + h(n)

Where g (n) = Distance from start node of unit to the current node ‘n’

 h(n) = Heuristic distance from current node ‘n’ to goal node of unit

 f(n) = Overall distance from start node to goal node travelling via current node

‘n’

Using the above evaluation function A* selects the smallest f(n) among all the

discovered neighbouring nodes

Cases of A* Algorithm based on Heuristic Function:

1. If h(n) = 0, then A* = Dijkstra’s algorithm.

2. If h(n) < g(n) then A* is guaranteed to find the shortest path.

3. If h(n) = g(n) then A* will follow only the best path never expanding anything

making it very fast which very rare. This is the perfect scenario.

4. If sometimes h(n) > g(n) then A* is not guaranteed to find the shortest path.

5. If only h(n) plays a role in finding the best path A* turns to greedy best first

search.

Pseudo code for A* algorithm:

1. Create a Graph G formed using the start node N0.

2. Push the start node N0 into the OPEN list. CLOSED list shall be empty at this

point, f(n) = 0 + h’(n).

15

3. If N is the destination node the goal has been reached and the path is obtained

by tracing the pointers from N0 to N.

4. If not, Expand N, and generate a set S of its successors that are not already

ancestors of N and add them to the OPEN list.

5. Place the above set of successor S to N on the open list and attach a pointer to

N from each successor node now in the OPEN list.

6. For each member of the successor node set S either on the OPEN or CLOSED

list, redirect its pointer through N if that is the best path to the successor s. For

each member of the set S on the CLOSED list, redirect the pointers of each of

its descendants in graph G so they backwards along the best paths found so far

to these descendants.

7. Reorder the OPEN list in order of increasing f values.

8. Go to step 3.

Closed List - Nodes already explored in the graph G.

OPEN List - Nodes to be explored in the graph G.

To explain the A* algorithm with an example, consider a square grid with only

4-way selection of grid and cost to travel to adjacent node is 1. As from figure 3, the

start node is ‘A’ (At node 1) and goal node is ‘B’ (At node 11). The black blocks on

the grid are non-traversal node or obstacles. When the algorithm starts, we add the

start node to open list, before removing the node for evaluation we add the start node

closed list as it is already explored. We find all neighbouring nodes to 1 i.e. 4 and 2

are selection and by using the evaluation function we calculate the h(n) and g(n)

values for both node. So the f(n) values for node 4 and node 2 comes up to 4. Now we

add them back to open list to and select the neighbour node with least f(n) value, since

both node 4 and node 2 have same f(n) we will select the node which is on top in open

16

list for evaluation. We repeat the above process until we reach the goal node ‘B’ (i.e.

11)

Figure 6.Working diagram of A* algorithm

By selecting a perfect heuristic function, A* algorithm can produce an optimal

shortest distance from start to goal node and the algorithm is complete as it can find

the path if it exists on the map.

2.1.2 Jump Point Search:

 Jump Point Search (JPS) is one latest algorithm introduced by Harbour et al.

[6] which addresses the problem of single agent pathfinding problem. JPS is an online

symmetry breaking algorithm which eliminates most of the repetitive paths from start

node to goal node. They consider a concept that moving from start node at bottom

right corner of a 3x3 grid to goal node at top left corner, we could either move left-

left-left-up-up-up or up-up-up-left-left-left. Since both paths are have same distance

we can consider only one of them and by doing reduce the time of exploring. (In the

above example we have an obstacle at centre of grid). As JPS works only with

repetitive paths we can only use the algorithm on a grid maps.

17

The main focus of JPS is to identify the jump point nodes by recursively

pruning from selective neighbor node from current node. Similar to A* algorithm, the

same evaluation function is used to move the unit towards its goal node.

f(n) = g(n) + h(n)

Rather than adding all the adjacent neighbors from current node to open list,

JPS will selectively pick the neighbors based on two lengths. Considering the figure

7(a), current node which is being is expanded is ‘x’, its neighbors(x) = 1,2,3,6,7,8,9

and the parent of ‘x’ is p(x) = 4. We select the neighbors based two lengths. First the

length from parent node p(x) to a neighbor node ‘n’ going via ‘x’ and the second

length from parent node p(x) to neighbor node ‘n’ not going through ‘x’. From the

figure 7(a), the node 5 is not pruned because the length from p(x) to 5 via x is (len (4,

x, 5) = 2) less than length from 4 to 6 not going through 5 (len (4, ! x, 5) = 2.8).

Figure 7(b) shows the example of diagonal pruning rule.

The condition to not select a neighbor for straight move and diagonal move is

give below:

Straight move -> len (p(x), !x, n) <= len (p(x), x, n)

Diagonal move -> len (p(x), !x, n) < len (p(x), x, n)

Figure 7(a): Straight pruning rule Figure 7(b): Diagonal pruning rule

Once we identify the neighbors we apply two pruning rules recursively to all the

neighbors based on their position to current node:

18

Straight pruning rule for Forced neighbor:

When there is a straight neighbor of current node ‘x’, we continuous move in that

direction until we encounter the goal node, an obstacle or a forced neighbor for the

expanded node.

Consider the figures 8, if node ‘y’ is the goal node we stop the search, if ‘y’ is an

obstacle we pass a null value which says that the route from the neighbor useless and

when there is a forced neighbor ‘z’ we stop the pruning and pass back ‘y’ as jump

point to ‘x’. The forced neighbor is identified based on two conditions; first it should

not be a natural neighbor of ‘y’ and second the length from ‘x’ to ‘z’ via ‘y’ must be

less then length of ‘x’ to ‘z’ not going via ‘y’ i.e. len(x, y, z) < len(x, !y, z)

Figure 8: Forced neighbor for straight move

Diagonal pruning rule:

 When there is a diagonal neighbor of current node ‘x’, we continuous move in

diagonal direction until we encounter the goal node, an obstacle or a forced neighbor

for the expanded node. Figure 9 shows an example of Forced neighbor for diagonal

move.

19

Figure 9: Forced Neighbor for diagonal move

Once we have the jump point nodes for current node ‘x’ we add them to open

list and select the node which as least f(n) value and repeat the process of pruning

until we get the goal node.

 JPS is proved to extremely fast in terms solution time compared to A* as it

expands fewer nodes and results show that JPS is 10 times faster than A* algorithm.

The JPS is also proved to be optimal as it produces the shortest path for a unit and it

requires very less memory.

2.2 Multiagent Pathfinding Algorithms:

 Multiagent Pathfinding problem (MAPF) deals with finding the routes to all

the units from their respective start node to their respective goal node while avoiding

collision between the units and obstacles on a map. Over the years there have been

many algorithms addressing MAPF problem using two standard approaches.

Centralized approach consists of a centralized controller monitoring all the units to

reach their respective goal nodes while avoiding collision. Decentralized approach

sub divides the problem into single agent runs to reach goal node while avoiding

collision by communicating between the units.

2.2.1 Decentralized Approach:

One of the earliest decentralized approaches was introduced by Stout [12],

where the A* algorithm was ran on all the units individually considering only of its

20

current neighbor unit. Once all the route for units is generate, the unit tracks back

route to check for collision. If there exists a collision with other unit, the current unit

just reroutes the unit from the node previous to collision node by running A*

algorithm. The same process is repeated for all the units Since A* algorithm is run for

every collision there is massive impact on CPU usage.

 To avoid the problem of running A* for every collision Silver [13] introduced

a new algorithm called “Cooperative A*”. A* algorithm is ran on individual units on

a three dimensional space-time, and considering the routes of other units. The

individual routes of units are stored in a data structure “reservation table” which

contains both node on the path and time on which it is being occupied. So while

searching the route for other units, the nodes on the reservation table will become

untraversable at that particular time. When there is a collision between the units, the

unit currently being searched uses a “wait” move. Until the node required by the unit

will not be available, the unit waits at the previous node before collision. Consider the

figure 10(a), with two units ‘A’ and ‘B’ on square grid map with 4 way travel. The

start node and goal node of ‘A’ is S1(0, 0) and G1(3, 3) respectively. And for unit ‘B’,

the start node is S2(0, 1) and goal node is G2(3, 1). When cooperative A* is used on

above map, A* algorithm is ran on unit ‘A’ to generate the path, the same path is

stored in a reservation table along with its time. While running A* on unit ‘B’ all the

expanded nodes from its start node till it reaches the goal node is cross checked

against the reservation table. Since there is no collision the two reach their in optimal

time and path. Consider a similar example as above in figure 10(b), where unit ‘A’ as

same start and goal node, but unit ‘B’ as start node S2(0, 2) and goal node G2(2, 0).

Initially the path for unit ‘A’ is stored in reservation table along with its time, while

finding the path for unit ‘B’ the one expanded node (1,1) at time 2 is occupied by unit

21

‘A’ , so the unit ‘B’ waits at node before collision at (0,1) and moves to node (1,1)

when it becomes available.

Figure 10(a): Cooperative A* without collision

Figure 10(b): Cooperative A* with collision

Cooperative A* has some drawbacks in terms of termination of units i.e. the

units would become inactive after reaching the goal and block other units, there is no

prioritization, on when each unit is ran which may impact the units which has longer

path and efficiency of algorithm as the entire path of unit is calculated on a three

dimensional space time state.

22

 The above problem in cooperative A* were addressed by Silver [13] with a

“Windowed Hierarchical Cooperative A*”. Here a window of predefined depth is

used while finding the path for individual units i.e. unit’s search is partially stopped

when the window limit is reached, thus allowing the units to be prioritized based on

duration of usage of A* algorithm. By partitioning the search for a unit efficiency of

entire algorithm is increased in terms of time. And finally by using the window, the

units which reach their goal node are still active as long as the window limit is

reached.

 Jansen et al. [14] introduce an implicit cooperative pathfinding using direction

maps (DM) which are built on a map. An abstract map is used to run all the units

individually to capture the path and direction of travel which is later used in DM.

Direction maps are data structure with collection of all the direction vectors (DV).

Direction vectors are vectors which give direction to each unit within each traversal of

node, its value ranges from zero to one. The author’s also use movement vectors

(MV) to capture the individual movement between the nodes on the map which could

be any of the 8 directions. Planning of DM is done just the opposite to A* algorithm

where f-cost is used to expand the nodes, while in DM the cost to travel to adjacent

node is changed on both nodes. The main objective of DM is used to find the path

with lower cost when compared shorter path. Thus while traversing on a DM the units

with same direction are grouped together to move to their respective goal nodes The

author’s propose the following formulation using the dot product of DV and MV

which ranges from -1 to 1 for movement from node ‘a’ to node ‘b’

Wab + 0.25 ∙ Wmax (2 - DV a ∙ MV ab - DV b ∙ MV ab)

And `Wmax' is the penalty for units which move in opposite direction to DV ,

`Wab' is the cost of moving the unit from edge `a' to `b', `MV ab' is the movement

23

vector for moving from node `a' to `b', `DV a' is direction vector associated with node

`a' and `DV b' is direction vector associated with edge `b'. Once the DM is built a

single unit, the next unit can use the previous DM to travel on the map. The author’s

state that the dynamic direction maps can be used for learning process has the

direction map will be constantly updated with movements of all units.

One of the most recent works addressing the MAPF problem is proposed by

Bnaya et al. [16], where they introduce a upgrade to Silver [13] “Windowed

Hierarchical Cooperative A*”(WHCA*) called “Conflict oriented Windowed

Hierarchical Cooperative A*” (CO-WHCA*). WHCA* does not consider conflicts

between units in some cases where the window is used for each unit and space-time

node is reserved for the entire path in the reservation table till the window limit. The

space-time node reserved in reservation table may not have any conflicts with the

other units. Secondly in case where the conflict may occur at Window + 1 node for

unit, by then the unit may be physical impossible to avoid the collision. CO-WHCA*

address the above drawbacks by placing the window only when the conflict occurs.

Window is placed only during the conflicts as in case of WHCA* a predefined length

of window size is utilized. One of the conflicting units is selected as a conflict owner

and that unit is allowed to use the window and reserve space-time node in reservation.

Following the initial cycle, after the first reservation table is not erased as in case of

WHCA* and the previous reservation table is utilized while finding routes for next

units. Thus by managing the window only during the conflicts the CO-WHCA*

produces better solution in terms of success-rate, solution cost and time compared to

WHCA*.

The latest algorithm for solution MAPF problem is introduced by

Saeidianmanesh [17] called “Reduced Wait Time” (RWT). Here all the units on a

24

map have same direction of travel i.e. on a square grid map of 5x5; all the units have

start nodes on left-hand side and their goal nodes on right-hand side. The main focus

of the RWT algorithm is used to reduce the waiting time of units in a narrow passage

where only few units can pass and rest of units as to wait for their turn to pass. To

reduce the overall time of all units, RWT propose to divide the group of units when

there is a shared passage (i.e. two ways to reach the destination). So the some group

of units take an alternate route then the optimal route to reach their destination. By

doing so the overall solution time is decreased but takes non optimal route to

destination. Consider the figure 11, where there is shared passage ‘A’ and ‘B’, if there

are 20 units entering the large corridor, the RWT algorithm will send 10 units through

passage ‘A’ and rest of units through passage ‘B’ thus reducing overall solution time.

Figure 11: Passage with path ‘A’ and ‘B’[17]

2.2.2 Centralized Approach:

 Most of the algorithms using the centralized approach produce an optimal

solution to MAPF problem but fail as the number of units increase on the map. One of

predominate algorithm was introduced by Standley et al. [10], where they introduce

an “operator decomposition” (OD) technique to reduce the branching factor of a

standard A* algorithm which is ran on multi agent environment. By reducing the

number of operation for each od nodes on every timestep the OD reduces number of

25

nodes which would selected during a standard A* run. Even though OD greatly

reduces the number of explored node space, the algorithm will be still exponential. To

tackle this, they introduce independence detection (ID) which utilizes the idea of

decentralized algorithm, by running the units independent to other units. After this

process, they group the units with conflicts and units without. Thus concentrating only

on the conflicting units algorithm reduces overall the solution time. There algorithm

produces an admissible, optimal and complete solution to MAPF problem. Standley et

al. [20] further improved the solution quality by introducing a Maximum Group Size

(MGS) algorithm, which is used to set a maximum size for groups which are created

during ID process, thus allowing conflicting groups to not combine by find a

alterative path. Neither OD+ID nor MGS algorithms could produces optimal solution

for a MAPF, so they introduced an Optimal Anytime algorithm by using MSG

algorithm, where in after finding the solution, the algorithm continues to run until it

finds an optimal solution or until the algorithm terminates. They compared their

algorithm against Hierarchical Cooperative A* (HCA*) to see their algorithm

outperform HCA* in terms of solution quality.

 Sharon et al [11] introduce the pruning technique to their previous work called

“Increasing Cost tree Search” (ICTS), where they used increasing cost tree (ICT). By

partitioning the ICT into High level tree which stores all the independent paths of

units and low level tree where they compare the unit’s path with high level tree to

avoid collision and to find optimal solution. There were 4 pruning technique which

was used to improve the solution quality of ICTS algorithm. First was the “Simple

Pairwise Pruning” (SPP), considering a pair of agents ai and aj in the list of agents

from the multi agent problem. Once selected ignoring the rest of the agents the route

for ai and aj is found with the cost for reaching their respective destination assumed as

26

Ci and Cj. So if there is no immediate solution to the above problem of two agent

search space of MDDij, then the corresponding ICT(n) node can be considered is not

a goal. Second “Enhanced Pairwise Pruning” (EPP), by modifying the SPP, the

pairwise pruning can be improved to perform in worst case also. By modifying the

searching strategy of SPP from depth first search to breadth first search and also by

modifying the single agent MDD's, the EPP removes the invalid nodes from all the

individual MDD. So the k-agent search (higher level search) is improved. Third

“Repeated Enhanced Pairwise Pruning” (REPP), the EPP is continuously iterated to

check until there is no solution for a pair of agent's ai and aj or until there is no single

agent MDD to further iterate in the ICT. Fourth “m-agent Pruning”, where a group of

agents ranging from 2 < m < k can be pruning using the m-agent pruning which

search the m-agent MDD search space using depth first search strategy. So if there is

no solution for the above m-agent pruning. By implementing the pruning techniques

the normal ICST was completed out performed by the ICST with pruning technique.

 One most recent works on MAPF problem using centralized approach was

done by Mors et al. [21], where they improved the “push and swap” (P&S) [22]

algorithm. The “push” process is used to move the units towards their respective goals

and “swap” process allows swapping the units without altering the configuration of

units. P&S as some shortcoming on some of instance, during the “swap” process, the

2 swapping units must a node with degree greater than 3 to make perfect swap,

otherwise the one of unit gets stuck or in other instance as to longer route to its

destination. To address the above problems and to produce a complete and optimal

solution, they introduced a “push and rotate” algorithm where in the algorithm is

divided into three phases. In first phase all the disjoint parts are found in the graph

and named sub problems by taking into account of number of unoccupied vertices and

27

on whether a unit from one location can be moved to another location in the graph. In

the second phase, each unit is assigned a sub problem depending on the number of

empty vertices surrounding the sub problem and on whether the units can be moved

out of the sub problem easily. Finally the third phase is to prioritize the units placed in

different sub problems so that the solution can be easily found for the units while

present in bottle neck. Thus solving the entire instances which were not addressed by

P&S and producing a complete algorithm.

2.3 Summary

In this chapter, we have examined some of the relevant papers to our work.

We introduced both the single agent pathfinding and multiagent pathfinding

algorithms. We also examined the two approaches which are employed by various

researchers to address the MAPF problem called centralized approach and

decentralized approach. In the next chapter we are going to explain in detail the most

relevant algorithm Spatially distributed Multiagent Path planning [18] algorithm

which is used to address MAPF problem while managing the transversal of units

through narrow corridors.

28

CHAPTER-3: SPATIALLY DISTRIBUTED MULTIAGENT PATH

PLANNING

To address the issue of traversing of units through the narrow corridors in MAPF

problem, Wilt et al [18] introduced a “Spatially Distributed Multiagent Path

Planning” algorithm. The given map is partitioned into Low Contention Area (LCA)

such as open fields in video games, rooms for cleaning robots etc and High

Contention Area (HCA) such as narrow hallway for warehouse robots, bridges in

video games etc. Each of the areas consist of controllers that are responsible for their

respective areas and have knowledge of their area in terms of number of units,

obstacles etc. There is a 1-to-1 mapping between the controllers and areas on the map.

3.1 Spatial Distribution of Map:

 Spatial distribution is dividing the map graph G (V, E) with controllers C1 to

Ck where each controller consists of subset of V. The edges connecting within a

controller are called as internal edges and edges connecting between the controllers

are referred to as transition edges. Each controller has the knowledge of its respective

area which is the topology of area and configuration of units within it. There are two

movements of units within a controller that are internal moves and transition moves.

Internal moves are classified into 3 types: first to transfer the unit to its goal with

target macro, second to transfer a unit from current controller to next controller and

third to accept the unit from other controllers. Transition moves are the single step

movement of units through transition edge from one controller to next. The figure 12

shows the two controller1 and controller2. The double ended arrow between the

controllers represents the transition move of unit showing units can travel in both

directions. One of the cases of internal move which is to transfer a unit to its goal ‘G’

is also shown.

29

Figure 12: Spatial distribution of map into controllers and transition move between

controllers and internal move

Since each controller has the configuration knowledge of units with it, there is

a need for each controller to know all the units which are arriving and departing from

it. A heuristic guidance is generated by running an individual search for all unit using

A*. This high level path would help the controller to transfer the unit to appropriate

controller and to accept a unit from an appropriate controller. There could be cases

where the units start and goal nodes are within a single controller then the high level

path would consists single controller. In figure 13 we show the high level paths for

two units U1 and U2 with S1, G1 and S2, G2 as start node and goal node respectively.

There are three controllers with name controller 1(C1), controller 2 (C2) and

controller 3(C3). U1 with high level path C1->C2->C3 and U2 with C3 as both its

start and goal nodes are within C3.

Figure 13: High level paths for units U1 and U2

30

3.2 High Contention Area:

 All the narrow corridors, bridges, narrow hallways on a given map will be

HCA’s. Central core area and buffering area which allows units to wait together

forms a HCA. For a unit to travel through the HCA first it has to arrive at one of the

nodes in buffering area then it is moved to central core area and through the opposite

buffering area. To avoid collision between the units within the HCA, it is divided into

inbound and outbound areas. Based on the direction of travel a unit can take either the

inbound or outbound area.

 The central core area of HCA is identified on a given map. A pattern of 2, 3

and 4 nodes wide and 8 nodes long both vertical and horizontal is moved over the

map to find all the central core areas for each of the HCA. All three horizontal

patterns with 4 nodes long showing both inbound and outbound direction are shown

in figure 14(a), 14(b) and 14(c).

Figure 14(a): 2 wide central core HCA Figure 14(b): 3 wide central core HCA

Figure 14(c): 4 wide central core HCA

 Once the central core area for each HCA is identified, the buffering area must

be created around the central core area for each HCA. The size of 13 nodes is used for

buffering area. Since all units cannot travel through central core there must be a

buffering/waiting area surrounding the central area which allows the units wait for

31

their turn to move. The first step in this process is to divide the central core area of

HCA, for hortizonal cental core the left to right will be inbound and opposite will be

outbound. Following this the first N=13 cells on same side of the direction being

considered will be selected starting from central core area of HCA using Breadth first

search (BFS). Now the HCA is created on the map. Figure 15 shows a HCA with 2

size wide and 4 long vertical central core area represented with ‘C’ cells. Using BFS

on both inbound and outbound direction the buffering area is created around the

central core area which are represeneted with grey cells.

Figure 15: High Contention Area [18]

 Each cell in the HCA is given a BFS depth value starting from the first

buffering cell for each direction through the central core area and to other side of

central core area of HCA. In the figure 15, for inbound direction i.e. from down to up

the BFS value for first buffering cell will be 0 and for outbound direction i.e. from up

to down the lowest BFS depth will be at the top buffereing cell. By using BFS depth

of cells in HCA, the units are traversed through the HCA. There are some simple rules

to avoid deadlock and unit starvation such as the prority is always given to unit with

longer time in the controller by moving other units to a empty cell with lower BFS

depth value, there is no dead on collision of units as the BFS depth value in each of

32

the direction is different value. Units that are on its way out of HCA can either be

transferred to adjacent cell of next controller (only if the cell is avilable) or taken to

end of HCA and then transfer to next controller depending on availability.

3.3 Low Contention Area:

 Once the HCA’s are found on map, the rest of area’s can be considered as

LCA’s. The main responsibility of controller of LCA is to transfer the unit to next

HCA controller or to send the unit to its local goal node. Since LCA’s are open area’s

with few obstcales, a modified Cooperative A* [13] is ran for all the units. As the map

is spatially distributed, the standard Cooperative A* [13] cannot be used because of

the following problems. In standard Cooperative A* [13] there is a preset goal node

for each unit and the unit can arrive at its goal at any time, but in spatially distributed

map, the arrival time of unit to its destination cannot be gurantee. So they have

considered the destination of a unit as a disjuctive destinations that are locations

adjacent to existing controller to its next controller. So there could be series of nodes

along each of controller before reaching its actual destination. The other part to

consider is the time, as the availability of nodes to transfer a unit would not be

available at a particular time on a controller. So the disjuctive destination to be

considered as goal state of unit the controller must accept the unit at a arrival time.

Once the units reach their respective goal node, in standard Cooperative A* [13] they

become inactive i.e. they just sit at their goal nodes. Thus making the node not

available to units on its optimal path. In modified Cooperative A* even after reaching

the goal node the unit will be active by replanning a route to goal node, thus allowing

other units to use its goal node.

33

3.4 Spatially Distributed Algorithm:

 Spatially distributed framework is used to partition the given into High

Contention Area (HCA) and Low Contention Area (LCA). Each area shows a 1-to-1

mapping between the controllers. As stated in the earlier discussiones each controller

communicate with other controller to negotiate the transfer of unit. So there are two

macros to handle the communication in both HCA and LCA controllers with respect

to unit to be transferred, node where unit is accepted and time of arrival of unit. The

pseudo code for both LCA and HCA for accepting a unit is given below. The HCA

accepts the units at particular node and time only if it can keep the previous promise

made to other units. If two units request the same node at same time, then the priority

is given to the unit which asked first and other unit as time wait the transition node for

its turn. As LCA controller’s main responsibilities is to accept unit from HCA and

transfer either to local goal node or to next HCA controller, in pseudocode just

modified Cooperative A* is ran for the particular unit. The location parameter can

either represent a local goal node or the disjunctive destination for next HCA

controller.

Algorithm 1: Low Contention Area Accepting Unit [18]

34

Algorithm 2: High Contention Area Accepting Unit [18]

3.5 Summary:

 In this chapter we have examined the working of “Spatially Distributed

Multiagent Path Planning” (SDP) which address the problem of traversing the units

through the narrow corridor called High Contention Area’s in a MAPF problem. To

do the search for units in Low Contention Area’s (LCA) the authors have proposed a

modified Cooperative A* which is one of earliest algorithm to solve MAPF problem.

In next chapter we propose a novel algorithm called Cooperative Jump Point Search

(Cooperative JPS) which is ran on LCA to find path for units. We see the impact of

Cooperative JPS on the entire SDP framework and modification made to both

Cooperative and Jump Point Search algorithms to adapt to SDP framework.

35

CHAPTER 4: PROPOSED APPROACH

The problem of finding the paths for all the units on the map from their respective

start and goal positions is referred to as MAPF problem. Many researchers have

addressed the MAPF problem over past few years. Wilt et al [18] tackled the MAPF

problem with a scenario where the units have to travel through a narrow corridor on

the map. They partitioned the map into High Contention Area (HCA) and Low

Contention Area’s (LCA). HCA are the narrow corridors, bridges, narrow hallway

etc, and LCA are the open areas on the map. Each area has its own controller having

the local knowledge of its area and units inside it. A modified Cooperative A* [18]

was used to traverse the units through their paths in LCA and a Breadth First Search

was used in HCA. Since Cooperative A* [13] is one of the oldest MAPF algorithm,

we have proposed a novel algorithm called Cooperative JPS which is a combination

of Jump Point Search (JPS) [6] and the cooperative nature from cooperative A* [13]

algorithm. We have introduced our new algorithm in place of Cooperative A* on the

Spatially Distributed Pathfinding framework (SDP) [18] to find the paths of units in

LCA. In rest of chapter, we introduce all the techniques which was employed to

combine the Cooperative and JPS. We also see the adjustments done to Cooperative

JPS to accommodate inside SDP framework.

4.1 Cooperative JPS:

 Cooperative JPS is the combination of JPS [6] and Cooperative nature seen in

Cooperative A*. As we have explained in literature review on the working of JPS [6]

and Cooperative A* [13], the JPS [6] uses the symmetry breaking techniques to

reduce the number of nodes explored by a unit in a single agent environment. Instead

of probing all the nodes surrounding the unit, JPS uses the couple of pruning rules and

stopping rules to find the next available node on the path for a unit called “jump

36

points”. Thus by using the jump points the JPS finds the path for a unit from its start

node to goal node. Cooperative A* [13] uses a 3D space and time data structure called

“Reservation table” to store the paths of units in multiagent environment. The

collision is avoided by constant lookup into reservation table for each unit. A wait

macro is used during the collision. The unit which has path already is given priority to

occupy the node and the other colliding unit would have to wait until the node

becomes available. Since the reservation table requires the entire path of units, we

have introduced a “Backtracking mechanism” to get all the nodes in the path for each

unit, as JPS [6] will only give the jump points from start to goal nodes. While finding

a path for a unit using JPS [6], the algorithm need to differentiate between High

Contention Area and Low Contention Area, so we have proposed a new stopping rule

for JPS [6] algorithm called “Forced Selection”. In some cases the solution time

becomes more important than finding an optimal path for a unit, so by just using wait

macro we cannot achieve that. Thus we present a new “Side-way Movement” macro

along with wait macro to improve the solution time and effective avoid collision

between units. To decrease the overall solution time of the entire SDP algorithm with

Cooperative JPS, we use JPS [6] instead of A* algorithm to find the high level path

which acts as a heuristic guide for controllers. We explain all the above mentioned

techniques in details later in the chapter.

4.1.1 Backtracking Mechanism:

 The backtracking mechanism is very important part when combining

JPS [6] with cooperation in multiagent environment. As the reservation table requires

the entire path for each unit to be stored in the table, we propose a backtracking

mechanism to find the entire path generated using the JPS [6] algorithm. As

mentioned earlier in the chapter, the JPS [6] will only generate the jump points from

37

start node to goal node as a path. Thus we need to use a backtracking mechanism to

get all nodes in the path between the jump points. While storing the expanded nodes

from the JPS [6] algorithm to the reservation table, we consider the current node from

where we do the search and each jump node expanded by JPS [6] to find all the nodes

between the current node to each expand node using backtracking mechanism. We

need to pass the direction of travel node using below equation in both ‘x’ and ‘y’

direction.

DirectionX = (jumpNode.x – currentNode.x)/max(abs(jumpNode.x – currentNode.x), 1)

DirectionY = (jumpNode.y – currentNode.y)/max(abs(jumpNode.y – currentNode.y), 1)

The pseudo code for backtracking mechanism is presented below:

Algorithm 3 Function backtracking

Require: p: parent node, j: jump node, d: direction

distanceBetweenNodes = euclidenDistance(p, j)

 a[distanceBetweenNodes] = null // create an array of size of

distanceBetweenNodes

while distanceBetweenNodes ≠ 0 do

 n = step(p, d)

 distancebetweenNodes = distancebetweenNodes – 1

 a[distancebetweenNodes] = n

return a

Algorithm 3: Backtracking mechanism in Cooperative JPS

For each jump node generated by the JPS [6] algorithm, we pass the jump

node along with the parent of jump node to the function backtracking mechanism to

generate all the nodes in between the parent node and jump node. Based on the

direction of travel of unit we get each node from the parent node by constantly

incrementing in the direction of travel till we reach the jump node. Once we have all

the nodes, we check the availability of each node and store it in reservation table.

38

Figure 16: Backtracking Mechanism Example

In figure 16 we have a unit with start node ‘A’ and goal node ‘B’ on an 8-way square

grid. When JPS [6] is used to find the path the above unit, the path generated will be

represented as A->JP1->JP2->B which would only contain the jump points between

nodes ‘A’ and ‘B’ discarding all the nodes between the nodes on the path. Using the

above backtracking mechanism on each unit and for each expanded nodes, in our

example the first jump point from start node is JP1. Once we have JP1, we run the

backtracking mechanism to find nodes between the parent of JP1, i.e, ‘A’ and add it to

the reservation table. After applying backtracking mechanism on above unit we have

all the nodes from start node ‘A’ to goal node ‘B’ via JP1 and JP2.The same process

applied to all units and for each expanded node.

4.1.2 Forced Selection:

 Existing JPS [6] algorithm already has two stopping rules one for

horizontal or vertical straight movement and one for diagonal movements. Just by

using these stopping rules JPS [6] algorithm cannot differentiate between the High

Contention Area (HCA) and Low Contention Area (LCA). Since Spatially Distributed

Pathfinding framework (SDP) [18] have controllers for each area which allows an

effective transfer of units from a narrow corridor to open areas. We have introduced a

new stopping rule called “Forced Selection” which allows the unit to be transferred

from one controller to other. As we already have high level path for each unit which

acts as a heuristic guide for controllers on arrival of units to its area. By utilizing the

39

high level path, the JPS [6] algorithm is stopped forcefully at one of the transaction

nodes in HCA. Depending on the direction of travel of unit from its LCA to HCA, we

first block all the inbound or outbound directed nodes in HCA. Once done, the search

is stopped and search algorithm generates a transaction node as an expanded node.

The pseudocode for forced selection macro is presented below:

Algorithm 4 Function ForcedSelection

Require: n: expanded node, hlp: High level path of unit

if hlp contain a HCA then

 HCA = select all HCA in hlp

 while till there is no HCA do

if n ∈ HCA

 return true

return false

Algorithm 4: Forced Selection in Cooperative JPS

For all the nodes expanded by JPS [6], we need to check whether the node

belongs to a HCA or a LCA, so for each unit we would generate the High level area

which represents all the areas which would be travelled by the unit. So for units

travelling from LCA to HCA, we require transferring control of unit to HCA

controller, to do so we have the forced selection macro which checks each expanded

node for its correct belonging area. When we encounter a node which is part of HCA,

we stop the search and transfer the control to that HCA controller.

Figure 17: Forced Stopping on SDP framework

40

In figure 17 consider a unit ‘Z’ with start node ‘A’ and goal node ‘B’ on 8-

way square grid map spatially partitioned into HCA and LCA. The greyed part in the

figure represents the HCA1 and the area side of it is represented as LCA1 and LCA2.

First we need to block either the inbound nodes or outbound nodes in HCA1 based on

the direction of travel which can be obtained by the high level path for unit ‘Z’ that

can be represented as LCA1->HCA1->LCA2(i.e. one of nodes in each area to

represent the entire area). Using the high level path, we apply a forced selection by

stopping the JPS [6] algorithm at a transition node ‘P’. The forced selection is

implemented while expanding the JPS algorithm which checks for the only for the

nodes in HCA, so the first recognised node in HCA is selected for transferring the

control of unit from LCA1 controller to HCA1 controller.

4.1.3 Collision Avoidance:

 In some real time scenario such as video games where the solution

time is more important than actual pathlength, we cannot just use the ‘wait’ macro

used in Cooperative A* [13] for collision avoidance. So we propose new collision

avoidance technique called “Side-Way Movement” in Cooperative JPS. When there is

collision between the units, the first preference is given to side-way movement than

wait macro. In side-way movement the low priority unit i.e. unit which is trying to

occupy a node which is already occupied by unit in collision, will deviate from its

optimal path and occupy one of the nodes on either of side of collision node. There

are two variants to side-way movement first being the straight movement of unit with

either horizontal or vertical movement and second is diagonal movement. Consider a

unit ‘Z’ with ‘N’ nodes as path i.e. n1....ng, where n1 being the start node and ng being

the goal node which would be generated after the backtracking process. Consider a

collision node n(x, y) on the path of unit ‘Z’ then for a straight movement we would

41

consider either the node n(x-1, y) or n(x+1, y) for horizontal movement and for

vertical movement we would either consider n(x, y -1) or n(x, y+1) as save node and

move the unit to one of the nodes to avoid collision. When the collision node ‘n’ is at

the diagonal travel of unit then we would consider either the nodes n(x, y-1) and

n(x+1, y) or n(x-1, y) and n(x, y+1) as save nodes to move the unit to avoid collision.

Both diagonal and straight side-way movement for collision node n(x, y) is shown in

figure 18(a) and figure 18(b) respectively.

Figure 18(a): Diagonal side-way movement Figure 18(b): Straight horizontal

side-way movement

Depending upon the above discussion we can conclude with 4 main cases:

 Case 1: Straight side-way movement (either horizontal or vertical)

 Collision node – n(x, y)

 Horizontal side-way movement – n(x-1, y) or n(x+1, y)

Vertical side-way movement – n(x, y-1) or n(x,y+1)

 Case 2: Diagonal side-way movement

 Collision node – n(x, y)

 Diagonal side-way movement – n(x-1, y) and n(x, y+1) or n(x, y-1)

and n(x+1, y)

 Case 3: When the side-way movement is not available

 Collision node – n(x, y)

Wait node – (n-1) waiting node will always be the node previous to

collision node

 Case 4: When both side-way movement and wait node is not available

 Collision node – n(x, y)

42

Wait node – ((n-1)-1) waiting node will be two nodes way from the

collision node

Waiting node – we will iterate from (n-1) till its parent node to find the

waiting node

Below is the pseudocode for collision avoidance techniques used in Cooperative JPS.

Algorithm 5 Function CollisionAvoidance

Require: c: Collision Node, d : direction of unit, p: previous node to ‘n’,t: time of collision

n = sideWayMovement(c, d) // based on direction of travel generates the pair of evading

node/nodes

if n ≠ 0 then

 x = Select one of evading node/nodes

 x.time = t //for diagonal evading nodes the time ‘t’ is added appropriately

 return x

if n = 0 then

 if waiting at p is available then

 p.time = t // we create a new node at ‘p’ with updated time t

 return wait(p)

 if waiting at p is not available then

 q = parent of node p

 r = all nodes from p to q

 t = t -1 // since waiting node could be two space before ‘c’

 for all z ∈ r do

 if wait(z) is available then

 z.time = t

 return wait(z)

 t = t -1

Algorithm 5: Collision Avoidance in Cooperative JPS

When we encounter a collision node, the first step is to find the pair of evading

node/nodes using side-way movement function and return one of the available evading

node/nodes. The algorithm for side-way movement is presented in algorithm 4. In

some cases the evading node/nodes are blocked or not available then we resort to wait

action at node previous to collision node. But when the number of units on the map is

very high there could be chances that both side-way movement nodes and waiting

node be unavailable, than we iterate from the previous node to collision node to its

parent node to find a waiting node.

43

Algorithm 4 Function sideWayMovement

Require: c: collision node, d: direction of travel of node

if d is straight horizontal then

 n1 = c(x-1, y)

 n2 = c(x+1, y)

 return n1 and n2

if d is straight vertical then

 n1 = c(x, y -1)

 n2 = c(x, y+1)

 return n1 and n2

if d is diagonal then

 n1 = c(x-1, y) and c(x, y+1)

 n2 = c(x, y-1) and c(x+1, y)

 return n1 and n2

Algorithm 6: Side-way movement in Cooperative JPS

4.1.4 High level Path using JPS:

 Instead of using an expensive A* algorithm to generate the high level

path for individual units, we use JPS [6] to increase the overall solution time of

spatially distributed pathfinding algorithm with cooperative JPS. In figure 19; we

have two unit ‘A’ with start node S1 and goal node G1 and unit ‘B’ with start node S2

and goal node G2. Unit ‘A’ starts from LCA1 and ‘B’ starts from LCA2. So when JPS

algorithm is used to find the paths for both units individual, we pick only one node in

each area to represent the entire area for high level path consideration. In HCA we

pick the central core nodes for consideration depending on the direction of travel of

units. So in our example the High level path for unit ‘A’ will be S1->H1->G1 and for

unit ‘B’ it will be S2->H2->G2.

44

Figure 19: High level path using JPS for two units on SDP framework

4.2 Summary:

 In this chapter we introduced a novel MAPF algorithm called Cooperative JPS

which is implemented on SDP framework. We showed various techniques required to

incorporate JPS [6] into a Cooperative environment on SDP framework. We proposed

a backtracking mechanism for JPS [6] algorithm to find all the nodes in the path for

units. Using the backtracking mechanism we introduce a new stopping rule for JPS

[6] to differentiate between HCA and LCA. A collision avoidance technique called

side-way movement was introduced along with wait macro in existing cooperative A*

[13] to increase the solution time of individual units. And finally to reduce the

solution time of overall SDP with cooperative JPS algorithm we used JPS [6] instead

of A*. In the following chapter we compare our work with existing SDP with

Cooperative A* algorithm [13] to measure the performance of our work in terms of

makespan, overall solution time, failure-rate.

45

CHAPTER-5: EXPERIMENTAL SETUP AND RESULTS

We ran our experiments on an ASUS G46V laptop with Intel core i5 processor and

RAM capacity of 8GB. We compared our Spatially Distributed Pathfinding algorithm

with Cooperative JPS with the existing Spatially Distributed Pathfinding algorithm

with Cooperative A* [13]. We would like to thank the authors for providing their

code for our experiments. There work was completely written in JAVA. We have

used the benchmark maps for one of the famous games from Blizzard gaming

company called Dragon Age: Origins [23].

For our experiments we have considered 8 different maps from Dragon Age:

Origins game with High Contention Area (HCA) ranging from 0 to 20 and number of

open nodes for units traversal from 925 to 30236. We could not experiment on maps

with higher open nodes because of laptops constraints. The maps used are square

grids which allows both 4-way and 8-way traversal.

Start and goal nodes for each of the unit were randomly generated only on the

LCA. Since HCA would usually be a narrow corridor, no start or goal nodes are

placed. It would not be practical to place either the start or goal node in HCA because

in any real life scenario such as a bridge we won’t have a parking lot, the bridge just

acts as a passage for vehicles to move.

The results are represented starting for maps with least HCA to maps with

higher value. A total of 530 problem instances were considered for our experiments,

with 5 iterations run for each map which was enough to obtain accurate average

results. The cost functions used in our experiments are makespan, overall solution

time of algorithm, failure rate, individual Pathlength of unit causing the makespan.

46

5.1 orz704d.map:

 The orz704d map has zero HCA in it so the entire map acts as one big

LCA. Since there is only one LCA our work will just use Cooperative JPS and

modified Cooperative A* in Wilt et al [18] work. There are 2097 open nodes for units

traverse on the map. We started with 10 units gradually increasing by 10 units till 100

units. The figure 20(a) shows the comparison of makespan between our work and

existing SDP with Cooperative A* [13]. As from the results our work completely

dominates the existing work by around 59.2%. In figure 20(b) we have compared the

overall solution time between the algorithm and by the result we see a decrease in

solution time by 33%. Number of units failing in each of instance is shown in figure

20(c). The table 1(a) shows the actual values of makespan and solution time for

individual unit causing the makespan. We also cumulated the failure rate of units over

each run in table 1(b).

Figure 20(a): makespan generated for SDP with Cooperative JPS and SDP

with Cooperative A* on map orz704d.map

47

Figure 20(b): Solution time generated for SDP with Cooperative JPS and SDP

with Cooperative A*on orz704d map

Figure 20(c): Number of Failed units for SDP with Cooperative JPS and SDP

with Cooperative A*on map orz704d over each instances

Number of

units

SDP with Cooperative A* SDP with Cooperative JPS

Makespan Solution

time

(seconds)

Makespan Solution

time

(Seconds)
Pathlength Unit Pathlength Unit

10 83 2 0.197 39 6 0.131

20 83 2 0.25 40 6 0.203

30 104 29 0.312 63 25 0.281

40 108 35 0.438 63 25 0.375

50 108 35 0.562 82 37 0.509

60 110 35 0.61 82 37 0.578

70 110 35 0.625 82 37 0.594

80 173 79 0.915 72 46 0.467

90 111 86 0.833 75 46 0.486

100 111 86 0.986 82 37 0.84

110 111 86 1.052 75 46 0.628

120 111 86 1.238 82 37 0.936

Table 1(a): Makespan and solution time on map orz704d

48

Number of

units

Number of failed units

SDP with Cooperative A* SDP with Cooperative JPS

10 0 0

20 0 0

30 0 0

40 1 0

50 0 2

60 0 1

70 1 2

80 2 2

90 2 2

100 1 4

110 3 3

120 7 5

Table 1(b): Number of failed units on map orz704d

5.2 den204d.map:

 The den204d map consists of one HCA and as 15788 open nodes. With 10

units for each instances; a total of 250 units is ran on the map. The figure 21(a) shows

makespan between the two algorithms with almost similar decrement in makespan of

about 59.2%. We saw a massive decrease in solution time by about 117.12% as there

are two large LCA on the map that allows our algorithm to perform better in figure

21(b). Similar to previous we also see a decrease in number of failed units in figure

21(c). The tables 2(a) and 2(b) gives the unit which is causing the makespan along

with makespan and solution time for particular group of units.

49

Figure 21(a): makespan generated for SDP with Cooperative JPS and SDP with

Cooperative A* on map den204.map

Figure 21(b): Solution time generated for SDP with Cooperative JPS and SDP

with Cooperative A*on den204d.map

Figure 21(c): Number of Failed units for SDP with Cooperative JPS and SDP

with Cooperative A*on map den204d over each instances

50

Number of

units

SDP with Cooperative A* SDP with Cooperative JPS

Makespan Solution

time

(seconds)

Makespan Solution

time

(Seconds)
Pathlength Unit Pathlength Unit

10 127 1 0.282 51 6 0.1585

20 127 1 0.406 64 6 0.206

30 127 1 0.454 64 6 0.255

40 127 1 0.609 64 6 0.28

50 127 1 0.672 64 6 0.353

60 127 1 0.723 66 50 0.439

70 127 1 0.849 66 50 0.561

80 127 1 0.958 87 50 0.569

90 127 1 1.15 87 50 0.612

100 127 1 1.163 89 60 0.64

110 127 1 1.492 92 50 0.653

120 127 1 1.593 89 60 0.68

130 127 1 1.699 94 50 0.806

140 127 1 1.716 93 50 0.974

150 127 1 1.853 93 50 1.008

160 127 1 2.025 93 50 1.084

170 127 1 2.208 93 50 1.035

180 140 173 2.315 93 50 1.131

190 140 173 2.633 95 50 1.163

200 140 199 2.878 87 75 1.232

210 143 100 3.102 85 98 1.206

220 151 170 3.157 100 60 1.341

230 156 170 3.238 91 98 1.313

240 159 170 3.556 97 60 1.343

250 155 243 3.639 103 60 1.393

Table 2(a): Makespan and solution time on map den204d

Number of

units

Number of failed units

SDP with Cooperative A* SDP with Cooperative JPS

10 0 0

20 0 0

30 0 0

40 1 0

50 1 0

60 1 1

70 1 1

80 0 2

90 0 1

100 2 1

110 2 1

120 7 2

130 10 3

140 13 5

150 14 3

160 16 8

170 21 6

180 21 9

190 29 9

51

200 29 14

210 30 16

220 52 14

230 53 15

240 67 19

250 85 19

Table 2(b): Number of failed units on map den204d

5.3 den401d.map:

We gradually increase the number of HCA as well the number of open nodes

on the maps by 11 and 11456 respectively. The experiments conducted are similar to

the earlier maps, but we see some anomalies as we increase the HCA along with the

increase in number of units on the map. On maps with higher HCA number we

observe that when the number of units on the map is smaller our work tends to have

the solution time close to existing algorithm, but stabilizes with increase in number of

units. In figure 22(a) we see the makespan on map den401d between 2 algorithms

with our work showing closer makespan to original work [22] at 15.57%. We still see

a good decrement in terms of solution time with 75.49% in figure 22(b). Den401d is

one of the maps consisting of long hallways as LCA, thus making our work less

immune to failure compared to modified Cooperative A* in SDP [18] as shown in

figure 22(c). The tables 3(a) and 3(b) gives the unit which is causing the makespan

along with makespan and solution time for particular group of units.

52

Figure 22(a): makespan generated for SDP with Cooperative JPS and SDP

with Cooperative A* on map den401d.map

Figure 22(b): Solution time generated for SDP with Cooperative JPS and SDP

with Cooperative A*on den401d.map

Figure 22(c): Number of Failed units for SDP with Cooperative JPS and SDP

with Cooperative A*on map den401d over each instances

Number of

units

SDP with Cooperative A* SDP with Cooperative JPS

Makespan Solution

time

(seconds)

Makespan Solution

time

(Seconds)
Pathlength Unit Pathlength Unit

10 325 0 0.409 264 0 0.164

20 358 10 0.564 271 15 0.243

30 358 10 0.79 271 13 0.423

40 368 10 1.044 313 33 0.583

50 368 10 1.05 349 37 0.634

53

60 368 10 1.649 349 37 0.69

70 372 10 1.69 315 33 0.73

80 372 10 1.71 290 77 1.03

90 372 10 2.093 366 33 1.34

100 383 10 2.193 365 33 1.68

Table 3(a): Makespan and solution time on map den401d

Number of

units

Number of failed units

SDP with Cooperative A* SDP with Cooperative JPS

10 0 1

20 0 1

30 0 1

40 1 2

50 1 2

60 1 2

70 1 3

80 1 3

90 1 2

100 1 4

Table 3(b): Number of failed units on map den401d

5.4 den505d.map:

The map den505d is one largest in terms of both HCA and open nodes with 20

and 30236 respectively. We start our rans with 20 units and increasing with the same

amount till 360 units. In figure 23(a) we present the makespan for both algorithms

with our algorithm showing a better result with decreased makespan of about 22.61%.

As mentioned earlier with increased HCA our work tends to slightly more solution

time, as we use the blocking mechanism to earlier units. In figure 23(b) we see a

solution time on map den505d with mean decrement of about 30%. The failure rate is

completely proportional to the number of units, so as the number of units increase we

see a massive failure rate on existing approach compared to our work in figure 23(c).

The failed units in most cases are the units which have already reached the goal and

helping other units to have an optimal path through its goal node. The tables 4(a) and

4(b) gives the unit which is causing the makespan along with makespan and solution

time for particular group of units.

54

Figure 23(a): makespan generated for SDP with Cooperative JPS and SDP

with Cooperative A* on map den505d.map

Figure 23(b): Solution time generated for SDP with Cooperative JPS and SDP

with Cooperative A*on den505d.map

55

Figure 23(c): Number of Failed units for SDP with Cooperative JPS and SDP

with Cooperative A*on map den505d over each instances

Number of

units

SDP with Cooperative A* SDP with Cooperative JPS

Makespan Solution

time

(seconds)

Makespan Solution

time

(Seconds)
Pathlength Unit Pathlength Unit

20 711 10 1.123 571 10 1.246

40 711 10 1.46 571 10 2.141

60 711 10 2.177 571 10 2.788

80 711 10 2.713 571 10 3.775

100 711 10 2.847 571 10 3.325

120 711 10 3.408 571 10 3.986

140 715 10 3.964 571 10 4.427

160 715 10 4.095 571 10 4.631

180 715 10 4.792 571 10 4.761

200 717 10 5.743 571 10 4.891

220 717 10 6.289 571 10 5.23

240 717 10 6.773 603 115 5.76

260 717 10 8.032 604 115 5.604

280 717 10 8.902 603 115 5.805

300 741 283 9.274 609 283 6.37

320 744 283 12.686 603 115 6.66

340 743 283 13.748 604 115 7.23

360 739 283 14.772 665 115 8.23

Table 4(a): Makespan and solution time on map den505d

Number of

units

Number of failed units

SDP with Cooperative A* SDP with Cooperative JPS

10 0 0

20 0 1

30 0 1

40 0 7

50 1 6

56

60 2 9

70 2 10

80 3 14

90 3 12

100 8 16

110 15 19

120 17 22

130 30 28

140 35 34

150 47 38

160 60 36

170 79 39

180 94 44

Table 4(b): Number of failed units on map den505d

The results for the remaining 4 maps are provided in Appendix 1.

5.2 Summary:

 In this we presented the results of our work while comparing with SDP with

Cooperative A* [18]. We observed that our work out performs the existing approach

in terms of makespan, solution time and failure rate on maps with smaller HCA with

decrement of makespan of about 59.2%, average solution time of both the maps of

about 75.09% and failure rate being very less compared to existing work. As we

increase the HCA we saw having smaller makespan of about 18.78% and solution

time of about 52.74%. The failure rate tend to be close to existing work when the

number of units is less but becomes stabilized as the number of units is increased.

 In the next chapter we will provide the conclusion statement of our thesis

along with some future work which could be done on both Cooperative JPS and SDP

framework to improve the overall the framework with Cooperative JPS.

57

CHAPTER-6: CONCLUSION AND FUTURE WORK

In our thesis, we have proposed a new novel algorithm called Cooperative JPS, which

is the combination of Cooperative behaviour in Cooperative A*[18] and one of fastest

single agent pathfinding algorithm Jump Point Search [6]. By combining Cooperative

and JPS algorithms we have taken advantage of both the algorithms. To implement

JPS in a multiagent environment we proposed macro’s such as Backtracking

mechanism which allows capturing all the nodes between the parent node and the

Jump point from JPS that are placed in the 3D space/time data structure called

reservation table of Cooperation and new collision avoidance technique which allows

a side-way movement for units during collision. After doing this we introduce a

forced selection macro to Cooperative JPS to recognise between High Contention

Area (HCA) and Low Contention Area (LCA) on SDP framework.

 The main motivation for our work was to address the Multiagent Pathfinding

Problem (MAPF) for units traversing on narrow corridor which as much usefulness in

real work like GPS, video games, warehouse management etc. So we introduced

Cooperative JPS algorithm on SDP framework that was used to address the above

problem.

 By using a new Cooperative JPS algorithm on SDP framework compared to

existing SDP with Cooperative A* we saw a massive improvement in terms of

makespan and solution time as per the results. On maps with open LCA’s we got

better failure rate then on narrow corridors of LCA where we saw a slightly degrade

on failure rate. We conducted our experiments on benchmark video game map of

Dragon Age: Origins with HCA ranging from 0 to 20 and open nodes ranging from

925 to 23572. The maximum number units ran on one of the map was about 360.

58

From the results we saw improvement in terms of makespan of about 59.2% and

solution time of about 75.09% on lower HCA maps and makespan of about 18.78%

and solution time of about 52.74% on higher HCA maps. The failure rate were also

very less on most of the maps. From our results we conclude that by incorporate

Cooperative JPS in SDP framework we saw a significant improvements in terms of

makespan, solution time and failure rate.

 In our future work, we would like to improve the Cooperative JPS to handle

dynamic environment in scenarios where the map could change while running the

pathfinding algorithm such as in first person shooter games where a bridge could be

destroyed that would make the units planning the route through the bridge

unavailable. By introducing a modified Reduced Wait Time [17] algorithm into

Cooperative JPS we would be able to do effective reroute of units in terms of solution

time; when the HCA becomes destroyed. We would like to improve the SDP

framework, by dynamic assigning the size of buffering area which could increase the

solution time of overall algorithm. Our approach consumes more time while finding

routes for units travelling in a narrow LCA hallway, so we would like to modify the

JPS to handle the above scenario. One of main drawbacks of JPS is that it is only

compliable for square grid maps; in future we would like to modify the JPS which

would be capable to find paths for units in other regular grids.

59

REFERENCES:

 [1]http://www.shiningrocksoftware.com/wp-content/uploads/2013/11/LongPath-

1024x576.jpg

[2] http://www.randmcnally.com/product/intelliroute-tnd-510#features

[3] J. Carsten, A. Rankin, D. Ferguson, and A. Stentz, “Global planning on the mars

exploration rovers: software integration and surface testing,” Journal of Field

Robotics, vol. 26, no. 4, pp. 337–357, 2009.

[4] Skiena, S. "Dijkstra's Algorithm." Implementing Discrete Mathematics:

Combinatorics and Graph Theory with Mathematica, Reading, MA: Addison-

Wesley (1990): 225-227.

[5] Hart, Peter E., Nils J. Nilsson, and Bertram Raphael. "A formal basis for the

heuristic determination of minimum cost paths." Systems Science and Cybernetics,

IEEE Transactions on 4.2 (1968): 100-107.

[6] Harabor, Daniel Damir, and Alban Grastien. "Online Graph Pruning for

Pathfinding On Grid Maps." AAAI. 2011.

[7] http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html#heuristics-

for-grid-maps

[8] Švestka, Petr, and Mark H. Overmars. "Coordinated path planning for multiple

robots." Robotics and autonomous systems 23.3 (1998): 125-152.

[9] Ryan, Malcolm Ross Kinsella. "Exploiting subgraph structure in multi-robot path

planning." Journal of Artificial Intelligence Research (2008): 497-542.

[10] Standley, Trevor Scott. "Finding Optimal Solutions to Cooperative Pathfinding

Problems." AAAI. Vol. 1. 2010.

[11] Sharon, Guni, et al. "Pruning techniques for the increasing cost tree search for

optimal multi-agent pathfinding." Fourth Annual Symposium on Combinatorial

Search. 2011.

http://www.shiningrocksoftware.com/wp-content/uploads/2013/11/LongPath-1024x576.jpg
http://www.shiningrocksoftware.com/wp-content/uploads/2013/11/LongPath-1024x576.jpg
http://www.randmcnally.com/product/intelliroute-tnd-510#features
http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html#heuristics-for-grid-maps
http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html#heuristics-for-grid-maps

60

[12] Stout, B. 1996. Smart moves: Intelligent pathfinding. Game Developer Magazine

April 1996.

[13] D. Silver. Cooperative Pathfinding. In AIIDE, pages 117– 122, 2005.

[14] Jansen, M. R., and Sturtevant, N. R. Direction maps for cooperative pathfinding.

In AIIDE (2008).

[15] Wang, Ko-Hsin Cindy, and Adi Botea. "MAPP: a scalable multi-agent path

planning algorithm with tractability and completeness guarantees." Journal of

Artificial Intelligence Research (2011): 55-90.

[16] Bnaya, Zahy, and Ariel Felner. "Conflict-Oriented Windowed Hierarchical

Cooperative A*." Robotics and Automation (ICRA), 2014 IEEE International

Conference on. IEEE, 2014.

[17] Saeidianmanesh, Mehdi. Group Pathfinding Using Group Division. Diss.

Concordia University, 2015.

[18] Wilt, Christopher, and Adi Botea. "Spatially Distributed Multiagent Path

Planning." Twenty-Fourth International Conference on Automated Planning and

Scheduling. 2014.

[19] Yu, Jingjin, and Steven M. LaValle. "Structure and Intractability of Optimal

Multi-Robot Path Planning on Graphs." AAAI. 2013.

[20] Standley, Trevor, and Richard Korf. "Complete algorithms for cooperative

pathfinding problems." IJCAI. 2011.

[21] de Wilde, Boris, Adriaan W. ter Mors, and Cees Witteveen. "Push and rotate:

cooperative multi-agent path planning." Proceedings of the 2013 international

conference on Autonomous agents and multi-agent systems. International Foundation

for Autonomous Agents and Multiagent Systems, 2013.

[22] Luna, Ryan, and Kostas E. Bekris. "Push and swap: Fast cooperative path-

finding with completeness guarantees." IJCAI. 2011.

61

[23] Sturtevant, Nathan R. "Benchmarks for grid-based pathfinding."Computational

Intelligence and AI in Games, IEEE Transactions on 4.2 (2012): 144-148.

62

APPENDIX 1:

Results of rest of maps:

1) isound1.map: HCA is 2 and open nodes is 2976

Figure 1(a): makespan generated for SDP with Cooperative JPS and SDP

with Cooperative A* on map isound1.map

Figure 1(b): Solution time generated for SDP with Cooperative JPS and SDP

with Cooperative A* on map isound1.map

63

Figure 1(c): Failure rate generated for SDP with Cooperative JPS and SDP

with Cooperative A* on map isound1.map

Number of

units

SDP with Cooperative A* SDP with Cooperative JPS

Makespan Solution

time

(seconds)

Makespan Solution

time

(Seconds)
Pathlength Unit Pathlength Unit

20 95 14 0.367 72 3 0.291

40 109 30 0.566 85 30 0.47

60 110 30 0.652 75 3 0.525

80 114 30 1.082 75 3 0.525

100 123 99 1.127 82 30 0.598

120 144 99 1.362 77 99 0.655

140 139 130 1.671 81 130 0.698

160 143 66 2.395 81 130 0.818

Table 1(a): Makespan and Solution time on map isound1

Number of

units

Number of failed units

SDP with Cooperative A* SDP with Cooperative JPS

20 0 0

40 1 2

60 4 5

80 10 8

100 14 13

120 23 25

140 43 35

160 54 43

Table 1(b): Number of failed units on map isound1

64

2) den405d.map: HCA is 3 and open nodes is 925

Figure 2(a): makespan generated for SDP with Cooperative JPS and SDP

with Cooperative A* on map den405d.map

Figure 2(a): Solution time generated for SDP with Cooperative JPS and SDP

with Cooperative A* on map den405d.map

65

Figure 2(c): Failure rate generated for SDP with Cooperative JPS and SDP

with Cooperative A* on map den405d.map

Number of

units

SDP with Cooperative A* SDP with Cooperative JPS

Makespan Solution

time

(seconds)

Makespan Solution

time

(Seconds)
Pathlength Unit Pathlength Unit

10 59 0 0.172 45 0 0.123

20 59 0 0.238 45 0 0.24

30 60 2 0.285 45 0 0.273

40 69 34 0.36 54 34 0.296

50 76 34 0.392 56 28 0.35

60 73 53 0.532 61 53 0.375

70 78 38 0.594 62 53 0.39

80 89 52 0.687 62 53 0.42

90 91 52 0.8 62 53 0.48

100 95 52 0.984 62 53 0.6

Table 2(a): Makespan and Solution time on map den405d

Number of

units

Number of failed units

SDP with Cooperative A* SDP with Cooperative JPS

10 0 0

20 0 2

30 2 3

40 3 7

50 1 8

60 6 13

70 12 22

80 16 22

90 18 22

100 34 31

Table 2(b): Number of failed units on map den405d

66

3) orz601d.map: HCA is 6 and open nodes is 1890

Figure 3(a): makespan generated for SDP with Cooperative JPS and SDP

with Cooperative A* on map orz601d.map

Figure 3(b): Solution time generated for SDP with Cooperative JPS and SDP

with Cooperative A* on map orz601d.map

67

Figure 3(c): Failure rate generated for SDP with Cooperative JPS and SDP

with Cooperative A* on map orz601d.map

Number of

units

SDP with Cooperative A* SDP with Cooperative JPS

Makespan Solution

time

(seconds)

Makespan Solution

time

(Seconds)
Pathlength Unit Pathlength Unit

10 68 5 0.156 34 1 0.115

20 90 12 0.234 62 16 0.23

30 90 12 0.313 62 16 0.281

40 90 12 0.375 82 37 0.484

50 94 12 0.437 82 37 0.469

60 100 21 0.593 82 37 0.516

70 97 59 0.562 82 37 0.594

80 102 71 0.641 82 37 0.625

90 105 71 0.816 82 37 0.625

100 111 71 0.825 82 37 0.704

Table 3(a): Makespan and Solution time on map orz601

Number of

units

Number of failed units

SDP with Cooperative A* SDP with Cooperative JPS

10 0 1

20 0 1

30 1 2

40 0 3

50 2 5

60 6 5

70 5 8

80 8 8

90 12 10

100 14 12

Table 3(b): Number of failed units on map orz601

68

4) hrt201d.map: HCA is 15 and open nodes is 23572

Figure 4(a): makespan generated for SDP with Cooperative JPS and SDP

with Cooperative A* on map hrt201d.map

Figure 4(b): Solution time generated for SDP with Cooperative JPS and SDP

with Cooperative A* on map hrt201d.map

Figure 4(c): Failure rate generated for SDP with Cooperative JPS and SDP

with Cooperative A* on map hrt201d.map

69

Number of

units

SDP with Cooperative A* SDP with Cooperative JPS

Makespan Solution

time

(seconds)

Makespan Solution

time

(Seconds)
Pathlength Unit Pathlength Unit

10 661 6 0.729 244 2 0.524

20 661 6 1.203 244 2 0.903

30 661 6 1.793 244 2 1.555

40 803 39 2.534 342 31 2.199

50 803 39 3.593 342 31 2.968

60 803 39 2.503 342 31 3.501

70 661 6 2.227 342 31 4.216

80 666 6 3.876 398 70 4.341

90 666 6 4.377 398 70 4.512

100 666 6 4.218 398 70 4.92

110 666 6 5.381 398 70 5.21

120 748 50 6.152 398 70 6.36

130 666 6 6.268 398 70 6.72

140 666 6 7.04 398 70 6.79

150 666 6 7.87 398 70 7.01

Table 4(a): Makespan and Solution time on map hrt201

Number of

units

Number of failed units

SDP with Cooperative A* SDP with Cooperative JPS

10 0 0

20 0 0

30 0 0

40 0 0

50 0 0

60 0 0

70 0 0

80 0 0

90 1 0

100 0 0

110 1 1

120 1 1

130 0 0

140 1 0

150 1 1

Table 4(b): Number of failed units on map hrt201

70

VITA AUCTORIS

NAME: Sanjay Renukamurthy

EDUCATION: Master of Science, Computer Science

 University of Windsor, Windsor ON, Canada

PUBLICATION

CONFERENCE: FLAIRS 2016

TITLE: Spatially Distributed Multiagent Pathfinding

 Using Cooperative Jump Point Search

STATUS: Submitted 11-16-2015

	Improving Spatially Distributed Multiagent Pathfinding Using Cooperative JPS
	Recommended Citation

	tmp.1456928287.pdf.gxwWt

