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ABSTRACT

Traffic congestion is one of the most difficult problems in the 21st century. Dif-

ferent approaches have been developed to deal with traffic congestion and manage

traffic flow. In comparison with prediction based upon historical datasets only, real-

time methods take vehicle operators and travelers into consideration, and develop

new algorithms/models to improve accuracy for efficient traffic management.

This thesis is going to first highlight current research in traffic flow prediction,

and then use chaotic dynamic complexity to discuss the scale-free characteristics

of traffic flow. As sharp variation points provide rich information to analyze the

fluctuation and sharp variations of traffic flow, it is used in a new method developed

in this thesis to guide the classification of historical datasets and to combine real-

time datasets from multiple sources of traffic-relevant information. In addition, an

augmented reality system is constructed to visualize traffic flow under the influence

of different factors.

Keywords: real-time traffic flow prediction, sharp variation points, augmented real-

ity
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CHAPTER I

Introduction

The number of the vehicles increases with the booming increase of the population

density around the world. The amount of cars has been increasing in a high speed,

and the car has transferred from luxury to necessary for common people. Vehicle is

the most usual tools in transportation, and driving cars is now an indispensable part

of people’s life. Because of this, humans have to face an unavoidable problem, i.e.,

how to solve the traffic congestion.

Traffic congestion has become one of the most difficult problems in 21st century.

Every day, many people suffer from traffic congestions, and lose time everywhere.

Similar to air pollution, the problem of traffic congestions cannot be solved completely,

unless there are much less cars in the world. In order to enjoy a better life, people

have been working hard to find ways to reduce the impact of traffic congestion in the

last few decades[18].

Real-time traffic flow prediction has been required by authorities in an increasing

number[21]. In the previous decade, the collection of real-time traffic data was a

foremost goal. Real-time traffic data is very important, because the travelers need

to know what is happening now and what will happen in the near future. Though

historic data is useful for prediction, it cannot provide high accuracy in most of the

time. The goal of real-time prediction is to achieve higher accuracy by using the

latest traffic data.

There are still some big problems to be solved in traffic flow prediction. Re-

searchers are trying to create a model which is effective under all kinds of traffic

conditions with higher accuracy. Some other factors also have effects on prediction,
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I. INTRODUCTION

like weather changes. Therefore, the prediction should be under the same condition,

and the results are expected to be acceptable. As people are finding ways to make

prediction visible for travelers, the technology of simulation is also required in this

area.

In order to get more accurate results for prediction, many methods and models

have been created in the past few decades. In this thesis, a new idea based on sharp

variation points will be discussed in the following chapter, and the result will be

shown in a simulated virtual environment by augmented reality. Wavelet transform

is a good way to analyze the fluctuation from original data. With this technology,

researchers can make a deeper understanding that cannot get from the original data.

Sharp variation point is defined as zero-crossing point of the wavelet transform, and

it indicates a beginning or ending for a varied trend. For real-time prediction, a

length of two sharp variation points is reasonable, because it keeps the integrity

of variation trend. To make prediction visible, augmented reality is the best tool.

This technology can combine multiple sources together, like weather conditions and

accident issues. In Unity 3D, by using augmented reality, the simulated virtual world

can make prediction more realistic.

In the remaining of this thesis, Chapter II shows the brief preview of the traffic

flow prediction for the past 30 years. Chapter III shows the related work in traffic

flow prediction in different ways. Chapter IV gives an introduction to the augmented

reality. Chapter V discusses the proposed method based on sharp variation points.

Chapter VI covers the experiments and analysis. Chapter VII is the system design

and its implementation using augmented reality in Unity 3D. Chapter VIII gives the

conclusion and future work.
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CHAPTER II

Traffic Flow Prediction

After the Industrial Revolution, human civilization has been developing in an

increasingly speed. However, people also suffer from some problems caused by the

rapid development of civilization. One of them is the heavy traffic congestions.

Traffic congestions occur everywhere in people’s daily life. Whenever it happens,

it causes huge impact for human beings, including wasting time and money. There are

three main reasons for traffic congestions[3]. The first one is the increasing amount

of vehicles. The second one is the low capacity of road. The third one is the large

numbers of intersections. For these three reasons, none of them can be solved com-

pletely. Therefore there is a huge need for traffic management to reduce the traffic

congestions.

In the last three decades, many policies and methods were implemented in traffic

managements. In some countries, governments force to reduce the flow of family cars

and make extensions for main roads and highways. As the results have not been

satisfying, researchers are working hard to find better ways to solve the problem.

Like diseases and disasters prevention, scientists and researchers tried to make

prediction of traffic flow, hoping to reduce the bad effects of traffic congestion to the

lowest level. The research in traffic flow prediction has been developing for more than

30 years. Here are some representative publications for different eras in this area.

In 1984, I Okutani and YJ Stephanedes published the paper about dynamic traffic

prediction. It was almost the first generation of methods in this area. Two models

based on Kalman filtering theory have been proposed to predict short-term traffic

volume[15]. In their method, they used the most recent error as parameters to predict

3



II. TRAFFIC FLOW PREDICTION

traffic, and better volume for prediction was achieved[15].

In 1994, BL Smith and MJ Demetsky published a paper using neural network ap-

proach for short-term prediction. In their paper, they first analyzed previous methods

and grouped them into three different categories. They also pointed out the possibility

of using neural network models in real-time applications[17].

A paper combining Kohonen maps with ARIMA model for short-term prediction

was authored by M Van Der Voort and S Watson in 1996. In the paper, the initial

classifier was generated by a Kohonen self-organizing map with an individual ARIMA

model[19]. They pointed out the algorithm could be easily retrained for small number

of classes[19].

In 1999, BM Williams and LA Hoel established the seasonal time series meth-

ods, especially using ARIMA modeling for traffic flow. In addition, the research

contributed a specific application using this modeling theory[23].

B Abdulhai, H Porwal and W Recker improved a new method for short-term

prediction in 2002. Their new method was based on a Time Delay Neural Net-

work(TDNN) model, and its structure was synthesized by a Genetic Algorithm(GA)[1].

The results tested by both simulation and real data were all acceptable.

In 2005, an optimized genetic approach in neural network was published by EI

Vlahogianni and JC Golias. Genetic algorithms seemed to be a new direction in

this area. This paper pointed out that some traffic parameters played important

roles in modern Intelligent Transportation System(ITS) research and practice[20]. It

also suggested that neural networks should be one of the best choices for selecting

parameters for modeling and predicting traffic.

In 2009, Support Vector Regression(SVR) came to people’s sight in this area. M

Castro-Neto and LD Han improved this method on online-SVR under typical and

atypical conditions. In the paper, they explained the need of accurate prediction in

short-term traffic flow under atypical conditions. The results showed a high accuracy

in pattern recognitions for short-term traffic with SVR[8].

In 2013, a new method based on Kalman filtering was published by LL Ojeda

and AY Kibangou. In their paper, they claimed the importance of continuous traffic
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II. TRAFFIC FLOW PREDICTION

flow prediction in most of ITS researches[14]. The main goal of this study was to

make a multi-step ahead prediction for traffic flow that can meet various requests,

including high accuracy and low memory capacity. In order to achieve the goal, two

new approaches were proposed.

Big data is a new concept in recent years, and Y Lv and Z Li used it in their

prediction for a deep learning approach in traffic flow prediction. Over the last few

years, data has been exploding in all areas including the traffic. Existing prediction

methods mainly use models with some limitations and cannot satisfy many real-world

requests. This problem has stimulated people to reconsider the architecture of models

with big traffic data[12].

Table 1 shows those publications highlighted in this chapter. These publications

represent the main methods in the area of traffic flow prediction. The first direction

of methods focused on some basic theory, like Kalman filtering theory. The second

direction focused on prediction models combined with genetic theory. The third

direction focused on prediction in the new direction of big data.
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II. TRAFFIC FLOW PREDICTION

Title Authors Year Cited by

Dynamic prediction of traffic

volume through Kalman

filtering theory

I Okutani,

YJ Stephanedes
1984 468

Short-term traffic flow

prediction: neural

network approach

BL Smith,

MJ Demetsky
1994 261

Combining Kohonen maps

with ARIMA time

series models to forecast traffic flow

M Van Der, Voort M,

Dougherty,

S Watson

1996 257

Modeling and forecasting vehicular

traffic flow as a seasonal stochastic

time series process

BM Williams,

LA Hoel
1999 97

Short-term traffic flow prediction

usingneuro-genetic algorithms

B Abdulhai, H Porwal,

W Recker
2002 71

Optimized and meta-optimized

neural networks for

short-term

traffic flow prediction:

a genetic approach

EI Vlahogianni,

MG Karlaftis,

JC Golias

2005 260

Online-SVR for short-term traffic

flow prediction under,typical and

atypical traffic conditions

M Castro-Neto,

YS Jeong,

MK Jeong, LD

Han

2009 51

Adaptive Kalman filtering for

multi-step ahead traffic

flow prediction

LL Ojeda,

AY Kibangou
2013 12

Traffic flow prediction with

big data: a deep

learning approach

Y Lv, Y Duan,

W Kang, Z Li
2015 5

TABLE 1: Review of prediction methods
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CHAPTER III

Related Work

In this chapter, two different research directions are discussed in details with

examples. The first category is the data-driven methods, which means it depends

on data collection. This kind of methods requires chaotic data for prediction. The

second category is the model-driven methods, which means the key factor for this

category is various model for prediction. The third part of this chapter covers the

theory of the proposed method using wavelet transform of sharp variation points.

1 Data-driven Methods

Data-driven methods require chaotic data for prediction, because the traffic flow

can be described as a dynamic system under the chaotic characteristic[9]. Lyapunov

exponent is one of the methods to define the chaotic data. Phase-space reconstruction

is an effective way to analyze the non-linear time series for a dynamic system, and

it will be discussed with an example in this part. In addition, some algorithms

help to obtain the parameters during the process of reconstructions, such as C-C

Algorithm[11], Wolf Algorithm[7] and Jocobian Algorithm[5].

The following discussion shows an example of prediction with Phase-space recon-

struction. The first step is to define a univariate time series {x(t)|t = 1, 2, ..., N}.

In the second step the phase-space is reconstructed via delay coordinates to get the

7



III. RELATED WORK

delay vectors and track matrices[9]:

X = [X1X2...XM ]T =


x1 x2 ... xM

x1+τ x2+τ ... xM+τ

... ... ... ...

x1+(m−1)τ x2+(m−1)τ ... xM+(m−1)τ

 (1)

In the matrix, M = N−(m−1)τ is the number of phase points; m is the embedding

dimension; and τ is the time delay. When the value of m and τ is appropriate, it

can restore the original dynamic characteristics of the system in the topologically

equivalence via Tokens Theory. In the process of phase-space reconstruction, the

value of time delay and embedding dimension will directly affect the quality.

Embedding dimension and time delay are dependent between each other and need

to be calculated one by one. While recent research showed that there is a tight

relationship between embedding dimension and time delay, the selection of time delay

should not depend on embedding dimension, and should combine the time window

to define the parameter via the equation τw = (m− 1)τ [9].

C-C Algorithm[11] creates the statistics by using the correlation integral sequence,

where the statistics represents the relevance of nonlinear time series. It calculates the

τw and τ by the relation between statistics and time delay, from which the embedding

dimension m can be obtained.

With the calculated parameters, predictions can be made in the following steps.

Suppose the state vector in T is

X(T ) = (x(T ), x(T − τ), ..., x(T − (m− 1)τ)) (2)

The nearest neighborhoods of X(T ): X(T1), ..., X(TK) can be used to predict the

state vector of X(T + 1):

X̂(T + 1) =
1

K

K∑
K=1

X(TK + 1) (3)

After reformulating the above equation in the following format:

x̂(T + 1) =
1

K

K∑
K=1

x(TK + 1) (4)

8



III. RELATED WORK

The prediction equation can be expressed as:

x̂(T + 1) = c0,0 + c1,0x(T ) + c2,0x(T − τ) + ...+ cm,mx(T − (m− 1)τ)2 + e (5)

Here, e is the random error, while ci,j are parameters to be defined.

To calculate ci,j, two matrices should be defined first:

y = [x(T1 + 1), x(T2 + 1), ...x(TK + 1)]T (6)

A =


1 x(T1) x(T1 − τ) ... x(T1 + 1)2 ... x(T1 − (m− 1)τ)2

1 x(T2) x(T2 − τ) ... x(T2 + 1)2 ... x(T2 − (m− 1)τ)2

... ... ... ... ... ... ...

1 x(TK) x(TK − τ) ... x(TK + 1)2 ... x(TK − (m− 1)τ)2

 (7)

So, ci,j can be calculated as

C = [c0,0, c1,0, ..., cm,m]T = (ATA−1)ATy (8)

Suppose T = 1000,m = 10, τ = 10, K = 50, the final equation for prediction is

x̂(1001) = c0,0 + c1,0x(1000) + c2,0x(990) + ...+ c10,10x(910)x(910) + e (9)

2 Model-driven Methods

The key factors of model-driven methods are the completeness and calculability

of the model for short time intervals. In order to obtain better results for prediction,

two aspects should be considered. One is the parameters for the prediction model,

and the other is the minimum number of those parameters[2].

The method from [13] is one of the model-driven methods. The general model is

defined below[13]:

Xt −
p∑
t=1

I∑
t=1

[Φlir

⊗
Sri]Xt−i,r = αt +

q∑
j=1

I∑
i=1

[Θjir

⊗
Sri]αt−1,r (10)

In this equation, the key factor is every single matrix of Sri. Here, i refers to the

number of correlation matrices, and r is the template. The value of Sri is either 0 or

1. The symbol
⊗

refers to the Hadamard matrices.

9



III. RELATED WORK

Every single matrix of Sri shows the result of traffic flow, using 1 to indicate

that the flow can reach a certain section in the time interval, and 0 to indicate that

it cannot do so[13]. Given the volume of cars and the matrix Sri, the model can

make the prediction. In order to define all the matrices of Sri, the parameter r and

i should be defined first. Because r refers to the templates of the traffic flow, it

is usually defined as r = 2 in order to describe the peak and off-peak traffic flow.

Parameter i is associated with the number of intervals.

Here is an example with r = 2 and i = 2. The following figure shows the con-

nections of the roads. In order to simplify the calculation, the time interval is ten

minutes for i = 1, and all the roads are assumed to have the same length and width.

There will be 16 sections of the roads.

FIGURE 1: Road connections

Based on the figure, it is easy to obtain the matrices of Sri.

10



III. RELATED WORK

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1

2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1

4 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0

5 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

6 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

TABLE 2: Values of S11

In Table 2, 1 represents that traffic flows can shift from location i to j, while 0

represents that the flows cannot finish shifting or there is no route from i to j. Table

2 describes the traffic flow during off-peak hours, while Table 3 shows the flow during

peak hours. Therefore, with these values, it is easy to determine the trends of traffic

flow. With the specific volume number, the model can make predictions.
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x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 1 1 1 0 0 0 0 1 1 1 0 1 0 0 0

2 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 1

3 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1

4 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0

5 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

6 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

TABLE 3: Values of S21

The accuracy of the model is related to the values of matrices. Therefore, an

improved method for calculation of distance and speed will make improvements to

the whole prediction.

3 Sharp Variation Points by Wavelet Transform

Traffic flow time series show different fluctuation characteristics at different time

scales[24]. The wavelet transform is a good way to divide the sequence into multiple

scales. Those scales are divided based on the number of the zero-crossing points from

wavelet transform, which are called sharp variation points. Researchers have proven

that on a certain scale, the number of sharp variation points in traffic flow shows the

12
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characteristic of self-similarity[24].

According to changes in signal, the definition of the wavelet transform[26] is

Wf (a, b) =
1√
a

∫ +∞

−∞
f(x)ϕ(

x− b
a

)dx (11)

Here, parameters a and b represent factor of scale and time shift respectively. By

changing these two parameters, the information of f(x) can be obtained at any loca-

tion b under different scale a. Function ϕ(x) is defined as below[25]:

ϕ(x) = (1− x2)e−
x2

2 (12)

This is a continuous smooth even function. Before using it in traffic flow calculation,

it should be made discrete. The new formulation is changed[25]:

Wf (a, b) =
1√
a

N∑
n=1

f(i4x)ϕ(
n4x− b

a
) (13)

Then put the time series q(n)(n = 1, 2, ..., N) into the function, the new form will

be[24]:

Wq(a, t) =
1√
a

N∑
n=1

q(n)ϕ(
n− t
a

) (14)

Figure 2 shows an example after the wavelet transform.

FIGURE 2: Example figure of wavelet tranform

13
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The key word of this section is sharp variation points. A sharp variation point is a

point to describe the trend’s beginning or end. With this important characteristic, the

detection work is paramount. Sharp varation points are defined as the zero-crossing

points of the wavelet transform. Based on the figure, it is easy to see that there are

seven sharp variation points. Because the data includes 144 points, it may not get

zero in an accurate time position. There is another way to define the sharp variation

points[9]. While q(n)∗θ( t−n
a

) is the Gaussian smoothing function of series q(n) under

the scale a in time t, it keeps the properties in t = n, and q(n) ∗ θ( t−n
a

) = q(n).

Therefore the zero-crossing points of Wq(a, t) can be regarded as the sharp variation

points of q(n)[24]. For any scale a, there is a way to detect the sharp variation points:

Wq(a, t)Wq(a, t+ 1) < 0 (15)

Using this function, the positions of sharp variation points are detected:

t = 7, 33, 57, 72, 80, 104, 132.

14



CHAPTER IV

Augmented Reality

Augmented reality is a brand new word for most people. It refers to a new way

to interact with the virtual world. Actually, it is changing our world in all aspects.

Although it is not popular at the moment, the fast speed of development in this area

will certainly make it expand worldwide.

1 Introduction

Augmented reality, based on virtual reality, is a variation of virtual environment[4].

However, there is some difference between augmented reality and virtual reality. Aug-

mented reality is more concerntrated and interactive while virtual reality focuses more

on experiencing than augmented reality does.

In the final decade of the 20th century, with huge development in the technol-

ogy of cameras and computation, augmented reality came to people’s sight. At the

beginning, the technology was just an imagination. Then, along the development

of advanced imaging technologies, people were able to experience a newly created

virtual world using heavy equipment. During the past 20 years, the equipment has

become lighter, and the quality of imaging has become better than before, with higher

resolution.

The most common tool to realize augmented reality is a monitor. Unlike druing

the 1990s, every monitor can now be an interface for augmented reality. Smartphones,

computers, GPS devices, iPads can all provide a scene for augmented reality[16]. How-

ever, some monitors can only represent the virtual world to certain scales. If people

15
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want to experience the virtual world in any location without limitations, augmented

reality glasses are the best choice. These glasses can provide a 360-degree virtual

world.

Besides hardware, software is also significant for augmented reality. Software is

related to the speed and quality of imaging. Additionally, it provides a development

environment for the virtual world. Unity 3D is a good engine that can be used to

construct an interface between the user and the virtual environment[22].

2 Applications

Augmented reality is going to change people’s lives in different fields. This section

shows some applications that have been realized or are being developed[16].

• Medical: Medical research is always important because it is related to people’s

lives. Many surgeries are very dangerous and required very experienced doc-

tors. Therefore, the problem is how to cultivate experienced doctors. Because

there are not enough cases for new doctors and surgery itself is dangerous, it

is unlikely that new doctors will perform the operation. Augmented reality

is an effective way to solve this problem. It can create a virtual environment

for the surgery, and it allows anyone to perform operation using augemented

reality(AR) equipment. After several training sessions in the virtual world, sur-

geons become experienced. Addtionally, AR can help to demonstrate some new

progress in medicine that works in molecular levels in human’s bodies.

• Military: The cost of running the military is extremely high all the time because

all military experiments should have high accuracy. Doing military experiments

also cause some environmental problems, such as air pollution and nuclear pol-

lution. AR is an effective way to conduct simulated experiments, instead of

doing them in reality. For example, experiments involving missiles, it can be

simulated on screens. When changing the parameters, the track of the missile

can be observed on a screen. This saves much time and money. AR can also

16
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simulate battle fields in order to allow new soldiers to practice their shooting

or driving skills. That will help greatly in terms of survival.

• Entertainment: AR technology provides a new way for entertainment, espe-

cially the way to play games[6]. Some video game companies like Sony and

Microsoft are devoloping new AR technologies. When people put on AR equip-

ment, a scene in a game will be created immediately from a first person’s per-

spective. When the user moves, the scene moves as well. That is a revolution

in entertainment that provides interactive functions between users and virtual

environments.

3 Future Development

Augmented reality has the potential to be one of the most popular technologies

in the future. The technology is not perfect now. It still has much to improve:

• Hardware: This is now the greatest obstacle for the AR technology. All of

the advanced equipment is very large and cannot meet people’s demands for

portability. Addtionally, more sensors need to be added to the equipment in

order to make the simulation more accurate and realistic.

• Software: More software that provides an environment for building virtual

worlds needs to be developed. Software must improve in terms of calculation

and imaging technology in order to help create the virtual world quickly with

high image resolutions.

• Applications: More applications should be developed as well. This is the key

for people to experience the power of augmented reality. Applications should be

easy to get at low cost. Applications in more areas are needed for augmented

reality.

17



CHAPTER V

Analysis and Prediction based on

Sharp Variation Points

1 Statement of Problems

Before doing research about traffic flow prediction, the problems that need to

be solved must be identified. This thesis tries to make some improvements in the

following directions.

• Model: This research is going to develop a model that is easy to operate and

applicable to all conditions. The model should get deep information and can

analyse the fluctuations of traffic.

• Accuracy: Higher accuracy is required under the same conditions than previous

models. The accuracy should be relatively stable as time increases.

• Visualization: Another important part of this thesis is to combine the results of

the new idea to be presented in the following section with augmented reality in

order to make a simulated word. The virtual world can simulate how the traffic

flows in general.

2 New idea of Prediction

As shown in the previous section, the time series of traffic flow is scale-free and

self-similar, and the sharp variation points record what happened at sharp variation

18
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time. They show how the traffic flow fluctuates in a day. Every sharp variation point

means something happens or ends at that time, which is useful for the prediction.

The model can have the prediction up to 2 sharp variation points.

Because every figure of wavelet transform contains much information about the

traffic flow, the fluctuation can be classified according to different situations. In other

words, it can put every section of figures from the wavelet transform into certain

categories. In order to obtain accurate classification results, some typical parameters

are needed for all kinds of conditions. As sharp variation points mean a lot for the

prediction, n = n/t is defined to determine whether the time period is the one with

issues or not. For weather conditions, X̄ =
∑N

i=1Xi/N can be used to evaluate the

weather and M = Xmax − Xmin to evaluate the level of weather. In addition, σ =√∑N
i=1(Xi − X̄)2/N is a good choice to consider situations of accidents. Simulaition

results to be reported in the next chapter also points out that adding σ will increase

accuracy and gain more important information. In the selection of parameters, N

can be a boolean parameter. The other three parameters X̄, M and σ are all in some

floating ranges.

3 Algorithms

3.1 Historical Data Collection

As all of the predictions will use historical data, the more data becomes available,

the more accurate the analysis will be. All the data should be collected from the same

section of road, or it will be useless. Figure 3 is the algorithm for data classification.

The aim of this process is to classify collected historical data. The first step is to

make transformation using wavelet transform, and to detect the positions of sharp

variation points.The n in Figure 3 is the parameter to determine whether there are

sharp variation points in a day. The next step is to define the weather conditions

using parameters x̄ and M . After that, the situations of accidents can be defined

using σ. The last step is to classify a certain day’s data into a certain Category N by
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FIGURE 3: Diagram for algorithm of historical data collection
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combining these three parameters.

3.2 Similarity Comparison and Prediction

This section discusses how to use real-time traffic data for comparison and pre-

diction based on sharp variation points.

Figure 4 shows the algorithm for similarity comparison. After getting real-time

data, the first step is to follow the algorithm in the previous section to determine

what category it belongs to. If the real-time data comes with information of weather

conditions and accidents’ situations, for example, the parameters of weather and

accidents will be used to find the category for the real-time data. The next step

is to search all the data from database under the same category. The aim of this

step is to find out the best sample for prediction, and comparison will be made

in the same time periods among these data. The function used for comparison is

µji =
√∑T

T=1(Xi −Xj)2/T , where Xj is the time series of real-time data and Xi is

the time series of historical data. The index of i refers to the best sample when µji

obtains its minimum value.

After finding the best sample, the next step is to make the prediction. Before

that, it needs to find out the positions of sharp variation points from the best sample.

If the last time point of real-time data is T0, the work is to find the next two positions

of sharp variation points TXi+1 and TXi+2. Prediction is then achieved by using the

corresponding data segment from the best sample from T0 to TXi+2. Figure 5 shows

the algorithm for prediction.

The accuracy can be calculated as following formula:

Accuracy = 1− 1
T

∑T
i=1[

forcast.vol(i)−vol(i)
vol(i)

]
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FIGURE 4: Diagram for algorithm of comparison
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FIGURE 5: Diagram for algorithm of prediction
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4 Time Complexity

The most time is spent on the preparation for the prediction. If n is the number

of the data, the time complexity will be:

• Wavelet transform: O(n2).

• Sharp variation points detection: O(n).

• Classification: O(n).

• Similarity comparison: O(n).

• Prediction: O(n)

If the prediction repeats for m(m < n/2) times, the total time complexity will be:

O(n2) +O(n) +O(n) +m(O(n) +O(n)) = O(n2).
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CHAPTER VI

Experiments with the Proposed

Method

1 Historical Data Collection

The simulation data used in this thesis is created based on the data presented in a

published paper[24]. The original data was collected by Beijing Jiaotong University.

The simulation data recorded the volume of the traffic flow for ten days. The first

eight days is selected for trainings in this experiment, and the rest for testing. Shown

in Figure 6 is an example of one day’s stream of traffic, where the time interval is ten

minutes. That means there will be 144 points to record the trend of a day. As the

time interval is ten minutes, when t = 0 refers to 12:00 a.m., t = 1 refers to 12:10 a.m.

and so on. In this hypothetical environment, weather conditions were assumed to be

the same, and no accidents happened on these days(X̄ is around -32, M is about

2795 and σ is around 65). The method works no matter the day is a workday or

during weekend. Though there is some difference between workdays and weekends,

it will not change the way to calculate the positions of sharp variation points. Some

little fluctuations in wavelet transform can be detected in the process of similarity

comparisons, and the best samples must have some conditions.

Figure 6 shows how traffic flows in a day. It is clear that, there are three high

peaks in a day. That means there are rush hours in the morning, afternoon and

evening. The estimated time of those three peaks occurs at about eight o’clock in

the morning, twelve o’clock in the noon, and six o’clock in the evening. During these
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FIGURE 6: Traffic flow of Day1

time periods, most people go to or from work. Therefore, the flows in the figure seem

reasonable. There are also some minor trends after the second high peak, which may

indicate that some people go back home earlier or some people go out for dinner or

shopping in the afternoon. The last high traffic trend is in the late evening. That

means people who have finished dinner go back home.

Figure 7 is a figure that shows all of the trends over ten days. It is obvious to see

that trends are similar for each day because people’s lifestyles are almost the same.

For the experiments in this section, 80 percents of the information is used for training

sets, while the rest is used as testing sets.

In order to gain a deep understanding of the traffic flow patterns, wavelet trans-

form can be used to obtain additional information. Because wavelet transform can

describe the fluctuation of traffic, it is an effective way to analyse the traffic flow.

The formula for the wavelet transform is[24]: Wq(a, t) = 1√
a

∑N
n=1 q(n)ϕ(n−t

a
), and

ϕ(x) = (1 − x2)e−x2

2 . In the formula, q(n) is associated the number of the vehicles
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FIGURE 7: Traffic flow of training sets

at time t and a is the factor of scale, which is ten in this dataset because of the

ten-minute time interval. After applying the wavelet transform to the original data,

the figure is shown below

Based on Figure 8, the fluctuation of the traffic can be easily observed. In order

to obtain more detailed information, some calculations need to be done based on the

figure. The most important parameter for the wavelet transform is the sharp vari-

ation point. Sharp variation points are defined as zero-crossing points from wavelet

transform, which can be detected using another formula[24]: Wq(a, t)Wq(a, t+1) < 0.

In experiments, sharp variation points were detected at t=7,33,57,72,80,104,132.

It means that there are sharp variations at 1:10 a.m., 5:30 a.m., 12:00 p.m., 1:20

p.m., 5:20 p.m. and 10:00 p.m. At these time points, some sharp changes occur.

Additionally, with some other parameters, the whole traffic flow can be described

in a certain category: X̄ =
∑N

i=1Xi/N = −32.25, M = Max − Min = 2795.82,

σ =
√∑N

i=1(Xi − X̄)2/N = 65.93.

Figure 9 shows data from the traning sets after wavelet transform.

Obviously, with similar values of the original data, the trend of wavelet transforms

also shows in high similarity.
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FIGURE 8: Wavelet transform for Day1

FIGURE 9: Wavelet transform for training sets
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2 Prediction

After trainning, the experiment will take the data from Day 9 and Day 10 for

testing, whose original data are shown in Figure 10 and Figure 11.

FIGURE 10: Original traffic of Day 9

The prediction will use the basic data from 12:00 a.m. to 8:00 a.m.. The first step

is to apply wavelet transform to this data, and obtain the information about every

value of these points. In order to calculate the similarity, the data must be in the same

period. The formula used for this part is defined as: µ9i =
√∑T

i=1(Xi −Xj)2/T .

Here i is the index of the day from the training sets, and Xj is the value of testing

sets. Figures 12 and 13 show the data before prediction for Day 9. The first one is

the original traffic flow, and the second one is the figure after applying the wavelet

transform.

After applying the wavelet transform to Day 9, the first sets of µ9i show as:

µ91 = 50.82, µ92 = 50.45, µ93 = 48.20, µ94 = 51.52, µ95 = 35.21, µ96 = 28.61, µ97 =

30.32, µ98 = 36.78. The minimum of these values can be easily identified as: µ96 =

29



VI. EXPERIMENTS WITH THE PROPOSED METHOD

FIGURE 11: Original traffic of Day 10

FIGURE 12: Known data of Day 9
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FIGURE 13: Known wavelet transform of Day 9

28.61.

The next step is to check the position of sharp variation points of Day 6 from its

wavelet transforms. All the positions of sharp varation points have been recorded in

the files before predictions. The next two positions of sharp variation points of Day

6 are t = 57 (9:30 a.m.) and t = 72 (12:00 p.m.). Therefore, the data from t = 48

(8:00 a.m.) to t = 72 (12:00 p.m.) can be used for prediction.

Figure 14 shows the first prediction for Day 9. In the figure, the red line with

stars is the prediction results while the blue line is the original data. Obviously, these

two lines are very similar.

Then, the steps above are repeated for the second prediction. Because this is a real-

time traffic flow prediction, it must use treal-time traffic data for prediction. The first

step now is to calculate the data from t = 0 (12:00 a.m.) to t = 72 (12:00 p.m.) using

wavelet transform, and find the minimum µ9i . The values are µ9i : µ91 = 50.74, µ92 =

49.03, µ93 = 48.34, µ94 = 48.27, µ95 = 54.53, µ96 = 30.54, µ97 = 32.41, µ98 = 38.71.
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FIGURE 14: The first prediction of Day 9

The minimum of this set is µ96 = 30.54. So, the data from Day 6 will be used for the

second prediction.

The next step is to check the position of the sharp variation points of Day 6. The

next two sharp variation points are t = 80 (1:20 p.m.) and t = 104 (5:20 p.m.). Then,

use the data from t = 72 (12:00 p.m.) to t = 104 (5:20 p.m.) from Day 6 is used to

make the second prediction.

Figure 15 shows the results of the second prediction. The prediction figure has a

high similarity with the original figure from t = 48 (8:00 a.m.) to t = 104 (5:20 p.m.).

The third prediction uses the data from t = 0 (12:00 a.m.) to t = 104 (5:20

p.m.) to obtain the third sets of µ9i : µ91 = 58.11, µ92 = 61.75, µ93 = 56.66, µ94 =

51.15, µ95 = 74.05, µ96 = 51.07, µ97 = 42.36, µ98 = 57.49. The minimum value in this

set is µ97 = 42.36. So, the data from Day 7 will be used for the third prediction.

On Day 7, the only position of sharp variation point left is t = 132 (10:00 p.m.).

Therefore, the prediction uses the data from t = 104(5:20 p.m.) to t = 144 (12:00

a.m.) of Day 7.
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FIGURE 15: The second prediction of Day 9

Figure 16 shows the final prediction for Day 9

After all the data for prediction were determined, the accuracy can be calculated.

The result is 96.34%.

Similarly, the prediction for Day 10 repeats the procedure for Day 9. The first

step is to obtain the basic data from t = 0(12:00 a.m.) to t = 48 (8:00 a.m.). Figure

17 shows the basic data of Day 10 before prediction.

The second step is to calculate its form in wavelet transform and obtain the same

set of µ10i for further prediction.

Figure 18 is the results for Day 10 after applying wavelet transform from t = 0

(12:00 a.m.) to t = 48 (8:00 a.m.).

The first sets of µ10i show as: µ101 = 32.16, µ102 = 31.48, µ103 = 31.62, µ104 =

31.56, µ105 = 13.72, µ106 = 23.23, µ107 = 25.85, µ108 = 23.44. The minimum value in

this set is µ105 = 13.72, In order to obtain the next two sharp variation points for

prediction, the information of Day 5 needs to be checked. The positions for next two

sharp variation points are t = 58 (9:40 a.m.) and t = 72 (12:00 p.m.). Then, use the
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FIGURE 16: Final prediction of Day 9

FIGURE 17: Known data of Day 10
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FIGURE 18: Known wavelet transform of Day 10

data from t = 58 (9:40 a.m.) to t = 72 (12:00 p.m.) in Day 5 is used to make the

first prediction, whose result is shown in Figure 19.

Then, the beginning is updated to t = 72 (12:00 p.m.). The next step is to

obtain the second sets of µ10i using the wavelet transform from t = 0 (12:00 p.m.) to

t = 72 (12:00 p.m.). Here is the information about the second sets of µ10i : µ101 =

41.21, µ102 = 38.44, µ103 = 40.89, µ104 = 45.47, µ105 = 24.87, µ106 = 31.07, µ107 =

31.97, µ108 = 24.44. The minimum of this set is µ108 = 24.44. In order to obtain the

next two sharp variation points for prediction, the information of Day 8 needs to be

checked. Based on the file, the next two positions are t = 79 (1:10 p.m.) and t = 103

(5:10 p.m.).

Figure 19 is the second prediction using the data of Day 8 from t = 79 (1:10 p.m.)

to t = 103 (5:10 p.m.)

As shown in Figure 20, there is still unprocessed time periods for Day 10. There-

fore, the third sets of µ10i needs to be obtained: µ101 = 50.68, µ102 = 53.78, µ103 =

50.26, µ104 = 46.05, µ105 = 38.55, µ106 = 59.98, µ107 = 45.30, µ108 = 30.13. Obviously,
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FIGURE 19: The first prediction of Day 10

FIGURE 20: The second prediction of Day 10
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the minimum value is µ108 = 30.13. After checking the information from the remain-

ing sharp variation points in Day 8, the only sharp variation point is at t = 132 (10:00

p.m.). Using the data from t = 104 (5:30 p.m.) to t = 144(12:00 a.m.) in Day 8, the

final prediction is completed as illustrated in Figure 21.

FIGURE 21: Final prediction of Day 10

The last step is to calculate the accuracy of the prediction for Day 10, and the

result is 96.58%.

3 Comparison and Analysis

The accuracy for traffic flow prediction has been calculated by using the formula

at the bottom of page 21 for both data-driven[10] and model-driven[13] methods. In

the experiment presented in this chapter, the same formula is used to calculate the

accuracy as well. In the experiment, the predictions is based on sharp variation points,

and the results show that it is an effective method for forecasting. The accuracy for

test sets is over 96%(Day 9 is 96.34% and Day 10 is 96.58%). The results gained
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Model-driven 5-min 10-min 15-min

CATA 95.0% 94.3% 94.0%

CATB 87.3% 87.4% 87.3%

Slip-road 92.2% 91.5% 92.1%

TABLE 4: Accuracy of Model-driven methods[13]

Data-driven 2h 4h

New Volerra 96.02% 92.80%

RBFNN 94.79% 89.96%

Volerra 92.18% 92.07%

TABLE 5: Accuracy of Data-driven methods[10]

from fully calculation from training sets instead of samples, so level of confidence

is not needed for the predictions. All of the predictions were made under the same

category(X̄ is around -32, M is about 2795 and σ is arund 65).

The accuracy is high in comparisons with previous methods. While Table 4 and

Table 5 show the accuracy of prediction with typical model-driven and data-driven

methods, Table 6 shows the accuracy of prediction for Day 9 and Day 10 using the

new method. In experiments presented in this thesis, the average accuracy is over

96% and the highest accuracy is over 98%. With the increase of the time interval,

the accuracy still shows the characteristic of stability.

For all data, the time interval is ten minutes. It means that the factor of scale a

is ten. If the data was collected in five or two minutes intervals, the value of a will

Proposed Method 1st Prediction 2nd Prediction Final Prediction

Day 9 240 min 560 min 960 min

Accuracy 98.12% 97.74% 96.34%

Day 10 240 min 550 min 960 min

Accuracy 96.60% 96.91% 96.58%

TABLE 6: Accuracy of Proposed Method
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be smaller. As a result, more sharp variation points will be obtained. In order to

ensure the real-time characteristics of the traffic, the model only makes a prediction

in a length of two sharp variation points. If there are more samples of traffic data

and a is small enough, the accuracy of prediction with the new method will be even

higher.
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CHAPTER VII

Augmented Reality System Design

Another objective of this thesis is to make prediction become visible. In order to

meet this goal, it is necessary to build a virtual world using augmented reality. When

building an augmented reality system, the engine should be considered firstly. Unity

3D is an excellent choice because it is a powerful game engine that can provide all

kinds of assets for the virtual environment.

This chapter will discuss the steps for building an augmented system with Unity

3D. The first part is modelling, which covers the basic modules used for the system.

The second part discusses how to make system work using scripts and simulation.

The last part gives an overview to the system.

1 Modelling

Modelling is a significant part of an augmented reality system. The first step

to create a good augmented reality system is the modelling of 3D objects. The

main tools for modelling are 3Ds Max and AutoCAD. Additionally, some models or

assets can be downloaded from the official asset store. To save time in rendering,

this traffic prediction system will not use large-sized models. All 3D models for

this research are either created originally or downloaded free from the Unity asset

store(www.assetstore.unity3d.com).

Figure 22 shows four different layers[22]:

• Terrain Layer: Using Google Earth is a simple way to make terrain for this

layer. It can provide high-precision images. For example, if the system needs
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FIGURE 22: System architecture
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to build the traffic network of highways from Windsor to Toronto, it can access

Google Earth by using a tool named Google SketchUp in order to obtain high-

resolution information about terrain. With the help of the software, the 3D

terrain can be edited in 3Ds Max and saved in a .3ds format. In addition,

GPS can help to get high-resolution information. In this system, terrain layer

is created in Unity 3D with default materials.

• Transport Layer: After finishing the terrain layer, the next step is to build the

transport layer. In order to describe traffic flow, the main work in this layer

is to build roads and other important facilities according to the real location.

In addition, some materials in this layer, such as texture and lighting, can be

edited in 3DMax. This layer will make the traffic network more realistic. Any

type of roads can be done with plugins like EasyRoad or download from the

Unity 3D asset store. In this system, cars and roads are the main objects in

this layer.

• Building Layer: In this layer, buildings will be added to the scene, because they

are important for the final visual effect. All kinds of buildings can be edited in

advance using some tools like 3Ds Max and AutoCAD. In order to gain better

effects for simulation, the parameters and coordinates of objects in this layer

can be obtained from Google Map to help creating models in the same location

according to the real world. Several building models are added to this layer in

the system.

• Vegetation Layer: The aim of this layer is to build and decorate the scene with

some vegetation. This layer is the most difficult one, because the trees and

grass have more details to describe. However, the vegetation layer does not

have much effect in this system. If some advanced effect is required, materials

and textures can be downloaded from the official asset store. Trees and grass

are the main objects in the layer of this system.

All the models used in different layers downloaded from the asset shop as shown

in the table. All the links are free to download.
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Model Link

Car https://www.assetstore.unity3d.com/en/#!/content/19264

Car https://www.assetstore.unity3d.com/en/#!/content/2619

Car https://www.assetstore.unity3d.com/en/#!/content/2608

Car https://www.assetstore.unity3d.com/en/#!/content/12133

Building https://www.assetstore.unity3d.com/en/#!/content/1042

Building https://www.assetstore.unity3d.com/en/#!/content/13925

Vegetation https://www.assetstore.unity3d.com/en/#!/content/2936

Vegetation https://www.assetstore.unity3d.com/en/#!/content/44

TABLE 7: Model links

When all the models were completed, they could be imported to Unity 3D. An-

imations, textures, scripts, and sounds can be found in an asset file in the project.

They are added as new gameobjects in the process of creating a scene. Figure 23

shows the overview of the scene.

FIGURE 23: Overview of the scene
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2 Scripts and Simulation

After modelling, the next step is to add scripts for components in the system. In

this simulation system, the work should be done for the cars and weather in a way

as illustrated in Figure 24. In the figure, Time and Weather are used to control the

speed and volume for the cars in four lanes. So there will be two parameters in the

system to be controlled by the scripts.

FIGURE 24: Objects need to be scripted in system

2.1 Simulation for Cars

Before adding the scripts to cars in this system, some preparation must be done.

The car models should be defined as prefabs. Each time the system generate a car,

the model should be obtained from prefabs so that the scripts are the same for the

new ones. The change of time in the system is Time.deltatime, which is the smallest

unit of time in Unity 3D. This function of time is used to make the system’s frame

rate independent.

• Speed Control: The speed cannot be controlled directly by scripts. The only

way to show the different speeds is defining the changes of velocity along X-axis

in the system. So the script will be written as follow:
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transform.Translate (a*Time.deltaTime,0,0), where a is one of the parameters.

• Volume Control: Volume is another important part in traffic prediction. How-

ever, it cannot be defined by only one parameter in this system. The way to

change the volume in this system is to combine the speed of the cars and the

distance between cars. The cars will be generated by models in the prefabs in

the same time intervals. The time should be controlled by one parameter, and

the script should be written as follow:

newCar = Instantiate (Car, transform.position, transform.rotation ) as Rigid-

body;

When the simulated time is different, the two parameters should also be different

in order to control the speed and volume of the cars.

2.2 Simulation for Weather

In an augmented reality system, weather is a necessary component. This predic-

tion system needs to combine multiple sources of information including weather.

The weather conditions can be generated with the particle system in Unity 3D.

Figure 25 shows the interface of the particle system.
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FIGURE 25: Particle system

In order to simulate different weather effects, some parameters should be changed

into different values. Start Size means the initial size of particle when it is emitted.

Gravity Modifier means the value of gravity when emitting particles.

• Rainy: On rainy days, the Start Size should be set to a relatively lower value,

and the Gravity Modifier is relatively higher. The speed of cars should be lower

than that in sunny days and the distance should be larger.

• Snowy: In comparison to rainy days, the Gravity Modifier should be set to a

lower value while the Start Size should be set to a larger value; the speed of

cars should be lower and the distance should be larger than those in rainy days.

• Sunny: This condition is simple because the Start Size and Gravity Modifier

are set to zero. The speed of cars is the highest and the distance is lowest.
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After initialization, the whole scene of traffic combined with weather conditions

can be rendered.

3 System Overview

After all the preparation work, simulation may start. The prediction data was

obtained from the experiments presented in Chapter VI, and the values were scaled

in the system. Figure 25 shows the system running at 6:00 A.M. on a snowy day.

FIGURE 26: Overview of the simulation system

By clicking the buttons on the screen, parameters can be changed. For example,

if the time changes to 6 P.M., the speed of the cars must be slower and the distance

between each car must be smaller. If the weather changes to sunny, the snowflakes

will disappear, and the cars will move faster than they do on snowy days.

In order to make the prediction more realistic, the models can be created to with

more details, and buildings and cars may have more styles and sizes. In addition,

the system should allow the specification of a particular time in the near future for

simulation to show what will likely to happen in, for example, three hours.
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CHAPTER VIII

Conclusion and future work

Traffic jam is the one of the most difficult problems of human’s civilization, and

all people can do is to reduce its level of harm. Real-time traffic flow prediction is

a good way to manage traffic congestion. According to previous research, traffic can

be described as a dynamic system and can be predicted by using models. In order to

study the fluctuation of traffic flows, wavelet transform is useful and effective.

In this thesis, the method based on sharp varation points has made some contri-

butions to traffic flow prediction.

• Model: A new model using wavelet transform has been developed in this thesis.

This model focuses on the variation trends of traffic flows, so it can be used

in all kinds of traffic conditions, including urban streets or highways. More

parameters can be added in order to improve the model.

• Accuracy: Because the model makes predictions under the same condition of

traffic flow, the accuracy is high. The more data that becomes available, the

more conditions will be classified and the more accurate the prediction will be.

With shorter time intervals in the data, more information will also contribute

to higher accuracy, and the accuracy will be more consistent when time periods

increase.

• Visualization: After the experiment using the new method, the results are shown

in Unity 3D in a virtual world. Combined with some realistic models, the pre-

dicted traffic flow becomes visible on a screen. With more data under different

conditions, more changes can be introduced to the Augmented Reality system.
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In addition, more realistic models can be used to replace the original models.

In the future, improvements should focus on the AR system. Different models

should be added to the system with specific details. For example, various kinds of

cars and buildings will make the scenes more realistic. In addition, the locations of

buildings can be made to be the same as in the real world when building the AR

system. If necessary, the system can provide a view for each car, which will allow the

traffic to be observed from the perspective of a driver. The control module should

also allow the user to control the car at the scene. This will help users to see what

will happen in different conditions. Addtionally, more data can support the changes

of weather and other factors. Another way to improve model’s prediction ability is

to collect more data for training sets. In order to gain higher accuracy, the developed

algorithms need to be further enhanced by, for example, using fuzzy logic for data

classification and matching.
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