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ABSTRACT 

Depleting fossil fuel resources, environmental damage and energy security are key 

factors driving the search for renewable energy supplies. Anaerobic digestion (AD), a 

well-developed technology, is widely used globally to produce an energy rich biogas 

from degradable organic matter. An alternative technology under development which 

produces electricity from the degradation of organic matter is microbial fuel cells (MFCs). 

Lignin, an abundant renewable organic chemical, is difficult to degrade using biological 

methods. This dissertation is focused on generating electricity from lignin-rich organic 

matter using a two-step process which included producing a chemical feedstock using 

photocatalysis followed by a bioelectrochemical conversion in an MFC.  

Studies were conducted using sodium lignosulfonate (LS), a model lignin compound, 

and black liquor (BL), a lignin-rich waste product from pulp and paper industries. 

Titanium dioxide (TiO2) plus ultraviolet light was used in the photocataysis step. 

Optimization and modeling of the photocatalytic degradation process was performed 

using the Box-Behnken design method to achieve a maximum biological oxygen demand 

(BOD5) to chemical oxygen demand (COD) ratio. The effluent from the photocatalytic 

degradation process was fed into a single chamber air-cathode microbial fuel cell 

(SCMFC) to generate electricity.  

In this study, commonly available electrode materials were selected, evaluated and 

compared with a focus on selecting the best performing type of electrode. Cyclic 

voltammetry and linear sweep voltammetry were used to evaluate the performance of the 

electrodes. The biofilm microbial diversity and performance of SCMFCs fed pretreated 
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LS (PrLS) and pretreated black liquor (PrBL) were compared to SCMFCs fed glucose at 

the same COD loadings and operating conditions.  

The energy production from PrBL using SCMFCs was also compared with the 

anaerobic digestion (AD) process. A total biogas production of 195±30 mL CH4 per g 

CODadded was obtained from two-stage AD of PrBL. The PrBL feed SCMFCs, generated 

maximum current and power densities of 8045±440 mA m-3 and 2815±120 mW m-3, 

respectively. The SCMFCs removed 89.3±0.8% of the COD of PrBL and achieved 

coulombic and potential efficiencies of 7.8±0.6% and 65.7% respectively. This 

dissertation demonstrated that combining photocatalysis together with a 

bioelectrochemical process was useful for treating and generating electricity from lignin 

rich waste matter simultaneously.  
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CHAPTER 1 

INTRODUCTION 

1.1 Context 

“The clear and present danger of climate change means we cannot burn our way to 

prosperity. We already rely too heavily on fossil fuels. We need to find a new, sustainable 

path to the future we want. We need a clean industrial revolution.” 

Ban Ki-moon (UN Secretary-General)  

 

 

Today’s energy is supplied from oil (34%), coal (25%), natural gas (21%), biomass 

(8%), nuclear energy (6.5%), hydropower (2%) and others including wind and solar 

energy (3.5%) (Yang et al., 2010). This indicates that 80 % of the global energy supply is 

derived from fossil fuels and only 8% from biomass. Rittmann (2008) pointed out that 

our dependence on fossil fuels poses three great risks for the survival of human society as 

we now know it. The first risk is that we will deplete fossil-fuel reserves, leaving human 

society metaphorically and perhaps literally ‘‘cold, hungry, and in the dark.’’ The second 

risk is that geopolitical strife from competition for dwindling resources will lead to 

economic and energy disruptions, political turmoil, and war.  The third risk is from global 

climate change caused by the net increase in atmospheric CO2 due to combustion of the 

fossil fuels. 

According to He (2012), the only natural and renewable carbon resource that is large 

enough to be used sustainably as a substitute for fossil fuels is a biomass.  Biomass 

includes forestry (woody and non-woody) and agricultural residues as well as industrial 

waste such as municipal solid waste and sewage waste (He, 2012). Woody biomass 

includes forest residues containing primarily lignocellulosics such as roots, wood, wood 



2 
 

waste from saw mills, bark, leaves as well as agricultural residues such as roots, leaves, 

stalks, corn cobs and bagasse (http://www.wgbn.wisc.edu/key-concepts/grassland-

biomass-sources/sources-biomass). The non-woody biomass category includes 

agriculture crops producing carbohydrates and lipids.  Biomass is a feedstock source 

which could be utilized for renewable energy production.  

A bioelectrochemical system (BES) is a unique technology capable of converting the 

chemical energy stored in biodegradable biomass to direct electric current using 

microorganisms (Ren, 2013). Therefore, wastewater treatment employing BES is a novel 

and promising biotechnological approach for the production of renewable energy from 

wastewaters containing reduced carbon compounds (Rozendal et al., 2008). BES can be 

used to upgrade or replace current biological treatment units such as activated sludge 

because this alternative technology will result in the elimination of aeration, the reduction 

of biosolids generated and the production of useful products (Ren, 2013).  Many useful 

products include direct electricity during treatment and with simple modifications, other 

value-added products, such as H2, CH4 or organic chemicals can be produced. 

Depending on the biocatalyst, BESs can be classified as microbial fuel cells (MFCs) 

and enzymatic fuel cells (EFCs); and based on their mode of application, BESs can be 

also sub-divided into MFCs, microbial electrolysis cells (MECs), microbial desalination 

cells (MDCs) and microbial solar cells (MSCs) (Pant et al., 2012).  

An MFC can be defined as a system in which microorganisms function as 

biocatalysts to convert chemical energy into electrical energy (Rabaey, 2010).  Piccolino 

(1998) pointed out that the first experimental evidence of bioelectricity was observed in 

the late eighteenth century by Luigi Galvani, who observed electric response by 

http://www.wgbn.wisc.edu/key-concepts/grassland-biomass-sources/sources-biomass
http://www.wgbn.wisc.edu/key-concepts/grassland-biomass-sources/sources-biomass
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connecting frog legs to a metallic conductor. One of the earliest developments in the area 

of microbial fuel cell was described by Michael Cresse Potter in 1911, when he placed a 

platinum electrode into cultures of yeast or E. Coli and showed that a potential difference 

could be generated. Further work by Barbet Cohen at Cambridge led to development of 

batteries of microbial fuel cells capable of generating potentials in excess of 35 V (Davis 

and Higson, 2007).  

The MFC technology could be highly adaptable to a sustainable pattern of 

wastewater treatment for the following reasons (Li et al, 2014): (1) it enables direct 

recovery of electric energy and value-added products; (2) good effluent quality and low 

environmental footprint can be achieved because of effective combination of biological 

and electrochemical processes; and (3) it is inherently amenable to real-time monitoring 

and control, which benefits good operating stability.  Therefore, the main goal of this 

thesis is to devise a novel technology to successfully convert wastes rich in lignocellosic 

substances into simple, non-toxic carbon compounds and use these compounds to 

generate electricity using a MFC or to produce a methane rich biogas using anaerobic 

digestion (AD).  The research in this thesis, designed to achieve this goal, are described 

in Chapters 3 to 7. 

1.2 Hypothesis and research objectives 

In this thesis, it was hypothesized that low value lignocellulosic residues can be 

converted into biodegradable chemicals using UV/TiO2 photocatalysis and these 

chemicals can be used for energy production by means of MFCs or AD. Initial studies 

were conducted using a model lignin compound which was followed by studies with 

black liquor, a waste generated from pulp and paper manufacturing industries. Black 
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liquor was selected because it is an abundant renewable waste, toxic to the environment, 

and the treatment and recovering energy from black liquor is of increasing concern (US 

EPA, 2002; Font et al., 2003, Pokhrel and Viraraghavan, 2004; Oller et al., 2011; Bajpai, 

2012).  

1.3 Research phases 

The research in this dissertation was conducted in different phases. These research 

phases together with their associated objectives are as follows: 

Phase 1: (Chapter 3 objectives) 

A. Evaluate electricity generation and biofilm formation in MFCs configured using 

three different graphite plate electrodes (HK06, G347 and POCO3) with different 

physical characteristics (specific resistance, grain size and specific gravity).  

B.  Assess the significance of cost for the different graphite plate electrodes on the 

performance of MFCs.   

Phase 2: (Chapter 4 objectives) 

A. Evaluate electricity generation and performance in single chamber microbial fuel 

cells (SCMFCs) configured with graphite fibre brush and felt anodes. 

B. Compare the performance of the graphite plate anodes with that of graphite fiber 

brush and felt anodes and select the preferred option for SCMFCs. 
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Phase 3: (Chapter 5 objectives) 

A. Assess the effect of irradiation time, catalyst particle size, catalyst concentration 

and oxygen purging on the photocatalytic degradation of a model lignin chemical 

using TiO2. 

B. Examine the generation of electricity using SCMFCs from a feedstock produced 

from the photocatalytic degradation of a model lignin chemical.  

 

Phase 4: (Chapter 6 objectives) 

A. Determine the optimum process parameters of the photocatalytic degradation of a 

model lignin chemical using a Box-Behnken design combined with response 

surface methodology (RSM).  

B. Evaluate and compare the performance of SCMFCs fed a photocatalytic 

pretreated model lignin chemical with those fed glucose in SCMFCs at the same 

COD loading and operating conditions.  

 

Phase 5: (Chapter 7 objectives) 

A. Evaluate TiO2 photocatalysis pretreatment of diluted black liquor  

B. Examine energy production from pretreated diluted black liquor using 1) a two-

stage anaerobic digestion (biogas formation) process and 2) a single chamber 

microbial fuel cell (SCMFC) (electricity generation).  
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CHAPTER 2 

LITERATURE REVIEW  

2.1 Overview 

Rising global energy demand coupled with declining fossil fuel reserves and 

increasing climate change are major factors driving our research for alternative energy 

supplies (Pant et al., 2012b). Global warming can be slowed, and perhaps reversed, only 

by replacing fossil fuels with renewable, carbon-neutral alternatives (Rittmann, 2008). 

Bioelectrochemical systems (BESs), such as microbial fuel cells (MFCs) and microbial 

electrolysis cells (MECs), are generally regarded as promising future technologies for 

producing energy from organic substrates (Rozendal et al, 2008). The MFC technology 

was used in the proposed work since it is able to produce renewable and carbon-neutral 

energy (Logan, 2008). 

The research and development of the BES concept had been stagnant until the turn of 

the century, as only a limited number of articles were published before 2001. However, 

since 2002, the research productivity has experienced an exponential growth, with more 

than 2,000 published articles in the past decade (Ren, 2013). In subsequent sections of 

this thesis, published studies that provided the required background to accomplish the 

research objectives of this thesis are reviewed. The processes addressed in this literature 

review include photocatalysis, MFC and biomethanation. 
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2.2 Photocatalysis 

2.2.1 Introduction 

Photocatalysis (photocatalytic degradation) is an advanced oxidation process used to 

degrade organic chemicals in water supplies and wastewater effluents.  In the 

photocatalytic degradation process, the destruction of recalcitrant organics is governed by 

the combined action of a semiconductor photocatalyst, an energetic radiation source and 

an oxidizing agent (Ahmed et al., 2011). Gogate and Pandit (2004) lists various 

chalcogenides (oxides such as TiO2, ZnO, ZrO2, CeO2 etc. or sulfides such as CdS, ZnS 

etc.) that have been used as photocatalysts in different studies. In the last few years, a 

great variety of novel photoactive semiconductors which include mixed oxides of 

transition metals such as Nb, V or Ta, or with main group elements such as Ga, In, Sb or 

Bi have been developed and extensively investigated as alternative photocatalysts 

(Hernández-Alonso et al., 2009). A photocatalyst is able to harnesses radiation from 

sunlight or artificial light and uses the energy to degrade different substances including a 

variety of organic materials including organic acids, estrogens, pesticides, dyes, crude oil, 

microbes (including viruses) and chlorine resistant organisms, and inorganic molecules 

such as nitrous oxides (NOx) (Ibhadon and Fitzpatrick, 2013).  

During photocatalysis, light absorbed by the catalyst creates an activated surface. 

The photoreaction can proceed via the following two mechanisms (Castellote and 

Bengtsson, 2011): 

1) Via energy transfer (Equations 2.1 to 2.3), by forming an activated state of the 

reactant of interest, S, which is more easily oxidized than their ground state: 
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            𝐶  
ℎ𝑣
→  𝐶 

∗                                          (2.1) 

𝐶 + 𝑆 
 
→ 𝑆 + 𝐶  
∗   

∗     (2.2) 

𝑆 
 
→ 𝑃  

∗                       (2.3) 

2) Via electron transfer (Equations 2.4 to 2.7), by acting either as an electron donor 

or acceptor. 

        𝐶  
ℎ𝑣
→  𝐶 

∗          (2.4)   

  𝐶 + 𝑆 
 
→ 𝑆− + 𝐶+ 

∗     (2.5) 

         𝑆−  
  
→ 𝑃−                    (2.6) 

                                                                              𝑃− + 𝐶+
 
→𝑃 + 𝐶                 (2.7) 

where C, S and P represent the catalyst, substrate/reactant and product respectively. 

In this thesis, photocatalytic oxidation was performed using TiO2 as a catalyst 

because of the following advantages (Gogate and Pandit, 2004): 

 Use of natural resources, i.e. sunlight, which should result in considerable 

economic savings as discussed earlier. 

 Chemical stability of TiO2 in aqueous media and in larger range of pH (0 ≤ 

pH ≤ 14). 

 Low cost.  

 System applicable at low concentrations and no additives required. 

 Capacity for noble metal recovery. 

 Total mineralization achieved for many organic pollutants. 

 Efficiency of photocatalysis with halogenated compounds sometimes very 

toxic for bacteria in biological water treatment. 
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2.2.2 Working principle of UV/TiO2 photocatalysis 

The photocatalytic process can be carried out by simply using a slurry of nano-size 

photocatalysts dispersed in an aqueous phase and placed in a reactor irradiated with UV 

light. An alternative to using a catalyst in suspension is to attach the photocatalyst on a 

solid support (Gogate and Pandit, 2004). As far as the mechanism of photocatalysis is 

concerned, UV radiation is used to excite the solid-state metal catalyst creating a positive 

and negative charge (electron-hole, e- h+ pairs) on the catalyst’s surface (Kim et al., 2004). 

These positive and negative charges promote redox reactions in the solution by the 

photogenerated positive charges and reduction of metal ions or oxygen by the 

photogenerated negative charges. The overall photocatalysis process and the reactions 

involved are described in Chapters 5 and 6. 

2.2.3 Factors affecting photocatalysis  

Factors affecting the photocatalytic process include amount and type of catalyst, 

reactor design, wave length of irradiation, initial concentration of the reactant, 

temperature, radiant flux, medium pH, aeration and presence of  ionic species (Gogate 

and Pandit, 2004). The catalyst particle size (Almquist and Biswas, 2002) and 

irradiation/reaction time (Kaneco et al., 2006; Chin et al., 2013) are the other factors 

which have significant influence on the photocatalytic processes.  

A number of studies have investigated the effect of different factors on the TiO2 

photocatalytic process efficiency (Almquist and Biswas, 2002; Kaneco et al., 2006; 

Akpan and Hameed, 2009; Ray et al., 2009; Verma et al., 2012, Choquette-Labbé et al., 

2014).  In this thesis, the selected factors include catalyst particle size, concentration, 



12 
 

irradiation time, pH, aeration (oxygen purging) and mixing. In addition, the impact of 

photocatalysis on biodegradability was examined. 

2.2.4 Application of photocatalysis 

Photocatalysis potentially can aid in providing solutions to many environmental 

challenges because it provides a simple method of using sunlight and artifical light to 

induce chemical transformations of organics to CO2 (Hernández-Alonso et al., 2009). 

There are several possible applications of photocatalysis in addition to the removal of 

organic contaminants from water and wastewater. Many industrial applications of this 

technology are commercially available.  These technologies on the market include air and 

water cleaning devices, self-cleaning surfaces, solar cells, and even solar fuel generators 

(Schneider et al., 2014). Fujishima et al. (2000) has summarized selected applications of 

photocatalysis (Table 2.1).  

Table 2.1  Selected applications of photocatalytic technology (Fujishima et al. (2000)). 

Property Category Application 

Self-cleaning Materials for 

residential and 

office buildings 

Exterior tiles, kitchen and bathroom components, 

interior furnishings, plastic surfaces, aluminium 

siding, building stone and curtains, paper window 

blinds 

Indoor and outdoor 

lamps and related 

systems 

Translucent paper for indoor lamp covers, coatings 

on fluorescent lamps and highway tunnel lamp 

cover glass 

Materials for roads Tunnel wall, soundproofed wall, traffic signs and 

reflectors 

Others Tent material, cloth for hospital garments and 

uniforms and spray coatings for cars 

Air cleaning Indoor air cleaners Room air cleaner, photocatalyst-equipped air 

conditioners and interior air cleaner for factories 
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Property Category Application 

Outdoor air 

purifiers 

Concrete for highways, roadways and footpaths, 

tunnel walls, soundproof walls and building walls 

Water 

purification 

Drinking water River water, ground water, lakes and water-storage 

tanks 

Others Fish feeding tanks, drainage water and industrial 

wastewater 

Antitumor 

activity 

Cancer therapy Endoscopic-like instruments 

Self-

sterilizing 

Hospital Tiles to cover the floor and walls of operating 

rooms, silicone rubber for medical catheters and 

hospital garments and uniforms 

Others Public rest rooms, bathrooms and rat breeding 

rooms 

 

The photocatalytic process can remove a wide range of contaminants, ranging from 

pesticides, herbicides and detergents to pathogens, viruses, coliforms and bacterial spores 

(Chong et al., 2010). The photocatalytic process can also be used to improve the 

biodegradability and reduce toxicity of organic compounds (Velegraki et al., 2006; 

Pekakis et al., 2006). Yurdakal and Augugliaro (2012) reported the oxidation of aromatic 

alcohols to  aldehydes. Inertness to the environment and long-term photostability has 

made TiO2 an important material in many practical applications and in commercial 

products ranging from drugs to foods, cosmetics to catalysts, paints to pharmaceuticals, 

and sunscreens to solar cells in which TiO2 is used as a desiccant, brightener, or reactive 

mediator (Kamat, 2012). In this thesis, a controlled/partial photocatalytic process is 

developed to convert lignin and black liquor into degradable organic compounds using 

TiO2.  
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2.3 Microbial fuel cells 

2.3.1 Introduction 

MFCs can be divided into the following two categories: a) mediator assisted MFCs 

and b) mediator-less MFCs. In the mediator assisted configuration, electron transfer from 

bacteria (microbial cells) to the electrode is facilitated by mediators such as potassium 

ferric cyanide, thionine, methyl viologen, humic acid, neutral red, anthraquinone-2,6-

disufonate (AQDS) (Rajalakshmi and Dhathathreyan, 2008). In the alternate, mediator-

less configuration, electrochemically active bacteria transfer electrons to the electrode. In 

this thesis, the MFCs used are mediator-less.  

2.3.2 Working principles of MFCs 

The working components of MFCs are depicted in Figure 2.1. The main components 

are electrochemically-active microorganisms on an anode and a cathode.  During 

oxidation, the electrons travel to the cathode where water is produced from the reduction 

of oxygen. In its most basic form, a MFC is a device which uses microorganisms to 

generate an electrical current via the oxidation of organic matter in a fashion similar to a 

chemical fuel cell. (Franks and Nevin, 2010).  
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Figure 2.1  Schematic showing the working principle of microbial fuel cells: a) Two 

chamber MFC and b) Single chamber MFC. 

 

The diagrams in Figure 2.1 showing the working principles of MFCs in two 

configurations include a) a two chamber system (Figure 2.1a) which consists of anode 

and cathode chambers that are separated by a proton exchange membrane (He and 

Angenent, 2006) and b) a single chamber MFC (Figure 2.1b) consisting of only one 

(a) 

(b) 
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chamber (anode chamber) and an air-cathode. Other MFC configurations are described in 

section 2.3.3. The main reactions taking place when glucose is used as a substrate are 

shown as Equation 2.8 (at the anode) and Equation 2.9 (at the cathode). Numerous 

different microorganisms are involved in mediating the oxidation reaction. In some cases, 

microbes which are not electrochemically active, such as methanogens, also degrade a 

fraction of the organic matter and hence, reduce the amount of electrons available for 

electricity production. Electrochemically active microbes are able to utilize intermediate 

organic compounds produced by other microbes.  

C6H12O6 + 6H2O   →   6CO2 + 24H+ + 24e-                                      (2.8) 

6O2 + 24H+ + 24e- → 12H2O                                                               (2.9)     

To fully understand the principles on which MFCs operate, expertise is required in 

electrochemistry, microbiology, materials science and engineering, molecular biology 

and environmental engineering (Zhao et al., 2009). Apart from the technical design 

aspects such as the anode or fuel cell design, the metabolic pathways and mechanisms of 

the bioelectrochemical energy conversion process determine the MFC power and energy 

output (Schroder, 2007).  The path that the electrons trace out onroute to the electrode 

remains a matter of debate and ongoing research (Oh et al., 2010).  However, various 

researchers reported the possible electron transfer mechanism from the bacteria to the 

anode electrode (Zhang and Halme, 1995; Rabaey and Verstraete, 2005; Gorby et al., 

2006; Schroder, 2007, Du et al., 2007; Mohan et al., 2013).     

Oh et al. (2010) has summarised a proposed electron transport mechanisms (Figure 

2.2) in MFCs as involving (a) redox mediators, (b) electron shuttling and diffusion, (c) 



17 
 

conductive nanowire or bacteria pilli and (d) outer membrane cytochrome or conductive 

extracellular polymeric substances. Regardless of the mechanism, the electron transfer 

outside of the cell must lead to redox active species which are capable of electronically 

linking the bacterial cell to the electrode (Schroder, 2007).  

According to Schroder (2007), for efficient electron transfer, the mediator must 

fulfill the following requirements: 

(i) Able to physically contact the electrode surface. 

(ii) Electrochemically active, i.e., it must possess low oxidation potential at given 

electrode surfaces, and 

(iii) The standard potential of the mediators should be as close to the redox potential 

of the primary substrate, as possible, or it must at least be significantly negative to 

that of the oxidant (usually oxygen).      
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Figure 2.2  Schematic diagrams of electron transport in microbial fuel cells (Oh et 

al., 2010). 
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2.3.3 MFC architecture and configuration 

MFC have rapidly advanced from low-power laboratory designs constructed with 

bottles and expensive materials to higher power densities and designs that appear to be 

more cost effective (Logan, 2010). The different designs are listed in Table 2.2 (Zhou et 

al., 2013).  

Table 2.2 Classification of MFCs (Zhou et al., 2013). 

MFC classification criteria Type of MFC 

MFC configuration  Single-chamber 

 Dual- chamber 

 Multi-Chamber  

 Roll type 

Reactor structure  Flat plate 

 Disc 

 Tubular 

 Concentric cylinders 

Separator  Salt-bridge 

 Membrane-less 

 Anion-exchange membrane 

 Cation-exchange membrane 

Flow type  Batch  

 Continuous flow 

Cathode type  Air-cathode 

 Biocathode 

 Chemical cathode 

 

SCMFCs have low internal resistance and rapid mass transfer from the anode to 

cathode (Liu et al., 2005; Kim et al., 2007). Therefore, it is preferable to use this MFC 
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configuration in an attempt to achieve more efficient electricity generation yields. In this 

study, SCMFCs were used in all the investigations carried out except in Chapter 3 where 

double chamber MFCs were used in studies involving the comparison of electrode 

performances.   

The MFCs working volumes used in various studies are variable and range from 2 

mL (Ieropoulos et al., 2003) to larger volumes such as 100 mL (Jiang et al., 2010), 150 

mL and 250 mL (Jiang and Li, 2009) and  2.5 L (Kalathil et al., 2012). Studies conducted 

at Foster's brewery in Yatala, Queensland (Australia), by the Advanced Water 

Management Center at the University of Queensland, used an MFC with a working 

volume of 1000 L and configured with a 3 m tall reactor with 12 modules (Logan, 2010). 

Comparing the performance of MFCs used by researchers based on the volume/size is 

difficult because the designs are variable from two-chambered to single chamber, using 

mediator or without mediator and using a membrane or membrane-less (Pant et al., 

2012a). In addition, using different types of electrode material and design makes the 

comparison difficult.  In this thesis, the SCMFCs were constructed with a 130 mL 

working volume and the double chamber MFCs were designed with a 2 L volume.  

2.3.4 Electrode materials 

The electrode material of construction must consider the following properties: 

conduction, chemical stability, mechanical strength, and cost (Wei et al, 2011). The most-

widely used carbon materials for MFC applications include (Wei et al, 2011): 1) carbon 

paper, 2) graphite plate, 3) carbon cloth, 4) carbon mesh 5) granular graphite, 6) granular 

activated carbon, 7) carbon felt, 8) reticulated vitrified carbon, 9) carbon brush and 10) 

stainless steel mesh. In this thesis, graphite plate, carbon cloth, carbon felt and carbon 
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brush electrodes were evaluated. Selecting the best performing and most cost effective 

electrode was also conducted.    

2.3.5 Substrates used in MFCs 

In recent years, there has been an increasing amount of work on the generation of 

electricity from various substrates using MFCs. These substrates can range from simple 

organic compounds such as glucose (Rabaey et al., 2003),  monosaccharides (Catal et al., 

2008), alcohols (Kim  et al., 2007) to complex substrates which include cattle dung (Zhao 

et al., 2012), dye wastewater (Kalathil et al., 2012), steroidal drug industrial effluent (Li 

et al., 2012), synthesis gas (Hussain et al., 2012), corncob pellets (Gregoire and Becker, 

2012), starch processing wastewater (Lu et al., 2009), potato-processing wastewater 

(Durruty et al., 2012), landfill leachate (Oxakya et al., 2013) and artificial urine 

(Ieropoulos et al., 2003). In this thesis, the three substrates under consideration included 

glucose, lignin and black liquor. Lignin and black liquor were pretreated with UV/TiO2 

photocatlaysis prior to use as a feed to the MFCs.  

2.3.5.1 Glucose 

Glucose, an easily biodegradable chemical, was used to initiate microbial film on the 

anode surface. In this work reported herein, when a stable power was observed with 

glucose, the MFC feed was replaced with other substrates (pretreated lignin or black 

liquor). The current produced with glucose was compared to the current produced with 

other substrates while maintaining the same reactor configuration and operating 

conditions.  
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2.3.5.2 Lignin 

Lignin (from the Latin word lignum, wood) is a highly branched polymer of 

henylpropanoid compounds, and a component of the plant cell wall. After cellulose, 

lignin is the second most abundant organic compound in plants, representing 

approximately 30% of the organic carbon in the biosphere (Boerjan et al., 2003). Lignin 

is an amorphous, cross-linked, and three dimensional phenolic polymer. Lignin typically 

contains three phenylpropane units denoted as guaiacyl (G) as well as syringyl (S) and 

phydroxyphenyl (H) units plus their respective precursors which include three aromatic 

alcohols (monolignols). These chemicals include coniferyl, sinapyl, and p-coumaryl 

alcohols (Hu and Ragauskas, 2012). The three structures are depicted in Figure 2.3 (Pu et 

al., 2008). 

 

Figure 2.3  Three building blocks of lignin. 

 

The global production of lignin as a by-product of the pulping process is 

approximately 30 million tonnes per year (Hatakeyama and Hatakeyama, 2010). The 

chemical structure and stability of lignin makes biological degradation difficult hence, the 

treatment of wastewater from paper and pulp industries and other facilities that generate 
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lignin-rich wastewater is potentially challenging. Therefore, one objective of this thesis is 

to convert lignin compounds into biodegradable organic chemicals.  

2.3.5.3 Black liquor 

Black liquor, a lignin rich waste, is generated from wood pulping processes. Black 

liquor is characterized by high alkalinity and high dissolved solids content, mainly 

dissolved alkali–lignin and polysaccharide degradation by-products (Lara et al., 2003). 

Pulping can be performed mechanically (mechanical pulping) or chemically (chemical 

pulping). The process descriptions are shown in Figure 2.4 (adopted from Viraraghavan 

and Pokhrel, 2004).  

 
Figure 2.4  The pulping making process. 

 

For every tonne of pulp produced, the kraft pulping process produces approximately 

10 tonnes of weak black liquor or about 1.5 tonnes of black liquor dry solids (Tran and 

Vakkilainen, 2007). The black liquor chemical composition depends on the type of the 
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raw material processed, i.e. softwoods (such as pine), hardwoods (such as eucalyptus) or 

fibrous plants (such as bamboo), as well as, on the operational conditions of the pulping 

process (Cardoso et al., 2009). 

2.3.6 MFC operating temperatures 

Several studies have demonstrated and evaluated the application and performance of 

MFCs at ambient, mesophilic and thermophilic temperatures. For example Hussain et al. 

(2012) operated MFCs at moderately thermophilic temperature of 50 °C. Jiang et al. 

(2010) started and operated a series of MFCs at 15 °C for 2 cycles and then changed the 

operational conditions to 30 °C to determine the effects of temperature. The work 

conducted by Jiang et al. (2010) verified that higher temperatures increased the bacterial 

activity, which in return enhanced the power output and lowered internal resistance. Yang 

et al. (2013) and Sun et al. (2012) operated MFCs in fed-batch mode at a constant 

temperature of 30 oC. Electricity was also successfully produced using a carbon source 

mixture of D-glucose, D-galactose, D-xylose, D-glucuronic acid and sodium acetate with 

a mixed bacterial culture in single chamber air-cathode mediator-less MFCs at sub-

ambient temperatures (<20 °C, down to 4 °C) (Catal et al., 2011).  

Oh et al. (2010) has pointed out that some researchers believe additional heating is 

required to maintain temperature which may not be necessary for the energy recovery, or 

wastewater treatment using the MFC technology. Oh et al. (2010) noted that it is suitable 

to maintain optimum temperature conditions by some energy; however, such a strategy 

ultimately leads to reducing the energy efficiency. In this thesis, the MFCs were operated 

at ambient (21±1 °C) and mesophilic temperatures (37±1 °C).  
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2.3.7 Resistors  

Several studies investigating MFC performances have reported using a fixed external 

resistance of 1000  (Jiang et al., 2010; Wang et al., 2008, Yang et al., 2013). However, 

fixed external resistance of 100 ohms (Lee et al., 2008), 500 ohms (Sun et al., 2012), 2.2 

k (Ledezma et al., 2012) were also used. In most MFC studies reported, it appears that 

optimization of external resistance is not always done (Rabaey et al., 2005). In this thesis, 

unless and otherwise mentioned a fixed external resistance of 1000  was used for start-

up and operating the MFCs.  

2.3.8 Inocula 

Bacterial species which have reported to be elecrochemicaly active include 

Shewanella oneidensis, Geobacter sulfurreducens, Pseudomonas aeruginos, and 

Clostridium butyricum (Watanabe, 2008). Du et al. (2007) has provided a list of 

microorganisms possessing the ability to transfer electrons derived from the metabolism 

of organic matters to the anode and indicated that marine sediment, soil, wastewater, 

fresh water sediment and activated sludge are rich sources for these microorganisms. 

Due to the high cost, pure cultures are impractical for full-scale operation. Mixed 

cultures (i.e., soil, wastewater) containing significant amounts of electrogenic bacteria 

can be used as the cost-effective inocula for MFCs (Jiang et al., 2010). To date, attempts 

to simplify the study of complex communities with representative pure cultures have 

been disappointing because pure cultures have generally produced substantially lower 

power densities than mixed cultures (Nevin et al., 2008). According to Wang et al. (2008), 

pure cultures grow slowly, having a high risk of microbiological contamination and 
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generally a high substrate specificity compared to mixed-culture systems. Aside from 

availability at close to no cost, mixed-culture systems have diverse microbial populations 

which are more resilient to changes when compared to pure cultures  (Patra et al., 2008). 

Therefore, based on the previous justifications mixed anaerobic cultures were used as 

inocula in all the MFCs.  However, using mixed anaerobic cultures are affiliated with 

several technical issues when compared to pure cultures.  When compared with pure-

culture MFCs, mixed-culture MFCs generally need longer time to obtain a stable power 

(Wang et al., 2008). Nevin et al., (2008) argues that (i) it would be difficult to replicate 

mixed culture communities and maintain a stable community composition and (ii) 

functional analysis with approaches, such as genetic manipulation and gene expression 

studies, which are readily tractable with pure cultures growing on anodes would be 

substantially more technically difficult with mixed cultures.  

2.3.9 Evaluation of MFC performance 

Several factors affecting MFC performance include the microbial inoculum, 

chemical substrate (fuel), type of proton exchange material (and the absence of this 

material), cell internal and external resistance, solution ionic strength, electrode materials, 

and electrode spacing (Cheng et al., 2006). Evaluating the performance of MFCs can be 

conducted by assessing the amount of power or current generated. The power or current 

density of MFCs could be expressed as power or current generated per unit area of the 

anode surface or the cathode surface. Alternatively, the power or current generated per 

unit of the working volume of the MFC can be used as an evaluation parameter. Logan 

(2012) suggested that an appropriate procedure is to normalize the power per unit area of 

the membrane or separator placed between the electrodes (two chamber MFCs), or the 
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cathode (single chamber MFCs) because it is known that the membrane or cathode 

usually limit maximum power densities. In this thesis, the power and current densities are 

expressed as per unit area of cathode surface and volume unless and otherwise specified.  

In this study, the open circuit voltage (OCV) was measured to evaluate the voltage 

efficiency of the MFCs. OCV is the cell voltage that can be measured after some time in 

the absence of current and the cell electromotive force (emf) is a thermodynamic value 

that does not take into account internal losses (Logan et al., 2006). According to Logan et 

al. (2006), theoretically, the OCV should approach the cell emf; however, in practice, the 

OCV is substantially lower than the cell emf. This difference is due to various potential 

losses such as activation, bacterial metabolism and mass transport losses. 

In addition to power and current density (per volume), power and current density 

(per area), OCV, efficiency based performance indicators used for evaluating MFCs 

included coulombic efficiency (CE), energy efficiency (EE) and COD removal efficiency 

(ηCOD) (Rabaey, 2010). These parameters are described in subsequent chapters.  

In evaluating the performance of MFCs, electrochemical/analytical techniques are 

vitally important in analysing the limiting performances of MFC components, to optimise 

operation and to allow for continued innovation (Zhao et al., 2009). In a detailed review 

of the techniques employed in recent studies, Zhao et al. (2009) discussed their principles, 

experimental implementation, data processing requirements, capabilities and weaknesses. 

In this thesis, the main electrochemical techniques used are linear swipe voltammetry and 

cyclic voltammetry. These methods are described in the following sections:  

1) Linear sweep voltammetry (LSV):  LSV is a method where the current is 

recorded as a function of potential. This is equivalent to recording current versus time 
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profiles (Bard and Faulkner, 2001). In LSV, the voltage is scanned from a lower limit to 

an upper limit. In addition to electrochemical characteristics, the linear sweep 

voltammogram depends on the scan rate. In this thesis, LSV tests were conducted at a 

scan rate of 0.1 mV s-1 unless and otherwise mentioned (Velasquez-Orta et al., 2009; 

Logan, 2012). 

2) Cyclic voltammetry (CV): CV has been used as a principal diagnostic method in 

protein film voltammetry study (Marsili et al., 2008). The shape, height, steepness and 

potential of the cyclic voltammograms are functions of mass transport, interfacial 

electron-transfer rate, kinetics and thermodynamics (Heering et al., 1998). According to 

Fricke et al. (2008), CV is a standard tool in electrochemistry and has regularly been 

exploited to study and to characterize the electron transfer interactions between 

microorganisms or microbial biofilms and microbial fuel cell anodes. Cyclic voltammetry 

is used to measure current as a function of a cyclic applied potential. In this technique, 

the potential is ramped linearly at selected scan rates with reversal of the ramp after a 

given time (potential) and the resulting current (I) is monitored as a function of applied 

potential (E) to give the I-E curve which is denoted as the cyclic voltammogram. A redox 

system can be characterized from the potentials of the peaks (redox couple) on the cyclic 

voltammogram and from changes caused by variations in scan rate. By recording cyclic 

voltammograms during different stages of biofilm formation and substrate availability 

(different stages of current generation), valuable information on the electron transfer 

mechanism can be gained (Fricke et al., 2008). Data from the CV study was combined 

with the data obtained from molecular biology analysis to better understand and 

characterize the microbial biofilm responsible for the electricity generation.  

javascript:popupOBO('CHEBI:33292','B802363H','http://www.ebi.ac.uk/chebi/searchId.do?chebiId=33292')
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2.3.10 Application of MFCs 

MFCs have a number of uses which include the following (Rajalakshmi and 

Dhathathreyan, 2008): 

 The first and most obvious is for wastewater treatment while simultaneously 

generation electricity 

 MFCs could be implanted in the body to be employed as power sources for a 

pacemaker, a micro sensor or a micro actuator. The MFC would consume 

glucose samples from the blood stream or possibly use substrates contained in 

the body and use it to generate electricity to power these devices, and 

 MFCs can be used in EcoBots, Gastrobots and biosensors 

Logan (2005) estimated that electricity accounts for roughly 25% of the total 

operating costs of a wastewater treatment plant.  Assuming a BOD concentration of 300 

mg/L, a population of 100,000 individuals and a total flow of 1.64*107 L/yr, the 

maximum electricity production using MFCs can reach 2.3 MW. He (2012) argues that it 

may be unrealistic to convert a wastewater treatment plant into a “power plant”. He (2012) 

evaluated the energy balances and showed that an MFC does not consume much energy. 

According to He (2013) the energy consumed by MFCs of <0.04 kWh/m3, or <0.07 

kWh/kg COD is much less than that consumed in an aerobic process such as activated 

sludge (0.3 kWh/m3 or 0.6 kWh/kg COD).  

The first large-scale test of MFCs was conducted at Foster's brewery in Yatala, 

Queensland (Australia), by the Advanced Water Management Center at the University of 

Queensland (Logan, 2010). The reactor consisted of 12 modules, each 3 m high, with a 

total volume of approximately 1 m3. 
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The electricity yield from MFCs is less than that theoretical expected. The causes for 

lower generation of electricity have been widely investigated. Physical, chemical  and 

biochemical factors which determine the electricity yield in MFCs are as follows (Kim et 

al., 2006): 

(1) The microbial activity to oxidize carbon substrates, 

(2) Electron transfer to the electrode from the microbial population, 

(3) Circuit resistance,  

(4) Proton transfer from the anode compartment to the cathode compartment,  

(5) Oxygen supply and reduction at the cathode, and  

(6) Oxygen diffusion into the anode compartment through the membrane. 

 

According to studies conducted by Liu et al. (2005), factors responsible for low 

electron and energy recoveries in MFCs could be due to an increase in oxygen transfer 

into the anode chamber, substrate loss due to methanogenesis, use of substrate for 

bacterial growth and production of biomass, and the presence of alternate electron 

acceptors, such as sulfate. Lee et al. (2008) established a complete electron-equivalent 

balance in microbial fuel cells (MFCs) fed acetate and glucose electron donors by 

experimentally quantifying current, biomass, residual organic compounds, H2, and CH4 

gas. In the electron balance analysis, Lee et al. (2008) identified that the electrical current, 

the most significant electron sink, in both glucose and acetate fed MFCs, were 71% and 

49%, respectively. The second largest electron sink was biomass (acetate 15%, glucose 

26%), and the third was the residual organic compounds (acetate 11%, glucose 18%).  

The power densities produced by MFCs are less when compared to other fuel cells 

such as those utilizing hydrogen. According to Logan and Rabaey (2012), this difference 
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is due to high internal resistances, the limited temperature and solution conditions 

tolerated by microorganisms, substrate degradability and biofilm kinetics. However, the 

MFC technology, although still at its infancy, might bring in new opportunities because 

of its many unique features listed in Table 2.3 (Li et al., 2014). 

Table 2.3 Potential benefits of MFCs for energy, environmental, operational and 

economic sustainability (Adopted from Li et al. (2014). 

S. No. Potential benefit  Description 

1 Energy benefit  Direct electricity generation 

 Need no aeration 

 Low sludge yield 

 Adaptable to decentralized treatment 

2 Operating 

stability 

 

 Self-regeneration of microorganisms  

 Good resistance to environmental stress 

 Amenable to real- time monitoring and control 

3 Environmental 

impact 
 Water reclamation  

 Low carbon foot print 

 Less sludge disposal 

4 Economics  Energy recovery 

 Valuable products recovery 

 Ease burden of subsequent treatment 

 

2.4 Biomethanation 

Biomethanation (biogas formation) represents one of the most versatile types of bio-

energy and can be produced from organic solid wastes and organic wastewaters (Plugge 

et al., 2010). Anaerobic methanogenic treatment of organic solid waste and wastewaters 

is able to reduce our dependency on fossil fuels. Anaerobic processing provides an 

efficient waste treatment with low energy requirement; meanwhile bio-energy is 

produced in the form of methane (Plugge et al., 2010). 
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Anaerobic wastewater treatment processes are advantageous when compared to 

aerobic processes.  According to van Lier (2008), anaerobic wastewater treatment has the 

following advantages over conventional aerobic treatment systems: 

1. Reduction of up to 90% of the sludge produced. 

2. Up to 90% reduction in space requirement when using expanded sludge bed 

systems. 

3. High applicable COD loading rates reaching up to 20–35 kg COD m-3 reactor 

volume. day-1, leads to smaller reactor volumes. 

4. No use of fossil fuels for treatment leads to savings of approximately 1 kWh/kg 

COD removed. 

5. Production of approximately 13.5 MJ CH4 energy/kg COD removed. 

6. Rapid start-up (< 1 week), using seed granular anaerobic sludge.  

7. No or very little use of chemicals. 

8. High COD treatment efficiencies, and  

9. High-rate systems facilitate water recycling. 

The main biochemical processes in the anaerobic degradation of complex substrates 

under methanogenic conditions are depicted in Table 2.4 (Costa et al., 2013). 

Methanogenesis is the final step in the anaerobic degradation process and the 

substrates/compounds used by the methanogenic organisms include hydrogen, formic 

acid, carbon monoxide, methanol, methylamine and acetate (George et al., 2003). The 

typical conversion reactions involving these compounds are given in Equations 2.10 to 

2.15. 
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Table 2.4  Biochemical process description of biomethanation (Costa et al. (2013)). 

Step Name  of 

process  

Process Description 

1 Hydrolysis  Carbohydrates are converted into soluble sugars 

(saccharides) by cellulases, amylases, xylanases and 

other hydrolytic enzymes; 

 Proteins are degraded via peptides and amino acids by 

proteases and peptidases; and  

 Lipids are transformed into long chain fatty acids 

(LCFA) and glycerol by lipases. 

2 Acidogenesis  Main substrates for acidogenesis include soluble 

saccharides, amino acids and glycerol and results in the 

formation of acetate, propionate, butyrate, carbon 

dioxide, hydrogen and other organic products, such as 

lactate and alcohols 

 Soluble sugars are largely converted into acetate and 

hydrogen 

3 Acetogenesis  Fermentation products (short chain fatty acids and 

alcohols) and LCFA (resulting from lipid hydrolysis) can 

be further oxidized to acetate by obligate hydrogen 

producing acetogens 

 Fatty acids oxidation is coupled to the reduction of 

hydrogen ions or bicarbonate, functioning as external 

electron acceptors, to form hydrogen and formate, 

respectively. 

4 Methanogenes

is 
 Methanogenesis is carried out by methanogenic archaea, 

which metabolize the end products of the previous 

reactions (mainly hydrogen, carbon dioxide, formate, 

methanol, methylamines, and acetate) to form methane.  

 This process mainly occurs through two pathways: (1) 

carbon dioxide reduction (hydrogenotrophic 

methanogenesis), and (2) acetate dissimilation 

(acetoclastic methanogenesis).  

 

4H2 + CO2 → CH4 + 2H2O       (2.10) 

4HCOOH → CH4 + 3CO2 + 2H2O      (2.11) 

4CO + 2H2O → CH4 + 3CO2       (2.12) 

4CH3OH → 3CH4 + CO2 + 2H2O      (2.13) 
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4(CH3)3N + 6H2O → 9CH4 + 3CO2 + 4NH3     (2.14) 

CH3COOH → CH4 + CO2       (2.15) 

George et al. (2003) has determined the COD equivalent of methane by 

stoichiometry and depicted that the theoretical amount of CH4 that can be produced under 

anaerobic conditions is 0.35 L CH4 per g COD. In this study, biomethanation of pre-

treated lignin and black liquor was investigated and compared with the theoretical COD 

yield. 

2.5 Summary of research objectives  

This thesis is organized in manuscript format. Two published manuscripts are 

included in Chapters 3 and 5. The work reported in Chapter 3 is focused on evaluating 

electricity generation and biofilm formation in MFCs configured with three different 

graphite plate electrodes.  The three graphite plate electrodes have different electrical 

properties.  A logical follow up to the work in Chapter 3 is the evaluation of electrodes 

with different surface areas.  Chapter 4 describes the performance and comparison of 

graphite fibre brush and felt anodes with plate electrodes. The work in Chapter 5 used the 

best performing electrode based on the work in Chapter 4. 

The work in Chapter 5 outlines a scheme which demonstrates utilizing photocatalysis 

of recalcitrant chemicals to produce biodegradable chemicals for electricity production 

using a microbial fuel cell.  The effects of different parameters on the photocatalytic 

degradation of a model lignin chemical are articulated in this chapter.  

Chapter 6 reports on optimizing the photocatalytic degradation of a model lignin 

chemical using the Box-Behnken design and converting the degradation byproducts into 
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electricity.  Based on data gathered in Chapter 6, the work in Chapter 7 describes using 

two-stage anaerobic digestion and bioelectrochemical processes to treat black liquor and 

recovering energy simultaneously.  This revised process configuration is designed to 

increase electricity production from black liquor.  Black liquor is lignin rich waste which 

is produced from pulp and paper mills. 
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CHAPTER 3 

ELECTRICITY GENERATION AND BIOFILM FORMATION IN 

MICROBIAL FUEL CELLS USING PLATE ANODES 

CONSTRUCTED FROM VARIOUS GRADES OF GRAPHITE 

 

3.1 Introduction 

Depleting fossil fuel resources, environmental damage and energy security are key 

factors driving the search for renewable energy supplies. Microbial fuel cells (MFCs) are 

a promising alternative to produce renewable energy from organic matter.  MFCs have 

many operational and functional advantages over technologies currently used for 

generating energy from organic matter (Rabaey and Verstraete, 2005).  According to 

Rabaey and Verstraete (2005), these advantages include the following: high conversion 

efficiency is achieved by the conversion of substrate energy to electricity, efficient 

operation at ambient and at low temperatures distinguishes them from current bio-energy 

processes, gas treatment is not required because the off-gases from MFCs are enriched in 

carbon dioxide, energy input is not required for aeration provided the cathode is passively 

aerated  and potential  application in area lacking electrical infrastructure. 

MFCs represent a potential alternative approach when compared to conventional 

activated sludge wastewater treatment systems because energy is produced in the form of 

electricity or hydrogen gas rather than using energy for aeration or for other treatment 

processes (Logan, 2008).  The application of MFCs for wastewater treatment has been 

documented in many reports (Aelterman et al., 2006; Ahn and Logan, 2010; Cha et al., 

2009; Kargi and Eker, 2007; Vidris et al., 2008). 
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In its most simple configuration, an MFC is a device which uses microorganisms to 

produce an electrical current. The oxidation of organic chemicals by microorganisms 

liberates both electrons and protons.  Electrons are then transferred from microorganisms 

to the anode and then subsequently to the cathode through an electrical network.  

Simultaneously, protons  migrating to the cathode combine with electrons and an electron 

acceptor such as oxygen to produce water. The electrical current generated is similar to 

that in chemical fuel cells; however, in MFCs microbial catalysts are attached to the 

anode surface (Franks and Nevin, 2010).  

MFCs are configured in a variety of configurations. Single chamber MFCs are 

designed with an anodic compartment without the requirement for an aerated 

compartment containing the cathode.  In a typical configuration, the anode contained in a 

compartment is coupled with an air-cathode (Liu et al., 2005).  In a two chamber MFC 

configuration, the oxidation of the electron donors on an anode is physically separated 

from the reduction of an electron acceptor on the cathode. Microorganisms are cultivated 

on the anode where electron donors are oxidized.   Electrons are transferred to the anode 

and subsequently to oxygen or other electron acceptors. Typically, the anode 

compartment is separated from the cathode compartment by a proton exchange 

membrane (PEM) or cation exchange membrane (CEM).  

The performance and cost of electrodes are important factors affecting the design of 

MFCs (Wei et al., 2011). A wide range of electrode materials and configurations have 

been examined in recent years to improve the performance and reduce cost.  A suitable 

electrode must be a good conductor, chemically stable, mechanically strong and not 

expensive (Wei et al., 2011).  
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Identifying materials and architectures which maximize power generation and 

coulombic efficiency is a major challenge in designing MFCs (Logan, 2008).  Another 

challenge is to reduce cost and develop configurations which can be constructed from a 

practical point-of-view (Logan, 2008). According to Logan and Regan (2006), the most 

significant impediment in achieving high power densities in MFCs is the system 

configurations and not the composition of the bacterial community.  

Utilizing electrodes with improved properties will enhance the performance of MFCs 

because different anode materials result in different activation polarization losses (Du et 

al. 2007). Because the power output of MFCs is low relative to other type of fuel cells, 

reducing their cost is essential if power generation using this technology is to be an 

economical method of energy production (Liu and Logan, 2004). Many studies have 

focused on maximizing the power generation in MFCs; however, work on cost 

minimization studies is limited.  Practical applications of MFCs will require developing 

designs that will not only produce high power outputs and coulombic efficiencies but also 

will be economical to manufacture in large quantities (Logan, 2008).  In this study, the 

cost of the material was also considered in the evaluation of different electrode materials.  

An improved understanding of the type together with the selection of cost effective 

electrodes for MFC is important.  In spite of many published studies which have focused 

on power generation and coulombic efficiency of MFCs; no study has considered 

electrode cost when evaluating their performance.  Hence, the objective of this study was 

to assess the significance of cost for different graphite plate electrodes on the 

performance of MFCs.   
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3. 2 Material and methods 

3.2.1 Microbial fuel cell set-up and operation 

The air-cathode single chamber microbial fuel cell (SCMFC) used in this study is 

depicted in Figure 3.1. The air-cathode was constructed as previously described by Cheng 

et al. (2006). The air-cathode was constructed with 2.5 mg/cm2 platinum on the inner 

surface facing the media solution.  The outer surface of cathode was coated with four 

layers of polytetrafluoroethane (PTFE) to prevent water loss and substrate oxidation by 

oxygen.  The anodes used were graphite plate electrodes with a surface area of 25.6 cm2.  

The fuel cell working volume was 130 mL.  The SCMFCs were operated in batch mode 

and fed with fresh medium (described in section 2.2) after 6 to 7 days or when the voltage 

decreased to below 20±5 mV.  All the experiments were conducted in triplicate. 

 

Figure 3.1 Schematic of a single chamber MFC. 

 

Two chamber MFCs (Figure 3.2) were constructed with two cylindrical chambers 

connected by a polyethylene tube.  The flanged tubes were fitted with porous inserts to 
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accommodate a proton exchange membrane (PEM) (Nafion 117, Fuel Cell Earth LLC).  

The total volume of each chamber was 2 litres. The PEM was pre-treated to remove 

impurities before placing it between the flanges.  The pre-treatment process was as 

follows: dipped in a boiling 30% H2O2 solution, washed with deionized water, dipped in 

0.5M H2SO4, and washed with deionized water (60 mins for each step). All the MFCs 

were operated at 21±1oC with the same mixed anaerobic culture, substrate concentration 

and external load (1,000 ohm). 

 
Figure 3.2 Schematic of a two chamber MFC. 

3.2.2 Mixed anaerobic cultures source and medium 

In this study, the SCMFCs and the two chamber MFCs were seeded with a mixed 

anaerobic culture which was obtained from a municipal wastewater treatment facility 

(Chatham, ON).  The medium added to the SCMFCs and the anodic chamber of the two 

chamber MFCs contained the following: 500 mg L-1 glucose, 310 mg L-1 NH4Cl, 130 mg 

L-1 KCl, 4225 mg L-1 NaH2PO4.H2O, 7400 mg L-1 Na2HPO4.12H2O, 10 mg L-1 yeast 

extract and 1 mL L-1 of a mineral solution. The mineral solution was prepared in 



49 
 

accordance with the procedure described by Wiegant and Lettinga (1985).  The solution 

for the cathode chamber of the two chamber MFCs contains all the constituents 

mentioned above except glucose and yeast extract.  The cathodic chambers of the two 

camber MFCs were continuously purged with air to provide oxygen in solution.  

3.2.3 Electrodes 

In this study, the configuration of the three graphite plate electrodes (POCO3, HK06 

and G347) (MWI Inc, Rochester, NY) are shown in Figure 3.3.  Specifications for the 

electrodes are shown in Table 3.1. The electrodes were washed with deionized water 

before placing them in the MFCs.  

  

Figure 3.3 Electrode design used in the MFC experiments A) Single chamber 

electrode; B) Two chamber electrode. 

A 
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Table 3. 1  Properties of graphite plate electrodes. 

3.2.4 Data acquisition and analysis 

Cell voltages (V) of each MFC were sampled every 5 min using an Agilent 34970A 

data acquisition unit connected to a computer. A full channel scan was performed for all 

MFCs and the data were stored for analysis. The potential of the anode and cathode 

electrodes were measured versus an Ag/AgCl reference electrode (CH instruments Inc., 

Austin, TX) with the anode or the cathode as the working electrode.  

Cyclic voltammetry was employed to acquire qualitative data related to 

electrochemical reactions and to locate redox potentials of the electroactive species.  

Electrochemical impedance spectroscopy (EIS) was used to determine the internal 

resisitance of the SCMFCs. The polarization and power density curves for SCMFCs were 

obtained using linear swipe voltammetry (LSV).  Two chamber MFCs were characterised 

using different external resistances (1,000,000, 10,000, 5,600, 1,000, 680, 470, 330, 220, 

100, 47, 8.2 and 1.5 Ω), with each resistance being connected for 15 min.  The potential 

(V) was used to calculate the current (I). The power density, P (mW/m2), was calculated 

Description Unit 

Grade of electrode 

POCO3 HK06 G347 

Specific  Gravity  - 1.81 1.86 1.85 

Specific Resistance  µΩm 14 12 11 

Flexural Strength  MPa 93 85 49 

Shore Hardness  Shore 76 68 58 

Average grain size  µm <5 3 NA 
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using the surface area (A) of the anode (P = I × V/A). The power was also normalized 

based on working volume to express the power density in mW/m3.  

The coulombic efficiency (CE) and the energy efficiency (η MFC) were calculated 

using Equations 3.1 and 3.2 (Logan, 2008). 
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Ms is the molecular weight of the substrate, tb is time for one feeding cycle, F is 

Faraday’s constant, bes is number of moles of electrons per mole of substrate, vAn is the 

volume of liquid in the anode compartment and Δc is the substrate concentration change 

over a feeding cycle.  
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where EMFC is the voltage, ΔH is the molar heat of combustion and ns is the amount 

(mol) of substrate added. 

 A principal component analysis (PCA) was employed to correlate the material 

characteristics and the electrode efficiencies (Appendix E2). 

3.2.5 Analytical methods 

Liquid samples (5 mL) were withdrawn from the MFCs after initiation of the 

experiment and at the end of every feeding cycle.  These samples were filtered using a 
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0.45 µm polypropylene membrane (GE Osmonics, MN) and a 100 to 200 mesh ion 

exchange resin (Chelex 100, Bio-Rad, CA) to remove heavy metals and suspended solids.  

The filtered samples were analyzed for COD according to Standard Methods (APHA et 

al, 2005).  

Microbial samples were removed from the liquid suspension in the anodic chamber 

and from the anode surface upon completing the last feeding cycle. DNA isolation, 

polymerase chain reaction (PCR) and terminal restriction fragment length polymorphism 

(T-RFLP) profiling of the microbial community samples were performed in accordance 

with methods described by Chaganti et al. (2012). 

3.3 Results and discussions 

3.3.1 Comparative power production 

The MFCs were operated under batch conditions with each feeding cycle 6 to 7 days 

and the number of batch feeding cycles was 10.  The feeding period was variable 

depending on the voltage reduction to a low value of 20 ± 5 mV.  After seeding the 

MFCs, steady-state voltages were observed at the end of 6 feeding cycles (approximately 

6 weeks). Variation in the cell potential with time in the two chamber MFCs configured 

with three different grades of graphite is shown in Figure 3.4.  Variation in the voltage 

pattern was observed as follows: POCO3 > G347 > HK06.  The cell potential under 

different loads is shown in Figure 3.5 and a distinct difference is observed in this case. A 

similar trend (POCO3 > G347 > HK06) was also observed for the SCMFCs voltage 

generation (data not shown).  
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Figure 3.4 Representative single batch feeding cycle voltage generation in the two 

chamber MFCs configured with three different graphite electrodes. 

Note:  The MFCs were operated under a constant external load of 1000 ohms 

 

 

Figure 3. 5  Cell potential in the two chamber MFCs configured with three different 

graphite electrodes and under varying external loads. 
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3.3.2 Current – power profile  

3.3.2.1 Single chamber MFCs 

Many researchers use different units to denote the performance of an MFC. Current 

density, a common term, is either represented as the current generated per unit area of the 

anode surface area (mA/cm2) or current generated per unit volume of the cell (mA/m3) 

(Pant et al., 2010).  According to Logan (2012), it is appropriate to normalize power to the 

membrane or cathode surface area.  In this study, the current and power densities are 

reported as per unit area of the anode surface area, per unit of area of the air-cathode and 

per unit volume of the cell (Table 3.2). 

Table 3.2  Maximum current and power density of SCMFCs provided with different 

plate electrodes. 

 

 

 

 

 

 

The maximum power density for the MFCs using the linear swipe voltammetry 

(Figure 3.6) was obtained by varying the potential of the working electrode at a scan rate 

of 1 mV s-1. This data show that the POCO3 material produced 1078 mW/m2 (2682 

mW/m3) which is approximately twice larger than that of the G347 material (520 mW/m2; 

1473 mW/m3) and 10 times larger than that of the HK06 material (102 mW/m2; 282 

Grade of 

electrode 

 

Normalized to 

working volume 

Normalized to 

cathode  surface 

area 

Normalized to 

anode surface area 

I   

(mA/m3) 

P 

(mW/m3) 

I   

(mA/m2) 

P 

(mW/m2) 

I   

(mA/m2) 

P 

(mW/m2) 

POCO3  8144 2682 1078 355 414 136 

HK06  769 282 102 37 39 14 

G347  3929 1473 520 195 200 75 



55 
 

mW/m3) (Table 3.2).  This indicates that POCO3 has the highest current density followed 

by G347 and HK06. 

 

Figure 3.6 Power density curves normalized to anode surface area as a function of 

current density for SCMFCs. 

 

3.3.2.2 Two chamber MFCs 

The current and power densities trend for the two chamber system was similar as that 

observed for the single chamber MFC configuration (POCO3 > G347 > HK06).  The 

current and power profiles for the three electrodes are depicted in Figure 3.7.  The low 

power density observed is attributed to the large distance between the cathode and anode 

electrodes, membrane resistance and the solution conductivity. Another reason is low 

surface area of the anode compared to the volume of the anolyte (Ringeisen et al., 2006).  

The two chamber MFC was also not operated under strict anaerobic conditions because 

the sampling port (which was also used as a vent) was open throughout the entire 

operation of the MFCs. Therefore, the operating condition was facultative and this may 
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be another reason for the lower power density production. However, note the lower 

power production would likely have no effect in comparing the electrodes performance 

since, the operating conditions for the MFCs are the same. The results show differences 

in the electricity generation of the different electrodes (Figure 3.7).  

 

Figure 3.7  Polarization and power density curves normalized to the electrode 

surface area as a function of current density for the two-chamber MFC.  

3.3.3 Comparison of MFC efficiencies 

The coulombic efficiency, energy efficiency and COD removal efficiency for 

SCMFCs configured with different anode materials are shown in Table 3.3. Notice the 

HK06 efficiency is very low when compared to POCO 3 and G347.  The POCO 3 and 

G347 materials did not shown significant variation in efficiency.  The low (< 12%) 

coulombic and energy efficiencies for the three electrodes were likely due to the 

conversion of glucose into volatile fatty acids such as acetate, butyrate, and propionate. 

Rahimnejad et al. (2011) reported similar results and according to Logan (2008) the 
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energy efficiency values for MFCs range from 2% to 50% for easily biodegradable 

substrates. 

 Table 3.3  Efficiency of SCMFCs configured with different electrodes. 

 

 

 

 

 

3.3.4 Cost effectiveness 

MFCs with POCO3 electrodes had the highest electricity generating capacity 

compared to G347 and HK06. However, when comparing the price of the electrode 

(anode only) per reactor, the G347 material cost was less.  Based on the two chamber 

MFC configuration (Figure 3.2) and electrode design (Figure 3.3B), the cost of electrode 

(anode) is $ 9.45 per reactor where as the costs for the other two electrodes POCO3 and 

HK06 are approximately $125 and $40, respectively. The cost includes not only cost of 

material but also cost of cutting and fixing the electrodes as per the design indicated in 

Figure 3.3B.   

To identify the most cost effective electrode, the cost of the electrode per reactor was 

divided by the maximum power density. The results show that the lowest cost of $0.12 

for a power output of 1 mW m-3 per one feeding cycle was obtained for G347 while the 

cost for POCO3 and HK06 were, approximately $1.25 and $4.30, respectively.   

Grade of 

Electrode  

Coulombic 

efficiency 

(%)   

Energy 

efficiency   

(%)   

COD 

removal 

(%)  

POCO3  10.953.10 2.100.60 91.502.90 

HK06  2.550.20 0.100.00 25.9511.00 

G347  11.801.45 1.700.20 84.6513.30 
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Therefore, among the different graphite plate electrodes, G347 was the most cost 

effective electrode followed by POCO3 and HK06. The G347 electrode also had the 

lowest specific resistance (Table 3.1) when compared to that of POCO3 and HK06 

electrodes. The lowest cost and the lower specific resistance can be attributed to the cost 

effectiveness of the G347 material.  This indicates that the costs of the two electrodes 

POCO3 and HK06 are high for practical applications.  Therefore, G347 is the best 

material for MFCs based on large scale applications.  Among the different electrode 

materials, POCO3 is the best candidate for MFCs if the choice is based only on current or 

power production.  However, when electrode cost is considered in addition, to the 

electricity production capacity, the G347 material is the most cost effective option.  

3.3.5 Microbial growth and electricity generation 

The physico-chemical characteristics of different electrode materials can affect the 

microbial colonization of surfaces (Sun et al., 2011).  Variation in microbial populations 

was observed in the three electrodes under examination.  The POCO3 electrode was more 

suitable for the growth of electrochemically active bacteria when compared to the G347 

and HK06 materials.  In addition to the power density results, the microbial analysis 

revealed that different microbial populations were detected in the biofilms developed on 

the surface of the different materials (Figure 3.8). On the POCO3 and G347 materials, 

similar band patterns were detected irrespective of the band intensities.  However, in case 

of the HK06 material, the band pattern was different when compared to the POCO3 and 

G347 materials.  The T-RFs data was further analysed for the identification of the 

different organisms (Chaganti et al., 2012).  The results showed that Geobacter sp., 
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Brucella sp., and Fusobacterium sp., were dominant on the POCO3 and G347 surfaces, 

whereas the relative abundance of the same bands was low in the case of HK06. 

Generally, the power generation capacity is related to the biofilm formed on anodes 

as microbes adhere to their surface (Rabaey and Rozendal, 2010).  Previous studies have 

reported detecting Geobacter sp. in MFC biofilms (Lovley et al., 2011; Bond and Lovley 

2003).  Brucella sp. and Fusobacterium sp. are also capable of biofilm formation; 

however, these microorganisms have not been reported to participate in bioelectricity 

production (Almiron et al., 2013; Chew et al., 2012). The abundance of Geobacter sp. in 

POCO3 is associated with greater power generation curves.  In case of the HK06 material, 

the dominant band was uncultured bacteria.  The results from this study clearly indicate 

that biofilm formation is dependent on the quality of the graphite material composition. 

 

Figure 3.8  Microbial characterization of biofilms on different graphite anodes. Lane 

1 and 2 = POCO3; lane 3 and 4 = HK06; lane 5 and 6 = G347. 

3.3.6 Cyclic voltammograms 

Cyclic voltammetry (CV) was performed to characterize the catalytic properties of 

the microbial populations in biofilm on the electrodes. The potential scan from −0.4 V to 

+ 0.4 V was performed at a scan rate of 1mV/s. The cyclic voltammograms (Figure 3.9) 
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show the presence of redox peaks for the different electrodes. A higher redox peak 

observed for POCO3 bio-anode (Figure 3.9) compared to the other electrodes indicate 

that biofilm formed on POCO3 electrode is very effective in oxidizing the substrate and 

transfer of electrons.  In case of the POCO3 and G347 materials, the multiple redox peaks 

suggest that more than one microorganism participated in electricity production.  To 

some extent, the CV data correlated with the result from the microbial analysis (section 

3.5).   

 

 

 

 

 

Figure 3.9  Cyclic voltammogram of bacterial biofilm on SCMFC graphite plate 

electrodes. 

3.3.7 Principal component analysis 

Principle components (PCs) are linear combinations of the measured variables.  The 

PCA bi-plots indicate that the electrodes are different from each another and it also shows 

an association between the material properties and the MFCs performance variables and 

the electrodes (Figure 3.10).  The PCA showed two PCs. The first PC explained 64.15 % 

of the variance and the second PC explained 35.85% of the variance in the data set 

(Figure 3.10).  The PCA also highlights similarities and differences between the three 
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electrodes.  The length of each vector indicates the dominance of the various factors.  In 

this case, none of the factors were dominant.  Principal components 1 and 2 combined 

explained 100% of the variance in the data set. According to Varmuza and Filzmose 

(2009), if the objects points are positioned in a plane, PC1 and PC2 are able to represent 

the data structure.  These authors also state that the sum of the variances preserved by 

PC1 and PC2 is close to 100%.    

Energy efficiency, COD removal, coulombic efficiency and maximum power density 

are positively correlated with PC1 while the internal resistance and specific gravity are 

negatively correlated with PC1.  The flexural strength and shore hardness were correlated 

with PC2.  Vectors in the same direction reinforce their effect, those at 90o are 

independent and when placed in the opposite direction, they work against each other.  In 

this study, the coulombic efficiency is negatively affected by the internal resistance and 

notice the energy efficiency is correlated with COD removal. 

 

Figure 3.10  Principal component analysis of graphite plate electrodes properties and 

efficiencies. 
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3.4 Conclusion 

The performance of different graphite plate anode materials in single and double 

chamber MFCs was detected in this study.  The selection of electrode material is essential 

in the design of MFCs. This research contributes to the advancement of MFCs since it 

provides tools for selecting suitable anode graphite materials to construct laboratory scale 

MFCs.  Of the three graphite electrodes, the best grade was selected based on power 

generation, biofilm formation and cost.  This study has clearly indicated the variation in 

the electricity generation and biofilm formation using different grades of graphite plate 

electrode.  The findings have significant impact in understanding the performance of 

electrode material and depicted relevant parameters required for comparison. The 

conclusions from this study are as follows: 

1. Electricity generation and microbial biofilm communities on anodes are 

affected by the physio-chemical properties of graphite electrodes. 

2. Selection of a graphite plate electrode should not be based on the power 

output but also the cost of the material.  

3. The greatest power density was observed for the POCO3 material. The trend 

for increasing electricity generation was as follows: POCO3 > G347 > HK06. 

4. Microbial analysis showed that the dominant populations are dependent on the 

graphite characteristics. 

5. Selecting electrodes for optimum electricity generation is important in the 

development of laboratory scale and full-scale MFCs. 
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Further suggested experimental work should consider the following:  

1. Perform similar studies in continuous flow MFCs. 

2. Further comparison of the graphite plate electrodes using wastewater or 

substrates from full-scale waste production facilities.  

3. Considering other components including different types of cathodes for cost 

and performance comparison. 

4. Assess the scalability of graphite plate electrodes for pilot and full-scale 

applications. 
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CHAPTER 4 

EVALUATING ANODE MATERIALS FOR MICROBIAL FUEL CELLS 

4.1 Introduction 

The popularity of microbial fuel cells (MFCs) has risen exponentially over the past 5 

to 10 years because the technology has the potential of harvesting energy from chemicals 

in wastewaters directly in the form of electricity (Lefebvre et al. 2011). However, MFCs 

for the large scale treatment of wastewaters still face problems of scale up from 

laboratory experiments and slow rates of substrate degradation (Franks and Nevin, 2010). 

The reasons that limited translation of laboratory-scale processes to full-scale are 1) the 

cost of the electrodes, and 2) the diminished power at larger scales (Logan et al., 2015). 

However, Logan et al. (2015) argues that the main difficulty is not an intrinsic loss of 

power at larger scales, but maintaining reactor geometry relative to electrode 

configurations and densities as larger reactors are built to handle greater water flows. 

A typical MFC consists of an anodic chamber and a cathodic chamber separated by a 

proton exchange membrane (PEM) as in the case of two chamber MFC. A single 

chamber MFC eliminates the need for the cathodic chamber by exposing the cathode 

directly to air (Du et al., 2007).   Du et al. (2007) has summarized the components and the 

materials used to construct MFCs (Table 4.1). All the components listed in Table 4.1 are 

required for the proper operation of MFCs except the cathode chamber which can be 

avoided and replaced with an air-cathode. The air-cathode can be constructed from 

carbon cloth, carbon black powder, platinium catalyst and polytetrafluoroethylene (PTFE) 

solution (Shewa et al., 2014). 
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Electricity generation in an MFC is accomplished by (i) microbial catabolism, (ii) 

electron transfer from microbes to the anode, (iii) reduction of electron acceptors at the 

cathode, and (iv) proton transfer from the anode to cathode (Watanabe, 2008). MFC 

power generation and performance is governed by several parameters which include the 

following: 1) physical factors including fuel cell configuration, anolyte volume, electrode 

materials, membrane. 2) biological factors such as nature of microbes used along with 

their growth and synergistic interaction with the electrode, mechanism of electron 

transfer from the microbes and the role of electron shuttlers and 3) operational factors 

such as nature of electron donor, organic load, retention time, redox condition (pH) and 

microenvironment (Mohan et al., 2013). 

Table 4.1  Basic components of microbial fuel cells (Du et al., 2007). 

Items Materials Remarks 

Anode Graphite, graphite felt, carbon paper, carbon-

cloth, Pt, Pt black, reticulated vitreous carbon 

(RVC) 

Necessary 

Cathode Graphite, graphite felt, carbon paper, carbon-

cloth, Pt, Pt black, RVC 

Necessary 

Anodic chamber Glass, polycarbonate, Plexiglas Necessary 

Cathodic chamber Glass, polycarbonate, Plexiglas Optional 

Proton exchange 

system 

Proton exchange membrane: Nafion, Ultrex, 

polyethylene/poly(styrene-co-divinylbenzene); 

salt bridge, porcelain septum, or solely electrolyte 

Necessary 

Electrode catalyst Pt, Pt black, MnO2, Fe3+, polyaniline, electron 

mediator immobilized on anode 

 

Optional 
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Comparing research data from many different studies is difficult according to Noll 

(2006). Data summarized by Noll (2006) on MFC performance from numerous 

publications concluded that the difficulty in comparing results reported is due to the 

absence of key experimental parameters. The other main challenge in comparing MFC 

performances is the use of a wide variety of MFC configurations and construction 

materials (Pant et al, 2012).  For example, comparing data for MFC treating different 

wastewaters is difficult because data for different organic feed stock types tested under 

identical conditions is lacking (Larrosa-Guerrero et al., 2010).  

Watanabe (2008) indicated that the reactor configuration largely influences the 

bioelectrochemical processes and the total MFC performance. Watanabe (2008) further 

argues that a distinct feature of an MFC is that its performance is largely dependent on 

hardware rather than on microbial activity. The anode electrode is one of the hardware 

components of MFCs (Table 4.1).  In nearly all bioelectrochemical system (BES) studies, 

researchers have been using graphite (or carbon) as the anode materials because it is 

(Hamelers et al., 2010): (i) well compatible with electrochemically active biofilms, (ii) 

widely available in high specific area structures, and (iii) relatively inexpensive.  

Using better performing electrode materials can improve the performance of an MFC 

because different anode materials result in different activation polarization losses (Du et 

al., 2007). In Chapter 3 of this thesis, different types of graphite plate electrodes were 

compared (Shewa et al., 2014).  The objective of this work was to evaluate the 

performance of three different graphite plates, brush and graphite felt electrodes.  The air-

cathodes used in this study for all MFCs were identical and constructed from carbon cloth. 
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The particular air-cathode design was selected because this type of electrode could be 

used in full-scale systems (Logan 2008).   

4.2 Materials and methods 

4.2.1 MFCs configuration 

The single chamber microbial fuel cells (SCMFCs) and equipment used in this study 

are shown in Figure 4.1.  The SCMFCs were constructed from acrylic (Figure 4.2) and 

the details of the anodes and electrodes are described in subsequent sections.  

 

Figure 4.1  Experimental set up. 
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Figure 4.2  Digital picture of the SCMFC. 

4.2.1.1 Cathode 

The air-cathodes (Figure 4.3) for the SCMFCs were constructed according to the 

method and procedure described in Chapter 3 using carbon cloth, carbon black powder, 

platinium catalyst and polytetrafluoroethylene (PTFE) solution. The steps followed to 

construct the air-cathodes are described in Appendix D.  
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Figure 4.3  Digital picture of air-cathode: a) Air-cathode exposed to the air (four 

diffusion layers), b) Air-cathode exposed to the medium, c) Air-cathode fixed to the 

acrylic bottom, and d) Digital picture showing the perforated acrylic air-cathode support. 

4.2.2.1 Anode  

The brush electrode (Figure 4.4a) was purchased from the Mill-Rose Co. (Mentor 

OH, USA). The graphite felt (GF-S6 Graphite, 6 mm thick) was purchased from 

Electrosynthesis Company, Inc. (Lancaster, NY, USA) (Figure 4.4b). The solid graphite 

electrodes (POCO3, HK06 and G347) used for the comparison are shown and described 

in Chapter 3. To aid the comparison of the electrodes, the dimensions of the five anode 

electrodes were maintained at a volume of 5 cm3. 
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Figure 4.4  Digital picture showing: a) Graphite fiber brush anode and b) Graphite 

felt anode used in SCMFCs. 

4.2.2 MFCs operation 

All the SCMFCs were seeded with a mixed anaerobic culture obtained from a 

municipal wastewater treatment facility (Chatham, ON). The liquid medium added to the 

SCMFCs contained the ingredients described in Chapter 3. The SCMFCs were operated 

at the same operating conditions employed in Chapter 3 (Table 4.2).   All experiments 

were conducted in triplicate.  

Table 4.2  Operating conditions of SCMFCs. 

S.No. Parameter description Value 

1 Temperature 21±1◦C 

2 Anodic working liquid volume 130 mL 

3 External resistance 1000 ohms 

4 Substrate concentration (glucose)  500 mg L-1 

5 Initial pH 7 

4.2.3 Measurements and data analysis 

The voltage (V) was monitored every 5 minutes using an Agilent data acquisition 

system (34970A Keithley, USA). The polarization data for maximum power density 



73 
 

determination was obtained by changing the resistors over different time intervals as 

described by Shewa et al. (2014). When the resistors were changed over a single cycle, 

sufficient time was allowed to achieve steady-state conditions (Logan, 2012). The 

coulombic and energy efficiencies were calculated using the procedure reported by 

Shewa et al. (2014). Tukey’s test was performed to compare and statistically evaluate the 

means. A principal component analysis (PCA) was used for data analysis and 

interpretation (Appendix E2). The PCA was performed using PAST version 2.17b, a 

Paleontological statistics software package for education and data analysis (Hammer et 

al., 2001). 

4.3 Results and discussion 

4.3.1 Electricity generation efficiency 

The main advantage of an MFC is that it can generate combustion-less, pollution-

free bioelectricity directly from the organic matter (Rittmann, 2008). Power density 

curves and polarization curves obtained by varying the external circuit resistances from 

1.5 to 1,000,000 ohms (single-cycle method) showed that the carbon brush electrodes 

produced more power compared to the other four electrodes. The LSV polarization data 

(at a scan rate of 0.1 mV/s) in this study is in agreement with single- and multiple-cycle 

polarization curves as reported in studies conducted by Velasquez-Orta et al. (2009). 

To estimate the power per unit surface to putative power output per unit reactor 

volume, one can consider that 100-500 m2 of anode surface can be installed per m3 

anodic reactor volume (Rabaey et al., 2005). Hence, according to Rabaey et al. (2005), 

the state of the art power supply ranges from approximately 1 to 1800 W per m3 anode 
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reactor volume installed. To be consistent, in this study electricity generated from each 

MFC was compared and reported per unit reactor volume and per m2 of air-cathode 

surface area. 

Maximum power densities of 510±55 and 100±15 mW m-2, were observed in 

experiments conducted with graphite fiber brush and felt anodes, respectively (Figure 

4.5).  The power densitiy obtained from SCMFCs configured with graphite fiber brush 

anode was approximately 5-fold larger than the values observed with graphite felt anodes 

and also larger than the power densities for SCMFCs operating with graphite plate 

electrodes (Table 4.3). This indicates that the higher surface area brush electrodes were 

likely more favorable for biofilm formation compared to the other electrodes.  

 

Figure 4.5  Polarization and power density curves as a function of current density for 

SCMFCs configured with brush and felt anodes. 
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Table 4.3  Power (P) and current (I) densities of SCMFCs provided with different types 

of anodes. 

Type of electrode* 

Normalized to 

working volume 

Normalized to 

Cathode  surface 

area 

Internal 

resistance 

I      

(mA m-3) 

P  

(mW m-3) 

I   

(mA m-2) 

P  

(mW m-2) 

Rin 

(ohms) 

POCO3  8145 2680 1080 355 310 

HK06  770 280 100 40 3670 

G347  3930 1480 520 195 735 

Graphite fiber Brush 12040 4040 1500 510 230 

Graphite felt 2990 900 330 100 770 

*Note: POCO3, HK06 and G347 are graphite plate electrodes (Shewa et al., 2014) 

4.3.2 Selection of best performing electrode 

In addition to electricity generation, MFCs are able to remove COD from 

wastewaters. The COD removal efficiency of the SCMFCs configured with the five 

different anodes used in this study were evaluated and the results are presented in Figure 

4.6. A comparison of the mean COD removal efficiencies show that POCO3 has the 

highest COD removal efficiency and the trend for increasing COD removal efficiency is 

as follows: POCO3 > G347 > Brush > Felt > HK06. The COD removal efficiency trend 

is not in agreement with the electricity generation data reported in section 3.3. In addition, 

the Tukey’s test indicates that the COD removal efficiencies of POCO3, G347, brush and 

felt are statistically the same except that felt and HKO6 are statistically different. 

Therefore, selecting the best performing becomes difficult based on both the electricity 

generation values and COD removal efficiencies. Similar studies conducted by Larrosa-

Guerrero et al. (2010) reported the same observation on COD removal efficiency.  

Larrosa-Guerrero et al. (2010) compared six anode materials for a MFC system and 
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observed the COD removal efficiency of biofilms formed on the different anode materials 

under closed circuit was statistically the same. 

 

Figure 4.6  COD removal efficiencies of SCMFCs provided with different 

electrodes. 

 

Selecting the five anode materials for the SCMFC was performed using the power 

density and the other MFC performance evaluation parameters which include coulombic 

efficiency and energy efficiency. The results obtained from the performance evaluation of 

the SCMFCs are presented in Table 4.4.     

Table 4.4  Efficiency of SCMFCs configured with different electrodes.  

 

 

Type of 

Electrode 

Columbic 

efficiency  

(%) 

Energy 

efficiency   

(%) 

  COD removal       

(%) 

POCO3 10.953.10 2.100.60 91.302.90 

HK06 2.550.20 0.100.00 25.9511.00 

G347 11.801.45 1.700.20 84.6513.30 

Brush 25.753.25 8.031.00 76.451.15 

Felt 14.002.00 2.050.30 70.6010.00 
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It is apparent from Tables 4.3 and 4.4 that among the five anodes used in this study, 

the graphite fiber brush electrode is the best performing anode material based on 

electrical power generation. A possible explanation for this might be that carbon brush 

fiber has a larger surface area available for microbial growth and electron transfer 

compared to the other electrodes (Drapcho et al., 2008).  A study conducted by Logan et 

al. (2007) has also shown that brush anodes with high surface areas and a porous 

structure can produce high power densities, and therefore have qualities that make them 

ideal for scaling up MFC systems. 

Further analysis conducted with PCA (Figure 4.7) indicated that there is significant 

difference in the overall performance of the electrodes. The PCA generated four principle 

components. The first principal component (PC1) explained 78.01 % of the variance; PC2 

explained 17.74%, PC3 accounted for 4.14% and the PC4 accounted for 0.11%. Therefore, the 

first and second principal components explained 96% of the total variance between the samples. 

The PCA bi-plots (Figure 4.7) indicate that the energy efficiency, coulombic efficiency and 

power density are positively correlated or provide the same information.  

  

Figure 4.7  Principal component analysis of anode electrodes performance and 

efficiencies. 
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4.4 Conclusions  

Different anode materials used in MFCs were evaluated under identical operating 

conditions. Based on the results of this study, the graphite carbon brush electrode was the 

preferred option. The highest energy generation was observed for the SCMFCs provided 

with graphite fiber brush anode. The trend for increasing electricity generation was as 

follows: Brush > POCO3 > G347 > Felt > HK06. The SCMFCs provided with the best 

performing anode (graphite fiber brush) generated maximum current and power densities 

of 12040±3030 mA m-3 and 4040±610 mW m-3, respectively. The corresponding 

maximum current and power densities normalized to the cathode area were 1500±215 

mA m-2 and 510±55 mW m-2, respectively. 
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CHAPTER 5 

PRODUCING ELECTRICITY USING A MICROBIAL FUEL CELL FED 

FEEDSTOCK CHEMICALS PRODUCED FROM THE PHOTOCATALYSIS OF 

A LIGNIN MODEL CHEMICAL  

5.1 Introduction 

Lignin (from the Latin word lignum, wood) is a highly branched polymer of 

phenylpropanoid compounds in plant cell walls. After cellulose, lignin is the second most 

abundant organic compound in plants, representing approximately 30% of the organic 

carbon in the biosphere (Boerjan et al., 2003). According to Tonucci et al. (2012), using 

lignin as a feedstock is becoming more attractive for the following reasons: 1) Production 

is not dependent on the supply and cost of fossil fuel supplies; 2) An Increase lignin use 

will lead to increase pulp production; and 3) The feedstock is readily available in large 

quantities. 

 Approximately 30 million tonnes of lignin is produced anually from wood pulping 

(Hatakeyama and Hatakeyama , 2010). This complex cross-linked polymeric structure of 

phenolic monomers is impermeable and resistant to enzymatic cleavage (Yoo et al, 2013). 

The recalcirant chemical structure and stability of lignin makes biological degradation 

difficult. Therefore, the treatment of wastewaters from paper and pulp industries and 

other facilities that generate lignin-rich effluents is a potential challenge.  

Metal oxides such as TiO2, ZnO, ZrO2, CeO2 and metal sulfides such as CdS and 

ZnS have been used  to photodegrade  various pollutants (Gogate and Pandit, 2004). 

Titanium dioxide (TiO2) is preferentially used because of its ability to completely 
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degrade a wide array of organic compounds to CO2 plus H2O (Bhatkhande et al., 2002; 

Gogate and Pandit, 2004; Dalrymple et al., 2007).  In addition to simple carbon chemicals, 

TiO2 has been used to completely degrade lignin in the presence of ultraviolet light 

(Tanaka et al., 1999; Machado et al. 2000).   Other reasons for selecting TiO2 are related 

to stability under various conditions, easy of availability and a relatively low cost 

(Vogelpohl and Kim, 2004; Ahmed et al., 2011). Titanium dioxide exists primarily as 

anatase, rutile and brookite.  Anatase was selected because it is catalytically more active 

in comparison to the rutile and brookite phases (Bouzouba et al., 2005; Hengerer et al., 

2000).   

The heterogenous photocatalysis reaction shown as Equation 5.1 can be divided into 

several steps according to Chong et al. (2010).  In the first step, organic contaminant(s) 

are transferred from the liquid phase and onto the TiO2 surface.  The next step involves 

adsorption of organic contaminant(s) onto the photon activated TiO2 surface (i.e. surface 

activation by photon energy occurs simultaneously in this step). After adsorption, the 

adsorbed contaminant(s) undergo photocatalysis on the TiO2 surface. Next, the 

intermediate(s) from the TiO2 surface desorb and finally, the intermediate(s) are 

transferred from the interface region and into the bulk liquid. 

𝑂𝑟𝑔𝑎𝑛𝑖𝑐 𝐶ℎ𝑒𝑚𝑐𝑖𝑎𝑙𝑠
𝑇𝑖𝑂2/ℎ𝑣
→      𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒(𝑠) →→→ 𝐶𝑂2 + 𝐻2𝑂                       (5.1) 

     Controlling the photocatalytic process to produce biodegradable intermediates 

from complex carbon chemicals has been reported using model lignin compounds such as 

syringol and guaiacol (Lalman and Ray, 2011).  Ray and Lalman (2011) reported 

controlling TiO2 photocatalytic conditions to produce short chain carbon compounds can 

be utilized to produce energy by anaerobic digestion or microbial fuel cells (MFCs).  
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Microbial fuel cells (MFCs) are a recently developed microbial electrochemical 

technology (Logan and Rabaey, 2012) that convert reduced carbon containing chemicals  

to electricity.  According to Rabaey and Verstraete (2005), the advantages of using MFCs 

include the following: 1) A high conversion efficiency is achieved by the conversion of 

substrate energy to electricity, 2) Efficient operation at ambient and at low temperatures 

distinguishes the technology from current bio-energy processes, 3) Gas treatment is not 

required because carbon dioxide is major  off-gas, 4) Energy input is not required for 

aeration provided the cathode is passively aerated,  and 5)  The potential  for application 

in areas lacking electricity infrastructure is enormous.  

Using pure cultures in MFCs is impractical, primarily because of contamination from 

microorganisms in feedstocks.   An alternative approach is to use mixed cultures from 

municipal treatment facilitates, soil, and composting sources, because according to many 

reports, these sources contain significant levels of electrogenic bacteria (Watanabe, 2008; 

Jiang et al., 2010).  Mixed culture systems have been shown to achieve higher power 

densities in comparison to pure cultures in many circumstances (Drapcho et al., 2008; He 

et al., 2005; Nevin et al., 2008). A recent study conducted by Fu et al. (2013) comparing 

pure culture and mixed culture inoculated MFCs reported that the pure culture 

exoelectrogens  produced a current significantly lower than (less than 10%) mixed culture 

inoculated MFCs.  

Employing MFCs to treat wastewaters has been reported by numerous researchers 

(Aelterman et al., 2006; Ahn and Logan, 2010; Cha et al., 2009; Kargi and Eker, 2007; 

Kalathil et al., 2012; Vidris et al., 2008).  However, to date, no study has examined 

treating waste containing lignin using MFCs or a combined treatment process plus a 
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MFC.  The objectives of this study were to produce intermediate biodegradable 

chemicals from a model lignin compound using photolysis and to produce electricity 

from the intermediate chemicals using an MFC. 

5.2. Materials and methods 

The process schematic used in the study is shown in Figure 5.1. Photocatalysis of the 

lignin model compound was performed using TiO2.  Details of the photocatalysis process 

and electricity production process using an MFC are described in sections 2.4 and 2.5. 
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Figure 5.1  Experimental process flow chart. 

5.2.1 MFC microbial culture source 

The single chamber MFCs (SCMFCs) were inoculated with cultures from active and 

well-functioning two chamber MFCs. The two chamber MFCs were inoculated with 

mixed anaerobic cultures which were obtained from a municipal wastewater treatment 

facility (Chatham, ON).  

 



86 
 

5.2.2 Biological oxygen demand (BOD) test inocula 

 The seed for the BOD test was raw domestic wastewater obtained from the Lou 

Romano wastewater treatment plant (Windsor, ON). 

5.2.3 Medium and chemicals 

Two solutions, designated as A and B, were used to feed the MFCs.    Solution A 

contained the following ingredients: 500 mg L-1 glucose, 310 mg L-1 NH4Cl, 130 mg L-1 

KCl, 4225 mg L-1 NaH2PO4.H2O, 7400 mg L-1 Na2HPO4.12H2O, 10 mg L-1 yeast extract 

and 1 mL L-1 of a mineral solution. Solution B contained effluent from the photo-

chemical reactor (393±2 mg COD L-1) plus all the other constituents mentioned for 

solution A except glucose.  

The nutrient solution was prepared in accordance with the procedure described by 

Wiegant and Lettinga (1985) and contained the following (Spectrum Chemicals, CA): 

(mg per L of distilled water): NaHCO3, 6000; NH4HCO3, 70; KCl, 25; K2HPO4, 14; 

(NH4)2SO4, 10; yeast extract, 10; MgCl2.4H2O, 9; FeCl2.4H2O, 2; resazurin, 1; EDTA, 1; 

MnCl2 4H2O, 0.5; CoCl2.6H2O, 0.15; Na2SeO3, 0.1; (NH4)6MoO7.4H2O, 0.09; ZnCl2, 

0.05; H3BO3, 0.05; NiCl2.6H2O, 0.05; and CuCl2.2H2O, 0.03. All the nutrient chemicals 

were 99% pure and procured from Sigma Aldrich (St. Louis, MO). 

5.2.4 Photocatalysis  

Photocatalysis was conducted using sodium lignosulfonate (LS) (99% purity) 

(Sigma-Aldrich, (St. Louis, MO).  A stock suspension of TiO2 nanoparticles (in aqueous) 

was prepared and stored at 21oC in sealed 20 ml vials.  The stock solutions of TiO2 were 
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sonicated in an ultrasonic bath (VWR, Mississauga, ON) for approximately 10-15 min to 

ensure homogeneous mixing prior to preparing the reaction solution. 

Three different TiO2 anatase nanoparticles sizes (5 nm, 10 nm and 32 nm) (Alfa 

Aesar, Ward Hill, MA) were used in this investigation and the size selected was based on 

optimum COD removal. Characteristics for the three different TiO2 nanoparticles are 

shown in Table 5.1.  

Table 5.1  TiO2 catalyst surface area (Choquette-Labbé et al. (2014)). 

Particle Size (nm) Surface Area (m2 g–1) 

51 275±152 

101 131±122 

321 47±22 

1 Particle size as per manufacturer specifications (Alfa Aesar, Ward Hill, MA) 
2 Surface area (m2 g–1) of the TiO2 nanoparticles were determined using a  

Brunauer–Emmett–Teller (BET) gas adsorption technique in a Quantachrome  

NOVA 1200e surface area analyzer (Quantachrome Instruments, Boynton  

Beach, FL).  The instrument temperature was set at 77 K and nitrogen (BOC,  

Windsor, ON) was the adsorbate. 

 

Photocatalytic reactions were performed in a modified Rayonet RPR–100 UV 

photocatalytic chamber (Figure 5.2) (The Southern New England Ultraviolet Company, 

CT).  Configuring this apparatus was previously described by Choquette-Labbé et al. 

(2014).   
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Figure 5.2  Schematic of the photo-reactor. 

 

The photo-reactor was configured with 16 RPR-3000 photochemical UV lamps 

(Southern New England Ultraviolet Co., Branford, CT).  The lamps are able to emit 300 

nm UV light.  The irradiance (9 mW cm–2) was measured using a UVX Radiometer (UV 

Process Supply, Chicago, IL). The UV lamps were turned on 1 hr before initiating the 

experiment to obtain a stable light intensity.  The reaction tubes were placed on the 

carrousel and rotated at a fixed rpm. 

The reaction vessels (25 mm ID x 250 mm) were constructed from Pyrex and fused 

quartz tubing (UV transmitting clear fused quartz (GE 214, Technical Glass Products Inc., 

Painesville Twp., OH)).  The Pyrex upper portion of the vessel was connected to the 

fused quartz bottom using a graded seal (Technical Glass Products, Inc., Painesville Twp., 

OH).  The reaction tubes were wrapped in aluminium foil before placing them in the 

reaction chamber to prevent initiation of the reaction from extraneous light sources. 
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The total liquid volume was maintained at 50 mL and consisted of TiO2 slurry plus 

LS. The solutions were prepared using Milli-Q® water and the mixtures were purged for 

2 minutes with oxygen (BOC Gases Division ltd, Windsor, ON).   After purging, the 

tubes were sealed immediately with Teflon® septa and an aluminium crimp cap. 

Over the duration of the reaction, the reaction vessels were positioned into slots 

placed on a 10-rpm carrousel in the reaction chamber. All experiments were conducted in 

triplicate.   

The effluent from the photo-chemical reactor was centrifuged (Marathon 3200R 

centrifuge, fisher-scientific, Blaine, MN) at 3000 rpm for 20 minutes to separate the TiO2 

particles from the aqueous solution.  The clear centrate was removed and stored prior to 

feeding to the MFCs. 

The chemical oxygen demand (COD) and biological oxygen demand (BOD) of 

liquid samples were determined in accordance with Standard Methods (APHA et al., 

2005). The levels of CO2, H2 and CH4 in the gas samples from the photocatalytic reactors 

and MFCs were determined using a Varian-3600 (Palo Alto, CA) gas chromatograph 

(GC) configured with a thermal conductivity detector (TCD).  A 2 m long × 2 mm I.D. 

Carbon Shin column (Alltech, Deerfield, IL) was used to conduct the gas analysis. The 

GC injector, detector and oven temperatures were set at 100 oC, 200 oC, and 200 oC, 

respectively. The carrier gas used was N2 at a flow rate of 15 mL min-1.  The detection 

limits for CO2, H2 and CH4 were 25 µL per 160 mL bottle, 10 µL per 160 mL bottle, and 

25 µL per 160 mL bottle, respectively. 
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5.2.5 Microbial fuel cell 

5.2.5.1 Microbial fuel cell set up 

The microbial fuel cell (working volume 130 mL) and the air-cathode were 

constructed as previously described by Shewa et al. (2014). The anodes used were carbon 

brush electrodes (Mill-Rose Co., Mentor, OH).  The carbon brush electrode (9 cm long 

and 9 cm in outer diameter) consisted of a Panex 35 carbon fiber fill (400,000 tips per 

inch) fixed to a Titanium stem wire which was 12.5 cm long and 0.135 cm in diameter. A 

schematic of the SCMFC is shown in Figure 5.3. 

 

 

Figure 5.3  Schematic of the single-chamber microbial fuel cell. 

 

The SCMFCs were operated in batch mode. The SCMFCs were fed repeatedly with 

fresh solution A or solution B until the voltage decreased to less than 20±5 mV.  The time 

to decrease to below 20±5 mV was designated as one feeding cycle. 
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5.2.5.2 Data acquisition and analytical methods 

Cell voltages (V) of each MFC were sampled every 5 min using an Agilent 34970A 

data acquisition unit connected to a PC.  A full channel scan was performed for all MFCs 

and the data was stored for analysis.  The potential of the anode and cathode electrodes 

were measured versus an Ag/AgCl reference electrode (Part no. CHI111; CH instruments 

Inc., Austin, TX) with the anode or the cathode as the working electrode.  This was 

conducted by varying the circuit load (external resistance).  The different external 

resistances used were 1,000,000, 10,000, 5,600, 1,000, 680, 470, 330, 220, 100, 47, 8.2 

and 1.5 Ω, with each resistance connected to the circuit for 15 min.  The potential (V) 

was used to calculate the current (I). 

Cyclic voltammetry (CV) was performed using a computer-controlled potentiostat 

(CHI684; CH Instruments, Austin, TX) in a three electrode cell consisting of an anode as 

the working electrode with a counter platinum electrode and a Ag/AgCl reference 

electrode. The polarization and power density curves for SCMFCs were obtained using 

linear sweep voltammetry (LSV). 

The coulombic efficiencies (CE) for SCMFCs fed with solution A and solution B 

were calculated using Equations 5.2 and 5.3, respectively (Logan, 2008).  
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Ms is the molecular weight of the substrate, tb is time for one feeding cycle, F is 

Faraday’s constant, bes is number of moles of electrons per mole of substrate, vAn is the 

volume of liquid in the anode compartment and Δc is the substrate concentration change 

over a feeding cycle.  
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where M is the molecular weight of oxygen (32), b is the number of electrons 

exchanged per mole of oxygen (4) and ΔCOD is the change in the chemical oxygen 

demand (COD) over a feeding cycle.  

5.3. Results and discussion 

5.3.1 Photocatalytic degradation 

5.3.1.1 Irradiation time  

Preliminary studies using LS photocatalytic degradation byproducts were performed 

to assess the optimum irradiation time required for the photocatalytic degradation 

experiments.  The irradiation time profile for the degradation of LS (500 mg L-1) at 

different TiO2 concentrations indicated an increase in CO2 production and COD removal 

efficiency with an increase in the irradiation time.  Longer irradiation time resulted in the 

conversion of LS and intermediate chemicals to CO2 and H2O.  Long irradiation time 

resulted in higher energy consumption and higher retention time.  With complete 

mineralization, the BOD available for electricity production was eliminated. 

The intent of this study was to control LS degradation to produce biodegradable 

intermediates. The optimum illumination time to achieve maximum production of these 

intermediates was 4 hr. Therefore, unless otherwise stated, all subsequent photocatalytic 

degradation experiments were carried out with a 4-hr irradiation time. 
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 5.3.1.2 Effect of particle size 

In this study, a LS concentration of 500 mg L-1 (683 mg COD L-1) was selected to 

assess the effects of various parameters affecting the photocatalytic process.  Of the three 

TiO2 particle sizes selected (Table 5.1), the greatest COD removal was observed for the 

10 nm TiO2 particle (Figure 5.4).  Studies conducted by Almquist and Biswas (2002) 

indicated that, at an effective particle size less than 30 nm, the apparent photoactivity 

increases sharply with particle size and the apparent photoactivity decreases with 

increasing particle size greater than 30 nm.  According to work reported by Choquette-

Labbé et al. (2014), for the photocatalytic degradation of phenol and phenol derivatives 

using 5, 10 and 32 nm TiO2, the predicted optimum particle size was 11 nm.  Studies by 

Almquist and Biswas (2002) are also consistent with this study when comparing the 

effect of 5 nm and 10 nm TiO2 particles on photooxidation reactions.  

 

Figure 5.4  Effect of particle size on COD reduction. 

 

5.3.1.3 Effect of catalyst concentration 

Several studies have indicated different optimum catalyst loadings for different 

chemicals at varying concentration.  The reasons for this variation in the optimum 
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catalyst concentration values from different studies could be due to variation in the 

reactant type and concentration, aeration, irradiation time, reactor size and 

geometry/design, irradiation wavelength and intensity  of the light source  and operating 

conditions of the photoreactor such as temperature, pH, rpm) (Chin et al., 2007; Ray, 

2010; Mozia, 2010). The effect of catalyst loading on LS degradation was examined by 

varying the TiO2 concentration from 0.5 g L-1 to 3.5 g L-1. According to Ahmed et al. 

(2011a), operating at an optimum catalyst loading is required to ensure efficient photon 

absorption and to avoid using excess catalyst.  The data shown in Figure 5.5 indicates the 

highest COD removal efficiency was observed at a catalyst concentration of 1 g L-1. The 

COD removal efficiency increase with increasing catalyst concentration to 1 g L-1; 

however, at greater levels, the removal efficiency remained constant.  Hence, an optimum 

TiO2 concentration of 1 g L-1 was selected to degrade LS at a 4-hr irradiation time and at 

10 rpm.  Note the CO2 yield increased sharply as the TiO2 concentration increased to 1g 

L-1 is similar to data observed for the COD removal efficiency (Figure 5.5 and Figure 5.6).   

 
 

Figure 5.5  COD reduction of LS as a function of TiO2 catalyst concentration. 
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Figure 5.6  CO2 yield as a function of TiO2 catalyst concentration. 

 

 

Beyond a threshold catalyst level, the constant COD removal is likely attributed to 

many factors.   One factor is the formation of catalyst clusters at higher concentrations.   

According to Verma and Dixit (2012), cluster formation leads to less surface area and 

hence, less catalytic sites. Ahmed et al. (2011b) reported that increasing the catalyst 

loading beyond an optimum level results in non-uniform light intensity distribution and 

hence, lower reaction rates. 

5.3.1.4 Effect of oxygen purging and rotation 

The dissolved oxygen in the reaction mixture had a significant effect on the 

degradation process. Dijkstra et al. (2001) reported that oxygen addition directly into a 

reactor caused an appreciable increase in the photocatalytic degradation rate.  During LS 

photo-degradation with and without purging with air, the % COD removed were 43.9±3.0 

and 22.2±2.5, respectively (Figure 5.7).  Similar studies by Pekakis et al. (2006) on the 
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photcatalytic degradation of textile wastewater with and without air sparging reported % 

COD reduction values of 40% and 23%, respectively.  

 
Figure 5.7  Effect of aeration on COD reduction. 

 

The batch reactors in this study were rotated at 10 rpm to attain uniform illumination.  

Photocatalytic degradation was examined with and without rotation. The results indicate 

a final COD of 393±2 mg L-1 and 448±11 mg L-1 with and without rotation, respectively, 

at an initial pH of 8.0, an initial COD of 683 mg COD L-1, 1.0 g L-1 TiO2 and a 4-hr 

reaction time.  Only a 7.9 % difference in COD removal efficiency (Figure 5.7) was 

observed as a result of operating the reactors with and without rotation. 

5.3.1.5 Impact of photocatalytic degradation on biodegradability 

The low BOD observed for LS before photocatalysis indicate it is recalcitrant to the 

inocula (Table 5.2).  After photocatalysis, under conditions of 4-hr irradiation, an initial 

pH of 8.0, 10 rpm, a TiO2 particle size and using 1 g L-1 10 nm catalyst particles, the 

BOD5 (Table 5.2) observed was attributed to the biodegradable organic compounds 

formed during the photocatalytic degradation of LS. A detailed chemical analysis of the 
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organic compounds formed during photocatalysis was not determined in this study. 

However, studies conducted by Tonucci et al. (2012) have indicated the formation of low 

molecular compounds such as methanol, formic acid, acetic acid, and small amounts of 

C-2 and C-3 alcohols after the photocatalytic oxidation of lignin. Lalman and Ray (2011) 

have also identified short chain fatty acids produced from the photocatalysis of a model 

lignin compound. Similar studies conducted by Velegraki et al. (2006) converted a bio 

resistant and toxic compound (acid orange 7) to more readily biodegradable byproducts 

using TiO2-mediated photocatalysis. 

Table 5.2  BOD, COD and gas production data. 

Initial concentration 

(mg L-1) 

Concentration 

after 

photocatalysis 

(mg L-1) 

Gas production 

(mL g-1 COD) 

COD BOD5 COD BOD5 H2 CH4 

685 0 395 150 0.45 121.00 

Note 1: BOD5 = 5-day BOD 

 

The BOD5 of pretreated LS (COD = 393±2 mg L-1) was 150.6±9.0 mg L-1. Using 

this data, the BOD5/COD ratio is approximately 0.38.  Dark fermentation of the 

photocatalysis byproducts was conducted under batch conditions for 4 days at 37±1oC. 

The gas production yield from dark fermentation was 121 mL CH4 per g CODadded. Note 

the theoretical amount of CH4 produced from glucose is 350 mL CH4 per g CODadded.  Hu 

and Stuckey (2006) reported maximum methane production of approximately 83% from 

dilute wastewaters using a novel submerged anaerobic membrane bioreactor. In this study, 

with 4 hours of batch fermentation, approximately 50% of the theoretical quantity was 

attained.  
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5.3.1.6 Effluent pH 

The initial pH of the reaction mixture and the final pH of the effluent from the 

photocatalytic reactor were compared (Figure 5.8).  In all cases, the pH decreased and the 

decrease in pH was likely attributed to the formation of volatile fatty acids and CO2 

during LS photo-degradation.  A maximum change in pH of approximately 2.1 was 

observed in reactors fed 1 g L-1 TiO2 after 4 hour of irradiation.  

 

Figure 5.8  Initial and final pH conditions in photo-reactors operating at different 

TiO2 loadings. 

5.3.2 Microbial fuel cell performance 

5.3.2.1 Characterization of the SCMFCs 

Characterizing the SCMFCs was performed using solution A, the glucose containing 

feedstock. The SCMFCs were initially operated at 21±1oC for 7 cycles (Figure 5.9 a) and 

then at 37±1oC for 4 cycles (Figure 5.9 b).  Work by Ahan and Logan (2010) indicated 

that temperature is an important factor affecting treatment efficiency and power 
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generation and the performance of MFCs was higher under high temperature conditions 

when compared to lower temperature conditions.   

 

 

Figure 5.9  Voltage generation from glucose (500 mg L-1) in SCMFC at (a) 21oC 

and (b) 37oC. Arrows indicate addition of fresh solution. 

 

The SCMFCs produced repeatable and stable voltages in all the feeding cycles at 

21±1oC and 37±1oC. The maximum voltage obtained at 21oC was 535±40 mV.  In 

comparison, the maximum voltage for the SCMFCs operating at 37oC reached 660±10 

mV.  This voltage increase could be due to increase in the population and acclimatization 
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of electrogenic microbes to the mesophilic temperature condition (Jiang et al., 2010).  A 

voltage increase of approximately 23% was observed when comparing data for 21±1oC 

and 37±1oC.  

The maximum current and power densities were determined using linear sweep 

voltammetry (LSV) (Figure 5.10). The LSV study was conducted by varying the potential 

of the working electrode at a scan rate of 1 mV s-1.  The data show that at 21±1oC, 

maximum current and power densities were 1615 mA m-2 and 690 mW m-3, respectively.  

At 37±1oC, the maximum current and power densities increased to 2265 mA m-2 and 850 

mW m-3, respectively (Table 5.3).  The temperature increase from 21±1oC to 37±1oC 

resulted in a 40% and 23% increase in the current and power densities, respectively.  In 

similar studies by Jiang et al. (2010), MFCs operating at 15°C and at 30°C verified that 

higher temperatures increased the bacterial activity, which in return enhanced the power 

output and reduced the internal resistance.  

 

Figure 5.10  Polarization and power density curves at ambient and mesophilic 

temperatures in glucose (Solution A) fed SCMFCs. 
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Table 5.3  Maximum current and power density of SCMFCs operated at ambient and 

mesophilic temperatures for glucose (Solution A) fed SCMFCs. 

Temp-

erature 

(oC) 

Current density Power density Internal 

resistance 

(mA m-3) (mA m-2) (mW m-3) (mW m-2) (ohms) 

21±1 11320±865 1615±125 4845±370 690±55 270±20 

37±1 15890±1940 2265±280 5970±10 850±1 175±40 

 

Electrode potentials measurements at 21±1oC and 37±1oC were performed by 

varying the circuit load as described in section 2.5.2 (Figure 5.11).  This data indicate that 

the oxidation-reduction potential of the SCMFCs increased when the operating 

temperature was increased from 21±1oC to 37±1oC.  

 

 

Figure 5.11  Oxidation-reduction potential of electrodes in glucose (Solution A) fed 

SCMFCs. 
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5.3.2.2 Electricity generation of SCMFCs fed a pretreated lignin model compound 

The maximum voltage produced from the pretreated LS in one feeding cycle was 

270±10 mV.  A typical voltage generation pattern for one feeding cycle is shown in 

Figure 5.12.  Notice the voltage increased to a maximum within 3 hours and gradually 

decreased to 20 mV after approximately 80 hr as the substrate was depleted.  The rapid 

voltage increase is likely attributed to the presence of electrochemical active biofilms 

attached to the anode, rather than the microbes in the medium. Similar observations were 

reported by Fu et al. (2013) who performed experiments using MFCs inoculated with 

mixed cultures.  

 

Figure 5.12  Voltage generation from pretreated lignosulfonate (Solution B) in 

SCMFCs at 21oC for one feeding cycle after attaining a stable voltage. Values are 

averages of triplicates. 

 

The SCMFCs fed solution B generated maximum current and power densities of 

3925±280 mA m-3 and 1165±210 mW m-3, respectively (Figure 5.13). The corresponding 

maximum current and power densities normalized to cathode area are 560±40 mA m-2 

and 165±30 mW m-2, respectively (Figure 5.14).  
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Figure 5.13  Typical power density and polarization curves (normalized to working 

volume) in pretreated lignin (Solution B) fed SCMFCs. 

 

 

Figure 5.14  Typical power density and polarization curves (normalized to cathode 

surface area) for a pretreated lignin model compound (Solution B) fed SCMFCs 

operating at 21oC. 
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5.3.2.3 Microbial biofilm voltammetry 

In this study, cyclic voltammetry (CV) was employed to acquire qualitative data 

related to electrochemical reactions and to locate redox potentials of the electroactive 

species of the SCMFCs.  The potential scan from − 0.5 V to + 0.5 V was performed at a 

scan rate of 1 mV s-1 

According to Zhao et al. (2009), multiple peaks in the cyclic voltammograms of 

bioelectrochemical system are likely due to multi-step parallel or consecutive (series) 

mechanisms or to the presence of several different redox species. The multiple redox 

peaks (Figure 5.15) in the cyclic voltammograms in the SCMFCs fed with glucose 

(Solution A) indicate the presence of several redox species.  Peaks observed for SCMFCs 

fed with pretreated LS (Solution B) indicate the presence of electrogenic bacteria 

attached to the brush electrode (Figure 5.15). The data suggest electrogenic 

microorganisms such as Geobacter sulfurreducens, Shewanella oneidensis MR-1, 

Rhodoferax ferrireducens, Aeromonas hydrophila, Hansenula anomala could be involved 

in the electron transfer process (Wang et al., 2008).  
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Figure 5.15  Cyclic voltammogram for MFCs operating at 21oC. 

 

5.3.2.4 Treatment efficiency 

The photocatalysis reaction converted LS into biologically degradable organic 

compounds and at the same time reduced the COD from 683 mg L-1 to 393 mg L-1 (43% 

COD removal efficiency).  The SCMFC further reduced the COD from 393 mg L-1 to 94 

mg L-1 (76% COD removal efficiency).  The two processes were able to remove 

approximately 86% of the COD due to LS.  The data indicate that integrating 

photocatalyis with an MFC could serve as a potential option for COD removal from 

lignin-rich wastewaters.  Studies conducted by Liu et al. (2012) for single chamber MFCs 

fed a complex steroidal drug industrial effluent reported a COD removal efficiency of 

84%.  

5.3.2.5 Coulombic efficiency  

Comparing CEs reported in the literature is difficult because of differences in 

substrate type and concentration used and the MFC configurations.  Reported CE values 
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ranging from 14-20% for glucose and low values of up to 8% have been reported for 

wastewaters (Lee et al., 2008; Lu et al., 2009).  The coulombic efficiency in this study at 

211oC was 4.7±0.4%. Park and Zeikus (2002) reported a low coulombic efficiency of 4% 

for Shewanella putrefacians culture fed lactate and a MFC configured with a Mn(IV)-

graphite anode and an air-cathode.  Jadhav and Ghangrekar (2009) investigated the 

performance of an MFC exposed to low operating temperature while treating a synthetic 

wastewater also found a CE of 5%. Other similar studies carried out by Zhao et al. 2012 

also reported a CE of 2.8 ± 0.5% using cattle manure as a substrate. 

 The lower CE value in this study is likely due to the consumption of substrate by 

non-electrogenic bacteria.  The possible electron sinks in the SCMFCs could be attributed 

to biomass formation as well as the formation of soluble organic products, H2 and CH4 

(Lee et al., 2008).  Diffusion of oxygen into the SCMFC chamber may also result in 

aerobic degradation of the substrates leading to a decrease in CE (Cheng et al. (2006).  In 

current studies, the authors have observed that at 37±1oC, a coulombic efficiency of 

17.2±1.1 % was obtained using pretreated LS (COD = 393±2 mg L-1).   

5.4 Conclusion 

The pretreatment of LS using TiO2 photocatalysis under illumination for 4 hrs 

revealed that the optimum TiO2 size and loading were 10 nm and 1 g L-1, respectively. 

The SCMFCs fed photocatalysed LS carbon byproducts and operating at 21oC were able 

to produce maximum current and power densities of 3925±280 mA m-3 and 1165±208 

mW m-3, respectively. The corresponding maximum current and power densities 

normalized to cathode area were 560±40 mA m-2 and 165±30 mW m-2, respectively.  
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Photocatalysis together with bioelectrochemical degradation removed 86% of the LS 

COD. 

This investigation demonstrated that combining photocatalysis together with 

bioelectrochemical degradation can be useful for generating electricity from a model 

lignin chemical. The process and method suggested by this study could be useful to the 

pulp and paper and sugar cane milling industries as well as corn processors and other 

facilities generating waste containing lignin. 
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CHAPTER 6 

OPTIMIZING THE PHOTOCATALYTIC DEGRADATION OF A MODEL 

LIGNIN CHEMICAL USING THE BOX-BEHNKEN DESIGN AND 

CONVERTING THE DEGRADATION BYPRODUCTS INTO ELECTRICITY  

6.1 Introduction 

Converting complex organic chemicals in biomass and lower molecular weight 

monomeric components such as sugars and oils into sustainable chemicals and fuels is a 

rapidly evolving research area (Bruijnincx and Roman-Leshkov, 2014).  Biomass is an 

alternative to fossil resources because it is the only source of carbon neutral compounds 

which can be utilized to produce fuels and chemicals (Climent et al., 2014).  According to 

Alonso et al. (2010), starches, triglycerides and lignocellulosics are major classes of 

feedstocks derived from biomass which can be utilized for producing fuels and chemicals.  

Lignocellulosics, another class of feedstock, are abundant and a relatively inexpensive 

non-edible source that can be used instead of expensive starches (Climent et al., 2014).  

Utilizing lignocellulosic biomass is essential because converting starch-based feedstocks 

into biofuels and chemicals is the main cause of decreasing food supplies and elevated 

prices.  

Lignin and cellulose are abundant; however, they are not easily converted into useful 

products using microbial technologies (Schwartz, 2007).  Producing electricity directly 

from cellulose or lignin using bioelectrochemical systems is also a challenge.  The lack of 

a single microbe to hydrolyze cellulose and degrade solid substrates has been resolved by 

Ren et al. (2007).  Ren et al. (2007) reported electricity production from cellulose by 
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employing a binary culture of C. cellulolyticum and G. sulfurreducens.  In similar studies, 

Hassan et al. (2014) also demonstrated electricity generation from rice straw (without 

pretreatment) in microbial fuel cells (MFCs) inoculated with a mixed culture containing 

cellulose-degrading bacteria.  Although, non-woody substrates such as rice straw have 

been utilised in MFCs, no study has demonstrated electricity production from lignin, a 

complex biopolymer containing three monolignol monomers (p-coumaryl alcohol, 

coniferyl alcohol, and sinapyl alcohol) or lignin byproducts (Freudenberg and Nash, 

1968).  

Many researchers have assessed combining an advanced oxidation process (as pre-

treatment or post-treatment) and biological systems to treat a diverse array of industrial 

effluents containing recalcitrant chemicals (Oller et al., 2011). Pokhrel and Viraraghavan 

(2004) suggested that combining physicochemical and biological treatment processes is a 

long-term solution for treating pulp and paper mill effluents containing lignin plus lignin 

byproducts.  Duran et al (1994) reported using fungi to treat an industrial influent 

containing lignin compounds. They indicated the potential of using photochemical and 

biological methods to treat Kraft treatment effluent.  Studies conducted by Pekakis et al. 

(2006) on textile effluents have shown photocatalytic oxidation was as an effective pre-

treatment step prior to biological treatment. Similar studies conducted by Velegraki et al. 

(2006) also revealed that chemical oxidation was utilized as a pre-treatment step to 

convert bioresistant compounds into biodegradable byproducts.  

Many researchers have reported the partial degradation of complex carbon structures 

in short chain chemicals by advanced oxidation processes (AOPs) (Wu and Zhou, 2001; 

De Morais and Zamora, 2005; Chamarro et al., 2011; Yurdakal and Augugliaro, 2012; 
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Shewa and Lalman, 2014). Converting a chemical such as lignosulfonate (LS), a model 

lignin compound, into simple short chain biodegradable carbon chemicals is feasible by 

controlling the photocatalytic reaction steps before ultimately producing CO2.  According 

to Shewa and Lalman (2014), single-chamber microbial fuel cells (SCMFCs) were used 

to produce electricity from a photocatalytic pretreated LS liquor.   

The photocatalytic degradation of organic compounds is affected by parameters such 

as type of photocatalyst and composition, light intensity, initial substrate concentration, 

amount of catalyst, pH of the reaction medium, mixing, ionic components in aqueous 

solution, solvent type, oxidizing agents/electron acceptors, mode of catalyst application 

and catalyst calcination temperature (Ahmed et al., 2011b). Optimizing these factors is 

important to ensure the feasibility of employing a photocatalytic process as a 

pretreatment option.  In work reported by Shewa and Lalman (2014), a one-factor-at-a-

time approach was used to optimize the photocatalytic process. Although this 

conventional optimization approach is widely acceptable, the reported outcomes could be 

insignificant and have less predictive power if the condition for one operating parameter 

changes (Chong et al, 2010).  Hence, many researchers prefer to use multi-variable 

design of experiments and statistical modelling tools to optimize processes such as 

photocatalytic degradation.  

Several response surface methodologies (RSM) designs available for statistical 

modelling include Box-Behnken (BBD), central composite design (CCD), and the 

Doehlert matrix. A comparison between the BBD and other response surface designs 

(CCD, Doehlert matrix, and three-level full-factorial design) has demonstrated that the 

BBD and Doehlert matrix are slightly more efficient than the CCD but much more 
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efficient than the three-level full factorial designs (Ferreira et al., 2007). Myers et al. 

(2009) have also indicated that the BBD is an efficient option and an important 

alternative to the CCD method. Therefore, in this study, the BBD is used to model and 

optimize the photocatalytic degradation of LS.  

The objectives of this study were to optimize the production of biodegradable 

chemicals derived from the photocatalytic treatment of a model lignin compound and to 

assess electricity production in MFCs fed the biodegradable chemicals.  

6.2 Materials and Methods 

6.2.1 Photocatalysis 

6.2.1.1 Photoreactor system 

Photocatalysis was conducted using sodium lignosulfonate (LS) (99% purity, Sigma-

Aldrich; St. Louis, MO).  TiO2 anatase nanoparticles were procured from Alfa Aesar 

(Ward Hill, MA, USA).  Characteristics of the TiO2 nanoparticles were described in work 

reported by Choquette-Labbé et al. (2014).  

A stock suspension of TiO2 (10,000 mg L-1) nanoparticles (in aqueous) was prepared 

and stored at 21oC in sealed 20 ml vials. TiO2 stock solutions were sonicated in an 

ultrasonic bath (VWR, Mississauga, ON) for approximately 10 - 15 min to ensure 

homogeneous mixing prior to reaction solution preparation. 

Photocatalytic reactions were performed in a modified Rayonet RPR–100 UV 

photocatalytic chamber (The Southern New England Ultraviolet Company, CT).  

Configuration of the apparatus and the procedures to execute the photocatalytic 

degradation experiment were reported by Shewa and Lalman (2014). 
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6.2.1.2 Experimental design and optimization study 

TiO2 particles (10 nm) and an irradiation time of 4 hr was used based on work 

reported by Shewa and Lalman (2014). The factors (independent variables) used in this 

study were the substrate concentration (X1), TiO2 concentration (X2) and mixing 

(revolutions per minute (RPM)) (X3). The optimum value of  TiO2 concentration = 1000 

mg L-1 obtained in Chapter 5 using one-at-a-time experimental design method was used 

as center point for X2.  A LS concentration of 500 mg L-1 and RPM of 10 which were 

used to assess the effects of various parameters affecting the photocatalytic process in 

Chapter 5 were used as centre points of factors X1 and X3, respectively. The experimental 

design is shown in Table 6.1. The natural (uncoded) independent variables (X1, X2 and X3) 

are coded according to Equation 6.1 (Yetilmezsoy et al., 2009). The total number of runs 

was selected based on the BBD (15 experiments with 3 center point runs). 

𝑥𝑖 =
(𝑋𝑖−𝑋0)

∆𝑋𝑖
                                                                                    (6.1)                                       

where xi is dimensionless coded value of the ith independent variable, Xi is the uncoded 

value of the ith independent variable, X0 is the uncoded ith independent variable at the 

center point, and ΔXi is the step change value. 

Table 6.1  Experimental design parameters. 

 

Factor 
Model 

Term 

Low   

(-1) 

Middle 

(0) 

High 

(1) 

Step Change 

Values (ΔXi) 

LS concentration (mg L-1) X1 250 500 750 250 

TiO2 concentration (mg L-1) X2 500 1000 1500 500 

RPM X3 5 10 15 5 

Note: 1 mg L-1 of LS = 1.4 mg COD L-1. 
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The response surface model was developed using a statistical regression equation 

(Equation 6.2) (Yetilmezsoy et al., 2009).  

𝑌 = β
o
+∑ β

i
xi

k

i=1

+∑ β
ii
xi
2

k

i=1

+ ∑.

k

i=1

∑ β
ij
xi

k

j=1

xj + ɛ                                        (6.2) 

where Y is the process response or output (dependent variable), k is the number of the 

patterns, i and j are the index numbers for the pattern, β0 is the free or offset term called 

the intercept term, x1, x2,…, xk are the coded independent variables, βi is the first-order 

(linear) main effect, βii is the quadratic (squared) effect, βij is the interaction effect, and ɛ 

is the “error” in the system that include effects such as measurement error on the 

response, other sources of variation that are inherent in the process or system 

(background noise, or common cause variation in the language of statistical process 

control), and the effect of other  variables (Myers and Montgomery, 2002). 

MINITAB 16 (Minitab Inc., State College, PA), a statistical software program, was 

used to determine the second-order polynomial model and obtain the response surface. 

An analysis of variance (ANOVA) was performed to evaluate the model. The numerical 

optimization function in the Minitab software, based on the D-optimality index, was used 

to locate the maximum response within the factor space under evaluation (Chaganti et al., 

2012a). Validation of the model was conducted using the Anderson–Darling statistic 

(ADS) (Stephens, 1974). 

6.2.2 Microbial fuel cell configuration and operation 

Single chamber MFCs (SCMFCs) were inoculated with cultures from two chamber 

MFCs which were previously used for other studies.  The two chamber MFCs were 

inoculated with a mixed anaerobic culture which was obtained from a municipal 



119 
 

wastewater treatment facility (Chatham, ON). Configuration of the MFCs was reported 

by Shewa and Lalman (2014). 

The medium added to the SCMFCs contained the following: glucose or PrLS, 310 

mg L-1 NH4Cl, 130 mg L-1 KCl, 4,225 mg L-1 NaH2PO4.H2O, 7,400 mg L-1 

Na2HPO4.12H2O, 10 mg L-1 yeast extract and 1 mL L-1 of a mineral solution. The mineral 

solution was prepared in accordance with the procedure described by Wiegant and 

Lettinga (1985) and contained the following (Spectrum Chemicals, CA): (mg per L of 

distilled water): MgCl2 4H2O, 9; FeCl2.4H2O, 2; resazurin, 1; EDTA, 1; MnCl2.4H2O, 0.5; 

CoCl2.6H2O, 0.15; Na2SeO3, 0.1; (NH4)6MoO7.4H2O, 0.09; ZnCl2, 0.05; H3BO3, 0.05; 

NiCl2.6H2O, 0.05; and CuCl2.2H2O, 0.03. All the SCMFCs were operated at 37±1oC in a 

temperature-controlled chamber. Fresh SCMFC solution was added when the voltage 

decreased to below 20 mV. 

6.2.3 Analytical procedures and calculations 

Voltage, electrochemical analysis (cyclic voltammetry (CV)) and linear swipe 

voltammetry (LCV)) measurements were performed using procedures described by 

Shewa and Lalman (2014) and Shewa et al. (2014).   Chemicals in the PrLS were 

identified using liquid chromatography-mass spectrometry (LC-MS). The LC-MS 

analysis was performed at McMaster University (Hamilton, Ontario) using a Quattro 

Ultima, a quadrupole-hexapole-quadrupole (QHQ) mass spectrometer, which was 

interfaced to a liquid chromatograph (LC).  The LC (Waters 2695, Milford, MA) was 

configured to a photo-diode array (PDA) detector together with a ternary pump system, a 

column compartment with temperature control and an auto sampler.   The PDA detection 

wavelength was set at 254 nm. Samples were eluted with acetic acid (3000 ppm): 
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methanol (65:35 v/v) at a flow rate of 0.2 ml min-1. The samples were analyzed with a 

Zorbax Eclpse Plus C18, 100 X 3.0 mm X 3.5 micron column which was maintained at 

50 oC. 

COD and BOD were determined in accordance with Standard Methods for the 

Examination of Water and Wastewater (APHA et al., 2005). Samples from SCMFCs for 

COD analysis were prepared by filtering through a 0.2 µm filter. 

The coulombic efficiencies (CE) for SCMFCs were determined using Equation 6.3 

(Logan, 2008).  
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where M is the molecular weight of oxygen (32), tb is time for one feeding cycle, I is the 

current, F is Faraday’s constant, b is the number of electrons exchanged per mole of 

oxygen (4), vAn is the volume of liquid in the anode compartment and ΔCOD is the 

change in the chemical oxygen demand (COD) over a feeding cycle.  

6.2.4 Microbial analysis  

Biofilm samples were removed from the SCMFCs brush anode electrodes for 

microbial analysis.  DNA was isolated from the microbial samples, according to Chaganti 

et al. (2012b). The DNA was quantified and the PCR amplified using universal bacterial 

and Archaeal PCR primers for the 16S rRNA gene targeting the V5-V6 region. The PCR 

was performed in two steps.  In step 1, the targeted V5-V6 region was amplified and in 

step 2, barcodes were included to prepare the library for the next generation sequencing. 

The protocol for step  1 PCR was as follows: 95°C for  150 s followed by 27 cycles of 
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95°C for 30 s, 50°C for 30s and 72°C for 1 min and a final elongation at 72°C for 10 min. 

The protocol of step 2 PCR was as follows: 95°C for  150 s followed by 8 cycles of 95°C 

for 30 s, 60°C for 30s and 72°C for 1 min and a final elongation at 72°C for 5 min.  Both 

the forward and reverse primers used in step 1 of the PCR method included a 12 bp tail at 

the 5’ end which was bound by the corresponding primer (“UniA” and “UniB”) used in 

step 2 of the PCR. Step 2 of the PCR includes the next generation sequencing adapters 

(UniA” and “UniB). The forward primer used in step 2 of the PCR included multiplex 

identifiers (10 to 12 bp) allowed assigning sequences to the original sample and 4 bp key. 

After step 2 of the PCR, the amplicons were visualized on a 1.5 % agarose gel and the 

targeted band was excised from the gel and purified using a Qiagen MinElute gel 

extraction kit (Qiagen Inc., Toronto, Ontario, Canada). Each purified DNA amplicon was 

pooled at equal concentrations for sequencing.  Prior to sequencing, all the PCR amplicon 

types were assessed for fragment size distribution and DNA concentration using an 

Agilent 2100 Bioanalyzer with a high sensitive DNA chip (Agilent Technologies, 

Mississauga, Canada). The samples were adjusted to a final concentration of 26 pM and 

attached to the surface of Ion Sphere particles (ISPs) using an Ion PI™ Template OT2 

200 Kit (Life Technologies, Canada) according to the manufacturer's instructions. 

Manual enrichment of the resulting ISPs resulted in > 90% templated-ISPs.  The 

templated-ISPs which were sequenced on “314” micro-chips using the Ion Torrent 

Personal Genome Machine (PGM; Life Technologies, USA) 125 cycles (500 flows) 

resulted in an expected average read length of > 220 bp for the Ion Express Template 200 

chemistry. After sequencing, the individual sequence reads were filtered within the PGM 

software to remove any low quality and polyclonal sequences.  Sequences matching the 
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PGM 3′ adaptor were also automatically trimmed. All PGM quality filtered data were 

exported as FastQ files. The resulting sequencing data sets were uploaded to the 

Metagenome Rapid Annotation using Subsystem Technology (MG-RAST) server 

(http://metagenomics.nmpdr.org/), checked for low-quality reads prior to de-replication, 

annotation and assignment of phylogenetic identification as described by Meyer et al. 

(2008). 

6.3 Results and discussion 

6.3.1 Photocatalytic degradation 

6.3.1.1 Effects of selected factors on response variable (BOD5 to COD ratio) 

The two dimensional contour plots and three dimensional surface plots, generated 

using Minitab, was used to assess effects of the LS concentration, TiO2 concentration and 

RPM on the BOD5/COD ratio.  The contour plot provides a two-dimensional view where 

all points along the same line indicate a constant response. Similarly, the surface plot 

shows a three-dimensional view which provides an enhanced understanding of the 

response surface.  The concentric contours (Figures 6.1 a-c) and the three-dimensional 

surface plots (Figures 6.2 a-c) indicate the presence of a maximum response point. The 

peak response was located at the mid-point of factor levels (X1= 500 mg L-1, X2 = 1000 

mg L-1 and X3 = 10).  As the factor values move away from the mid-value of the factors, 

the response decreases. 

Increasing the catalyst concentration is a route leading to increasing the number of 

photocatalytic active surface sites and hence, an increase in the number of •OH radicals.  

However, beyond a threshold catalyst level, the turbidity retarded the reaction progress 
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by preventing UV light from penetrating to initiate the degradation process (Rauf et al., 

2011).  In this study, a similar outcome was observed as the TiO2 concentration increased 

to 1000 mg L-1, the BOD5/COD increased and then decreased as TiO2 concentration was 

increased to 1500 mg L-1 (Figures 6.1 a-b).  Rabindranathan et al. (2003) reported an 

increase and subsequent decease in the reponse variable with increasing TiO2 levels for 

the photocatalytic degradation of phosphamidon.  

 

 

 

 

 
 

 

 

 

 

Figure 6.1  Contour plots of the BOD5 to COD ratio of LS after photocatalysis as a 

function of a) TiO2 and LS concentrations, b) RPM and TiO2 concentration and c) RPM 

and LS concentration. Hold values (RPM = 15, LS = 1050 mg COD L-1 and TiO2= 1500 

mg L-1) 
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Figure 6.2  Response surface plot fitted from the experimental results of the Box-

Behnken design (BBD). 
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With increasing LS concentrations up to approximately 500 mg COD L-1, the 

BOD5/COD ratio increased; however, a decrease was observed at levels greater than 500 

mg COD L-1 (Figures 6.1a and 6.1c).  The reduced degradation beyond an initial substrate 

threshold level could be attributed to the saturation of catalytic sites and the inadequate 

production of reactive species such as OH and O2
- (Ahmed et al., 2011a).  Interference 

of reaction intermediates formed by the degradation of LS could also lead to a decrease in 

the degradation efficiency which resulted in a low BOD5/COD ratio (Tzikalos et al., 

2013). Similar studies by Bahnemann et al. (2007) on the influence of the initial substrate 

concentration on the photocatalytic degradation rate noted that the propham degradation 

rate increased to a threshold level with increasing substrate concentrations and with 

increasing the substrate concentration, the degradation rate decreased.   

The effect of each factor on the response variable was also investigated using the 

main effects plot. The main effects plot (Figure 6.3) shows the response mean value for 

each factor.  The magnitude of the vertical displacement is an indication of the strength of 

the main effect on a factor. The large vertical displacement for X1 (LS concentration) 

suggest that the LS concentration has the largest effect on the BOD5/COD ratio when 

compared to the TiO2 concentration (X2) and RPM (X3).  
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 Figure 6.3  Main effect plots for the experimental factors. 

 

Interactions plots are used to assess interaction between the different factors.  An 

interaction is present when the response at a factor level is dependent on the level(s) of 

other factors.  Parallel lines indicate no interaction and non-parallel lines indicate a high 

degree of interaction. Interaction between the factors under consideration is shown in 

Figure 6.4 and Table 6.2. Although interaction is shown between the three variables, 

none of the interactions were significant (p > 0.005).  
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Figure 6.4  Interaction plots showing effects of experimental factors on BOD5 to 

COD ratio. 

 

Table 6.2  ANOVA results for the experimental response at different factor levels (at 95% 

confidence level) 

Source           DF     Seq SS     Adj SS     Adj MS        F           P 

Regression       9   0.135295   0.135295   0.015033    58.57    0.000      S 

  Linear           0.045325   0.054920   0.018307    71.32      0.000      S 

    X1            1   0.044004   0.054199   0.054199   211.15    0.000      S 

    X2            1   0.000448   0.000448   0.000448     1.75      0.243      NS 

    X3            1   0.000873   0.006088   0.006088    23.72      0.005      S 

  Square             0.089233   0.085311   0.028437   110.79    0.000      S 

    X1*X1         1   0.044631   0.052050   0.052050   202.78    0.000      S 

    X2*X2         1   0.009160   0.009684   0.009684    37.73      0.002      S 

    X3*X3         1   0.035442   0.034465   0.034465   134.27    0.000      S 

  Interaction      0.000737   0.000737   0.000246     0.96      0.481      NS 

    X1*X2         1   0.000280   0.000280   0.000280     1.09      0.344      NS 

    X1*X3         1   0.000151   0.000151   0.000151     0.59      0.478      NS 

    X2*X3         1   0.000306   0.000306   0.000306     1.19      0.325      NS 

Residual Error  0.001283   0.001283   0.000257 

  Lack-of-Fit    3   0.001283   0.001283   0.000428       

  Pure Error     2   0.000000   0.000000   0.000000 

Total            14   0.136579 

Notes: R2 = 99.06%, R2 (predicted = 82.91%, R2 (adjusted) = 97.37%; S = 

significant; NS = Not significant; DF = Degrees of freedom; Seq SS = Sequential 

sum of squares; Adj SS = Adjusted sum of squares; Adj MS = Adjusted mean 

square; * = multiplication sign. 



128 
 

6.3.1.2 Model assessment 

The Anderson-Darling statistic (ADS) for the developed model (Section 6.3.3.1) 

confirmed a normal-fit for the probability distribution of the residuals (Figure 6.5). The 

observed ADS (0.265) for the model response was less than the critical ADS value of 

0.752 for a sample size of 39 at a 5% significance level. The associated p-value (0.641) 

of the ADS which was greater than 0.05 confirmed a normal distribution of the residuals. 

 
Figure 6.5  Anderson-Darling normality plot of the residuals. 

 

6.3.1.2 Optimizing the photocatalytic degradation process 

According to Ahmed et al.  (2011b), optimization of the degradation parameters is 

crucial from the perspective of efficient design and application of photocatalytic 

oxidation process to ensure sustainable operation.  Assessing the adequacy of a second-

order model was conducted in accordance with Myers et al. (2009). A second-order 

model equation for the response variable (BOD5/COD ratio) was developed as a function 

of the independent factors (Equation 6.4).  
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𝑌 = 0.365154 − 0.098223𝑋1 − 0.007487𝑋2 − 0.030171𝑋3 − 0.131667𝑋1
2 −

0.052880𝑋2
2 − 0.101924𝑋3

2 + 0.008366𝑋1 ∗ 𝑋2 − 0.008345𝑋1 ∗ 𝑋3 + 0.008747𝑋2 ∗

𝑋3                                                                                                                                               (6.4)  

where Y is the predicted BOD5 to COD ratio and X1, X2 and X3 are the factor values in 

coded units.  

The ANOVA (Table 6.2) indicates terms not significant (p > 0.005). The non-

significant terms were removed with a resulting modified quadratic equation (Equation 

6.5). 

𝑌 = 0.365154 − 0.098223𝑋1 − 0.030171𝑋3 − 0.131667𝑋1
2 − 0.052880𝑋2

2

− 0.101924𝑋3
2                                                                                             (6.5) 

The regression model (Equation 6.4) explained 99.06% of the variation in the response 

variable. The model is predictive, since the calculated F-value (58.57) is greater than the 

critical F-value (3.4). This shows that the model equation is reliable within the range of 

factors under consideration. The experimental factors along their experimental and predicted 

responses based on Equation 6.5 are shown in Table 6.3. 
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Table 6.3  Box-Behnken design matrix for experimental factors along their experimental 

and predicted responses. 

 

Run 

# 

 
Factors 

 
Response (BOD5/COD) 

Residual  
Experimental Predicted 

LS conc. 

(mg COD 

L-1) 

TiO2 

conc. 

(mg L-1) 

RPM Average STD Average STD 

1 350 1000 5 0.252 0.027 0.252 0.029 0.001 

2 1050 1000 5 0.090 0.013 0.072 0.028 0.018 

3 700 500 5 0.246 0.023 0.257 0.002 -0.010 

4 700 1500 5 0.216 0.011 0.224 0.009 -0.008 

5 350 500 10 0.304 0.087 0.295 0.071 0.009 

6 1050 500 10 0.074 0.009 0.082 0.006 -0.008 

7 350 1500 10 0.270 0.015 0.263 0.019 0.007 

8 1050 1500 10 0.073 0.004 0.083 0.024 -0.010 

9 700 1000 10 0.366 0.083 0.365 0.078 0.001 

10 350 1000 15 0.191 0.014 0.208 0.024 -0.017 

11 700 1000 15 0.230 0.028 0.233 0.015 -0.003 

12 700 500 15 0.188 0.017 0.179 0.019 0.009 

13 700 1500 15 0.193 0.016 0.181 0.018 0.011 

Notes: STD = Standard deviation; The average and standard deviation are based on 

triplicate samples.  

 

In this study, a maximum BOD5/COD ratio (0.3859) was obtained under optimum 

conditions of an initial LS concentration of 569 mg COD L-1, a TiO2 concentration of 944 

mg L-1 and at 9 RPM (Figure 6.6).  A stock PrLS feed was prepared based on the 

optimum conditions for subsequent experiments with SCMFCs. LC-MS analysis was 

employed to identify compounds produced from LS photocatalysis.  The structure of 

PrLS compounds identified using the m/z ratio and molecular weight are shown in Table 

6.4. A typical LC-MS spectrum is presented in Appendix B (Figure B1). Characterization 

of the compounds (Table 6.4) revealed the presence of biodegradable compounds which 

include acetic acid (m/z = 59) and muconic acid (m/z = 141). The findings of this study 



131 
 

are consistent with those of Nakamura et al. (2004) who reported similar compounds 

produced from the ozonolysis of sodium lignosulfonate. 

   

 
 

Figure 6.6  Optimality plot locating optimum factor levels for maximized response. 

 

Table 6.4  Compounds identified in PrLS. 

m/z 
Molecular 

weight 
Structure 

59 60 

 

 

 

141 142 

 

 

 
C2H6O4 

179 180 

 

[569.19]                         [944.44]                          [9.34]
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m/z 
Molecular 

weight 
Structure 

223 224 

 

239 240 

 

240 240 

 

305 306 

 

387 388 

 

469 470 

 
 

6.3.2 Microbial fuel cell performance 

6.3.2.1 Voltage generation and adaptation to pretreated LS 

The maximum theoretical voltage output that can be produced from glucose fed to an 

air-cathode MFC, estimated from the biological redox tower of electron donors and 

acceptors, is 1.25 V (He and Angenent, 2006).  The glucose fed SCMFCs used in this 

OH3C

SO3
-Na+
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study generated 620±30 mV. The 50.4% voltage efficiency of the SCMFCs is 

comparable with the voltage efficiency of SCMFCs fed organic substrates (Liu et al., 

2005; Cheng et al., 2006). The lower values of maximum voltages are attributed to 

internal potential losses in MFCs (Hamelers et al., 2010).  

In this study, the SCMFCs were initially operated using a glucose feed. After 

achieving a stable and repeatable voltage of 620±30 mV with the glucose feed, the 

SCMFCs were acclimated to PrLS by employing a feeding procedure divided into three 

stages (Figure 6.7). In the first and second feeding stages, the feed contained 1/3 of PrLS 

and 2/3 of glucose and 2/3 of PrLS and 1/3 of glucose, respectively.  In the third (final) 

phase, the feed was composed of only PrLS.  The COD of the feeds in all phases were 

maintained constant.  The maximum voltages achieved in each phase are shown in Table 

6.5. The maximum voltage obtained when the fed was changed to only PrLs was reduced 

to 410±50 mV (a decreased of 34.5% when compared to feeding glucose). The lower 

voltage when the feed was changed to PrLS is likely attributed to the complexity of PrLS 

compared to glucose (El-Chakhtoura et al., 2014).  However, note the maximum voltage 

achieved from PrLS is comparable to those reported in other studies which used a feed 

containing complex organic chemicals (Wang et al., 2008; Yang et al., 2013).  
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Figure 6.7 Voltage production from GL (glucose) and PrLS (pretreated 

lignosulfonate) at mesophilic temperature for one feeding cycle after acheiving a stable 

and repeatable voltage. 

 

Table 6.5  Maximum voltages obtained with GL and PrLS. 

Substrate 

Maximum Voltage (V) 

Average STD 

Glucose (GL) only 0.620 0.030 

GL(2/3); PrLS(1/3) 0.590 0.010 

GL(1/3); PrLS(2/3) 0.565 0.035 

PrLS only  0.405 0.050 

Note: GL= Glucose; PrLS = Pretreated liginosulfonate;  

STD = Standard deviation 

 

6.3.2.2 Comparative electricity generation 

Different operating conditions, surface area and type of electrodes as well as type of 

microorganisms are factors to consider when comparing the performance of MFCs (Pant 

et al., 2010). In spite of the difficulties associated with comparing the performance of 

MFCs, Pant et al. (2010) compiled a comprehensive inventory of power output as a 
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function of substrate type and concentration, inoculum source and type of MFC. 

Comparing data from this study with other studies is difficult because electricity 

production from PrLS using SCMFCs has not been reported by other researchers.  The 

comparison was instead primarily based on the performance of SCMFCs fed glucose to 

SCMFs fed PrLS (Table 6.6).  

Table 6.6  Electrochemical properties and efficiencies of SCMFCs fed with GL and PrLS. 

Substrate 
Current density Power density Vmax 

(mV) 

OCVmax 

(mV) 

R 

() 

CE 

(%) 

η 
COD 

(%) 

mA m-3 mA m-2 mW m-3 mW m-2 

Glucose 10490 1390 3315 440 620 850 230 17 82 

PrLS 6560 870 1880 250 405 805 340 18 78 

Note: Vmax = Maximum voltage; OCVmax = Maximum open circuit voltage; R = 

Internal resistance; CE = Coulombic efficiency; η 
COD = COD removal efficiency 

 

The power generation from SCMFCs fed PrLS was monitored under similar 

conditions as SCMFCs fed glucose. The COD of the feed containing either glucose or 

PrLS was maintained at 390 mg COD L-1.  The PrLS fed SCMFCs generated maximum 

current and power densities of 6,555±360 mA m-3 and 1,880±105 mW m-3, respectively. 

The corresponding maximum current and power densities normalized to the cathode area 

were 870±50 mA m-2 and 250±15 mW m-2, respectively.  

SCMFCs fed PrLS generated less electricity when compared to those fed glucose 

(Figures 6.8 and 6.9).  The lower power generation from a feed containing PrLS is likely 

due to the presence of complex organic compounds which were not be easily oxidized by 

electrogenic bacteria. The internal resistance (Rin) of the SCMFCs fed with glucose (230 

ohms) was greater than that of PrLS fed SCMFCs (340 ohms).  According to Rabaey and 

Verstraete (2005), the internal resistance is dependent on the electrolyte resistance 
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between the electrodes as well as the membrane resistance. The difference in the internal 

resistance may be attributed to the difference in the type of substrate fed to the SCMFCs. 

Wang et al. (2012) deduced that when compared to MFCs utilizing glucose or acetate, the 

internal resistance of MFCs powered by waste-activated sludge was slightly greater. 

 

 

Figure 6.8 Power density curves normalized to (a) working volume and (b) cathode 

surface area. Note: GL= Glucose; PrLS = Pretreated liginosulfonate. 
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Figure 6.9  Polarization curves of SCMFCs fed GL (glucose) and PrLS (pretreated 

lignosulfonate). 

6.3.2.3 COD removal and coloumbic efficiency  

The COD removal efficiency for glucose (390 mg/L as COD) fed SCMFCs of 82.1 % 

(Table 6.6) was the same as reported by Lee et al. (2008) who reported a COD reduction 

of 82% for MFCs fed glucose (384 mg/L as COD). The COD removal efficiency of the 

PrLS fed SCMFCs was 77.6±2.3% which is slightly lower than the SCMFCs fed glucose 

(82.1%). The lower COD removal in PrLs fed SCMFCs compared to those fed glucose is 

likely caused by the presence of complex non-biodegradable organic compounds.  

Similar studies conducted by Liu et al. (2012) reported COD removal efficiencies ranging 

from 70% to 82% for SCMFCs fed different concentrations of steroidal drug production 

wastewater.  Treatment of the remaining undegraded PrLS chemicals in the effluent was 

not examined; however, an added photocatlytic process could be utilized to remove the 

remaining 22.4% COD. 
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The coulombic efficiency is the fraction of the electrons from degraded organic 

matter that flows in the electrical circuit (Hamelers et al., 2010).  According to Hamelers 

et al. (2010), reported coulombic efficiencies for MFCs range from 5% to 38%, and  

depended on the reactor design, type of wastewaters, temperature etc. Despite the lower 

power generated by the PrLS fed SCMFCs compared to glucose fed SCMFCs, the 

coloumbic efficiency (Table 6.6) was approximately the same for the glucose (17.1±1.2%) 

and the PrLS (17.7±1.2%) fed SCMFCs. 

6.3.2.4 Microbial community analysis  

The bacterial population as well as bacterial activity are important components for 

producing electricity (Liu et al., 2012). The work conducted in this study not only 

demonstrated the utilisation of PrLS for power generation but it also illustrated the 

diversity of the microbial community needed for degrading complex organic structures.      

In this study, the similar microbial sequences for biofilm samples were clustered into 

operational taxonomic units based on a 97% identity aligned with the Greengenes core 

set (DeSantis et al., 2006) and taxonomy was assigned using the RDP (ribosomal 

database project) classifier (Cole et al., 2009).  Greengenes is a web application tool 

which provides access to 16S rRNA sequence alignment for browsing, blasting, probing 

and downloading (http://greengenes.lbl.gov/cgi-bin/nph-index.cgi). RDP  

(https://rdp.cme.msu.edu) is a compilation of analytical tools which provides quality-

controlled, aligned and annotated bacterial and Archaeal 16S rRNA sequences, and 

fungal 28S rRNA sequences. The detailed diversity and abundance of microbial 

communities are presented in Appendix F (Tables F1 and F2). 

http://greengenes.lbl.gov/cgi-bin/nph-index.cgi
https://rdp.cme.msu/
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Comparing the glucose and PrLS fed SCMFCs bacterial communities was conducted 

at phylum-level (Figure 6.10). The major phyla in the glucose fed SCMFCs were 

Bacteroidetes (36.0%) and Proteobacteria (32.6%). In the PrLS fed SCMCs, the most 

abundant phyla were Bacteroidetes (30%) and Firmicutes (10.1%). The bacterial 

diversity detected is in agreement with bacterial diversity reported by Beecroft et al. 

(2012) who conducted studies to assess the performance and to semi-quantitatively 

determine the bacterial community dynamics of biofilm on the anode in MFCs fed 

sucrose. The phylogenetic analysis performed by Beecroft et al. (2012) revealed a diverse 

bacterial community consisting mainly of the phyla Firmicutes and Bacteroidetes and 

different classes of the phylum Proteobacteria. Similar studies conducted by Yusoff et al. 

(2013) revealed that Proteobacteria (38.4%), Bacteroidetes (30.5%) and Firmicutes 

(15.9%) were the three major phyla attached to the anode.  
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Figure 6.10 Phylum-level relative abundance of dominant bacterial a) Glucose fed 

SCMFCs and b) PrLS fed SCMFCs. Note: The numerical values on the chart represent 

the percent microorganisms. 

 

Approximately one-half of the bacteria (47.1%) are unclassified in PrLS fed 

SCMFCs as compared to 3.4% in glucose fed SCMFCs (Figure 6.10). The large percent 

of unclassified bacteria in PrLS fed SCMFCs is attributed to bacterial communities 

utilizing the photocatalytic degradation products as a carbon source.  

6.4 Conclusions  

This study demonstrated the effectiveness of a two-stage process where 

photocatalysis is followed by MFCs to treat lignin compounds and generate electricity. 

The findings have significant impact in understanding the performance of SCMFCs fed 

with PrLS in comparison to those fed glucose.  

The optimization and the modeling of the photocatalytic degradation process of the 

model lignin compound (LS) performed using a Box-Behnken design indicate that the 

factor values for  a maximum BOD5/COD ratio are the initial LS concentration of 569 mg 

COD L-1, a TiO2 concentration of 944 mg L-1 and a mixing rate at 9 RPM. The model 
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employed in this study is suitable for the photocatlytic degradation study because the 

experimental values are in agreement with the predicted values and the assessment of the 

mathematical model revealed that the quadratic model is adequate under the conditions 

examined. 

The PrLS (390 mg COD L-1) fed SCMFCs, operating at 37±1oC, generated 

maximum current and power densities of 6,555±360 mA m-3 and 1,880±105 mW m-3, 

respectively. The corresponding maximum current and power densities normalized to the 

cathode area were 870±50 mA m-2 and 250±15 mW m-2, respectively. The SCMFCs 

removed 77.6±2.3 % of the COD of PrLS and achieved a coloumbic efficiency of 

17.7±1.2%.  
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CHAPTER 7 

COMPARING ENERGY GENERATION FROM A FEEDSTOCK 

GENERATED FROM THE PHOTOCATALYTIC DEGRADATION 

OF BLACK LIQUOR USING A TWO-STAGE ANAEROBIC 

DIGESTION PROCESS AND A MICROBIAL FUEL CELL  

7.1 Introduction  

Energy recovery from waste generated in industrial processes is an important energy 

management strategy for industries to recognize as energy demand continues to grow 

(Francis and Chungpaibulpatana, 2014).  In biorefineries, lignocellulosic wastes are an 

important feedstock which is used for energy recovery.  Energy recovery processes used 

in biorefineries can be classified as chemical, thermal and biological.  Combustion, 

pyrolysis, chemical pretreatment followed by biological treatment, anaerobic digestion 

and gasification followed by biological or catalytic processing are example technologies 

that can be utilized to produce energy and chemicals. 

In biorefineries such as pulp and paper and sugar cane mills, lignocelluosic waste is 

converted into energy by gasification. Black liquor is a waste generated during the 

cooking of wood chips. The primary chemical component of black liquor is lignin, a 

complex heterogeneous aromatic biopolymer (Font et al., 2003).  According to Lara et al. 

(2003), black liquor is also characterized by high alkalinity and a high dissolved solids 

content. 
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With increasing high energy and chemical costs and stringent environment 

regulations, solid waste disposal cost and mill effluent treatment costs, the need for 

improved energy recovery and chemicals from black liquor has become a critical 

economic factor in the operation of pulp mills (Tran and Vakkilainen, 2007). In addition 

to energy recovery form black liquor, the treatment of effluents from pulp and paper 

industries is an increasing concern.  

Aerobic and anaerobic bioprocesses have been used to treat diluted black liquor 

effluents (Kortekaas et al., 1998); however, low biodegradability as well as toxicity are 

major impediments and pretreatment prior to biological treatment is necessary to detoxify 

and facilitate degradation (Leach et al., 1976; Sierra-Alvarez and Lettinga, 1990; Font et 

al., 2003). According to Font et al. (2003), the low biodegradability of black liquor is due 

to the presence of lignin and lignin derivatives.  Lignin is not easily biodegradable 

(Angelidaki and Sanders, 2004) because it is insoluble, chemically complex and lack 

hydrolysable linkages (Reid, 1995).  According to Reid (1995), fungi such as 

basidiomycetes are organisms able to biodegrade lignin; however, the degradation  

process is relatively slow.   

Substrates containing lignin or bacterial cells appear to be the most amendable to 

pre-treatment for enhancing anaerobic digestion (Carlsson et al., 2012). Shewa and 

Lalman (2014) have demonstrated the application of an advanced oxidation process to 

increase the biodegradability and reduce the toxicity of a model lignin compound, sodium 

lignosulfonate (LS). This was achieved through partial/controlled photocatalytic 

degradation using TiO2. Employing pretreatment is useful because toxic and non-

biodegradable chemicals can be converted into biodegradable substrates. 
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Thermal processing technologies such as combustion or gasification are utilized to 

recovery energy from black liquor. Methane production using anaerobic treatment and 

electricity production using microbial fuel cells (MFCs) have not been examined as 

energy recovery options because of the toxicity imposed by chemicals in black liquor on 

microorganisms.   

Anaerobic digestion (AD) is used commercially to treat a variety of organic 

feedstocks from industries and municipalities.  The AD process can be configured with a 

1 or 2-stages. A 1-stage AD process combines hydrolysis, acidogenesis, acetogenesis and 

methanogensis in a single reactor.  In comparison, in a 2-stage AD design, hydrolysis, 

acidogenesis, acetogenesis processes are mediated in the 1st reactor with methanogensis 

in the 2nd stage.  The 2-stage AD process has been used to produce hydrogen plus 

methane in the 1st and 2nd reactor, respectively (Poggi-Varaldo et al., 2014). The 

application and advantages of the 2-stage AD process for bio-energy production using a 

wide range of effluents have been reported by several researchers (Fongsatitkul et al. 

2012;  Kyazze et al., 2007, Liu et al., 2006; Ueno et al., 2007). Recently, Schievano et al. 

(2014) compared the 1-stage and 2-stage AD processes.  According to Schievano et al. 

(2014), the overall energy recovery efficiency (8%–43%) was significantly higher for the 

2-stage AD process under a variety of experimental conditions.  

MFCs are an emerging energy producing technology which are utilized to convert 

organic chemicals into electricity.  MFCs are bioelectrochemical systems that use 

electrochemically active bacteria (Chang et al., 2006) to generate electricity from organic 

compounds. Biodegradable organic substrates include simple molecules, such as 

carbohydrates and proteins, as well as complex mixtures of organic matter present in 
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sewage, animal and food-processing effluents (Logan, 2009).  Logan (2009) has also 

pointed out that the flexibility of microorganisms to use a range of substrates is a leading 

reason for utilizing MFCs for producing electricity from biomass.  Rabaey et al. (2005) 

have argued that the overall conversion efficiencies which can be attained are potentially 

higher for MFCs compared to other processes that produce biofuels such as hydrogen gas, 

methane (biogas) and bio-ethanol.   

The objectives of this study were to convert diluted black liquor into short chain 

carbon byproducts using TiO2 photocatalysis and to assess and compare fuel and 

electricity production from the pretreated black liquor for energy production using a 2-

stage AD process and single chamber microbial fuel cells (SCMFCs), respectively.  

7.2 Material and methods  

Details of the photocatalysis process, AD, and MFCs (Figure 7.1) are described in 

the following sections.  

 

Figure 7.1  Process flow diagram show a) photocatalysis plus AD and b) 

photocatalysis plus MFC processes under consideration. 
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7.2.1 Mixed anaerobic cultures source 

7.2.1.1 Anaerobic reactor culture source 

The mixed culture inoculum used in the anaerobic reactors was obtained from 

anaerobic digesters located at a municipal wastewater treatment facility (Chatham, ON).  

The inoculum pH and volatile suspended solids (VSS) were approximately 6.62 and 

18,200±400 mg L-1.  The reactors were operated at 37±1oC. 

7.2.1.2 MFC microbial culture source  

Microbial cultures for the SCMFCs were taken from two chamber MFCs which were 

used in studies reported by Shewa (2016).  Mixed anaerobic cultures for the two chamber 

MFCs were obtained from anaerobic digesters located at a municipal wastewater 

treatment facility (Chatham, ON).  The SCMFCs were operated at 37±1oC. 

7.2.1.3 Biological oxygen demand (BOD) test inocula 

The BOD test seed culture was obtained from raw domestic wastewater sampled 

from a municipal wastewater treatment facility (Windsor, ON).  The wastewater sample 

was stored at 4oC prior to conducting the test. 

7.2.2 Medium and chemicals 

7.2.2.1 Feed to anaerobic digester 

The basal medium added (mg L-1 of deionized water) to the anaerobic reactors 

contained the following: NaHCO3, 6000; NH4HCO3, 70; KCl, 10; K2HPO4, 12.5; 

(NH4)2SO4, 10; yeast extract, 10; MgCl2∙4H2O, 9; FeCl2∙4H2O, 2; resazurin, 1; EDTA, 1; 

MnCl2∙4H2O, 0.5; CoCl2∙6H2O, 0.15; Na2SeO3, 0.1; (NH4)6MoO7∙4H2O, 0.09; ZnCl2, 
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0.05; H3BO3, 0.05; NiCl2∙6H2O, 0.05; and CuCl2∙2H2O, 0.03. [Adapted from Wiegant 

and Lettinga, 1985]. All the chemicals were 99% purity and purchased from Spectrum 

Chemicals (CA). 

7.2.2.2 Feeds to microbial fuel cell 

The basal medium added to the SCMFCs contained the following: 310 mg L-1 NH4Cl, 

130 mg L-1 KCl, 4225 mg L-1 NaH2PO4.H2O, 7400 mg L-1 Na2HPO4.12H2O, 10 mg L-1 

yeast extract plus 1 mL L-1 of a mineral solution. The mineral solution was prepared in 

accordance with the procedure described by Wiegant and Lettinga (1985) and contained 

the following (Spectrum Chemicals, CA): (mg per L of distilled water): MgCl2∙4H2O, 9; 

FeCl2∙4H2O, 2; resazurin, 1; EDTA, 1; MnCl2∙4H2O, 0.5; CoCl2∙6H2O, 0.15; Na2SeO3, 

0.1; (NH4)6MoO7∙4H2O, 0.09; ZnCl2, 0.05; H3BO3, 0.05; NiCl2∙6H2O, 0.05; and 

CuCl2∙2H2O, 0.03.    

7.2.3 Photocatalysis  

The black liquor (Table 7.1, Figure C1) was obtained from a pulp and paper mill 

(Lakehead, Ontario, Canada) and stored at 4oC.  Photocatalysis of the diluted black liquor 

was performed using TiO2 anatase nanoparticles (10 nm) (Alfa Aesar, Ward Hill, MA, 

USA). The COD concentration of the diluted black liquor was 962 mg L-1. The 

characteristics of the TiO2 nano particles were previously described in Choquette-Labbé 

et al. (2014). The operating conditions for the pretreatment of diluted black liquor were 

selected based on a prior optimization study conducted on the photodegradation of a 

model lignin compound by Shewa et al. (2014b). 
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Table 7.1  Raw black liquor characteristics 

Property Unit Value 

pH   13.40 

Density g L-1 1090±10 

COD mg L-1 208900±1160 

Total solids mg L-1 225±5 

Ash % 13.0±0.5 

Acid soluble  lignin mg g-1 140±45 

Acid insoluble  lignin mg g-1 240±35 

Total lignin % 37.9±7.5 

Total carbohydrate % 2.95±0.50 

 

A stock suspension of the TiO2 nanoparticles (in aqueous) was prepared and stored at 

21oC in sealed 150 ml conical flasks. The stock solutions of TiO2 were sonicated in an 

ultrasonic bath (VWR, Mississauga, ON) for approximately 10–15 min to ensure 

homogeneous mixing prior to reaction solution preparation. 

Photocatalytic reactions were performed in a modified Rayonet RPR–100 UV 

photocatalytic chamber (The Southern New England Ultraviolet Company, CT, USA). 

Configuration of the reactor and procedures followed during the photocatalytic 

degradation experiment were reported by Shewa and Lalman (2014).  

The photocatalytic degradation experiments were conducted at an initial pH of 7. 

The pH of the black liquor solution was adjusted to pH 7 before the reaction using 1 M 

HCl. The pH was not controlled during the reaction.  The pH was determined using a pH 

meter (Symphony, VWR, Mississauga, ON, Canada). All the solutions were prepared 

using Milli-Q® water.  
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The effluent from the photo-chemical reactor was centrifuged (Marathon 3200R 

centrifuge, Fisher-Scientific, Blaine, MN) at 3000 rpm for 20 minutes to separate the 

TiO2 particles from the solution.  The clear centrate, pretreated black liquor (PrBL), was 

removed and stored at 4oC prior to feeding to the anaerobic reactors and SCMFCs.  

After the first stage anaerobic digestion, photocatalysis was performed on the 

effluent for 2 hours using a TiO2 concentration of 1000 mg L-1 and 10 RPM. Next, the 

effluent from the photocatalytic reactor was centrifuged at 3000 rpm for 20 minutes to 

obtain a clear centrate prior to feeding to the 2nd stage AD. 

7.2.4 Anaerobic reactor set-up and operation 

 Before adding the photocatalytic reaction mixture, the anaerobic reactors (160 mL 

Serum bottles) were wrapped in aluminum foil to prevent light penetration. Next, the 

bottles were filled with 50 mL of the PrBL, basal media and  mixed anaerobic culture 

(2000 mg VSS L-1) under a 70% N2 /30% CO2 (Praxair Inc., ON) atmosphere. Finally, the 

bottles were sealed with Teflon-lined silicone rubber septa (Cobert Assoc., St. Louis, 

MO) and aluminum crimp caps (Cobert Assoc., St. Louis, MO). The bottles were agitated 

using an orbital shaker (Lab Line Instruments Model 3520, IA) at 200 rpm and 

maintained at 37±1°C throughout the duration of the study. The study was conducted for 

4 days.  The photocatalysis procedure used for the 1st stage AD was repeated again using 

the effluent from 1st stage AD.   The treated 1st stage AD photocatalytic effluent was fed 

to the 2nd stage AD. 
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7.2.5 Microbial fuel cell set-up and operation 

The MFC (working volume 130 mL) and the air-cathode were constructed as 

previously described by Shewa and Lalman (2014) (Figure 7.2). The carbon brush anodes 

(9 cm long and 9 cm in outer diameter) (Mill-Rose Co., Mentor, OH)  were constructed 

with a Panex 35 carbon fiber fill (400,000 tips per inch) and fixed to a titanium stem wire 

(12.5 cm long and 0.135 cm diameter).  

 

 

Figure 7.2  Schematic of the single-chamber microbial fuel cell. 

 

All the SCMFCs were operated in batch mode at 37±1 ◦C. The SCMFCs were fed 

repeatedly with fresh solution until the voltage decreased to within the range 20 to 50 mV.  

The time for the voltage to decrease within 20 to 50 mV was designated as one feeding 

cycle. 
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7.2.6 Analytical methods  

7.2.6.1 Gas analysis 

Headspace gas samples (25 μl) were removed from the anaerobic reactor every 24 hr 

and analyzed using a Varian-3600 (Varian, Palo Alto, CA) gas chromatograph (GC) 

configured with a thermal conductivity detector (TCD). A 2 m long X 2 mm I.D. Carbon 

Shin column (Alltech, Deerfield, IL) was used for conducting the analysis. The GC 

injector, detector, and oven temperatures were set at 100°C, 200°C, and 200°C, 

respectively. The nitrogen carrier gas flow rate was set at 10 mL min-1. The detection 

limit for methane was 0.0064 kPa [5μL/ bottle (160 mL)].  

7.2.6.2 Electrochemical and biochemical analysis 

Measurement of the voltage, electrochemical analysis (cyclic voltammetry (CV)) and 

linear swipe voltammetry (LCV)) were performed according to the procedures and 

methods described in Shewa et al. (2014a). The coulombic efficiencies (CE) for SCMFCs 

were calculated using Equation 7.1 (Logan, 2008).  

                                           CODFb
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                                                        (7.1) 

where M is the molecular weight of oxygen (32), tb is time for one feeding cycle, I is the 

current, F is Faraday’s constant, b is the number of electrons exchanged per mole of 

oxygen (4), vAn is the volume of liquid in the anode compartment and ΔCOD is the 

change in the chemical oxygen demand (COD) over a feeding cycle.  
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The energy conversion efficiency (ECE) was obtained by multiplying coulombic 

efficiency and potential efficiency (PE) where PE is the ratio between actual cell voltage 

and open circuit voltage (OCV) (Lee et al., 2008). 

COD and BOD of liquid samples were determined in accordance with Standard 

Methods (APHA et al., 2005). Liquid samples were filtered through a 0.2 µm filter paper 

prior to the COD and BOD analyses.  

7.3 Results and discussion 

7.3.1 Photocatalytic degradation 

Biological treatment of wastes containing recalcitrant chemicals is challenging 

because of concerns related to toxicity and biodegradation.  In some cases, researchers 

have utilized model chemicals to assess toxicity and biodegradability before conducting 

studies with effluents containing chemicals containing complex structures. According to 

Oller et al. (2011), a systematic procedure of utilizing model chemicals with 

simultaneous evaluation of toxicity and biodegradability is a usually approach together 

with employing pilot-plant scale studies using industrial effluents. The approach 

suggested by Oller et al. (2011) has been adopted in studies conducted by Shewa et al. 

(2014b).  Shewa et al. (2014b) evaluated the photocatalytic degradation of a model lignin 

compound before assessing the photo degradation of black liquor.  The optimization and 

the modeling of the photocatalytic degradation of the model lignin compound (LS) was 

performed using the Box-Behnken design (BBD) indicated that the factor values for 

maximum BOD5/COD ratio were at an 569 mg COD L-1 LS concentration, 944 mg L-1 
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TiO2 and 9 RPM (Shewa et al., 2014b).  The operational conduction used by Shewa et al. 

(2014b) were an irradiation time of 4 hr and an initial pH of 7. 

The selected operating conditions for black liquor photocatalytic pretreatment were 

5000 mg L-1 black liquor (962 mg COD L-1), 1000 mg L-1 TiO2 concentration and 10 

RPM. The BOD5 and COD of the effluent from the photocatalytic degradation of the 

black liquor were 248 mg L-1 and 620 mg L-1, respectively with a BOD5 to COD ratio of 

0.4.  

7.3.2 Two-stage anaerobic digestion 

The COD of the diluted black liquor fed to the photo-reactor was 962 mg L-1. 

Pretreatment using photocatalysis improved the biodegradability of the diluted black 

liquor feed and at the same time removed 35.5±3.6% of the COD.  Approximately 64.4% 

of the COD (620 g L-1) was available for biogas production. The quantity of biogas 

produced from the 2-stage AD process is shown in Table 7.2.  

Table 7.2  Total biogas production.  

CH4 

(mL per g CODadded) 

Total CH4 production  

from PrBL                     

(mL per g CODadded) 

Total CH4 production 

from diluted BL                          

(mL per g CODadded) 
Stage I Stage II 

160±25 35±3 195±30 130±20 

 

The gas yield from the 1st-stage AD process reached 161 mL CH4 per g CODadded 

(Table 7.2).  Approximately 34 mL CH4 per g CODadded was produced during the 2nd-

stage AD process (Table 7.2). This represents an increase in the CH4 gas yield of 

approximately 21%.  The total amount of CH4 produced based on 1 L or 1.086 kg of 

black liquor was 23.4 L.  Note that the percent solids content of the raw black liquor was 
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approximately 20.6%. The CH4 gas production was approximately 0.022 m3 per kg of 

liquid black liquor. The total CH4 yield (19530 mL CH4 per g CODadded) achieved from 

this study demonstrates the capability of 2-stage AD process to recover energy from 

black liquor. The data indicate photocatalytic degradation resulted in substrates which 

were degraded by anaerobic microorganisms (Liu et al., 2002).  

The CH4 yield from AD of readily biodegradable substrates is variable and typically 

range from 50 to 80% of the theoretical CH4 yield assuming 1 mol glucose produces 3 

mol CH4   (Rabaey et al., 2005).  In this study, the CH4 yield from PrBL AD was 568% 

of the theoretical CH4 yield. The reason for not attaining the maximum biogas production 

might be attributed to the oxidative nature of the photocatalysis process which resulted in 

loss of reduced carbon chemicals for AD (Carlsson et al., 2012). An additional reason is 

the possible presence of residual lignin in the pretreated black liquor. In addition, 

increasing biogas production can be expected if the retention time is extended to greater 

than 4 days.  

7.3.3 Microbial fuel cell performance 

Shewa and Lalman (2014) recently reported electricity production from a feed 

containing a model lignin compound. Evaluating the performance of the SCMFCs was 

based on voltage generation, power density, potential efficiency, columbic efficiency and 

COD removal.  In this case, we tested different feeds that included 1) diluted black liquor, 

and 2) pretreated black liquor (PrBL). 
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7.3.3.1 Electricity generation 

The feasibility of utilizing PrBL as a feedstock for electricity generation was 

evaluated and compared with glucose. The SCMFCs were fed repeatedly with glucose 

and until a repeatable voltage was achieved and thereafter, the reactors were fed with 

PrBL plus glucose in an incremental fashion (Table 7.3). The glucose level in the fed was 

reduced while incrementally increasing the PrBL concentration.  The results show that 

the biofilm adapted to PrBL after three feeding cycles. Similar studies conducted by Chae 

et al. (2009) indicated that an anode biofilm enriched for a specific substrate has the 

potential to acclimate to other substrates within a short time depending on the substrate 

type. The phylum-level relative abundance of dominant bacterial in PrBL fed SCMFCs is 

shown in Appendix F (Figure F1).  

The maximum voltage produced from SCMFCs fed with PrBL at different 

proportions is shown in Table 7.3. The COD content of the feeds at each phase was 

constant in order to compare the electricity generation capacity.  The maximum voltage 

of 524±93 mV which was achieved for PrBL fed SCMFCs was approximately 82% of the 

maximum achieved from glucose fed SCMFCs. The voltage production data clearly 

indicate the electricity producing potential of SCMFCs feed with PrBL (Figure 7.3). 

Table 7.3  Maximum voltages obtained with glucose, glucose plus PrBL mixtures and 

PrBL 

Substrate 
Maximum Voltage 

(V) 

Glucose (GL)  0.640±0.010 

GL(2/3) plus PrBL(1/3) 0.590±0.045 

GL(1/3) plus  PrBL(2/3) 0.600±0.040 

PrBL only  0.525±0.095 

Note: COD content of the feeds at each phase = 620±25 mg/L;  

GL = Glucose; PrBL = Pretreated black liquor. 
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Figure 7.3  Voltage generation from GL (glucose) and PrBL (pretreated black liquor) 

at mesophilic temperature for one feeding cycle after obtaining a stable and repeatable 

voltage. 

 

The SCMFCs controls were operated with the feed containing media plus nutrients 

and without PrBL to demonstrate that PrBL is the source of electron equivalents for 

electricity production.  The controls show that in the absence of PrBL, the electricity 

generation capacity was low (Figure 7.4). A comparison of the voltage produced in the 

presence of PrBL (Figure 7.3) and in the absence of PrBL (Figure 7.4) clearly indicates 

that PrBL and its precursors were substrates which were utilized for electricity generation 

by electrogenic bacteria.  To the best of our knowledge, this is the first study to 

demonstrate electricity production from byproducts produced from diluted 

photocatalyzed black liquor. 
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Figure 7.4 Back ground experiment without substrate (control). 

(Initial COD = 0 mg L-1; Initial pH = 7±1)  

7.3.3.2 Effect of pretreatment 

To examine the impact of black liquor pretreatment on electricity generation, 

SCMFCs fed black liquor were compared with those fed glucose and glucose plus PrBL 

mixtures (Figures 7.3 and 7.5). The diluted black liquor and PrBL fed reactors generated 

electricity with maximum voltages of 565±20 mV and 525±95 mV, respectively.  Notice 

the voltage data (Figures 7.3 and 7.5) indicate substrates depletion after 50 hr for the 

black liquor fed cultures compared to more than 96 hrs for the PrBL fed SCMFCs.  This 

voltage data indicate the diluted black liquor has limited quantity of biodegradable 

substrate for electricity production compared to PrBL irrespective of the greater COD 

level in the diluted black liquor (1000 mg L-1) when compared to PrBL (620 mg L-1). In 

addition, the diluted black liquor has a lower BOD5 to COD ratio of 0.08 compared to 

that of PrBL (BOD5/COD = 0.40). 
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Figure 7.5  Voltage generation from diluted black liquor (Initial COD = 1000 mg L-1; 

Initial pH = 7±1). Arrows indicate addition of fresh feed. 

 

Based on the difference in the voltages, pretreating the diluted black liquor resulted 

in producing a larger and a steady voltage for a longer time when compared to untreated 

diluted black liquor.  The data indicate that employing photocataysis pretreatment is a 

feasible method of improving biodegradability of diluted black liquor and converting it 

into a feed containing biodegradable chemicals which can be utilized for producing 

electricity (Ren et al., 2007; Pant et al., 2010).  The photacatalyic degradation process of 

the diluted black liquor could result in the formation of short chain carbon chemicals as 

well as phenolics which were degraded by the electrogenic microbial community. 

Bermek et al. (2014) claimed that phenolic compounds appeared to be degraded 

successfully by the bacterial community in MFCs. They also reported 50% total phenolic 

removal efficiency in MFC treating olive oil mill wastewater. 
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7.3.3.3 Power density 

According to Pant et al. (2010), the current and power density, CE and substrate 

removal efficiencies differences between various reported studies is due to the 

experimental conditions under examination.  These conditions include initial wastewater 

composition, concentration and MFC operating conditions. The power produced from the 

SCMFCs fed with PrBL was monitored under similar conditions in comparison to those 

fed glucose.  The COD level in the feed containing either glucose or PrBL was 

maintained at 620 mg COD L-1 to aid in comparison of the data set. The PrBL fed 

SCMFCs generated maximum current and power densities of 8,045 mA m-3 and 2,815 

mW m-3, respectively. The corresponding maximum current and power densities 

normalized to the cathode area were 1,065 mA m-2 and 373 mW m-2,  respectively. 

Even though the initial PrBL and the initial glucose fed levels in SCMFCs were 

maintained at a constant COD concentration (620 mg L-1), the amount of electricity 

produced was not the same (Table 7.4).  Several studies conducted with different 

substrates reported less power production than that achieved with acetate and glucose 

(Logan, 2008).  The lower power production could be because of low biodegradability of 

the substrates and difference in biofilm kinetics (Logan and Rabaey, 2012).  SCMFCs fed 

with PrBL generated less electricity when compared to those fed glucose (Figures 7. 6 

and 7.7).  The internal resistance (Rin) of the SCMFCs fed glucose (202 ohms) was 

greater than that of PrLS fed SCMFCs (335 ohms).  A possible explanation for less 

power generation and higher Rin for PrBL fed SCMFCs is the presence of compounds 

which are not be easily oxidized by electrogenic bacteria. These compounds may include 

complex organic chemicals derived from pretreating wood chips (Cardoso et al., 2009). 
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Numerous studies have indicated that the power generation capacity and performance of 

MFCs strongly depends on the type of substrate fed to the MFCs (Catal et al., 2008, Lee 

et al., 2008; Chae et al., 2009; Pant et al., 2010, Sharma and Li, 2010).  

Table 7.4  Electrochemical properties of SCMFCs fed with GL and PrBL.  

Substrate 
Current density Power density 

Rin() 

mA m-3 mA m-2 mW m-3 mW m-2 

Glucose 15630 2070 6425 850 200 

PrBL 8045 1065 2815 375 335 

Note: Rin = Internal resistance. 
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Figure 7.6  Power density curves normalized to (a) working volume and (b) cathode 

surface area. 

 

 

Figure 7.7  Polarization curves of SCMFCs fed GL (glucose) and PrBL (pretreated 

black liquor). 
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7.3.3.4 Coulombic efficiency and COD removal  

The coulombic efficiency is an indicator of the fraction of organic matter diverted to 

electricity production (Lefebvre et al., 2008).  The CE obtained from the PrBL fed 

SCMFCs was 7.8±0.6% (Table 7.5).   Similar studies by Ozkaya et al. (2013) using 

leacheate as a fed to MFCs reported a CE value of 8%.  However, the COD removal 

reported by Ozakaya et al. (2013) was 45% while in this study the COD removed reached 

approximately 89%. Work by Min et al. (2005) has reported a CE of 8% from single 

chamber MFC treating swine wastewater. 

 Table 7.5  Efficiencies of SCMFCs fed with GL and PrBL 

Substrate 

Vmax 

(mV) 

 OCVmax 

(mV) 

PE 

(%) 

CE 

(%) 

ECE 

(%) 

η 
COD 

(%) 

Glucose 642 829 77.4 20.3 15.7 76.1 

PrBL 525 797 65.7 7.8 5.1 89.3 

Note: Vmax = Maximum voltage; OCV = Open circuit voltage; PE = Potential efficiency;  

CE = Coulombic efficiency; ECE = Energy conversion efficiency; η 
COD = COD removal 

efficiency 

 

The low CE (7.8±0.6%) achieved from PrBL might be attributed to the presence of 

methanogens which compete with electrochemically active microorganisms and convert 

organic material to methane (Oliveira et al., 2013).  This is a major drawback of MFCs 

since, methane production can considerably lower the amount of electricity that can be 

potentially harvested (Lefebvre et al., 2008).  However, when considering wastewater 

treatment, this could be acceptable since other processes can be seen as co-treatment 

which results in improving the overall treatment efficiency (Lefebvre et al., 2008). 

In comparison to PrBL, the higher CE value (20.3%) for glucose fed SCMFCs is 

consistent with previous studies conducted on glucose fed MFCs.  The CE reported in this 

study is comparable with values reported by Cheng et al. (2006). Using similar graphite 
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brush anode electrodes and air-cathode, Cheng et al. (2006) reported a CE of 23%.  The 

higher CE values observed for SCMFCs fed glucose is attributed to the biodegradability 

of glucose and its byproducts when compared to PrBL.  Work by Chae et al. (2009) has 

shown a 72.3% CE for acetate-fed MFC while the CE for butyrate, propionate and glucose 

were 43.0%, 36.0% and 15.0%, respectively. Catal et al. (2008) also compared CEs of 

twelve monosaccharides and reported a range from 21 to 37%. 

The potential efficiency for the glucose fed SCMFCs of approximately 77.4% is 

comparable to the potential efficiency (65.7 %) for PrBL. The COD removal efficiencies 

were 76.1% and 89.3% for the glucose fed and PrBL fed SCMFCs, respectively. 

Therefore, the comparable COD removal and potential efficiency achieved when using 

glucose and PrBL as a feed to SCMFCs confirm that microbial fuel cells are a promising 

technology for recovering energy from black liquor pretreated with photocatalysis. 

7.3.4 Comparison of energy production 

Based on the calorific content of glucose, a MFC can theoretically (at 100% 

efficiency during fermentation) deliver 3 kWh for every kg of organic matter (dry weight) 

in one single fermentative step (instead of 1 kWh of electricity and 2 kWh of heat per kg 

in hydrogen and biogas production by employing several process steps) (Rabaey et al., 

2005). To aid the comparison of energy production for the two technologies, the energy 

was calculated based on Joules/CODadded. The energy production was 7143 and 874 J/g 

CODadded for the two stage anaerobic digestion and SCMFC, respectively. The 

corresponding energy generated from the 2 stage AD and SCMFC are 1.98 and 0.24 kWh 

per kg CODadded, respectively. Despite the fact that energy conversion efficiencies are 

higher for MFCs compared to other biofuel production processes, the results from this 
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study indicate that the energy recovered by the SCMFC is less than that of the 2-stage 

AD. The lower generation of electricity by MFCs, which is less than  the theoretical 

expected generation, can be attributed to physical, chemical and biochemical factors that 

include (1) the microbial activity to oxidize the PrBL, (2) electron transfer rate to the 

electrode from the microbes, (3) circuit resistance, (4) proton transfer from the anode 

compartment to the air-cathode, (5) oxygen supply and reduction at the cathode, and (6) 

oxygen diffusion into the anode compartment (Kim et al., 2006). According to studies 

conducted by Liu et al. (2005), factors that are responsible for low electron and energy 

recoveries in MFCs could be attributed to oxygen transfer into the anode chamber, 

substrate loss due to methanogenesis, use of substrate for bacterial growth and production 

of biomass, presence of alternate electron acceptors, such as sulfate present in the 

medium. It should be noted that in the energy production calculation for the SCMFCs, the 

methane produced from the SCMFCs was not taken into account.  

Even though the assessment of energy production for the two technologies revealed a 

higher energy production from 2-stage AD, several potential benefits from using MFCs 

include energy, environmental, operational and economic sustainability (Li et al., 2014). 

Direct electricity generation in MFCs is also an obvious advantage over the 2-stage AD 

which require biogas collection, and the conversion of methane into useful energy carrier 

(He et al. 2005; He, 2013).  The 2 stage AD process which is configured with two 

photocatalytic degradation stages and 2 AD stages is operationally complex when 

compared to SCMFC for energy generation from black liquor (Figure 7.1).  In addition, 

in the 2-stage AD process, biogas storage is complicated, the quality of the biogas 

produced is often suboptimal, and in biogas containing H2S, the removal is costly (Pham 
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et al., 2006). It should be noted that biogas is usually used in combined heat and power 

(CHP) stations and the electric efficiency acieved in such systems is only up to 43% 

(Weiland, 2010). According to Weiland (2010), the other alternatives to the common 

motor CHP stations, such as microgas turbines result in a much lower electric efficiency 

of 25 to 31%. 

7.4 Conclusions 

This study demonstrated the feasibility of using a 2-stage AD or electro-biochemical 

processes for treating and recovering energy from diluted black liquor. The energy 

produced from both systems was analyzed and quantified. This is the first study to 

demonstrate the possibility and potential of producing electricity from diluted black 

liquor using MFCs. The conclusions from this study are as follows: 

 The UV/TiO2 photocatalytic degradation process enhanced the biodegradablility of 

black liquor. 

 A total biogas production of 195±30 mL CH4 per g CODadded was obtained from a 

two-stage anaerobic digestion of PrBL. 

 The PrBL feed SCMFCs, operating at 37oC, generated maximum current and power 

densities of 8045±340 mA m-3 and 2815±120 mW m-3, respectively. The 

corresponding maximum current and power densities normalized to the cathode area 

were 1065±45 mA m-2 and 375±15 mW m-2, respectively. The SCMFCs removed 

89.3±0.8% of the COD of PrBL and achieved a coulombic and potential efficiencies 

of 7.8±0.6% and 65.7%, respectively.  
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 The low current and power densities for SCMFCs fed PrBL compared to those fed 

glucose is likely due to the inability of electrogenic bacteria to oxidize complex 

organic compounds. 

 The 2 stage AD produced higher amount of energy (1.98±0.30 kWh per kg 

CODadded) from PrBL compared to the energy recovered by SCMFC (0.24±0.02 

kWh per kg CODadded). 
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CHAPTER 8 

CONCLUSIONS AND RECOMENDATIONS  

This work in this thesis investigated the importance of photocatalytic degradation as 

a pretreatment method to reduce the toxicity and improve biodegradability of lignin rich 

wastewaters.  The work further demonstrated the possibility of producing electricity from 

the pretreated wastewater using MFCs. MFCs are bioelectrochemical systems that use 

electrochemically active bacteria to generate electricity from organic compounds.  In 

addition to the electricity generation, this research has also given an account of the 

treatment capacity of the photocatalytic degradation and bioelectrochemical processes in 

terms of COD removal efficiency. Chapters 3 and 4 focused on the evaluation and 

selection of best performing anode electrode for the MFC set up. The work in Chapters 5 

and 6 present several key findings on the photocatalytic degradation and MFC 

performances using a model lignin chemical as a substrate. The work in Chapter 7 is 

focused on electricity generation from black liquor using MFC and comparing energy 

production with that of a 2-stage AD process. 

Configuration and selection of electrode material play important role in electricity 

generation from MFCs. In this study an air-cathode single chamber MFC (SCMFC) was 

selected because it has low internal resistance and increased mass transfer from the anode 

to cathode (Liu et al., 2005). SCMFCs are the most likely configuration to be scaled up 

for wastewater treatment due to their high power output, simple structure, and relatively 

low cost (Kim et al., 2007; Cheng and Logan, 2011). The anode electrode performance 

evaluation study conducted in Chapters 3 and 4 indicated that graphite brush electrode is 
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the preferred option and the trend for increasing electricity generation was as follows: 

Brush > POCO3 > G347 > Felt > HK06.  

Chapters 5 and 6 have shown the process for the controlled or partial photocatalysis 

of a model lignin compound, sodium lignosulfonate (LS), and more particularly the 

production of feedstock chemicals by photocatalysis for use in MFCs. The optimization 

and modeling of the photocatalytic degradation process, performed using the Box-

Behnken design method, indicated that a maximum BOD5/COD ratio (0.3859) was 

obtained under optimum conditions of an initial LS concentration of 569 mg COD L-1, 

TiO2 concentration of 944 mg L-1 and 9 RPM. The liquid chromatography–mass 

spectrometry (LC-MS) analysis indicated the presence of several biodegradable 

compounds in the photocatalytic degradation byproducts (PrLS). The PrLS (390 mg COD 

L-1) was used to produce electricity in single chamber microbial fuel cells (SCMFCs) and 

the results from this study indicate that the PrLS fed SCMFCs, operated at 37±1oC, 

generated maximum current and power densities of 6,555±360 mA m-3 and 

1,880±105mW m-3, respectively. The corresponding maximum current and power 

densities normalized to the cathode area were 870±50 mA m-2 and 250±15 mW m-2, 

respectively. The SCMFCs removed 77.6±2.3% of the COD of the PrLS and achieved a 

coulombic efficiency of 17.7±1.2%. 

The most obvious finding to emerge from Chapter 7 is the possibility and potential 

of generating electricity from black liquor, a lignin rich waste from pulp and paper mills, 

using MFCs. The black liquor was pretreated with UV/TiO2 photocatalysis. The effluent 

(PrBL) from the photocatalytic degradation process was fed to SCMFCs and generated 

maximum current and power densities of 8045±340 mA m-3 and 2815±120 mW m-3 
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respectively. The SCMFCs removed 89.3% of the COD of PrBL and achieved coulombic 

and potential efficiencies of 7.8% and 65.7%, respectively. This study demonstrated that 

combining photocatalysis together with a bioelectrochemical process was useful for 

recovering energy from black liquor.  

 In Chapter 7, the energy production from PrBL using a 2-stage anaerobic digestion 

(AD) was assessed and compared with that of SCMFCs. The comparison study revealed 

energy production were 7145±1060 and 875±70 J/g CODadded for the 2-stage AD and 

SCMFC, respectively. Evidence from this study suggests the potential losses in the 

SCMFCs and the chemicals found in PrBLwhich were not converted to electricity might 

be the main reasons for the lower energy yield. Therefore, further work is required to 

reduce the potential losses and explore the possibility of collecting methane from the 

MFCs.  

Further studies on TiO2 recovery and reuse are recommended as this will aid in 

lowering the cost of the photocatalytic degradation process. Techniques to immobilize 

TiO2 could be adopted to avoid post-treatment processes such as filtration  (Ray, 2010; 

Mukherjee et al., 2013).  

Visible light instead of UV light could also be considered for the photocatalysis 

process which could be conducted by modifying TiO2 using methods such as coupling 

with a narrow band gap semiconductor, metal ion/non-metal ion doping, codoping with 

two or more foreign ions, surface sensitization by organic dyes or metal complexes and 

noble metal deposition (Kumar and Devi, 2012).  Note that in spite of extensive research 

efforts, the photocatalytic research efforts in the visible region have remained relatively 

low (Kamat, 2012). 
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 Studies on the continuously operating SCMFCs based on the results obtained in this 

study are also needed to provide design and operation data for practical implementation 

and scaling-up. Research and design considerations will be required to improve the 

performance of MFCs, generate higher electrical energy, and increase the efficiency for 

scaling up the technology. The improvements could include optimization of MFC 

operating conditions, increasing the air-cathode surface area (Cheng and Logan, 2011), 

modification of MFC designs (Janicek et al., 2014) and treatment of electrodes (Feng et 

al., 2010). Note that the manufacturing capacity to produce air-cathodes is the main 

obstacle for commercial production of MFCs which represents both a business 

opportunity and a production challenge (Logan et al., 2015). 
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CHAPTER 9 

ENGINEERING SIGNIFICANCE  

The use of lignin, representing approximately 30% of the organic carbon in the 

biosphere, is becoming more attractive in a variety of applications as it is not dependent 

on the supply and cost of fossil fuel resources. Lignin is a waste product of industrial 

processes such as pulping that utilize plant material and it is readily available in large 

quantities. The overall engineering significance of this dissertation lies in the process for 

the photocatalysis of lignin and more particularly the production of feedstock chemicals 

by lignin photocatalysis for use in microbial fuel cells (MFCs) and in anaerobic 

digestion (AD). The results demonstrate that partial/controlled UV/TiO2 photocatalysis 

of lignin rich wastewater can be used as a pre-treatment method and electricity could be 

successfully generated using MFCs and AD. Therefore, the findings of this dissertation 

contribute to the current interest and search for generating energy from renewable 

resources. 

The evaluation of anode electrode graphite materials (Chapters 3 and 4) contributes 

to the existing knowledge in microbial fuel cell study by providing crucial comparison 

parameters that include energy generation capacity, material properties, biofilm microbial 

diversity and cost of electrode. This study provides tools for selecting suitable anode 

graphite materials and suggests the need to compare and evaluate different carbon 

electrode materials. The results from Chapter 5 on investigating operating parameters 

significantly influence the photocatalytic degradation process of lignin and the 

optimization and modeling study (Chapter 6) of the selected degradation parameters are 
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useful to ensure efficient photocatalytic degradation processes for practical applications 

in pilot or large scale operations.   

Another important engineering significance of this dissertation as articulated in 

Chapter 7 is the energy recovery form black liquor, a lignin-rich waste product from pulp 

and paper industries, using MFCs and AD. This will be an alternative to the currently 

used methods for recovering energy from black liquor which include recovery boilers and 

gasification. An implication of the findings from Chapter 7 is the possibility of using the 

suggested processes (photocatalytic degradation followed bioelectrochemical processes) 

for the generation of electricity or biogas and the simultaneous treatment of wastewaters 

from paper and pulp industries and other facilities that generate lignin-rich effluents.  
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APPENDICES  

APPENDIX A: CALIBRATION CURVES 

 

Figure A1  Calibration curve for hydrogen in GC. 

 

Figure A2  Calibration curve for methane in GC. 
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Figure A3  Calibration curve for carbon dioxide in GC. 

 

Figure A4  Typical COD calibration curve (higher range). 
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Figure A5  Typical COD calibration curve (lower range). 
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APPENDIX B: ANALYSIS OF PRODUCTS PRODUCED DURING THE 

PHOTOCATALYTIC DEGRADTION OF A MODEL LIGNIN CHEMICAL  

 
m/z 

 

Figure B1  Typical LC-MS spectrum for photocatalysed LS. 
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APPENDIX C: BLACK LIQUOR CHARACTERIZATION  

 

Figure C1  Digital picture showing the color of 50,000 mg L-1 black liquor (5 g 

black liquor diluted to 100 mL using DI water) a) without pH adjustment (right) b) pH 

adjusted to 7 (left). 
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APPENDIX D: PROTOCOL FOR CONSTRUCTING THE AIR-CATHODE   

D 1 Material and equipment used for constructing 15 air-cathodes 

The air-cathode construction protocol is adopted from (Cheng et al., 2006 and 

Middaugh et al., 2006). The material used to construct 15 air-cathodes are listed in Table 

D1. The equipment used to construct the air-cathodes are shown in Figure D1. 

Table D1  Material used for constructing 15 air-cathodes. 

S.No. Item Description Unit Quantity 

1 Carbon cloth cm2 540 

2 Carbon black powder mg 850 

3 40% PTFE solution mL 10 

4 60% PTFE solution  (4 

layers)   

5 10% by Weight Platinum on 

Carbon Powder 
mg 1350 

6 Nafion® solution mL 13.5 

 

 

 

 

  

 

Figure D1  Equipment used for constructing air-cathode. 
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D2 Applying the Carbon base layer (diffusion layer)   

1. Cut 15 pieces of carbon cloth (6 cm X 6 cm) each.  

2. Measure 2.5 mg of carbon black for every 1 cm2 of cathode surface area.  

3. Measure 12 µL of 30% PTFE solution for every 1 mg of carbon black.  

4. Mix the carbon black with the PTFE solution.  

5. Spread the paste-like mixture on one the piece of carbon cloth.  

6. Allow the coating to air-dry (Figure D2). 

7. Place the piece of carbon cloth in a pre-heated furnace at 370℃ for about 30 

minutes. 

8. Cool to room temperature.  

 

Figure D2  Digital picture showing carbon cloth pasted with a carbon base layer.  

 

D3: Applying the diffusion layer 

1. Apply one coat of 60% PTFE solution the coated side of the carbon cloth.  

2. Allow the PTFE coating to air-dry for at least 10 minutes.  

3. Place in a pre-heated furnace at 370℃ for 15 minutes.  

4. Cool to room temperature.  

5. Repeat steps 1 to 2 above three more times to add a total of 4 PTFE coatings.  
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D4: Applying the Catalyst layer  

1. Measure the amount of 10% Pt/C corresponding to 2.5 mg of Pt/C for every 1 cm2 

of cathode surface.  

2. Add about 0.83 µL of DI water for every 1 mg of Pt/C in a dropwise fashion to 

the 10% Pt/C. 

3. Measure 10 µL of Nafion solution for every 1 mg of Pt/C using the micropipettor. 

4. Mix the “water-treated” Pt/C with the Nafion solution.  

5. Spread the paste-like mixture on the side opposite the diffusion layer. 

6. Allow the coating to air-dry for at least 24 hours.  

7. Punch out the circular air-cathode using 6 cm diameter circular puncher. 
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APPENDIX E: OPTIMIZATION STUDY AND PRINCIPAL COMPONENT 

ANALYSIS 

 

E1 Optimization study 

There are several design experimental methods available for optimization of 

experimental factors of a process. In this thesis one-at-a-time method of experimental 

design was used in some occasions for parameter study and Box-Behnken design (BBD) 

(Box and Behnken, 1960) was used for the optimization study.  

Though there is a role for one-at-a-time plans that they are more effective than 

orthogonal arrays under certain conditions, the one-at-a-time plans have the following 

draw backs (Frey et al., 2003):  

 More runs are required for the same precision in effect estimation. 

 Some interactions between variables cannot be captured. 

 The conclusions from the analysis are not general (i.e. only conditional main 

effects are revealed). 

 Optimal settings of factors can be missed and 

 One-at-a-time plans essentially rule out the possibility of randomization and 

can be susceptible to bias due to time trends. 

Box-Behnken designs are a class of rotatable or nearly rotatable second-order 

designs based on three-level incomplete factorial designs (Ferreira et al., 2007). For three 

factors its graphical representation can be seen in two forms (Ferreira et al., 2007): 1) A 

cube that consists of the central point and the middle points of the edges, as can be 
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observed in Figure E-a and a figure of three interlocking 22 factorial designs and a central 

point, as shown in Figure E-b. 

 

 

Figure E1  Graphical representation of BBD. 
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Response surface methodology (RSM) was used to optimize the experiments 

designed using BBD.  The second-order model (Equations E1 and E2) was employed in 

the response surface methodology used in this thesis for several reasons (Myers et al., 

2009). Among these are the following: 

1. The second-order model is very flexible. It can take on a wide variety of 

functional forms, so it will often work well as an approximation to the true 

response surface.  

2. It is easy to estimate the parameters (the β’s) in the second-order model.  

3. There is considerable practical experience indicating that second-order models 

work well in solving real response surface problems. 
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where y is the response variable (yield); x1, x2, …, xk are predictor variables; βo is a 

constant; βi is the linear coefficient; βii is the squared coefficient; βij is the cross-product 

coefficient;  i and j are the index numbers; and ɛ  is the “error” in the system that include 

effects such as measurement error on the response, other sources of variation that are 

inherent in the process or system, the effect of other (possibly unknown) variables, and so 

on.  
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E2 Principal Component Analysis (PCA) 

Principal component analysis (PCA) is a statistical technique used to identify 

patterns in data, and express the data in such a way as to highlight their similarities and 

differences (Smith, 2002). A PCA of a set of p original variables generates p new 

variables, the principal components, PC1, PC2,.... PCp, with each principal component 

being a linear combination of the subjects' scores on the original variables (Harris, 2001), 

that is, 

𝑃𝐶1 = 𝑏1,1𝑋1 + 𝑏1,2𝑋2 +⋯+ 𝑏1,𝑚𝑋𝑚 

𝑃𝐶2 = 𝑏2,1𝑋1 + 𝑏2,2𝑋2 +⋯+ 𝑏2,𝑚𝑋𝑚 

. 

                                                               .                                                        (E3) 

. 

𝑃𝐶𝑚 = 𝑏𝑚,1𝑋1 + 𝑏𝑚,2𝑋2 +⋯+ 𝑏𝑚,𝑚𝑋𝑚 

 

The coefficients for PC1 are chosen so as to make its variance as large as possible. 

The coefficients for PC2 are chosen so as to make the variance of this combined variable 

as large as possible, subject to the restriction that scores on PC2 and PC1 (whose variance 

has already been maximized) be uncorrelated. In general, the coefficients for PCm are 

chosen so as to make its variance as large as possible subject to the restrictions that it be 

uncorrelated with scores on PC1 through PCm-1. 
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APPENDIX F: ELECTRODE BIOFILM CHARACTERIZATION STUDY 

Table F1 Diversity and abundance of microbial communities in glucose fed SCMFC. 

Domain Phylum Class Genus Species 

Abunda

nce (%) 

Archaea 

Euryarchaeota 

Methanobacteria 

Methanobacterium 

Methanobacterium 

subterraneum 3.330 

Methanoregula 

Methanoregula 

boonei 3.333 

Methanosaeta 

Methanosaeta 

concilii 16.667 

Methanosaeta 

harundinacea 16.667 

unclassified 

(derived from 

Euryarchaeota) 

unclassified (derived 

from 

Euryarchaeota) 

uncultured 

euryarchaeote 56.667 

unclassified 

(derived from 

Archaea) 

unclassified 

(derived from 

Archaea) 

unclassified (derived 

from Archaea) 

uncultured 

archaeon 3.333 

Bacteria 

Actinobacteria 

Actinobacteria 

(class) Streptomyces 

Streptomyces 

sclerotialus 20.000 

Bacteroidetes 

Bacteroidia 
Parabacteroides 

Parabacteroides 

goldsteinii 4.000 

Porphyromonas 

Porphyromonas 

catoniae 2.286 

Flavobacteriia 

Capnocytophaga 

Capnocytophaga 

sputigena 6.857 

Flavobacterium 

Flavobacterium 

branchiophilum 14.286 

Flavobacterium 

columnare 4.000 

Flavobacterium 

johnsoniae 1.714 

Tenacibaculum 

Tenacibaculum 

mesophilum 0.571 

Sphingobacteriia Terrimonas 

Terrimonas 

ferruginea 2.286 

Deinococcus-

Thermus Deinococci Thermus 

Thermus 

scotoductus 0.571 

Firmicutes Clostridia 
Pelotomaculum 

Pelotomaculum 

propionicicum 0.571 

Coprothermobacter 

Coprothermobacte

r proteolyticus 0.571 

Planctomycetes Planctomycetia 
Pirellula Pirellula staleyi 2.857 

Planctomyces 

Planctomyces 

limnophilus 0.571 

Proteobacteria Betaproteobacteria 

Achromobacter 

uncultured 

Achromobacter sp. 1.143 

Comamonas 

Comamonas 

aquatica 28.571 

unclassified (derived 

from 

Betaproteobacteria) 

uncultured beta 

proteobacterium 0.571 
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Domain Phylum Class Genus Species 

Abunda

nce (%) 

Deltaproteobacteria 

unclassified (derived 

from 

Deltaproteobacteria

) 

uncultured delta 

proteobacterium 0.571 

Gammaproteobacte

ria 

unclassified (derived 

from 

Gammaproteobacter

ia) 

uncultured gamma 

proteobacterium 1.714 

Spirochaetes Spirochaetia Leptospira 

Leptospira 

interrogans 1.714 

unclassified 

(derived from 

Bacteria) 

unclassified 

(derived from 

Bacteria) 

unclassified (derived 

from Bacteria) 

uncultured 

bacterium 3.429 

unclassi

fied 

sequenc

es 

unclassified 

(derived from 

unclassified 

sequences) 

unclassified 

(derived from 

unclassified 

sequences) 

unclassified (derived 

from unclassified 

sequences) 

uncultured 

organism 1.143 
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Table F2 Diversity and abundance of microbial communities in PrLS fed SCMFC. 

Domain Phylum Class Genus Species 

Abund

ance 

(%) 

Archaea 

Euryarchaeota 

Methanomicrobia 

Methanoculleus 

Methanoculleus 

palmolei 30.343 

unclassified (derived 

from 

Methanomicrobiace

ae) 

uncultured 

Methanomicrobiac

eae archaeon 0.003 

Methanolinea 

Methanolinea 

tarda 8.072 

Methanoregula 

Methanoregula 

boonei 0.466 

Methanosaeta 

Methanosaeta 

concilii 4.060 

Methanosaeta 

harundinacea 21.260 

Methanococcoides 

Methanococcoides 

alaskense 0.003 

Methanosalsum 

Methanosalsum 

zhilinae 0.107 

unclassified 

(derived from 

Euryarchaeota) 

unclassified (derived 

from 

Euryarchaeota) 

uncultured 

euryarchaeote 19.751 

unclassified 

(derived from 

Archaea) 

unclassified 

(derived from 

Archaea) 

unclassified (derived 

from Archaea) 

uncultured 

archaeon 15.935 

Bacteria 

Actinobacteria 

Actinobacteria 

(class) Streptomyces 

Streptomyces 

sclerotialus 0.015 

Bacteroidetes 

Bacteroidia 

Bacteroides 

Bacteroides 

vulgatus 0.687 

Porphyromonas 

Porphyromonas 

catoniae 0.120 

Rikenella 

Rikenella 

microfusus 0.008 

Cytophagia Cytophaga 

Cytophaga sp. I-

1858 1.177 

Cytophaga sp. 

MBIC04667 0.216 

Flavobacteriia 

Blattabacterium 

Blattabacterium sp. 

(Blattella 

germanica) 0.127 

Arenibacter 

Arenibacter 

latericius 0.434 

Capnocytophaga 

Capnocytophaga 

canimorsus 0.002 

Capnocytophaga 

ochracea 0.009 

Capnocytophaga 

sputigena 3.475 

Chryseobacterium 

Chryseobacterium 

soldanellicola 0.162 

Coenonia Coenonia anatina 0.042 



200 
 

Domain Phylum Class Genus Species 

Abund

ance 

(%) 

Dokdonia 

Dokdonia 

donghaensis 0.005 

Flavobacterium 

Flavobacterium 

branchiophilum 2.048 

Flavobacterium 

columnare 4.071 

Flavobacterium 

johnsoniae 10.474 

Flavobacterium sp. 

SOC A4(12) 2.984 

Myroides 

Myroides 

odoratimimus 0.009 

Myroides profundi 0.001 

Riemerella 

Riemerella 

anatipestifer 0.001 

Tenacibaculum 

Tenacibaculum 

mesophilum 0.001 

Sphingobacteriia Terrimonas 

Terrimonas 

ferruginea 3.158 

unclassified 

(derived from 

Bacteroidetes) 

unclassified (derived 

from Bacteroidetes) 

marine CFB-group 

bacterium 

MBIC01599 0.777 

Deinococcus-

Thermus Deinococci Deinococcus Deinococcus ficus 0.124 

Firmicutes 

Clostridia 

Tissierella 

Tissierella sp. LBN 

292 0.165 

Fusibacter 

Fusibacter 

paucivorans 0.387 

Acetobacterium 

Acetobacterium 

psammolithicum 0.036 

Desulfosporosinus 

Desulfosporosinus 

sp. DB 0.014 

Pelotomaculum 

Pelotomaculum 

propionicicum 3.025 

unclassified (derived 

from 

Ruminococcaceae) 

Bacteroides 

cellulosolvens 0.222 

Coprothermobacter 

Coprothermobacte

r proteolyticus 0.001 

Negativicutes 

Sporomusa Sporomusa ovata 1.099 

Veillonella 
Veillonella atypica 4.796 

Veillonella ratti 0.304 

Gemmatimonad

etes 

Gemmatimonadete

s (class) Gemmatimonas 

Gemmatimonas 

aurantiaca 0.160 

Planctomycetes Planctomycetia 

Blastopirellula 

Blastopirellula 

marina 0.043 

Pirellula Pirellula staleyi 0.197 

Planctomyces 

Planctomyces 

limnophilus 0.574 
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Domain Phylum Class Genus Species 

Abund

ance 

(%) 

Proteobacteria 

Betaproteobacteria 

Acidovorax 

Acidovorax konjaci 0.504 

Acidovorax 

temperans 0.315 

uncultured 

Acidovorax sp. 0.001 

Brachymonas 

Brachymonas 

petroleovorans 0.077 

Comamonas 

Comamonas 

aquatica 0.056 

Pelomonas 

Pelomonas 

saccharophila 0.001 

Variovorax 

Variovorax 

paradoxus 0.048 

Verminephrobacter 

Verminephrobacter 

eiseniae 0.002 

uncultured 

Verminephrobacter 

sp. 0.001 

unclassified (derived 

from 

Comamonadaceae) 

uncultured 

Comamonadaceae 

bacterium 0.197 

unclassified (derived 

from 

Betaproteobacteria) 

uncultured beta 

proteobacterium 0.833 

Deltaproteobacteria 

unclassified (derived 

from 

Deltaproteobacteria

) 

uncultured delta 

proteobacterium 0.803 

Gammaproteobacte

ria 

Stenotrophomonas 

Stenotrophomonas 

maltophilia 0.089 

unclassified (derived 

from 

Gammaproteobacter

ia) 

Thiobacillus 

prosperus 0.013 

uncultured gamma 

proteobacterium 1.055 

unclassified 

(derived from 

Proteobacteria) 

unclassified (derived 

from 

Proteobacteria) 

uncultured 

proteobacterium 0.003 

Tenericutes Mollicutes Acholeplasma 

Acholeplasma 

modicum 1.073 

unclassified 

(derived from 

Bacteria) 

unclassified 

(derived from 

Bacteria) 

unclassified (derived 

from Bacteria) 

bacterium 

enrichment culture 

clone N47 0.058 

enrichment culture 

bacterium 0.022 

uncultured 

bacterium 46.653 

uncultured soil 

bacterium 0.317 

Eukaryo

ta 

Streptophyta Coniferopsida Pinus Pinus taeda 0.080 

unclassified 

(derived from Florideophyceae Thorea Thorea violacea 0.060 
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Domain Phylum Class Genus Species 

Abund

ance 

(%) 

Eukaryota) 

unassig

ned unassigned unassigned unassigned unassigned 6.592 
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Figure F1  Phylum-level relative abundance of dominant bacterial in PrBL fed 

SCMFCs. 
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