
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1-27-2016

FPGA Based Acceleration of Matrix Decomposition and Clustering FPGA Based Acceleration of Matrix Decomposition and Clustering

Algorithm Using High Level Synthesis Algorithm Using High Level Synthesis

Qing Yun Tang
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Tang, Qing Yun, "FPGA Based Acceleration of Matrix Decomposition and Clustering Algorithm Using High
Level Synthesis" (2016). Electronic Theses and Dissertations. 5669.
https://scholar.uwindsor.ca/etd/5669

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5669&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/5669?utm_source=scholar.uwindsor.ca%2Fetd%2F5669&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

FPGA Based Acceleration of Matrix Decomposition and Clustering

Algorithm Using High Level Synthesis

By

Qing Yun Tang

A Thesis

Submitted to the Faculty of Graduate Studies

through the Department of Electrical and Computer Engineering

in Partial Fulfillment of the Requirements for

the Degree of Master of Applied Science

 at the University of Windsor

Windsor, Ontario, Canada

2016

© 2016 Qing Yun Tang

FPGA Based Acceleration of Matrix Decomposition and Clustering

Algorithm Using High Level Synthesis

by

Qing Yun Tang

APPROVED BY:

__

T. Bolisetti

Department of Civil and Environmental Engineering

__

R. Rashidzadeh

Department of Electrical and Computer Engineering

__

M. Khalid, Advisor

Department of Electrical and Computer Engineering

January 12
th

 2016

iii

Declaration of Co-Authorship / Previous Publication

I. Co-Authorship Declaration

This thesis incorporates the outcome of a joint research undertaken in

collaboration with Ian Janik under the supervision of Dr. Mohammed Khalid. The

collaboration is covered in Chapter 2 of the thesis. In all cases, the key ideas, primary

contributions, experimental designs, data analysis and interpretation, were performed

by the author and co-authors as result of joint research.

I am aware of the University of Windsor Senate Policy on Authorship and I certify

that I have properly acknowledged the contribution of other researchers to my thesis,

and have obtained written permission from each of the co-author(s) to include the

above material(s) in my thesis.

I certify that, with the above qualification, this thesis, and the research to which

it refers, is the product of my own work.

iv

II. Declaration of Previous Publication

This thesis includes 2 original papers that have been previously

published/submitted for publication in peer reviewed journals, as follows:

Thesis Chapter Publication title/full citation Publication

status*

Chapter 1 and

2

I. Janik, Q. Tang, and M. Khalid, “An Overview

of Altera SDK for OpenCL: A User Perspective,”

in Electrical and Computer Engineering

(CCECE), 2015 IEEE 28th Canadian Conference

on, pp. 559-564, 3-6 May 2015.

published

Chapter 3 Q. Tang and M. Khalid, “Acceleration of K-

means Algorithm using Altera SDK for OpenCL“

In preparation

I certify that I have obtained a written permission from the copyright owner(s) to

include the above published material(s) in my thesis. I certify that the above material

describes work completed during my registration as graduate student at the University

of Windsor.

I declare that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my thesis,

published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

v

Abstract

FPGAs have shown great promise for accelerating computationally intensive

algorithms. However, FPGA-based accelerator design is tedious and time consuming if

we rely on traditional HDL based design method. Recent introduction of Altera SDK for

OpenCL (AOCL) high level synthesis tool enables developers to utilize FPGA’s potential

without long development time and extensive hardware knowledge.

AOCL is used in this thesis to accelerate computationally intensive algorithms in

the field of machine learning and scientific computing. The algorithms studied are k-

means clustering, k-nearest neighbour search, N-body simulation and LU decomposition.

The performance and power consumption of the algorithms synthesized using AOCL for

FPGA are evaluated against state of the art CPU and GPU implementations. The k-means

clustering and k-nearest neighbor kernels designed for FPGA significantly out-performed

optimized CPU implementations while achieving similar or better power efficiency than

that of GPU.

vi

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisor

Dr. Khalid for his patient support over the past two years. His encouragement and kind

guidance helped me to surpass difficulties encountered during study and research. I am

really fortunate to have him as my mentor and advisor.

I would like to thank Dr. Rashid Rashidzadeh and Dr. Tirupati Bolisetti for taking

the time from their busy schedule to be part of my thesis committee, and for providing

insightful comments to improve this work.

I would like to give special thanks to Ian Janik for his technical assistance and

suggestions on improving this work. It was my pleasure working with him.

I am also grateful to Dr. Roberto Muscedere for his help in maintaining the

workstations in the lab and providing encouragement and insights on this research.

Most importantly this thesis is dedicated to my parents. This work would not be

possible without their continued support and care.

This research was supported by Natural Sciences and Engineering Research

Council of Canada (NSERC), the Canadian Microelectronics Corporation (CMC) and

Altera Corporation. I would like thank these organizations for providing us with funding,

equipment, and CAD software necessary for this research.

vii

Table of Contents

Declaration of Co-Authorship / Previous Publication .. iii

Abstract ...v

Acknowledgements .. vi

List of Tables .. xi

List of Figures .. xii

List of Acronyms .. xiv

Chapter 1 Introduction..1

1.1 Motivation .. 1

1.2 Thesis Objectives ... 4

1.3 Thesis Outline .. 5

Chapter 2 Computing Platforms and CAD Tools ...6

2.1 Parallel and Heterogeneous Computing ... 6

2.1.2 CPU and Multi-threading ... 7

2.1.1 GPU and Heterogeneous Computing ... 10

2.2 FPGA Architecture and Accelerator Hardware ... 15

2.2.1 FPGA Architecture ... 15

viii

2.2.2 FPGA Accelerators ... 17

2.3 High Level Synthesis ... 19

2.4 Altera SDK for OpenCL .. 21

2.4.1 Overview ... 21

2.4.3 AOCL Specific Features.. 24

2.5 Detailed Analysis of AOCL ... 27

2.5.1 Cost of Floating Point and Integer Operations .. 27

2.5.2 Kernel Launch and Transfer Overhead .. 29

2.5.1 Effective Reduction ... 31

2.6 Brief Summary of Algorithms used in Acceleration ... 34

Chapter 3 Acceleration of K-Means Clustering Algorithm ...36

3.1 Introduction to K-Means Clustering Algorithm ... 36

3.1.1 Introduction... 36

3.1.2 Sequential Algorithm .. 36

3.2 Related Works .. 38

3.3 Synthesis Using AOCL .. 41

3.3.1 Single Threaded Implementation .. 41

3.3.2 Parallel Multi-Kernel Implementation .. 42

3.3.3 Optimization for Different Problem Sizes ... 47

3.3.4 Distance Calculation .. 48

ix

3.3.5 Verification ... 49

3.4 Synthesis Results ... 49

3.4.1 Performance .. 49

3.4.2 Power .. 58

3.5 Discussion .. 60

Chapter 4 Acceleration of K-Nearest Neighbor Search ...62

4.1 Introduction to K-Nearest Neighbor Algorithm ... 62

4.2 Related Works .. 64

4.3 Altera OpenCL Implementation and Synthesis ... 65

4.3.1 Distance Calculation .. 65

4.3.2 Sorting Algorithms .. 68

4.3.2 Implementation Specifics and Use of Channel Extension ... 73

4.4 Result and Discussion .. 74

Chapter 5 Acceleration of N-body Simulation ..80

5.1 Introduction to N-body Simulation Algorithm .. 80

5.2 Related Works .. 81

5.3 Altera SDK for OpenCL Implementation .. 82

5.4 Synthesis Result and Discussion .. 83

Chapter 6 Acceleration of Matrix Decomposition ..86

6.1 Introduction to Matrix Decomposition Algorithms ... 86

x

6.2 Related Works .. 90

6.3 Altera OpenCL Implementation and Synthesis ... 90

6.4 Results and Discussion .. 91

Chapter 7 Conclusion and Future Work ...95

7.1 Summary .. 95

7.2 Evaluation of Altera SDK for OpenCL .. 95

7.3 Future Work ... 97

References ...99

Appendices ..109

Appendix A: AOCL Reduction Sum Kernel Source Code .. 109

Appendix B: AOCL K-Means Kernel Source Code (64 Features version) 110

Appendix C: AOCL K-Nearest Neighbor Kernel Source Code (Heap Sort Version) 113

Appendix D: AOCL N-Body Kernel Source Code .. 116

Appendix E: AOCL Blocked LU decomposition Kernel Source Code 118

Vita Auctoris...121

xi

List of Tables

Table 1. Cost of Floating Point Operations in AOCL .. 28

Table 2. Cost of Fixed Point Operations in AOCL ... 29

Table 3. K-means FPGA vs. CPU Implementation Peak Throughput Result 57

Table 4. K-means FPGA Implementation Hardware Utilization and Frequency 57

Table 5. kNN Performance with 16384 Samples, 4 Clusters and Various Dimension Sizes

... 75

Table 6. kNN Performance with 128 Dimensions, 16384 Samples, and Various Cluster

Sizes .. 75

Table 7. kNN Performance with 128 Dimensions, 4 Clusters and Various Data Sizes ... 75

Table 8. Power Utilization of Various kNN Implementations ... 78

Table 9. FPGA Resource Utilization and Frequency of Various AOCL kNN Kernels ... 78

Table 10. N-body Simulation Performance Result in Term of Throughput 83

Table 11. Blocked LU Decomposition Throughput Performance Results 92

Table 12. Resource Utilizations of Blocked LU Decomposition Kernel 93

xii

List of Figures

Figure 1. Intel Nehalem Architecture [6] .. 9

Figure 2. NVIDIA Kepler Architecture [10] .. 12

Figure 3. An Example of OpenCL Heterogeneous Computing Model [11] 13

Figure 4. Stratix V FPGA Architecture [13] ... 16

Figure 5. Stratix V FPGA ALM Layout [14] ... 17

Figure 6. DE5-Net Accelerator Board Layout [18] .. 19

Figure 7. Altera OpenCL to FPGA Framework [23] .. 22

Figure 8. Example Hardware Architecture Synthesized by AOCL [25] 23

Figure 9. AOCL Shift Register Inference ... 26

Figure 10. Optimized Two Kernel Reduction Block Diagram ... 33

Figure 11. Block Diagram of Parallel K-means Kernels .. 46

Figure 12. Execution Time for Computing 2 Million Objects on FPGA 50

Figure 13. Peak Throughput for Computing 2 Million Objects on FPGA 51

Figure 14. Execution Time for Computing 2 Million Objects on CPU 52

Figure 15. Peak Throughput for Computing around 2 Million Objects on CPU 53

Figure 16. Speedup of FPGA over CPU in Term of Throughput 54

Figure 17. CPU and FPGA Throughput with Varying Cluster Sizes 55

Figure 18. CPU and FPGA Throughput with Varying Object Sizes 55

Figure 19. CPU and FPGA Throughput with Varying Iteration Sizes 56

Figure 20. Power Consumption of CPU and FPGA ... 60

Figure 21. Visualization of 1D Blocked Distance Calculation Kernel 67

xiii

Figure 22. Visualization of 2D Blocked Distance Calculation Kernel 67

Figure 23. Visualization of Heap Data Structure Implemented Using Array [53] 70

Figure 24. Speedup of FPGA and GPU over CPU with Varying Dimension Sizes 76

Figure 25. Speedup of FPGA and GPU over CPU with Varying Cluster Size 76

Figure 26. Speedup of FPGA and GPU over CPU with Varying Data Size 77

Figure 27. Unblocked and Blocked LU Decomposition Algorithm [60] 89

Figure 28. AOCL LU Decomposition Profile Result [60] .. 93

xiv

List of Acronyms

ALM Adaptive Logic Module

AOCL: Altera SDK for OpenCL

AOC: Altera Offline Compiler

API: Application Programming Interface

ASIC: Application Specific Integrated Circuits

CPU: Central Processing Unit

CUDA: Compute Unified Device Architecture

DSP: Digital Signal Processor

FPGA: Field Programmable Gate Array

GPU: Graphics Processing Unit

HDL: Hardware Description Language

HLS: High Level Synthesis

HPC: High Performance Computing

KNN: K-Nearest Neighbors

LAB: Logic Array Block

LE: Logic Element

LUT: Lookup Table

OpenCL: Open Computing Language

OpenMP: Open Multi-Processing

OpenMPI: Open Message Passing Interface

SIMD: Single Instruction Multiple Data

SPMD: Single Program Multiple Data

1

Chapter 1

Introduction

1.1 Motivation

Ever since the invention of the first silicon integrated circuit, performance and

capabilities of microprocessors have been increasing at a staggering pace. In 1965,

Golden Moore made the prediction [1] that the number of transistors in a single

integrated circuit would double every eighteen months. During the course of the last fifty

years, the trend in semiconductor development has proved him correct. As a result

microprocessor with unprecedented computation power has become increasingly cost

effective.

However, in recent years shrinking down the transistor size has become

increasingly difficult [2]. At the same time the demand for high performance yet power

efficient microprocessors is increasing, due to emerging applications in various fields

such as mobile computing, machine learning, data mining and computer graphics. In

future, simply adding more computational devices and memory into a processor may no

longer be the best way of increasing performance. Thus smarter alternative solutions will

be necessary. Introduction of recent generation of Field Programmable Gate Arrays

(FPGAs) with built in floating point DSP blocks enables FPGAs to accelerate

computationally intensive problems, and compete with traditional CPU and GPU based

computing platforms. Unlike a CPU or GPU, an FPGA does not have an instruction set or

fixed pipeline built in. Instead it has large amount of reconfigurable logic that could be

configured to perform any kind of digital logic function. The advantage of FPGA is that

2

when solving different problems, an FPGA could be customized to efficiently solve each

of the problems, and potentially achieve much faster speed and energy efficiency than

CPU or GPU. At the same time comparing to Application Specific Integrated Circuits

(ASICs), FPGA is much more flexible and cost far less to develop. The down side of

FPGA is that traditionally, FPGA requires low level hardware description languages

(HDLs) to program and is very tedious to debug. Essentially the developer has to make

highly detailed description of the hardware architecture that they want the FPGA to

implement. Thus FPGA development requires extensive hardware knowledge, and the

development time is often far longer than developing software for CPUs or GPUs.

High level synthesis tools such as Altera SDK for OpenCL aim to reduce the

difficulty of deploying FPGA computing solutions and makes an FPGA a more favorable

computing platform. OpenCL stands for Open Computing Language, which is an

industry standard parallel programming language for heterogeneous system. The OpenCL

is supported by most CPU and GPU vendors in the past, and the recent introduction of

Altera SDK for OpenCL (AOCL) extended its support to FPGA as well. In AOCL the

developer writes the computationally intensive portion of the program into kernels. The

program setup and the synchronization and control of kernels are written into the host

program. The kernels are compiled by AOCL compiler and Quartus II into FPGA images

prior to execution and are used to configure FPGA as the accelerator. The host program is

compiled by GCC or visual C++ compiler into CPU binary and runs on the CPU. Since

OpenCL is a high level programming language and the AOCL compiler takes care of

generation the hardware description, the difficult of developing on AOCL SDK is much

lower than hand coding HDL. As a result, the AOCL would allow developers to explore

3

more difficult algorithms to accelerate and try out more problem configurations in shorter

amount of time.

Machine learning is one of the fastest growing areas of computer science today,

and its applications span every facet of our daily life. Machine learning is already applied

in fields such as search engines, data mining, computer vision, natural language

processing, robotics, medical science and trading, with new applications being discovered

every day. However, most machine learning algorithms are computationally intensive. In

recent years a lot of research was done on porting machine learning algorithms to parallel

and heterogeneous computing platforms. In many machine learning applications, running

parallelized programs on GPU could give large speedup verses sequential or multi-

threaded programs on CPU. However, high performance GPUs often consume

considerable amount of power, and require a lot of effort to design cooling systems to

effectively handle excessive heat dissipation. In addition, many types of computations are

difficult to parallelize and have to run on CPU, thus incurring extra overhead to transfer

data and synchronize between CPU and GPU. FPGA based acceleration may avert some

of those problem due to low power nature of the FPGA, and the fact that efficient

customized pipelines could be constructed on FPGA fine-tuned for the algorithm to be

accelerated. Another advantage of FPGA high level synthesis platform is that AOCL

allows the execution of sequential code and management of FPGA computing resources

to be done on embedded ARM processor that is packaged into the FPGA. This enables

lower latency memory access and sharing of memory between CPU and FPGA. In

addition, due to low power consumption of ARM processor, the overall power profile of

4

FPGA accelerator could be far lower than CPU – GPU heterogeneous computing

platforms.

However, high level synthesis also has limitations. The high level synthesis

essentially designs hardware based on high level description of algorithms. The hardware

that is generated automatically by software may not be as efficient as hardware designed

by skilled computer engineers. Also, due to limitations of FPGA hardware such as much

lower operation frequency and lower numbers of floating point units than GPU, not all

algorithms will be efficient for FPGA acceleration and high level synthesis.

1.2 Thesis Objectives

The goal of this research is to accelerate computationally intensive applications

such as matrix decomposition, clustering algorithms, and other machine learning and

scientific computing related algorithms using Altera SDK for OpenCL high level

synthesis tool on FPGA. The results in terms of throughput, total processing time and

energy efficiency are compared with traditional multi-core computing platforms such as

CPU and GPU. The advantages and disadvantages of AOCL along with CPU, GPU and

FPGA platforms are also evaluated during this research. The research goals were

achieved through six phases:

1. The fundamentals of parallel programming and Altera SDK for OpenCL platform

were studied.

2. A survey of parallelizable computationally intensive algorithms was conducted

and suitable algorithms for implementation using AOCL on FPGA were selected.

3. The algorithms were implemented on CPU directly for study.

5

4. Those algorithms were implemented on FPGA using AOCL and their correctness

was verified with the CPU implementations.

5. Improvements were made to the base line FPGA implementations in order to

achieve the best performance we could obtain.

6. The best versions of FPGA implementations of the algorithms were tested with

available CPU and GPU implementations to compare performance and efficiency.

1.3 Thesis Outline

The reminder of the thesis is structured as follows: In Chapter 2, the background

on high level synthesis and heterogeneous computing as well as architectures of multi-

core processors and FPGA is discussed. A short introduction to AOCL and the

algorithms that are implemented in this thesis is also given in Chapter 2.

Chapter 3 introduces the K-means clustering algorithm. A detailed report on the

AOCL implementation of this algorithm that was designed during this research is given.

A summary of the state of the art implementations is also provided. The results from

those implementations are compared with the state of the art and discussed at the end of

the chapter. Chapter 4 follows the same format as chapter 3, and describes the research

done to accelerate k-nearest neighbor algorithm. Chapter 5 describes acceleration of N-

body simulation. Chapter 6 describes acceleration of LU decomposition algorithms. Only

brief discussion of the implementation and short comparison of synthesis result will be

given for N-body simulation and matrix decomposition, as their result was not as good as

expected. Lastly, the Chapter 7 provides a summary of the thesis and provides directions

for related future work.

6

Chapter 2

Computing Platforms and CAD Tools

2.1 Parallel and Heterogeneous Computing

Traditionally, the performance of a processor could be increased in two simple

ways: either through instruction level parallelism (ILP), which requires more complex

and longer pipelines or by increasing the clock frequency of the processor. However,

lengthy and complicated pipelines are often less efficient. At the same time increase in

clock frequency for processors has almost stalled in recent years [3], due to the

breakdown of Dennard scaling [4]. Dennard scaling predicts that as the size of transistor

shrinks, the power efficiency would increase while the transistors could be clocked faster.

However, since the release of Pentium 4 processors in 2005, increasing clock frequency

has become very difficult due to excessive power consumption such action entails. This is

known as the power wall. As a result, engineers turned to multi-core designs to increase

performance of the processor, and parallel computing is becoming increasingly important

ever since.

In 2006, researchers from University of California at Berkeley published “The

Landscape of Parallel Computing Research: A View from Berkeley [5],” in which they

reviewed major problems of computing, and summarized common programming models

of parallel computing into 13 kernels that they called “dwarfs.” The kernels cover most

widely used applications of high performance computing. The techniques used to

parallelize those 13 kernels could be applied to most parallel programming application. It

turns out that pattern recognition and machine learning algorithms mostly use 6 out of 13

7

of these “dwarfs”. Namely dense linear algebra, sparse linear algebra, dynamic

programing, MapReduce, backtrack and branch-and-bound, and graphic traversal. For

image processing applications structured grid and spectral algorithms such as FFT and

DCT are also very important. The algorithms that are used in FPGA acceleration in this

research involves dense matrix, MapReduce and structured grid computational patterns.

Not all kinds of algorithm could be parallelized; some computation could be very

difficult to parallelize and thus may run more efficiently on CPU. Heterogeneous

computing systems solve this problem by allowing different kind of processors to work

together. For instance, parts of the computation that is more suited to CPU will be

computed on CPU, while the inherently parallel parts of the computation can be

computed on GPU. Thus processors with different kinds of architectures could be utilized

efficiently by only doing the work that they are best at. Altera SDK for OpenCL is a high

level synthesis tool that extends heterogeneous computing to FPGAs. In this chapter, a

brief overview of hardware and software used in high level synthesis and parallel

computing will be given along with introduction to Altera SDK for OpenCL.

2.1.2 CPU and Multi-threading

Architecture

Central processing unit (CPU) is the most common computing device today.

CPUs are optimized for latency. They usually have very high maximum clock frequency,

and thus are able to execute instruction with very little latency. CPUs utilize instruction

level parallelism (ILP) to increase performance. By exploiting pipeline parallelism and

utilizing superscalar pipeline, a CPU could theoretically execute many instructions every

clock cycle. Perfectly pipelined execution for instructions is not always possible. Data

8

dependencies or branches may cause pipeline to stall. In order to maximize utilization of

the pipeline resources, CPUs often employ out of order execution to dynamically

schedule instructions in the most efficient way possible. Sophisticated branch predictor is

also used to speculate the outcome of branch instructions using statistics to prevent

pipeline stalling. To further increase parallelism, CPUs usually support single instruction

multiple data (SIMD) instructions for vectored operations. Those instructions allow

concurrent execution of the same operation across multiple data. For example, modern

Intel processors support MMX, SSE and AVX instructions. The main memory have

rather limited bandwidth and high access latency, thus they are one of the most common

limiting factor for performance. Therefore, CPUs often have large amount of high speed

on chip cache along with complicated caching scheme to minimize memory operations to

the lowest level of memory hierarchy. An example for CPU architecture is Intel Nehalem

architecture shown in Figure 1.

9

Figure 1. Intel Nehalem Architecture [6]

OpenMP and OpenMPI

To best utilize the capabilities of the CPUs and simplify writing parallel programs,

Application Programming Interface (API) such as OpenMP [7] can be used. OpenMP

stands for Open Multi-Processing [8], which is an API for parallel computing maintained

by OpenMP Architecture Review Board. This API is an industry standard for multi-

thread parallel programming with shared memory model across multiple platforms. It

supports C/C++ and FORTRAN programming languages on most CPU architectures and

operating systems. Most major compilers supports OpenMP, and it could be enabled by

simply turning on a flag. In shared memory model, multiple processers share the same

main memory resources. OpenMP API could be used through compiler directives and

10

library routines. The execution of OpenMP program could be controlled via

environmental variables during runtime. When writing parallel programs with OpenMP,

parallelism is expressed explicitly by forking and joining threads. The process of

OpenMP program first starts with a single thread called the master thread. When the part

of the computation designated for parallel execution is reached, parallel threads are

launched and executed in parallel concurrently. The parallel threads synchronize and

terminate after the parallel computation is complete, whereas the master thread continues

to execute until next parallel region is reached. OpenMP could be used with other parallel

and heterogeneous computing APIs such as OpenCL to help them to utilize CPU more

efficiently.

Open Message Passing Interface (OpenMPI) [9] is a library for exchanging data

between processors with distributed memory. In distributed memory model, each

processor has its own independent main memory, and data exchange between processors

has to be done explicitly; as opposed to shared memory model, where processors share

main memory resources. Message passing and distributed memory will not be discussed

in detail since this research focus on shared memory system with one processor and one

FPGA.

2.1.1 GPU and Heterogeneous Computing

Architecture

GPUs are optimized for throughput. One of the most important performance

metrics of a GPGPU is peak floating-point operations per second (FLOPS). Modern

GPUs can compute thousands of floating point multiply and add each clock cycle. A

state-of-the-art GPU can achieve throughput in the range of teraflops, due to its massively

11

parallel architecture, coupled with moderately high clock frequency of around 1 GHz.

The rate for GPU performance progress outpaces CPU by a wide margin with no sign of

slowing down any time soon.

 Graphics processing units (GPUs) are traditionally used to provide hardware

acceleration for 2D and 3D computer graphics applications. They are massively parallel.

Due to the demand of increasingly realistic computer graphics, the performance of GPUs

has been growing exceptionally fast. GPUs used to have dedicated hardware resource for

processing different type of graphics computations, where each part of the GPU hardware

maps to one stage in graphics pipeline. This design and lack of a user friendly

programming language made programing GPUs for parallel computing very difficult. In

late 2000s, GPUs started to adopt unified shader model, where different stages of

graphics pipeline are processed by identical generic SIMD processors inside GPU.

Together with the introduction of Compute Unified Device Architecture (CUDA) and

OpenCL API has made GPU a powerful general purpose computing device. GPU

architecture is significantly different from CPU architecture. In order to utilize task

parallelism, CPUs dedicate large amount of transistors to complicated control units and

cache. The floating point / integer execution and SIMD units which perform the actual

computation occupy relatively small area of the CPU chip. On GPU however, majority of

the silicon area is dedicated to SIMD units that are responsible for actual computation. A

core in GPU has different meaning compared to CPU as well. While CPU cores are

independent processors, a GPU core is similar to a single ALU in CPU. For example, in

NVIDIA’s Kepler architecture, 16 cores are grouped together in SIMD fashion. A Kepler

equivalent of CPU core is called Streaming Multiprocessor (SMX), which contains 192

12

cores together with other memory and computation related resources. Each SMX is able

to schedule concurrent execution of up to 8 wraps of SIMD instructions per clock cycle.

Similar to CPUs, GPUs also utilize cache to minimize access of main memory. However,

GPUs have much higher main memory bandwidth, but far smaller cache compare to

CPUs. The NVIDIA Kepler architecture is shown in Figure 2.

Figure 2. NVIDIA Kepler Architecture [10]

OpenCL and CUDA

Both OpenCL and CUDA are APIs that facilitates heterogeneous and parallel

computing. The basic idea of CUDA and OpenCL is very similar. However, while

CUDA is proprietary standard that only supports NVIDIA GPUs, OpenCL is an open

13

standard that has been adopted by most hardware manufactures. In this research, CUDA

was only used in performance comparison, whereas Altera’s implementation of OpenCL

was used to construct all the parallel programs. Thus CUDA programming model will not

be discussed in this thesis.

Figure 3. An Example of OpenCL Heterogeneous Computing Model [11]

OpenCL standard [12] was originally proposed by Apple, but is now maintained

by Khronos Groups. Most CPU and GPU manufactures already implemented OpenCL

API for developing parallel programs on their hardware, and recently FPGA and DSP

vendors are starting to follow suit. In OpenCL programming model, programs are divided

into two parts: the host program that runs on the CPU, and the kernels that run on the

accelerators. The host program could be written in standard C or C++, where OpenCL

specific functions are accessed through including OpenCL header file. It is mainly

responsible for managing the memory and computational resource. The parallel

computing kernels are written in a restricted subset of the C99 language, and are executed

on accelerators. An example of OpenCL heterogeneous computing model with multiple

CPUs and GPUs is shown in Figure 3.

14

The host could launch kernels in a way analogous to calling functions. To exploit

the parallel architecture, kernels are usually launched in SPMD (single-program multiple

data) fashion, where multiple instance of one kernel are organized into work-groups that

runs on multiple processors in parallel, but each processing a different part of the data.

Each kernel instance in the workgroup is called a work-item or thread. Work-items could

be arranged in in one, two, or three dimensions, called the N-Dimensional range. In order

to manage the kernel, context is defined in the host program. The context encapsulates

computational resources including devices, kernels, program objects, and memory objects.

It is created and can be modified by using OpenCL API functions. The type of accelerator

is specified in device. The program object includes a set of kernel source and executable,

where each kernel is a function that is to be executed on the device. The memory objects

are created to move data between the host program and the kernel. The order of which the

kernel execution and data transfer commands will proceed is controlled by command

queues. Commands placed on the queue can be blocking or non-blocking, meaning a

certain command could be halted until some commands have been completed, or run

without waiting for anything. Each command placed on to a command queue is executed

consecutively. In order to execute multiple kernels concurrently, multiple command

queues are needed. Event objects can be used to synchronize concurrent tasks or profile

performance.

There are four different types of memory available in OpenCL memory model:

global, constant, local, and private. Global memory can be accessed by every work-item

in all work-groups. It is both readable and writeable but transfer between host and kernel

needs to be managed explicitly through OpenCL buffer objects and functions. Global

15

memory has very long access latencies compared to other memory types and can be the

cause of bottlenecks in performance. Constant memory is optimized for high speed read

only operations. It is faster comparing to global memory, but is not writeable by any

kernel work-items. Local memory is usually allocated from on chip cache. It is relatively

limited in size, but is has much lower access latency and far higher bandwidth than the

global memory. This type of memory is only shared by work-items in the same

workgroup, and is not accessible by the host program. Unlike global memory, local

memory allows random access without heavy performance penalty. Finally, private

memory is an area of memory that is accessible by only a single work-item. It is usually

implemented by registers, and thus is the fastest type of memory available.

2.2 FPGA Architecture and Accelerator Hardware

2.2.1 FPGA Architecture

FPGA stands for Field Programmable Gate Array. Unlike CPU and GPU, an

FPGA does not have fixed pipeline or instruction set, but instead can be programed to act

as any kind of digital logic circuit. FPGA is mostly composed of LABs (Logic Array

Blocks) arranged in arrays connected by programmable routing structures. Each LAB

contains a number of Logic Elements (LEs) which are the most important building block

of an FPGA. Logic element consists of a Lookup Table (LUT), a D Flip-Flop or register,

and sometimes additional circuits such as carry logic for increased functionality or

flexibility. The LUT is made up of a tree of multiplexers with array of memory elements

as input. Dependent of what data was written to the memory element during

configuration, a logic element could perform any kind of desired combinational logic

functions. On the other hand the register or D Flip-Flop allows the logic element to

16

perform sequential logic functions. The lookup tables, interconnects, and any other

programmable functions in FPGA are controlled by control bits made up of SRAM cells.

Before an FPGA could be used, the FPGA must first be configured, which means data

must be written to the SRAM cells to set the functionality of the FPGA. Since SRAMs

are rewritable, FPGAs can be reprogrammed to adapt to different kinds of applications.

Figure 4. Stratix V FPGA Architecture [13]

Modern FPGAs usually have more complex logic cells with multiple LUTs, and

dedicated hard logic such as blocked memory, DSP blocks or even embedded processors

for more efficient logic utilization and higher performance. The basic layout of the Altera

Stratix V FPGA use in this research is shown in Figure 4. The type of logic fabric used in

Stratix V FPGAs is called adaptive logic modules (ALM), with contains 8 input fractural

LUTs, and multiple embedded adders and registers. The block diagram of ALM and its

LUT layout is shown in Figure 5.

17

FPGAs are usually programmable by using Hardware Description Languages

(HDL). A synthesis tool is required to compile the design described by HDL into

hardware binary called image, which can be used in configuration to write to the SRAM

blocks.

Figure 5. Stratix V FPGA ALM Layout [14]

2.2.2 FPGA Accelerators

Altera SDK for OpenCL currently supports Stratix V, Cyclone V and Arria 10

FPGAs. FPGAs by themselves cannot directly interface with the host. The FPGA

accelerators comes in the form of a PCIe card, which include one or more FPGAs, along

with main memory, various types of other memories, high speed data channels, and

configuration circuitry. Use of PCIe interface allowed easy addition of FPGA

accelerators into existing host systems. Off the shelf FPGA accelerator cards are

available from companies such as Nalltech, Terasic and Bittware. Developers could also

18

modify the reference board design and create their own accelerators [15]. Various types

of FPGAs that supports Altera SDK for OpenCL contain different amount of

reconfigurable hardware in different configurations. They are suitable for different

applications, and are marketed at different price range. For example, the Stratix V FPGA

contains much more reconfigurable hardware on chip, but is also quite expensive;

whereas the Cyclone V FPGA has less reconfigurable hardware on chip, but is also

cheaper. Cyclone V also contains an ARM processor that could act as host. Each

accelerator board comes with board support package (BSP) software that has to be

installed into Altera OpenCL SDK. The board support package contains the necessary

drivers, libraries and utilities for the Altera OpenCL SDK to interface with device. A list

of available development boards can be found on Altera Cooperation website [16].

The main FPGA accelerator card used in this research is DE5-Net made by

Terasic Inc. It contains a single Stratix V A7 FPGA, along with 4GB of DDR3 SDRAM

as main memory. StratixV A7 FPGA [17] includes 622,000 Logic Elements (LEs),

939,000 registers, and 256 DSP blocks. The DSP blocks could be used to perform high

speed variable precision multiplications, additions and other fixed or floating point

operations. It also includes 50 Mbits of M20K memories, and 7.16 Mbits of memory

logic array blocks (MLAB). Those memories are located very close to the logic fabric,

thus could offer very high throughput if used as local memory for OpenCL kernels. In

addition, the FPGA includes hard PCIe Gen 3 IP blocks and 14.1-Gbps transceivers for

high speed host to device and device to peripheral communication. The layout of DE5-

Net Accelerator board is shown in Figure 6.

19

Figure 6. DE5-Net Accelerator Board Layout [18]

Nallatech 385-A7 [19] accelerator was also available for this research. The 385-

A7 contains identical Stratix V FPGA, but with 8GB of DDR3 RAM, and consumes less

power. The performance of the two boards is similar; however, the 385 board seems to

use slightly more reconfigurable hardware to implement the memory controller, thus

slight less hardware is available for kernels.

2.3 High Level Synthesis

Due to the fact that FPGAs does not have fixed pipeline and can be configured

based on requirement of specific problems, in many applications they could potentially

generate orders of magnitude increases in performance when programmed properly.

However, traditionally applications on FPGAs were developed using hardware

description languages such as VHDL or Verilog, which requires developers to have in

depth hardware knowledge. Long development time and tedious debugging process made

developing on FPGA much more costly comparing to developing software for CPU or

20

GPU. This greatly limited the applications of FPGA. High Level Synthesis (HLS) tools

could solve this shortcoming by automatically synthesizing codes that are written in high

level programming language such as C or C++ directly into hardware descriptions. HLS

makes FPGA more favorable to developers and extended its range of applications to

areas that were previously unthinkable for FPGA-based acceleration.

There are several different types of HLS tools. One type is for synthesizing C

code directly to RTL-level design based on user specified constraints for generic

applications. They are mostly used in speeding ASIC and FPGA design process, not

accelerating a specific algorithm or application. Catapult C developed by Mentor

Graphics is an example of such tool. Another type of HLS involves utilization of soft

core or hard core processor to compute sequential or resource management part of the

program; whereas the parallel part of the program is synthesized into RTL design. An

example for this type of HLS tool is LegUp [20] developed by the University of Toronto.

LegUp compiles programs into a binary that runs on soft core MIPS processor

implemented in FPGA, and a set of accelerator kernels that also runs on FPGA. The

resultant soft core processor, accelerator kernels and interconnects expressed in Verilog

are compiled into FPGA binary. During runtime the MIPS processor performs the

computation with the help of accelerator kernels. There also exist special languages that

are specifically designed for HLS but they are less common. Recently introduced Altera

SDK for OpenCL is a relatively new type of HLS tool that uses the same explicit parallel

programming language commonly used by GPUs and CPUs.

21

2.4 Altera SDK for OpenCL

2.4.1 Overview

The Altera Software Development Kit (SDK) for OpenCL (AOCL) [21] was

developed to lower the difficulty, time and cost to develop parallel computing programs

on FPGAs. It is a high level synthesis tool that takes code written in the OpenCL

language and converts it into description of the accelerator hardware written in Verilog.

The AOCL is designed to be integrated with Altera Quartus design software, which can

compile the Verilog code to FPGA hardware image. The Altera Offline Compiler (AOC)

automatically synthesizes dedicated custom hardware for each OpenCL kernel, and takes

care of the overhead of interfacing the FPGA with the host programs. This lets

developers to focus on designing the parallel programs, instead of having to come up

with the hardware design for their applications.

The AOCL complies with OpenCL 1.0 standard and supports many of the

features in newer versions of OpenCL [22]. It includes an offline compiler for compiling

OpenCL kernel source code to Verilog hardware descriptions and generating Quartus

compilation scripts. In addition, the SDK also include reference board designs that allow

board vendors to develop customized FPGA accelerator boards. To streamline the

software development process, AOCL includes an emulator and a profiler. The emulator

can execute a kernel on x86 processor to check for correctness, whereas the profiler helps

the developer to analyze the performance of the program. Altera Runtime Environment

(RTE) is also provided starting from version 14 of AOCL, which allows end user to build

host program and execute precompiled OpenCL kernels without the Altera SDK for

OpenCL.

22

Similar to other OpenCL platforms, a typical AOCL application includes two

parts: the host code and the kernel code. The host source code is compiled into

executable using GCC or Visual Studio. The kernel source code must be compiled by the

Altera Offline Compiler (AOC). The compilation time for the OpenCL kernels is in the

order of hours. Therefore, it must be compiled offline before the execution of the host

program. The compilation flow of the Altera OpenCL follows the Altera OpenCL to

FPGA Framework as shown in Figure 7.

Figure 7. Altera OpenCL to FPGA Framework [23]

Inside the AOCL compiler, the kernel code first pass through C language front

end and LLVM compiler infrastructure to generate intermediate representation (LLVM

IR). The LLVM IR is then optimized and converted to Control-Data Flow Graph (CDFG).

The CDFG is optimized further and processed by a RTL generator to generate Verilog

hardware description for the kernel along with interface to host and off chip memories

23

[23]. In the end Quartus software compiles the hardware description into a binary file that

can be used to configure the FPGA at runtime. An example of the hardware architecture

synthesized by Altera SDK for OpenCL for FPGA accelerator is shown in Figure 8.

Figure 8. Example Hardware Architecture Synthesized by AOCL [25]

AOCL is designed specifically to accelerate various computationally intensive

tasks, unlike most C to Gate High Level Synthesis tools, which are designed for speeding

up FPGA development for generic applications. It allows programmer to target

heterogeneous platforms, and utilize FPGAs alongside GPUs and CPUs. This also means

OpenCL programs already written for other computation platforms such as GPU or CPU

could be ported to FPGA. However, in most cases the programs have to be modified or

rewritten due to architectural differences. Compare to OpenCL for GPU, Altera SDK for

OpenCL generates custom hardware pipeline for kernels, which is more flexible then the

GPUs that have fixed hardware. The FPGAs supported by the SDK also contain more on

chip memory than current GPUs, which means more data can fit into the high speed local

24

cache memory and registers. Thus, AOCL can offer higher performance and energy

efficiency for algorithms that can take advantage of more flexible pipelines and memory

architectures.

2.4.3 AOCL Specific Features

Altera SDK for OpenCL supports many unique features to help utilizing the full

potential of FPGAs [26]. Also, due to the architectural difference between FPGA and

GPU/CPU, parts of the OpenCL standard are implemented differently in AOCL. One of

the major differences between AOCL and other OpenCL platforms is that the kernels

must be compiled offline. When building the kernel program, the targeted FPGA device

is configured by the binary file. This process may take seconds. If the OpenCL program

contains multiple kernels, it may be beneficial to put all kernel source code into a single

source file and compiles into a single binary image. That way the overhead of

reconfiguring the FPGA for different kernels could be minimized, at the same time it

allows all the kernels to execute concurrently and communicate with each other during

runtime.

To take the advantage of the flexibility of FPGAs architecture, Altera Offline

Compiler (AOC) generates customized pipelines tailored to fit specific kernel program.

As a result, it could extract parallelism from both multi-work-items (NDRange) and

single work-item (Task) kernels by using pipelining. GPUs however, could not execute

single threaded task kernels efficiently due to their architecture. Operations inside a

NDRange kernel could be implemented as stages of pipeline, where each stage of the

pipeline operates on a different work-item at the same time. Similarly in task kernels that

contain loops, each stage of the pipeline processes a single iteration of the loop in parallel.

25

Ideally when the pipeline is filled, it could execute one work-item or loop iteration every

clock cycle.

Task kernels is usually easier to code due to its resemblance to sequential

programs, and at the same time they may cost less FPGA resources than multiple

threaded kernels due to lack of need for synchronization barrier. However, task

parallelism may not deliver good performance when the kernel contains a lots of data

dependent operations. In this case the pipeline may be stalled due to data dependencies.

Altera SDK for OpenCL provides shift register inference feature that could relax some of

the data dependencies. The shift register inference is especially useful in applications

such as performing reduction operation on an array, or performing convolutions. In those

applications variables need to be constantly updated or read by different for loop

iterations. To utilize shift register inference in reduction sum for example, a shift register

array needs to be declared to hold the intermediate results from different iterations.

During each iteration of the loop, shift register shifts right, summation is performed on

the last element and the result is stored in the last element of the shift register. After all

the input data are used, a final reduction operation is performed on the shift register to get

the total sum. This process is shown in Figure 9.

26

Figure 9. AOCL Shift Register Inference

In many applications task parallelism may not be effective in realizing the full

potential of FPGA. In that case the multi-threaded NDRange kernels that are often seen

in CPU and GPU OpenCL programs are used. Similar to OpenCL implementation for

general purpose processors, in AOCL kernels vectorization could be applied to increase

throughput. The simplest way to vectorize is to utilize OpenCL vector data types such as

float4 or int8, although Altera OpenCL also supports SIMD style vectorization and

replication of Compute Units. Setting the attribute for number of SIMD work-items for a

kernel will allow AOC to replicate its datapath, and the resultant kernel will be able to

process multiple work-items in parallel. On the other hand, modifying the number of

Compute Units will allow the kernel to execute multiple work-groups concurrently.

Increasing the number of SIMD work-items is usually more efficient than increasing the

number of Compute Units, because SIMD vectorization generates less load store units for

global memory and the memory accesses are coalesced.

27

To take the advantage of the flexibility of FPGA architecture, AOCL supports

compiler flag enabled floating point optimizations. In HDL design of floating point units,

normalization and rounding usually takes a lot of FPGA area. When multiple floating

point operations are performed in succession, --fpc compiler flag could be enabled to

allow AOC to eliminate the normalization and rounding in between the floating point

units, thus saving FPGA space and reduce latency. AOC could also reorder the floating

point operations to balance the operations and reduce number of stages in the pipeline

when --fp-relaxed flag is enabled.

AOCL also added a unique feature called channel extensions, which allows the

direct data transfer between different kernel without use of global memory or host

program. The channels are implemented using first in first out (FIFO) buffers inside

FPGA chip. Thus low latency high bandwidth memory transfer could be achieved

through use of channel. Due to the fact that Stratix V FPGAs has rather limited global

memory bandwidth comparing to GPUs, the use of channel extension could be essential

for AOCL applications that require large amount of global memory data transfer to

achieving high performance. However, kernel with channels could not utilize SIMD or

multi-Compute Unit vectorization. This tradeoff needs to be considered when developing

kernels using AOCL.

2.5 Detailed Analysis of AOCL

2.5.1 Cost of Floating Point and Integer Operations

In order to study the latency and hardware utilization for different types of

floating point and fixed point operations, various vector operation kernels was compiled

28

and the testing results was generated as shown in Table 1 and 2. The resource utilizations

of various types of operations are obtained by compiling identical NDRange vector

operation kernels and reading the resultant .area resource estimate file. The logic element

(LE), Register (Reg), Block RAM, and DSP counts are calculated by subtracting resource

utilized by load store unit (LSU) from the total kernel estimated utilization. Whereas the

latency is estimated by compiling task based kernels designed to repeatedly perform

operations in a data dependent loop, and reading the optimization report returned by the

compiler.

Table 1. Cost of Floating Point Operations in AOCL

Precision LE Registers RAMs DSP Latency

add single 2380 3501 3 0 7

double 2732 3024 3 0 9

mul single 1929 2942 0 1 3

double 2063 1928 1 4 6

div single 2227 3435 8 5 14

double 3031 4825 13 12 45

sqrt single 2113 3148 6 2 11

double 2497 4602 11 10 31

rsqrt single 2108 3135 6 2 11

double 2553 4776 11 9 23

exp single 2560 3299 7 9 16

double 6359 5147 11 22 30

log single 2523 4042 6 3 21

double 4054 6908 23 14 38

log10 single 2564 4162 6 4 25

double 4011 6871 23 11 38

cos single 4026 4896 6 7 35

double 5725 9515 12 30 45

sin single 4089 5885 6 7 36

double 5791 9923 12 30 46

tan single 4637 7122 12 13 56

double 11331 15385 30 74 100

min single 1906 3043 0 0 3

double 2407 3834 13 0 1

29

Table 2. Cost of Fixed Point Operations in AOCL

Precision LE Registers RAMs DSP Latency

add char 1751 2533 0 0 1

short 1779 2548 0 0 1

int 1835 2587 0 0 1

div char 2884 4541 18 4 32

short 2900 4548 18 4 32

int 2932 4571 18 4 32

min char 1751 2533 0 0 1

short 1772 2616 0 0 1

int 1803 2652 0 0 1

mul char 1749 2605 0 1 2

short 1773 2628 0 1 2

int 1822 2715 0 2 3

Note that the latency is measured in clock cycles. From the tables we can see that double

precision floating point operations cost a lot more than single precision operations both in

terms of FPGA area used and latency. Operations such as finding minimum and

multiplication are the least costly, whereas division, square root, logarithm, and

trigonometry operations cost the most FPGA area and time. Note that Stratix V A7

FPGA used in this research only has a total of 256 DSP units. High cost functions such as

double precision tangent should be avoided if possible.

2.5.2 Kernel Launch and Transfer Overhead

Other performance evaluations done on AOCL are summarized below. One of the

performance metrics that we are interested in is the speed of data transfer between kernel

and host. According to [27] the bandwidth of host to device data transfer for the GPU is

about 2.82 GB/s, with latency of 50~60 us whereas the bandwidth of device to host data

transfer is about 3.29 GB/s with latency of 140~150 us. The AOCL memory diagnostic

program gave comparable result of about 1.75 GB/s write to device and 2.92 GB/s read

30

from device for Terasic DE5-net accelerator. The Nallatech 385 accelerator has slightly

higher global memory throughput of 2.46 GB/s host to device and 2.95 GB/s device to

host. There is no easy way to determine the latency, but FPGA should have comparable

latency to GPU. The throughput for data transfer between kernel and host is far lower

than the 25.6GB/s peak bandwidth of global memory, which means communication to

host should be minimized. The peak bandwidth of private and local memory is dependent

the kernel because FPGA does not have a fixed architecture, thus could not be accurately

determined.

Another important performance metric is the overhead of launching a kernel. The

test methodology used is to launch an empty kernel repeatedly, both with and without

synchronization between each kernel launch. For time keeping, the submitted and

execution time returned from OpenCL build-in profiler function as well as the wall clock

time recorded by the OS timer are both recorded and compared. The result is that when

launching a single kernel, the queued to submitted time is 0.004 ms and submit to start

time is 0.016 ms. When launching the kernel repeatedly for a large number of times and

synchronize after every kernel launch, although submit to start time increases linearly

with respect to the number kernel launches, the wall clock time increases very rapidly (20

s for 10000 launches). When the clFinish function used to synchronize the kernel

launches is replaced with clFlush function that issues the kernel launch command without

waiting for operations to finish, the wall clock time is reduced to more acceptable 7 s for

10000 launches. When launching kernels without synchronization, the wall clock time

reduces further to 4.7 s for 10000 launches. Therefore, synchronizations during kernel

31

launch should be minimized to reduce overhead. At the same time it is often more

effective to use multiple workgroups kernel, than launch the kernel multiple times.

2.5.1 Effective Reduction

Reduction is one of the common patterns in parallel computing. It reduces an

array of data into a single output by repeatedly performing some type of reduction

operation. The reduction operation could be summation, product, or finding min/max.

The computational complexity of reduction is O (N), and since the number of operations

performed is equal to data size, reduction speed is bounded by global memory bandwidth.

For the accelerator that we have, the theoretical maximum single precision reduction

throughput is 6.4 GFLOPS. This is calculated from dividing 25.6 GB/s maximum

bandwidth by 4 byte per floating point value.

Altera recommends [28] performing reduction by using a single threaded kernel.

If a simple for loop is used to perform reduction, one iteration could only start after the

pervious iteration is completed. This is due to memory dependency on the partial result.

Since most operations take multiple clock cycles to complete, the performance will suffer

greatly as a result. At the same time loop unrolling could not be effectively applied to

increase the throughput. Without any optimization the loop version of reduction could

only achieve 0.035 GFLOPS throughput. To relax data dependencies, Altera

recommends replicating the partial sum storage register and implementing a shift register

to perform reduction. The parallelism is extracted by unrolling the loop to ensure multiple

reduction operations are done concurrently. Test shows that the throughput for this

method is only around 0.25 GFLOP, or 1 GB/s equivalently. This is better than un-

32

optimized version, but still far from maximum throughput because it could not saturate

the global memory bandwidth of the FPGA.

Inspired by multi-thread solutions introduced by GPU vendors, various test

kernels were developed. The most efficient way to implement reduction is determined to

be using two kernels. In this method, the input data is partitioned into equally sized

blocks. An NDRange kernel first processes different blocks of the input array

simultaneously, then a second task kernel reduces the partial sum into a single value. The

second kernel is implemented the same way as Altera programming guide recommended,

but it will only perform a small portion of computation, whereas the vast majority of the

calculation is done by the first kernel. The two kernels are connected via channel to avoid

wasting global memory bandwidth. There are a few different ways the first kernel could

be implemented. The simplest way is by launching single work-item work-groups, each

work-item loops through one block of data and computes the partial sum. The loop could

be unrolled to increase throughput effectively. Since in NDRange kernel each pipeline

stage processes a different work-item instead of loop iteration, there is no data

dependency. The block diagram for this implementation is shown in Figure 10. The

optimal block size is dependent on input data size. The first NDRange kernel is only

efficient when data block is large enough to fill the pipeline, and the number of blocks

has to be small enough so that the less efficient task kernel does not take too long to

finish. For example, when performing sum reduction on 1GB data, the best block size is

32, which will produce 3.70GFLOPS throughput on Terasic DE5-net accelerator or

4.03GFLOPS throughput on Nallatech 385 accelerator. Those throughput numbers

indicates that 58 to 63% of the theoretical global memory bandwidth has been reached,

33

which is satisfactory. The full source code for reduction kernel with addition operations

can be found in Appendix A.

 In an attempt to improve memory access efficiency, another NDRange kernel

with multi-threaded work-groups was also developed. The kernels use multiple work-

items to reduce each block instead of single work-item. In order to ensure coalesce

memory access, consecutive input data is accessed by successive work-items. This

version of the parallel reduction did not outperform the simple implementation during test

and thus was discarded.

Figure 10. Optimized Two Kernel Reduction Block Diagram

Very little hardware was needed to generate enough performance to saturate the

relatively small FPGA global memory bandwidth. On DE2-net accelerator the fully

optimized reduction kernel for summation used 29% logic, 8% Block RAMs and 2 DSP

34

blocks, and runs at 236.85 MHz. On Nallatech 385 accelerator, similar amount of FPGA

resources were used, but the kernel is clocked at slightly higher 260.89 MHz. The

knowledge gained from developing the reduction kernel here was also used in designing

the k-means kernels in chapter 4.

2.6 Brief Summary of Algorithms used in Acceleration

The algorithms explored in this thesis include k-means clustering, k-nearest

neighbor, N-body algorithms, and LU matrix decomposition. This thesis devotes one

chapter to each of the listed algorithms.

K-means clustering algorithm is one of the most popular data mining algorithms

used in image processing and machine learning. It is very time-consuming for large data

and cluster sizes. In this research, an optimized implementation of k-means clustering

algorithm on FPGA was developed using Altera SDK for OpenCL. Performance and

power consumption of FPGA implementation are measured and compared against CPU

and GPU implementations.

K-nearest neighbor (kNN) is another popular machine learning algorithm that

classifies the query points by compares their distance between training points. The

classification of a query point is determined by the classes of k training points closest to

the query point. It is commonly used in machine learning and data mining applications.

This research focused on implementation of brute force k-nearest neighbor algorithm

using AOCL and the results are compared with best published works.

N-body simulation simulates dynamic interaction of particles. It is often used in

the field of astrophysics and chemistry. The N-body simulation algorithm implemented in

35

this research is pair-wise method with time complexity of O (N
2
) for each iteration. The

results are compared with optimized CPU and GPU implementation.

LU decomposition factorizes a matrix into the product of a lower triangular

matrix and an upper triangular matrix, hence the name. This method is useful in solving

linear systems of equations and finding inverse, and has been implemented in many

computing libraries such as LAPACK, cuBLAS, MKL etc. This research tries to

determine if the blocked LU decomposition algorithm could be implemented on FPGA

using AOCL to achieve performance comparable with existing optimized CPU and GPU

implementations provided in numerical libraries.

For consistency, all OpenCL kernels developed and tested on FPGA in the

following chapters were compiled using Altera SDK for OpenCL version 15.0.

36

Chapter 3

Acceleration of K-Means Clustering Algorithm

3.1 Introduction to K-Means Clustering Algorithm

3.1.1 Introduction

K-means clustering algorithm involves partitioning of data iteratively into k

clusters. It is among the most popular data mining algorithms [29], and is used in many

other applications such as image processing and machine learning. However, k-means is

highly time-consuming when data or cluster size is large. The k-means clustering

algorithm operates on a set of d dimensional data set X = {x1, x2, … , xn} to partition them

into k clusters, where n is the total number of data points. The end result is a set of d

dimensional centroids for the clusters C = {c1, c2, … , ck}, along with a membership set M

= { m1, m2, … , mn} that records which cluster each data point is the closest to. A set of

initial clusters centroids must also be supplied. There are many ways to determine initial

clusters. Depending on which method is used, the resultant centroid and convergence

speed could be vastly different. The most common way is to randomly choose k data

points as initial clusters. A more optimized way of selecting initial clusters called k-

means++ was proposed [30] which allows faster convergence. However, for simplicity

and consistency the implementation used in this thesis chooses the first k data points as

initial cluster.

3.1.2 Sequential Algorithm

In each iteration of the k-means algorithm, the distance between data points and

centroids are compared. Each data point is then assigned to the closest cluster. There are

37

a few different way of measuring distance as well. The squared Euclidean distance is

most commonly used in k-means, which is simply the sum of squares of the difference

between data point and cluster center in each dimension. Since we are only comparing

the distances, the square root is omitted to save computing time.

 ∑

Manhattan distance measures the distance between cluster center and data points as the

sum of absolute value of the difference between data point and cluster center in each

dimension.

 ∑

When all the data points are processed, new cluster centroids are obtained from

average of data points belong to the same cluster. Assuming the number of objects in

cluster i is defined as si, the formula for the cluster update step is shown below:

 ∑

 ∑ (

)

This process is repeated until a predefined maximum number of iterations is

reached or the number of changes in data point membership drop below a certain

threshold. The pseudo code of the algorithm is shown below.

ALGORITHM 1. Sequential K-means Algorithm

input: initial clusters, objects, problem dimensions N, D, K

output: cluster centroids and membership (index)

load objects

initialize clusters

while delta < threshold do

 set clusters_new[K][D] array to 0;

 set clusters_size[K] array to 0;

 for each object n do

38

 for each cluster k do

 for each dimension d do

 dist dist + (objects[i][d] – clusters[k][d])
2
;

 end

 if dist < min_dist then

 min_dist dist;

 index k;

 end

 end

 update delta and membership;

 for each dimension d do

 clusters_new[index][d] clusters_new[index][d] + objects[i][d];

 end

 clusters_size[index] clusters_size[index] + 1;

 end

 for each cluster k do

 for each dimension d do

 clusters[k][d] clusters_new[k][d] / clusters_size[k];

 end

 end

end while

The computational complexity for each iteration of k-means algorithm is O (d*n*k + n*k

+ n*d). The distance calculation step is the most computationally intensive part of the

algorithm and the total number of operations is roughly equal to iterations*d*n*k*3,

because it takes one addition, one subtraction and one multiplication/absolute value to

calculate distance partial sum for each data element.

3.2 Related Works

Various works had been done on acceleration of k-means algorithm on CPU,

GPU and FPGA. MineBench Benchmark Suit [31] was published in 2006, which

included an OpenMP / OpenMPI multi-threaded CPU implementation of parallel k-

means. The OpenMP version of the k-means benchmark code is used in this research for

speed comparison with CPU.

Che et al. from University of Virginia presented a CUDA implementation of k-

means algorithm [32], which achieved up to 35x speedup on GTX 260 GPU compare to

39

an OpenMP implementation running on CPU. The reduction process was done by CPU,

but major part of cluster update was done on GPU. The data was stored in texture

memory and the cluster was stored in constant memory, which limited the maximum

problem size the GPU could compute without hitting the memory bandwidth barrier.

Later in the same year researchers from Hong Kong University of Science and

Technology presented GPUMiner [33] parallel data mining system. This implementation

used bitmap technique optimized for multi-threaded SIMD GPU architecture. Compared

to Che et al.’s work, the GPUMiner spent more time on computing instead of data

transfer, and achieved up to 5x speedup.

Wu et al. from the HP Labs reported another CUDA implementation of k-means

algorithm [34] designed to process large data sets, including those cannot fit into memory

of GPU. With 2 dimensional data points and 1000 clusters, they achieved more than 11

times speedup over CPU on a GTX280 GPU. The centroid update portion of the

computation is done on CPU in this implementation.

Li et al. presented another GPU implementation of the k-means algorithm [35] in

2010. Two different implementations were developed separately to optimize for low

dimensional data sets and data with higher dimensions. For low dimensional data they

utilized register to reduce memory access latency, while for high dimensional data they

applied parallel programming pattern used in matrix multiplication to accelerate the k-

means algorithm. Overall they were able to obtain 3 to 8 times speedup over previous

best GPU-based implementations. However, the performance was heavily dependent on

problem size. For example, on a GTX280 GPU while processing 8 dimensional data, they

were able to achieve 676 GFLOPS throughput; but while processing 34 dimensional data,

40

the throughput dropped to 137 GFLOPS. In this implementation the reduction part of

centroid update is done on CPU. This is the best performing k-means implementation

published to date.

Dhanasekaran et al. from AMD presented a novel k-means GPU implementation

[36] that used Irregular reductions and performed computation completely on GPU. All

previous GPU implementations published before computed reduction on the CPU. They

achieved more than 35 times speedup compared to four-core CPU for large data size and

claimed to be 3.2X faster, 1.5X faster, and equally fast as CPU-GPU hybrid

implementations for cluster size of 10, 100, and 400 on ATI HD 5870. However, as

cluster size increases, the performance speedup decreases for this implementation, and

work of Li et al. [35] was not being compared with.

Many researchers also presented various FPGA implementations of k-means

algorithm. However, majority of those works were done using fixed point data type with

relative small data sizes that is intended for use in image processing applications. Thus

they are not directly comparable to the implementation presented in the thesis. However,

there are some exceptions. For example, A FPGA implementation [37] of k-means

algorithm using MapReduce was presented in 2014. The k-means computations are

divided into map and reduce functions and implemented into separate FPGAs. With two

Mapper FPGAs and one Reduce FPGA, it was 15.5 to 20.6 times faster when compared

to Hadoop MapReduce framework baseline software implementation. The FPGA used is

Xilinx Kintex-7 XC7K325T and the test data used is UCI Machine Learning Repository’s

individual household electric power consumption data set. Kintex-7 is comparable to

Stratix V used in this research, but with different architecture. The XC7K325T

41

particularly has 326,080 logic cells, 16,020 Kb Block RAMs and 840 DSP Slices. The

dimension was limited to 2 and 4 while cluster size is relatively small. The throughput

was not as high as other GPU implementations, but the design is scalable to multiple

FPGAs.

An Altera SDK for OpenCL implementation [38] was introduced in the same year.

This implementation was used to demonstrate the APARAPI Java Framework, which

automatically ports higher level Java code to OpenCL. It was able to achieve 6.2 ~ 7

times speedup versus a CPU implementation with 65 ~ 80 percent power reduction.

However, the design is only implemented for data sets with dimension of up to 8.

3.3 Synthesis Using AOCL

3.3.1 Single Threaded Implementation

The sequential algorithm is ported to Altera SDK for OpenCL with minor

modifications. All parts of the algorithm are enclosed in a single thread task based kernel.

Parallelism is achieved through pipelining and unrolling the loops. It turns out that this

kernel is quite slow and inefficient. When one dimensional data is used to test the kernel

only maximum of 5 GFLOPS performance was achieved. When the dimension of the

data is increased, the performance also slightly improved, however the memory

bandwidth was far from being saturated. Various optimizations were attempted. For

example, different ways of organizing data and cluster such as row major, column major,

vectored type, and user defined type were tried. Different combinations of loop unrolling

and optimized reduction with shift register inference were also attempted. However, they

were either slower or not much faster than the original version, likely due to unresolvable

memory dependencies. It became clear that task (pipelining) based parallelism could not

42

produce satisfactory level of performance. Therefore it is necessary to parallelize the

kernel, and break major parts of the algorithm into different kernels. While the memory

utilization will significantly increase, the kernels could be better optimized to suit the

parallel patterns they implement.

3.3.2 Parallel Multi-Kernel Implementation

The k-means computation can be broken down into three major components: the

calculation of distance, assignment of objects to clusters, and the update of new clusters.

The cluster update step is effectively a histogram operation, where objects are summed

into different bins/clusters and their average is taken after the summation as new cluster

centroids. Unlike normal histogram, however, the data in this case is multi-dimensional.

In order to compute histogram in parallel, reduction operations could be applied to sum

the objects to new cluster partial sums while counting the number of objects belonging to

each cluster. When that’s done the partial sums could be merged and averaged with scalar

division to obtain the new clusters. It is also possible to compute histogram in parallel

using atomic operations that combines read, compute and write into one indivisible

operation, thus avoiding memory access race conditions. However, the AOCL best

practice guide [28] suggested avoiding atomic operations due to inefficiency of such

operations on FPGA.

The distance calculation, cluster assignment, reduction and averaging could be

done either in separate kernels, or some of them could be merged into the same kernel.

For example, the cluster update could be done using two stage reductions, where a multi-

threaded kernel is first used to compute partial sum of the objects while a second single-

threaded kernel is used to sum the partial sums. Finally a third kernel is used to average

43

the result to obtain the updated cluster centroids. Each time a new kernel is added to the

FPGA binary, there are overheads on resource usage and memory transfer between

kernels. Thus the number of total kernels in a single design should be minimized if

possible, in order to save memory bandwidth and hardware resources for actual

computation rather than wasting them on kernel overhead.

The final parallel implementation of k-means algorithm uses two kernels. The

first assignment kernel is a NDRanged kernel with block size equal to the number of

objects in the cluster. Each thread loads and performs calculation for one object point. It

calculates the distance between each pair of the objects and clusters, and saves the index

of the cluster that the object is closest to. To save global memory bandwidth, each

workgroup only loads the cluster once into the local memory and shares it among all the

threads in workgroup. The second reduce kernel is a single thread task kernel which takes

the membership information from the first kernel and uses it to sum up all the objects in a

cluster. In the end it takes the partial sum and divides it by the number of objects in

cluster to obtain the new cluster. This design offered best performance over other

attempted variants. To further reduce memory transfers between kernels and the global

memory, AOCL Channel Extension was used to directly transfer membership data

between kernels. This saves global memory access and decreases hardware resources

utilized by the memory load and store unit. The channel extension in this case is also

used to provide synchronization between kernels without utilizing the host. This way the

kernels could be executed concurrently, and total execution time for a single iteration is

reduced. The object data could also be transferred to the second kernel, but only when

dimension size is very small because otherwise the design will not fit on FPGA. During

44

testing, it turned out that using channel to transfer object itself to the reduction kernel did

not offer performance improvement in general, thus it was not included in the final

design. Depending on the feature and cluster size, the speedup gained by using the

channel was between 5 to 50%. The depth of the channel does not noticeably affect the

performance or hardware utilization. An earlier version of the kernel separated the

reduction and averaging of the cluster update step into two different kernels. In this

variant one kernel sums the objects to separate copies of clusters using independent

threads while the other kernel merges and takes average of the resultant partial sums.

However, test revealed that it is better to merge the reduction and averaging kernels

because the last averaging kernel took insignificant amount of time to complete. The

hardware recourses originally utilized by the third kernel were used to support larger

cluster size and faster kernel clock frequency in the final version.

In addition, since the distance between cluster and object is squared during

calculation, the sign of the total distance is always positive. Therefore, during the process

of determining the minimum distance, the distance sum was casted to unsigned integer

type before comparison, which makes it less costly then floating point comparison

operation. The pseudo code for the parallel k-means cluster assignment kernel and update

kernel is shown below. The block diagram of the kernels is shown in Figure 11. The full

source code for the kernels can be found in Appendix B.

ALGORITHM 2. Parallel K-means Algorithm
define preprocessor directives;

enable channel extension;

workgroup_size D*K;

number_threads N;

kernel kmeans_assign(objects, clusters, members, problem sizes)

 load cluster and synchronize threads;

45

 load one object per thread;

 for each cluster k do

 for each dimension d do

 dist dist + (object[d] – cluster[k][d])
2
;

 end

 if (unsigned)dist < (unsigned)min_dist then

 min_dist dist;

 index k;

 end

 end

 check if membership changed;

 write member and change information to channels;

end kernel

workgroup_size 1;

number_threads 1;

kernel kmeans_update(objects, members, clusters, delta, problem sizes)

 set clusters_new[K][D] 0;

 set clusters_size[K] 0;

 delta 0;

 for (n = 0; n < N; n++) do

 read member and change info from channels;

 write member to global memory;

 delta delta + change;

 clusters_size[member] clusters_size[member] + 1;

 for (d = 0; d < D; d++) do

 clusters_new[member][d] clusters_new[member][d] + objects[i][d];

 end

 end

 write delta to global memory;

 for (k = 0; k < K; k++) do

 for (d = 0; d < D; d++) do

 clusters_new[k][d] clusters_new[k][d] / clusters_size[k];

 write clusters_new to clusters global memory;

 end

 end

end kernel

In the host, the data are initialized and copied to device. The two kernels are

enqueued into two separate commands queues in for loop, and thus are executed

concurrently. After each iteration of for loop, the membership change counter value is

copied back to the host from device in order to determine if the kernel execution should

stop or not. The loop is terminated either when the maximum iteration time is reached or

when the change count falls below threshold. After which the result is copied back to the

host for verification.

46

Figure 11. Block Diagram of Parallel K-means Kernels

Other parallel k-means implementations were also attempted. For example, a

kernel which merges the cluster assignment and partial sum portion of the reduction

computation was developed and tested. But its performance was much slower than the

kernel that does the computations separately. Also, various cluster assignment kernels

with two dimensional work-groups threads instead of one were developed, where the

47

second dimension is of the same size as the dimension of data. However, they did not

offer any advantage over the kernel with one dimensional thread, due to increased

hardware resource usage. They could not fit in one FPGA if same dimension or cluster

size was used.

3.3.3 Optimization for Different Problem Sizes

Interestingly the parallel multi-kernel implementation discussed earlier is more

suitable to data with mid to high dimensions. This is contrary to most popular CPU and

GPU based parallel implementations, which favors lower dimensional data. The

maximum feature dimension that could fit on Stratix V A7 FPGA with the proposed

implementation is around 160. When higher dimension is used, the design will not fit

even with reduced unroll size. At size 160, local memory replication needs to be turned

off and the cluster size has to be reduced to 128 in order to fit the design on FPGA. As a

result the performance is poor at this size. Larger sized data could be processed with a

kernel which only cache part of the cluster into the local memory. However, the global

memory access will increase dramatically. Due to the relatively small global memory

bandwidth available for the FPGA it will not be competitive against GPU with this

problem size. If the distance calculation loop and cluster partial summation loop is only

partially unrolled instead of fully unrolled, it could also fit slightly larger sized problems.

However, this resulted in higher memory transfer time and inefficient pipeline during test,

and was much slower.

In the case of low dimension, while the assignment kernel still performed very

well, the reduction kernel in our implementation could not achieve sufficient parallelism

by unrolling the loop alone. Therefore it was necessary to implement a different version

48

of the reduction kernel so that consistent performance could be achieved across all

dimension sizes. After some trial and error it turned out that memory dependencies in the

reduce kernel could be negated by manually replicating some of the data dependent

memory resource and reduce the replicated copies in the end of the kernel. This is better

than use of pragma unroll directive because loop unrolling requires full unroll in order to

be efficient in the case of this implementation, which wastes a lot of resources. In

addition, in order to make the kernel work with different cluster sizes, the number of

threads for the assignment kernel is limited to the predefined maximum cluster size that

could be fitted to the FPGA rather than a constant size. It turned out that the best (> 100

GFLOPS) performance could be obtained when cluster size is sufficiently large.

Significant amount of time was spent on improving performance at cluster size smaller

than 32. As a result some kernels developed was able to achieve faster result at k smaller

than 16 at the cost of lower performance at higher cluster sizes, but the performance was

still not satisfactory at low k size. The proposed kernel is only faster than CPU at k size

larger than or equal to 8, and is only significantly faster than CPU at k size larger than or

equal to 32.

3.3.4 Distance Calculation

Manhattan distance and fixed point versions of the k-Means algorithm were also

attempted. However they do not offer significant performance improvement. Since

Manhattan distance calculation uses absolute value instead of multiplication, the

multipliers in DSP units that are already built into the FPGA are under-utilized. In the

case of replacing the floating point data with unsigned integer data type, each unsigned

integer multiplication used in distance calculation actually needed two DSP units,

49

whereas floating point multiplication only used one. Therefore the number of

multiplication operations that could be executed concurrently is reduced to half. Thus

neither Manhattan distance nor unsigned data type offer any meaningful performance

improvements for AOCL implementation of k-means.

3.3.5 Verification

In order to ensure the accuracy of the k-means implementation, a sequential

version of the k-means algorithm is implemented in host program. This implementation

can be chosen to run after the kernel is executed and provide reference results. After the

kernels are executed, the membership information along with the resultant clusters are

copied from global memory back to host to compare with the reference results. Mean

squared error (MSE) is used to evaluate the difference between the reference result

generated by CPU and FPGA. This sequential k-means verification code generates

identical result as MineBench OpenMP implementation of k-means.

3.4 Synthesis Results

3.4.1 Performance

Multiple tests with different data, cluster, and dimension sizes were conducted.

Data was randomly generated. The number of iterations required to reach the steady state

threshold varies depending on the data provided. For random floating point data between

-100 to +100 and threshold of less than 0.1% object membership change, the average

number of iterations is about 20. This may be lower than the iterations usually required

for the clusters to settle. However, because in FPGA implementation each iteration takes

consistently the same amount of time, 20 iterations are sufficient to measure the peak

performance. The performance is measured by both the execution time in seconds and

50

throughput in GFLOPS. In order to test for different feature, cluster and data sizes,

automatic testing scripts were written to launch the host program with different problem

sizes and kernel names. The results are shown in Figures 12 and 13. Figure 12 shows

execution time for computing around 2,097,152 objects for kernels of various dimensions

and different cluster sizes. Figure 13 shows the throughput achieved by kernels of various

dimensions while processing problems with different cluster sizes. The data transfer time

between host and device is not included because they are insignificant (less than 0.5ms)

compared to kernel run time. Different colored lines represent results from kernels of

different dimensions, and the horizontal axis represent different cluster sizes.

Figure 12. Execution Time for Computing 2 Million Objects on FPGA

0

20

40

60

80

100

120

140

4 8 16 32 64 128 256 512 1024 2048

Se
co

n
d

s

Cluster (K) sizes

FPGA Execution Time

1D_Time 4D_Time 8D_Time 32D_Time 64D_Time 128D_Time

51

Figure 13. Peak Throughput for Computing 2 Million Objects on FPGA

The AOCL FPGA implementation of k-means performs best at medium

dimension and large cluster sizes, as indicated in Figures 12 and 13. The peak

performance is nearly 150 GFLOPS. For problems with 4 to 64 features, and cluster size

of greater than 128, the AOCL implementation consistently obtained greater than 100

GFLOPS throughput.

The CPU implementation used is fully optimized MineBench 3.0.1 based on

OpenMP. The CPU used to run MineBench comparison code is a six core Intel Xeon

W3670 with 12.288 MB of cache and clocked at 3.2GHz. All available threads are

utilized at 100% during the execution of the Minebench program. The data used and

number of iterations are identical to the testing condition set for testing the FPGA

implementation. The results are shown in Figures 14 and 15. Figure 14 shows execution

time for computing around 2,097,152 objects with various dimensions and cluster sizes

0

20

40

60

80

100

120

140

160

4 8 16 32 64 128 256 512 1024 2048

G
FL

O
P

s

Cluster (K) sizes

FPGA Performance in terms of Throughput

1D_Throughput 4D_Throughput 8D_Throughput

32D_Throughput 64D_Throughput 128D_throughput

52

on CPU, whereas Figure 15 shows the throughput achieved by CPU. These figures

indicate that the CPU implementation of k-means favors large dimension and cluster

sizes; however, the peak throughput achievable on the six cores Xeon CPU is less than 18

GFLOPS.

Figure 14. Execution Time for Computing 2 Million Objects on CPU

0

50

100

150

200

250

300

350

400

450

500

4 8 16 32 64 128 256 512 1024 2048

Se
co

n
d

s

Cluster (K) sizes

CPU Execution Time

1D_Time 4D_Time 8D_Time 32D_Time 64D_Time 128D_Time

53

Figure 15. Peak Throughput for Computing around 2 Million Objects on CPU

To better compare with the FPGA implementation, the speedup of FPGA over

CPU implementation for identical condition is shown in Figure 16. From this figure we

can see that the FPGA gains the most speedup when the dimension size is small and the

cluster size is large. The speedup of FPGA implementation over the CPU version could

reach up to 19 times. When the cluster size is large the speedup decreases, but overall

FPGA is still faster than CPU by multiple times. When cluster size is smaller than 16 or 8

however, the FPGA is not as competitive as CPU. Clearly, when processing larger data

sets, the FPGA will outperform CPU more.

0

2

4

6

8

10

12

14

16

18

20

4 8 16 32 64 128 256 512 1024 2048

G
FL

O
P

s

Cluster (K) sizes

CPU Performance in terms of Throughput

1D_Throughput 4D_Throughput 8D_Throughput

32D_Throughput 64D_Throughput 128D_throughput

54

Figure 16. Speedup of FPGA over CPU in Term of Throughput

In order to study how FPGA and CPU implementation perform when processing

data with different cluster size k, object size n, and iteration sizes iter. The throughput of

processing 4 dimensional data with various cluster, object and iterations sizes is shown in

Figures 17, 18 and 19. Conclusions could be drawn that as soon as cluster size went over

32 or object went over 4 thousand the FPGA starts to outperform CPU significantly. The

FPGA performs consistently across any iteration size, while performance of CPU slightly

improves when more iterations are needed. But improvement is insignificant after

number of iterations is greater than 32.

0

5

10

15

20

25

4 8 16 32 64 128 256 512 1024 2048

Sp
e

e
d

u
p

 T
im

e
s

Cluster (K) sizes

FPGA Speedup over CPU

1D_Throughput 4D_Throughput 8D_Throughput

32D_Throughput 64D_Throughput 128D_throughput

55

Figure 17. CPU and FPGA Throughput with Varying Cluster Sizes

Figure 18. CPU and FPGA Throughput with Varying Object Sizes

0

20

40

60

80

100

120

140

4 8 16 32 64 128 256 512 1024 2048

G
FL

O
P

s

Cluster (k) sizes

FPGA and CPU Performance with Different K Sizes
(d=4, n=2097152, iter=20)

FPGA_Throughput CPU_Throughput

0

20

40

60

80

100

120

140

160

G
FL

O
P

s

Object (n) sizes

FPGA and CPU Performance with Different N Sizes (d=4, k=512, iter=20)

FPGA_Throughput CPU_Throughput

56

Figure 19. CPU and FPGA Throughput with Varying Iteration Sizes

The peak throughput for this AOCL implementation for various feature and k size

is summarized in Table 3. The peak throughput for CPU implementation is also listed for

comparison. The peak throughput is determined by feeding the FPGA kernels the

maximum amount of data that could be held in the global memory of the FPGA

accelerator card and with largest possible cluster sizes for each kernel. The peak

throughput for FPGA is consistent high from one dimensional feature kernel to 32

dimensional kernels, but starts to reduce after feature dimension exceeds 64. This is

because it’s no longer possible to fully utilize the DSP resources at large dimension sizes

due to logic resource over utilization. As the table indicates, the maximum speedup of 21

times is reached when processing one dimensional data.

1

10

100

1000

1 2 4 8 16 32 64 128

G
FL

O
P

s
(L

o
g

Sc
al

e
)

Iteration (iter) sizes

FPGA and CPU Performance with Different Iteration Sizes
(d=4, n=2097152, k=512)

FPGA_Throughput CPU_Throughput

57

Table 3. K-means FPGA vs. CPU Implementation Peak Throughput Result

Feature

Dimension
Maximum k

Peak

Throughput

FPGA
a

(GFLOPS)

Peak

Throughput

CPU

(GFLOPS)

FPGA speedup

on Peak

Throughput

1 2400 132.77 6.31 21.04

4 2400 150.02 12.26 12.24

8 1200 139.73 14.71 9.50

32 512 123.63 16.71 7.40

64 512 116.78 17.77 6.57

128 512 62.70 17.60 3.56
a. Peak throughput of FPGA is measured at maximum k with largest possible data size (n).

For different data feature dimensions, different kernels need to be compiled. The

clock frequency and hardware utilization such as memory blocks and DSP units are

different for each kernel. Those utilizations and frequencies are shown in the Table 4.

The clock frequency is dependent on the complexity of the HDL design generated by

AOCL and the resource utilization of the FPGA. When the resource utilization is close to

100%, it would be much more difficult for Quartus software to fit the design on FPGA.

As a result the frequency of the kernel will drop significantly and thus increase latency of

the computations.

Table 4. K-means FPGA Implementation Hardware Utilization and Frequency

Feature

Size

Max k

size
a

Logic

Utilization

Memory

Block

Utilization

Frequency

(Mhz)

DSP

Utilization

1 2400 81% 85% 184.5 96 %

4 2400 84% 75% 208.46 96 %

8 1200 88% 71% 195.46 96 %

32 512 73% 58% 190.18 89 %

64 512 78% 56% 204.08 77 %

128 512 81% 93% 163.61 52 %
a. Problems smaller than or equal to maximum k size could be executed on kernel.

Regarding accuracy of the AOCL implementation, it turns out that it requires

identical number of iterations to reach steady state compared to the CPU reference code.

The FPGA implementation used floating point optimization flags during compilation to

58

eliminate redundant floating point rounding, thus the resultant cluster centroids are

slightly more accurate than CPU implementation. Although all the data are classified into

the same clusters on both FPGA and CPU implementation, difference exists between the

cluster centroids calculated on CPU and FPGA. Higher number of iterations will result in

slightly larger difference in cluster centroids. For 20 iterations the difference is less than

0.001%.

The current best published work on GPU acceleration of k-means was the CUDA

implementation proposed by Li et al. [35] mentioned in related works. It achieved 137

GFLOPS with 34 dimensional data and 676 GFLOPS with 8 dimensional data on

GTX280 GPU. The FPGA implementation designed in this research could achieve

comparable throughput of 123.63 GFLOPS with 32 dimensional data. However, the

FPGA could only achieve much smaller throughput of 139.73 GFLOPS with 8

dimensional data. The performance of FPGA verses GPU varies depending on problem

size. When processing mid to high dimensional data set, the FPGA performance is

comparable with the GPU results. At smaller data sizes, the FPGA is slower than GPU.

Detailed comparison of GPU and FPGA performance was not included, due to the fact

that the source code for the best GPU implementation in literature was not published.

Other CUDA or OpenCL based k-mean program available either was outdated or could

not work with large problem sizes that was used in this research.

3.4.2 Power

The Terasic FPGA accelerator board has a maximum power consumption of

about 40W, while the Thermal Design Power (TDP) of CPU is 130W and the TDP of

GTX280 GPU is 236W. Assuming full power utilization and ignoring the power

59

consumption of the rest of the system, the difference between energy efficiency of FPGA,

CPU and GPU could be estimated by using FPGA speedup multiplied by FPGA energy

consumption and divided by energy consumption of system under comparison.

Theoretically at peak throughput FPGA implementation is up to 108 times more energy

efficient in term of GFLOPS/Joule than CPU, and around 2 to 9 times more energy

efficient than GPU.

With a Watts up? PRO [39] power meter we could take the power utilization of

the whole system into account and calculate power savings more precisely. Before FPGA

accelerator card is installed into the system, the idle system consumes 75 Watt power.

When performing k-means using Mine-bench with all 6 cores, the power utilization

increases to 175W on average. On the other hand, when the FPGA accelerator is added to

the system, the idle power usage is increased to 96W. During execution of AOCL kernel,

only one of the CPU core is active to execute the host program, thus the CPU utilized less

power than before. But since the FPGA consumed more power when executing kernels,

the total average power utilization increased to 126 W. Thus when utilizing the FPGA

accelerator, the system overall power consumption is reduced by (175-126)/175=28.0%.

Adding the fact that the FPGA implementation could finish up to 21x faster than the CPU

version, the total energy reduction is (175*21-126)/(175*21)=97.5%; or equivalently, the

FPGA implementation is 29.2 times more energy efficient. The power consumption of

CPU and FPGA while executing k-means on 4 dimensional data with various clusters

sizes is shown in Figure 10. The idling period before and after program execution is

marked on the chart.

60

Figure 20. Power Consumption of CPU and FPGA

Due to the fact that all parts of k-means computation are performed on FPGA, it is

possible to use a much weaker but more power efficient CPU for this particular

application without affecting performance. This could reduce system power usage

overhead and make the FPGA platform even more favorable for power sensitive

applications. The kernels can be compiled to target Nallatech accelerator and similar

performance could be achieved. However, due to Nallatech board BSP used more FPGA

area to implement memory interfaces, only kernels with slightly smaller utilization could

be fitted. The energy efficiency could be nearly twice as high as the Terasic accelerator,

because the Nallatech accelerator uses less than 25W of power for computation.

3.5 Discussion

The AOCL implementation of k-means algorithm presented in this thesis running

on Stratix V A7 FPGA is able to achieve 3 to 21 times speedup and is up to 29 times

more energy efficient compared to an optimized CPU implementation running on six core

Xeon processor. The performance of FPGA is comparable with state of the art GPU

Idling
Execution
Complete

on CPU

Execution
Complete
on FPGA 0

50

100

150

200

1

2
3

3

4
6

5

6
9

7

9
2

9

1
1

6
1

1
3

9
3

1
6

2
5

1
8

5
7

2
0

8
9

2
3

2
1

2
5

5
3

2
7

8
5

3
0

1
7

3
2

4
9

3
4

8
1

3
7

1
3

3
9

4
5

4
1

7
7

4
4

0
9

4
6

4
1

4
8

7
3

5
1

0
5

5
3

3
7

5
5

6
9

5
8

0
1

W
at

ts

Seconds

Power Consumption CPU vs. FPGA

CPU Power Consumption FPGA Power Consmuption

61

implementation at mid to large data sizes, but is slower than GPU at smaller data sizes.

The power efficiency of AOCL FPGA implementation is estimated to be better than that

of best GPU implementation described in literature.

One of the limitations of the presented k-means implementation is that it is

optimized toward getting the maximum peak performance. Therefore, they only work

well in problems with large cluster size. When size of cluster is low, the kernel performs

poorly. Also, the maximum problem dimension that the AOCL implementation supports

before running out of FPGA resources is around 128 to 160. However, the kernels

performs the best when the dimension size is smaller than 64. The kernels compiled for

size above 64 did not perform as well as lower dimensional kernels. It may be possible to

fix both problems with multiple FPGAs, where one FPGA performs reduction operations

while the others execute cluster assignment operations. The cluster data and other

temporary data could be transferred between FPGAs via 12.5 Gbps high speed

transceiver.

In addition, it would be interesting to compile and test the kernels developed in

this research on the newer FPGAs. The new generation 10 FPGAs has substantially more

DSP resources than the Stratix V A7 FPGA used in this research. Each floating point

operation would consume reduced logic, local memory and register resources due to

improved architecture. At the same time due to newer 20nm fabrication technology used,

it could run at higher clock speed with better power efficiency. The Global memory

bandwidth is increased to a level comparable with GPUs as well. It is likely that the

FPGA could outperform GPU for all problem sizes.

62

Chapter 4

Acceleration of K-Nearest Neighbor Search

4.1 Introduction to K-Nearest Neighbor Algorithm

Similar to k-means, the k-nearest neighbor or kNN algorithm is another one of the

most popular machine learning algorithms [29]. It is mostly used in pattern recognition

and data mining applications. kNN could be used to solve regression or classification

problem. Depending on the problem, output of kNN could be either the most prevailing

class of the k-nearest neighbors in the case of classification, or the average of the k-

nearest neighbors in the case of regression. kNN is an example of supervised learning,

where sample data with reference output is provided during the training phase. Query

data is provided during the classification or regression phase. The goal is to find the k-

closest neighboring reference points to the query points, and use the neighbors to predict

the class or expected value of the query points.

While the training phase of kNN is as simple as remembering the sample data, the

process of finding the k-nearest neighbors could take a long time when data dimensions,

number of samples or number of querying data is large. The most computationally

intensive part of kNN algorithm is finding of the nearest neighbors for query data, which

is the main focus for acceleration. After the nearest neighbors are determined, their most

frequent class or average could be easily computed on CPU.

The direct approach of kNN is the brute-force algorithm, which involves use of

similarity function to measure the pair wise distances between the query point and every

reference points, and then sorting the distances in ascending order to determine the k-

63

nearest reference points. For similar reasons mentioned in chapter 3, the similarity

function used in this research is restricted to squared Euclidean distance. The simplified

pseudo code for the algorithm is shown below.

ALGORITHM 3. Sequential Brute-Force KNN Algorithm
input: A set of reference points R and query points Q, dimension size D,

query size M, reference size N, and cluster size K

output: A set of k nearest reference points for each query point q (indexes)

for each query point q in Q do

dist [N] 0;

for each reference point r in R do

 for each dimension d do

 dist[r] += distance (q , r);

 end

end

sort(dist);

select K reference point with smallest distance to query point q;

end

The brute-force algorithm is obviously not the most efficient solution for kNN.

Since the reference points far away from the query point are unlikely to be neighbor

points, optimally they could be eliminated for distance calculation. In training phase

instead of storing reference points linearly, advanced data structure such as k-d tree or k-

dimensional tree could be generated by recursively partitioning the sample space using

the reference points. When query point is supplied, the nearest neighbors could be found

by traversing the k-d tree and recursively searching for closer reference points. Due to the

inherent property of the k-d tree, each time a lower level is reached, a large amount on

unsuitable reference points are eliminated, and far few distance calculations are needed.

However, due to their complexity, various tree-based kNN algorithms are very difficult to

parallelize and thus are not implemented in this research.

64

4.2 Related Works

An optimized CPU based approximate k-NN algorithm [40] was proposed in

1998. The authors also published the source code of their algorithm along with a brute-

force exact version of k-NN algorithm in the form of a library called ANN [41] library.

The brute-force CPU implementation of kNN provided in this library is used in this

research for performance comparison.

In 2008, Garcia et al. from University of Nice Sophia Antipolis proposed a

CUDA implementation of the brute force kNN algorithm [42]. When comparing with the

brute force kNN algorithm in ANN, they claim a speedup of one to two orders of

magnitude could be achieved. An updated implementation [43] using CUBLAS API was

proposed in 2010, which further improved the performance and was used to demonstrate

an image feature matching application. The source code for this CUDA implementation

of brute force kNN search was published on GitHub [44] and was used in this research

for speed comparison.

A parallel implementation of kNN algorithm using truncated btionic sort [45] was

presented in 2012. On GPU the proposed sorting algorithm was able to significantly

outperform thrust::sort radix sort function provided in CUDA Toolkit. A summary of

various truncated sorting algorithms was also provided in the paper.

A dynamically reconfigurable kNN classifier implementation [46] on Xilinx

Virtex 4 FPGA was presented in 2012. The researchers claim that it was 68 to 76 times

faster than sequential Matlab implementation running on a Pentium E5300 CPU.

65

 Stamoulias et al. from University of Athens presented their design [47] of a

flexible IP core kNN classifier for FPGA in 2013. They were able to achieve 1.369

GOPS on Xilinx Virtex XC2VP30-6 FPGA. While more power efficient, it was 10 times

slower than an earlier GPU implementation published in 2008 and only works with small

data set.

 In 2014, Komarov et al. from University of Wisconsin-Milwaukee described a

new brute force kNN algorithm [48] that uses quick select instead of sorting algorithms to

determine the nearest neighbors. On problem with very large cluster sizes, they were able

to achieve over 100 times speedup over the CUDA KNN CUDA published in 2008.

However, the speedup was insignificant when cluster size is smaller than 64.

4.3 Altera OpenCL Implementation and Synthesis

The kNN algorithm implemented in this research divides the distance calculation

and sorting process into two separate kernels. Their implementation and optimizations are

discussed in the subsequent sections.

4.3.1 Distance Calculation

The distance calculations have the time complexity of O (M*N*D), where M is

the number of query points, N is the number of reference points and D is the dimension

size of the data. This is the most computationally intensive part of the kNN process, and

should be placed in a separate kernel. Since the distance calculation for each query point

is independent, it is rather easy to map the distance calculations to thread parallelism.

There are two ways to calculate the distance in parallel. First, one dimensional NDRange

could be used. The calculation of each query data could be mapped to a different thread.

66

A nested for loop could be used to loop through each of the query data point and their

dimensions. The inner for loop iterating over the dimensions of the data could be unrolled

in order to increase throughput. This is similar to what was developed for the k-means

kernel, except now there is less data reuse. It is also possible to map the distance

computation to two dimensional threads. In this paradigm each reference data point maps

to the one work-item in the first dimension, and each query point maps to one work-item

in the second dimension. Each thread passes through a for-loop over the dimensions of

the data, which could be unrolled to increase throughput.

In order to reduce the number of global memory operations, local memory could

be used to temporarily store multiple query or reference points, and share them with in a

single work-group so the threads does not have to read them from global memory every

time a new pair-wise distance needs to be computed. The blocking operations for the one

dimensional work-group version of the distance calculation is illustrated in Figure 21,

whereas the blocking operations for the two dimensional version of distance computation

is illustrated in Figure 22. Notice that the two dimensional blocked distance calculation

kernel is simply a scaled down version of the matrix multiplication. When dimensions for

the data is too large and cannot fit into FPGA’s local memory, a full scaled version of

matrix multiplication could be used.

67

Figure 21. Visualization of 1D Blocked Distance Calculation Kernel

Figure 22. Visualization of 2D Blocked Distance Calculation Kernel

In one dimensional blocked distance kernel, one reference points is loaded into

local memory and are reused by all the query data in the same work-group. Whereas in

the two dimensional kernel, one block of query and reference points are loaded into local

memory by all work-items in the work-group. All pair-wise distance are computed using

local memory and the results are written back to global memory after the whole block is

processed. The 2D threaded kernel is constructed based on the matrix multiplication

68

example [49] published by Altera. The saving in global memory operation is proportional

to the block size in both cases. Larger block will use significantly less global memory

bandwidth.

4.3.2 Sorting Algorithms

There a lot of different sorting algorithms that could be used in kNN. Sorting

algorithms usually involve heavy global memory access. A lots of work has been done on

optimizing sorting on CPU and GPU. In order to compete with CPU and GPU platforms,

it is very important to take the advantage of the fact that the cluster size is usually much

smaller than the total number of reference points, and thus the distances does not have to

be fully sorted.

One of simplest sorting algorithm is insertion sort [50]. It has the same average

and worst case time complexity of O (N
2
) as the notorious bubble sort. However, instead

of going through the whole array repeatedly and swapping values constantly, the

insertion sort keeps track of sorted and unsorted list separately and only swap data when

necessary. When sorting a new value, the insertion sort inserts it into the proper location

in the sorted list. When applied to kNN search, the sorted list can be stored in local

memory with size only as large as the number of clusters. At the same time insertion sort

could be done completely locally and read the distance array exactly only once, which is

good for FPGA implementation. In order to parallelize insertion sort, each query point is

mapped to a different thread. The distance values from multiple query points are

processed concurrently while the sorting process itself utilizes task parallelism.

Additional optimizations are applied. For example, first K distance values were used to

fill the sorted list, while subsequent distance values were only inserted into the array if it

69

is actually smaller than at least one of the values already in the sorted list. Pseudo code

for insertion sort optimized for the AOCL FPGA implementation of kNN designed in this

research is provided below.

ALGORITHM 4. Insertion Sort Algorithm (for one query point)
input: Array of distance values dist[] with size N

output: A set of nearest reference point indexes clusters[] with size K

initialize local memory dist_local[] to INF and index_local[] to 0

for i from 0 to N-1 do

dist_new = dist[i];

// determine whether filling the sorted list or inserting new value.

if i < K then

 set sort_limit to i;

else

 set sort_limit to K;

end

// check where the new value should be added into the sorted list

for j from sort_limit down to 1 do

 if dist_new < K then Break;

 dist_local[j] = dist_local[j-1];

 index_local[j] = index_local[j-1];

end

// add to sorted list if the new distance is smaller

if i < K or j != K then

 dist_local[j] = dist_new;

 index_local[j] = i;

end;

end

// write the index of K closest reference point back to global memory

for i from 0 to K-1 do

 clusters[i] = index_local[i];

end

Heap sort [51] [52] is an efficient sorting algorithm with average and worst time

complexity of O (N log N). The heap sort algorithm relies on a binary tree based data

structure called heap, where all levels of the tree except the lowest is complete filled. The

array based implementation of heap data structure is shown in Figure 23. Here each level

70

of the heap structure occupies into 2
L
 elements in the array, where L is the depth of that

particular level. In a complete heap sort, the unsorted input is first used to construct the

heap data structure. After which the largest or smallest value in heap could be returned by

repeatedly popping the root and then fixing the heap.

Figure 23. Visualization of Heap Data Structure Implemented Using Array [53]

A modified heap sort algorithm optimized for the kNN search is also designed in

this research. A max heap is used in kNN application, where the largest value is sorted in

1
st
 index of the heap as root. Since kNN search only interests in finding k-minimal points

and not interested in the order of the neighbors, the heap data structure can be stored in

local memory only as large as the number of clusters. For each query point, the first k

distance values are used to build the initial heap, while all remaining distance values are

used to update the heap. After all distance values are processed, the indexes stored in

heap array are returned as the indexes of reference points with smallest distance to the

query point.

71

Similar to the insertion sort mentioned earlier, the building and maintenance of

heap data structure is done completely locally and the entire distance array is only read

once. One work-item is allocated for each query point, while distance values from

multiple query points are processed concurrently. Additional optimizations are applied.

For example, the heap array is padded with an extra 0
th

 element in the beginning, so that

indexing of every level in heap is power of 2. This way the shift operations could be used

instead of more expensive division and multiply operations to index the heap. In the

actual AOCL implementation, while loops where used to perform heap build and fix

functions, which is not optimal since the compiler could not design fully optimized

pipelines with while loop. An alternative for loop implementation of the heap sort was

attempted. Unfortunately while the kernels with for loop successfully passed emulation,

the results were incorrect when compiled to hardware, so it could not be used. A

simplified version of heap sort pseudo code optimized for the FPGA implementation of

kNN is provided below.

ALGORITHM 5. Heap Sort Algorithm (Simplified)
input: Array of distance values dist[N]

output: A set of nearest reference point indexes clusters[K]

local memory: Heap data structure is stored in dist_local[K + 1] and

index_local[K + 1]

initialize local memory dist_local[K + 1] to INF

initialize local memory index_local[K + 1] to 0

for i from 0 to N-1 do

dist_new = dist[i];

if i < K then

 //if heap is not filled

 append dist_new into the Heap;

else

 //if the heap is filled

 if dist_new < dist_local[1] then

 //if dist_new is smaller than the largest value in heap

 use dist_new to replace the current heap root;

 fix the heap;

 end

end

72

end

//write the index of K closest reference point back to global memory

for i from 1 to K do

 clusters[i] index_local[i];

end

One of the most efficient soring algorithms on CPU is quick sort. Quick sort

randomly selects pivot points, and use them to partition the data array into smaller sub-

arrays where smaller and larger values in the array placed in order. However it does not

map to parallel architectures very well. Quick select algorithm derived from quick sort

could be used to efficiently determine the k smallest numbers from an array. However, it

requires the host to control the execution of sorting and supply the pivot during each

partition, and thus may not be a good fit for FPGA. Similar to quick sort it has a worst

case time complexity of O (N
2
), but has an average time complexity of O (N) instead of

O (N log N).

The fastest sort used on GPU is non-comparative radix sort, which recursively

partitions the keys based on whether the individual bits of each key is zero or one. The

radix sort has a linear average and worst-case time complexity of O (k*N), where N is the

total data size and k is the number of bits the each key. For single precision floating point

data type k is 32. The radix needs to go through the entire array of data multiple times. In

each run it requires repeated radix sum operations for index calculation as well as

swapping the data around in order to achieve optimized memory access, and thus may not

be a good fit for FPGA.

73

4.3.2 Implementation Specifics and Use of Channel Extension

In order to determine the best way to compute distance for kNN search, test

kernels with various data dimension where constructed to compare the 1D and 2D kernels.

After testing it was determined that the 2 dimensional version of the kernel not only give

slightly better performance, but also use less FPGA reconfigurable resources. Thus the

2D version of distance kernel is used in final version of the kNN. Kernels optimized for

data dimension sizes of 64, 80, and 128, and cluster sizes from 4 to 32 were selected for

performance testing. The inner loop for distance kernel with those dimensions are fully

unrolled. For the dimension size of 64, SIMD factor of 2~4 could be applied dependent

on how large the cluster size is. While for dimension of 80 and 128, SIMD factor of 1~2

could be applied. Setting higher SIMD factor allows the compiler to design hardware that

could execute more work-items in parallel, but will cost more FPGA hardware resources.

Distance kernel with dimension size lower than 32 are proven to be inefficient due to

insufficient parallelism and data reuse. Although untested, the kernels could easily be

modified to process data with dimension larger than 128 without performance penalty.

Both insertion sort and heap sort are implemented and optimized in this research.

During testing it is determined that the heap version of the sorting kernel was much faster

than insertion sort in all problems sizes, and thus heap sort was used in the final version

of the kNN kernels.

In order to minimize global memory access, use of Altera Channel Extension to

transfer distance data from the distance kernel to the sorting kernel was attempted.

However, while it passed emulation, the kernels with channel extension applied would

often get stuck in execution. In some kernels compiler error relating to LLVM was

74

encountered during compilation. Only a few kernels with heap sort and cluster size of 4

and smaller worked with channel extension, and the speed improvement was not

significant. Therefore, Channel Extension is not used in the final version of kNN kernels.

4.4 Result and Discussion

The Results from FPGA implementations synthesized using Altera SDK for

OpenCL running on Stratix V A7 FPGA is compared with results from ANN library and

kNN CUDA mentioned in related work. The ANN library was compiled using GCC

compiler with level 3 optimization enabled and debugging disable, and the kNN CUDA

source code are compiled with CUDA SDK version 6.5. The ANN code was tested on

Intel Xeon E5-2637V3 CPU, which has 4 cores running at maximum frequency of

3.7GHz, 15MB of cache, 68 GB/s memory bandwidth and a TDP of 135W. The CUDA

code was tested on NVIDIA K620 GPU with 384 CUDA cores running at maximum

frequency of 1.124GHz and 45W TDP. This GPU has a peak single precision floating

point throughput of 812.5 GFLOPS. The FPGA used in performance test was DE5-net

accelerator while the FPGA used in testing the power utilization was Nallatech 385

accelerator. Both cards contain Stratix V A7 FPGA and returns similar performance, with

the exception that the Nallatech accelerator has more memory to fit larger data sizes, and

kernels targeting Nallatech board sometimes have higher FPGA resource utilizations.

Three sets of performance tests are conducted. The first set of tests was conducted

with varying dimension size for 64 to 128. The second set of test was conducted with

constant dimensions size of 128, but varying the cluster size from 4 to 32. The third set of

test was conducted with constant 128 dimensions and 4 clusters while varying the query

75

and reference data size. The number of query and reference data point was set to be

identical for simplicity. The results are summarized in Table 5, 6, and 7.

Table 5. kNN Performance with 16384 Samples, 4 Clusters and Various Dimension Sizes

Dimension

Size

FPGA DE5 Time

(s)

ANN CPU Time

(s)

CUDA Time

(s)

CUBLAS Time

(s)

64 0.46477 3.13379 0.60076 0.39306

80 0.92264 6.29346 1.00081 0.3368

128 2.1163 26.47461 3.55568 0.52022

Table 6. kNN Performance with 128 Dimensions, 16384 Samples, and Various Cluster Sizes

Cluster Size FPGA DE5 Time (s) ANN CPU Time (s) CUDA Time (s) CUBLAS Time (s)

4 2.11527 26.47607 3.55568 0.52022

8 2.1555 26.49854 3.56075 0.52982

16 2.60873 26.53711 3.62862 0.58699

32 3.67524 26.54639 3.80429 0.76323

Table 7. kNN Performance with 128 Dimensions, 4 Clusters and Various Data Sizes

Cluster Size FPGA DE5 Time (s) ANN CPU Time (s) CUDA Time (s) CUBLAS Time (s)

128 0.00143 0.00526 0.16934 0.22893

256 0.00181 0.0118 0.17724 0.2301

512 0.0034 0.03316 0.18966 0.23147

1024 0.00969 0.11275 0.22775 0.24067

2048 0.03452 0.4202 0.22775 0.23147

4096 0.13382 1.66472 0.3973 0.25404

8192 0.53037 6.6235 1.02513 0.30444

16384 2.11518 26.44714 3.54027 0.517

The tables show that while the FPGA performs well with very small clusters sizes,

the performance drops sharply with increasing cluster sizes. Figure 24, 25 and 26

illustrates the speedup of FPGA and GPU implementation over the ANN library running

on CPU.

76

Figure 24. Speedup of FPGA and GPU over CPU with Varying Dimension Sizes

Figure 25. Speedup of FPGA and GPU over CPU with Varying Cluster Size

0

10

20

30

40

50

60

64 80 128

Sp
e

e
d

u
p

 T
im

e
s

Dimension Size

FPGA and GPU speedup over ANN
(varying dimension size)

FPGA Speed Up over CPU CUDA Speed Up over CPU

CUBLAS Speed Up over CPU

0

10

20

30

40

50

60

4 8 16 32

Sp
e

e
d

u
p

 T
im

e
s

Cluster Size

FPGA and GPU speedup over ANN
(varying cluster size)

FPGA Speed Up over CPU CUDA Speed Up over CPU

CUBLAS Speed Up over CPU

77

Figure 26. Speedup of FPGA and GPU over CPU with Varying Data Size

The plots indicate that the FPGA implementation of kNN design in this research

outperforms ANN library running on CPU by a factor of more than 10 times. The FPGA

could also outperform the GPU with tiny data sizes, but with any sufficiently large data

or dimension sizes the GPU outperforms the FPGA implementation.

In addition to performance tests, the power consumption of CPU, GPU, and

FPGA was tested with Watts up? PRO power meter. The test condition chosen for the

power test is to repeat kNN search on 128 dimensions, 4 clusters and 16384 query and

reference data points for 4 times. The result is summarized in Table 8. Notice that the

energy is calculated by using the difference between power while running the kernel and

idling multiplied by the computation time. The resource utilization of various kernels

along with maximum frequencies used in the test is summarized in Table 9.

0

10

20

30

40

50

60

128 256 512 1024 2048 4096 8192 16384

Sp
e

e
d

u
p

 T
im

e
s

Query/Reference Data Size

FPGA and GPU speedup over ANN
(varying data size)

FPGA Speed Up over CPU CUDA Speed Up over CPU

CUBLAS Speed Up over CPU

78

Table 8. Power Utilization of Various kNN Implementations

Power Test
Total time
(s)

Idle power
(W)

full power
(W)

TDP Rating
(W)

Total Energy
(J)

FPGA (385 A7) 9.04185 72.3 82 25 87.70595

ANN (Xeon E5) 105.33008 52.6 88.2 135 3749.75085

CUDA (K620) 14.17392 60 108.5 45 687.43512

CUBLAS (K620) 1.88504 60 105 45 84.8268

Table 9. FPGA Resource Utilization and Frequency of Various AOCL kNN Kernels

Kernels
Logic % I/O

pins %
DSP
blocks %

Memory
bits %

RAM
blocks %

Kernel
fmax

(d = dimension,
K= clusters)

(234K ALM
total)

(1064
total)

(256
total)

(52Mbit
total)

(2560
total)

(MHz)

64d_4simd_4k 83 26 100 19 41 208.46

80d_2simd_4k 60 26 66 29 54 204.24

128d_2simd_4k 81 26 100 19 42 221.28

128d_2simd_8k 86 26 100 20 44 217.24

128d_16k 67 26 54 22 47 211.64

128d_32k 92 26 54 24 57 162.6

From the tables, we can see that the FPGA implementation is nearly 50 times

more power efficient than CPU, and is on par with best GPU implementation. Increase in

cluster size causes the logic utilization to increase dramatically while the maximum

frequency drops sharply.

During profiling, it turned out that for 64 dimension kernels with 4 clusters, the

time it takes to perform sorting is roughly five times it take to compute the distance. For

128 dimension kernels with 4 or 8 clusters the sorting takes about twice as long compared

with distance calculation. This clearly indicates that the sorting algorithm implemented is

not fully optimized. While bad sorting performance with large cluster size could be

mediated by using more recent FPGA such as Arria 10, better sorting method should be

79

explored. Modified quick selected and bitonic sort algorithm could be attempted to see if

better sorting performance could be achieved.

80

Chapter 5

Acceleration of N-body Simulation

5.1 Introduction to N-body Simulation Algorithm

N-body simulation is one of the easier algorithms to parallelize and is one of the

popular benchmark to measure CPU and GPU performance. It is a physics simulation on

a system of bodies that interact with each other through some form of force. Some

example applications of N-body simulation include simulation of galaxies, where the

interactions are caused by gravitational forces; or molecules, where the interactions are

carried out by electrostatic and Van der Waals forces. The most simplistic way of

implementing N-body simulations is all-pairs method. In each time step, the speed,

location and acceleration of each body is updated by calculating the force of all affecting

bodies. Updating the parameters of one body in one time step requires calculating the

force interaction from remaining N-1 bodies, thus the computational complexity is in the

order of O (N
2
) for N-body simulation. When the problem size is sufficiently large, more

complex algorithms can be used to obtain approximated result more efficiently. One of

such algorithm is Barnes-Hut simulation [54]. It takes the advantage of the fact that

objects far away from the body under update have little effect on the said body and could

be neglected. Barnes-Hut simulation utilizes octree data structure to partition the bodies

into 3 dimensional cells. All the objects that are more than a certain distance away from

the body under evaluation are not directly used in force calculation, but instead they are

treated as one object located at the centroid of their cell. As a result, the computational

complexity of the algorithm is reduced to O (N log N) instead of O (N
2
), at the cost of

less accuracy. In our research, only the pair wise algorithm is implemented in order to

81

achieve maximum throughput. The application chosen for our implementation is

simulation of galaxies. The acceleration of each body caused by gravitational force

interactions can be calculated as follows:

 ∑ (

)

 [55]

Where rij is the distance between the pair of bodies and mj is the mass of the interacting

body. To avoid complex decimal exponent calculations, the denominator in the

summation is calculated using three multiplications and an inverse square root (rsqrt)

operation. When three dimensional space is considered, the total number of floating point

calculation is 20 if the inverse square root operation is considered as a separate division

and square root operation.

5.2 Related Works

NVIDIA published a CUDA based brute-force parallel N-body simulation [55] in

GPU Gems 3 book. An updated version of this implementation was provided as an

example in CUDA SDK Toolkit, which is used for GPU performance comparison in this

research. Intel provided a fully optimized OpenCL implementation [56] of N-body

simulation that works in a similar fashion. It is used for CPU performance comparison in

this research.

A highly efficient FPGA implementation [57] of N-body simulation was

introduced in 2009. This FPGA implementation used both fixed point and logarithmic

number format for different parts of computations. The researchers compared

performance from CPU, GPU, ASIC and FPGA and found out that while GPU has the

82

highest throughput, their FPGA implementation targeting Xilinx Sparta3 XC3S5000

FPGA could achieve the highest power efficiency of 49 GFLOPS per Watt, which is an

order of magnitude higher than any other platform.

Segal et al. briefly discussed an AOCL implementation [38] of N-body simulation.

This implementation is ported from high level Java code automatically to Altera SDK for

OpenCL by using theAPARAPI Java Framework. On Stratix V A7 FPGA it was 4.8~5.3

times faster when compared with CPU implementation.

5.3 Altera SDK for OpenCL Implementation

The computation of each body is independent of other bodies and thus could be

computed using different threads, and various optimizations such as SIMD vectorization

could be used to increase the throughput. The computation done on individual bodies

however needs to be summed in the end using reduction. Three different approaches were

attempted in this research. First approach is straight forward implementation without

considering data reuse. One dimensional work-groups were used, where each work-item

maps to a different body. Second approach is to utilize data reuse, where multiple work-

groups are used, each reads a subset of data and shares it among all the work-items in the

work-group. Data reuse results in reduction of memory transfer to the global memory by

local group size times. Although this application is not memory intensive, any saving is

helpful. The third approach is similar to the second approach, but task parallelism is used

instead of multiple threads, and the computation is implemented in a shift register

fashion.

83

During testing it turned out that the second approach gives the best performance,

thus it is used in the final version of FPGA N-body kernel. Also, loop unrolling is

preferred over SIMD due to higher DSP utilization. With loop unrolling factor of 23,

98% of DSP resources available in A7 FPGA are used up.

Mixed point implementation using logarithmic number system does not fit

OpenCL programing model, and could not be implemented without adding customized

Verilog models, which defeats the purpose of HLS and was not implemented in this

research.

5.4 Synthesis Result and Discussion

The N-body simulation was tested on Nallatech 385 accelerator which contains

Stratix V A7 FPGA. The optimized CUDA and OpenCL implementation of N-body

simulation was also tested on NVIDIA K620 GPU and Xeon E5-2637V3 CPU for

performance comparison. The result is summarized in Table 10. From the table we can

see that the while the FPGA could outperform the optimized CPU implementation, it

could only compete against GPU with small data size. The GPU can easily outperform

both FPGA and CPU when data size is sufficiently large.

Table 10. N-body Simulation Performance Result in Term of Throughput

of Bodies
Performance (GFLOPS)

FPGA GPU CPU

256 1.88 0.1 2.59

512 12.40 0.3 7.48

1024 30.19 1.3 23.18

2048 53.68 5 45.07

4096 81.10 20.1 63.76

8192 94.06 80.6 73.19

16384 98.74 322.3 76.24

32768 99.82 429.7 77.31

84

When the kernel is implemented to use single precision floating point operations,

there are 9 add/sub operations, 9 multiply operations, and one inverse square root

operation for every force calculation. The total DSP utilization is 9+2 = 11 DSPs. With

23 loop unrolling, 23 force calculations can be computed concurrently, which uses 253

DSP in total. When converting the single precision floating point kernel to use double

precision operation, the resource utilization dramatically increased to 9*4+9 = 45 DPs per

force calculation, and the maximum possible loop unroll factor is decreased to 5.

Estimated performance is at least more than 4 times slower without considering the

decreased clock speed.

When compiling N-body kernel targeting the Stratix V D5 FPGA with less logic

resources than A7 but significantly more DSP blocks (1590 vs. 256 DSPs), twice the

number of DSP block could be utilized before the FPGA runs out of logic resources.

Since Stratix V D5 has similar power consumption rating as Stratrix V A7. It should be

able to achieve 200 GFLOPS with about twice the power efficiency in term of

performance per watt. However, this is still not competitive with GPUs even on GFLOPS

per Watt terms, because GPUs easily achieve throughput in the range of TFLOP

throughput with little more than 100W of power consumption.

The last generation Stratix V FPGA requires lots of logic resources beside the

DSP units to implement floating point operations. Therefore even if there are plentiful

DSP resources, the logic resources such as ALMs and Registers usually run out before

the DSP resources could be fully utilized. The new generation Arria 10 and Stratix 10

utilizes hard DSP unit optimized for floating point operations which requires far less

supplementary logic and could be clocked at much higher speed. They may offer multiple

85

orders of performance increase without increasing the power consumption. It is possible

that they could offer similar performance when compared to their GPU counterparts at

much lower power consumption.

86

Chapter 6

Acceleration of Matrix Decomposition

6.1 Introduction to Matrix Decomposition Algorithms

Many important engineering and machine learning applications today rely on

matrix decomposition. Factoring large matrices is computationally intensive. Appropriate

hardware acceleration can dramatically speed up the application.

Gauss–Jordan elimination is one of the oldest methods for solving matrices. It

involves use of repeated elementary row operations such as scalar multiplication, addition

and swapping of rows to reduce the matrix to upper triangular form. However Gauss-

Jordan elimination for solving matrix is not fully optimized. In most engineering and

science problems, the coefficient matrix often stays the same, whereas the constant vector

constantly changes. In this case a method called LU decomposition can be used to

simplify computation. LU decomposition is one of the ways to factorize a non-singular

matrix A into the product of a lower triangular matrix L and an upper triangular matrix U,

such that [A] = [L] x [U]. Solving system of linear equations using LU decomposition

has time complexity similar to Gauss Jordan elimination, which is O (N
3
) for N by N

matrix. However, Gauss Jordan elimination method requires constantly performing

forward elimination and back substitutions, whereas the LU decomposition computes

those two steps separately, and thus the factorization of matrix into upper and lower

triangular matrices needs only to be done once. When LU decomposition is complete, the

solving part of the computation only costs O (N
2
). The LU decomposition also allows fast

computation of determinant, as the determinant is simply the product of diagonal

87

elements. Also, because the resultant L and U are both triangular matrices, they could be

stored in-place in the matrix to be solved and save significant memory space.

There are a few different flavors of LU decomposition. Two of the most common

sequential algorithms for performing LU decomposition are Doolittle’s method and

Crout’s method. The Doolittle method uses Gauss elimination to decompose the matrix A

into upper triangular U and lower triangular L matrix. In every iteration one Gauss

elimination is performed on an increasingly smaller sub matrix, until only one element is

left. The Crout’s method on the other hand factorizes one row and one column at each

time and then updates the rest of the matrix in each iteration.

To increase the computation density per memory access, the Blocked LU

decompositions were developed, which divide the problems into smaller fixed sized

blocks. Each iteration solve one blocked column or panel using LU decomposition and

uses general matrix multiply (GEMM) to update the trailing matrices. When the size of

the block can be fitted into high speed cache memory, it is possible to reuse it in the

computation without having to update the lower speed global memory. There are a few

different variant of blocked LU decomposition, namely Left-looking, Right-looking and

Crout (not to be confused with sequential version of Crout method) Blocked LU

decomposition [58]. The time complexity of the different methods in general is the same

but they differ in memory access and order of executions.

The optimized LU decomposition routine has been built into many numerical

computing libraries. One of the most popular ways of implementing matrix factorization

and solving is by using LAPACK library [59]. The library includes a set of Basic Linear

88

Algebra Subprograms (BLAS) that are essential in matrix operation. There are 3 levels of

BLAS operations. Level 1 BLAS deal with vector to vector operation, level 2 BLAS

include vector to matrix operation, and level 3 BLAS are used to perform matrix to

matrix operations. Due to the fact that modern computers are mostly limited by memory

latency and throughput rather than the capability of performing arithmetic operations,

performance of an algorithm can be increased when the number of arithmetic operations

performed per memory access is high. The level 3 BLAS allows memory reuse by

loading data into fast cache memory, and reusing in later computations. The algorithm for

unblocked and blocked LU decomposition is shown in Figure 27.

89

Figure 27. Unblocked and Blocked LU Decomposition Algorithm [60]

90

6.2 Related Works

Over the years, extensive Research has been done on accelerating LU

decomposition on CPU, GPU and FPGA. Hardware vendors such as Intel, AMD, and

NVIDIA have implemented those BLAS operations in their own math libraries such as

Intel Math Kernel Library (MKL) [61] and NVIDIA cuBLAS library [62]. Those

libraries are written in highly optimized assembly code and can achieve very high

throughput on high performance GPUs and CPUs. Due to the advancements made in the

field of heterogeneous computing, modern version of linear algebra libraries such as

Matrix Algebra on GPU and Multicore Architectures (MAGMA) [63] are developed to

utilize both the power of massively parallel GPUs and multi core CPUs to solve matrix

problems. The MAGMA library utilizes both MKL and cuBLAS library and is one of the

fastest numerical library available.

Various FPGA implementations of LU decomposition also exist, but they are

mostly implemented before the age of GPGPU computing, so their performance was not

as competitive. One good example of LU decomposition implemented on FPGA [64] was

published in 2008, in which the author was able to achieve 47GFLOPS in blocked LU on

an older generation Stratix III FPGA with relatively small sized matrix by using hand

coded Verilog. The dual core CPU the researcher used in comparison could achieve

42GFLOPS with MKL. Since Stratix III FPGA uses 18W of power while that CPU uses

80W, it was competitive against CPU in terms of power efficiency.

6.3 Altera OpenCL Implementation and Synthesis

In this research blocked LU decomposition was implemented using AOCL. The

initial implementation used three single thread kernels, one for each of the LU

91

decomposition operations. The performance was poor due to the fact that very little

memory reuse existed and the optimized pipeline could not be instantiated by the

compiler. Various one and two dimensional multi-work-group implementations were

later developed and optimized. Tests show that kernel that uses 2D work-groups performs

the best, especially with SIMD vectorization enabled. But they are far from 100 percent

efficient and they used too much local memory as local cache to store the block of matrix

under computation. As a result not all DSPs could be utilized because the local memory

resources were already depleted before work-group size, vector size and loop unroll

factor could be further increased.

Because the double precision floating point operations are too costly for older

generation Stratix V FPGAs only single precision floating point data was used. The best

blocked LU decomposition AOCL implementation designed in this research uses the

right-looking blocked algorithm. It uses 1D cache for LU, left kernels and no pivoting.

The work-group size used in the kernel is 64 by 64. In this kernel, the factorization of the

ATL (see Figure 27) matrix is done using a small 2D threaded LU kernel. The process of

updating the left panel of matrix A is done separately in two different kernels for ATL and

ABL matrix. This way the process of updating matrix ATR and ABL in the upper and left

panels could be done concurrently. The update of trailing matrix ABR is done using a

scaled down version of matrix multiplication kernel. In total four kernels are used for

blocked LU decomposition.

6.4 Results and Discussion

The performance of the kernels was measured in terms of GFLOPS. The

throughput for LU decomposition is calculated by dividing the total number of operations

92

by the execution time, which is equivalently

, assuming the size of

the matrix is N by N. In order to compare performance between FPGA and CPU/GPU,

the appropriate CPU and GPU routines from MAGMA library were called to solve the

matrixes with the same sizes. The MAGMA library was compiled with Intel parallel

studio version 11.2 and CUDA SDK version 6.5 with optimizations enabled. The CPU

used in the test was Intel Xeon E5-2637 v3 while the GPU used was NVIDIA K620.

Randomly generated square matrices with size from 1024 to 16384 were used in the test,

and the result is summarized in Table 11. The FPGA implementation was eclipsed by

CPU and GPU in all the cases. The GPU outperforms the CPU for large matrix sizes. The

CPU used in our test is one of the high end server CPUs with 4 cores and 12 MB of level

3 cache, whereas the GPU is a low power workstation graphics card. The newer and

higher end GPUs should be able to achieve much higher throughput in the range of

TFLOPS.

Table 11. Blocked LU Decomposition Throughput Performance Results

Performance (GFLOPS)

Matrix Sizes N FPGA (DE5) MKL (Xeon E5) MAGMA GPU (K620)

1024 6.6829 114.87 82.39

2048 14.9069 213.84 199.94

4096 25.8361 253.76 325.22

8192 35.8658 317.19 446.55

16384 42.7429 328.1 545.38

Test run with 16384 matrix size is profiled, and the visualization of kernel

execution is shown in Figure 28. In each kernel launch iteration, the trailing matrix

update kernel takes the most time to finish, while the LU decomposition of the top left

diagonal matrix takes the least amount of time. The update of the top and left panel

93

matrix is processed in parallel and takes comparatively less time to compute than trailing

matrix update.

Figure 28. AOCL LU Decomposition Profile Result [60]

The FPGA resource utilization for Blocked LU decomposition kernel is shown in

Table 12. The DE5-net accelerator used less I/O pins due to less memory on board, which

means it could be compiled to a slightly faster frequency. The effect on performance is

miniscule however. The kernel used 64x64 work-item 2D work-groups. While larger

work-group sizes such as 80x80 are also possible, the memory block utilization was over

100 percent and could not fit on the Stratix V A7 FPGA.

Table 12. Resource Utilizations of Blocked LU Decomposition Kernel

DE5-net Nallatech 385

Logic utilization % 53 53

I/O pins % 26 58

DSP blocks % 72 72

Memory bits % 35 35

RAM blocks % 66 65

Kernel fmax (MHz) 202.47 194.7

Peak throughput (GFLOPS) 41.2 42.7

If the blocked LU decomposition kernel is compiled on newer generation FPGAs

such as Arria 10 and Stratix 10, it is possible to achieve higher performance due to more

94

DSP and memory blocks are available. However it would still be difficult trying to

compete with high end GPUs running fully optimized linear algebra libraries. Further

research is needed to determine more efficient ways of implementing the matrix solvers

on Altera SDK for OpenCL.

95

Chapter 7

Conclusion and Future Work

7.1 Summary

The AOCL implementations of k-means clustering and k-nearest neighbor

algorithms synthesized for FPGA performed well against CPUs. However, they were

only able to compete with GPUs in certain problem sizes. When power consumption is

considered, the power efficiency of FPGA far out matched CPU implementations, and is

equal or better when compared with GPU. In the case of N-body and LU decomposition,

the AOCL implementation did not significantly outperform the optimized CPU

implementation and is outperformed by GPU. However, it is important to note that CPU

and GPU architecture has been optimized to handle those kinds of algorithms very well.

Those applications may not be good representatives to illustrate of the full potential of

FPGAs for hardware acceleration.

7.2 Evaluation of Altera SDK for OpenCL

The Altera SDK for OpenCL allows acceleration of algorithms on FPGA without

extensive hardware knowledge. It exposes power of reconfigurable hardware to software

engineers. At the same time when compared with other traditional HLS tools, it offers

more streamlined development process and allows high performance heterogeneous

computing across different platforms. The AOCL compiler always attempts to

automatically generate the most efficient pipeline and memory structure for every kernel

program, which means the applications that do not map to GPU architecture perfectly

may perform better on FPGA with AOCL. Since FPGA usually has lower power profile,

96

when used in data centers the cooling and electricity cost could be greatly reduced. At the

same time FPGAs could be packed more densely together to save space. The kernels

developed on AOCL targeting FPGAs have a relative long life cycle, because it is often

unnecessary to redesign the kernel for a newer generation FPGA.

The current generation Altera SDK for OpenCL also has a few drawbacks. The

kernel compilation time is usually in the range of hours, which is exceptionally long

comparing to CPU and GPU. The compilation also requires 32 GB of memory and a

powerful CPU, which could be costly. Also, the current generation Stratix V FPGAs has

lower peak floating point processing capability compared to GPUs. The Stratix V A7

FPGAs tested in this research have very limited number of DSP units for floating point

processing. Also, implementation of floating point functions requires a large amount of

supporting logic resources. Meanwhile the logic resources could not be shared between

different kernels because AOCL compiler always ensures that the kernels can be

executed concurrently, even when that is not necessary. Additionally, sometimes it is

difficult to optimize for AOCL because it is less transparent compared to GPU. Since

GPU has fixed architecture, developers simply needs to maximize the utilization of cores

and memory bandwidth in order to achieve high performance. Whereas in the case of

AOCL, the Altera offline compiler generates hardware architecture automatically based

on kernel source code provided. Although it is possible to obtain the LLVM code and the

Verilog source code generated by the compiler, they are very difficult to read or

understand by a developer. Therefore, sometimes it is hard to determine what issue

lowers performance. Lastly, the optimized kernels developed on AOCL for FPGA

97

usually use different methods to achieve parallelism than CPU or GPU, which means the

portability of the OpenCL code is reduced.

Overall, the Altera SDK for OpenCL is a powerful high level synthesis tool. It

will make FPGA a strong contender in the high performance computing arena.

7.3 Future Work

In this research, only brute-force versions of N-body simulation and k-nearest

neighbors search were implemented. It would be interesting to implement tree based

approximation methods for N-body simulation and k-nearest neighbors search using

AOCL on FPGA and investigate what kind of performance could be achieved compared

to CPU and GPU. For k-nearest neighbors search, better search algorithms could be

implemented to enhance performance for larger cluster sizes. In addition, sparse matrix

decomposition could be implemented using AOCL to determine if FPGA could achieve

performance comparable to or higher than CPU and GPU.

Altera Corporation recently released new generation 10 FPGAs. The mid-range

Arria 10 [65] and high-end Stratix 10 [66] FPGAs will be supported by Altera SDK for

OpenCL. The new generation FPGAs uses hard floating point DSP units, which require

far lower number of supplementary logic resources to implement floating point functions.

The new generation FPGAs also supports ultra-high bandwidth Hybrid Memory Cube

(HMC), which means they could have the same amount of global memory bandwidth as

any high-end GPU. The new generation FPGAs are fabricated using state of the art Intel

technology, which results in 2 to 5 times increase in logic density, and more than doubled

the maximum frequency over current generation Stratix V. It would be interesting to

98

compile the kernels developed in this research to target Arria 10 and Stratix 10 and

determine how much performance increase could be achieved.

99

References

[1] G. Moore, “Cramming more components onto integrated circuits,” Reprinted

from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff. in Solid-State

Circuits Society Newsletter, IEEE , vol.11, no.5, pp.33-35, Sept. 2006

[2] A. Huang, “The Death of Moore’s Law Will Spur Innovation,” Spectrum.ieee.org,

2015. [Online]. Available: http://spectrum.ieee.org/semiconductors/design/the-

death-of-moores-law-will-spur-innovation. [Accessed: 01- Nov- 2015].

[3] D. Patterson, “The trouble with multi-core,” in Spectrum, IEEE , vol.47, no.7,

pp.28-32, 53, July 2010

[4] R. Dennard, V. Rideout, E. Bassous and A. LeBlanc, “Design of ion-implanted

MOSFET's with very small physical dimensions,” in Solid-State Circuits, IEEE

Journal of , vol.9, no.5, pp.256-268, Oct 1974

[5] D. Patterson, “The parallel computing landscape: a Berkeley view,” in Low Power

Electronics and Design (ISLPED), 2007 ACM/IEEE International Symposium

on , vol., no., pp.231-231, 27-29 Aug. 2007

[6] D. Kanter, “Inside Nehalem: Intel’s Future Processor and System,” 2008 [Online].

Available: http://www.realworldtech.com/nehalem/10/. [Accessed: 1- Dec- 2015]

[7] OpenMP.org, “The OpenMP API,” 2015 [Online]. Available:

http://openmp.org/wp/. [Accessed: 1- Dec- 2015]

100

[8] B. Barney, “OpenMP,” Lawrence Livermore National Laboratory, 2015.

[Online]. Available: https://computing.llnl.gov/tutorials/openMP/. [Accessed: 01-

Dec-2015].

[9] The Open MPI Project, “Open MPI: Open Source High Performance Computing,”

2015 [Online]. Available: http://www.open-mpi.org/. [Accessed: 1- Dec- 2015]

[10] R. Smith, “NVIDIA GeForce GTX 680 Review: Retaking the Performance

Crown,” 2015. [Online]. Available: http://www.anandtech.com/print/5699/nvidia-

geforce-gtx-680-review. [Accessed: 01-Dec-2015]

 [11] Brown Deer Technology, “OpenCL™ Tutorial: N-Body Simulation,” 2010.

[Online]. Available:

www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html.

[Accessed: 01-Dec-2015]

[12] Khronos Group, “The open standard for parallel programming of heterogeneous

systems,” 2015 [Online]. Available: https://www.khronos.org/opencl/. [Accessed:

1- Dec- 2015]

[13] Altera Corporation, “High-Performance FPGA Architecture,” 2015. [Online].

Available: http://wl.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp.

[Accessed: 01-Dec-2015]

[14] Altera Corporation, “Stratix V FPGAs: Built for Bandwidth,” 2015. [Online].

Available: http://wl.altera.com/devices/fpga/stratix-fpgas/about/fpga-

architecture/stx-architecture.html. [Accessed: 01-Dec-2015]

101

[15] Altera Corporation, “OpenCL Reference Platforms,” [Online].

Available:http://www.altera.com/products/software/partners/opencl/opencl-board-

partner-index.html. [Accessed: 01-Dec-2015]

[16] Altera Corporation, “OpenCL Development Kits and Cards,” [Online]. Available:

http://www.altera.com/products/devkits/opencl-index.jsp. [Accessed: 01-Dec-

2015]

[17] Altera Corporation, “Stratix V FPGA Family Overview,” [Online]. Available:

http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/overview/stxv-

overview.html. [Accessed: 01-Dec-2015]

[18] Terasic Technologies Inc., “DE5-Net FPGA Development Kit Specification,”

2014. [Online]. Available: de5-net.terasic.com [Accessed: 01-Dec-2015]

[19] Nallatech, “Nallatech 385 – with Stratix V A7 FPGA,” 2015. [Online]. Available:

http://www.nallatech.com/store/fpga-accelerated-computing/pcie-accelerator-

cards/385-a7/ [Accessed: 01-Dec-2015]

[20] A. Canis, “LegUp,” 2015. [Online]. Available: http://legup.eecg.utoronto.ca/

[Accessed: 01-Dec-2015]

[21] Altera Corporation, “Altera SDK for OpenCL Overview,” 2015. [Online].

Available: https://www.altera.com/products/design-software/embedded-software-

developers/opencl/overview.html [Accessed: 10-Sept-2015]

[22] S. Settle, “High-performance Dynamic Programming on FPGAs with OpenCL,”

in 17th Ann. HPEC Conf., Waltham, MA USA, 2013. [Online]. Available:

102

http://ieee-hpec.org/2013/index_htm_files/29-High-Performance-Settle-

2876089.pdf [Accessed: 01-Dec-2015]

[23] D. Bacon, R. Rabbah, S. Shukla, “FPGA Programming for the Masses,” 2013.

[Online]. Available: http://delivery.acm.org/10.1145/2450000/2443836/p40-

bacon.pdf [Accessed: 01-Dec-2015]

[24] T. S. Czajkowski et al., “OpenCL for FPGAs: Prototyping a Compiler,” in Inter.

Conf. Reconfigurable Systems and Algorithms, 2012. [Online]. Available:

http://ersaconf.org/ersa12/papers/Brown-opencl-for-fpgas.pdf [Accessed: 01-Dec-

2015]

[25] Altera Corporation, “Implementing FPGA design with the OpenCL standard,”

November 2013. [Online]. Available: http://www.altera.com/literature/wp/wp-

01173-opencl.pdf [Accessed: 01-Dec-2015]

[26] Altera Corporation, “Altera SDK for OpenCL Programming Guide,” 2015.

[Online]. Available: http://www.altera.com/literature/hb/opencl-

sdk/aocl_programming_guide.pdf [Accessed: 01-Dec-2015]

[27] C. Cao, et al. "clMagma," in Proceedings of the International Workshop on

OpenCL 2013 & 2014 (IWOCL '14). 2014.

[28] Altera Corporation, “Altera SDK for OpenCL Best Practices Guide,” 2015.

[Online]. Available: http://www.altera.com/literature/hb/opencl-

sdk/aocl_optimization_guide.pdf [Accessed: 01-Dec-2015]

103

[29] X. Wu, V. Kumar, J. Quinlan, J. Ghosh, Q. Yang, H. Motoda, A. McLachlan, A.

Ng, B. Liu, Z. Zhou, M. Steinbach, D. Hand, and D. Steinberg, “Top 10

algorithms in data mining,” in Knowledge and Information Systems, 14, 1, 1-37,

2007.

[30] D. Arthur and S. Vassilvitskii. “k-means++: the advantages of careful seeding,” in

Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete

algorithms (SODA '07). Society for Industrial and Applied Mathematics,

Philadelphia, PA, USA, 1027-1035, 2007.

[31] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik, and A. Choudhary,

“MineBench: A Benchmark Suite for Data Mining Workloads,” in Workload

Characterization, 2006 IEEE International Symposium on, Oct. 182-188, 25-27,

2006.

[32] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, and K. Skadron, “A

performance study of general-purpose applications on graphics processors using

CUDA,” in Journal of Parallel and Distributed Computing, 68, 10, 1370-1380,

2008.

[33] L. Jian, C. Wang, Y. Liu, S. Liang, W. Yi, and Y. Shi, “Parallel data mining

techniques on Graphics Processing Unit with Compute Unified Device

Architecture (CUDA),” in J Supercomput, 2011, 64, 3, 942-967.

[34] R. Wu, B. Zhang and M. Hsu, “Clustering billions of data points using GPUs,” in

Proceedings of the combined workshops on UnConventional high performance

computing workshop plus memory access workshop (UCHPC-MAW '09), 2009.

104

[35] Y. Li, K. Zhao, X. Chu and J. Liu, “Speeding up K-Means Algorithm by GPUs,”

in 2010 10th IEEE International Conference on Computer and Information

Technology, 2010.

[36] B. Dhanasekaran and N. Rubin, “A new method for GPU based irregular

reductions and its application to k-means clustering,” in Proceedings of the

Fourth Workshop on General Purpose Processing on Graphics Processing Units

(GPGPU-4), ACM, New York, NY, USA, 2011.

[37] Y. Choi, and H. So, “Map-reduce processing of k-means algorithm with FPGA-

accelerated computer cluster,” in 2014 IEEE 25th International Conference on

Application-Specific Systems, Architectures and Processors, 2014.

[38] O. Segal, M. Margala, S. R. Chalamalasetti and M. Wright, “High Level

Programming for Heterogeneous Architectures,” in First International Workshop

on FPGAs for Software Programmers (FSP 2014), 2014.

[39] ThinkTank Energy Products Inc., “Watt’s Up Pro Power metter specifications,”

[Online]. Available:

https://www.wattsupmeters.com/secure/products.php?pn=0&wai=276&spec=4

[Accessed: 10-Sept-2015]

[40] S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu, “An optimal

algorithm for approximate nearest neighbor searching fixed dimensions,” in

Journal of the ACM, vol. 45, no. 6, pp. 891-923, 1998.

105

[41] D. Mount and S. Arya, “ANN: A Library for Approximate Nearest Neighbor

Searching,” Jan 27, 2010. [Online]. Available:

https://www.cs.umd.edu/~mount/ANN/ [Accessed: 31- Dec- 2015]

[42] V. Garcia, E. Debreuve and M. Barlaud, “Fast k nearest neighbor search using

GPU,” in IEEE Computer Society Conference on Computer Vision and Pattern

Recognition Workshops, 2008.

[43] V. Garcia, E. Debreuve, F. Nielsen and M. Barlaud, “K-nearest neighbor search:

Fast GPU-based implementations and application to high-dimensional feature

matching,” in IEEE International Conference on Image Processing, 2010.

[44] V. Garcia, E. Debreuve and M. Barlaud, “kNN CUDA,” [Online]. Available:

http://vincentfpgarcia.github.io/kNN-CUDA/ [Accessed: 31- Dec- 2015]

[45] N. Sismanis, N. Pitsianis and X. Sun, “Parallel search of k-nearest neighbors with

synchronous operations,” in IEEE Conference on High Performance Extreme

Computing, 2012.

[46] H. Hussain, K. Benkrid and H. Seker, “An adaptive implementation of a

dynamically reconfigurable K-nearest neighbour classifier on FPGA.” in

NASA/ESA Conference on Adaptive Hardware and Systems (AHS), 2012.

[47] I. Stamoulias and E. Manolakos, “Parallel architectures for the kNN classifier --

design of soft IP cores and FPGA implementations,” in ACM Transactions on

Embedded Computing (TECS), vol. 13, no. 2, pp. 1-21, 2013.

106

[48] I. Komarov, A. Dashti and R. D'Souza, “Fast k-NNG Construction with GPU-

Based Quick Multi-Select.” in PLoS ONE, vol. 9, no. 5, p. e92409, 2014.

[49] Altera.com, “OpenCL Design Examples,” 2016. [Online]. Available:

https://www.altera.com/support/support-resources/design-examples/design-

software/opencl.html. [Accessed: 3- Jan- 2016].

[50] Algolist.net, “INSERTION SORT (Java, C++) Algorithms and Data Structures,”

2016. [Online]. Available:

http://www.algolist.net/Algorithms/Sorting/Insertion_sort. [Accessed: 04- Jan-

2016].

[51] Personal.kent.edu, “Heap Sort,” 2016. [Online]. Available:

http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/Sorting/he

apSort.htm. [Accessed: 04- Jan- 2016].

[52] C. Horstmann and T. Budd, Big C++. Hoboken, N.J.: Wiley, 2009.

[53] G. Heineman, S. Selkow and G. Pollice, Algorithms in a nutshell. Sebastopol,

Calif.: O'Reilly, 2009.

[54] J. Barnes and P. Hut, “A hierarchical O(N log N) force-calculation algorithm,” in

Nature, vol. 324, no. 6096, pp. 446-449, 1986.

[55] developer.nvidia.com, “GPU Gems 3 - Chapter 31. Fast N-Body Simulation with

CUDA,” 2016. [Online]. Available:

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch31.html. [Accessed:

05- Jan- 2016].

107

[56] Intel Developer Zone, “Cross-Device NBody Simulation Sample,” 2014. [Online].

Available: https://software.intel.com/articles/opencl-cross-devices-nbody-

simulation-sample. [Accessed: 05- Jan- 2016].

[57] T. Hamada, K. Benkrid, K. Nitadori and M. Taiji, “A Comparative Study on

ASIC, FPGAs, GPUs and General Purpose Processors in the O(N^2)

Gravitational N-body Simulation,” in NASA/ESA Conference on Adaptive

Hardware and Systems, 2009.

[58] J. Dongarra, Numerical linear algebra for high-performance computers.

Philadelphia: Society for Industrial and Applied Mathematics, 1998.

[59] Netlib.org, “LAPACK — Linear Algebra PACKage,” 2016. [Online]. Available:

http://www.netlib.org/lapack/. [Accessed: 04- Jan- 2016].

[60] M. Myers, P. Geijn and R. Geijin, Linear Algebra: Foundations to Frontiers,

2014, p. 266.

[61] Intel Corporation, “Intel® Math Kernel Library (Intel® MKL),” [Online].

Available: https://software.intel.com/en-us/intel-mkl [Accessed: 04- Jan- 2016].

[62] NVIDIA Corporation, “cuBLAS,” [Online]. Available:

https://developer.nvidia.com/cuBLAS [Accessed: 04- Jan- 2016].

[63] Innovative Computing Laboratory, “Matrix Algebra on GPU and Multicore

Architecture,” [Online]. Available: http://icl.utk.edu/magma/

[64] Wei Zhang, “Portable and Scalable FPGA-Based Acceleration of a Direct Linear

System Solver,” MASc thesis, University of Toronto, 2008

108

[65] Altera.com, “Arria 10 - Overview,” 2016. [Online]. Available:

https://www.altera.com/products/fpga/arria-series/arria-10/overview.html.

[Accessed: 05- Jan- 2016].

[66] Altera.com, “Stratix 10 - Overview,” 2016. [Online]. Available:

https://www.altera.com/products/fpga/stratix-series/stratix-10/overview.html.

[Accessed: 05- Jan- 2016].

109

Appendices

Appendix A: AOCL Reduction Sum Kernel Source Code

#define RELAX_FACTOR 6

#define UNROLL_FACTOR 32

#define CU_SIZE 1

#define SIMD_SIZE 1

#define WORK_SIZE 1

#pragma OPENCL EXTENSION cl_altera_channels : enable

channel float part_sum_ch12 __attribute__((depth(256)));

__attribute((reqd_work_group_size(WORK_SIZE,1,1)))

__attribute((num_simd_work_items(SIMD_SIZE)))

__attribute((num_compute_units(CU_SIZE)))

__kernel void reduction_add(__global const float * restrict a, // input array

 const unsigned LOOP_DEPTH // elements per thread)

{

 // total threads = N/LOOP_DEPTH

 unsigned start_id = get_global_id(0)*LOOP_DEPTH;

 float result_tmp = 0.0f;

 #pragma unroll UNROLL_FACTOR

 for (unsigned i=0; i<LOOP_DEPTH; i++){

 result_tmp += a[start_id+i];

 }

 write_channel_altera(part_sum_ch12, result_tmp);

}

// Final reduction stage using task based kernel

__kernel void reduction_final(const unsigned n,

 global float * restrict result)

{

 float local_result = 0.0f;

 float copies[RELAX_FACTOR];

 // Initiate the replicated memory

 for(unsigned i=0; i<RELAX_FACTOR; i++){

 copies[i] = 0.0f;

 }

 // Relaxed summation

 for (unsigned i=0; i<n; i++) {

 float cur = copies[RELAX_FACTOR-1] + read_channel_altera(part_sum_ch12);

 #pragma unroll

 for (unsigned j = RELAX_FACTOR-1; j>0; j--){

 copies[j] = copies[j-1];

 }

 copies[0] = cur;

 }

 // Final reduction

 for (unsigned i=0; i<RELAX_FACTOR; i++) {

 local_result += copies[i];

 }

*result = local_result;

}

110

Appendix B: AOCL K-Means Kernel Source Code (64 Features version)

#ifndef MAX_NUM_CLUSTERS

#define MAX_NUM_CLUSTERS 512

#endif

#ifndef NUM_FEATURES

#define NUM_FEATURES 64

#endif

#define BLOCK_SIZE MAX_NUM_CLUSTERS*NUM_FEATURES

#define THRESHOLD 0.001f

#pragma OPENCL EXTENSION cl_altera_channels : enable

// The Channel allows both kernels to be executed concurrently.

channel unsigned short members_ch12 __attribute__((depth(16)));

channel bool change_ch12 __attribute__((depth(16)));

// Kernel with channels cannot use multi SIMD or Compute Units.

// Allows flexible number of clusters,

// but cluster size could not exceed MAX_NUM_CLUSTERS.

__attribute__((max_work_group_size(BLOCK_SIZE)))

__kernel void kmeans_assign(__global const float * restrict objects_g,

 __global float * restrict clusters_g,

 __global unsigned short * restrict membership_g,

 const unsigned num_clusters)

{

 float objects_l[NUM_FEATURES];

 // Full Local Cache of the cluster array

 __local float clusters_l[MAX_NUM_CLUSTERS*NUM_FEATURES];

 unsigned gid = get_global_id(0);

 unsigned lid = get_local_id(0);

 // Load clusters (once per-work-group)

 clusters_l[lid] = clusters_g[lid];

 // Make sure cluster is loaded before rest of the computation.

 barrier(CLK_LOCAL_MEM_FENCE);

 // Load one object per thread.

 #pragma unroll 4

 for (unsigned j=0; j<NUM_FEATURES; j++) {

 objects_l[j] = objects_g[gid*NUM_FEATURES + j];

 }

 unsigned short index;

 float min_dist = INFINITY;

 #pragma unroll 3 //7

 for (unsigned k=0; k<num_clusters; k++) {

 float dist = 0.0f;

 #pragma unroll NUM_FEATURES

 for (unsigned j=0; j<NUM_FEATURES; j++){

111

 dist += (objects_l[j]-clusters_l[k*NUM_FEATURES+j])

 *(objects_l[j]-clusters_l[k*NUM_FEATURES+j]);

 }

 if (*(unsigned*)&dist < *(unsigned*)&min_dist) {

 min_dist = dist;

 index = k;

 }

 }

 bool changed = 0;

 if (membership_g[gid]!=index){

 changed = 1;

 }

 write_channel_altera(members_ch12, index);

 write_channel_altera(change_ch12, changed);

}

__kernel

void kmeans_reduce(__global const float * restrict objects_g,

 const unsigned num_objects,

 __global unsigned short * restrict membership_g

 __global float * restrict clusters_g,

 __global float * restrict delta_g,

 const unsigned num_clusters)

{

 unsigned cluster_size[MAX_NUM_CLUSTERS];

 float clusters_l[MAX_NUM_CLUSTERS][NUM_FEATURES];

 // Pre-load zeros.

 #pragma unroll 1 // Prevent automatic unroll to same resources

 for (unsigned i=0; i<num_clusters; i++){

 cluster_size[i] = 0;

 #pragma unroll 1

 for (unsigned j=0; j<NUM_FEATURES; j++){

 clusters_l[i][j] = 0.0f;

 }

 }

 // Sum objects to local cluster array.

 float delta = 0.0f;

 for (unsigned i=0; i<num_objects; i++) {

 // Load membership from channel.

 unsigned short index = read_channel_altera(members_ch12);

 delta += read_channel_altera(change_ch12);

 // Make sure index is loaded before write to global memory.

 mem_fence(CLK_CHANNEL_MEM_FENCE);

 // Write to global memory here instead of in the first kernel.

 // This relieves some of the global memory access latencies.

 membership_g[i] = index;

 cluster_size[index] += 1;

112

 #pragma unroll NUM_FEATURES

 for (unsigned j=0; j<NUM_FEATURES; j++) {

 clusters_l[index][j] += objects_g[i*NUM_FEATURES + j];

 }

 }

 *delta_g = delta;

 // Write back to global memory.

 #pragma unroll 1

 for (unsigned i=0; i< num_clusters; i++){

 unsigned cluster_sz_tmp = cluster_size[i];

 #pragma unroll 1

 for (unsigned j=0; j< NUM_FEATURES; j++){

 // Only move a centroid if it has members.

 if (cluster_sz_tmp > 0){

 // Write back to global memory.

 clusters_g[i*NUM_FEATURES + j] = clusters_l[i][j]/cluster_sz_tmp;

 }

 }

 }

}

113

Appendix C: AOCL K-Nearest Neighbor Kernel Source Code (Heap Sort Version)

#ifndef MAX_NUM_CLUSTERS

#define MAX_NUM_CLUSTERS 4

#endif

#ifndef BLOCK_SIZE_DIST

#define BLOCK_SIZE_DIST 128

#endif

#ifndef BLOCK_SIZE_SORT

#define BLOCK_SIZE_SORT 128

#endif

#ifndef SIMD_WORK_ITEMS

#define SIMD_WORK_ITEMS_DIST 2

#endif

#ifndef SIMD_WORK_ITEMS

#define SIMD_WORK_ITEMS_SORT 1

#endif

__attribute__((reqd_work_group_size(BLOCK_SIZE_DIST,BLOCK_SIZE_DIST,1)))

__attribute((num_simd_work_items(SIMD_WORK_ITEMS_DIST)))

__kernel void knn_dist(__global const float * restrict query_g,

 __global float * restrict reference_g,

 __global float * restrict dist_g,

 const unsigned num_clusters,

 const unsigned num_reference)

{

 // Cache 1 block of query and reference points per work-group.

 __local float query_l[BLOCK_SIZE_DIST][BLOCK_SIZE_DIST];

 __local float reference_l[BLOCK_SIZE_DIST][BLOCK_SIZE_DIST];

 unsigned gid_x = get_global_id(0);

 unsigned gid_y = get_global_id(1);

 unsigned lid_x = get_local_id(0);

 unsigned lid_y = get_local_id(1);

 unsigned group_id_x = get_group_id(0);

 unsigned group_id_y = get_group_id(1);

query_l[lid_y][lid_x] = query_g[BLOCK_SIZE_DIST*BLOCK_SIZE_DIST*group_id_y

 + BLOCK_SIZE_DIST*lid_y + lid_x];

reference_l[lid_y][lid_x] =

reference_g[BLOCK_SIZE_DIST*BLOCK_SIZE_DIST*group_id_x

 + BLOCK_SIZE_DIST*lid_y + lid_x];

 barrier(CLK_LOCAL_MEM_FENCE);

 float dist = 0.0f;

 #pragma unroll BLOCK_SIZE_DIST

 for (unsigned j=0; j<BLOCK_SIZE_DIST; j++){

 dist += (query_l[lid_y][j]-reference_l[lid_x][j])

114

 *(query_l[lid_y][j]-reference_l[lid_x][j]);

 }

 // Global memory write with optimized memory efficiency.

 dist_g[gid_y*get_global_size(0) + gid_x] = dist;

}

__kernel

__attribute__((reqd_work_group_size(BLOCK_SIZE_SORT,1,1)))

__attribute((num_simd_work_items(SIMD_WORK_ITEMS_SORT)))

void knn_sort(__global float * restrict dist_g,

 __global unsigned * restrict index_g,

 const unsigned num_clusters,

 const unsigned num_reference)

{

 __local float dist_block[BLOCK_SIZE_SORT][BLOCK_SIZE_SORT];

 float k_dist_l[MAX_NUM_CLUSTERS+1];

 unsigned k_index_l[MAX_NUM_CLUSTERS+1];

 unsigned gid = get_global_id(0);

 unsigned lid = get_local_id(0);

 unsigned group_id = get_group_id(0);

 #pragma unroll 1

 for (unsigned i=0; i<num_reference; i+=BLOCK_SIZE_SORT){

 barrier(CLK_LOCAL_MEM_FENCE);

 #pragma unroll 4

 for (unsigned j=0; j<BLOCK_SIZE_SORT; j++){

 dist_block[lid][j] = dist_g[BLOCK_SIZE_SORT*num_reference*group_id

 + i + j*num_reference + lid];

 }

 barrier(CLK_LOCAL_MEM_FENCE);

 for (unsigned j=0; j<BLOCK_SIZE_SORT; j++){

 float dist_new = dist_block[j][lid];

 unsigned idx = i+j;

 /* Modified Version of Heap Sort */

 // Use first k entries to build max heap.

 if (idx < MAX_NUM_CLUSTERS){

 unsigned index = idx+1;

 while (index > 1){

 unsigned parent_idx = index>>1;

 float parent = k_dist_l[index>>1];

 unsigned parent_dist_idx = k_index_l[index>>1];

 if(parent >= dist_new){ break; }

 k_dist_l[index] = parent;

 k_index_l[index] = parent_dist_idx;

 index = parent_idx;

 }

 // Write new element to vacant spot.

115

 k_dist_l[index] = dist_new;

 k_index_l[index] = idx;

 }

 // Insert the dist_new as root if it is smaller than current root.

 else if (dist_new < k_dist_l[1]){

 unsigned index = 1;

 while (index <= MAX_NUM_CLUSTERS){

 unsigned child_idx_l = index<<1;

 unsigned child_idx; // store temp child local index

 float child_val; // store temp child value

 unsigned child_dist_idx; // store temp child global index

 if (child_idx_l <= MAX_NUM_CLUSTERS){

 // Find the larger child.

 unsigned child_idx_r = child_idx_l + 1;

 if (child_idx_r <= MAX_NUM_CLUSTERS &&

 k_dist_l[child_idx_r] > k_dist_l[child_idx_l]){

 child_idx = child_idx_r;

 child_val = k_dist_l[child_idx_r];

 child_dist_idx = k_index_l[child_idx_r];

 }else{

// Load left child if there is only one child left.

 child_idx = child_idx_l;

 child_val = k_dist_l[child_idx_l];

 child_dist_idx = k_index_l[child_idx_l];

 }

 if(child_val > dist_new){

 // Swap if larger child is larger than root.

 k_dist_l[index] = child_val;

 k_index_l[index] = child_dist_idx;

 index = child_idx;

 }else{

 break; // Stop when no child is left.

 }

 }else{

 break;

 }

 }

 // Write new element to vacant spot.

 k_dist_l[index] = dist_new;

 k_index_l[index] = idx;

 }

 }

 }

 // Write clusters back to global memory.

 #pragma unroll 4

 for (unsigned i=0; i<MAX_NUM_CLUSTERS; i++){

 index_g[gid*MAX_NUM_CLUSTERS + i] = k_index_l[i+1];

 }

}

116

Appendix D: AOCL N-Body Kernel Source Code

// Used %99 of DSPs on Stratix V A7, but only around 50% of logic.

#define BLOCK_SIZE 23

#define UNROLL_FACTOR 23

#define NUM_SIMD 1

#define NUM_CU 1

// Use union to save some DSP units in position update.

typedef union array4_t {

 float4 vect;

 float array[4];

} array4;

__attribute((reqd_work_group_size(BLOCK_SIZE,1,1)))

__attribute((num_simd_work_items(NUM_SIMD)))

__attribute((num_compute_units(NUM_CU)))

__kernel void

NBody(__global const float4 * restrict data_pos,

 __global const float4 * restrict data_v,

 __global float4 * restrict out_pos,

 __global float4 * restrict out_v,

 const unsigned int num_bodies,

 const float t_delta,

 const float half_t_delta_sqr,

 const float eps_sqr)

{

 __local float4 pos_buffer[BLOCK_SIZE];

 int global_x = get_global_id(0);

 int local_x = get_local_id(0);

 array4 acc_i;

 acc_i.vect = (float4)0.0f;

 array4 body_i;

 body_i.vect = data_pos[global_x];

 #pragma unroll 1 //Unrolling of this loop is not efficient.

for (unsigned tile_offset = 0; tile_offset < num_bodies;

 tile_offset+=BLOCK_SIZE){

 // Cache 1 block of data to local memory.

 pos_buffer[local_x] = data_pos[tile_offset + local_x];

 barrier(CLK_LOCAL_MEM_FENCE);

 // Perform calculations on the Block.

 #pragma unroll UNROLL_FACTOR

 for (unsigned i = 0; i < BLOCK_SIZE; ++i){

 float4 body_j = pos_buffer[i];

 float4 dist;

 // Maintain similar structures for vector type

117

 // as suggested by AOCL best practice guide.

 dist.x = body_j.x - body_i.vect.x;

 dist.y = body_j.y - body_i.vect.y;

 dist.z = body_j.z - body_i.vect.z;

 dist.w = 0.0f;

 float sqr_dist = dist.x*dist.x + dist.y*dist.y + dist.z*dist.z;

 float inv_dist = rsqrt(sqr_dist+eps_sqr);

 // Store mass in body.w.

 float s = (body_j.w * inv_dist) * (inv_dist * inv_dist);

 acc_i.vect.x += dist.x*s;

 acc_i.vect.y += dist.y*s;

 acc_i.vect.z += dist.z*s;

 acc_i.vect.w = 0.0f;

 }

 barrier(CLK_LOCAL_MEM_FENCE);

 }

 // Velocity and position update, tied to use as little hardware as possible.

 array4 v_i;

 v_i.vect = data_v[global_x];

 #pragma unroll 1 //Unrolling of this loop wastes FPGA area

 for (unsigned i=0; i<4; i++){

 v_i.array[i] += acc_i.array[i] * t_delta;

 body_i.array[i] += v_i.array[i] * t_delta

+ acc_i.array[i] * half_t_delta_sqr;

 }

 out_v[global_x] = v_i.vect;

 out_pos[global_x] = body_i.vect;

}

118

Appendix E: AOCL Blocked LU decomposition Kernel Source Code

// Requires (N/BLOCK_SIZE) kernel launches to solve one matrix.

// Matrix Size = N x N; must be divisible by BLOCK_SIZE.

#define BLOCK_SIZE 64

#define SIMD_WORK_ITEMS 2

// Kernel 1: Linear BLAS 1/2 version of LU decomposition

__attribute((reqd_work_group_size(BLOCK_SIZE,BLOCK_SIZE,1)))

__kernel void

Linear_LU(__global float * restrict A, int N, int iter){

 __local float col_buffer[BLOCK_SIZE];

 __local float row_buffer[BLOCK_SIZE];

 int local_x = get_local_id(0);

 int local_y = get_local_id(1);

 const int offset = (N + 1)*iter*BLOCK_SIZE;

 __local float pivot;

 float sum = A[local_x + local_y*N + offset];

 barrier(CLK_LOCAL_MEM_FENCE);

 for(int k=0; k<BLOCK_SIZE-1; ++k){

 if (local_x == k && local_y == k){

 pivot = sum;

 }

 if (local_x > k && local_y == k){

 row_buffer[local_x] = sum;

 }

 if (local_x == k && local_y > k){

 sum /= pivot;

 col_buffer[local_y] = sum;

 }

 if (local_x > k && local_y > k){

 sum -= row_buffer[local_x] * col_buffer[local_y];

 }

 barrier(CLK_LOCAL_MEM_FENCE);

 }

 A[local_x + local_y*N + offset] = sum;

}

// Kernel 2: Linear BLAS 1/2 version of Left panel update

__attribute((reqd_work_group_size(BLOCK_SIZE,BLOCK_SIZE,1)))

__attribute((num_simd_work_items(SIMD_WORK_ITEMS*2)))

__kernel void Linear_Left(__global float * restrict A, int N, int iter){

 // iter = current iteration number starts from zero

 __local float U_Block [BLOCK_SIZE][BLOCK_SIZE];

 __local float A_Block [BLOCK_SIZE];

 int local_x = get_local_id(0);

 int local_y = get_local_id(1);

 const int offset_U = (N + 1)*iter*BLOCK_SIZE;

 int offset_A = offset_U + N*BLOCK_SIZE*(get_group_id(1)+1);

 U_Block[local_y][local_x] = A[local_x + local_y*N + offset_U];

 barrier(CLK_LOCAL_MEM_FENCE);

119

 float sum = A[local_x + local_y*N + offset_A];

 barrier(CLK_LOCAL_MEM_FENCE);

 for(int k=0; k<BLOCK_SIZE; ++k){

 if(local_x == k){

 sum /= U_Block[k][k];

 A_Block[local_y] = sum;

 }

 if (local_x > k){

 sum -= A_Block[local_y] * U_Block[k][local_x];

 }

 barrier(CLK_LOCAL_MEM_FENCE);

 }

 A[local_x + local_y*N + offset_A] = sum;

}

// Kernel 3: BLAS 3 version top panel update

__attribute((reqd_work_group_size(BLOCK_SIZE,BLOCK_SIZE,1)))

__attribute((num_simd_work_items(SIMD_WORK_ITEMS*2)))

__kernel void blocked_Top(__global float * restrict A, int N, int iter){

 __local float L_Block [BLOCK_SIZE][BLOCK_SIZE];

 __local float A_Block [BLOCK_SIZE][BLOCK_SIZE];

 int local_x = get_local_id(0);

 int local_y = get_local_id(1);

 int const offset_L = (N+1)*(iter)*BLOCK_SIZE;

 int offset_A = offset_L + (get_group_id(0)+1)*BLOCK_SIZE;

 L_Block[local_y][local_x] = A[offset_L + N * local_y + local_x];

 barrier(CLK_LOCAL_MEM_FENCE);

 A_Block[local_y][local_x] = A[offset_A + N * local_y + local_x];

 barrier(CLK_LOCAL_MEM_FENCE);

 for(int k=0; k<BLOCK_SIZE; ++k){

 if (local_y>k){

 A_Block[local_y][local_x] -= L_Block[local_y][k] *

 A_Block[k][local_x];

 }

 }

 barrier(CLK_LOCAL_MEM_FENCE);

 A[offset_A + N * local_y + local_x] = A_Block[local_y][local_x];

}

// Kernel 4: BLAS 3 Trailing matrix update (GEMM)

__attribute((reqd_work_group_size(BLOCK_SIZE,BLOCK_SIZE,1)))

__attribute((num_simd_work_items(SIMD_WORK_ITEMS)))

__kernel void blocked_GEMM(__global float * restrict A, int N, int iter){

120

 __local float L_Block [BLOCK_SIZE][BLOCK_SIZE];

 __local float U_Block [BLOCK_SIZE][BLOCK_SIZE];

 int local_x = get_local_id(0);

 int local_y = get_local_id(1);

 int const offset = (N+1)*(iter)*BLOCK_SIZE;

 int offset_L = offset + (get_group_id(1)+1)*BLOCK_SIZE*N;

 int offset_U = offset + (get_group_id(0)+1)*BLOCK_SIZE;

int offset_A = offset + (get_group_id(1)+1)*BLOCK_SIZE*N

+ (get_group_id(0)+1)*BLOCK_SIZE;

 float sum = A[offset_A + N * local_y + local_x];

 barrier(CLK_LOCAL_MEM_FENCE);

 L_Block[local_y][local_x] = A[offset_L + N * local_y + local_x];

 barrier(CLK_LOCAL_MEM_FENCE);

 U_Block[local_x][local_y] = A[offset_U + N * local_y + local_x];

 barrier(CLK_LOCAL_MEM_FENCE);

 #pragma unroll

 for(int k=0; k<BLOCK_SIZE; ++k){

 sum -= L_Block[local_y][k] * U_Block[local_x][k];

 }

 barrier(CLK_LOCAL_MEM_FENCE);

 A[offset_A + N * local_y + local_x] = sum;

}

121

Vita Auctoris

NAME: Qing Yun Tang

PLACE OF BIRTH:

Beijing, China

YEAR OF BIRTH:

1989

EDUCATION:

Vincent Massey Secondary School, Windsor,

ON, 2009

University of Windsor, B.Sc., Windsor, ON,

2013

University of Windsor, M.Sc., Windsor, ON,

2015

	FPGA Based Acceleration of Matrix Decomposition and Clustering Algorithm Using High Level Synthesis
	Recommended Citation

	tmp.1456928287.pdf.qwA7i

