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Abstract

Cognitive scientists agree that the exploitation of objects as tools or artifacts

has played a significant role in the evolution of human societies. In the realm of

autonomous agents and multi-agent systems, a recent artifact theory proposes the

artifact concept as an abstraction for representing functional system components that

proactive agents may exploit towards realizing their goals. As a complement, the

cognition of rational agents has been extended to accommodate the notion of artifact

capabilities denoting the reasoning and planning capacities of agents with respect

to artifacts. Multi-Agent Based Simulation (MABS) a well established discipline for

modeling complex social systems, has been identified as an area that should benefit

from these theories. In MABS the evolution of artifact exploitation can play an

important role in the overall performance of the system.

The primary contribution of this dissertation is a computational model for in-

tegrating artifacts into MABS. The emphasis of the model is on an evolutionary

approach that facilitates understanding the effects of artifacts and their exploitation

in artificial social systems over time. The artifact theories are extended to support

agents designed to evolve artifact exploitation through a variety of learning and adap-

tation strategies. The model accents strategies that benefit from the social dimen-

sions of MABS. Realized with evolutionary computation methods specifically genetic

algorithms, cultural algorithms and multi-population cultural algorithms, artifact ca-

pability evolution is supported at individual, population and multi-population levels.

A generic MABS and case studies are provided to demonstrate the use of the model

in new and existing MABS systems.

The accommodation of artifact capability evolution in artificial social systems

is applicable in many domains, particularly when the modeled system is one where

artifact exploitation is relevant to the evolution of the society and its overall behavior.

With artifacts acknowledged as major contributors to societal evolution the impact

vi



of our model is significant, providing advanced tools that enable social scientists to

analyze their findings. The model can inform archaeologists, economists, evolution

theorists, sociologists and anthropologists among others.
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Chapter 1

Introduction

Providing a technology for naturally simulating the evolution of complex social sys-

tems, Multi-Agent Based Simulation (MABS) has distinguished itself in the past two

decades as one of the most prominent areas of agent-oriented computing [18, 34, 45].

Recently in the related field of autonomous agents and multi-agent systems (MAS) an

artifact theory has been introduced, proposing artifacts as an abstraction for repre-

senting reactive system components exploitable by proactive agents towards achieving

their goals [77, 79]. Artifact capabilities refer to an agent’s goal-directed subset of

plans that constitute the exploitation of objects as artifacts [4]. MABS has been iden-

tified as one of the primary application areas where the artifact and artifact capability

abstractions should provide significant benefits [80]. In complex socio-cultural sys-

tems the use of artifacts over time can play an essential role in the evolution of human

capabilities and more generally the overall system performance. Integrating the arti-

fact and artifact capability theories into their corresponding MABS systems warrants

an extension that supports learning, adaptation and evolution.

The primary research question in this thesis is: “How can artifacts be integrated

into MABS such that social agents can evolve artifact capabilities towards achieving

their goals?” The primary question is addressed by providing a generic computational

1



model for artifact capability evolution in MABS. The model extends the artifact and

artifact capability theories and uses evolutionary computation methods to develop

learning and adaptation strategies for evolving capabilities. Case studies are utilized

to conduct experiments in both new and existing MABS systems.

Scientists are constantly searching for new ways to explain and provide insight

into the complexities of human societal evolution [34]. Cognitive scientists are gen-

erally in agreement about the vital role played by tools or artifacts in the evolution

of societies [79, 86, 89, 91, 117]. It is my hope that a domain independent computa-

tional evolutionary model for artifact capabilities should prove beneficial to both new

and existing MABS systems towards understanding the effects of artifacts and their

exploitation in the evolution of complex societies.

1.1 Background

1.1.1 Multi-Agent Based Simulation

In Artificial Intelligence (AI) an intelligent agent is any entity that can observe and

act upon its environment. An intelligent agent is considered rational if it always takes

the action that maximizes its performance given what it has observed so far and what

it knows about its environment [118]. Russell and Norvig [103] describe a variety of

agent types. For instance, reflex agents respond instantly to what they have observed

using built-in condition-action rules. Goal-based agents act to simply realize their

goal while utility-based agents act to optimally realize their goal. Learning agents

improve their knowledge for achieving their goals over time. The environments that

agents operate in differ in the difficulties they pose. Environments span from fully

observable, deterministic, static, single agent environments to partially observable,

stochastic, dynamic multi-agent environments which are most challenging.

2



A subfield of Distributed AI specifically used for problem solving, Multi-Agent

Systems (MAS) or Agent-Based Models (ABM) are computational models character-

ized by multiple interacting autonomous agents operating in an artificial world. ABM

agents can represent humans, robots, animals, households, organizations, countries or

any other entity that can act upon its environment. Several characteristics of ABMs

are responsible for their promotion as a prominent technology for modeling societies

and other complex systems. In addition to their inherent characteristic of simulating

the collective interactions and actions among autonomous and often heterogeneous

individuals these models have the ability to naturally describe a system and generate

observable emergent behavior at the population level [34, 45]. They are considered

flexible as agents can be added or removed at will, created with varying degrees of

rationality and given the ability to learn and evolve in the presence of others [18].

ABM applications for analyzing complex systems span a variety of fields including

economics, engineering, anthropology, archaeology, social and biological sciences [45].

Social simulation is a scientific discipline concerned with simulating social interac-

tions in order to study various issues in the social sciences. Multi-Agent Based Sim-

ulations (MABS) also called Multi-Agent Based Social Simulations or Agent-Based

Social Simulations are social simulations built using ABMs. In addition to model-

ing communication between social agents sometimes realized with social networks

[51, 102], MABS systems can include a cultural evolutionary component resulting in

a powerful tool for modeling social and cultural effects on the overall performance of

the system [52, 53, 50, 76]. Assisting in the formulation and validation of theories

in the broad field of social science, MABS applications have transitioned from the

modeling of simpler societies such as ant colonies [28] to complex human societies

such as the Village Eco-Dynamics Project (VEP) [57, 58].
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1.1.2 Exploiting Objects as Artifacts

1.1.2.1 Artifacts

Across the cognitive sciences researchers contend that tools have been instrumental

in the evolution of human societies [23, 33, 79, 86, 89]. Over time the abilities to

exploit objects in their environment commonly studied as tool use, have assisted

humans in dealing with environmental changes ultimately leading to a modification

of the environment in order to suit their needs. The most widely used definition

of tool use in the literature is the one offered by Beck [11] where tool use involves

the use of an environmental object detached from its user towards an objective with

the user responsible for its proper use. It is well acknowledged that the use of tools

is not limited to human societies. Some of the earliest studies in tool use behavior

involve the experiments of Köhler conducted over several years to document tool use

in chimpanzees [59]. Some other animal tool use studies involve the use of a pebble

by wasps to pound earth into a nest [81], bottlenose dolphins using marine sponges

for foraging [6] and the collection of dry manure by burrowing owls in order to attract

insect prey [107]. Humans however exceed other species at their abilities to construct

and exploit objects in their environment towards meeting their objectives. Among

other fields studies in tool use include psychologists examining how children deal

with tool use complexity [32, 90], archaeologists investigating early recordings of tool

use [89], roboticists creating industrial robots preprogrammed to use specific tools

[16] and a philosophical perspective defending the ontological status of artifacts as

objects with practical functions that are made up of parts [7]. In relating tool use to

intelligence philosopher Preston [91] argues that tool use should be considered a rival

to language in the illustration of the high level cognition attributed to humans and

philosopher Ronald Endicott proposes the “tooling test”, an equivalent of the Turing

test that assesses intelligence in terms of one’s ability to exploit tools [117].
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The argument that tool use is a sign of intelligent behavior has given rise to an

interest in the AI community resulting in theories for tools and reasoning about their

exploitation [4, 79], tool representation and recognition mechanisms [3, 15, 80, 119]

and models for learning tool selection and use [21, 44, 50, 110]. In the MAS domain,

the Agents and Artifacts (A&A) model [77, 78, 79, 80] proposes artifacts as an ab-

straction for tools in MAS, representing the function-oriented components of a MAS

exploitable by its embedded agents towards realizing their goals. With MABS iden-

tified as one of the primary application areas that can benefit from the abstraction,

the model categorizes the relationship between agents and artifacts in terms of three

aspects: artifact selection, artifact use and artifact construction stipulating the ways

in which artifact exploitation can occur. Omicini et al. [80] declare that one way to

facilitate agents reasoning about exploiting artifacts in open and dynamic MAS envi-

ronments (where artifacts are introduced into at any time and agents enter, leave or

move around at will) is to render artifacts cognitional. Cognitional artifacts expose

all that is needed by agents to properly select and use them for their goals. This

includes the artifact’s structure, behavior and effects of its use.

1.1.2.2 Planning

In AI, a planning agent is defined as a goal-driven agent whose objective is to con-

struct a sequence of actions or a plan towards achieving a goal [103]. Planning is

generally studied under two broad categories namely classical and non-classical plan-

ning distinguished by the features of the environment in which the planning agent or

agents operate. Classical planning focuses on single planning agents operating in fully

observable, deterministic, static and non temporal environments where fluents, that

is, conditions that change over time, are propositional and only altered by the agent.

Non classical planning extends classical planning to address a variety of practical

planning problems including those encountered by multiple planning agents. Fluents
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may be metric or continuous and alterable by factors other than the planning agent’s

actions. The environment may be partially observable, stochastic and/or dynamic

and the effects of the agent’s actions may be temporal.

1.1.2.3 Learning

In AI, machine learning entails the use of percepts and observations of past expe-

riences by learning agents to improve future actions [103]. Characterized by the

feedback provided to the learning agent the three main approaches to learning are

supervised learning, unsupervised learning and reward-based learning. In supervised

learning such as decision tree learning, the feedback provides the correct output to

the agent. In unsupervised learning for example clustering, no feedback is provided

at all. In reward-based learning the agent receives a fitness evaluation of its actions

usually in some form of penalty or reward. An agent applying reward-based learning

methods learns to achieve its goals through a trial and error process of visiting its en-

vironmental states online. Reward-based learning is usually considered more suitable

for addressing learning problems in MAS given the complexities that arise from act-

ing by multiple interacting agents [83]. Reward-based learning is often characterized

in two facets: reinforcement learning and stochastic search. In reinforcement learn-

ing such as Q-learning [115, 116], agents are concerned with estimating action-value

functions. Stochastic search which includes methods such as simulated annealing and

the family of evolutionary computation techniques, involves direct learning without

learning value functions.

Analogous to their counterparts in real societies, social agents embedded in MABS

can develop learning strategies that benefit from its social dimensions, that is, en-

hance their learning capabilities through feedbacks received from other agents. These

social learning mechanisms include observational learning, learning by instruction and

collaborative learning [8, 112, 113].
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1.1.2.4 Artifact Capabilities

In order to incorporate reasoning about artifacts into rational agency, Acay et al.

[4] integrated Omicini et al.’s [79, 80] artifact theory into the Belief-Desire-Intention

software model (BDI) [82, 92]. BDI is based on the philosophical theory of Bratman

[20] which characterizes the cognition of a rational agent in terms of beliefs, desires

and intentions. The agent’s beliefs describe its informative state about the world

while its desires used to formulate goals, represent what the agent would like to

accomplish. The agent’s adopted goals are considered its intentions and act as a

trigger to plans that constitute actions the agent will perform. BDI addresses the

problem of rationally selecting and executing existing plans. Padgham and Lambrix

[82] introduced capabilities into BDI. Capabilities which according to the authors

promote modularity and reusability and support meta-level reasoning, resided within

an agent’s intentions and abstracted the set of plans relevant to a goal. Acay et al.

[4] further extended capabilities to include internal and external capabilities. In their

logical representation, internal capabilities denote plans that an agent can accomplish

on its own while external capabilities refer to plans that an agent can carry out with

the help of artifacts or other agents. An artifact capability relates a set of artifact

plans to a goal where artifact plans specify artifact functionalities describing ways to

exploit artifacts in order to achieve the goal. Evolving artifact capabilities in MABS

involves the construction of these plans. Within the context of planning it can be

viewed as a non classical planning problem as it concerns at a minimum, multiple

agents constructing plans. It can also be approached as a learning problem, since

artifact plans can be evolved through learning. Acay et al.’s extended formalization

of the mental attitudes of rational agents to include artifact capabilities provides a

theoretical foundation for studying artifacts and their role in the evolution of societies.
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1.2 Research Motivation

MABS systems are built with the objective of understanding the intricacies involved

in the evolution of complex societies. With artifacts established as significant con-

tributors to societal evolution, the evolution of their exploitation is as relevant as the

exploitation itself. How social agents evolve artifact capabilities may have measurable

effects on the overall performance of the society.

Existing models that integrate artifacts based on Omicini et al.’s artifact theory

into MABS [30, 31, 35, 71, 85, 105, 106] have done so with the A&A model’s cogni-

tional artifacts, which expose to agents all that is needed to successfully exploit them.

Cognitional artifacts distribute autonomy over artifacts rather than agents, giving ar-

tifacts control over the knowledge agents can possess for exploiting them. Agents in

these models require a complete information model for artifacts as they do not learn.

Furthermore adaptation and evolution is only supported in terms of agent encounters

with artifacts and automatic replication of the knowledge embedded in them. As a

result, agents loose heterogeneity with respect to artifact capabilities. The authors

of the A&A model state that although cognitional artifacts facilitate cognitive arti-

fact exploitation they are not a requirement for applying the underlying concepts of

their artifact theory. Artifacts can expose minimal information, as long as agents are

built with the ability to learn unexposed properties [80](pg. 447, Section 4.3). This

approach which we argue is necessary for MABS systems that are interested in the

evolution of cognitive artifact selection and use, is yet to be adopted.

Some other studies that are not based on the artifact theory but integrate artifacts

into MABS in a way that supports agents learning some aspects of artifact capabil-

ities do so in a domain dependent manner [37, 38, 50, 54], do not accommodate an

evolutionary dimension [74, 75], or are driven by the requirements in robotics that

warrant a detailed focus on robotic sensors and body schemas[61].

8



The primary research question is: “How can artifacts be integrated into MABS

such that social agents can evolve artifact capabilities towards achieving their goals?”.

That is, given a MABS system consisting of social agents AG and objects O:

1. How should o ∈ O be represented such that it can be exploited as an artifact

by ag ∈ AG.

2. How should ag ∈ AG be represented so that it can cognitively reason about

artifacts and evolve the knowledge for their exploitation.

3. What learning and adaptation strategies can ag ∈ AG develop for exploiting

artifacts from O especially taking advantage of the social dimensions in MABS.

1.3 Assumptions

The presented generic computational model for artifact capability evolution in MABS

makes the following assumptions:

• Agents are autonomous.

• Agents can be heterogeneous with respect to their learning abilities.

• Agents have common adopted goals.

• Agents are driven to best achieve their goals and may cooperate with respect

to sharing knowledge in order to do so.

• Agents can communicate via static or dynamic social networks.

• Artifacts can be static or dynamic with respect to feedback from their exploita-

tion.

• The MABS system can include a cultural evolutionary component that facili-

tates learning from a common knowledge base.
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• The MABS system can consist of multiple populations that evolve indepen-

dently of each other.

1.4 Research Objectives

The aim of this research is to enhance the ability of artificial social agents in MABS to

achieve their goals through learning and adaptation strategies for exploiting objects

in their environments as artifacts. This will be realized by providing a generic com-

putational model for integrating artifacts and artifact capability evolution in MABS

systems. Two of the three aspects of artifact exploitation given by Omicini et al.’s

artifact theory will be addressed namely artifact selection and artifact use.

The goals of the research therefore are:

• To provide a representation for artifacts based on the A&A model’s artifact

theory that facilitates learning and adapting artifact selection and use.

• To provide a representation for an agent’s cognition that extends the BDI-based

artifact capability theory to support learning and adaptation. This is realized

by combining the cognition in the existing theory with the cognition of general

learning agents in AI.

• To enable agents to evolve artifact capabilities by means of learning and adap-

tation strategies with an emphasis on strategies where agents take advantage of

the social dimensions of MABS. All strategies are developed with computational

intelligence techniques specifically evolutionary computation methods. Individ-

ual experience learning is realized via genetic algorithms (GA). Social experience

learning is realized through GAs, social networks, cultural algorithms (CA) and

multi-population cultural algorithms (MPCA). As a result learning and adapta-

tion are accommodated at individual, population and multi-population levels.
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• To demonstrate the use of the model for building new MABS systems with

artifact capable agents. A generic MABS system and a MABS system for child

auto safety restraints are provided.

• To demonstrate the integration of the model into an existing MABS system.

The model is integrated into the MABS system which constitutes a significant

part of the Village EcoDynamics Project [52, 56, 57, 58] developed over the

past two decades to study the lives of the ancient Pueblo Indian settlers in the

American Southwest during a period spanning 700 years.

1.5 Research Contributions

This thesis provides a generic computational model for incorporating objects into

MABS as artifacts (based on the A&A model) and enabling social agents to prop-

erly exploit them over time towards realizing their goals, by means of learning and

adaptation strategies.

The model uses an evolutionary approach to integrate artifacts and the capabil-

ities for exploiting them into MABS. Although this approach is not entirely new,

existing models are domain dependent and limited. Our model is generic, grounded

in established theories and provides a more extensive set of learning and adaptation

strategies. The versatility of our model is also apparent in its support for hetero-

geneous agents, static and dynamic social networks, dynamic artifacts and dynamic

environments. The model is scalable, accommodating learning and adaptation at

individual, population and multi-population levels. We also acknowledge that the

adoption of the A&A paradigm in MABS is not new. What is novel in our work is

the extension of the existing theories to include learning, adaptation and evolution

mechanisms. To the best of my knowledge the work presented in this thesis con-
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stitutes the first A&A-based domain independent model that specifically addresses

artifact capability evolution in MABS.

The model can be used to model artifacts in new MABS systems or integrate

the artifact concept into existing ones. Integration into existing systems permits the

elimination of presumptions that artifact capabilities are inherent to agents. With

artifact capabilities evolving over time, different aspects of system performance can

be measured.

Artifact capability evolution in MABS is applicable in a wide variety of domains.

Any artificial social system where artifacts and their exploitation impacts the evolu-

tion of the system or its behavior can benefit from our model. The model can inform

fields such as sociology, anthropology, economics, evolution theory and archaeology.

Among other areas the model can be used in Health Care for instance, to study

relevant problems related to patient self-management and equipment use in hospi-

tals. In this thesis the model’s applicability is demonstrated in two distinct domains:

Transportation / Injury Prevention with the child auto safety restraint case study

and Anthropology/Archaeology with the Village case study.

1.6 Dissertation Outline

The rest of the thesis is structured as follows. In Chapter 2 we provide a background

on studies related to artifacts in multi-agent environments. We review work on the

representation of artifacts in MAS environments, the representation of MAS agents

that can reason about the exploitation of objects as artifacts and the exploitation

of artifacts in MAS. In addition some studies in other fields that address artifact

exploitation in social and cultural contexts are presented.

In Chapter 3 we provide our representations for artifacts along with MABS agents

that reason about them and can evolve knowledge for their exploitation. The artifact
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and artifact capability theories are extended to facilitate learning and adaptation of

artifact selection and use. Additionally the methods that will be utilized to implement

the learning and adaptation strategies for MABS agents are presented along with the

technology used for implementing our MABS, its agents and artifacts.

In Chapter 4 we present a model for individual and social learning of artifact use

in MABS. Agents are expected to learn one way to use a given artifact for an adopted

goal. Learning strategies are developed for individual and observational learning

using GAs. Artifacts are assumed to be predictable with respect to their outcome

and behavior. A generic MABS is developed to conduct experiments comparing agent

performance with respect to the learning strategies.

In Chapter 5 we extend the model to include a cultural component. Agents can

now learn through individual experience and two forms of social experience, namely

observational learning and collaborative learning. Collaborative learning is realized

through the use of a CA where two categories of knowledge sources are maintained in

a shared belief space accessible by the agent population. As in the previous chapter,

the agents are given an artifact and a goal to realize with it. The new learning

strategy is added to the previously implemented generic MABS and experiments are

conducted comparing it to the others.

In Chapter 6 the model is further extended to address adaptation strategies for

artifact use in unpredictable environments. Social structures are introduced into

the agent population and agents maintain static or dynamic social networks through

which they communicate with other members of the population. Agents are expected

to adapt artifact use for unpredictable artifacts in dynamic environments. Additional

learning strategies are provided including learning through social networks, combining

learning strategies and using a meta-learning strategy for strategy evolution. A case

study that integrates the model into the existing MABS of the Village EcoDynamics

Project is presented.

13



In Chapter 7 we address the other aspect of artifact exploitation, namely artifact

selection. Agents are presented with a set of artifacts and given the objective of

selecting the proper one to realize their goal. Artifact selection is modeled in a multi-

population setting using MPCAs and agent migration is used to facilitate knowledge

transfer between independently evolving social populations. Agents within each pop-

ulation learn both through social networks and their respective cultural belief spaces.

A MABS for child auto safety restraints is provided as a case study and used to

measure the effects of migration on artifact selection knowledge.

In Chapter 7 conclusions are presented summarizing the overall contributions of

the model. We identify some of the model’s limitations and discuss some potential

future directions for the work.
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Chapter 2

Literature Review

When compared to other hallmarks of intelligence such as language, the exploitation

of objects as tools or artifacts has been much less studied in AI [21, 79]. Most studies

that have addressed the problem focus on artifact capabilities for agents operating

in isolation [21, 44, 110, 119]. As a result research that explicitly deals with artifact

capabilities in multi-agent environments especially their evolution are quite limited.

In this chapter we review studies related to the three primary objectives of our re-

search. We begin with a short report on studies that address representing artifacts in

MAS followed by representations for MAS agents that reason about artifacts. Next,

previous work that deal with artifact exploitation in multi-agent environments are

provided. Finally a a few studies on artifact exploitation in other fields are reviewed.

2.1 Representing Artifacts in MAS

Omicini et al. [79, 80] introduced the first and to the best of our knowledge, the only

established artifact theory for MAS in their Agents and Artifacts (A&A) model. The

authors argued for the Agens Faber approach to modeling intelligent agents in MAS,

analogous to the philosophical concept of Homo Faber which characterizes humans

affecting their environment through tools. Acknowledging the interdisciplinary nature
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of the subject the authors used inspiration from many fields including Activity Theory

(AT), Distributed Cognition, Sociology, Anthropology and computer-supported coop-

erative work (CSCW) to develop the theory. In the theory artifacts are proposed as an

abstraction for representing the reactive system components in MAS made available

to agents. While agents characterize the proactive MAS components responsible for

acting upon the environment, artifacts depict the functional components exploitable

by agents towards realizing their goals. To facilitate agent’s reasoning about exploit-

ing artifacts, the theory defines an artifact in terms of three essential properties that

it may expose:

• usage interface (UI )

• operating instructions (OI )

• function or service descriptions (FD)

UI describes the external structure of the artifact that is observable in the form of a

set of permissible operations. An agent performs an action on an artifact by executing

these operations. Analogous to a user manual that guides the use of an object, the

OI set describes procedures for using the artifact for a given purpose. An element of

OI is a sequence of UI operations. Finally, FD abstracts the functionality provided

by the artifact according to the intentions of its creator. Thus a function description

is related to one or more operating instructions, each of which are composed of usage

interface operations. While FD specifies what an artifact is used for hence facilitating

artifact selection, OI indicates how it is to be used therefore aiding artifact use.

Omicini et al. [80] characterize artifacts that expose these three properties as

cognitional artifacts arguing that in open and dynamic MAS environments they per-

mit cognitive selection and use of artifacts by agents. FDs can be used by agents to

select the proper artifacts and artifact use can be realized by executing the correct

UI operations with the help of OI. With this knowledge embedded in the artifacts
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themselves agents can rely on the environment to supply and maintain all the nec-

essary information for proper artifact exploitation. Artifacts can be added, removed

or modified and agents would automatically adapt to the current environment and

the current state of the available artifacts. The artifact theory suggests other prop-

erties for artifacts. For instance predictability can be offered by FD for predicting

the outcome of an artifact. Another property linkability allows artifacts to interact

with each other. Linkability for example could be used to capture a remote control

turning on a TV.

Implementations of A&A’s properties have been in the form of identifiers and

function calls that the agent can invoke such as in Ricci et al.’s CArtAgO (Common

ARtifact infrastructure for AGent Open environments) [100, 101]. For instance, an

artifact Camera may have a function description basic-photo-shoot which is associated

with an operating instruction consisting of operations power-on and shutter-release.

The operations are specified in terms of a name, arguments and outcome. An agent

with the objective of taking a photo can exploit Camera with the details of its oper-

ations hidden within the artifact.

Acay et al. [2] argued for the use of semantic technologies to construct the in-

formation model that describes artifacts and their properties, in order to facilitate

semantic interoperability or shared meanings with respect to artifact exploitation.

They presented a tool ontology (OWL-T), a sort of tool manual for describing ar-

tifacts and their exploitation in MAS environments. OWL-T resided in the MAS

environment and could be queried by agents in order to dynamically select and use

artifacts. The authors used description logic (DL) to build OWL-T which included

formal descriptions of all properties for artifacts along with agents that reason about

them. In OWL-T two concept categories primarily describe environmental objects:

ObjectModel and AbstractConcept. According to ObjectModel, an Object can have a

PhysicalProperty and can be an Artifact or a Tool. An Artifact realizes an agent’s goal
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while a Tool can have an IdealProperty. The distinction between Artifact and Tool

separates the object’s functionality captured in Tool from its relation to an agent’s

objective specified in Artifact. An Artifact is the object involved in the agent’s activ-

ities according to the agent’s role. PhysicalProperty captures the shape and spatial

features of an object. IdealProperty describes an object’s functionality in terms of

which activities it can be used for and the actions that are supported. Revisiting

the Camera object, its shape and location in the environment may constitute Phys-

icalProperty. As an Artifact it can be used to realize the objective basic-photo-shoot

by an agent with the role photographer involved in the activity photo-taking. As a

Tool, power-on and shutter-release are the supported actions of IdealProperty for the

activity photo-taking.

Representing artifacts as cognitional artifacts empowers the environment and can

be quite suitable for MAS systems that model interactive objects or objects that will

be exploited by agents in a uniform fashion. With the complete information model

for artifacts stored in the environment, agents can dynamically select and use them.

The A&A model has been applied in different MAS sub fields [77, 80] including MAS

programming [87, 101, 111], ambient intelligent applications such as HomeManager

[70], self-organizing systems and MABS [30, 85, 35]. The representation is however ill-

suited for MABS systems concerned with examining the evolution of artifact selection

and use. Representing operations as high-level function calls do not facilitate agents

that wish to manipulate the artifact themselves and learn how to exploit them to

realize their goals. In order to do so, a complete information model should not be

assumed and an artifact should expose minimal information such as only its UI from

which agent’s can evolve knowledge for its FD and OI properties. Furthermore an

artifact’s UI should expose its structure at a lower level. In other words, if an agent

is going to learn to power-on a camera, then it needs a representation that describes

exactly what power-on characterizes in terms of the artifact’s structure.
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2.2 Representing Agents Reasoning about Artifacts

in MAS

Omicini et al.’s artifact theory described how MAS agents can reason about exploiting

artifacts for their goals. Artifact exploitation by agents is depicted in three aspects:

• artifact selection

• artifact use

• artifact construction and manipulation

Artifact selection involves the agent’s ability to select the proper artifact that it can

use to realize its goal. Artifact use involves the use of a selected artifact by carrying

out a sequence of instructions to realize a goal. When either artifact selection or use

results in the failure to achieve its goal, an agent may then construct new artifacts

or manipulate existing ones. The theory further defined five cognitive levels at which

agents could reason about artifacts: unaware use, programmed use, cognitive use,

cognitive selection/use and construction/manipulation. At the first level, unaware

use involves the implicit use of artifacts by agents, that is agents never explicitly

act on artifacts. At the second level, agents are preprogrammed to select and use

artifacts. Agents at this level are designed with embedded plans for artifact exploita-

tion. Agents at the level of cognitive use are designed to know the proper artifact

to select but need to discover at run-time how to use those artifacts. At the fourth

level, agents discover both artifact selection and use at run-time. Finally, in the fifth

level of artifact construction/manipulation agents themselves become designers of ar-

tifacts. Cognitional artifacts offered by A&A correspond to level four, where agents

can dynamically select and use artifacts in MAS.

While providing the general descriptions for artifact-capable agents, A&A did not

provide an architecture for the agents. That contribution was offered by Acay et al.
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[2, 4]. In Acay et al. [2] the authors coined the term extrospection to characterize the

reasoning process carried out by agents in order to select and use artifacts to realize

their goals. The cognition of an agent that can reason about exploiting artifacts

was represented in terms of goals, beliefs and plans. The agent queries the OWL-T

ontology about which artifact to select for a given goal and the plan for using it. In

addition to the concepts that describe artifacts, OWL-T provides concepts describing

the agent. According to AgentModel an agent has goals and beliefs. ActionModel

is used to describe how the agent carries out its activities by itself or with other

agents by reasoning using its beliefs and goals and involved artifacts. Acay et al.

[4] introduced the notion of artifact capabilities integrating the artifact theory with

the Belief-Desire-Intention software model (BDI) model [92] of rational agency. BDI

agents maintain a pre-existing plan library with plan selection and execution driven

by their beliefs (informational states), desires (motivational states) and intentions

(deliberative states). While the agent’s beliefs describe what it knows about the world,

its desires are used to create goals that once adopted become intentions. Intentions

are represented as plans which constitute action sequences that the agent can carry

out. Acay et al. [4] extended Padgham and Lambrix’s [82] concept of capabilities in

BDI that encapsulates plans relevant to a goal, to distinguish between plans an agent

can perform on its own (internal capabilities) and plans that it can carry out with the

help of tools or other agents (external capabilities). Hence artifact capabilities refer

to plans that are artifact functionalities specifying ways to exploit an artifact for an

objective, that is, plans the agent can carry out with an artifact to achieve a goal.

Since an inherent aspect of BDI agents is that they are concerned with balancing

the selection and execution of existing plans, the artifact capability theory works

quite well with the A&A model’s cognitional artifacts. Since artifacts themselves

expose the properties needed to exploit them, BDI agents can simply duplicate this

information upon encountering an artifact and represent it as an artifact capability.
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On the other hand, if a complete information model for artifacts is not available or

the objective of the system is to gain insight into the evolution of artifact capabilities

by agents then the agent representation becomes insufficient. Agents being told how

to select and use artifacts are not evolving as a result of their own abilities.

2.3 Artifact Exploitation in MAS

In general we have identified two main approaches to addressing artifact exploitation

in systems consisting of multiple interacting agents:

• Agent Design Perspective: These models adopt an agent-centric perspective to

the artifact exploitation problem. Agents are built to employ learning strategies

towards discovering how to properly exploit artifacts for their goals.

• Environment Design Perspective: In these models artifacts are designed to ex-

pose to agents all that is needed for their proper exploitation. This automat-

ically enables agent discovery as agents can dynamically exploit artifacts for

their goals.

2.3.1 Agent Design Perspective

Artificial life researchers Noble and Franks [74, 75] utilized the exploitation of tools

to demonstrate social learning in animals. In their study a variety of social learning

methods namely imitation, emulation, following and contagious behavior were com-

pared in a simulation composed of animal agents. The authors employed reinforce-

ment learning, specifically Q-learning in which an agent learns current and delayed

payoffs of taking an action in a state. Agents learned actions or sequences of actions

that were necessary to best acquire resources with the selection and use of tools. The

simulation accommodated specific tools and resources which were associated with dif-

ferent payoffs dependent on the manner in which they were obtained and what action
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was carried out with them. Hence the information model exposed by the tools was in-

complete, that is, agents were not told the correct optimal actions to utilize and were

expected to employ reinforcement learning methods towards evolving tool exploita-

tion. Following was realized by situating an agent in the same location as its parent

for part of its lifetime. Contagious behavior was defined as a probability that an agent

would perform an action it just observed. Emulation involved an agent recognizing

that another in its presence obtained a positive payoff and positively adjusting the

payoffs of all actions related to its current state. With imitation the agent recognizes

both the successful agent’s state and action and adjusts the payoff of the specific ac-

tion. The authors concluded that emulation is sometimes superior to imitation due

to its promotion of exploration. Given the objective of the studies to compare simple

social learning methods rather than address artifact exploitation in MABS, actions

were specific and tools and agents were represented for the most part as identifiers.

Moreover the authors themselves acknowledge the lack of an evolutionary dimension

to their work.

Mohan and Morasso [61] explore how learning from previous experiences and

social interactions can enhance knowledge for exploiting tools. The authors presented

a learning architecture for cognitive robots which supported combining knowledge

gained from practice with the new tool, past experiences and social interaction in

the form of imitating an observed demonstration from a teacher. Robots could learn

to use the tool in a new way towards realizing a goal. The model focused on the

robot learning coordination of the movements of its upper body such as its spatial

and temporal trajectories and the geometric relationships between the movements

made and the resulting effects on the tool. A demonstration was conducted with a

humanoid, iCub, learning to coordinate a toy crane to pick up unreachable objects in

its environment. The authors argued that their skill learning architecture was novel

in that imitating the teacher’s demonstration and utilizing parameters obtained from
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past experience reduced the space that the robot needed to explore with the new

toy. Given their objective of building useful machines robotic models pay significant

attention to robotic sensors and aspects of the robot’s body schema. This renders the

learning architecture very complex focusing on details that may be abstracted when

the objective is to explore artifact exploitation effects on the evolution of a system

rather than the intricate exploitation at agent level. In addition social learning occurs

only in the model from robots observing a teacher rather than interacting with others

in the environment.

Kobti et al. [50] presented a MABS built for multiple interacting driver agents in

a population learning to select child restraints. As an integral component of a health

care decision support system [48] the model supported social and cultural influences

such that an agent’s restraint knowledge could be altered by others in its social net-

works and cultural beliefs respectively. The social networks consisted of a subnetwork

of kinship connections and another characterized by neighbors. A cultural algorithm

was used to accommodate cultural influence. Cultural algorithms (CA) [95, 96] de-

fined as computational models of cultural evolution, consist of a population space and

a belief space with a communication protocol between them. Agents in the population

space contribute knowledge to the belief space, which maintains various categories of

knowledge. The knowledge from the belief space in turn influences the evolution of

the population. In Kobti et al.’s model, situational knowledge characterizing the best

examples extracted from the population was used as the source of cultural influence.

Driver agents could also learn from individual experience through interventions from

a source of standard correct knowledge. Agent knowledge structures were defined to

capture the agent’s knowledge with respect to selecting a restraint and the appropri-

ate location to place it in the vehicle according to the age, weight and height of the

child. Agents were defined with learning and retention rates affecting how they were

influenced. The learning rate defined the probability that an agent learned a bit of
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knowledge correctly from an influential source while the retention rate defined the

probability that the agent resisted influence. These rates were utilized to mutate the

agent’s knowledge during influence. The model was extended to capture both positive

and negative examples in the cultural space in Kobti et al. [54]. Experiments con-

ducted with the models demonstrated that the overall performance of the population,

measured using randomly simulated accidents and the injury outcome, increased with

both standard interventions as well as social and cultural influences over time. They

also showed that the cultural aspect rendered the population resilient to changes after

standard interventions. The child safety restraint simulation was validated in Gupta

et al. [37, 38]. Using data mining techniques including decision trees and regression

analysis on an actual survey in child safety restraint to generate parameters for ini-

tializing agents in the simulation, the authors conducted experiments and validated

the results against subsequently gathered survey data.

The child safety model demonstrates agents evolving artifact exploitation in

MABS, however there are several limitations. First, the model is domain dependent

and not based on an artifact or artifact exploitation theory. The provided agent

knowledge structures are specific to auto restraints without any suggestion for gen-

eralization of the model to encompass other domains. Next, only restraint selection

and placement in the vehicle are addressed neglecting the step by step operational

use of the restraint. Restraints in the model are represented only by a label. While

this suffices for learning the selection of a restraint according to characteristics of the

child it is to be used with, a model that addresses its actual use would have to be

concerned with actions performed with its relevant parts. Proper restraint use beyond

the seat type and location is important as research has shown that sub-optimally

restrained children are injured more often and are at a higher risk of more serious

injuries [22, 108]. Another limitation arises from the fact that individual learning

only occurs through a direct intervention. Agents do not evolve their knowledge on
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their own through exploration. Next, the CA framework proposes and supports up to

five different types of influence from the cultural space [84] however only situational

knowledge is utilized. Also, social networks are not dynamic. Finally while the model

supports knowledge propagation through social and cultural influences within a single

population it does not address knowledge transfer between multiple populations as

has been suggested by researchers employing multi-population cultural algorithms

(MPCA) [40, 73].

2.3.2 Environment Design Perspective

Existing studies in artifact exploitation in MAS that utilize an environment design

perspective are based on the artifact theory and the A&A model.

2.3.2.1 Artifact Exploitation by BDI Agents

Artifact capabilities [4] and OWL-T [2] were combined in Acay et al. [3] to present a

model that demonstrated artifact exploitation by BDI agents. The authors claimed

that the manner in which their agents could reason about exploiting artifacts which

they referred to as extrospection can be construed as a form of learning and planning.

However, we have distinguished their work from agents that employ learning strategies

since learning in their model was only accomplished by agents replicating information

exposed by OWL-T in a local tool base. Complimentary to the agent’s plan library, the

tool base contained an agent’s local copy of OWL-T’s tool plans or artifact capabilities

which basically tell the agent when to select an artifact and provides the step by step

instructions for using it.

The exploitation of artifacts by BDI agents has been used in environment pro-

gramming studies. Piunti et al. [88] demonstrate how service-oriented architectures

(SOA) and Web Service (WS) systems can be programmed using BDI agents operat-

ing in artifact-based environments. The authors used the BDI-based agent oriented
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programming language Jason [19] for their agents and the CArtAgo framework [100]

for artifact-based environments. The result was a platform for programming envi-

ronments composed of artifacts exploitable by BDI agents. In another example of

a system consisting of BDI agents and artifacts, a platform combining organization-

aware BDI agents exploiting artifacts is offered [17, 111]. The proposed platform

JaCaMo combined Jason agents, CArtAgo environments and Moise [43], a technol-

ogy for incorporating organizations in MAS. In JaCaMo participant agents conformed

to organization rules and could cooperate to achieve goals. The authors argued that

the unified platform supported agents, environment and organizations which they

consider the three primary levels of MAS abstractions.

Systems that support BDI agents exploiting artifacts do not accommodate learn-

ing and evolution by agents themselves. As a result they are not suitable for MABS

systems where agents are expected to evolve artifact capabilities using learning abil-

ities.

2.3.2.2 Artifact Exploitation in MABS

Adaptive complex systems capture the abilities of many simple agents collaborating

to result in the emergence of complex behaviors observable at the global level. An

adoption of the A&A paradigm in MABS is offered by Gardelli et al. [30, 31] for de-

signing its self-organizing aspects. Employing the A&A model the authors proposed

an architecture consisting of user agents, artifacts and environmental agents. Com-

plimentary to user agents (standard agents) that represent the proactive entities that

can use artifacts which wrap system resources, environmental agents do not interact

with user agents but rather are responsible for managing artifacts towards facilitating

self-organization. These agents handle tasks such as modifying artifact properties so

that the system adapts to unpredictable aspects of agents exploiting artifacts. The

authors propose a three step process in self-organization design. First an abstract
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model of the system is developed as a formal specification. Next a MABS simulation

is used to examine the dynamics of the model with different parameters to produce

correct system behavior. Finally the model is fine-tuned with any relevant revisions.

Although the application demonstrates an implementation of the artifact abstrac-

tion in MABS the objective of the study was to introduce system design techniques

rather than to explore artifact exploitation. As such artifact exploitation by standard

agents only evolved with respect to the behavior of environmental agents. Standard

agents did not employ any learning methods and still interacted with artifacts that

exposed all needed for their exploitation. The study only suggested a means for the

artifacts in the environment to alter or improve their cognitional aspects.

Another application of the A&A model in MABS involves the modeling of bi-

ological systems as complex systems. Montagna et al. [71] argue alongside the

A&A model authors for the applicability of A&A in MABS. They suggest using

A&A’s agents which they termed bio-agents to represent biological system compo-

nents that display autonomous behavior for instance macro-molecular components

such as proteins at the intra-cellular level. Abstracted artifacts (bio-artifacts) are

proposed for the function-oriented aspects of the biochemical environment such as cell

micro-environments at the inter-cellular level. Bio-artifacts can mediate actions and

interactions among bio-agents contributing to coordination in the biological system.

The authors provided an implemented case study modeling the glycolysis metabolic

pathway. Along similar lines of providing a coordination-based model for modeling

the interaction among system components in a biological system, Perez et al. [85]

presented a biological system for capturing the complex interaction patterns of intra-

cellular signaling pathways employing the TuCSoN tuple-based middleware for MAS

coordination.

The biological system models are concerned with coordinating the interactions

among biological system components. The bio-agents do not employ learning strate-
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gies towards augmenting their capabilities for exploiting bio-artifacts. Employing

the A&A model once again involves cognitional artifacts that provide a complete

information model usable for their exploitation.

Siebert et al. [105, 106] use the A&A model to build their proposed complex

system simulation which models a society of heterogeneous interacting models. The

model focused on addressing difficulties regarding coordination among models from

different domains. The authors suggested coupling-artifacts for implementing the

coordination model and handling compatibility issues among the interacting mod-

els and model-artifacts for controlling the simulation process. Model-agents could

execute their tasks by exploiting the artifacts. The authors argue that their frame-

work facilitates reusing existing models and promotes modeling interactions between

scientific domains. The model was recently applied to co-simulate a smart space heat-

ing environment consisting of an electrical heating-based simulation and networking

event-based simulations in order to understand the relationship between geometrically

represented rooms in a house and the efficiency of heating and network connectivity

[35].

With respect to artifact exploitation the focus of the multiple model simulation

was on coordination aspects such as resolving conflicts that may arise with regard

to execution times. The model therefore did not address learning or evolution of

exploiting the artifacts for the model-agents. The artifacts exposed to the model-

agents all that was needed for their proper selection and use.

2.4 Artifact Exploitation in Other Fields

Given the interdisciplinary nature of the subject there are many studies addressing

artifact exploitation in other fields. A few recent studies that deal particularly with

artifact exploitation in social and cultural contexts are reviewed.
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Animal cognitivists study artifact exploitation under animal tool use behavior.

Bacher et al.’s [6] attempt to distinguish between socially learned and and genetically

transmitted tool use knowledge in dolphins. The authors conducted experiments in-

volving the use of marine sponges for foraging by bottlenose dolphins, to address

prior contentions that the tool use behavior is socially learned, particularly by female

offsprings from their mothers. This contention had been attributed to dolphins pos-

sessing the capability for imitation, a form of social learning. The authors argued

for the possibility that the behavior is a result of gene-culture co-evolution, provid-

ing evidence that mitochondrial genes though relevant were not sufficient to explain

the multiple observed variations in the sponging activity. Yamazaki et al. [121] pre-

sented a case study involving the training of common marmosets not known to use

tools in the wild, to use a rake-shaped tool to retrieve food. The training process

involved exploratory tool use learning with a four stage process where the monkeys

were rewarded if the right action was performed during each stage. The training

was incremental as required actions increased in difficulty during each stage. With

substantial training the five marmosets involved in the study successfully learned to

use the tool. An agent-based model (ABM) that includes a component for tool use

behavior in bearded capuchin monkeys was presented by Bernades et al. [12]. The

model explored the use of stones by the monkeys for cracking nuts. With tool use

considered central to their work the authors claimed that the model would allow for

its simulation and added that they were in the process of incorporating learning into

their model. Learning would be accommodated via reinforcement learning and would

support different learning scenarios. The authors however did not provide any details

on the representations for their tool or the learning strategies that would be employed.

Yamamoto et al. [120] presented a study where chimpanzees augmented their tool

using behaviors from observing more efficient techniques invented by others. The

authors argued that their study was the first to demonstrate animals ameliorating
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their tool using efficiency over time through this kind of social learning. They also

suggested that their study provided some insight into incremental cultural evolution

in non-humans. In their attempt to capture the social spread of tool use behavior

over time in chimpanzees Hobaiter et al. [41] compared two variants of tool use be-

havior in static and dynamic social networks models. Dynamic networks differ from

their static counterparts in that they attribute time to observations and can there-

fore track not just observed behavior but its ability to only affect subsequent ones.

The authors claimed that in their approach they were able to distinguish between

behaviors obtained primarily through individual learning from those learned socially.

Cognitive scientist David Kirsh [49] argued that humans, artifacts, artifact ex-

ploitation behavior and tasks co-evolve in what they described as an artifact ecology.

According to Kirsh aside from artifacts that are esteemed for reasons other than their

utility, artifacts are usually created to carry out a task. They usually belong to col-

lections for example a needle and thread, or a car seat and a car. Once the artifacts

exist individuals realize the task in different ways. The ways in which the artifact

is exploited also evolves as new uses unintended by its designer are discovered. For

instance a pen may have been designed for writing but can be used as a bookmark.

New skills developed by individuals increase the demand for better tools. The author

argues for a link between the superior functionality of an artifact to its prevalence

and persistence within a culture given that an artifact when used properly should

yield a better performance than when utilized incorrectly with everything else being

equal.

Gardiner et al. [32] compared observational and individual learning in studying

the difficulty of tool use abilities in children. Conducted experiments with two and

three year olds learning by exploration demonstrated that observational learners out-

performed individual learners. They also observed that an increase in task complexity

correlated with a reduction in performance. Children were also more likely to employ
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observational learning in lieu of individual learning as the difficulty of successfully

using a tool increased.

Aside from the study by Bernades et al. [12] these studies are primarily conducted

with surveys or experiments in the field and are limited by their use of descriptive

approaches lacking formal representations for tools or those that exploit them. Tech-

nologies such as MABS provide a means for social scientists to computationally test

their theories and gain some insight into the underlying reasons behind the emergent

phenomena. Bernades et al. propose to contribute to that effort with their ABM,

however to the best of our knowledge details of their model with regard to tool use

learning are yet to be made available.
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Chapter 3

Representing Artifacts and Artifact

Capabilities for Artificial Social

Agents

In this chapter, representations for artifacts in MABS along with agents that can

reason about, learn, adapt and evolve knowledge for their selection and use are pro-

vided. The artifact representation is based on Omicini et al.’s [79, 80] artifact theory.

The objective here is to construct a representation for artifacts based on the theory

that facilitates learning and adaptation of their exploitation by MABS agents, as

opposed to cognitional artifacts which expose all aspects of their functionality. The

agent model is based on Acay et al.’s artifact capability theory [4]. Accordingly, it

extends the theory to include learning and adaptation. Some aspects of the repre-

sentations have been previously published in our included studies. We also present

the underlying methodologies that will be utilized to implement the agent’s learning

and adaptation strategies and the technology used for implementing our MABS, its

agents and artifacts.
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3.1 Artifact Representation

In Omicini et al.’s artifact theory, an artifact is any object in the environment that

can provide functionality and is defined in terms of three properties to facilitate

its exploitation: a usage interface (UI ), function descriptions (FD) and operating

instructions (OI ). UI defines the operations that are permissible on the artifact. FD

facilitates artifact selection by identifying the services provided by the artifact, that

is, what the artifact can be used for. OI specifies the instructions for successfully

using the artifact to realize an element of FD. Since MABS agents are expected to

learn and adapt artifact selection and use, artifacts should not expose OI. FD could

be left out as well, in which case agents would have to determine an artifact’s service

without any information. However, we include FD with some information that should

assist agents in the artifact selection learning process.

An artifact t is defined as:

t , 〈UI t, FDt〉 (3.1.1)

where UIt represents its usage interface and FDt constitutes its function descriptions.

3.1.1 Usage Interface

UI is essential for the agent to interact with the artifact and needs a representation

that facilitates the learning and evolutionary process. To accomplish this, UI is

reduced to a set of variables whose values can be learned. Motivated by the notion

that an artifact is an object with one or more parts that provide functionality [7]

UI defines an artifact’s structure as consisting of parts, each of which has functional

attributes with finite predefined domains.

UIt for an artifact t is defined as: UIt = Pt where Pt constitutes the parts of the

artifact with each part pt ∈ Pt defined as:
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pt , Hpt (3.1.2)

pt is specified in terms of a functional attribute set Hpt with each functional attribute

hpt ∈ Hpt defined as:

hpt , 〈UD, b〉 (3.1.3)

where UD = {x | x ∈ [l, u] , x ∈ R, l ≤ u}. l and u specify the lower and upper in-

clusive boundaries of the domain UD of a functional attribute’s possible values. An

additional element of the tuple b ∈ {0, 1} indicates a visibility property which speci-

fies whether the applied value of a functional attribute is visible to other agents. This

aspect is utilized in one type of learning strategy that will be provided.

3.1.2 Function Description

FD specifies the services that the artifact provides. We are interested in agents

learning to select the proper artifacts, therefore we define FD to expose only enough

information to facilitate this process. We assume that an artifact exposes categorical

information. Part of this knowledge is described in the A&A model as the artifact’s

intended use or the external goal that motivated its creation [80]. For instance each

artifact in a set of writing-tools may expose its external goal as an artifact used for

writing. When presented with the set the agent would need to learn which writing-

tool is useful for writing under certain conditions, for instance writing on stone or on

paper. The artifact chalk may provide good results on a stone and not do so well on

paper while the opposite may be the case for a pen. We refer to these other objects

(stone or paper) as criteria objects, since their characteristics provide the criteria

for appropriate artifact selection. It should be noted that criteria objects could be

artifacts or even agents. In fact, they need not even be used with the artifact. For
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example, selecting to drive a convertible car could depend on characteristics of the

weather. What is important is that criteria objects provide the properties that define

conditions under which an artifact will be selected.

The criteria object abstraction is an information model that provides physical or

descriptive attributes that can be used to learn the conditions under which an artifact

can be selected to realize a goal. Given a set of criteria objects CR, a criteria object

cr ∈ CR is defined as:

cr , 〈ccr, Qcr〉 (3.1.4)

where ccr indicates a name or identifier for the object and Qcr is a set of physical

attributes with each physical attribute qcr ∈ Qcr defined as:

qcr , 〈q, SD〉 (3.1.5)

where q specifies the name of the physical attribute and SD = [l, u]∧ l, u ∈ R∧ l ≤ u

describes the domain of the physical attributes possible values.

The artifact’s FD can now be defined in terms of both its external goals and crite-

ria objects. FDt defines t’s set of function descriptions, with each function description

fd ∈ FDt defined as:

fd , 〈xgfd, d, CRfd〉 (3.1.6)

where xgfd denotes an external goal of the artifact and d = {0, 1} specifies if the arti-

fact’s outcome or behavior is unpredictable with respect to the function description.

The predictability of an artifact for a particular service is based on its dynamic na-

ture concerning whether the artifact produces the same effect for a particular action

over time. For instance, an agent learning to use a seat belt artifact for an adult can

assume that throughout a simulation run an action such as attaching the seat belt
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securely will always result in the same positive outcome. A pen however may lose ink

over time and no longer produce a positive outcome for writing. This distinction is

important for adaptive agents as it lets the agent know whether to consider the best

results so far for a particular action, or the latest results. Predictability may also

be related to the heterogeneity of the artifact. This concerns whether agents that

perform the same action at the same time with the same type of artifact can obtain

different results.

CRfd indicates the set of criteria objects. With the above example both artifacts

chalk and pen have a function description <writing-tool,{stone,paper}>. Criteria

objects stone and paper may be described in terms of a single physical attribute:

<coarseness,[0,200 ]> if we assume that its coarseness which can be measured from

0 to 200 determines how well a writing-tool will perform with it. The agent can now

learn when to select pen versus chalk for writing on stone and paper. For instance,

the agent could learn that if coarseness=[10,50] then it is better to use the artifact

pen, or that if coarseness=[190,200] neither artifact produces good results. If the

weather was a factor in the selection of the artifact, weather could be represented as

a criteria object with a physical attribute heat-index. The agent can now use values

of the heat-index domain in learning selection for the artifact.

3.2 Agent Representation

In Acay et al.’s artifact capability theory, an agent that can reason about artifacts

is defined as a BDI agent, that is a rational agent that selects and executes plans

according to its beliefs, goals and existing library of plans. The theory abstracts arti-

fact capabilities to refer to those plans that specify artifact functionality for realizing

a goal. Figure 3.2.1 shows a rational agent that interacts with artifacts according to

their theory.
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Figure 3.2.1: Agent with artifact capabilities © [2011] IEEE

The agent has goals, beliefs and capabilities which it can utilize to exploit artifacts.

Resulting effects of applying actions belonging to capabilities are received by the agent

through sensors and used to deliberate on what to do next. We extend the BDI-

based artifact capability theory to support learning and adaptation by integrating

the agent’s cognition in the existing theory into Russell and Norvig’s [103] general

model for learning agents in AI.

According to Russell and Norvig the cognition of a general learning agent is com-

prised of a performance element (PE ), a learning element (LE ), a critic (CE ) and a

problem generator (PG). PE is responsible for deliberating and choosing the agent’s

actions which would represent the entire cognition of agents that act without learning

from experience. CE evaluates the agent’s actions with the help of resulting percepts

received through sensors measured against an external predefined standard of perfor-

mance (PS ). Russell and Norvig argue that PS must be outside the agent’s cognition

to prevent the agent from adjusting the standard to match its behavior. CE provides

feedback on the agent’s performance to LE which is responsible for improving PE so

that its actions yield better results in the future. LE suggests learning goals to the

37



������

����	�	


����	�

����� �����	�


����������

���������

�
�	�

���	���������������

��������

�		�����

��������

������

�������	�������	�

�	����	�	�

Figure 3.2.2: An artifact capability-learning agent © [2011] IEEE

final component PG. PG is an exploratory component which offers suggestions to PE

on trying out new experiences.

Our model for an artifact capability-learning agent is shown in Figure 3.2.2.

The agent ag is therefore a tuple:

ag , 〈PEag, CEag, LEag〉 (3.2.1)

PG has been deliberately omitted since our model will promote exploration on its

own. The agent’s beliefs, goals and capabilities make up PE representing the de-

liberation and decision making aspect of the agent. PE is therefore the equivalent

of the artifact capable agent in Figure 3.2.1. Learning artifact capabilities primarily

involves learning strategies developed by LE for the improvement of the capability

component of PE. Since several different learning strategies will be provided, different

representations of LE will be presented in subsequent chapters along with PS which

is a domain dependent feature. Representations for PE and a CE are provided next.
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3.2.1 Performance Element

PE of an artifact capability-learning agent ag is formerly defined as:

PEag , 〈Gag, Cag, Bag, aag〉 (3.2.2)

Goals

Gag is the agent’s set of goals. Each goal gag ∈ Gag = 〈gid, st〉 simply has a name

gid and maintains its active status: st = {0, 1}.

Capabilities

Cag denotes the agent’s artifact capability set which according to Acay et al. [4] is

the union of its inherent internal capabilities and its external capabilities:

Cag = ICag ∪ ACag. Since the only external capabilities addressed in this thesis are

artifact capabilities ACag refers to the agent’s set of artifact capabilities. For

simplicity we drop the agent subscript ag in the subsequent formulas. An artifact

capability for the agent ac ∈ AC is defined as:

ac , 〈gid, Tac, CPac〉 (3.2.3)

where gid is a goal of the agent, Tac represents a set of artifacts, each of which can be

used for realizing the goal and CPac consists of the plans for exploiting those artifacts.

The capability plan set is defined as:

CPac , 〈SPac, UPac〉 (3.2.4)

where SPac denotes plans for artifact selection and UPac specifies plans for artifact

use.
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Artifact Selection Plan A selection plan sp ∈ SPac is defined as:

sp , 〈Ksp, s, ysp〉 (3.2.5)

where Ksp specifies the knowledge for artifact selection, s is a function for choosing a

specific artifact when the applied knowledge results in more than one artifact and ysp ∈

R is an associated score attributing a utility to how good the selection is at realizing

the goal. Ksp is a generalization inspired by the knowledge structures for restraint

selection defined in Kobti et al. [50]. Ksp is defined as Ksp = {kn1, . . . knz} where

knj ∈ Ksp is a unit of knowledge describing artifact selection for a criteria object,

one of its physical attributes and one or more corresponding physical attribute value

ranges. These criteria objects are the objects specified as part of the artifact’s FD as

per Formula (3.1.6). Artifacts in Tac that have a common FD with the same criteria

objects can be used to form a selection plan. Depending on the problem domain, a

unit of knowledge may be defined for different ranges of all physical attributes of all

these criteria objects or a relevant subset of them. A unit of knowledge knj ∈ Ksp is

defined as follows:

knj (c, q) , 〈[l1 (c, q) , u1 (c, q)] , b0, bt1 , . . . , bte〉

〈[l2 (c, q) , u2 (c, q)] , b0, bt1 , . . . , bte〉

|

〈[lo (c, q) , uo (c, q)] , b0, bt1 , . . . , bte〉 (3.2.6)

where li (c, q) and ui (c, q) define lower and upper all inclusive ranges for criteria object

c and its physical attribute q. The ranges are assumed to be in ascending order and

no ranges overlap: l1 ≤ u1 < . . . < lo ≤ uo. The bit sequence b0, bt1 , . . . , bte denotes

bit values for a bit string where btx = {0, 1} represents the selection or non-selection
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of an artifact in the artifact subset of e artifacts chosen from Tac. The bit string is

prepended with an additional bit b0 to accommodate knowledge for the selection of no

artifact. The idea is that if an agent believes that artifact tx should be selected when

the physical attribute q for criteria object c has value v, then btx = 1 in the tuple

containing the range that v falls within, otherwise btx = 0. If the agent believes no

artifact should be selected given that criteria then b0 = 1 otherwise b0 = 0. Revisiting

the example given in the artifact representation, stone and paper are the criteria

objects with physical attribute coarseness while chalk and pen are the artifacts. With

three bits representing artifact selection in the sequence no artifact, chalk, pen, the

partial unit of knowledge kn (paper, coarseness) = 〈[10, 20] , 001〉 specifies the agent’s

knowledge to select a pen when the paper has a coarseness between 10 and 20.

In order to choose an artifact given a particular criteria object the agent applies its

selection knowledge. For a specific criteria object C, the result is a set of bit strings:

BSC = {bsC,1, . . . , bsC,z} denoting z bit strings, extracted from each range of a unit

of knowledge within which C falls based on its physical attributes values. In order to

produce a final bit string that can be used by the agent to select a single artifact tx,

a domain dependent artifact assignment function may be necessary, specified as the

second tuple element in spac and defined as:

s : BSC → tx (3.2.7)

Artifact Use Plan An element of the use plan set up ∈ UPac is defined as:

up , 〈t, UAup, yup〉 (3.2.8)

where t ∈ Tac denotes the artifact, UAup = 〈ua1, . . . , uak〉 is a sequence of k use

actions and yup ∈ R is a score associated with the realization of the goal by the plan.

A use action uaj ∈ UAup is defined as:
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uaj , 〈V, r, y〉 (3.2.9)

where V is a combination of functional attribute values, r ∈ N denotes the social

network radius for social learning agents that evolve the extent of their social network.

The final tuple element y ∈ R indicates a score attributed to the specific use action

once its applied and evaluated. V denotes a selected functional attribute value for

each of the artifact t’s functional attributes, defined as:

V , { 〈p, h, v〉 | p ∈ Pt ∧ h ∈ Hpt ∧ lUDh
≤ v ≤ uUDh

} (3.2.10)

With t defined using Formulae (3.1.1,3.1.2 and 3.1.3), V is specified in terms of its

associated artifact part p and functional attribute h. The functional attribute value

v is constrained by the functional attributes domain UDh. Only one value is selected

for a functional attribute therefore the functional attribute of an artifact part only

appears once in the use action. The number of elements in V is the cumulative total

of functional attributes belonging to the artifact. An agent ag’s knowledge structure

for an artifact use plan up that specifies the functionality for using artifact t in order

to achieve goal g can be viewed as:

up (g, t)= {

ua1 = <<p,h,v>1 . . . <p,h,v>n,rua1 ,yua1>,

ua2 = <<p,h,v>1 . . . <p,h,v>n,rua2 ,yua2>,

|

uak = <<p,h,v>1 . . . <p,h,v>n,ruak ,yuak>

}
for n total functional attribute values and k use actions, where 〈p, h, v〉 associates one

of t’s parts, one of the part’s functional attributes and a single value chosen from its

domain.

The score of use plan yup is simply the average score over all the use actions, that the

average over the use action yua values.
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Beliefs

The agent’s belief set Bag can maintain failed use actions for an active goal. This can

be used by the learning agent to avoid repeating failed actions. The maintenance of

such beliefs will depend on the learning strategy being implemented by the agent. It

is assumed that agents when learning artifact use the agent only learns one action at

a time. A belief element bag ∈ Bag is defined as:

bag , 〈t, gid, ual〉 (3.2.11)

where t is an artifact used towards goal gid and ual is a use action that was unsuc-

cessful.

Action Generation Function

The final element of PE specifies the agent’s action generation function a. This

involves the selection and use of an artifact for the agent’s goal. It is defined as:

a : Gag ×Bag × Cag → ua (3.2.12)

indicating that the agent uses its goal, belief and capability set to generate the action

to perform with an artifact it selects.

3.2.2 Critic Element

CE is responsible for evaluating the perceived results of the agent’s use action against

an external predefined PS in order to provide feedback to the LE on the agent’s

progress. PS is domain dependent and the type of learning strategy being employed

by LE may play a role in CE ’s evaluation function. One possibility is that sensors

only indicate that the action was performed, PS provides the proper values to measure
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the action’s attribute values against and CE defines a fitness function that evaluates

the action against PS assigning it a utility. The fitness function would be defined as:

f : PS × ua→ y (3.2.13)

where the performed action ua measured against PS yields a fitness score y for the

action. Another possibility is that the sensors provide the fitness score y, PS in-

dicates good and bad scores which CE uses to classify the score. For instance an

agent attempts to write with a pen, perceives how much it has written and the stan-

dard indicates if that is good enough. Different examples of CE will be provided in

subsequent chapters.

3.2.3 The Learning Problem

Artifact Selection Learning Problem The problem that an agent learning ar-

tifact selection is trying to solve can be defined using definitions (3.2.3, 3.2.4 and

3.2.5). Given a set of artifacts R consisting of artifacts that can be used for realizing

an active goal gid and a criteria object for each criteria object category in each arti-

fact’s FD, determine an sp ∈ SP with an acceptable ysp score. A score is obtained by

using the assignment function s in Formula (3.2.7) to choose an artifact t ∈ T with

the knowledge Ksp, applying a use plan for the capability and obtaining feedback.

Artifact Use Learning Problem The use learning problem an agent is trying

to solve can be defined using definitions (3.2.3, 3.2.4 and 3.2.8): Given artifact r

that can be used for an active goal gid, find up ∈ UP composed of the use action

sequence UA such that its score is acceptable. If 1 is considered a good enough score

for an action, then definitions (3.2.9 and 3.2.10) requires that the agent find each use

action uaj ∈ UA such that applying its values V and r if in use, results in yuaj ≥ 1,

that is, the selected combination of functional attribute values for the use action are
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successful. As a result the agent successfully learns or evolves one of the artifact

capability plans useful for its goal.

3.2.4 Methodologies for the Learning Element

Evolutionary computation (EC) methods will be used to realize the reward based

learning strategies that agents will employ through the LE component in order to

learn artifact selection and use. EC constitutes a family of techniques for automated

problem solving inspired by Darwin’s principles of evolution and natural selection

[29, 47], that include evolutionary algorithms and other population-based algorithms

such as cultural algorithms. A basic evolutionary algorithm (EA) begins with a ran-

domly generated population of individuals or candidate solutions to the problem.

After each individual is evaluated and given a fitness or quality assessment the EA

applies evolutionary operators such as selection, reproduction, recombination and mu-

tation to produce subsequent generations. Each successive generation is expected to

improve the population and the EA runs until a designated time limit or an adequate

solution is found. Evolutionary algorithms include genetic algorithms (GA) [42] and

evolution strategies (ES) [14] both of which are usually used for finding solutions in

multidimensional parameter spaces. Genetic Programming (GP) another kind of EA

evolves computer programs [60]. GAs are used by the artifact capability learning

agents in some of the learning strategies along with cultural algorithms (CA) and

multi-population cultural algorithms (MPCA).

Another way that agents can learn to exploit artifacts is through direct communi-

cation with other agents. A social network defines connectivity between individuals

in a population. Agents may evolve their knowledge for artifacts through influence

from other members of social networks that they belong to.
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3.2.4.1 Genetic Algorithms

Considered the most popular EA, GAs were introduced by Holland [42]. Although

they are used for problem solving Holland’s original objective was to understand

adaptation in nature and determine a means for integrating the concept into computer

systems. In a GA candidate solutions or chromosomes are usually encoded as bit

strings or integers, although representations using real values also exist [72]. GAs

primarily include three operators: selection, crossover and mutation. The selection

operator is used to select candidate solutions for reproduction which usually depends

on the fitness of the chromosome. A popular method for selection is roulette wheel in

which a candidate solution’s chances for selection is proportional to its fitness. Fitter

solutions have a greater chance of being selected. Another method is tournament

selection where “tournaments” are conducted among a few randomly chosen solutions

with the winners selected for reproduction. Analogous to biological recombination,

crossover chooses one or more points and exchanges the bit sequence of the rest of the

string or between those points. For instance, given two bit strings 11001 and 10010 a

single point crossover at the 4th bit would yield two new offsprings: 11011 and 10000.

A crossover rate is usually used to define a probability that crossover occurs. Finally,

mutation flips bits in the chromosome. This can also happen according to a mutation

rate which defines the probability that a bit (in the case of a binary representation)

is mutated. For instance, flipping the third bit of the bit string 11001 would yield

11101.

The pseudo-code of a basic GA is depicted in Algorithm 1.

A basic GA begins with a randomly generated population or pool of candidate so-

lutions to the problem. Each candidate solution is then evaluated and attributed

a fitness. The selection operator is applied to select candidates for reproduction.

Crossover and mutation are applied to selected candidates in order to breed a new

generation of candidate solutions. The new generation is then evaluated and the pro-
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Algorithm 1 Pseudo-code for a basic genetic algorithm (GA)
Begin

Generate initial random population of candidate solutions
Evaluate fitness of population
repeat

Select, crossover, mutate to breed new population
Evaluate fitness of new population

until termination criteria

End

cess continues until some termination criteria is reached. Often the GA terminates

when a given number of generations is reached or a suitable solution is found. As is the

case with other stochastic search methods, GAs do not guarantee optimal solutions.

They are however well suited for finding good solutions to a wide variety of problems.

With respect to artifact selection and use, GAs are used primarily for individual

learning, learning through observation and learning through social networks.

3.2.4.2 Cultural Algorithms

Introduced by Reynolds [95, 96] cultural algorithms (CA) are computational models

of cultural evolution. A CA is characterized by a population space and a belief space

connected via a communication protocol. The population space may consist of social

agents and is usually implemented with any EA such as a GA. Selected individuals

from the evolving population contribute their experiences to the belief space through

an acceptance function. The belief space maintains these experiences as categories

of knowledge sources, which can be used to influence the evolution of the individuals

in the population space by means of an influence function. The interaction and

support that occurs between the population and belief space components, a sort of

dual inheritance, is considered similar to the evolution of human culture [94, 99].
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Five categories of knowledge sources have been identified to characterize the belief

space component [84]: situational, normative, topographic, historical or temporal

and domain. Situational knowledge constitutes the best performers in the population

referred to as the exemplars. Normative knowledge maintains encouraging variable

ranges and can help individuals leap into good ranges. Topographical knowledge

refers to spatial characteristics of the search space. Historical or temporal knowledge

constitutes important events or temporal patterns during the search process. Domain

knowledge is knowledge specific to the domain of the problem being addressed by the

CA. The knowledge sources can be used selectively or collectively to guide the search

process of the CA. The CA framework facilitates extracting, storing and exploiting

experiences in a population of individuals over time thus permitting self-adaptation

and learning at various levels in an evolving model [52, 99]. CAs provide a way to

model cultural evolution of artifact exploitation.

CAs have been applied to solve a variety of optimization problems including un-

constrained optimization [24, 98] and constrained optimization [10, 25, 46]. They

have also been used to build complex social systems [52, 53, 50, 76]. CAs have under-

gone some extensions such as multi-objective CAs [13, 26, 94] proposed for solving

multi-objective optimization problems and multi-population CAs (MPCA).

3.2.4.3 Multi-Population Cultural Algorithms

MPCAs were introduced by Digalakis and Margaritis [27] to address the scheduling

of electrical generators. Although the primary characteristic of an MPCA is that it

involves multiple independently evolving populations rather than a single one as in

a CA, MPCAs can take on different forms. For instance in Digalakis and Margari-

tis [27] a global “master” creates and manages the evolution of sub populations that

are embedded in local CAs. The local cooperative CAs share knowledge about the

best performers extracted from their respective sub populations. Alami et al.’s [5]
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proposed approach which involved information exchange between the belief spaces of

local CAs was explicitly modeled in Guo et al. [73]. The authors provided details on

implicit knowledge migration between CA belief spaces arguing for their effectiveness

when compared to the knowledge exchanged through the selection of best individuals

from population spaces. In Guo et al. [36] a global belief space extracts knowledge

from subpopulations and shares it with individually evolving subpopulations. Hlynka

and Kobti [40] offered an MPCA where the individuals evolved knowledge algorithms

and migrated between subpopulations to transfer their knowledge of successfully ap-

plied algorithms. In their proposed algorithm the Transfer Agent Multi-Population

Cultural Algorithm (TAMPCA), randomly selected agents in different populations

swapped places taking their currently used knowledge algorithm with them. As a

result the new knowledge influenced the evolution of their new population. For ar-

tifact exploitation, MPCAs provide the opportunity to examine artifact exploitation

evolution at a multi-population level.

3.2.4.4 Social Networks

A social network defines relationships between social individuals in a population, for

instance a network of friends, colleagues, neighbors and so on. When viewed as a

graph the social individuals can be represented as nodes with dyadic ties between

them. Nodes in social networks are characterized by their degree of connectivity

and clustering coefficient [39]. While a node’s degree of connectivity is the number

of connections or links it has to other nodes, the clustering coefficient also referred

to as density is the extent to which linked nodes are linked to others. The latter

refers for example, to the extent to which one’s neighbors are neighbors of each other.

Four types of social network models are usually found in ABMs: regular lattice,

random, small world and scale-free [39]. In regular lattice networks, each node has

the same degree of connectivity. In random networks, a random variable is used to
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create connections between nodes. In small world networks the majority of nodes

are connected to their nearest neighbors. Finally, the probability distribution of the

degree of connectivity in scale-free networks follows a power law. In one well known

example of scale-free networks, networks are created using preferential treatment

where new nodes are connected to existing nodes with many links [9].

Agents can learn artifact selection and use with any type of social network model.

The networks can be static or dynamic during the evolutionary process. Random

and regular networks will be used to generate networks in the MABS in this thesis

however when integrated into existing MABS it is possible to use any existing social

networks for propagation of artifact exploitation knowledge.

3.3 Implementing Agents and Artifacts

Agents and artifacts in this thesis will be implemented in MABS systems built with

the “Recursive Porous Agent Simulation Toolkit” (Repast) [1], a commonly used cross

platform, open source and free agent-based modeling and simulation toolkit. Repast

has many valuable features such as a fully object-oriented architecture, concurrent

and discrete event scheduler, support for social networking tools, built-in libraries for

various algorithms such as GAs and neural networks, graphing and output gathering

tools. Although Repast provides algorithms such as GAs and social networking tools

we have built our own algorithms and designed the social networks. Repast is available

in several languages including C++, Python, .NET and Java. We have used Java

based version of Repast. Repast Simphony is used for the MABS models that we

construct while Repast J is used in the existing Village MABS model that is employed

as a case study. The distinction between the two as it relates to our work lies in

additional features provided by Repast Simphony for simplifying the creation and

manipulation of the agents and the environment. In particular Repast Simphony

50



provides a graphical interface equivalent to several method calls for setting up the

model in Repast J.
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Chapter 4

An Individual and Observational

Learning Model for Artifact Use

In this chapter a model for individual and observational learning of artifact use is

provided. The model uses the artifact and agent representations from Chapter 3 and

describes two strategies implemented by the LE component of the agent’s cognition.

The work has been previously published in Mokom and Kobti [63]. The model ad-

dresses only artifact use therefore agents are assumed to know the proper artifact to

select for an adopted goal but need to learn one way to use it. Hence artifact selec-

tion plans are assumed to exist while the agent needs to learn artifact use plans. The

learning strategies are developed using genetic algorithms (GA) with observational

learning chosen to represent a form of social learning. In this version of the learn-

ing model the domain of artifact functional attribute values is restricted to integers.

A generic MABS is built to conduct experiments comparing the learning strategies

and demonstrate agents learning an artifact capability from observations of their own

behavior and from observing others in their environment.
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4.1 Performance Standard

Although external to the agent, PS is relevant to the artifact capability-learning agent

as shown in Figure 3.2.2. Playing the role of a friendly teacher PS in this version of

the model relays to the agent the number of use actions needed to realize its goal as

well as the correctness of the attempted use actions. This is used by CE in evaluating

the results of the agent’s actions. In the model sensors are implicitly used, that is

they are assumed to simply inform the agent that the action has been performed. It

is assumed that the agent will always be able to complete the action and focus on

evaluation conducted by the critic as the primary feedback mechanism.

Two possible forms of PS are defined for the agent. A fixed-value standard pro-

vides a single value that the chosen functional attribute value is measured against

and a range-of-values standard specifies a subset of a value’s domain, a range within

which the chosen value is expected to fall inclusively. It should be noted that these

are just examples of PS and that different kinds can be defined depending on the

problem domain. This will be further evident in case studies presented later on.

4.2 Critic Element

CE is responsible for comparing the chosen values in the agent’s use action against

the available PS and providing feedback to LE on the agent’s progress. To determine

the utility of the result CE applies a simple distance measure as a fitness function

that averages over all attribute values to determine a fitness score for the use action.

Once again, the fitness functions defined here are designed specifically to work with

the given PS above. The distance measure function is provided for each type of

PS. Given a use action reduced to its values and specified in a predefined functional

attribute sequence uaj = 〈v1, . . . , vn〉:

53



The distance measure for a fixed-value standard with a standard value for functional

attribute i given as psi is calculated using the following function:

g (vi, psi) =


1.01, vi = psi

1
|psi−vi| , otherwise

(4.2.1)

The distance measure for a range-of-values standard with a standard range for func-

tional attribute i given as psi = [lps, ups] where lps is the range’s lower bound and ups

is the range’s upper bound, is calculated using the following function:

g (vi, psi) =


1.01, lps ≤ vi ≤ ups

1
|lps−vi| , vi < lps

1
|vi−ups| , vi > ups

(4.2.2)

The mean fitness score for the use action uaj and standard PS is calculated as follows:

f(uaj, PS) = avg

(
n∑

i=1

g (vi, psi)

)
(4.2.3)

Functional attribute values that do not have a defined standard and therefore do not

contribute to the success or failure of the action are ignored by CE in the evaluation

process.

The feedback CE offers to LE includes whether the goal has been achieved (the

current action succeeded and there are no more actions to learn), or the current action

succeeded and the agent needs to learn the next action. In the event that the action

failed, there are two possible feedbacks that CE provides to LE. CE either advises LE

on the failure of the action or it tells LE the fitness of the failed action. According to

the distance functions, a successful action will result in a score f(uaj, PS) > 1 which

would correspond to the use action score yuaj of the use action of an artifact use plan

as defined in Formula (3.2.10).
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4.3 Learning Strategies for Artifact Use

Agents learning and evolving artifact use in the model utilize individual or social

experiences in the process under the guidance of feedback from the critic. Given

the artifact use learning problem in Section 3.2.3, the agents learn by maintaining

a history of failed actions avoiding their repetition or by also employing reward-

based learning using GAs. LE is responsible for developing these learning strategies

and using them in collaboration with PE towards augmenting PE ’s performance. To

simplify the representation of a use action being learned by LE, use actions are reduced

to their values specified in a predefined functional attribute sequence: uaj = 〈V, y〉

where V = 〈v1, . . . , vn〉 for n functional attribute values with y as the evaluated

score. CE can provide two types of feedback to LE : non-utility feedback and utility

feedback.

Non-utility Feedback An agent can select its use action simply by keeping track of

unsuccessful actions that it has previously attempted. The critic evaluates the agent’s

performed action and LE is only advised on the success or failure of the action. The

agent maintains a historical knowledge of failed attempts in its belief and selects

subsequent use actions made up of functional attribute value combinations it has not

yet tried. Agents that use this memory-based method for selecting actions do not

have any utility attributed to the result of their actions. In other words, CE does not

report on the fitness of the performed action and the agent as a result is unaware of

how badly the action fails.

Utility Feedback Agents can also learn by obtaining a better evaluation of their

actions. As with the non-utility option, the agent maintains a history of failed at-

tempts in its belief. In addition the agent also maintains a score or fitness of each

failed action. In choosing a use action the agent selects and modifies a single attribute
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value of a failed action selected based on its fitness. CE uses fitness functions to test

a performed action against PS, with the action score dependent on its proximity to

successful values. Agents that use the fitness-based action selection method are aware

of both the success and failure of chosen actions as well as the utility of actions that

fail.

4.3.1 Individual Learning

Individual learning involves agents learning from observations of only their own be-

havior. The agent learns as though it existed in a single-agent system. These agents

can learn with either goal or utility feedback. LE formulates a learning goal g for PE

to pursue that constitutes learning to use the artifact t. If LE learns with utility feed-

back, it randomly generates an initial pool of a predefined number x use actions. PE

initializes the belief set and a use plan: B = Ø, up = 〈Ø,−∞〉 , an empty belief and a

new capability plan with no actions and an undefined score. PE randomly generates

a use action uaj for up (with k = 1 when learning the first action) or is offered one

by a utility-based LE, and applies it. CE evaluates uaj against the available PS and

provides feedback to LE. Regardless of the feedback PE will only generate actions it

has not tried before, that is for any new action generated uaj, 〈t, g, uaj〉 /∈ B.

If LE is learning from non-utility feedback and the action failed LE advises PE to

add the failed action to its belief: B ∪ 〈t, g, uaj〉, and randomly generate a functional

attribute value combination for ua′j that it has not been attempted before. If the

action succeeded LE advises PE to update the action score of uaj in up(any score that

indicates success), and reinitialize the belief set. If the success meant the agent has

reached its goal, LE advises PE to calculate the average score for up, and inactivate

goal g. If the goal is not yet achieved and there are more actions needed, LE advises

PE to generate a new action uaj+1 and learning continues. A use plan up with a score
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of −∞ indicates that it is incomplete since the average score over all use actions is

only calculated when the goal is achieved.

The search space of the algorithm is a function of the number of functional at-

tributes and the performance standard. When evaluating a use action against a fixed

standard for example, it is necessary to compare each generated value with its asso-

ciated standard value in order to obtain its fitness. Therefore the evaluation grows

linearly with the number of attributes.

Genetic Algorithm In order to learn from utility feedback, LE employs a GA.

This is sufficient for LE since it can advise PE on the generation of new use actions

based on the utility of previous attempts. Although GAs do not guarantee an optimal

solution, the agent is only interested in finding one way to successfully use t to realize

g, not necessarily the best way. The GA uses a binary representation for candidate

solutions. A candidate solution is a use action’s values V = 〈v1, . . . , vn〉 where vi

is a bit sequence equivalent to an integer value drawn from functional attribute i’s

domain. Each candidate solution will be given a score once evaluated. Given the

number of pool solutions x, the GA begins by generating a random pool of x use

action values and LE converts one in the pool to its equivalent integer values and

offers it to PE. When LE receives utility feedback from CE with respect to action

uaj it assigns the received fitness to uaj as y and continues to offer use actions to

PE as long as actions are unsuccessful until the pool is exhausted. The GA then

uses roulette wheel selection to choose two candidates at a time for reproduction.

Genetic operators crossover and mutation are applied to the solutions using given

rates. Crossover is applied by randomly choosing a single attribute then applying

two point crossover to swap its bit values. Mutation is applied to the bits in the

solution according to the mutation rate. LE communicates with PE to ensure that

newly generated solutions are only added to the new pool if they are not an element
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of B and the generated values are within the domain of the respective attribute. Once

the pool is regenerated, LE proceeds with offering a converted solution as a use action

to PE. If an action succeeds LE clears the solution pool and randomly generates a

new one if the goal is not achieved.

4.3.2 Social Learning via Observation

The artifact-capability learning agents can also benefit from learning in the presence

of others using a social learning model. Agents employ a form of observational learn-

ing. The idea is that the learning agent has observed another agent performing the

capability it wishes to learn. As a result the agent is able to duplicate some of the

knowledge and commence learning with prior information. According to Formula

(3.1.3) a functional attribute h is defined to have a visibility property bh ∈ {0, 1}.

The property specifies whether an observing agent can copy a value chosen for h in

another agent’s use action and apply it with some certainty for success. The social

learning agent learns only with utility feedback. Its CE operates in the same fashion

as its counterpart in the individual learning agent. The distinction is in the variation

of the GA that LE employs.

Seeded Genetic Algorithm It is possible for the initially generated pool of a GA

to contain candidate solutions with seeded values [93]. This means that the agent

commences the learning problem with partially successful solutions. With a use action

that would mean the action is initialized such that some of its values when evaluated

against the given PS would always be deemed correct. The seeded GA selects a value

for each seeded value that falls within the standard values used by the PS while un-

seeded values are randomly generated from the attribute value’s domain. The seeded

GA applies the same genetic operators as the individual learning agent, however when

regenerating the pool genetic operators are applied only to the values of non visible
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attributes. Seeded values of the solutions remain fixed throughout the learning pro-

cess. The expectation is that learning would be accelerated in observational learning

agents since they are built to commence the learning process with partial knowledge.

4.4 Generic MABS Model

The artifact use learning model is used to build a generic MABS to conduct exper-

iments with the learning strategies. The MABS model is defined as: S , 〈AG,R〉

where AG is the population of agents and R is the set of artifacts in the environment.

4.4.1 Model Parameters

Parameters supplied to the model are either fixed or variable. Fixed parameters are

the same for all experiments conducted while variable parameters differ between test

cases. It should be noted that it is possible to run other experiments with different

values even for the fixed parameters. All agents are assumed to be learning with one

of the same type of artifact, although artifact types may differ between experiments.

The following are fixed parameters:

NumberOfAgents The number of learning agents in the model that constitute the

set AG. There are four types of agents differing according to their employed

learning strategy, if any. Henceforth they will be referred to as Ag_nomem,

Ag_mem, Ag_ga, and Ag_social. Ag_nomem does not employ any form

of learning. It randomly generates use actions, maintains no memory of applied

actions and gets no feedback at all. Ag_mem and Ag_ga are agents that

utilize individual learning. Ag_mem agents use non-utility feedback generat-

ing actions that are yet to be attempted while Ag_ga agents go further using

utility feedback and employing a GA. Ag_social agents employ the observa-
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tional learning strategy. There are 100 members of each type of agent resulting

in a total of 400 agents in the model.

NumberOfArtifacts The number of artifacts in the model that constitute the set

R. Each agent is given a single artifact, therefore there are 400 artifacts and all

agents have the same type of artifact.

NumberOfArtifactParts The number of artifact parts. This is fixed at 1.

FunctionalAttributeDomain The domain of the functional attribute’s values fixed

at [1, 100] for all attributes.

ArtifactFD The function description describing the service the agent is to learn.

All artifacts expose a single FD with external goal: use, an empty set of criteria

objects and the artifact is assumed to be predictable.

AgentGoal The agent’s goal. All agents share the same goal which matches the

external goal of the artifact: use.

GACrossoverRate After conducting experiments with various rates the crossover

rate for the GA was chosen as 0.7.

GAMutationRate After conducting experiments with various rates, the mutation

rate for the GA was chosen as 0.01.

NumberOfUseActions The number of use actions that need to be learned to realize

the goal (specified as part of the performance standard) and fixed at 5.

The following are variable parameters:

NumberOfFunctionalAttributes The total number of functional attributes for

the artifact.
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NumberOfVisibleAttributes The number of visible functional attributes for the

artifact.

PerformanceStandard Either the range-of-values PS defined to cover 20% of the

functional attribute’s domain or a single value chosen in the domain for the

fixed-value PS. This is defined for each of the 5 required use actions.

GAPopulationSize The number of use actions in the GA pool of solutions. This

is fixed at 100 for all experiments conducted with the range-of-values standard.

For tests conducted with the fixed-value standard, a pool size of 200 is used

for tests with 2-attribute artifacts and increased to 1000 for tests where arti-

facts have more than 2 attributes. This is to allowed for a more varied initial

population for the fixed-value standard.

4.4.2 Simulation Flow

The environment is a simple 20 x 20 toroidal grid world, in which each square contains

an agent and a single type of artifact. The general pseudo-code for the simulation

steps of the agents given artifact t, goal g and performance standard PS is presented

in Algorithm 2.

At the start of the simulation, each agent gets the artifact at its location. LE for-

mulates a goal for the artifact for PE. PE initializes the belief set, a new capability

to learn and activates the goal. At each simulation step, PE generates an action

possibly with help from values generated by LE. CE uses the action and PS to pro-

vide feedback to LE which generates changes for PE using its learning strategy. PE

applies the changes. The simulation is run until all agents succeed in achieving their

goal, in other words learn the sequence of use actions that correspond to one way to

use the artifact.
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Algorithm 2 General pseudo-code for learning artifact use
Begin

t = artifact at agent’s location
g = LE→formulate_goal (t )
PE→initialize_belief
PE→activate_goal (g )
PE→initialize_capability (g,t )
time_step = 0
repeat

action = PE→generate_action()
feedback = CE→evaluate (PS,action )
changes = LE→generate_changes (feedback)
PE→apply_changes (changes )
time_step = time_step + 1

until PE→goal_achieved (g) = true

End

4.4.3 Experiments and Results

Test cases vary in the number of functional attributes, the number of visible functional

attributes and the type of PS (fixed-value or range-of-values). All agents in each

simulation run use the same type of artifact. The same random seeds are used to

initialize the random number generator for each agent type to ensure that the agent

types begin the evolution process equally. Many test runs were also carried out to

ensure that results were consistent. This means that at the start of the simulation

there should be one agent for each agent type with the same randomly generated

initial population of solution. Tests were conducted for an artifact with a single part

and 2, 4 and 8 attributes. The different number of attributes were tested against the

two PS. For Ag_social agents, tests were run with 1, 2 and 4 visible attributes.

Average convergence times for each type of agent were computed. These represented

the average number of time steps needed by the respective agents to learn the artifact

capability. Although time constraints make it impossible to account for all test cases,

we believe the selected cases make it feasible to evaluate the agent’s performance.
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Table 4.1: Average Convergence Times for Artifact with 2 attributes (1 visible at-
tribute for Ag_social) © [2011] IEEE

Agent Type fixed-value PS range-of-values PS
Ag_nomem 52179.99 128.46
Ag_mem 25471.12 128.16
Ag_ga 4526.51 111.44

Ag_social 248.74 25.74

Table 4.2: Average Convergence Times for Artifact with 4 attributes (1 visible at-
tribute for Ag_social) © [2011] IEEE

Agent Type range-of-values PS
Ag_nomem 3153.08
Ag_mem 3153.07
Ag_ga 2095.53

Ag_social 616.10

Obtained results are depicted in Tables 4.1, 4.2 and 4.3.

The numbers indicate the average number of steps needed by each agent type to

achieve its goal of learning the artifact capability. In all cases results are presented

for both PS. Table 4.1 shows the average convergence times for agents learning to use

an artifact with 2 attributes. For Ag_social agents, one of the attributes was made

visible. Table 4.2 presents results for agents using 4-attribute artifact and the range-

of-values PS, with one made visible for Ag_social agents. Finally Table 4.3 shows

average convergence times for Ag_social agents learning a capability for artifacts

with 4 and 8 attributes with different degrees of visibility.

Table 4.3: Average Convergence for Ag_social agents © [2011] IEEE
# Attributes/ # Visible fixed-value PS range-of-values PS

4 / 1 31627.88 616.10
4 / 2 14849.59 122.30
8 / 2 233977.65 17510.96
8 / 4 168238.91 2639.40
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4.4.4 Discussion

In accordance with our expectations all learning agents Ag_mem, Ag_ga and

Ag_social outperformed the random agents Ag_nomem. In Tables 4.1 and 4.2,

it can be observed that Ag_nomem agents are the slowest to learn an artifact capa-

bility regardless of the PS. Interestingly Ag_social agents performed significantly

better than the others. Even after observing 25% of the attributes, their speed to

convergence was significantly better. This supports the notion that artifact capability

learning should occur faster with a social species than one that learns on its own.

Table 4.3 depicts a significant reduction in average convergence times for

Ag_social agents as more attributes were made visible to the agents. For the fixed

value PS, average convergence times were cut in half when the visible attributes were

doubled. For range-of-values PS average convergence times increased fivefold for 4

attributes with 1 visible compared to when 2 were visible. In the case of 8 attributes,

the increase was almost 7 times between 2 visible attributes and 4 visible attributes.

In general there was little difference found in the results of the experiments con-

ducted between agents Ag_nomem and Ag_mem. The techniques utilized by both

types of agents differ only in that Ag_mem remembers attempts that have failed

and does not repeat them. It makes sense that Ag_mem never does worse than

Ag_nomem, and would only do better when there is a higher tendency of repeating

the choice of attribute values. Although it would seem that this would be more likely

to occur when there are fewer attributes, it would not necessarily be the case, as

fewer attributes could also lead to faster convergence. One situation where Ag_mem

performed notably better than Ag_nomem was with the fixed value PS. This can

be observed in the Fixed column of Table 4.1, where Ag_mem converges much faster

than Ag_nomem. This can be explained by the notion that agents are more likely

to repeat their selection of attribute values, in their quest to find values that match

a particular value, than when they are searching for values that fall in some range.
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Results also seem to suggest that changing just a single attribute at each step

and taking into account some idea of the progress towards learning a tool capability,

would lead to faster convergence than simply changing some or all of the attributes.

This is observed in Tables 4.1 and 4.2, where Ag_ga agents outperform Ag_mem

agents, regardless of the PS.

We also observed that when agent selections were being tested against the fixed

value PS, agents had a very difficult time learning to use the artifact. Even when

there were few attributes, agents still took much longer to achieve success, than when

there were more attributes being tested against the range-of-values PS. Again, this is

in accordance with our expectations, as one would expect to find it more difficult to

figure out an exact way of doing something if there was only one way, compared to

when there are a variety of ways.

4.5 Conclusions

In this chapter we have provided a model for learning artifact use from individual

experience and one type of social experience namely observational learning. Results

demonstrate the superiority of learned use over random use and that rational agents

can learn more efficiently through social experience than through individual experi-

ence. In the next chapter we build on the model to address an additional form of

social experience learning, introducing into the model the notion of culture. This is

keeping in line with the overall objective of MABS agents taking advantage of the

social dimensions in MABS to evolve.
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Chapter 5

A Cultural Evolutionary Model for

Artifact Use

In this unit the model for learning artifact use through individual and observational

learning presented in the previous chapter is extended to include a cultural com-

ponent. This extension permits the model to address cultural evolution of artifact

capabilities. Cultural evolution is realized by integrating the prior model into a CA

where collaborative agents can learn from a shared belief space. In this way, in-

tegrated patterns of behavior accumulate changes across generations of the social

population. The collaborative social learning strategy which is an additional strat-

egy implemented by the LE component of the agent’s cognition is compared with

individual and observational learning. The previously implemented generic MABS

is extended and used to conduct experiments. The work presented here has been

previously published in Mokom and Kobti [62].
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5.1 Social Learning via Collaboration

For the performance standard, only the range-of-values PS from Section 4.1 is sup-

ported in this version of the model along with its corresponding CE fitness function

from Section 4.2 for the evaluation of use actions.

The distinction between the strategy here and the individual and observational

learning strategies lies primarily within LE which directs how PE will act. PE ’s

actions for agents learning collaboratively are influenced by knowledge extracted from

the population at large. As in the previous chapter use actions that agents learn are

simplified to values in a predefined functional attribute sequence: uaj = 〈V, y〉 where

V = 〈v1, . . . , vn〉 for n functional attribute values with y as the evaluated score. The

agent learns to solve the artifact use learning problem defined in Section 3.2.3. The

search space of the algorithm is a function of the number of functional attributes and

the performance standard. When evaluating a use action against a fixed standard for

example, it is necessary to compare each generated value with its associated standard

value in order to obtain its fitness. Therefore the evaluation grows linearly with the

number of attributes.

Henceforth we will refer to the LE and PE components of the different strategies

as follows: Le1 and Pe1 for individual learning with a GA, Le2 and Pe2 for social

learning by observation with a seeded GA, Le3 and Pe3 for the new strategy, social

learning by collaboration with a CA.

5.1.1 Cultural Algorithm Framework

The CA for the collaborative learning agents consists of a population space of artifact

capability learning agents (P) and a global belief space (GB) that maintains extracted

knowledge from the population. Following the procedure of a CA, selected individuals
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Figure 5.1.1: Cultural Algorithm for m social agents learning a k-action artifact
capability

from P contribute their knowledge to GB which is used to influence the evolution of

the knowledge of agents in P over time.

5.1.1.1 Belief Space Structures

Of the five knowledge sources offered for the CA’s GB, the CA for collaborative

learning by artifact capability learning agents supports situational knowledge (SK)

and normative knowledge (NK) as depicted in Figure 5.1.1. The figure shows m

agents collaboratively learning the required k use actions for an artifact capability .

SK maintains the best examples found in the evolving population so far. This

constitutes the highest scoring use actions for each action learned so far. NK main-

tains encouraging ranges for each functional attribute in each use action learned so

far. The combined influence makes it feasible for agents to follow the exemplar and
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strive to get into a desirable range [24]. GB should not be confused with the local be-

lief that each Pe3 maintains analogous to Pe1 and Pe2. While the local belief space

maintains an agent’s personal history of failed attempts, GB maintains knowledge

extracted from the population at large.

GB is defined as: GB = 〈SK,NK〉, where SK = 〈SK1, . . . , SKk〉 represents the

situational knowledge and NK = 〈NK1, . . . , NKk〉 represents the normative knowl-

edge for k use actions of an artifact capability. SKj maintains the single best exemplar

found so far for use action j and is defined as:

SKj = 〈XV, z〉 (5.1.1)

where XV denotes the exemplar use action’s selected attribute values for n

functional attributes : XV = 〈xv1, . . . , xvn〉 and z represents the action’s score.

NKj maintains favorable value ranges for each attribute in use action j and is

defined as:

NKj = 〈I1, . . . , In〉 (5.1.2)

Each Ii is a tuple specifying an interval or range and related scores for the ith

attribute:

Ii = 〈zl, zu, [l, u]〉 (5.1.3)

where l and u represent the favorable lower and upper bound values of attribute i,

initialized with the boundaries of the attribute’s domain. The other two elements zl

and zu represent their respective scores given by the use action from which they

were obtained.
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5.1.1.2 Adjusting the Belief Space

GB is responsible for its own adjustment when knowledge is received from top per-

formers in the population. The received use actions are sorted according to their

scores. Let h represent the best example for use action j from the population:

h = 〈V h, zh〉, then it is used to adjust the situational knowledge SKj defined in

Formula ((5.1.1)) as follows:

SK ′j =


h, zh > z

SKj, otherwise

(5.1.4)

Thus the current exemplar is only replaced when the proposed example has a better

score.

The adjustment of NK is handled by dealing with one functional attribute at a

time. For each attribute i, selected values by its top performers are obtained and

sorted. The lowest selected value xi and the highest selected value yi, with their

corresponding scores zxi and zyi can now easily be extracted. NKj for a use action j

as defined in Formulae ((5.1.2) and (5.1.3)) is updated for each attribute i using the

following formulae:
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l′i =


xi, (xi < li and zxi = zli) or zxi > zli

li, otherwise

(5.1.5)

zl′i =


zxi, (xi < li and zxi = zli) or zxi > zli

zli, otherwise

u′i =


yi, (yi > ui and zyi = zui) or zyi > zui

ui, otherwise

zu′i =


zyi, (yi > ui and zyi = zui) or zyi > zui

zui, otherwise

Using these rules, the agents will progress towards learning the correct range

required by the PS.

5.1.1.3 Belief Space Influence on the Population Space

The population space is implemented with a GA similar to Le1. The distinction

stems from GB ’S influence on the solutions in the GA pool. A bit representation is

still utilized for candidate solutions (〈v1, . . . , vn〉 where vi is a bit sequence equivalent

to an integer value drawn from functional attribute i’s domain). Influence from GB

is applied when all solutions in the pool are evaluated and a new pool of solutions

needs to be generated. Selection for reproduction is realized with roulette wheel

selection. Two-point crossover is applied according to a given rate to swap the bits of

a randomly chosen single attribute’s values. With a GA integrated in a CA however,

mutation is carried out differently although still according to a given rate. Instead

of mutating the bits representing the chosen attribute value as is done by Le1 and

Le2, SK and NK are used to determine direction and step size for Le3’s mutation
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respectively. The direction determines whether the influence results in an addition

or subtraction from the current value while the step size determines the value that

is added or subtracted. Let q be a candidate solution for use action j : q = 〈W, y〉

where W = 〈w1, . . . , wn〉, then the chosen attribute’s value wi is mutated using the

following formula derived from Chung and Reynolds [24]:

w′i =


wi + |(ui − li) ·N (0, 1)| , wi < xvi

wi − |(ui − li) ·N (0, 1)| , wi > xvi

wi + (ui − li) ·N (0, 1) , otherwise

(5.1.6)

where xvi represents the exemplar value in SKj as defined in Formula (5.1.1), li and

ui correspond to the lower and upper bounds for attribute i in NKj defined in

Formulae ((5.1.2) and (5.1.3)), and N (0, 1) is a random value obtained using the

standard normal distribution. Since the GA evolves a pool of solutions, it should be

noted that the agent is also learning individually. Hence individually learning is

integrated with the collaborative learning strategy employed. It is assumed that all

agents are equally susceptible to influence from cultural beliefs.

5.1.2 Employing the Cultural Algorithm

Every agent learning by collaboration uses the CA to learn use actions. Given a pool

size, each Le3 generates a random pool of use actions in bits then converts one in

the pool to its equivalent integer values and offers it to Pe3. Le3 uses the feedback

obtained from the agent’s CE to assign a fitness score and continues to offer use

actions to Pe3 until all actions are evaluated or a successful action is discovered.

Once the pool is exhausted Le3 selects a designated number of top performers, offers

them to GB and clears the pool. GB undergoes any necessary adjustments. A new

pool of candidate solutions is then generated by Le3 with influence from GB and one
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is offered to Pe3. If a successful action is discovered Le3 offers it for acceptance into

GB, and randomly generates a new pool to learn a new action if the goal is not yet

achieved.

The pseudo code for learning use actions with the CA is shown in Algorithm 3.

Algorithm 3 Pseudo-code for learning use actions with Cultural Algorithm
Begin

if size (p ) < P_SIZE

initialize p with random actions
pidx = 0

else

if pidx = size(p )

Select top_performers from p
Accept selected performers in GB
Generate p’ with influence from GB
p = p’
pidx = 0

end
action = get_action (p,pidx )
pidx = pidx + 1

End

The agent’s GA pool is represented by p, the pool index for traversing the pool is

pidx and get_action returns the action at the specified index from the pool.

5.2 Generic MABS Model

The MABS model in the previous chapter is extended to support the collaborative

learning strategy. The MABS model here is defined as: S , 〈AG,GB,R〉 where AG

is the population of agents, GB is the global belief space and R is the set of artifacts

in the environment.
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5.2.1 Model Parameters

Aside from the additions and exceptions noted in the parameter section below,

the same parameters are used for the model. Hence fixed parameters NumberO-

fArtifactParts, ArtifactFD, AgentGoal, GACrossoverRate, GAMutationRate (for

Ag_ga_pe1, Ag_social_pe2), NumberOfUseActions, FunctionalAttributeDo-

main and variable parameter NumberOfFunctionalAttributes are defined the same

way. Experiments will once more differ according to the variable parameters. All

agents still learn with one type of the same artifact and artifact types may differ

between experiments.

The following are fixed parameters:

NumberOfAgents The number of learning agents in the model that constitute

the set AG. There are three types of agents differing according to their

employed learning strategy, if any. Henceforth they will be referred to as

Ag_ga_pe1, Ag_social_pe2 and Ag_social_pe3. Ag_ga_pe1 and

Ag_social_pe2 agents employ the individual learning and observational

learning strategies from the previous chapter respectively. Ag_social_pe3

employ the collaborative learning strategy. There are 100 members of each

type of agent resulting in a total of 300 agents in the model.

NumberOfArtifacts The number of artifacts in the model constituting the set R.

Each agent is given an artifact, therefore there are 300 artifacts.

GAMutationRate The mutation rate for the GAs. It is set to 0.01 for

Ag_ga_pe1, Ag_social_pe2 after experimenting with various rates.

For Ag_social_pe3 it is set to 1/n for n functional attributes, so that per

mutation, influence from the cultural space affects one attribute.

GAPopulationSize The number of use actions in all GA pools fixed at 100.

74



NumberOfTopPerformers The number of use actions that are offered by each

agent for acceptance into GB fixed at 5% of the GA pool, that is, 5.

PerformanceStandard The only PS supported which is the range-of-values PS

defined to cover 20% of the functional attribute’s domain with all domains

fixed at [1..100] as in the previous chapter.

NumberOfVisibleAttributes The number of visible functional attributes for the

artifact set at 25% of the artifact’s total functional attributes (which vary).

5.2.2 Simulation Flow

The simulated environment is a simple 20 x 15 toroidal grid world, in which each

of the 300 squares contains an agent and the same type of artifact. For the most

part, the simulation flows in the same manner as depicted in Algorithm 2. The

only distinction is that GB is initialized at the beginning of the simulation so that

Ag_social_pe3 agents can evolve using the collaborative learning strategy. All

agents learn concurrently using their designated learning strategy. It should also be

noted that once an agent succeeds it offers its solution to GB. This is important

because solutions are normally only offered to GB when an agent has evaluated all

the actions in its pool. This exception allows an agent to offer a good solution that

it finds while it is still traversing the elements of its pool.

5.2.3 Experiments and Results

All agents use the same type of artifact. The same random seeds are used to initialize

the random number generator for each agent type to ensure that the agent types begin

the evolution process equally. This means that at the start of the simulation the ran-

domly generated values of the initial population of solutions by one Ag_social_pe1

should be equivalent to one Ag_social_pe2 as well as one Ag_social_pe3. Test
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Figure 5.2.1: Mean convergence for all agents learning capability for 4, 8, 12 and
16-attribute artifacts (Attribute visibility only applies to Ag_social_pe2 agents

cases vary in the number of functional attributes and the corresponding number of

visible functional attributes. Tests are conducted for an artifact with a single part and

4, 8, 12, 16, 20 and 24 attributes. At the end of each test run, the mean convergence

times that is, the average number of simulation steps required to reach the goal for

each agent type is computed. Results are depicted in Figures 5.2.1 and 5.2.2.

Figure 5.2.1 shows the mean convergence for all agent types learning capabilities

for a single part artifact with 4, 8, 12 and 16 functional attributes with 1, 2, 3 and

4 visible attributes respectively for Ag_social_pe2 agents. Fig 5.2.2 shows the

mean convergence social learning agents for a single part artifact with 8, 12, 16, 20

and 24 functional attributes with respective visible attributes 2, 3, 4, 5 and 6 for

Ag_social_pe2 agents.
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Figure 5.2.2: Mean convergence for social agents learning capability for 8, 12, 16,
20 and 24-attribute artifacts (Attribute visibility only applies to Ag_social_pe2
agents

5.2.4 Discussion

It can be observed in Figure 5.2.1 that Ag_ga_pe1 agents were outperformed by

both types of social agents Ag_social_pe2 and Ag_social_pe3 in all conducted

experiments. As the number of attributes increased from 4 to 16 a difference in the

convergence rates between individual and social learners is apparent, with individual

learners needing more time to learn the capability. An interesting observation in

Figure 5.2.2 is the difference in convergence rate between the two types of social

learning agents. Ag_social_pe2 learn faster than Ag_social_pe3 agents for

8, 12 and 16 attributes. However at 20 attributes the collaborative learning agents

outperform those learning by observation. The trend continues at 24 attributes as

Ag_social_pe3 agents learn even faster.

The superiority of social learning by observation over individual learning was pre-

viously demonstrated so it is no surprise that Ag_social_pe2 agents do better
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than Ag_ga_pe1 agents. The fact that Ag_social_pe3 agents also outperform

Ag_ga_pe1 agents supports the contention that learning through cultural evolu-

tion (with a CA) should proceed at a faster rate than through biological evolution

(with a GA) [97]. It is understandable that Ag_social_pe2 agents perform better

than Ag_social_pe3 agents when learning to use simpler artifacts or artifacts with

fewer attributes since these agents begin the learning process with partial knowledge.

As such Ag_social_pe2 agents have a head start in the learning process, whereas

Ag_social_pe3 agents begin with no knowledge relying on the successes of their

social group to improve over time. Knowledge compiled in the global belief space

over time should guide the process of learning so that it improves with each suc-

cessive trial [97]. As artifacts gain complexity in terms of the number of functional

attribute values resulting in a much larger search space collaborators get better and

eventually outperform those that began with prior knowledge obtained from observa-

tions. Although the observed threshold may vary or be problem dependent the results

can be corroborated by other studies that demonstrate the use of CAs for optimizing

complex applications [24]. In particular when the number of visible attributes of an

artifact is low for observational learners, we suggest that the likelihood that learning

by collaboration would be a better option increases.

5.3 Conclusions

In this chapter we have extended the learning capacities of the artifact capability

learning agents from the previous chapter to include learning by collaboration through

the integration of a GA into a CA. The cultural evolutionary model which included a

population space of agents and a global belief space that maintained situational and

normative knowledge was implemented in a generic MABS. The MABS included the

prior two forms of learning: individual learning and social learning by observation.
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The results confirmed that artifact capabilities are learned faster by social species

than those operating in collaboration. The results also suggested a relationship be-

tween the complexity of the artifact (in terms of the number of functional attribute

values) and the success of the type of social learning method employed. Collaborating

agents seemed to outperform observational learning as artifacts gained complexity.

Observational learners require the presence of another agent that has successfully per-

formed the artifact capability within their vicinity from whom they can copy visible

attributes, however agents learning through cultural evolution can commence learning

without any knowledge at all.
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Chapter 6

Adaptation Strategies for Artifact

Use

In this chapter we direct our focus to social agents realizing their goals by exploiting

artifacts in unpredictable environments. In Chapters 4 and 5 agents in a popula-

tion with no particular social structure learned to exploit static artifacts in static

environments. Here we address agents belonging to social networks learning to use

unpredictable artifacts in dynamic environments. These extensions require agents to

employ adaptation strategies. Unpredictable artifacts may be dynamic or heteroge-

neous in nature. An artifact is dynamic when the same action performed on it at

different times of the evolutionary process produces different outcomes. Heterogene-

ity refers to an artifact that will produce different outcomes for the same action at

the same time of the evolutionary process, when the action is performed by two dif-

ferent agents. The social population embedded in the CA in Chapter 5 is extended

to support static and dynamic social networks. Static networks are constructed at

the start of the MABS simulation and remain fixed throughout. Dynamic networks

on the other hand change during the simulation. The agent’s learning strategies

are augmented to support real-valued functional attributes and additional strategies.
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These include two additional types of learning from the cultural belief space, learning

through social networks including evolving the members of the network and learning

the extent of the network to generate at any given time. Agents can also learn using

combinations of strategies and a meta-learning strategy that permits the evolution of

the learning strategies themselves. Agents learn to adapt artifact use in environments

where agents enter, leave and move around.

The integration of artifact use evolution into an existing MABS is demonstrated

by incorporating the model into the MABS of the Village EcoDynamics Project devel-

oped to study the early Pueblo Indian settlers from A.D. 600 to 1300. In the Village

MABS agents characterized as households use the paleoproductivity of the landscape

to direct their decision of where to settle and farm. Eliminating the current presump-

tion that this is known to the agents, the landscape is abstracted as an artifact and

agents given the objective of farming for survival, are extended to employ artifact use

learning strategies for its exploitation. The dynamic and heterogeneous nature of the

landscape, the mobility of its inhabitants as well as agents entering and leaving the

environment through marriages (new households) and deaths respectively provides a

good test bed for the adaptability aspects of the artifact use model. Most aspects of

the work presented here will appear in Mokom and Kobti [69].

6.1 Learning and Adaptation Strategies

Learning strategies are implemented by the LE component of the agent. The artifact

use learning problem is defined in Section 3.2.3. Use actions that agents learn are

simplified to values in a predefined functional attribute sequence as in the previous

models however use actions have an additional element for the network radius: uaj ,

〈V, r, y〉 where V = {v1, . . . , vn} specifies a selected value for each of the artifact’s

n functional attributes, r ∈ N denotes the social network radius for social learning
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agents that evolve the extent of their dynamic social network and y ∈ R indicates

a score attributed to the use action once its applied and evaluated. The model will

also support real values for V as opposed to the previous restriction to integers and

given the dynamic aspects being addressed agents will not maintain any record of

failed actions in their local beliefs. Observational learning with visible attributes

is also not supported. There are five distinct categories of strategies that agents

are designed to employ in the model: individual learning, learning through social

communication, learning through cultural belief space, combining various strategies

and evolving strategies. With respect to the previous artifact use models provided

strategies are either new or augmentations of previous ones.

In order to add more realism to the model, an additional rate is defined for agents

that are influenced by others either through social networks or cultural beliefs:

• Susceptibility rate: the probability that an agent is susceptible to influence. For

instance an agent with a susceptibility rate of 0.6 means there is a 60% chance

that the agent will be influenced.

The rate increases the heterogeneity of the agents with respect to influence, as agents

may now resist the adoption of knowledge from an influential source.

6.1.1 Individual Strategy

The individual learning strategy which facilitates agents learning artifact use through

observations of their own behavior is implemented with a GA that uses a real-valued

representation instead of a binary representation for the pool solutions. A candidate

solution is a use action’s values V = 〈v1, . . . , vn〉 where each vi is the real value of the

functional attribute. The GA generates a random pool of solutions at the start and

assigns a fitness score to each one after evaluation feedback. In order to regenerate the

pool of solutions after evaluating all its elements, roulette wheel selection is used to
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select two candidates for reproduction. Crossover is applied at a given rate swapping

a single randomly chosen attribute’s value. Along with a specified mutation rate, real-

valued mutation step-sizes are determined using the formula offered by the Breeder

Genetic Algorithm (BGA) [72, 104]. BGA proposes to generate small step sizes with

a high probability and large step sizes with a low probability. A functional attribute

value vi is mutated as follows: v′
i = vi ± r · Ii · δ where ± is chosen uniformly at

random, r is referred to as the mutation range with a standard value of 0.1 and Ii is

the search interval or domain of the functional attribute with value vi. δ is defined as:

δ = 2−u·k where u ∈ {0, 1} is chosen uniformly at random and k is referred to as the

mutation precision, usually elements of the set {4, 5, . . . , 20} with 16 commonly used.

We have used the common values 0.1 and 16 for the mutation range and mutation

precision respectively.

In order to address adapting knowledge for unpredictable artifacts, the fitness

score obtained after evaluating a performed action is used to update all pool solutions

with values equivalent to the action. As a result identical pool elements that have

been evaluated always have the same score, that is, the most recent one.

6.1.2 Social Network Strategy

The social learning strategies implemented here utilize a social network for agent

communication towards learning. The social network may be an existing one or one

that is constructed solely for learning artifact use. Social networks can remain fixed

throughout the simulation or they can be dynamic in nature where agents contin-

uously update them with different members. Social learning through networks is

implemented with a GA similar to the individual learning strategy with a few dis-

tinctions. First the solution is extended with one more value representing the radius

of the social network utilized by the agents that dynamically construct networks. This

value can remain fixed for agents or given a predefined domain within which agents

83



can randomly generate or evolve values with each action. The GA only requires a

single-solution pool evolved with the influence from members of the agent’s network

when only social learning is employed, however if combined with individual learning

the GA may maintain multiple solutions. For influence to occur, the agent searches

its network for any performer whose current result for the use action is better. Once

identified, the influence formula to influence solution W = 〈w1, . . . wn+1〉 with a bet-

ter performer’s solution X = 〈x1, . . . xn+1〉 is derived from Chung and Reynolds [24]

characterization of influence from an exemplar:

w′i =


wi + |(xi − wi) ·N (0, 1)| , wi < xi

wi − |(xi − wi) ·N (0, 1)| , wi > xi

wi, otherwise

(6.1.1)

where n represents the number of functional attribute values with the last value

n+1 representing the radius. N (0, 1) is a random value obtained using the standard

normal distribution. Attribute values are mutated according to a specified mutation

rate and whether an agent is influenced at all depends on its susceptibility rate.

Agents that enter the environment during the evolutionary process do not com-

mence learning with randomly generated actions. In the model, these agents use the

latest evaluated use action of their nearest neighbor as an influence to initiate the

learning process.

6.1.3 Cultural Algorithm Strategy

The CA utilized to implement learning from cultural beliefs makes some changes to

the previously implemented CA in Chapter 5.
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6.1.3.1 Belief Space Structure

Unlike the CA in Chapter 5 agents do not directly offer use actions to GB. Instead at

specified intervals, the population is searched for a percentage of top performers and

their use actions are offered to GB for acceptance. Although GB is still defined to

maintain situational knowledge (SK ) and normative knowledge (NK ) it is augmented

to support knowledge representing the social network radius and the maintenance of

multiple exemplars in the belief space. The radius is added to support agents that

combine learning from GB with social network learning (concurrently with radius).

The set of k exemplars for use action j is defined as: SKj = skj,1, . . . , skj,k with the

ith exemplar skj,i ∈ SKj defined as:

skj,i = 〈XV, r, z〉 (6.1.2)

where XV denotes the exemplar use action’s selected attribute values for n functional

attributes : XV = 〈xv1, . . . , xvn〉, r which is assumed to be restricted by a domain

in N denotes the value of the social network radius and z represents the action’s

score. NKj which maintains favorable value ranges for each attribute in use action j

is extended to include favorable ranges for the radius and is defined as:

NKj = 〈I1, . . . , In, Ir〉 (6.1.3)

where each Ii with 1 ≤ i ≤ n is a tuple specifying an interval or range and related

scores for the ith attribute and in the case of Ir denoting the information for the

radius. Each Ii and Ir is defined as in Formula (5.1.3).

6.1.3.2 Belief Space Adjustment

With respect to GB ’s adjustment when it accepts knowledge from top performers the

fact that multiple exemplars are maintained in SK must be taken into account. The
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adjustment will also depend on the artifact’s predictability defined by the function

description which specifies the service the agent is trying to learn. When the artifact is

predictableGB maintains the best so far and to facilitate adaptation for unpredictable

artifacts GB maintains the current best. Since a predictable artifact always yields

the same outcome for an action, agents can benefit from better examples even if

they occurred in the past. However, when an artifact’s outcome changes during the

evolutionary process relying on a good result that is no longer useful would prove

detrimental to the learning agents.

For predictable artifacts, when top performers are received in GB they are sorted

according to their scores. Given use action j, let h = 〈XVh, rh, zh〉 represent a con-

tribution from performer h, and x = 〈XVx, rx, zx〉 represent the worst performer (the

exemplar with the lowest z score) in SKj. SKj is adjusted as follows:

SK ′j =


(SKj ∪ {h})− {x} , zh > zx

SKj, otherwise

(6.1.4)

Basically, every contributed performer replaces the worst exemplar if it has a better

score. NKj is adjusted with the same formula in (5.1.5).

For unpredictable artifacts, the adjustment is less complicated. Basically SK and

NK are cleared. The top performers replace the exemplars in the belief space and

Formula (5.1.5) is used to construct a new NK.

6.1.3.3 Belief Space Influence on the Population Space

The GA used to implement the population space can support a multiple-solution pool

as before or a single-solution pool for each agent. An agent with a multiple-solution

pool is actually implementing individual-learning concurrently with cultural influence.

An agent with a single solution pool learns solely as a result of influence from GB.

Previously SK was combined with NK to influence the population, so agents followed
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the exemplar and concurrently tried to jump into the normative range. Two additional

types of belief space influence are added here. Agents can be influenced only by SK

or only by NK. For agents influenced by SK only, an exemplar is randomly chosen

from the set of exemplars in GB. The influence formula to influence solution W =

〈w1, . . . wn+1〉 with the chosen exemplar’s solution X = 〈x1, . . . xn+1〉 is identical to

Formula (6.1.1) where the GB exemplar is equivalent to the better network performer.

For agent’s influenced by NK only, the following formula derived from Chung and

Reynolds [24] is used to influence W :

w′i = wi + (ui − li) ·N (0, 1) (6.1.5)

where ui and li denote the upper and lower bounds for attribute i or the radius

in NK. For agents influenced by the combined SK and NK, W is influenced using

Formula (5.1.6) with a randomly chosen exemplar. As in the case of learning through

social networks, attribute values are mutated according to a specified mutation rate

and whether an agent is influenced by knowledge from GB depends on the agent’s

susceptibility rate.

6.1.4 Combining Strategies

Agents can decide upon any combination of learning strategies to employ. For instance

an agent that wishes to learn on its own as well as socially or culturally would maintain

a pool of solutions rather than a single one, using crossover as specified in individual

learning and mutation on each solution with influence from better performers in its

network or the cultural belief space respectively. An agent can also combine the

social and cultural strategies choosing any of the three belief space influence types

and randomly alternating its influence between better performers in its network and

knowledge from the belief space.
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6.1.5 Evolving Strategies

While agents can learn with any designated learning strategy the model supports

agents that wish to evolve learning strategies as part of the learning process. At a

minimum agents that learn which strategy to employ should outperform those that

employ strategies at random. Two meta-learning strategies are supported for evolving

the strategies: individual strategy evolution and social strategy evolution.

Individual strategy evolution is realized with a GA that uses a binary represen-

tation for the candidate solutions. A binary string of 5 bits is used to represent the

strategies to be evolved: [b1b2b3b4b5]. The first bit b1 is set to ’1’ when individual

learning is on and ’0’ when it is off. The next two bits [b2b3] represent social learn-

ing with influence from cultural beliefs: ’00’ - no learning from cultural space, ’01’ -

influence from SK only, ’10’ - influence from NK only and ’11’ - combined influence

from SK and NK. The last two bits [b4b5] represent social learning through social

networks: ’00’ - no learning through networks, ’01’ - invalid, ’10’ - learning through

social networks with randomly generated radius and ’11’ - learning through social

networks concurrently learning the radius. The bit string where no learning occurs

[00000] is considered invalid along with any bit string where [b4b5] = [01] resulting

in 23 possible learning strategies. For instance the bit string [11011] represents the

combined strategies: individual learning, learning through NK influence and learning

through social/social network radius while the bit string [01100] represents learning

through the combined SK and NK influence. With a given pool size, roulette wheel

selection is used for selecting solutions for reproduction. Crossover occurs at a given

rate with two point crossover applied to swap a single type of influence, that is,

b1,[b2b3] or [b4, b5]. Mutation occurs at a given rate. Invalid solutions are rejected

and not considered for the next population of solutions. It may be useful in future

work to attempt repairing these solutions in the event that there are too many invalid

solutions that end up skewing the algorithm towards a random search.
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Social strategy evolution is realized with a GA that extends the GA for individual

strategy evolution with an integer value to represent the radius and reduces the pool

to a single solution. The bits representing the strategies along with the radius are

altered with influence from the agent’s evolving social network members that have

a better performance. Whether an agent is influenced depends on its susceptibility

rate. As for the mutation rate, it is defined by a rate that controls influence on the

bit strings:

• Learning rate: the probability that an agent copies the bit from the influential

source correctly. For instance an agent with a learning rate of 0.8 means that

there is an 80% chance that the bit will copied correctly.

This individualizes the influence from an influential source instead of all agents shar-

ing a fixed mutation rate. Whether an agent is influenced at all depends on its

susceptibility rate. The influence on the radius occurs in the same manner as when

a social network member influences an agent’s radius in the social network learning

strategy.

Agents that evolve strategies are equipped with the GA for evolving strategies

and a separate evolutionary algorithm (GA or CA) for each possible strategy. When

evolving strategies the agent first determines a strategy to use. The selected strategy

is then matched to its evolutionary algorithm which is used to learn the use action.

6.2 Case Study: Artifacts in the Village Multi-Agent

Simulation

In this section a case study implementation of the model demonstrating its integra-

tion into an existing MABS system is presented. The Village EcoDynamics Project

(VEP) [56, 57] is a significant part of a broader study of the history of the American
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Southwest that has been well funded by the National Science Foundation (NSF) for

over ten years. The project which involves researchers from several disciplines includ-

ing Anthropology, Geology, Economics and Computer Science was developed to study

the early Pueblo Indian settlers from A.D. 600 to 1300. A major component of the

project, the Village MABS henceforth referred to as VillageSim models households

constituting families as agents, as they farm for maize, hunt for protein, gather wa-

ter and wood and employ various exchange models for trade [51, 52, 53, 58]. Births

occur, marriages result in the formation of new households and death is the result

of natural causes or agent’s failure in meeting their needs. Many other aspects of

the region are modeled including soil productivity, rainfall, forest density and animal

density. Each household maintains plans adaptable to changes in the environment

for obtaining resources and trading food with other households. Objectives of the

project include understanding what led to the depopulation that occurred at the end

of period, settlement distributions, violence and demography.

Although the region has many different ruins and real artifacts the objective of

our research is to demonstrate the exploitation of any object that can be abstracted

as an artifact using our artifact representation towards achieving the agent’s goals.

As such we strive to augment the agent’s plans with adaptable plans involving objects

that can provide essential functionality.

6.2.1 The Landscape Artifact

We focus on the farming task carried out by the agents in VillageSim. In Villa-

geSim the landscape is divided into cells and agents are presumed to know the soil

productivity of every cell throughout the years. As such agents automatically choose

the more productive areas to settle and farm upon. A time step in the simulation is a

year characterized by four seasons: spring, summer, fall and winter. Agents consume

maize during all seasons however they plant in the spring and harvest in the fall.
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Agents self-evaluate and will move when necessary or plant additional plots either in

their settled cell or other productive cells. Many factors are utilized to measure soil

productivity which changes over time and declines depending on how long and how

often it has been cultivated.

Artifact exploitation is incorporated into VillageSim by abstracting the land-

scape as an artifact (Landscape) and eliminating the presumption that agents know

how to best exploit it. Instead agents are stripped of all tasks except farming and

expected to learn and adapt using Landscape over time in order to survive. Five fea-

tures are selected to describe Landscape representing its functional attributes: the

average elevation (dem), the average slope (slope), the average direction of slope (as-

pect), the average depth to bedrock (depth) and the average proportion of its biomass

consisting of any subspecies of big sagebrush prior to any agricultural clearing (artr).

Predefined domains are given by the VEP archaeologists for each attribute. Land-

scape is an unpredictable artifact. Choosing the same values for its five features is

likely to produce a different outcome in different years. Moreover, Landscape is

heterogeneous. Since agents occupy different cells, two agents in different locations

choosing the same attribute values at the same time could also possibly experience

different outcomes.

Agents in Villagesim are extended to employ the learning strategies towards

exploiting Landscape. Learning algorithms are applied when the agent decides to

move or plant additional plots in other cells. The agent learns to select productive

cells for farming. Over time it evolves and adapts its plans as necessary to changes in

settlement distribution, landscape productivity, demographics of households and the

population at large, its social networks and emergent cultural beliefs. Along the way

it maintains its primary objective which is to produce enough to feed its family for

survival as agents that do not produce enough maize will ultimately die.
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6.2.2 Generating and Evaluating Use Actions

Unlike the generic MABS implementations, it is not necessary to provide fitness

functions for the agent’s CE element nor aspects of PS as agent’s already self evaluate

in Villagesim once the results of their actions are perceived. The results of the

agent’s performed action is characterized by the harvest obtained once a year. There is

only one action to adapt which constitutes a combination of values selected for each of

the five features. Unlike the generic MABS implementations where chosen functional

attribute values directly map to the action performed by the agents, agents exploiting

Landscape need to convert their selected values to a single cell. Since selected values

will not necessarily be identical to those in any particular cell, an interpretation layer

is needed to convert the use action’s values to the closest matching cell. It is important

to note that this occurs within PE, prior to the action being performed or evaluated,

that is, it should not be confused with the fitness of the agent’s action which is

received as feedback in the form of the agent’s harvest. Basically, PE needs to choose

a cell once LE has supplied it with a combination of attribute values. Choosing the

closest matching cell constitutes what PE needs to do in order to be able to apply the

action formed by the values from LE. There are other domains where the use action

values from LE can be directly applied without any further interpretations.

To match selected values to a cell a simple distance measure is used averaging

over all attribute values to select the cell that is closest to the generated values. For

a given cell with functional attribute values CV = {cv1, . . . , cv5} and a generated

use action with functional attribute values V = {v1, . . . , v5} the following function is

applied:
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dst (vi, cvi) =


1.0, vi = cvi

1
|cvi−vi| , otherwise

Dst(V,CV ) = avg

(
5∑

i=1

dst (vi, cvi)

)
(6.2.1)

If multiple cells have the same distance measure one is randomly selected.

6.2.3 Relevant Model Parameters

While fixed parameters remain the same for all experiments, variable parameters

take on different values. It should be noted that it is possible to conduct other

experiments with different values even for the fixed parameters and that Villagesim

has many more parameters, however only those that directly relate to the exploitation

of Landscape are identified. Many of these parameters are constrained by the case

study (as required by the VEP archaeologists).

The following are the fixed parameters:

NumberOfAgents The number of learning agents at the beginning of the simula-

tion. This is fixed at 600.

NumberOfArtifacts The number of artifacts. There is a single artifact Land-

scape to which all agents have access.

NumberOfArtifactParts The number of artifact parts. Landscape is an artifact

with a single part.

NumberOfFunctionalAttributes The total number of functional attributes.

Landscape has five functional attributes.

93



FunctionalAttributeDomain The domain of the landscape features (functional

attributes) provided by the VEP archaeologists:

artr [0.008421053,0.5198181], aspect [0.002658795,359.9978],

dem[1438.436,3008.686], depth[25.2,182.7], slope[0.0,49.36105].

ArtifactFD The function description describing the service the agent is to learn.

Landscape has one FD with external goal: farm, an empty set of criteria

objects and unpredictable set to 1.

AgentGoal The agent’s goal. All agents share the same goal which matches the

external goal of Landscape: farm.

GACrossoverRate The crossover rate for GAs with multiple solution pools (any

strategy that includes individual learning) set to 0.7.

GAMutationRate The mutation rate for the GAs. A mutation rate of 1/5 is

used for mutating attribute values. For agents evolving strategies on their own

(without social influence) a mutation rate of 0.01 is used.

GAActionPopulationSize The number of use actions in all multiple solution GA

pools fixed at 4 . This number is kept small as agents in Villagesim will often

die before all actions in the pool are evaluated.

GAStrategyPoolSize The number of strategies in GA pool when evolving strate-

gies with individual strategy evolution. This is set to 10.

LearningRate The learning rate for each agent evolving strategies through social

influence. It is randomly generated when the agent is created.

SusceptibilityRate The susceptibility rate for each agent evolving through any in-

fluential source. It is randomly generated when the agent is created.
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NumberOfTopPerformers The number of top performers offered for acceptance

into GB fixed at 5% of the current agent population. At the start this is 30

(given the 600 agents) but will change according to the number of surviving

agents.

GBUpdateInterval The interval defining when top performers are contributed to

GB fixed at 5 to indicate GB is updated every five years.

NumberOfUseActions The number of use actions the agent is learning and adapt-

ing specified as part of PS. This is fixed at 1.

SocialNetworkRadiusDomain The domain of the social network radius used by

agents evolving the network radius. This is set to [1,40] which is the same radius

currently used in Villagesim for moving.

PerformanceStandard The PS used for evaluating the agent’s actions. Only spec-

ifies a single action is required for the capability plan. Villagesim handles the

rest of the PS through its self evaluation.

The following are the variable parameters:

LearningStrategies Indicates which strategy or strategy combination is being em-

ployed (when the agent is not evolving strategies).

EvolvingStrategies Indicates whether the agent is evolving strategies.

MetaStrategy Indicates which meta strategy the agent is employing if any: indi-

vidual strategy evolution or social strategy evolution.

6.2.4 Simulation Implementation

Given that Villagesim has over 20,000 lines of code, the integration of the artifact

use model into Villagesim required very few modifications to its existing code. The

following modifications were made to Villagesim:
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• Added variable to turn artifact use learning on and off.

• Added function to create Landscape as a single part artifact, with the five

features as functional attributes and their predefined domains. Each agent was

given access to Landscape.

• Added a variable to store a list of attributes denoting features for the Cell

object, with each one represented as a <name,value> pair.

• Added code to load data for the cell features of all landscape cells.

• Added code to create agents as artifact use learning agents.

• Modified agents to use function in the artifact use learning model for scoring

cells in order to choose cell to settle upon or to plant additional plots.

• Included the artifact model as a new package.

Modifications to the artifact use model to accommodate integration into Villagesim:

• Defined the artifact use learning agent as a subclass to Villagesim’s Agent.

• Added function to match the generate values of use actions to a cell, given a

set of cells.

• Added function to update the score of a use action with obtained harvest.

The general flow of Villagesim depicting artifact use learning is provided in Algo-

rithm 4.

At the start cell data is loaded, the Landscape artifact is created and randomly

generated agents are placed on the landscape. Agents are initialized by formulating

and activating a goal for farming with Landscape, and initializing the capability.

The simulation begins in year 600 A.D. and runs through 1280 A.D. There are many

aspects to the simulation however we have focused on the activities that directly relate
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Algorithm 4 Pseudo-code for agents exploiting Landscape in Villagesim
Begin

Load data for the five attributes of all cells
Create cell objects setting its features with loaded data
Create Landscape artifact
Generate/Initialize random learning agents
Randomly place agents on landscape
Apply 1,2,3,4 to settle each agent in a cell
year = 600
repeat

for each agent in each season

if moving or planting in other cells

1. C = selected cells within a defined radius
2. C = PE→score_ cells( C)
3. c = best_cell (C )
4. Settle/Farm on c

end
if season = fall

LE→updateActionScore (CE→get_harvest ())

end
Consume maize (if not enough for family, die)

end
Remove dead agents
If moving, apply 1,2,3,4
Create new households as per current simulation
year = year + 1

until year = 1280

End

97



to learning the exploitation of Landscape. Every year the agent goes through the

four seasons, planting if necessary in the spring, harvesting in the fall and moving

when necessary. Agents may move during planting season or at the end of the year

according to their self evaluation. When the agent needs to move or plant in additional

cells, the agent selects a set of cells within a predefined radius. It then decides on

a cell by scoring all cells against a use action and choosing the best scoring cell.

The pseudo code for scoring cells is shown in Algorithm 5. Cells are scored using

the distance function Dst provided in Formula (6.2.1) to measure how close a cell’s

values are to the latest unevaluated use action provided by LE ’s algorithm. In the

fall CE obtains the agent’s harvest and passes it on to LE as feedback for the latest

use action. LE updates the use action’s score and maintains its learning algorithms.

Algorithm 5 Pseudo-code for agents scoring cells in Villagesim against generated
use actions

Begin

if no current_action or current_action evaluated

current_action = LE→get_action()

end
for each cell in C

current_action_values = values(current_action)
cell_score = Dst(current_action_values,cell_values)
update cell_score for cell in C

end

End

6.2.5 Experiments and Results

The village simulated in conducted experiments is VEP IIN which models a larger

region than the original VEP I. Spatially, agents occupy a landscape represented as

114,240 cells (VEP I occupied 45,400 cells [57]). All conducted experiments track

the survival of the agents. It should be noted that the model can still be used to
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investigate other aspects other than survival, such as settlement distribution etc. To

facilitate the identification of no learning and the various learning strategies employed

they are henceforth referred to as follows: No learning or randomly choosing strate-

gies (Random), Individual learning (Indv), Social learning with randomly generated

radius (SocRRad), social learning with learned radius (SocLRad), learning from the

cultural belief space with situational knowledge (CulS ), normative knowledge (CulN )

and combined situational and normative knowledge (CulB). In the case of Random

the agent randomly generates attribute values for a use action every time it needs to

choose a cell for moving or planting or selects a random learning strategy if evolving

strategies. Next, EvStrategy-Indv is used for meta strategy learning with individ-

ual strategy evolution and EvStrategy-SocLRad is used for social strategy evolution.

Finally Original refers to the original simulation where the knowledge for soil pro-

ductivity is presumed.

Results are aggregated over the four study periods obtained from the Pecos classi-

fication [55] currently used by the Village Ecodynamics Project researchers. They are

Basketmaker III (A.D. 600-750), Pueblo I (A.D. 750-900), Pueblo II (A.D. 900-1150)

and Pueblo III (A.D. 1150-1280). The objective is to provide results in a manner

that enables archaeologists and anthropologists to analyze their findings. For every

conducted experiment results show the number of agents that survived at the end of

each classified phase.

In the first set of experiments agents learn with specified strategies. The first test

case compares the three cultural belief strategies: CulS, CulN and CulB. Results are

shown in Figure 6.2.1. The next test case compares social learning agents: SocRRad

and SocLRad. Results are shown in Figure 6.2.2. Next we compare agents that are

not learning with a strategy with the Indv agents and the most successful in the

social learning strategies: Random, Indv, CulN and SocLRad. Results are shown in

Figure 6.2.3. In the last of the first set of experiments, a comparison is done between
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combined strategies: Indv + SocLRad, Indv + CulB, SocLRad + CulB and Indv +

SocLRad + CulB. Results are shown in Figure 6.2.4.

The next experiment investigates agents evolving strategies. For this there is a

single test case where we compare the results of agents evolving with randomly chosen

strategies to those with learned ones. Results are depicted in Figure 6.2.5.

In the final experiment, the original simulation is compared to SocLRad. The

original simulation is run with agents stripped of all tasks except farming with agents

knowing the best cells for settling and farming. Results are shown in Figure 6.2.6.

6.2.6 Discussion

The conducted experiments examine the survival rate of the population throughout

the evolutionary process by tracking the number of agents that survive at the end

of each of the classification phases. Although statistical testing such as significance

tests were not formally conducted, many test runs were conducted (over 50) in order

to ensure that the results remained consistent.

Figure 6.2.1 shows the results of our initial test case which compares CulS, CulN

and CulB. The population barely survives by the end of Pueblo III. Agents learning

throughGB are influenced by the best performers chosen from the population at large.

The struggle for survival may be explained by the heterogeneity of Landscape which

makes use action values that are good for top performers not necessarily beneficial to

most members of the population. As a result agents lose sight of strategies that would

be successful at the local level and follow popular strategies that are detrimental.

CulN is slightly more successful that the other strategies indicating that agents may

be better off following good ranges than specific performers.

Comparing SocLRad with SocRRad, Figure 6.2.2 demonstrates that the size of the

agent’s network plays a significant role in its chances for survival. SocRRad agents sig-

nificantly underperform when compared to SocLRad agents. SocLRad agents evolve
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the social network radius alongside attribute values. As a result they are able to learn

how far to go to find partners to learn from. This notion is very important as success

related to the size of the radius depends on the heterogeneity of the area the agent is

in. While it should be beneficial for an agent in a homogeneous area to maximize the

size of its network radius, this would most likely prove detrimental in heterogeneous

areas. Both social network learning strategies are better than the GB strategies. This

can be explained by the fact that compared to the GB strategies, the social network

approach allows agents to learn what is best for them at a local level.

Figure 6.2.3 shows very little difference between Random and Indv agents, even

though Indv agents are slightly better. Both are poor performers and Random agents

are practically gone by the end of Pueblo II. It is likely that many Indv learning

agents die before they get a chance to learn, even with a small pool of solutions.

As expected though, a learning agent should never perform worse than one that is

not learning and that is reflected in the results. Agents learning from GB influence

are also shown to do better than Indv agents which also makes sense since some of

the population should at least benefit from the top performers in GB. The results

show the major difference between SocLRad agents and the others revealing SocLRad

when employed on its own as the best adaptive strategy. A wider gap can be observed

between SocLRad and the other strategies in Pueblo II and Pueblo III when compared

to the gaps in BasketMaker III and Pueblo I. Apparently this is consistent with

archaeological findings which identify Pueblo II and Pueblo III as periods when the

landscape showed the highest variability from year to year. According to their analysis

it is during these periods that wider gaps between social network, particularly those

learning the radius and other learners should emerge. Comparing the results for the

other network learners SocRRad to non-social network learners it should be noted that

although the gap does not widen, SocRRad learners improve slightly through the high

variable periods (the last two phases) while performance for the other learners drops.
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Results with various learning strategy combinations in Figure 6.2.4 once again de-

pict the importance of social network learning on the Landscape artifact. Although

lower than SocLRad employed on its own the survival count remains significantly

better for any combined strategy that includes it as opposed to IndvCulN which does

not. Agents obtain better results when SocLRad is combined solely with Indv, than

when the combination includes influence from GB. When agents combine SocLRad

with Indv they are essentially evolving solutions possibly with influence from multi-

ple better network members, resulting in the best combination. Adding CulN causes

the agent to evolve multiple solutions with influence from either GB or the network,

hence the performance reduces. When agents combine SocLRad and CulN a single

solution is evolved with a randomly chosen exemplar or network member. As a re-

sult they are the worst performers amongst agents evolving combined strategies that

include SocLRad. For agents that combine Indv and CulN the agent evolves a pool

of solutions which are influenced by GB. Evidently the results are somewhat similar

to agents employing CulN on its own, as it should make little difference which GB

performers influence the agent when a heterogeneous artifact is involved.

Results depicted in Figure 6.2.5 demonstrate that agent performance can be pos-

itive without a learning strategy known a priori. The population barely survives

when strategies are selected randomly. Unlike the Random agents in Figure 6.2.3

that employ no learning strategy at all, agents here are always learning although the

employed learning strategy is chosen at random. As a result unlike their no learning

counterparts, the population does survive through Pueblo III. Social learning through

the network once again proves beneficial even at the meta-level as EvStrategy-Social

agents outperform EvStrategy-Indv agents.

Figure 6.2.6 shows the results for Original agents that are presumed to know

the productivity of the soil compared to agents employing the most successful adap-

tive strategy SocLRad. First the results show that the low performance of agents
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in BasketMaker III is not solely attributed to learning. Agents in Original know

the landscape productivity however population growth and survival is much lower

compared to the last three phases in the simulation. The more relevant aspect of the

results is what happens in these phases. It is already expected that results in Original

should always outperform those in SocLRad. However, while results in Original in-

dicate that survival is for the most part unchanged between Pueblo I, Pueblo II and

Pueblo III the results in SocLRad are apparently more consistent with archaeological

findings that suggest adaptation to be relevant during these periods. Moreover it

confirms once more the earlier contention that the wider gap between social network

learning agents and other learning agents during the last two phases as depicted in

Figure 6.2.3 can be attributed to the variability during these periods. If variability

did not play a role in agent performance then given the results by Original that depict

similar performances in the last three phases, the other agent learning types in Figure

6.2.3 should not perform worse in Pueblo II and Pueblo III compared to Pueblo I.

However, not only do they perform worse but Figure 6.2.2 shows that the other social

network learners SocRRad do not. The results therefore provide some insight into

the role that the landscape variability may have on agent performance with various

learning strategies employed.

6.3 Conclusions

In this chapter we have provided a more extensive artifact use learning model for

adapting the exploitation of unpredictable artifacts in dynamic environments through

various learning strategies. The model was integrated into the existing Village multi-

agent based simulation which models the lives of the ancient Pueblo Indians spanning

almost 700 years. The simulation provided a real complex social system suitable for

conducting experiments with our artifact and capability concepts. With agents rep-
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Figure 6.2.1: Agent survival for cultural-learning agents at the end of each classifica-
tion phase

Figure 6.2.2: Agent survival for social-learning agents collected at the end of each
classification phase
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Figure 6.2.3: Agent survival for agents not learning compared with learning agents
at the end of each classification phase

Figure 6.2.4: Agent survival for combined learning strategies at the end of each
classification phase
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Figure 6.2.5: Agent survival for agents randomly choosing strategies compared with
agents evolving strategies

Figure 6.2.6: Agent survival for agents in the original simulation that know produc-
tivity compared with the best learning agent
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resented as households farming for survival the landscape was modeled as an artifact

abstraction that agents learned to exploit from a representation of a few of its at-

tributes. Given its dynamic and heterogeneous nature and an environment character-

ized by agents entering, leaving and relocating as they strive to survive, learning and

adaptation is essential for every agent. Experiments conducted track the survival of

the agents aggregated over archaeological phases defined by the Pecos classification.

Social learning through social networks while evolving the network radius is revealed

as the best adaptive strategy. Results are considered consistent with archaeological

findings that identify periods when the landscape showed high variability expected

those to be the phases when social network learning with an evolved radius should

prove most beneficial. Accordingly the widest gaps between that strategy and the

others are observed during these phases. The superiority of learning from the network

over the cultural belief space can be explained by the heterogeneity of the landscape

and the poor performance of individual learners demonstrates that social strategies

can be valuable in dynamic environments. Although the experiments tracked the

survival of the agents many other aspects such as settlement distribution can be in-

vestigated. The study revealed that with just a few essential functional attributes

represented, the artifact use learning model can be used to gain insight into a social

complex system.
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Chapter 7

A Multi-Population Evolutionary

Model for Artifact Selection

In this unit, three essential contributions to the thesis are made. First artifact se-

lection, the other facet of artifact exploitation is addressed. Second the scalability

of the model is increased by implementing artifact exploitation in a multi-population

setting using an MPCA, an extension of CAs. Finally a case study in the Transporta-

tion and Injury Prevention domain constituting child auto safety restraints is used to

demonstrate artifact exploitation in a new domain dependent MABS.

The model uses the artifact and agent representations from Chapter 3 and pro-

vides three learning strategies implemented by LE for artifact selection. The model

addresses only artifact selection thus agents are assumed to know how to properly use

the selected artifact for an adopted goal, but need to learn which artifact to select.

Artifact use plans are therefore assumed to exist while agents must learn artifact selec-

tion plans. The learning strategies are developed using GAs, social networks and an

MPCA. Agent migration between subpopulations embedded in an MPCA is used to

evolve artifact selection knowledge in the social agents. Migration is only supported

from advanced subpopulations to underperforming ones where agents in advanced
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subpopulations are assumed possess knowledge for additional relevant artifacts that

agents in underperforming ones do not. Agents in each independently evolving sub-

population are connected via social networks through which knowledge propagates.

Each subpopulation is embedded in its own CA whose belief space can further influ-

ence its evolution. An implemented MABS constituting of two subpopulations where

one subpopulation consistently outperforms the other due to the presence of knowl-

edge about certain restraints is used to conduct experiments with the model. Agent

migration with novel restraint selection knowledge from the advanced subpopulation

to the underperforming one is investigated. The major aspects of the work here have

been previously published in Mokom and Kobti [68].

7.1 Performance Standard and the Critic Element

In order to evaluate an agent’s knowledge a domain dependent PS is defined as the

source of correct knowledge. The correct knowledge is used by CE to measure the

correctness of the selection. PS for artifact selection contains standard knowledge de-

fined with the same structure as the agent’s selection knowledge in definition (3.2.6).

The standard knowledge sets bits to ’1’ for each artifact that is supposed to be se-

lected for any given range of a physical attribute of a criteria object. We assume

fixed predetermined splits for the criteria ranges given by PS and used by all agents.

For example, it is possible for artifact selection knowledge data to be extracted from

conducted surveys where artifact users provided their knowledge according to given

ranges. When an agent’s knowledge is compared against the standard selection knowl-

edge in PS it is measured according to the number of bits that match. In addition

PS may provide other domain dependent information that measure the consequences

of the artifact selected. This can include for instance the injury level incurred when
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the wrong artifact is selected or a measure for the positive outcome of selecting the

correct one.

7.2 Learning Strategies for Artifact Selection

The artifact selection learning problem is defined in Section 3.2.3. Given a set of

artifacts that can be used for realizing its goal and one or more criteria objects related

to the artifacts FDs, the agent learns or evolves the knowledge Ksp for a selection

plan sp with which it can choose the proper artifact from the set, that is one that

will yield an acceptable ysp score.

Artifact selection learning agents are designed to improve through social and cul-

tural mechanisms implemented by LE. Learning occurs in the framework of an MPCA

consisting of two or more subpopulations. Agents can improve artifact selection

through social communication by being members of social networks, through cultural

belief space influence or as a result of influence from migrants into their population.

In order to accommodate agent heterogeneity with respect to the various influences

on the agent’s selection knowledge, two rates (similar to the previous chapter) are

defined for each agent:

• Learning rate: the probability that an agent copies the bit from the influential

source correctly.

• Susceptibility rate: the probability that an agent is susceptible to influence by

an influential source.

7.2.1 Multi-Population Cultural Algorithm Framework

The MPCA for agents learning artifact selection consists of two or more independently

evolving social populations. Each population Pi is embedded in its own CA with its

own belief space GBi. Selected individuals from each population Pi contribute their
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Figure 7.2.1: Multi-Population Cultural Algorithm for social agents belonging to two
isolated subpopulations Pl and Pm with respective belief spaces GBl and GBm and
migration supported from Pm to Pl.

knowledge to their respective belief space GBi which in turn influences the evolution

of the agents in Pi. It is assumed that at least one population will be considered more

advanced than others. As such agents from advanced populations may migrate into

underperforming ones and affect the evolution of the agents there. An example of the

MPCA framework is depicted in Figure 7.2.1 .

The sample framework shows two independently evolving social populations Pl and

Pm embedded in CAs with respective GB ’s GBl and GBm. With Pm considered

more advanced than Pl, migration is supported from Pm to Pl. Social networks are

maintained in each population.

7.2.2 Social Learning via Cultural Algorithms

7.2.2.1 Belief Space Structure

Of the five knowledge sources offered for a CAs belief space, all CAs for agents learning

artifact selection maintain only situational knowledge (SK ) which consists of the best
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examples extracted from the corresponding population space. Each CA defines how

many exemplars are maintained in its respective GB. A belief space GBi is defined

as: GBi = SKi. SKi = sk1, . . . , skk specifies knowledge for k exemplars with each

exemplar skj ∈ SKi defined as:

skj = 〈Kj, sj〉 (7.2.1)

where Kj represents the knowledge for exemplar j selected from Pi and sj is j’s

performance score. GBi is updated at specified intervals when the top k performers

are selected from Pi to contribute their knowledge and their performance scores. At

any time, GBi may be probed for the average performance of its exemplars as well as

how close their knowledge is to the correct knowledge as defined by PS.

7.2.2.2 Belief Space Adjustment

Each GBi is responsible for its own adjustment when it accepts knowledge contributed

by top performers. The received knowledge is sorted according to its scores. Let

h = 〈Kh, sh〉 represent a contribution from performer h, and x = 〈Kx, sx〉 represent

the worst performer (the exemplar with the lowest score) in SKi then SKi is adjusted

as follows:

SK ′i =


(SKi ∪ {h})− {x} , sh > sx

SKi, otherwise

(7.2.2)

Thus each contributor replaces the worst exemplar if it is better or the exemplars

are unaffected.
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7.2.2.3 Belief Space Influence on the Population Space

Agents in population Pi can be influenced by any randomly chosen exemplar from

GBi. This occurs at any specified intervals during the evolutionary process.When

an agent is influenced by an exemplar, LE mutates each bit of the agent’s current

selection knowledge according to the agent’s susceptibility rate and learning rate. If

the agent is susceptible according to the associated rate, then the bit is mutated

according to the learning rate.

7.2.3 Social Learning via Social Networks

Agents can improve their knowledge as a result of knowledge propagation through

social networks. The social network in the model is defined with two subnetworks that

denote relatives or associates and neighbors respectively. An agent may communicate

with members of its network which are allowed to contain only agents belonging to its

subpopulation. The neighbor subnetwork is defined as other agents residing within a

certain distance from the agent. An agent’s network of relatives can be any subset of

agents up to a predefined maximum. During communication an agent may influence

a percentage of its network members. This happens in two possible scenarios: when

the agent’s knowledge is altered by knowledge from the belief space or when it is a

recent migrant to the subpopulation. The LE component of influenced agents accepts

new knowledge by mutating the agent’s current knowledge according to the agent’s

susceptibility and learning rates.

7.2.4 Social Learning via Migration

Assuming two isolated populations in the model as depicted in Figure 7.2.1, agents in

Pm are assumed to be more advanced than agents in Pl in terms of knowing and having

access to additional useful artifacts. They are therefore expected to maintain a higher
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performance level on average. At a minimum agents with real criteria objects that

require the unknown artifact in Pl should underperform relative to their counterparts

in Pm. Agent migration occurs when a randomly selected percentage of agents from

Pm migrate to Pl taking their knowledge of the novel artifact with them. These

migrants are randomly chosen from Pm at large rather than GBm, therefore their

performance is not taken into consideration. The migrants replace an equal number

of agents in Pl. Migration is only supported in one direction since the objective is to

observe what happens in Pl as knowledge of the novel artifact spreads. Once an agent

migrates it automatically inherits the networks of the agent it replaces and influences

a percentage of its members. When an agent in Pl receives influence that includes

knowledge pertaining to a novel artifact, it is assumed to now have access to the

artifact and so LE adds a bit of knowledge for its representation to the bit sequences

of all ranges in its knowledge structure. Agents therefore do not resist the awareness

of a new artifact they are exposed to. The value of the added bit of knowledge will

however depend on the agent’s learning rate.

7.3 Case Study: Learning Child Auto Safety Re-

straint Selection

In this section an application of the artifact selection model to a case study in the

domain of Transportation and Injury Prevention is presented. Some aspects of the

restraint model in Kobti et al. [50] are adopted. The motivation for choosing this

particular case study for the model comes from a 2012 report by the Canadian Pae-

diatric Society [109]. The study reported that while motor vehicle collisions were still

considered the primary cause of death among Canadian children over one year of age

and restraint use had been shown to lower the risk of severe injury by 40% to 60%,

the use of incorrect restraints remained high. In particular booster seat use was very
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low at 30% as children were found to graduate too soon to seat belts. Part of the

problem according to the study, was the lack of proper booster seat legislation in

6 out of 13 Canadian provinces and territories, with provinces such as Alberta and

Saskatchewan identified as the worst. We explore the idea that while using a booster

may not be law in a province or assumed to be unknown to the agent population, a

migrated agent from another province where proper legislation exists may bring with

it the knowledge and help improve performance of its new population as it evolves.

7.3.1 MABS Model Definition

The MABS model is defined as:

S , 〈P,GB,E〉 (7.3.1)

where P = 〈Pbooster, Pnobooster〉 specifies two subpopulations with

GB = 〈GBbooster, GBnobooster〉 as their corresponding belief spaces. Let Abooster be

the set of agents belonging to Pbooster and Anobooster be the set of agents belonging

to Pnobooster with |Abooster| = |Anobooster| and Abooster ∩ Anobooster = Ø. Thus the

two subpopulations have the same number of agents and an agent can only belong

to one subpopulation. Also both GB’s maintain the same number of exemplars.

The environment is described in terms of artifacts and concrete criteria objects that

correspond to the criteria object category abstractions in the FD of artifacts in T

as per Formula (3.1.6): E = 〈T,CNR〉, where each concrete criteria object cnr ∈

CNR corresponds to a criteria object category. It is assumed that all agents in a

subpopulation are aware of and have access to the same set of the environment’s

components.

Driver agents in both populations Pbooster and Pnobooster know about three types of

child auto safety restraints: rear-facing, forward-facing and seatbelt. The
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primary distinction between the two populations is that agents in Pbooster know about

one more child restraint booster. A child criteria object category is defined with

three physical attributes namely age, weight and height. Each physical attribute

is given a specific domain. It is assumed that any restraint the agent chooses for use

with a concrete child object is available.

7.3.2 Restraint Selection Knowledge and Assignment Func-

tion

The restraint selection knowledge is defined according to Formula (3.2.6). An example

of a unit of knowledge for an agent in Pnobooster with age ranges given in months is:

k (CHILD,AGE) = 〈[0, 12] , 0100〉

〈[13, 48] , 0010〉

〈[49, 96] , 0001〉

〈[97, 145] , 0001〉 (7.3.2)

The first bit in each bit string specifies the option for no artifact selection and

each remaining bit corresponds to artifacts the agent knows about in a predefined

sequence. Therefore, the second, third and fourth bits correspond to rear-facing,

forward-facing and seatbelt respectively. The first bit for no selection can be

interpreted as the driver transporting the child on its lap [50]. In the example, the

agent knows that a child whose age inclusively falls 0 and 12 belongs in rear-facing,

between 13 and 48 in forward-facing and between 49 and 145 is transported with

seatbelt. An example of a unit of knowledge for an agent in Pbooster with weight

ranges given in pounds is:

116



k (CHILD,WEIGHT ) = 〈[0, 20] , 01000〉

〈[21, 40] , 00101〉

〈[41, 80] , 10010〉

〈[81, 121] , 00011〉 (7.3.3)

Agents in Pbooster have one additional bit of knowledge representing booster. In the

example the agent knows that a child weighing inclusively between 0 and 20 belongs

in rear-facing, between 21 and 40 in forward-facing or booster, between 41

and 80 on the lap or in seatbelt and between 81 and 121 in booster or seatbelt.

All agents have additional bits of knowledge for the other child physical attribute

height. It should be noted that, it is possible for the agent to have units of knowledge

for other relevant criteria objects. For instance an agent’s restraint selection may

vary between 2-door and 4-door vehicles. If vehicle characteristics were considered

part of the criteria for selecting a restraint, vehicle would be a criteria object and its

corresponding physical attributes would form additional units of knowledge. However

the represented criteria object attributes are assumed to be consistent among all

agents. The model also stores all agent bit string knowledge in the same predefined

sequence using the same predefined ranges for the child’s attributes. This is simply

to facilitate the implementation of the learning process.

Since an agent will end up with three possible restraint bit strings based on the

particular child’s age, weight and height values a function is needed as defined in

Formula (3.2.7) to determine the artifact the agent finally selects. Given the three

bit strings sage, sweight, and sheight an artifact represented by bit i will be selected

according to the following formula given by Kobti et al. [50]:
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sel (i) = (sage (i) AND sweight (i)) OR

(sage (i) AND sheight (i)) OR

(sheight (i) AND sweight (i)) OR

7.3.3 Restraint Selection Evaluation

The simulation is given the correct source of knowledge specifying appropriate artifact

selection for children with various age, weight and height. The standard knowledge

in PS is the one provided in Kobti et al. [50]. Agents are evaluated when they

have simulated accidents and the result is a score that is updated throughout the

simulation indicating the agent’s overall performance. CE uses the custom scoring

function from Kobti et al. [50] that associates an injury with each accident according

to the agent’s artifact selection and calculates a driver performance score (DPS):

DPS =
KnowledgeScore

TotalInjury
∗NumAccidents (7.3.4)

Essentially drivers who have not been in an accident have an undefined performance.

CE calculates the knowledge score by matching the agent’s knowledge bit strings

to PS and generating a score between 0 and 1 inclusively: KnowledgeScore =

#matchingbits
total#bits

. The injury level for an accident is the sum of the injury for each in-

volved child. PS provides 3 possible values for each child injury: 0.1 if the correct

restraint was selected, 0.5 if an incorrect restraint was selected and 0.9 if no restraint

was selected. TotalInjury reflects the cumulative injury incurred over all accidents.

Over time a driver that improves its knowledge and minimizes its injury with each

accident should improve its overall performance score.
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7.3.4 Model Parameters

Parameters are either fixed or variable according to whether they differ between

experiments conducted. As in previous chapters the fixed parameters can be altered

to conduct different experiments. The fixed parameters in the model are:

NumberOfAgents The number of learning agents. There are a total of 800 agents

with 400 in each population.

NumberOfArtifacts The number of artifacts available in a population. Each agent

in Pbooster gets one of each of the four artifacts. Each agent in Pnobooster gets one

of each of the three artifacts.

NumberOfCriteriaObjects The number of concrete criteria objects. Each agent

gets four objects, one corresponding to each type of restraint.

FunctionalAttributeDomain The domain of the functional attributes:

artr [0.008421053,0.5198181], aspect [0.002658795,359.9978],

dem[1438.436,3008.686], depth[25.2,182.7], slope[0.0,49.36105].

ArtifactFD The function description describing the service the agent is to learn

and criteria object categories. Each artifact has one FD with external goal:

safe_child_transport, a child criteria object and unpredictable set to 0. child

defines physical attribute ranges for Age, Weight and Height.

AgentGoal The agent’s goal. All agents share the same goal which matches the

artifacts’ external goal : safe_child_transport.

LearningRate The learning rate of an agent, randomly generated at the start.

SusceptibilityRate The susceptibility rate of the agent, randomly generated at the

start.
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MaxNumberOfRelatives The maximum number of members of an agent’s network

randomly selected from [1, 10].

NetworkInfluencePercent The percentage of its network members that an agent

can influence, fixed at 10%.

NumberOfTopPerformers The number of top performers offered for acceptance

into GB fixed at 2% of the agent population.

GBUpdateInterval The interval defining when top performers are contributed to

GB fixed at 7 to mimic every seven days.

PerformanceStandard The PS used for evaluating the agent’s selection, consti-

tuting the correct restraint selection knowledge with predefined ranges used by

learning strategies.

MigrationTimeStep Indicates the simulation time step when migration occurs.

This is fixed at time step 100 for all migration experiments.

NumberOfTimeSteps The number of time steps in the simulation. The simulation

is run for 500 time steps in all experiments.

SelectionRate The probability that an agent selects an artifact in a time step. This

denotes the driving probability of a driver in a time step and is fixed at 0.3 [38].

AccidentRate The probability that there is an occurrence which results in the

agent’s selection being evaluated. This is the probability that a driver gets

into an accident fixed at 0.007 as per Canada Motor Vehicle Traffic Collision

Statistic 2011 [114].

The variable parameters in the model are:

LearningStrategies Indicates which strategy or strategies are being employed.
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MigrationCount The number of agents allowed to migrate. In migration experi-

ments this is either 2% or 5% of the population.

7.3.5 Simulation Flow

The simulation environment is a simple 20 x 20 toroidal grid defined for each sub-

population with 400 agents placed on each grid. Each agent occupies its own square

with four children, one corresponding to each possible restraint. With Pm = Pbooster,

Pl = Pnobooster, GBm = GBbooster and GBl = Pnobooster, the pseudo code for the

simulation is depicted in Algorithm 6.

The simulation begins with the initialization of the subpopulations and their GBs.

This involves randomly generated agents given randomly generated Child objects

and one of each type of artifact known to their respective population. The 8 agents

occupying each agents Moore neighborhood are used to construct its neighbor sub-

network. Each agent’s relative subnetwork is formed by randomly members of its

subpopulation. Agents formulate the safe_child_transport goal, initialize their selec-

tion plan and learning begins. Every time step an agent decides to drive according to

the driving probability, selects a restraint or none for each child based on its current

knowledge and may get in an accident according to the accident rate. An agent can

be influenced by any exemplar from the belief space and in turn influence a percent-

age its social network members. At given intervals the belief spaces are updated with

knowledge obtained from a percentage of their corresponding population according to

the DPS scores. Migration can occur at any chosen time step, after which migrants

inherit the social network of the agents they replace and immediately influence a

percentage of the network members.The simulation runs for any specified duration.
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Algorithm 6 Pseudo-code for learning artifact selection with Multi-Population Cul-
tural Algorithm

1. Initialize Pm,Pl,Bm,Bl

2. Generate social networks in Pm,Pl

3. Each agent’s LE formulates goal and PE activates goal

4. Each agent’s PE initializes its capability with knowledge (possibly random) and
shares copy with LE

5. Each agent is given a set of concrete criteria objects and the same set of artifacts

6. The following is repeated for every time_step in the evolutionary process

(a) Each PE selects artifacts according to its current knowledge (can depend
on selection rate)

(b) If artifact selection occurs in (a), then the agent may be evaluated (can
depend on an accident rate)

(c) If the agent is to be evaluated per (b), CE evaluates artifact selection
against PS and gives feedback to LE

(d) LE updates agent’s performance score

(e) LE knowledge is influenced by a randomly chosen exemplar in GBi (ac-
cording to retention and learning rates)

(f) If influence occurred in (e), LE influences a percentage of its social network

(g) If agent is influenced by another network member, LE mutates knowledge
(according to retention and learning rates)

(h) If migration allowed this time_step, migrate r agents from Pm to Pl

(i) If migration occurred in (h):

i. Each migrant inherits social network of agent it replaces
ii. Each migrant’s LE influences a percentage of its inherited social net-

work

(j) If GBi updates allowed this time_step:

i. Search Pi for top performers (using performance scores in LE )
ii. Accept top performers in GBi and adjust

(k) If termination time_step: END.
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7.3.6 Experiments and Results

Experiments are performed for six different settings. The variation is based on the

presence or absence of migration, the percentage of agents that migrate and the source

of influential knowledge. The two primary sources of influence are the belief space

only or a combination of the belief space and social network.

In the first two test cases the model is tested in the absence of migration captur-

ing the performances of agents in Pbooster and Pnobooster. The objective is to observe

whether the knowledge of the booster artifact has a positive effect on the perfor-

mance of agents in Pbooster when compared to those in Pnobooster as the subpopulations

independently evolve. This is important since we have presumed that performance

on average in Pbooster should exceed that of Pnobooster. Agents are only influenced by

the belief space in the first test case and in the second they are influenced by both

the belief space and their social network. Results are depicted in Fig. 7.3.1 and Fig.

7.3.2 respectively.

The remaining four test cases measure migration effects on agents in Pnobooster. In

the experiments the subpopulations evolve without migration for the first 100 time

steps. At time step 100 a percentage of agents migrate from Pbooster to Pnobooster. In

the first scenario 2% of agents migrate with belief space as the only source of influence.

In the second the social network is enabled and agents receive influence from both

the belief space and their network. Results for test cases 3 and 4 are shown in Fig.

7.3.3. The last two experiments involve 5% of agents migrating with belief space

influence only and a combined belief space and social network influence respectively.

The results are depicted in Fig. 7.3.4.

For all test cases the cumulative average of driver performance scores (DPS) for a

subpopulation over time are calculated and plotted. In addition we measure and plot

the average KnowledgeScore of the exemplars in the belief space for the respective

population.
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Figure 7.3.1: The population’s average driver performance score (top) and the average
knowledge score of the belief space (bottom) over time with belief space influence in
the absence of migration. © [2014] IEEE
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Figure 7.3.2: The population’s average driver performance score (top) and the average
knowledge score of the belief space (bottom) over time with belief space and social
network influence in the absence of migration. © [2014] IEEE
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Figure 7.3.3: The population’s average driver performance score (top) and the average
knowledge score of the belief space (bottom) over time for Pnobooster with 2% migration
at time step 100. © [2014] IEEE
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Figure 7.3.4: The population’s average driver performance score (top) and the average
knowledge score of the belief space (bottom) over time for Pnobooster with 5% migration
at time step 100. © [2014] IEEE
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7.3.7 Discussion

The driver performance score (DPS) considers the correctness of an agent’s knowl-

edge as compared to the standard knowledge source, the combined injury levels for

its children as accidents occur and the number of accidents that the agent has been

in. Undefined DPS (for agent’s that have not been in an accident) are neither con-

tributed to the belief spaces nor included in the cumulative averages. The knowledge

scores depicted in the results are obtained from the exemplars in the respective pop-

ulation’s belief space. Although DPS is used to determine which examples denote

the top performers for acceptance into the belief space, the knowledge scores provide

a measurement for the knowledge level of the exemplars.

In Fig. 7.3.1 which depicts results for evolution in the absence of migration it

can be observed that agents in Pbooster consistently outperform their counterparts

in Pnobooster. These agents maintained a higher DPS throughout the simulation re-

gardless of the source of influential knowledge supporting our presumption that with

respect to overall performance Pbooster should be superior to Pnobooster. This is ex-

pected as children that belong in a booster will always suffer above minimal injuries

in Pnobooster since its agents are unaware of the restraint. It can also be observed

that the knowledge score of the belief space exemplars is higher for Pbooster than

for Pnobooster. This is in accordance with our expectations since agents in Pbooster

have knowledge about an additional useful artifact. The agent’s performance and

exemplar knowledge seems to find and maintain a steady level throughout for both

subpopulations. This correlates with other studies [50, 52, 53] that demonstrate the

emerged resistance of culturally evolving agents to change, in the absence of external

intervening sources.

Figs. 7.3.3 and 7.3.4 depict results obtained from migration experiments. In Fig.

7.3.3 there is no improvement in average DPS when agents are only influenced by the

belief space as 2% of Pbooster agents migrate to Pnobooster at time step 100. In contrast
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agents show an improvement when they are influenced by a combination of the belief

space and social network. This can be explained by the fact that when the social

network is disabled and the belief space is the only source of influence, a migrant

must be selected as an exemplar before any non migrant agent in the population can

learn about the booster. Since the selection of agents for migration from Pbooster is

random and from the subpopulation at large rather than Pbooster’s belief space, it is

possible that the migrants may not be good enough for Pnobooster’s belief space or

may have undefined DPSs. When the social network is enabled, migrants influence

members of their inherited network upon migration. This results in the immediate

propagation of booster restraint knowledge and increases the chances of an agent with

that knowledge to be selected as an exemplar thus affecting the rest of the population.

The average knowledge scores of Pnobooster exemplars also improves with better scores

observed for the combined influence than the influence from belief space only. In Fig.

7.3.4 we observe an improvement of DPS scores for both types of influences. In this

scenario 5% of agents migrate thus increasing the chances that a migrant agent is

selected as an exemplar. Accordingly knowledge scores for exemplars in the belief

space also shows an improvement. Subsequent to the observed increases in DPS and

knowledge scores the effects of cultural beliefs start to become evident as once again

the resistance to change starts to show. However the agents continue to perform

better than they did prior to the occurrence of migration. It is important to note

that the observed trends emerge despite the fact that the agent’s restraint knowledge

along with their learning and retention rates were generated randomly at the start of

all six experiments.
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7.4 Conclusions

In this chapter we have provided a model for artifact selection evolution in MABS.

As a result in combination with the previous chapters we have addressed the pro-

posed aspects of artifact exploitation: artifact selection and artifact use. Agents

learn artifact selection through social networks, at population levels using CAs and

at multi-population levels using MPCA. The MPCA consists of two independently

evolving subpopulations where agents in one subpopulation consistently outperform

their counterparts in the other due to an enhanced knowledge of artifacts in a particu-

lar domain. The effects of agents migrating from the more knowledgeable population

to the other are examined. In particular the objective is to determine whether agents

in the underperforming subpopulation can improve their performance as a result

of the arrival of migrants with knowledge of useful artifacts. A domain dependent

MABS characterized by the selection of child auto safety restraints has been utilized

to implement the model.

Results from conducted experiments show that in the absence of migration, the

performance of agents aware of all useful artifacts consistently surpass that of agents

with a missing artifact as both subpopulations independently evolve over time. When

migration occurs it is shown that the arrival of knowledge about the novel artifact

may not have an effect when the CA belief space is the only source of influence.

The effect may depend on the percentage of agents that migrate and the quality of

their knowledge and performance. With both the belief space and social network

as sources of influence, knowledge about the novel artifact is propagated and the

agents performance scores improve accordingly. Overall the results demonstrate that

social agents can improve their knowledge about artifact selection in the absence of

interventions from a standard external correct knowledge source as in Gupta et al.

[38] and Kobti et al. [50, 54].
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this dissertation we presented a computational model for integrating artifacts into

MABS in order to enhance the abilities of its embedded social agents to realize their

goals. The model is based on established theories in agent-oriented computing that

propose artifacts as an abstraction for functional system components that proactive

agents with reasoning and planning capacities can exploit. The theories supply the

necessary concepts for accommodating exploitable objects in complex systems, which

can provide significant benefits especially to systems where tool use is directly related

to the evolution of the society and its overall performance. Our model promotes an

evolutionary approach to address artifact exploitation by MABS agents so that better

insight can be gained into their effects on the system over time. This is realized by

extending the artifact theories to support agents that can evolve artifact selection

and use by employing various learning and adaptation strategies. We emphasize on

those strategies that take advantage of the social dimensions of MABS, where agents

evolve through influence from others in the environment. Artifacts are reduced to a

set of functional attributes whose values can be evolved by applying computational
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intelligence methods, specifically genetic algorithms, cultural algorithms and multi-

population cultural algorithms.

Prior models that have proposed an evolutionary approach to artifacts in MABS

have been restricted to a particular domain and have addressed limited aspects of

artifact exploitation. The scalability of our model is evident in its support for artifact

exploitation at individual, population and multi-population levels. The model is

versatile accommodating heterogeneous agents, static and dynamic artifacts, dynamic

environments and agent influence through static or dynamic social networks and

cultural beliefs. Consequently artifact exploitation is modeled in the context of social

and cultural evolution. Although many different parameters are used, the model is

flexible as they are only fixed in conducted experiments and can be altered for studies

with different objectives.

A generic MABS was built to conduct various experiments with different aspects of

the model. The superiority of learned artifact use over random use was demonstrated

and social learning was shown to consistently outperform individual learning, similar

to findings by social scientists [32]. Two case studies were provided to demonstrate

the applicability of the model.

In the first case study, the model was incorporated into the existing MABS of the

Village EcoDynamics Project developed over decades to study the lives of the an-

cient Pueblo Indian settlers in the American Southwest during a period spanning 700

years. The Village MABS models a very complex social system where artificial so-

cial agents represent households that farm, hunt, gather wood and water and employ

various exchange models for trading. This is all realized by agents using reasoning

and planning capabilities. The Village MABS models many environmental aspects

such as soil productivity, rainfall, animal and forest density and is used for studying

settlement distribution, violence and the demography of the population. The land-

scape exploited by agents for farming was abstracted as an artifact. In collaboration
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with a team of archaeologists working on the project, we eliminated the presumption

that knowledge for the productive farming areas of the landscape was embedded in

agents. Instead agents were made to use the learning and adaptation strategies pro-

vided by our artifact model to evolve their knowledge for exploiting the landscape

over time. The dynamic and heterogeneous nature of the landscape, the mobility of

its inhabitants and the dynamic environment where agents enter and leave through

marriages and deaths respectively provided an excellent testbed for our model. Con-

ducted experiments that tracked agent survival through archaeological phases have

already been shown to be consistent with some of the archaeological findings. For

instance results depicted by the most successful adaptation strategy where agents

learned socially while concurrently evolving the radius of their social network was

noted to align with some of their observations. More importantly with the model in

place other objects can now be abstracted as artifacts and many other aspects of the

system can be investigated.

In the second case study our model was used to build a new domain dependent

MABS. Artifact exploitation was explored for child auto safety restraints where agents

learned to select the proper restraints for particular children. The model experimented

with agent migration between independently evolving populations of social agents as

a means for improving knowledge in underperforming populations. Experiments were

conducted to observe the propagation of knowledge in each population in the presence

and absence of migration. Results showed that the knowledge level of the migrants

as well as the number of migrants played a role in the impact of migration.

It is my belief that our model for integrating artifacts in new and existing MABS

systems is a valuable contribution to agent-oriented computing. In addition to the

case studies depicted in this thesis we have demonstrated the application of the model

in the investigation of social phenomena such as social norms [66, 67] and social

inhibition [65]. To the best of my knowledge it is the first domain independent model
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for integrating artifacts in MABS, that is based on artifact theories and specifically

addresses the evolution of artifact exploitation by social agents.

8.2 Limitations

It is worth noting that it will not always be practical to use our model. One of the

fundamental aspects of the model is that in order to exploit an artifact it is reduced

to a set of functional attributes whose values can be evolved over time. Consider

the artifact pen. Its functional attributes include hold, point, press, move and so

on. A combination of these attributes that forms a use action in our model would

constitute a single value selected from each of the variables. The study of tool use

is inherently complicated by the fact that these attributes can be numerous. If one

were to take account all the possibilities available to the holder of a pen, or other

objects that may impact its use as well as spatial and temporal considerations the

result would be a very large problem space. In the first implementation of our model

presented in Chapter 4 it was observed that on average an agent learning to use an

artifact represented with 8 attributes where each required a fixed value for success,

needed 168,239 simulation time steps to reach its goal. Although these numbers are

greatly reduced when the social dimensions are utilized for learning, it is apparent

that learning artifact exploitation for artifacts with numerous attributes may prove

intractable with the model. We have shown with the case studies however that the

model can be very useful with just a few essential attributes selected by experts in

the modeled domain. Moreover the primary objective of the model is to explore how

artifact exploitation evolves as a result of the different ways agents could learn.

There are also many parameters in the model that could play a role in the outcome

of agent performance. To circumvent this we have used averages as much as possible in

our experiments to ensure that results are consistent. Also, many of these parameters
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are not fixed. They can be altered with different experiments and tuned by social

scientists to examine their impact, if any.

8.3 Future Work

The cultural algorithms implemented in our model have only used two of the five

suggested knowledge sources to characterize belief knowledge extracted from the pop-

ulation. Research has shown that these knowledge sources when combined can inform

on how evolving populations actually learn to solve problems [99]. It would be useful

to augment our artifact model with the other knowledge sources, historical, topo-

graphical and domain. The integration of the latter, domain knowledge, may be

facilitated with an ontology that characterizes the centralized knowledge of artifacts

in the environment and the complementary artifact capabilities local to agent. We

have proposed such a hybrid ontology [64] and intend to implement and integrate it

into our model.

We have really only addressed the use of a single artifact, however artifacts are

usually used in conjunction with others. This concerns instances where both artifacts

provide functionality towards realizing a goal. For instance the use of a bow and arrow

requires functional attribute values selected from both artifacts. It may be possible

to implement this in our model by including all attributes of all involved artifacts.

However many other aspects such as temporal or artifact collaboration concerns may

come into play.

Another aspect that might be worth exploring with the model is how agents could

generalize artifact use knowledge across different artifacts. Agents could learn to use

particular artifacts then apply the knowledge to new artifacts and extract knowledge

about similarities and differences both in the artifacts’ structures and their behavior.
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An agent could then gain competence against a sets of artifacts learning how to

combine or substitute them at different phases of realizing its goal.

Another possible direction for future work could be to deepen the representations

of other components of the performance element. Goals and beliefs could be extended

such that learning methods could be developed for improving them along with capa-

bilities over time. For instance, behavioral traits could be used to define an agent’s

beliefs. This would extend the model to define an agent’s choice of actions according

to its behavior and knowledge hence paving the way for employing methods towards

altering an agent’s behavior with respect to artifact exploitation.

It may also be useful to explore reducing the cognitivity of the artifacts even

further. For instance, agents could be built to learn the functional attributes of a

usage interface or learn external goals and relevant criteria objects. Effectively this

would result in a larger search space.

Finally the third facet of artifact exploitation namely artifact construction and

manipulation has not been addressed. It should be useful to explore this leading

to studying innovation with respect to artifacts. This is intertwined with economic

aspects such as demand as the failure of artifacts to meet agent needs creates a need

for a new artifact or the modification of an existing one.
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