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ABSTRACT 

Polymer electrolyte membrane fuel cell (PEMFC) is regarded as a promising technology 

for both automotive and stationary applications. Two significant challenges that hamper its 

commercialization are its high cost and insufficient durability. Catalyst layer (the region 

where fuel and oxidant convert to products) has a vital importance to be able to mitigate 

the above challenges. This dissertation reports a systematic study of using niobium (Nb)-

doped titanium dioxide nanofibers as a corrosion-resistance catalyst support for PEMFCs, 

along with the study on the control of physical and electrochemical properties to create 

durable and still active platinum catalysts, and a new strategy to optimize ionomer phase 

(Nafion) loadings in the catalyst layers. It also proposed a simple wet coating process of 

Nb-doped titanium dioxide (TiO2) sols onto carbon papers to protect the interface between 

gas diffusion backing layer and catalyst layer for unitized regenerative fuel cell 

applications.  

 Oxidative treatment and dip coating of carbon paper with Nb-doped TiO2 sol was 

shown to increase the corrosion resistance of carbon paper at the interface between catalyst 

layer and gas diffusion backing layer (Chapter 2). Anatase phase Nb-doped TiO2 

nanofibers were synthesized by using the upscalable method of electrospinning to find a 

more durable alternative catalyst support, to substitute not corrosion resistant pure carbon-

based catalyst supports (Chapter 3). More electronically conductive and high surface area 

rutile phase Nb-doped TiO2 nanofibers were synthesized through embedding carbon in 

between rutile crystallites using an innovative strategy called “in-situ reductive embedment 

(ISRE)” (Chapter 4). However, the ORR mass activities of the Pt catalysts that were 

supported by carbon-embedded Nb-doped TiO2 nanofibers were still slightly lower than 

pure carbon black based Pt catalysts. Instead, electronically more conductive and high 

surface area catalyst supports were synthesized by physically mixing of commercial carbon 

blacks with carbon-embedded Nb-doped TiO2 nanofibers (Chapter 5) and the effect of 

catalyst layer preparation method on the distribution of catalyst layer components has been 

investigated (Chapter 6).   
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1.1 General introduction on polymer electrolyte membrane fuel cells 

In general, fuel cell is an electrochemical conversion devise that takes fuel as input and 

produces electricity as output. Among five major types of fuel cells (Table A1 in Appendix 

A), polymer electrolyte membrane fuel cell (PEMFC) converts the chemical energy stored 

in hydrogen and oxygen directly to electric power through an electrochemical reaction (H2 

+ ½ O2 → H2O), where the only by-product is water. Unlike batteries, PEMFC can be 

continuously used by refuelling instead of time-consuming charging, easily scalable 

between power (determined by the fuel cell size) and capacity (determined by the fuel 

reservoir size), and covers a wide range of applications from 1-W range (cell phone) to the 

megawatt range (power plant) [1].  

1.1.1 Basic concept and principles 

The earth is our home and consists of 90% of hydrogen. There is a tendency to go for 

energy sources with lower C/H ratio through the history which is maximum in wood and 

finally converges to zero in pure hydrogen [2]. Hydrogen can offer a sustainable solution 

for our nation’s energy in terms of energy security, near-zero carbon emissions, zero 

tailpipe emissions, and economic vitality [3]. Among different technologies which are 

employing hydrogen as fuel, PEMFCs are the key to using hydrogen efficiently for 

vehicular and portable electronic applications as it have none of tailpipe emissions (e.g. 

NOx) inherent to combustion, enabled for lower operation temperatures and fast start-up 

and dynamic operation [4-8]. 

PEMFC is always comprised of two electrodes (anode and cathode) which are separated 

using a proton conducting polymer electrolyte. Accordingly, the overall reaction of a fuel 

cell (H2 + ½ O2 → H2O) has been split into two half electrochemical reactions occurring at 

anode and cathode electrodes. 

The hydrogen oxidation reaction (HOR) on the anode side is  

 

 H2 → 2𝐻+ + 2𝑒−          𝐸𝑎
0 = −0.000 𝑉 (1-1) 
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The oxygen reduction reaction (ORR) on the cathode side is 

 

 
+

1

2
(𝑂2 + 4𝐻+ + 4𝑒− → 2H2𝑂)      𝐸𝑐

0 = +1.229 𝑉 
(1-2) 

 

Where 𝐸𝑎
0 and 𝐸𝑐

0 are their corresponding potentials versus standard hydrogen electrode 

(SHE) under standard conditions. Therefore, the overall steady-state potential of a PEMFC 

(𝐸𝑐𝑒𝑙𝑙
0 ), with an overall reaction of H2 + ½ O2 → H2O, would be equal to 1.229 V. Although 

this positive potential difference will create a negative standard free energy change to 

support thermodynamically the occurrence of spontaneous reaction in PEMFCs, the actual 

voltage output of a real PEMFC is less than the calculated amount due to the steps that 

must be taken to produce the electricity in a fuel cell [9]. Sequentially, the steps are reactant 

delivery (hydrogen to the anode side and oxygen to the cathode side), electrochemical 

reaction, ionic conduction through the electrolyte and electronic conduction through the 

external circuit, and product removal on the cathode side [6].   

The key performance measure of a fuel cell is the voltage output as a function of the 

drawn electrical current density (polarization curve) as shown in Figure 1.1. Each step will 

cause a voltage drop due to the kinetics at the electrode (ƞact mostly occurred at low current 

densities), resistivity losses in the electrolyte (ƞiR), and non-reacting diffusion in gas 

diffusion layers (ƞdiff  mostly occurred at high current densities) [10]. 
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Therefore the real voltage output of the fuel cell would be found by the following 

equation: 

 

 V =  Ether − EL −  ηact −  ηiR −  ηdiff (1-3) 

 

Where V is the real voltage output of the fuel cell, Ether is the thermodynamically 

predicted voltage output (+1.229 V), EL is the loss in voltage due to leaks across the 

electrolyte, ƞact is the activation overpotential due to the kinetics at the electrode, ƞiR is the 

overpotential due to ohmic resistances in the system, and ƞdiff is the overpotential due to 

mass diffusion limitations.   

1.1.2 Membrane electrode assembly (MEA) 

To convert chemical energy stored in hydrogen and oxygen to electricity, on top of 

electrochemical reactions, there are other complex phenomena to deal with such as heat 

transfer and multi-phase flows. Most of these phenomena will happen in the membrane 

electrode assembly (MEA) of PEMFCs consisting of catalyst layer (CL), proton exchange 

Figure 1.1. Schematic fuel cell polarization (Voltage vs. current density) 

and power density curves. 
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membrane, and gas diffusion layers (GDLs). Membrane electrode assembly (MEA) is the 

assembled stack of different layers in PEMFC which is shown schematically in the section 

view of Figure 1.2.  

 

MEA turned to be the core technology of PEMFC as all phenomena which are involved 

to produce electricity are mostly happening through MEAs. As shown in Figure 1.2, the 

following multi-physics, highly coupled and nonlinear transport and electrochemical 

phenomena take place in the MEA during fuel cell operation [7]:  

(1) H2 and O2 flow through the respective porous gas diffusion layer (GDL) and diffuse 

into the respective catalyst layers (CLs); (2) hydrogen is oxidized at the anode catalyst 

layer and forms protons and electrons; (3) protons migrate and water is transported through 

the membrane; (4) electrons are transferred through carbon support to the anode current 

collector, and then to the cathode current collector through an external circuit; (5) O2 is 

Figure 1.2. Schematic view of membrane electrode assemblies and 

electrochemical reactions. 
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reduced with electrons at the cathode CL to form water; (6) product water is transported 

out of the cathode CL, through cathode GDL, and eventually out of the cathode gas flow 

channels. When operating under practical current loads, relatively high inlet humidity, 

liquid water is present within the fuel cell.  

1.1.3 MEA components and corresponding functions 

As shown in Fig. 1.2, MEA consists gas diffusion layers, catalyst layers, and proton 

conducting membrane which all would be explained briefly as follow: 

Gas diffusion layer (GDL) 

 Gas diffusion layer (GDL), gas diffusion media (GDM)-also called gas diffusion 

backing (GDB) layer- acts as a porous media for the transport of fluids and products from 

one interface to another. The gas diffusion layer together with catalyst layer is also named 

as diffusion electrode in the fuel cell community. The main functions are to regulate the 

reactant gases from the bipolar plate to the catalyst layer, remove the produced products 

such as water in PEMFC, provide mechanical support for CL, and conduct electrons from 

CL to bipolar plate and vice versa. Conventional diffusion layer materials for PEMFC 

applications are carbon cloth and carbon fiber paper.  

Proton exchange membrane (PEM) 

 Proton exchange membrane is one of the key components of PEMFC which should 

possess high proton conductivity, be impermeable to gases and/or fuel, achieve balanced 

water transport, and be an electrical insulator. Most popular membrane used in PEMFC 

applications is a sulfonated polytetraflouroethylene (PTFE)-known as Nafion. For a 

polymer to be a good ion conductor it must possess fixed charged sites and sufficient free 

volume. Nafion has sulfonic acid (SO3
−H+) functional groups attached to a PTFE backbone 

to create fixed charged sites and free volume for ionic conductivity. Nafion ion 

conductivity is highly dependent on water content and this requirement necessitates the 

humidification of reactant gases during PEMFC operation.  

Catalyst layers (CLs) 

The last but not least important component of PEMFC that requires improvement is the 

catalyst layer. The electrochemical reaction kinetics and resultant current is highly 
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dependent on the catalyst layer structure. The current practical catalyst technology for 

PEMFC applications is Pt nanoparticles supported on high surface area carbon black.  

The CL can be coated either on the gas diffusion layer or the membrane and in both 

cases we need a good interfacial contact between three of them (GDL/CL/PEM). To let 

both HOR, Eq. (1-1), and ORR, (Eq. (1-2), happen at their corresponding electrodes, a 

three phase boundary (TPB) needs to be stablished to let the three components reactant gas, 

protons, and electrons come in contact [11]. TPB formation in the catalyst layer of PEMFC 

has been schematically shown in Figure 1.3.  

 

 

 

Figure 1.3. A simplified schematic representation of TPB reaction sites in the catalyst 

layer. 

 

The most sluggish reaction in PEMFC is the oxygen reduction reaction (ORR) which 

could create a significant limitation for fuel cell performance. In addition to creating a large 

number of TPB zones, the catalyst layer must effectively remove water generated on the 

cathode side. So, the basic requirements of the CL in PEMFC are creating large number of 

TPBs, transport of protons from the anode to the cathode and vice versa, efficient water 

management especially in the cathode CL, and good electronic current transport.  
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1.2 General introduction on unitized regenerative fuel cells (URFCs) 

A unitised regenerative fuel cell (URFC) is a rather recent technology of PEMFCs 

which consist of both PEMFC and electrolyser as one unit. Figure 1.4 schematically shows 

an URFC with combined electrolyser and fuel cell operation modes but only one of the two 

modes can be operated at any time.  

 

 

Figure 1.4. Concept of unitized regenerative fuel cell (URFC) [12].  

 

Unitised regenerative PEMFC MEA should have balanced properties to run smoothly 

in both electrolyser and fuel cell modes. The MEAs for URFCs mainly differ from PEMFC 

in the type of catalyst they use, i.e. bifunctional catalysts [13], and/or gas diffusion layers 

[14, 15].  

1.3 Key challenges to the market success of PEMFCs  

In general, fuel cells must meet three important criteria: sufficient performance, low 

cost, and high durability. Despite impressive improvements achieved by the fuel cell 

community to bring the technology to a pre-commercial viability [16-18], there are still 

key issues that need to be investigated for general acceptance of the technology. For 

instance, the fuel cell technical team as one of 12 U.S. Drive (Driving Research and 

Innovation for Vehicle efficiency and Energy sustainability) technical teams identified cost 
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and durability as the primary challenges to fuel cell commercialization [18], as shown in 

Figure 1.5.  

 

 

Figure 1.5. Fuel cell targets versus status (the blue line indicates the status as a function 

of the target in percentage). The figure has been reproduced from [18]. 

 

The use of high performance PEMFC for portable applications, i.e. automotive and low 

duty vehicles, requires membrane electrode assembly (MEA) to be durable under fast start 

up and shut downs, frequent starts and stops, and dynamic operation. Fuel cells also need 

to be competitive with gasoline internal combustion engines (ICE) to be economically 

accepted in the market [19]. Fuel cell research and development (R&D) could be able to 

successfully reduce the cost of automotive fuel cell more than 80% since 2002 [16]. 

However, on the road to implement the hydrogen and fuel cell technology a multiyear 

program has been developed by Department of Energy in United States [17]. The program 

activities have been planned based on four subprograms including; hydrogen production, 

hydrogen delivery, hydrogen storage and fuel cell technologies. Among outlined R&D 

activities by DOE, Fuel cell technology subprogram will focuses on developing new 

materials, novel designs and fabrication methods for different components of a fuel cell 

including electrolyte, catalyst, gas diffusion media and bipolar plates. For instance, with 

respect to the development of more durable and active electro-catalysts, DOE has set cost 
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and durability targets for 2020 [17], as follow: less than 0.125 mgPt˖cm-2 total platinum 

group metal loading (anode + cathode) and less than 40% loss in their initial performance 

under accelerated stress tests [20].  

In the following, I will review required improvements of the membrane electrode 

assembly components to address the aforementioned performance shortcomings of 

PEMFC and URFC. Several other components must also be improved but are not discussed 

here as they are not the main focus of this thesis. 

1.3.1 Performance and cost 

As stated before in section 1.1.1, the key performance feature of a PEMFC is the amount 

of current density which can be drawn at a certain voltage. So kinetics of electrochemical 

half reactions (Eqs. (1-1) and (1-2)) are highly involved in determining the fuel cell 

performance output. Among these electrochemical half reactions, cathode ORR is six or 

more orders of magnitude slower than the anode HOR reaction [21]. Moreover, it is well 

known that the kinetics of electrochemical reactions (charge-transfer reactions) are highly 

dependent on the electrode material [22]. Accordingly, catalyst development activities are 

mainly focused on increasing the kinetics of the metal-catalyzed ORR reaction occurring 

at the cathode side of the MEAs [23, 24]. 

Nanoparticles of Platinum or Pt-transition metal alloys (i.e. PtCo [25], PtRu [26]) 

deposited onto pure carbon-based catalyst supports are currently implemented as electro-

catalyst for PEMFCs [27]. Due to widespread use of Pt nanoparticles to catalyze the ORR 

both, its physicochemical and electrochemical properties are very critical to reach DOE 

2020 performance and cost targets [18] by a total PGM loading of 0.125 mgPt.cm-2 [21]. 

Despite great progress achieved to effectively utilize platinum through using Pt-based 

colloidal nanostructures, e.g. Pt nanowires/nanotubes [28-30], there are still synthetic 

challenges to develop approaches with high-level controls of uniformity in size, shape and 

composition of desired Pt or Pt alloy based catalysts [23].  
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1.3.2 Durability 

The proposed highly active Pt nanoparticles must also maintain their performance after 

5000 h of operation for automotive fuel cell applications. Current technologically standard 

catalysts are Pt nanoparticles dispersed onto high surface area carbon blacks such as Vulcan 

XC-72R or Ketjen Black [31]. Although the current technology has been able to run fuel 

cell vehicles at the test fleets monitored by DOE (using a Pt loading of 0.4 mgPt.cm-2 or 

more on the cathode side) [21], its stability is still lower than 5000 hrs of operation and it 

loses the performance at high potentials. Among proposed mechanisms which can 

contribute to the degradation of the state of the art catalysts, Platinum 

dissolution/agglomeration and catalyst support degradation were identified to be the two 

most important contributors [27, 32-38]. 

Fig. 1.6 (a) demonstrates the role of electronic transport in Pt agglomeration through 

Ostwald type of growth or Ostwald ripening [36], whereas Fig. 1.6 (b) shows Pt dissolution 

due to carbon support corrosion.   

 

 

Figure 1.6. Schematic representation of Pt agglomeration and carbon corrosion, reprinted 

from ref. [32]. (a) Mechanism of Pt particle growth by dissolution/precipitation [36]; (b) 

Degradation of carbon supports and loss of noble-metals [39]. 
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As shown in Fig. 1.6 (a), by considering a high concentration of free electrons in carbon 

support, the growth of Pt can be easily explained by Pt dissolution and precipitation as 

follow [36]: 

 

   Dissolution          

 𝑃𝑡0(𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠) → 𝑃𝑡2+(𝑙𝑖𝑞𝑢𝑖𝑑 𝑜𝑟 𝑖𝑜𝑛𝑜𝑚𝑒𝑟) +  2𝑒−(𝑐𝑎𝑟𝑏𝑜𝑛)  

 

   Precipitation       

 𝑃𝑡2+(𝑙𝑖𝑞𝑢𝑖𝑑 𝑜𝑟 𝑖𝑜𝑛𝑜𝑚𝑒𝑟) +  2𝑒−(𝑐𝑎𝑟𝑏𝑜𝑛) → 𝑃𝑡0(𝑙𝑎𝑟𝑔𝑒𝑟 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠) 

 

Moreover, during fuel cell operation specifically for conditions of dynamic load 

operation in automotive applications, the cathode catalyst will be introduced to high 

electrode potentials in the presence of oxygen. In these start up and shut down conditions 

(the voltage can go beyond 1.4V [32, 39]), carbon could experience a severe corrosion and 

oxidation with release of carbon dioxide according to the following equation [33, 40, 41]: 

 

 C + 2H2O → CO2 +  4H+ +  4 e−  (1-4) 

 

Not surprisingly, the conversion of carbon support to CO2 (confirmed by doing gas 

analysis [40]) will cause the catalyst to lose its performance by losing Pt or Pt alloy 

nanoparticles, loss of Pt/Ru nanoparticles due to carbon corrosion has been shown 

schematically in Fig. 1.6(b). It has been also speculated that other mechanisms could also 

contribute to the failure of carbon black supported Pt catalysts [33, 42, 43]. For instance, 

chemical reduction of dissolved platinum ions in the ionomer phase by crossover H2 

molecules was also observed through examining cycled membrane electrode assemblies 

[43].  
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In a recent study of the degradation mechanisms of carbon-supported Pt catalysts [37], 

the formation of Pt oxide was also found to affect durability of carbon black supported Pt 

catalysts. Overall among different mechanisms which have been speculated to be 

responsible for the low durability of carbon black supported Pt catalysts, the corrosion of 

carbon black supports was identified to be the major contributor. 

For URFC applications, on top of the corrosion of carbon based catalyst supports, it has 

been shown that the corrosion of carbon-based gas diffusion layers (regular hydrophobized 

carbon paper/clothes) could also contribute significantly to the failure of the MEAs [14]. 

For URFC applications, under water electrolysis mode, irreversible performance losses 

could arise from the corrosion of carbon based gas diffusion layers according to the 

following reactions [44]:  

 

 
𝐻2𝑂 →

1

2
𝐻2 + 2𝐻+ + 2𝑒−        𝐸298

0 = +1.23 𝑉 𝑣𝑠. 𝑅𝐻𝐸   (1-5) 

 

 𝐶 + 2𝐻2𝑂 → 𝐶𝑂2 + 4𝐻+ + 4𝑒−         𝐸298
0 = +0.21 𝑉 𝑣𝑠. 𝑅𝐻𝐸  (1-6) 

 

1.4 Constraints on material selection for MEA components 

In general, the materials selection for MEA components should be based on an 

improvement in the efficiency of the whole cell. The overall fuel cell efficiency ()is 

given by the following equation [6]: 

 

 
𝜂 =  

𝑛𝐹(𝐸0 − 𝐼𝑅𝑐)𝛼

Δ𝐻
 

(1-7) 

 



Introduction 

14 

 

Where n is the number of exchanged electrons, F is the Faraday constant, E0 is the open 

circuit voltage, Rc is the area-specific resistivity of the cell components, and  is the 

fraction of fuel used.  Eq. (1-7) clearly shows that minimizing the resistivity of the cell 

components can have a major impact on the overall efficiency. It has been shown that the 

combined area-specific resistivity (ASR) of the cell components (including MEA) should 

be below 0.5 ˖cm-2 (and ideally approach 0.1 ˖cm-2) to ensure high power densities, e.g. 

1 kW˖kg-1, mentioned for transport applications [6].   

However, each component of the MEA has its own development criteria on being able 

to address the key challenges to the market success of PEMFCs. Among MEA components, 

finding a more durable and more active cathode catalysts for PEMFC applications and 

durable gas diffusion layers for URFC applications are under development and has been a 

focus of researcher in the last decade [45].    

Because of the instability (low durability) of carbon based materials as a catalyst support 

under real PEMFC conditions, it is necessary to find an alternative way to catalyze the 

sluggish ORR reaction on the cathode side. The proposed alternative catalyst supports were 

achieved through adopting different strategies such as modifications on the current carbon 

based materials [46, 47]; development of support-less platinum catalysts and/or highly 

active Pt nanostructures [28, 48]; development of non-noble metal (non PGM) catalysts[49, 

50]; and/or development of noncarbon materials [32]. In determining the best candidate to 

be used as a catalysts support there are a number of factors which are needed to be 

considered such as excellent electronic conductivity, high corrosion resistivity, high 

surface area, strong cohesive force to catalyst particles, and uniform particle size 

distribution [51]. Among the strategies which have been adopted to find alternative catalyst 

supports, despite astonishing progress achieved through synthesizing metal oxide based 

(particularly titanium dioxide based [52]) nanostructures as noncarbon catalyst supports 

[32], it seems to be unlikely for a carbon-free metal oxide based catalyst support to address 

all requirements (high electronic conductivity, high corrosion resistant, high surface area, 

and thermal stability) at the same time. Recently, a promising candidate as a catalyst 

support was identified to be a hybrid or composite of metal oxide based supports (high 

stability and strong metal-support interaction) with carbon blacks (high surface area and 



Introduction 

15 

 

high conductivity) [53-56]. However, their performances under real fuel cell conditions 

has not been tested yet and their electrochemical durabilities were not improved 

significantly versus pure carbon based catalysts supports.   

With respect to the instability (low durability) of regular gas diffusion layers (carbon 

papers/clothes) for URFC applications, among proposed corrosion-resistant alternative 

GDLs [14, 15], commercially more promising results were obtained through coating 

corrosion-resistant bifunctional CLs onto carbon papers [57, 58]. The ideal corrosion 

resistant gas diffusion layer for URFC applications should also have a balanced 

hydrophilic/hydrophobic properties to operate effectively under both operation modes 

(electrolyser and fuel cell modes).  Despite very promising results through spray coating 

bifunctional CLs onto carbon-based GDLs, the interface between the CL and gas diffusion 

layer was still prone to corrosion and is under development. 

1.5 Objectives 

The objectives of this thesis are twofold, to develop innovative methodologies to make 

durable and still active membrane electrode assemblies for PEMFCs and protect regular 

gas diffusion layers from corrosion under URFC applications.  

To make durable and still active MEAs, this thesis mainly targeted the development of 

transition metal doped titanium dioxide based catalyst supports using an easily upscalable 

method. I also used transition metal doped titanium dioxide sols to create a more uniform 

corrosion-resistant coating onto regular carbon papers with potential applications in 

URFCs. 

1.6 Outline of the dissertation 

Chapter 2 describes how the corrosion resistance of regular carbon papers for URFC 

applications is increased. This has been done by developing a simple wet coating procedure 

to protect the interface between carbon papers and bifunctional CLs using a thin film of 

niobium-doped TiO2. Chapter 3 investigates the role of reducing agent to disperse Pt 

nanoparticles onto anatase phase Nb-doped TiO2 nanofibers. Chapter 4 reports an 

innovative method to address the low durability of carbon-black supported Pt catalysts in 
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PEMFCs that has been done by an in-situ reductive embedment of carbon into rutile phase 

Nb-doped TiO2 nanofibers. The electrochemical stability and activity of both carbon-free 

and carbon-embedded nanofibers for oxygen reduction reaction in acidic conditions and 

the effects of heat treatment condition on the chemical processes happening at the surface 

of Nb-doped TiO2 nanofibers were also presented in Chapter 4. Chapter 5 focuses on the 

PEMFC performance evaluation of the MEAs employing composite-supported Pt catalysts 

and reports an innovative method to prepare cathode CLs with optimized PEMFC 

performances. The fuel cell performances of the developed Pt catalysts were characterized 

under real fuel cell conditions using a house-made fully automated fuel cell test station 

which has been designed and manufactured in the clean Powertrain Lab at the University 

of Windsor. The H2/Air PEMFC performances of the MEAs employing composite-

supported Pt catalysts on their cathode sides were further optimized though utilizing an 

innovative method for the preparation of their corresponding cathode CLs. Chapter 6 

investigates the effect of catalyst component distribution on the PEMFC performances of 

composite-supported Pt catalysts. Electron microscopy and Raman mappings were used to 

investigate how Nafion and other catalyst layer components were distributed in both 

airsprayed and electrosprayed catalyst layers. Finally, Chapter 7 summarizes the significant 

findings, draws the conclusions, and suggests some applications of this work to Fuel Cell 

R&D for the future. 
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2.1 Introduction 

Direct conversion of chemical energy into electrical energy in fuel cells has been 

broadly developed over several decades because it promises a clean and reliable alternative 

to combustion engines. The unitized regenerative fuel cell (URFC) is a rather recent 

technology among the many different kinds of fuel cells, which includes electrolyser and 

fuel cell in one unit [1].  Its further development is presently limited by the low stability of 

the bifunctional oxygen electrode for both reduction of oxygen and oxidation of water [2]. 

Particularly problematic is the commonly used hydrophobized carbon paper (or cloth) as 

gas diffusion backing (GDB) layer because it quickly corrodes at the high potentials of the 

oxygen electrode in URFCs [1]. 

The replacement of carbon paper by more corrosion resistant materials such as titanium 

fibers [3] and foams [4] has been demonstrated but they cannot compete with the weight 

and cost advantages of carbon paper. Commercially more promising appears to be the 

chemical modification of carbon papers. Song et al. [5] and Huang et al. [6] reported a high 

performance URFC based on a novel bifunctional oxygen electrode that consists of a 

corrosion-resistant carbon-based gas diffusion layer. They showed that highly active 

catalysts, such as IrO2, react with the intermediate free radical oxygen species to less 

reactive oxygen molecules before they can reach the carbon based GDB layer. IrO2 and 

similar coatings of iridium titanium nitride [6] and titanium carbide [7] were spray coated 

as powders to generate microporous layers on top of carbon paper. Consequently, the 

interface between the catalyst layer and GDB layer is still prone to corrosion and requires 

protection of the carbon material. 

A possible alternative approach is the direct coating of carbon paper fibers with a 

corrosion resistant metal oxide layer but this has not been attempted, to the best of our 

knowledge, and may be challenging due to the hydrophobic nature of the carbon surface 

and incomplete coating of all carbon fibers. Commercially most promising is the coating 

with titanium dioxide because of its low cost, low toxicity, high resistance to chemical and 

photo induced corrosion, and high thermal stability. TiO2 is widely used not only as white 

pigment but also as semiconductor in, for example, photovoltaic [8], catalysis [9], and 
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biomedical applications [10]. Most interesting as semiconductor is the anatase phase of 

TiO2 with a band gap of 3.2 eV [11]. Its electronic conductivity can be increased by the 

introduction of appropriate dopants, such as Nb+5 [12]. Doping with Nb has also been 

shown to thermally stabilize the anatase phase and impede grain growth [13]. In fact, highly 

stable Pt/Nb-doped TiO2 catalysts have been applied in PEM fuel cells [14, 15] 

Our focus is on TiO2/carbon hybrid materials that combine the advantages of both 

titanium dioxide and carbon paper [16, 17]. The most cost effective deposition of TiO2 on 

carbon paper is deposition from solution, when compared to sputtering [18] and 

evaporation [19] techniques, but the lack of compatibility between the polar deposition 

solution and the rather inert and non-polar surface of the carbon paper remains a challenge 

[20, 21]. Presented here is an oxidative pretreatment of the surface of carbon paper that 

generates polar groups (e.g. OH, C=O, and COOH) for direct dip coating with Nb-doped 

TiO2 sols. This appears to be the first report on the oxidative modification of carbon 

papers/clothes/felts for a better coating with sol-gels, to the best of our knowledge, but has 

been widely applied in the functionalization of carbon nanotubes [20, 22]. The presented 

coating methodology is versatile and not limited to the fabrication of corrosion resistant 

GDB layers for unitized regenerative fuel cells. 

2.2 Experimentals 

Figure 2.1 shows the schematic representation of the procedure for oxidative 

functionalization of carbon paper and its coating with Nb-doped TiO2. This scheme will be 

explained in sections 2.2.1 and 2.2.2 and then physical and electrochemical characterization 

techniques will be explained in sections 2.2.3 and 2.2.4, respectively. 
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2.2.1 Preparation of functionalized carbon paper 

The surface oxidation of porous carbon paper (SpectracarbTM 2050A-0850 Engineering 

Fibers Tech. Shelton, CT) was achieved by applying a method previously reported for the 

oxidation of other carbon materials [23]. Three pieces of carbon fiber papers (15 mm × 15 

mm) were thoroughly washed with acetone, dried, and submerged in 50 mL of concentrated 

sulfuric acid. NaNO3 (5 g) was added to the sulfuric acid and stirred for an hour before the 

mixture was cooled down to 0 ºC in an ice bath and 7.3 g of KMnO4 were added in small 

portions over a period of 2 hours. When the addition was completed the temperature of the 

stirred mixture was increased to 35 ºC for another 2 hours. Finally, the oxidation was 

completed by the addition of 200 mL of ice water and 7 mL of H2O2 (30%). The oxidized 

carbon paper was thoroughly washed with aqueous HCl (3%) followed by deionized water 

and dried in a vacuum oven at 50 ºC for 24 hours. In the following the untreated carbon 

paper is denoted as UCP and the oxidatively functionalized carbon paper as FCP.  

 

Figure 2.1. Schematic representation of the procedure for oxidative 

functionalization of carbon paper and its coating with Nb-doped TiO2. 
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2.2.2 Preparation of Nb0.1Ti0.9O2 coating on carbon paper 

Nb-doped TiO2 thin films on carbon paper were prepared by dip coating of the carbon 

paper into a stabilized Nb-doped TiO2 sol gel [24, 25]. Acetylacetone was used as 

stabilizing agent to prevent the rapid hydrolysis of alkoxide precursors with water. 

Titanium tetraisopropoxide (8 mL, 27 mmol) and niobium ethoxide (680 µL, 2.7 mmol) 

(calculated ratio for a final composition of Nb0.1Ti0.9O2) were added to a vigorously stirred 

solution of 1.25 mL of acetylacetone in 50 mL of anhydrous ethanol under N2 atmosphere. 

The solution was stirred for 2 hours and then acidified to a pH of about 3 by the addition 

of 8.5 mL of concentrated HCl. Stirring was continued with the solution being open to the 

environment until 70% of weight loss has occurred due to evaporation of the solvents and 

the colour of the solution turned to deep yellow (approximately 5 hours). FCP and UCP 

were submerged into this solution for 1 min and then pulled out vertically at a speed of 1 

mm/min. The coated carbon papers were dried in air at 25 ºC for 36 hours and then heated 

to 450 ºC at a heating rate of 20˚C/h under N2 to initiate crystallization of the metal oxide. 

Nb-doped TiO2 coated untreated and functionalized carbon papers were denoted as Nb-

TiO2-UCP and Nb-TiO2-FCP, respectively. 

2.2.3 Physical Characterization 

XRD measurements were performed on a Bruker D8 Discover diffractometer equipped 

with a Hi-Star area detector and GADDS software package.  The tube is operated at 40 kV 

and 40 mA with CuKα1 monochromatized radiation source (wavelength = 1.54187 Å) and 

an initial beam diameter of 0.5 mm was used. The carbon paper samples were measured in 

transmission mode and diffraction data were recorded between 2= 20º-55º with  defined 

as diffraction angle in degrees. 

Contact angle measurements were conducted with a Ramé-Hart goniometer (Model 

200) equipped with a CCD camera and an automatic dispenser of water (0.2 µL). Fourier 

transform infrared (FTIR) spectra were taken with an ALPHA spectrometer (Brucker Inc.) 

in the attenuated total reflection (ATR) mode over a spectral range with wave number of 

4000 to 400 cm-1. Raman spectroscopy was conducted with a Renishaw inVia Raman 

microscope by using an argon laser with an excitation wavelength of 514.5 nm and an 
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objective lens of 50x. Intact carbon paper samples were used for both Raman and FTIR 

spectroscopy measurements. The morphology of Nb-doped TiO2 coated carbon paper 

samples was examined by scanning electron microscopy (FEI Quanta 200 FEG equipped 

with an energy-dispersive spectrometer EDAX SiLi Detector) in backscatter mode at 15 

kV. 

2.2.4 Electrochemical Characterization 

A conventional three-electrode system (BASi C3) was used for cyclic voltammetry 

studies. Pt wire and saturated Ag/AgCl electrodes were used as counter and reference 

electrodes, respectively, and a piece of carbon paper under investigation with an area of 

0.5 cm2 served as the working electrode. All cyclic voltammetry measurements were 

conducted in Ar saturated solutions of 0.5 M H2SO4 between -0.2 V and 1.2 V versus 

Ag/AgCl at a scan rate of 50 mV s-1. Sample surfaces were cleaned by running cyclic 

voltammetry for 20 times in the same solution between -0.2 V and 1.2 V versus Ag/AgCl 

at a scan rate of 100 mV s-1. A constant voltage of 1.2 V versus Ag/AgCl was applied to 

the working electrode for up to 72 hours to investigate their corrosion resistance. The 

degree of corrosion after certain periods of time was monitored by measuring the charge 

per unit area (mC∙cm-2) produced by Quinone/Hydroquinone (Q/HQ) redox couple based 

on the following equation [26, 27]: 

 

 𝑄 𝐻𝑄⁄ 𝑐ℎ𝑎𝑟𝑔𝑒 = (∫ 𝑖 ∙ 𝑑𝑉)
𝑉𝑏

𝑉𝑎

�̇�⁄  (2-1) 

 

where Va and Vb define the voltage window of the Q/HQ redox reaction at a scan rate 

of �̇�= 50 mV/s and i is the current per unit area produced by Q/HQ redox reaction excluding 

the pseudo-capacitance current. 
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2.3 Results and Discussion 

2.3.1 Effects of oxidative treatment 

The oxidative functionalization of the carbon paper is expected to increase the 

hydrophilicity of its surface, which was conveniently monitored by the measurement of 

surface contact angles of water drops (Fig. 2.2). Carbon paper, as purchased, has a 

hydrophobic surface as illustrated by a contact angle of 124º (Fig. 2.2a). This angle changes 

to 0º after oxidative treatment, confirming the formation of a hydrophilic surface (Fig. 

2.2b).  

 

 

Figure 2.2. Water contact angle of carbon paper. (a) before oxidative functionalization; 

(b) after oxidative functionalization. 

 

Oxidative functionalization of the carbon paper with alcoholic and carbonyl groups was 

also confirmed by Infrared (IR) and Raman spectroscopy (Figs. 2.3a and 2.3b, 

respectively). FTIR spectra of carbon paper after oxidative functionalization clearly exhibit 

additional absorption bands (Fig. 2.3a). Absorptions at wave numbers of 1005 cm-1 and 

1234-1170 cm-1 are assigned to C-O stretching vibrations [28], absorptions at 1705 cm-1 

and 1726 cm-1 are attributed to C=O stretching vibrations of carbonyl groups [29-31], and 
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the absorption at 1400 cm-1 is assigned to the O-H bending deformation of carboxylic acid 

and phenolic groups [28, 30, 32].  

 

 

Figure 2.3. Surface characterization of UCP and FCP. (a) FTIR and (b) Raman 

spectroscopy. 

 

Information about changes to the carbon framework during oxidative functionalization 

is best obtained by Raman spectroscopy (Fig. 2.3b). Raman spectra of both untreated 
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carbon paper (UCP) and functionalized carbon paper (FCP) show the characteristic 

absorption bands of graphite at wave numbers of 1580 cm-1 (G-band) and at 1350 cm-1 (D-

band). The G-band is assigned to in plane vibrations of the sp2 carbon framework and the 

D-band (disorder band) is associated with carbon atoms at edges and sp3 carbons [33, 34].  

The observed increase in intensity of the D-band relative to the G-band (D/G ratio increases 

from 0.56 to 0.93) after oxidative functionalization is consistent with the expected increase 

in sp3 and edge carbons [34, 35]. However, the Raman spectra also confirm that most of 

the sp2 carbon framework remains intact during oxidative functionalization, which is 

independently supported by XRD data discussed below (see Figure 2.5). These results 

clearly demonstrate that the oxidation treatment did not destroy the sp2 carbon framework, 

which is important for fuel cell applications. 

2.3.2 Nb-doped TiO2 coating on carbon paper 

Characterized UCP and FCP samples were then coated with a sol-gel of Nb-doped TiO2 

and heated to 450 ºC under nitrogen to give samples of Nb-TiO2-UCP and Nb-TiO2-FCP, 

respectively. 

2.3.2.1 Wettability 

Contact angles with water were measured to compare the relative hydrophilicity of the 

surfaces (Fig. 2.4). As expected, the hydrophilic TiO2 coating lowers the contact angle of 

Nb-TiO2-UCP to 85º in comparison to 124º observed for UCP whereas the contact angles 

of FCP and Nb-TiO2-FCP are both 0º. Surprising, however, is the large difference in 

contact angles between Nb-TiO2-UCP and Nb-TiO2-FCP, which must be caused by the 

incomplete coating on the surface of UCP and thus the larger area of the hydrophobic 

carbon surface exposed to water. 
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Figure 2.4. Water contact angle of Nb-doped TiO2 coated carbon papers. (a) Nb-TiO2-

UCP; (b) Nb-TiO2-FCP. 

 

2.3.2.2 Structure and morphology 

Crystallinity and morphology of the Nb-doped TiO2 coatings were studied by X-ray 

diffraction (XRD) (transmission mode) and scaning electron microscopy (SEM) (Figs. 2.5 

and 2.6). Figure 2.5a shows the presence of strong reflections of the graphitic framework 

at 2θ = 27º and 44º which verifies the persistence of the predominantly graphitic structure 

of the carbon paper [36]. The diffraction patterns of Nb-doped TiO2 coated samples 

(Figures 2.5b and 2.5c) show the existence of peaks corresponding to (101), (004), (200), 

(105), and (211) crystallographic planes which were identified as the crystal of anatase 

phase of TiO2.  Furthermore, the absence of corresponding peaks for Nb oxide confirms an 

incorporation of Nb into the TiO2 matrix (Figures 2.5b and 2.5c). 
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Figure 2.5. X-ray diffraction patterns of different samples. (a) FCP; (b) Nb-doped-FCP; 

(c) Nb-TiO2-UCP. 

 

Morphological differences of the TiO2 coatings of Nb-TiO2-UCP and Nb-TiO2-FCP are 

clearly revealed by SEM studies (Figure 2.6). Both samples contain chunks of TiO2 but the 

Nb-TiO2-FCP sample contains evenly coated carbon fibres (compare Figures 2.6c and 

2.6f). This result is in agreement with conact angle measurements described earlier 

(Figures 2.2 and 2.4) and consistent with our expectation that the carbon surface 

functionalized with more hydroxyl and carbonyl groups interacts better with the 

hydrophilic TiO2 sol. A higher content of Ti at the surface of Nb-TiO2-FCP in comparison 

to Nb-TiO2-UCP is also confirmed by energy dispersive spectroscopy (EDS) that gives Ti 

contents of 12.77 wt% and 7.17 wt%, respectively. However, the total content of TiO2 

taken by Nb-TiO2-UCP is 25% larger than that for Nb-TiO2-FCP. The total content of TiO2 

was simply calculated by weighing either UCP or FCP samples, before and after dipping 

into the coating solution. This confirms that Nb-TiO2-FCP is better coated on the surface 
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with less TiO2 taken. This difference in the amount of TiO2 taken is because of the larger 

chunks of TiO2 between the fibers in UCP than FCP.  

 

 

Figure 2.6. FE-SEM images of different samples at different magnifications. (a-

c) Nb-TiO2-CP, (d-f) Nb-TiO2-FCP. 
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Optimiztions in terms of concentration and viscosity of the deposition solution were 

also conducted at different amounts of weight loss percentage through evaporation, e.g. 

30%, 40%, 70%, and 80%, and increasing the exposure time in the sol to determine the 

optimum combination to achieve a uniform coating on FCP. Figure 2.7a exemplifies the 

results at weight losses of the deposition solution lower than 70% ,e.g. 60%, and it 

demonstrates that the FCP has been less coated than the case for 70% weight loss (Figure 

2.6e). EDS results show the Ti contents of 5.39 wt% and 12.77 wt% for 60% and 70% 

weight loss samples, respectively. The spots indicated by arrows in Figure 2.7b on the 

surface of FCP represent the locations where Nb-doped TiO2 is accumulated while the rest 

is mostly not coated.  On the other hand, Figure 2.7c and 2.7d clearly shows that the coating 

achieved by increasing the exposure time in the sol was also not effective. It create thicker 

and more complete TiO2 coatings but the layers delaminated from the fibers during the 

calcination step, probably due to the different thermal expansion of Nb-doped TiO2 and 

carbon paper. Therefore simply by comparing Figures 2.7, and 2.6d-f we can conclude that 

70% weight loss is the optimum case among the cases investigated. 
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2.3.2.3 Interaction between Nb-doped TiO2 coating and carbon surface 

The presence of a Nb-doped TiO2 coating was also confirmed by infrared (IR) and 

Raman spectroscopy (Fig. 2.8).  Both FTIR spectra of Nb-TiO2-UCP and Nb-TiO2-FCP 

show the characteristic broad absorption band for TiO2 between wave numbers of 1000 

cm-1 and 400 cm-1. A comparison with the IR spectrum of pristine Nb-doped TiO2 reveals 

a distinct broadening of the absorption at 440 cm-1 towards larger wave numbers in the 

spectra of Nb-TiO2-UCP and Nb-TiO2-FCP (Fig. 2.8b). This shift is reasoned with a 

contribution of Ti-O-C vibration modes that are centered at about 620 cm-1 and their 

combination bands with the vibration mode of the Ti-O-Ti fragment at about 440 cm-1 [37]. 

The appearance of this broadening towards 620 cm-1 has been interpreted as evidence for 

the covalent interactions between TiO2 and the carbon substrate [16]. This broadening is 

more pronounced in the Nb-TiO2-FCP than in the Nb-TiO2-UCP sample, which agrees 

with the better coating of FCP observed by SEM and the fact that oxidized surface of FCP 

contains many more functional groups that react with the TiO2 sol. 

Figure 2.7. FE-SEM images of different Nb-TiO2-FCP samples at different 

magnifications. (a) and (b) coated after 60% weight loss of the coating solution; 

(b) and (c) exposed to the sol for about 7 hours (during the entire weight 

reduction process of the sol). 
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The Raman spectra of the coated samples were taken at multiple locations to probe for 

spatial differences with a spot size of 1 µm2. No dependence on location was observed for 

the Nb-TiO2-FCP sample that always shows both, the characteristic absorptions of the 

carbon substrate between wave numbers of 1250 and 1650 cm-1 (D- and G-bands) and the 

anatase phase of TiO2 (Fig. 2.8e). The Vibrational peaks centered  at 149 cm-1,  389 cm-1, 

516 cm-1, and 634 cm-1 are well consistent with Eg, B1g and A1g characteristic peaks of the 

Figure 2.8. Surface characterization by FTIR and raman spectroscopy. (a) and 

(b) FTIR spectra of Nb-doped TiO2, Nb-TiO2-UCP, and Nb-TiO2-FCP; (c) and 

(d) Raman spectra of Nb-TiO2-UCP taken at different locations; (e) Raman 

spectra of Nb-TiO2-FCP.  
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anatase phase of TiO2 (see Fig. 2.8e inset) [11, 38]. In contrast, Raman spectra of Nb-TiO2-

UCP sample either showed the absorptions of the anatase phase of TiO2 or the carbon 

substrate (Figs. 2.8c and 2.8d, respectively) but never both absorptions together. This is 

another indication of an uneven coating of UCP and a more uniform coating of FCP. Also 

of significance is the broadening of the TiO2 absorptions in the Nb-TiO2-FCP sample when 

compared with Nb-TiO2-UCP. This peak broadening has been attributed to a lower degree 

of crystallinty (reduced lattice vibration) due to the covalent bonding of TiO2 to the surface 

of the oxidized carbon paper [39]. 

2.3.3 Electrochemical stability 

All four samples UCP, FCP, Nb-TiO2-UCP, and Nb-TiO2-FCP were studied by cyclic 

voltammetry (CV) to probe their redox properties and potential for application in URFCs 

(Fig. 2.9). CV measurements were performed in Ar saturated solutions of aqueous 0.5 M 

H2SO4 between -0.2 V and 1.2 V (versus Ag/AgCl) at a scan rate of 50 mV s-1 to simulate 

the water electrolysis reaction in URFC applications [5, 40]. The increase in surface 

oxidation of the carbon paper was evaluted based on an increase in intensity of the redox 

peaks of the Q/HQ couple at a half potential of about 0.4 V versus Ag/AgCl [40-42] and 

an increase in pseudo-capacitive current [43, 44]. 
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A comparison of the cyclic voltammograms of the four samples as prepared (solid black 

curves in Fig. 2.9) clearly reveals much larger capacitive currents and more intense peaks 

of the Q/HQ redox couple for the oxidized FCP samples (Figs. 2.9b and 2.9d) when 

compared to the UCP samples. This was expected as the oxidative surface treatment 

generates many more pH and redox active groups (e.g. –OH, C=O, and COOH) on the 

surface of the FCP samples that also increase the overpotentials for the Q/HQ redox couple 

(distances between peak potentials). An increase in overpotentials indicates a slower 

kintetic of the Q/HQ redox reaction and has been reasoned with an increase in local 

competition for protons when the number of pH active functional groups per unit area 

increases [40, 44]. The increase in the overpotential for the UCP sample after 72 hours of 

potential hold at 1.2 V versus Ag/AgCl (Figure 2.9a) also confirms the dependancy of 

overpotential on the degree of oxidation of the carbon paper.    

Figure 2.9. Cyclic voltammograms of different samples in aquesous 0.5 M 

H2SO4 at a scan rate of 50 mV/s after holding the potential at 1.2 V versus 

Ag/AgCl for 0, 24, 48, and 72 hours; (a) UCP; (b) FCP; (c) Nb-TiO2-UCP; (d) 

Nb-TiO2-FCP. 
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Unexpected was the complete absence of peaks for the Q/HQ redox couple in the as 

prepared Nb-TiO2-UCP sample. Two different factors may contribute to the absence of 

these peaks: first, the uncoated UCP sample contains only a small number of redox active 

sites that may simply be covered by TiO2 in the coated Nb-TiO2-UCP sample. Second, it 

is likely that some inner Q/HQ redox sites are not reached by the aqueous electrolyte since 

both samples, UCP and Nb-TiO2-UCP, are not well wetted by the electrolyte as their 

contact angles with water of 124˚and 85˚ indicates, respectively. The increase in capacitive 

current in sample Nb-TiO2-UCP below 0 V is attributed to a reduction peak of TiO2 (filling 

of the conduction-band) [45] whereas the origin of the redox couple with a half potential 

(E1/2)of about -0.05 V remains uncertain.  

All four samples were cycled between -0.2 V and 1.2 V versus Ag/AgCl at a scan rate 

of 50 mV∙s-1 for 300 times to monitor the stability towards oxidation but no changes to the 

peak intensity of the Q/HQ redox couple were observed [5]. Thousand or more cycles are 

probably required before significant differences in the voltammograms become visible and 

indicate differences in stability between the samples. To accelerate this process we decided 

to hold the samples at 1.2 V versus Ag/AgCl for several hours between voltammograms 

(Figs. 2.9 and 2.10). 
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The amount of electrochemical surface oxidation after 24 hours, 48 hours, and 72 hours 

at 1.2 V was estimated by comparing the peak areas of the Q/HQ redox couple after 

subtraction of the charges related to the pseudo-capacitive currents (Figs. 2.9 and 2.10) 

[27]. It is immediately obvious that FCP has the highest charge per cm2 to start with and 

also shows the largest increase in charge per cm2 from 8.23 to 26.52 mC∙cm-2 after 48 hours 

at 1.2 V, Table 2.1. In contrast, the charge per area values of the coated FCP sample (Nb-

TiO2-FCP) remain almost constant for 48 hours (increase from 6.71 to 7.74 mC∙cm-2), even 

though the initial value is almost as high as for FCP, and reach a value of 14.78 mC∙cm-2 

after 72 hours. Both UCP and Nb-TiO2-UCP start at very low charge per area values of 

0.12 mC∙cm-2 and 0 mC∙cm-2, respectively. These values increase for UCP and Nb-TiO2-

UCP with each 24 hour oxidation cycle to 7.63 mC∙cm-2 and 8.48 mC∙cm-2 after 48 hours 

and 34.92 mC∙cm-2 and 21.03 mC∙cm-2 after 72 hours, respectively.  

 

 

Figure 2.10. The amount of charge per cm2 measured for the peaks of the Q/HQ 

redox couples as a function of time of electrochemical oxidation at 1.2 V. 
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Table 2.1. The amount of charge per cm2 measured for the peaks of the Q/HQ redox couples 

after holding the potential at 1.2 V versus Ag/AgCl for 0, 24, 48, and 72 hours. 

Sample Name 

Q/HQ charge per unit area (mC∙cm-2) 

0 hrs at 1.2 V 

vs. Ag/AgCl 

24 hrs at 1.2 V 

vs. g/AgCl 

48 hrs at 1.2 V 

vs. g/AgCl 

72 hrs at 1.2 V 

vs. g/AgCl 

UCP 0.12 2.55 7.63 34.92 

Nb-TiO2-UCP 0 0.79 8.48 21.03 

FCP 8.23 9.97 26.52 - 

Nb-TiO2-FCP 6.71 6.71 7.74 14.78 

 

Overall, the increase of charge per unit area for the Q/HQ redox couple produced by 

electrochemical surface oxidation after 72 hours is highest for UCP with 34.80 mC∙cm-2 

(not considering FCP), the lowest for Nb-TiO2-FCP with 8.07 mC∙cm-2, and in between for 

Nb-TiO2-UCP with 21.03 mC∙cm-2. In other words, Nb-TiO2-FCP is by factors of 2.61 and 

4.31 more stable than Nb-TiO2-UCP and UCP, respectively. Here the factor has been 

defined as a ratio of the increase in charge per unit area for the Q/HQ redox couple for 

either UCP or Nb-TiO2-UCP to that for Nb-TiO2-FCP. 

 The observed differences in CV agree well with the observed structural differences 

discussed above. Sample FCP contains many redox active surface sites right from the 

beginning that appears to promote the formation of more Q/HQ redox couples during 

electrochemical oxidation. UCP has only few redox active surface sites at the beginning 

but the number of Q/HQ redox couples increases exponentially during electrochemical 

oxidation. The initial large differences between UCP and FCP are likely exaggerated by 

their differences in wetting. Many redox sites of the hydrophobic UCP sample may initially 
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not be in contact with the electrolyte but the UCP sample is as hydrophilic as FCP after 48 

hours of oxidation (surface contact angle with water is 0˚). A similar but less drastic change 

in wettability may also affect the number of Q/HQ redox couples initially observed for Nb-

TiO2-UCP (surface contact angle with water changes from 85˚ to 0˚ after 48 hours of 

oxidation). However, electrochemical oxidation of Nb-TiO2-UCP is slower than that of 

UCP at all intervals, which must result from a partial protection by the TiO2 coating. This 

protection is much better in Nb-TiO2-FCP because of the better coverage of the carbon 

fibers with Nb-doped TiO2 and makes the material that is most stable to electrochemical 

oxidation.  

Based on the assumption that Q/HQ redox couples covered with Nb-doped TiO2 are not 

redox active, we can conclude that many Q/HQ redox couples in Nb-TiO2-FCP are not 

covered by the coating as the initial current per unit area is still high. It is likely that most 

of these sites are located deep inside the carbon paper and are simply not reached by the 

coating solution. In fuel cell applications these inner uncovered sites may not be 

problematic as most of the chemistry on the oxygen electrode side occurs close (at 

distances of about 10 to 50 µm) to the interface with the bifunctional catalyst layer. 

2.4 Conclusions 

A new procedure for a simple wet coating of carbon paper with Nb doped TiO2 is 

presented. A more uniform coating of the carbon fibers is achieved only if the carbon paper 

is oxidatively functionalized prior to coating. Cyclic voltammetry measurements on all 

samples reveal that the oxidatively functionalized carbon paper coated with Nb doped TiO2 

is by a factor of 4.31 more stable than untreated carbon paper to electrochemical oxidation 

in 0.5 M aqueous H2SO4 at 1.2 V versus Ag/AgCl. This is astonishing as the cyclic 

voltammetry data suggest that many of the redox active sites are not covered by the Nb-

doped TiO2 coating, probably because they are located deep inside the carbon paper. 

However, these sites are likely more than 10-50 µm away from the interface to the 

bifunctional catalyst layer in unitized regenerative fuel cells and, therefore, outside the 

reaction zone. Future work will focus on the adjustment of the hydrophobicity of the coated 
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carbon paper by chemical alterations to the TiO2 layer for actual tests in unitized 

regenerative fuel cells.  
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3.1 Introduction 

Polymer electrolyte membrane (PEM) fuel cells are a promising technology for power 

generation especially in portable devices. One of their main limitations is the degradation 

of the catalyst and catalyst support, which has particularly fueled the development of new 

catalyst supports to replace or modify the widely used carbon materials [1]. Carbon as 

catalyst support is primarily degraded by electro-oxidation [2, 3]. 

In recent years, several novel nanostructured materials based on tungsten oxides, 

indium-tin oxides, and titanium oxides have been introduced as possible catalyst supports 

[1, 4, 5]. Particularly intriguing has been the work on cost-effective TiO2 materials. Huang 

et al. first reported on the high stability of Pt/TiO2 electrocatalysts when compared to 

commercial Pt/C catalysts [3, 6]. The activity of the Pt nanoparticles could be increased 

when they were deposited onto nano-structured TiO2 support materials such as nanofibers 

[7]. However, a major drawback of TiO2 as catalyst support is its low electrical 

conductivity of only 10-13 Ω-1.cm-1 at 298 K that is insufficient for fuel cell applications 

[8]. Increased electronic conductivity has been reported for non-stoichiometric TiO2 

compounds, such as magneli phase titanium dioxide, or TiO2 that is doped with donor-type 

ions such as Nb+5 [9-11]. The presence of niobium also increases the stability of the Pt 

nanoparticles in comparison to undoped titanium dioxide or carbon support as 

demonstrated by Bauer et al. with Pt nanoparticles deposited onto niobium-doped titanium 

dioxide nanofibers [12].  

In addition to alterations to the catalyst support material, activity of the catalyst is also 

increased when the size of the Pt nanoparticles is decreased [13, 14]. Consequently, many 

different methods for the deposition of Pt nanoparticles on carbon supports have been 

developed [15-18]. Straightforward chemical reduction methods have been most widely 

applied and are the main method for the deposition of Pt onto TiO2 supports [6, 8, 10]. 

Ethylene glycol [19], sodium borohydride in ethylene glycol [11, 20], and sodium 

borohydride in an alcoholic surfactant solution [3] are the most widely used reducing 

agents but no comparative studies for depositions of Pt on TiO2 nanofibers have been 

reported. .  
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Presented here is an extension of Bauer’s work that studies the effect of two different 

reducing agents on the deposition of Pt nanopartciles onto niobium-doped titanium dioxide 

nanofibers as well as their activity and stability as catalyst for water reduction at low pH. 

3.2 Experimental 

3.2.1 Preparation of Nb0.1Ti0.9O2 nanofibers 

Polyvinyl pyrrolidone (0.45 g, Mw = 1,300,000 g/mol) was added to 7.5 mL of 

anhydrous ethanol and stirred until it was fully dissolved. A second solution was prepared 

by adding 1.6 mL of Ti(IV)-isopropoxide and 135 µl of niobium ethoxide to a solution of 

3 mL acetic acid in 3 mL anhydrous ethanol under N2 atmosphere. The two solutions were 

mixed together and stirred for 3 hrs at room temperature under N2 to generate a 

homogeneous viscous polymer solution. After degassing, the solution was loaded into a 

plastic syringe that was equipped with a 22-guage stainless steel needle. Electrospinning 

of nanofibers was carried out with a standard setup consisting of a plastic syringe and a 

grounded aluminum collector plate. The distance between the needle tip and the collector 

was 12 cm and the voltage was 12 kV. The solution was supplied with a syringe pump 

(KDS scientific) at a constant rate of 0.35 mL/hr. The as-spun fibers were dried at room 

temperature for 24 hrs and then heated to 500ºC under oxygen atmosphere to give 

crystalline Nb-doped TiO2 nanofibers free of PVP and other organic compounds after about 

4 hrs of heat treatment.  

3.2.2 Pt nanoparticle deposition 

Method 1: Nb0.1Ti0.9O2 nanofibers (30 mg) were dispersed in 25 mL of a solution of 

H2PtCl6.6H2O in ethylene glycol (1.5 mM) at room temperature, which corresponds to a 

final loading of 20wt% of Pt on nanofibers. The pH value of the suspension was adjusted 

to 10 by drop-wise addition of 0.1M NaOH in ethylene glycol. Stirring of the suspension 

for 1 hr at room temperature 3 hrs at reflux (about 160 ºC), and finally overnight at room 

temperature generated the Pt coated nanofibers, which were separated from the reaction 

suspension by centrifugation. The nanofibers were suspended in de-ionized water and 

separated by centrifugation three times to completely remove the ethylene glycol and 

finally dried in vacuum at 80 ºC overnight 
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Method 2: Nb0.1Ti0.9O2 nanofibers (30 mg) were dispersed in a solution of 0.2 M sodium 

dodecyl sulphate in anhydrous ethanol and sonicated for 1 hr. H2PtCl6.6H2O (20 mg; 

corresponding to a final loading of 20wt% of Pt on nanofibers) was added to the dispersion 

and stirred for 3 hrs. Reduction of the Pt salt to Pt nanoparticles was achieved by the 

addition of a 0.1 M solution of NaBH4 in ethanol (40 equivalents of NaBH4 with regard to 

Pt).The reaction mixture was stirred for 15 hrs and the Pt coated nanofibers were separated 

by centrifugation, washed with de-ionized water three times, and dried in vacuum at 80 ºC 

overnight.  

3.2.3 Physical Characterization of Nb0.1Ti0.9O2 and Pt/Nb0.1Ti0.9O2 nanofibers 

X-ray diffraction was conducted with a Brucker D8 diffractometer equipped with a 

copper source. Diffraction patterns were recorded in transmission mode between 2= 20º-

80º. The apparent crystallite size was determined using the Scherrer equation [21]. Three 

diffraction lines (111), (200) and (220) were chosen for the measurements crystallite sizes 

and the mean average is reported. The morphology of synthesized nanofibers and 

Pt/Nb0.1Ti0.9O2 catalysts were examined by scanning electron microscopy (FEI Quanta 200 

FEG equipped with an energy-dispersive spectrometer EDAX SiLi Detector). For SEM 

specimen preparation, a small amount of powder was spread on a carbon tape adhered to 

an aluminum specimen holder. Transmission electron microscopy was conducted with a 

JEOL 2010F microscope operating at 200 kV.  

3.2.3 Electrochemical characterization of Pt/Nb0.1Ti0.9O2 nanofibers 

Electrochemical characterizations were conducted in a conventional three-electrode 

system using a BASi RDE-2 Rotating Disk Electrode. Pt wire and saturated Ag/AgCl 

electrodes were used as counter and reference electrodes, respectively. A glassy carbon 

RDE tip (0.076 cm2) served as the working electrode. The catalyst ink was prepared as a 

dispersion of 2 mg of Pt/Nb0.1Ti0.9O2 nanofibers in 1 mL ethanol by sonication for 20 mins. 

This catalyst ink (about 20 µL for each coating) was then coated onto the glassy carbon 

working electrode and dried.  Nafion solution (2 µL of 5 wt.% Nafion solution, DuPont) 

was added on top of the catalyst layer to ensure better adhesion to the glassy carbon 

electrode. All electrochemical characterizations were based on cyclic voltammetry 

techniques in Ar saturated solution of 0.5 M H2SO4 in the range of 0.03 V to 1.4 V vs. RHE 
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at a scan rate of 100 mV.s-1. An upper potential limit of 1.4 V was chosen because 1.4 is 

close to the cathode potential in the condition of current and local fuel starvation at which 

the corrosion of the carbon support is most severe [6]. The electrodes were cleaned from 

any contamination by cycling them 20 times from 0.03 V to 1.2 V vs. RHE at a scan rate 

of 100 mV s-1 in Ar purged  0.5 M H2SO4 prior to coating. To investigate the catalyst 

stability, 1000 full cycles in the range of 0.03 V to 1.4 V vs. RHE at a scan rate of 100 mV 

s-1 were performed and the electrochemical surface area (ECSA) was calculated based on 

H2 desorption peaks observed between 0.3 and 0.35 V vs. RHE after 50 and 1000 cycles. 

The electrochemical surface areas (ECSA) of Pt nanoparticles were determined by 

integration of the hydrogen desorption peak of the 50th and 1000th full cycles according to 

Eq. (1) [6]: 

 

 ECSA =  
QH

m ×  qH
 (3-1) 

 

QH is the charge of hydrogen desorption in coulombs, m is the Pt metal loading in g, 

and qH is the charge per unit area required for the desorption of a monolayer of hydrogen 

on a Pt surface (here set to 210 µC cm-2) [22]. 

3.3 Results and discussion 

Optimization of the electrospinning parameters, especially flow rate, nozzle to target 

distance, and voltage, reproducibly generates Nb-doped TiO2 nanofibers with an average 

diameter of 70 nm after calcination as confirmed by FE-SEM images (Figure 3.1). These 

results agree with what has been reported for the electrospinning of similar fibers [23]. 
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Powder X-ray diffraction of the nanofibers before and after deposition of Pt 

nanoaprticles confirms the presence of TiO2 predominantly as anatase phase and the 

absence of reflections of Nb oxide (Figure 3.2). This confirms that Nb is fully incorporated 

into the TiO2 structure. After deposition of Pt nanoparticles by either the ethylene glycol 

(EG) or the NaBH4 reduction methods additional reflections occur in the XRD patterns that 

agree with the (111), (200), and (220) reflections of metallic Pt. The larger FWHM for the 

Pt reflections of the EG sample in comparison to the hydride sample suggests a smaller Pt 

particle size for the former. Estimations based on Scherrer’s equation gives an average size 

of Pt crystallites of 5.4 nm and 7.6 nm for the EG and sodium borohydride reduction 

methods, respectively (Table 3.1). 

Figure 3.1. FE-SEM images of the Nb0.1Ti0.9O2 nanofibers prepared at 1.25 

KV/cm electric field. 
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Table 3.1. Structural and electrochemical properties of Pt/Nb0.1Ti0.9O2 catalysts at 50th 

and 1000th cycles after potential cycling in the range of 0.3 to 1.4V. 

Catalyst 
Crystallite size 

(nm)a 

ECSA 

(after 50 scans) 

(m2/gPt)b 

ECSA 

(after 1000 scans) 

(m2/gPt)b 

EG method 5.4, (SD=0.529) 5.45 3.43 

NaBH4 method 7.6, (SD=0.556) 4.96 3.07 

a Scherrer equation; b Integration of H2 desorption peak in cyclic voltammograms 

 

Consequently, a larger surface area is expected for the sample generated by EG 

reduction and this was confirmed by cyclic voltammetry (Figure 3.3). The electrochemical 

results clearly show a larger electrochemical surface area (ECSA) of 5.45 m2/gPt 

Figure 3.2. Powder X-Ray diffraction patterns of Pt-coated Nb0.1Ti09O2 

nanofibers with EG method and sodium borohydride (NaBH4) method. 



Effect of Reducing Agent on the Dispersion of Pt Nanoparticles on Electrospun Nb0.1Ti0.9O2 Nanofibers  

57 

 

(voltammetric cycles between 0.03 and 1.4 V vs. RHE) for Pt nanoparticles reduced by EG 

in comparison to 4.96 m2/gPt for sodium borohydride reduction. Very similar ECSA values 

were reported for a Pt on Nb0.1Ti0.9O2 nanofibers catalyst prepared with sodium 

borohydride in ethylene glycol [11]. 

 

The smaller size and the better dispersion of Pt nanoparticles on Nb0.1Ti0.9O2 nanofibers 

when reduced with ethylene glycol is attributed to the stabilizing effect of glycolic acid, 

the oxidation product of ethylene glycol in the presence of OH-.Glycolic acid anions readily 

adsorb onto the surface of Pt nanoparticles that are then stabilized by charge repulsion [19], 

which apparently is more effective than dodecyl sulphate.  

Figure 3.3. Cyclic voltammograms of (a) EG-reduced Pt/Nb0.1Ti0.9O2 and (b) 

NaBH4-reduced Pt/Nb0.1Ti0.9O2 catalysts after 50 and 1000 cycles at a scan rate 

of 100 mV/s.The Pt loading was 100 µgPt.cm-2 and the electrolyte was Ar 

purged 0.5 H2SO4. Insets show the charge integration of the H2 desorption peaks 

for ECSA calculation. 



Effect of Reducing Agent on the Dispersion of Pt Nanoparticles on Electrospun Nb0.1Ti0.9O2 Nanofibers  

58 

 

 

The same differences in particle size and dispersion between the two samples prepared 

by EG and borohydride reductions are also visible in the SEM and TEM images (Figure 

3.4). SEM images of samples prepared by borohydride reduction show larger aggregates 

and an uneven distribution of Pt nanoparticles (Figure 3.4a). In contrast, SEM images of 

samples reduced with EG have too low resolution to identify individual clusters of Pt 

nanoparticles (Figure 3.4b) but TEM images verify an average particle size of about 5 nm 

and an excellent dispersion on the nanofibers (Figures 3.4c, d). TEM images also confirm 

the crystalline nature of the Nb/TiO2 nanofibers and an average diameter of the Pt 

nanoparticles of 4-5 nm. 

Despite their differences in structure both Pt/Nb0.1Ti0.9O2 catalyst samples show similar 

chemical stability. ECSA values calculated after 1000 potential cycles confirm an activity 

loss of 38% for both catalyst samples, which is a significant improvement in comparison 

to commercially used Pt/C catalysts that show a decrease in activity by 72% after 1000 

Figure 3.4. Back scattered FE-SEM images of catalysts reduced by NaBH4 (a) 

and EG (b), respectively. TEM (c) and HRTEM (d) images of Pt nanoparticles 

on Nb/TiO2 nanofibers prepared by the EG method. 
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potential cycles due to severe corrosion of the carbon support [6]. Similar activity losses 

of 40% have been reported for Nb-doped titanium dioxide nanofibers supported Pt catalysts 

that were prepared by reduction with NaBH4 in ethylen glycol [11] and catalysts based on 

Pt nanoparticles coated onto TiO2 nanotubes [24]. The better retention of activity for the 

Pt/Nb0.1Ti0.9O2 catalyst system in comparison to Pt/C is reasoned with a strong metal 

support interaction (SMSI) between Pt nanoparticles and Nb0.1Ti0.9O2 nanofibers [25].  

3.4 Conclusions 

The reductive deposition of Pt nanoparticles onto Nb0.1Ti0.9O2 nanofibers generates 

highly active and stable catalyst systems for potential applications in PEM fuel cells. 

Reduction of the Pt salt with ethylene glycol generates smaller and better dispersed Pt 

nanoparticles on Nb/TiO2 nanofibers than reduction with borohydride. This amounts to a 

higher catalytic activity for the sample reduced with ethylene glycol but, interestingly, the 

stability of both catalyst samples is equal with about 38% reduction in activity after 1000 

voltammetric cycles. 
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4.1 Introduction 

To take a notable step towards fuel cell commercialization, high cost and low durability 

are the most important challenges that have to be overcome [1]. Pt catalysts supported by 

carbon black are widely implemented as electrocatalyst for PEM fuel cells, yet they lose 

the performance with time due to the degradation of carbon blacks at high potentials [2-4]. 

This fact trigged numerous research activities in the following areas: understanding the 

degradation mechanisms [5-9]; and seeking up-scalable and promising mitigation 

strategies to develop more durable electrocatalysts for PEM fuel cells [1, 10-12]. In the 

search for an electrochemically durable noncarbon catalyst support, titanium dioxide 

(TiO2) has shown to be very promising due to its exceptional chemical and thermal stability 

[2, 13-15]. However,  inherently low electronic conductivity and surface area of titanium 

dioxide have been identified to be the two biggest challenges to utilize TiO2 as a catalyst 

support for PEM fuel cells. It has been well recognized that electronic conductivity of TiO2 

can be increased either through the introduction of oxygen vacancies to form Ti4O7 via 

reductive heat treatment [16] or introduction of variable valence transition metals (e.g., Nb 

[17], Ta [18], Cr [19], and Mo [20]) via doping into TiO2 lattice. Of these strategies, 

although the former can produce electronically conductive oxygen-deficient phases such 

as Ti4O7, it is not feasible for PEM fuel cell applications because Ti4O7 will be electro-

oxidized back to TiO2 polymorphs at the surface in fuel cell operating conditions [21, 22]. 

At the same time, the later was not straightforward as high electronic conductivities (e.g., 

1.11 S cm-1) are only achievable after relatively high temperature reductive treatment, e.g., 

900 ºC, which results in nanoparticles with extremely low surface area ( 2 m2 g-1) [23, 24]. 

Recently, compositing or hybridizing transition metal-doped TiO2 nanoparticles (NPs) 

with other conductive materials, e.g. graphitized carbon NPs[25-27] or palladium NPs [28], 

was employed to take the advantages of their high electronic conductivity and/or surface 

area [25-30]. However, high electronic conductivities of 2.4-4.88 S cm-1 were only 

achieved through hybridizing/compositing the commercially available carbon NPs, at high 

contents (67-75 wt. %), that have high surface area with their in-house transition metal-

doped TiO2 NPs that featured with low surface area and low electronic conductivity. 

Catalysts made through depositing Pt or Pt alloys onto these composite supports, although 
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demonstrated significantly higher mass activities, their electrochemical durability was only 

slightly improved comparing with pure carbon black-supported catalysts. In addition, 

Senevirathne et al. [27] revealed that compositing Nb-doped TiO2  with 75 wt. % carbon 

NPs could even result in lower electrochemical durability than pure carbon black-supported 

catalysts under certain synthesis conditions. 

Moreover, due to their favorable structure and properties, metal oxide-based nanofibers 

(NFs) synthesized through easily up-scalable electrospinning method have been a research 

topic with considerable attention [22, 24, 30-32]. Recently, relatively conductive , 0.1 S 

cm-1,  Nb-doped TiO2 NF based composite catalyst supports were also synthesized by 

compositing NFs with carbon NPs.[30] Although Bauer et al. [30] introduced carbon NPs 

into Nb-doped TiO2 NFs through reductive treatment of an organic carbon source (not 

compositing with already graphitized carbon NPs), the final nanostructure of their 

synthesized composite catalyst support was still claimed to be only comprised from not 

evenly distributed carbon NPs (not embedded/doped) and Nb-doped TiO2 NFs which are 

separately coated with Pt nanoparticles.   

Overall to make transition metal doped titanium dioxide NPs/NFs feasible as a catalyst 

support for PEM fuel cell applications, to the best of the present authors’ knowledge, first, 

synthesis conditions were shown to be very crucial [33]; second, the only alternative way 

which has been attempted to increase the electronic conductivity and surface area was to 

composite or hybridize carbon NPs with transition metal-doped TiO2 NPs/NFs. 

Furthermore, it has been well-known that micropores (pores which are smaller than 2 nm,) 

are not easily accessible for Pt NPs and Nafion, whereas mesopores (pores with diameters 

in the range between 2-50 nm) are accessible and combined with a good electronic 

conductivity can lead to very appealing catalyst supports [31, 34].    

Reported here is the first in-situ reductive embedment (ISRE) of carbon into 

mesoporous Nb-doped TiO2 NFs. Pt catalysts supported by these NFs and those without 

embedded carbon (carbon-free) were synthesized and tested for ORR mass activity and 

durability under acidic conditions. Raman spectroscopy measurements were employed to 

identify the structure of carbon embedded in NFs and XPS measurements were employed 
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to investigate the elemental composition and chemical and electronic state of the surface 

of NFs under both oxidizing and reducing conditions. 

4.2 Experimental 

4.2.1 Synthesis of Nb-doped TiO2 nanofibers with embedded carbon and 

carbon-free  

In this study, for the purpose of synthesizing Nb-doped TiO2, NbxTi(1-x)O2 (x = 0.1 and 

0.25), NFs with embedded carbon or carbon-free through electrospinning, 

Polyvinylpyrrolidone (PVP), titanium tetraisopropoxide and niobium ethoxide were used 

as precursor materials. In a typical synthesis, 0.45g of PVP copolymer (Mw= 1,300,000) 

has been added into 7.5 mL of anhydrous ethanol and stirred until it completely dissolved 

and a clear polymer solution obtained. A second solution was prepared by adding 1.6 mL 

of Ti(IV)-isopropoxide and 0.14-0.44 mL of niobium ethoxide (corresponding to 10-25 at. 

% Nb doping level) into 6 mL of acetic acid and anhydrous ethanol mixture, with a 1:1 

volumetric ratio. After stirring the second solution for an hour under Ar atmosphere, it has 

been added into the polymer solution and the mixture was stirred for another 3 hrs at room 

temperature to get a homogeneous viscous solution. After degassing the obtained viscous 

solution by sonication for 10 mins, it was loaded into a plastic syringe which was equipped 

with a 22-guage blunt stainless steel needle. Electrospinning of NFs was carried out in an 

electrospinning apparatus developed in the Clean Powertrain Lab at the University of 

Windsor[35] with a syringe and grounded aluminum collector plate configuration. The 

distance between the needle tip and the collector was 12 cm and the voltage was 12 KV, 

the solution was fed at a constant rate of 0.35 mL hr-1 by using a syringe pump (KDS 

scientific). The as-spun NFs were left at ambient environment with room temperature for 

24 hours and then were treated under two different heating protocols as follow: 

Protocol CF: First, calcined under air stream from room temperature up to 500 °C at a 

heating rate of 5 ºC min-1, kept at 500 ºC for 6 hours and removed from the furnace after it 

has been cooled down to room temperature; second, the oxidized NFs were loaded into a 

tube furnace and reduced under pure hydrogen atmosphere from room temperature up to 

800 ºC at a heating rate of 5 ºC min-1 and kept at 800 ºC for 2 hours.  
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Protocol CE:  Calcined under pure hydrogen atmosphere from room temperature up to 

500 ºC at a heating rate of 5 ºC min-1 and kept at 500 ºC for 2 hours; and then continuously 

heated up to 800  ºC with the same heating rate and kept at that temperature for 6 hours.  

Protocol CF was aimed to produce carbon-free Nb-doped TiO2 nanofibers (CF-NFs) 

through oxidative removal of the carbon source (PVP), whereas Protocol CE was aimed to 

produce carbon-embedded Nb-doped TiO2 nanofibers (CE-NFs) through in situ 

graphitization of carbon source (PVP) and crystallization of Nb-doped TiO2 NFs at the 

same time. The electrospinning of nanofibers together with the heat treatment under 

Protocol CE is called in-situ reductive embedment (ISRE) strategy to produce carbon-

embedded nanofibers.  

In the following, each synthesized nanofiber sample will be given a name started by CF 

or CE standing for carbon-free or carbon-embedded NFs, respectively, followed by its Nb 

doping level. For instance, CF10 or CE10 represents carbon-free or carbon-embedded 10 

at. % Nb-doped TiO2 NFs, respectively. 

4.2.2 Pt catalyst synthesis 

All of 20 wt. % Pt deposited NFs were prepared by using microwave-assisted polyol 

technique[25]. We also used the same method to deposit 20 wt. % Pt onto conventional 

carbon black (Vulcan XC-72R, Cabot Corp.) catalyst supports. In a typical synthesis, 40 

mg of the desired catalyst support was sonicated in 15 mL of ethylene glycol for ~ 2 hrs 

until it formed a well-dispersed support mixture. Separately, a Pt precursor solution was 

prepared by adding 27 mg of chloroplatinic acid hexahydrate (H2PtCl6.6H2O) into 1 mL of 

Deionized water (DI) water and ethylene glycol solvent mixture, with a 1:1 volumetric 

ratio. Pt precursor solution was then added dropwise to the well-dispersed support mixture 

and stirred for 1 hr to form a uniform solution. Later using a micropipette, the pH value of 

the uniform solution was adjusted to 10 by adding 0.1 M NaOH solution in ethylene glycol, 

also stirred for another 2 hrs before introducing into the microwave reactor. This solution 

then was reduced at 185 °C for 2 mins in a Biotage® (Initiator Classic) microwave reactor. 

After cooling the reduced solution to 50 °C, the reduction treatment was repeated for 

another time to assure fully reduction of the Pt cations. The resulting suspension (catalyst 

+ solvent) was centrifuged at 5000 rpm (SorvallTM, ThermoScientific) for 30 mins and then 
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the solvent replaced by fresh DI water. The centrifuging and solvent-replacement cycle 

was repeated several times (3 to 5 times) until the washed-out DI water achieved pH of 7. 

The washed catalysts were finally vacuum-dried at 80°C for overnight.  

In this paper Pt deposited catalysts were denoted as: 20 wt.% Pt/CF10, 20 wt.% 

Pt/CE10, 20 wt.% Pt/CF25, 20 wt.% Pt/CE25, and 20 wt.% Pt/Vulcan.  

4.2.3 Physical characterizations 

The micromorphology of synthesized NFs was examined by scanning electron 

microscopy (FEI Quanta 200 FEG equipped with an energy-dispersive spectrometer 

EDAX SiLi Detector) in secondary mode at 6 kV to get more details from the surface of 

NFs. Powder X-ray diffraction (PXRD) measurements were performed on a Bruker D8 

Discover diffractometer equipped with a Vantec-500 area detector and GADDS software 

package. The X-ray tube was operated at 40 kV and 40 mA with CuKα1 monochromatized 

radiation source (wavelength = 1.54187 Å) and an initial beam diameter of 0.5 mm was 

used. Any possible instrumental error in PXRD patterns were corrected according to the 

standard corundum reference sample with known diffraction peaks. Van der Pauw 

method[36] was used to measure the electronic conductivity of the samples. For 

conductivity measurements, the powder samples were made into pellets of 13 mm in 

diameter and about 3 mm in thickness using a stainless steel die in a hydraulic press under 

a pressure of 5000 pounds-force.  To obtain reliable data, a liquid metal alloy (Gallium-

Indium eutectic alloy, Sigma-Aldrich) was used at the interface between probes and 

pressed pellets. Multiple measurements have been made at different orientations and the 

average readings have been reported with a unit of S cm-1. The pore size and surface area 

analyser (NOVA 1200e, Quantachrome Instruments) equipped with NovaWin software 

package used for surface area and average pore size measurement. The total amount of 

adsorbed nitrogen onto supports at relative pressures P/P0 (adsorptive pressure/saturated 

vapour pressure) between 0.01 to 0.3 have been used for BET surface area measurements, 

the measurements were performed at a constant temperature of 77 °K (-196 °C). The t-

method of de Boer [37], offered by NovaWin software [38, 39],used for the calculation of 

external surface area, i.e., the area of pores with diameters (D) larger than 2 nm. The slop 

and intercept of the obtained t-plots using NovaWin software correspond to external 
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surface area and micropore volume, respectively. Further, the pore size distributions were 

calculated from desorption branch of the isotherms using Barrett, Joyner and Halenda 

(BJH) method [38]. Raman spectroscopy measurements were conducted on an inVia 

Raman microscope (Reinshaw) by using an argon laser with an excitation wavelength of 

514.5 nm and an objective lens of x50 magnification. Curve fittings for the determination 

of Raman spectra parameters were performed by using Origin software (OriginLab, 

Northampton, MA). Spectra were fitted by using Levenberg-Marquardt fit algorithm[40] 

with r-square values close to 1.  

Thermogravimetric analyses (TGA) were performed on a thermal analysis (TA) 

instrument (SDT Q600) under air stream with a heating rate of 3 ºC min-1 from room 

temperature to 1050 ºC. High resolution transmission electron microscopy (HRTEM) and 

scanning transmission electron microscopy (STEM) images were taken at an image-

corrected low-base microscope (FEI Titan), operated at 300kV, equipped with an x-sight 

EDS detector with the INCA processing software (Oxford Instruments). X-ray 

photoelectron spectroscopy (XPS) measurements were performed on an Axis Ultra X-ray 

photoelectron spectrometer (Kratos analytical). Powder samples were pressed into indium 

foil using a clean glass slide before XPS measurements. Both survey scans and high 

resolution analyses were carried out with an analysis area of 300 × 700 microns and pass 

energies of 160 eV and 20 eV, respectively. The instrument work function was calibrated 

to give a binding energy (BE) of 83.96 eV for the Au 4f7/2 line for metallic gold and the 

spectrometer dispersion was adjusted to give a BE of 932.62 eV for the Cu 2p3/2 line of 

metallic copper. The Kratos charge neutralizer system was used on all specimens. Spectra 

were charge corrected so that the main line of the carbon 1s spectrum (adventitious carbon) 

set to 284.8 eV.  

4.2.4 Electrochemical characterizations 

Electrochemical characterizations were conducted in a conventional three-electrode 

system contained in a glass cell using a rotating disk electrode (BASi RDE-2). Pt wire and 

saturated Ag/AgCl electrodes were used as counter and reference electrodes, respectively. 

A 0.076 cm2 (D = 3 mm) area glassy carbon (GC) rotating disk electrode (RDE) with a tip 

coated with a thin layer of catalyst served as the working electrode. Before coating the 
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catalyst onto GC electrode, the catalyst ink was prepared through sonicating 3 mg of the 

desired catalyst in 1.5 mL of isopropanol for 20 mins. Then, 5µL of the prepared catalyst 

ink, while it is sonicating, was taken by a micropipette and dropped onto pre-polished GC 

electrode. By doing so, the total catalyst loading onto the GC electrode would be 10 µg (2 

µg of Pt). Afterwards, they were left at room temperature for solvent evaporation, and then 

were impregnated by 2 µL of diluted Nafion ionomer solution (5 wt. % in aliphatic 

alcohols, Type: D-520 from DuPont) to form a thin protective layer on top of the coated 

catalyst layers. Finally, the prepared working electrodes were ambient-dried slowly at room 

temperature for overnight before any electrochemical tests.  

After the dried working electrodes were introduced into the electrolyte for further 

electrochemical measurements, they were activated through applying cyclic 

voltammograms (CVs) on them until a steady CV was obtained. All CVs were performed 

in Ar saturated solutions of 0.5 M H2SO4 between 0 V to 1.2 V versus to the reversible 

hydrogen electrode (RHE) at a scan rate of 50 mV/s. To investigate the electrochemical 

durability of the catalysts, 1000 full potential cycles were performed in the range of 0 V to 

1.2V vs. RHE at a scan rate of 50 mV s-1. To check the electrochemical durability of the 

catalysts, the electrochemically active surface areas (ECSA) were calculated and compared 

for the fresh catalysts (those have been already activated) and potentially cycled catalysts 

after 100, 500, and 1000 cycles. The ECSAs were calculated through the charge integration 

under the hydrogen adsorption peaks appearing between 0.05 and 0.38 V (RHE) in the 

negative going potential sweep [41]. For ECSA calculations, a standard hydrogen 

monolayer desorption charge of 210 µC cm-2 on a pure Pt surface was assumed [41]. 

For Oxygen Reduction Reaction (ORR) mass activity measurements, linear sweep 

voltammograms were recorded at a scan rate of 5 mV s-1 in O2 saturated solutions of 0.5 

M H2SO4 with a rotation speed of 1600 rpm at room temperature and ambient pressure.  To 

check the durability of catalysts, the ORR mass activities were reported and compared for 

fresh catalysts and potentially cycled catalysts after 1000 cycles. The linear current-voltage 

curves at the negative sweep scan at the potential range of 0.4 V to 1.1 V were used for 

ORR measurements. The ORR mass activities, with a unit of mA mgPt
-1, were estimated 
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via calculation of Ik (kinetic current) using mass transport correction for thin-film RDEs 

(Eq. 4.1) and normalization to the Pt-loading of the working electrode [41]: 

 

 
𝐼𝑘(𝑚𝐴) =

𝐼𝑙𝑖𝑚(𝑚𝐴) × 𝐼(𝑚𝐴)

(𝐼𝑙𝑖𝑚(𝑚𝐴) −  𝐼(𝑚𝐴))
 

(4-1) 

  

Where I is the measured current at 0.9 V vs. reversible hydrogen electrode (RHE), Ik is 

the kinetic current and Ilim is the measured diffusion limited current at 0.4V. All potentials 

were reported versus to RHE using Eq. 4.2 and all ORR polarization curves were corrected 

by subtracting background current under steady state and N2 atmosphere.  

 

 𝐸 (𝑅𝐻𝐸) =  𝐸 (
𝐴𝑔

𝐴𝑔𝐶𝑙⁄ ) +  0.197 + 0.0592 × 𝑝𝐻 (4-2) 

 

Specific activities at 0.9 V, with a unit of A mPt
-2, were all reported through dividing 

corresponding mass activities (Ik) with ECSAs [42]. 

4.3 Results and discussion 

4.3.1 Carbon-embedded/carbon-free Nb-doped TiO2 nanofibers as catalyst 

supports 

4.3.1.1 Micromorphology  

Fig. 4.1 shows that all CF-NFs and CE-NFs at different doping levels of Nb, i.e. 10 and 

25 at. %, were fabricated with diameters in the range of 70 – 100 nm. Scanning electron 

microscopy (SEM) studies also reveal an easily distinguishable difference between the 

surface morphology of the carbon-free and the carbon–embedded nanofibers. CF-NFs, as 

shown in Figs. 4.1a and 4.1b, are exhibiting pearl-like morphology with relatively smooth 



Carbon-Embedded Mesoporous Nb-doped TiO2 Nanofibers 

72 

 

surfaces whereas the surfaces of CE-NFs, as shown in Figs. 4.1c and 4.1d, resembles more 

likely a bumpy and porous surface.  

 

4.3.1.2 Crystal structure, electronic conductivity and surface area  

Table 4.1 summarizes the physical properties of CF and CE nanofibers which were 

subjected to different heat treatments.  The results will be explained in sequence at the 

following paragraphs. 

Table 4.1. Physical Properties of synthesized NbxTi(1-x)O2 nanofibers and Vulcan XC-72R 

as reference. 

Heat 

Treatment 

Protocol 

Catalyst 

Support 

Name 

Rutile 

Crystallite 

Sizea (nm) 

 

Rutile 

Percentage 

(%) 

 

Electronic 

Conductivity 

(S.cm-1) 

BET 

Surface 

Area 

(m2.g-1) 

 

External  

Surface 

Area 

(m2.g-1) 

 

BJH 

Pore 

Volume 

(mL.g-1) 

Average  

Pore 

Diameter 

(nm) 

CF 
CF10 15  94  5 × 10-6 17  17  0.03 6.5 

CF25 15  94  6 × 10-6 16  15  0.03 7 

CE 
CE10 8  85  0.12 102  86  0.19 7.5 

CE25 9  87  0.05 105  90  0.19 7 

- 
Vulcan XC-

72R 
-  -  4 225  105  0.25 4 

aFrom Scherrer equation 

 

Figure 4.1. Field emission-SEM images of NbxTi(1-x)O2 (x= 0.1 and 0.25) NFs heat 

treated under either protocol CF or CE. (a) CF10; (b) CF25; (c) CE10; and (d) CE25. 
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Powder X-ray diffraction (PXRD) analysis was used to investigate the crystal structure 

of the NbxTi(1-x)O2 (x = 0.1 and 0.25) nanofibers prepared in the Clean Powertrain Lab at 

the University of Windsor, Fig. 4.2.  

 

Fig. 4.2a shows that all four types of nanofibers consist of anatase and rutile polymorphs 

of TiO2, although the presence of strong reflection of rutile phase at 2 values around 27.30 

verifies the predominance of rutile phase; rutile phase percentages [43] are in the range of 

85-94% (Table 4.1). Rutile phase crystallite sizes from the Scherrer equation [44] were 

smaller for CE-NFs than that for CF-NFs, as shown in Table 4.1. Furthermore, niobium 

incorporation into rutile lattice of all four samples has been confirmed by the following 

facts: first, no distinct futures of niobium oxide or ternary phases in Fig. 4.2a; and second, 

observed significant shift of main rutile peaks to lower 2 values, about 27.03-27.29º, while 

the reflection of a pure rutile phase was observed at 227.46º very close to the reported 

value [43] of 2º as shown in Fig. 4.2b. Accordingly, the observed shifts were 

caused most probably by doped Nb4+/Nb5+ into titania lattice due to their larger ionic 

radiuses versus Ti4+ (0.68/0.64 Å vs. 0.605 Å for Nb4+/Nb5+ vs Ti4+ for a coordination 

number of six) [45, 46].  

 

Figure 4.2. PXRD patterns collected from NbxTi(1-x)O2 (x = 0.1 and 0.25) NFs heat 

treated under either protocol CF or CE. (a) Wide-angle patterns; (b) magnified views 

of the rutile (110) peak. 
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Figure 4.3 shows, for all four Nb-doped TiO2 NFs and a commercial Vulcan XC-72R 

carbon catalyst support, the nitrogen adsorption/desorption isotherms for surface area 

analysis, and the BJH pore size distributions. The extracted results from Fig. 4.3 are as 

summarized in Table 4.1. As shown in Fig. 4.3a, CF-NFs exhibited low sorption capacity 

for N2 whereas CE-NFs exhibited N2 adsorption/desorption isotherms which can be 

classified as type IV isotherm, typical of mesoporous materials with strong affinities based 

on international union for pure and applied chemistry (IUPAC) classification [47, 48].  

The mesoporous structures of CE10 and CE25 NFs were further confirmed by their BJH 

pore size distributions centered around 10 nm despite their relatively high temperature 

reduction treatment at 800 ºC. On the other hand, the positive intercept of the t-plots (Fig. 

SI-4.1) obtained for CE-NFs along with Vulcan XC-72R exhibits the presence of 

micropores (with diameters less than 2 nm) along with mesopores (with diameter between 

2 to 50 nm). In fact, the relevant external surface area of the catalyst support is best 

estimated by subtracting the micropore area from the BET surface area as micropores are 

not beneficial to hold either Pt nanoparticles or Nafion [39, 49].  Comparing with 

commercial Vulcan XC-72R, as shown in Table 4.1, although CE-NFs showed just half 

the BET surface area (105/102 vs 225 m2 g-1) while their external surface area was only 

lower by about 10% (90/86 vs. 105 m2 g-1).  
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Overall the physical properties summarized in Table 4.1, first, confirm the 

predominance of rutile phase in our Nb-doped TiO2 nanofibers which agrees well with 

previously observed higher electronic conductivities for rutile phase titania than anatase 

[23, 33]; second, by showing higher external surface areas and smaller crystallite sizes for 

CE- than CF-NFs, agree well with more porous surface morphology observed for CE-NFs, 

as shown in Figs. 4.1c and 4.1d. Similarly, the surface smoothness and pearl like 

morphology of CF-NFs, as shown in Figs. 4.1a and 4.1b, correlates very well with their 

measured relatively low BET surface areas (Table 4.1) and this effect of high temperature 

reductive treatment is consistent with literature for CF-NFs [24]. Furthermore the 

mesoporous structure of CE-NFs combined with comparable external surface areas and 

electronic conductivities to those of Vulcan XC-72R suggests that the carbon embedment 

is critical for making practical catalysts supports.  

Figure 4.3. Surface area and pore size analysis of NbxTi(1-x)O2 (x = 0.1 and 0.25) NFs 

heat treated under either protocol CF or CE. (a) Nitrogen adsorption/desorption 

isotherms (BET); and (b) BJH pore size distribution plots. 
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4.3.1.3 Carbon content and thermal stability 

TGA analysis was used to determine the content of carbon embedded in NFs by 

assuming that no carbon is lost below 400 C and weight loss above 400 ºC is exclusively 

due to oxidative loss of carbon [27]. As shown in Fig. 4.4, CE-NFs (CE10, CE25) are 

mainly losing weight, ~ 10-11%, after 300 ºC along with less significant weight gains 

around 450 ºC while CF-NFs (CF10, CF25) are exhibiting only weight gains. The observed 

weight gains, around 0.5-1% (the theoretical weight gains through complete oxidation of 

pure NbO2 and Ti4O7 are 6.4% and 5.3%), at a temperature range of 250-550 ºC, are most 

probably induced by the oxidation of small quantities of Ti4O7 and/or NbO2 into most 

stable oxides TiO2 and/or Nb2O5 at the surface of nanofibers [22].  The temperature that 

the weight gain started for CF25 NFs is well below than that for CF10. The observed lower 

phase transformation temperature for CF25 NFs could suggest that the CF25 has more of 

NbO2 than Ti4O7 because Ti4O7 has higher phase transformation temperature [22], XPS 

measurement results also agree well with this statement as explained later.  Moreover, the 

temperature that the embedded carbon initiated to oxidize is lower in CE-NFs than in 

graphitized carbon nanoparticles [27], 300 vs 450 ºC. This observation could suggest either 

the embedment of carbon into NFs in the forms of smaller domains than carbon NPs (with 

a diameter in the range of 20-40 nm) or the presence of some quantities of amorphous 

carbon. Earlier studies on the thermal oxidation of carbon nanotubes observed lower 

decomposition temperatures for small- than larger-diameter nanotubes due to increased 

steric strain [50] or amorphous than graphitized nanotubes [51]. 
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TGA data plots were also used to determine the thermal stability of synthesized CF and 

CE nanofibers. Fig. 4.4 clearly showed that any noticeable weight gain or weight loss 

happens at temperatures higher than 200 ºC which makes the thermal stability of all of our 

synthesized NFs to be acceptable for PEM fuel cell applications operating at temperatures 

between 50 – 200 ºC [52].  

4.3.1.4 Atomic structure of embedded carbon 

Raman spectroscopy was utilized as a standard method [53] to investigate the atomic 

structure of embedded carbon, Fig. 4.5a.  Raman spectra of all four Nb-doped TiO2 

nanofibers (Table 4.1) show the characteristic first-order absorption bands of 

ordered/disordered graphite at frequencies between  ~ 1200 to ~1650 cm-1  [40, 54] along 

with three distinct rutile phase characteristic peaks at 244, 442, and 607 cm-1  [55-57] for 

both CF- and CE-NFs, as shown in Fig. 4.5a. The observation of less intensive first order 

bands of ordered/disordered graphite for CF-NFs (CF10, CF25) could suggest incomplete 

oxidation of carbon source (PVP) even after air calcination treatment at 500 ºC for 6 hrs 

(Protocol CF) and to complete the oxidation it needs either more time or higher 

Figure 4.4. TGA data plots obtained for NbxTi(1-x)O2 (x = 0.1 and 0.25) NFs heat 

treated under either protocol CF or CE. 
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temperature.  The combination of five bands were used  for the analysis and determination 

of the peak parameters of characteristic first-order and second-order absorption bands of 

the embedded carbon in CE-NFs [40].  The complete list of these five bands, G and D1-

D4, is shown in Table SI-4.1 along with their corresponding band positions and 

descriptions. The G-band is assigned to in-plane vibrations of the sp2 carbon framework 

and the D-band (D1 - D4 bands) is associated with carbon atoms at edges, amorphous and 

sp3 carbons [40, 54, 58]. Figs. 4.5b and c shows the peak analysis results for CE10 and 

CE25 nanofibers, respectively. The higher D/G intensity (peak area) ratio (Table SI-4.2) 

generally interprets as distorted graphite lattice [40, 53]. As shown in Figs. 4.5b, 4.5c and 

Table SI-4.2, for both CE10 and CE25 nanofibers all of four D (D1-D4) bands have been 

observed and the highest band area ratio, ADX-band/AG-band (X = 1, 2, 3, 4), belongs to D1 

band known for vibrations of sp3 carbons at graphene layer edges with A1g symmetry [53, 

59]. In an early Raman work, D3 and D4 peaks were only assigned to the vibrations seen 

on soot [40] but later Hara et al. [59] observed them even in the Raman spectra collected 

from graphitized carbon blacks (GCB) used as a catalyst support for PEM fuel cells. 

However, the first-order DX/G band area ratios reported in Table SI-4.2 are relatively 

higher than reported ratios for GCB [59], by a factor around 4. This difference could be 

due to the relatively higher degree of distortion in the graphite lattice of the embedded 

carbons in our CE-NFs than that of GCB or the statistical uncertainty in relative intensities 

(peak area ratios DX/G) introduced by deconvolution of the broad signal peaks into 

multiple peaks through the peak analysis [40]. 
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Furthermore recorded Raman spectra of the CE-NFs depict pronounced second order 

characteristic bands for disturbed graphitic structures at frequencies around 2000 to 3500 

cm-1, as shown in Fig. 4.5a. Fig. SI-4.2 shows the peak analysis results for second order 

bands with a combination of four Lorentzian-shaped bands centered around 2700, 2900 

and 3100 cm-1  which are consistent with literature [40]. 

Figure 4.5. Raman Spectra of NbxTi(1-x)O2 (x = 0.1 and 0.25) NFs heat treated under 

either protocol CF or CE along with peak analyses of CE-NFs based on the 

combination of bands given in Table S1. (a) Raman spectra; (b) peak analyses of first-

order bands of ordered/disordered graphite observed for CE10 and CE25.    
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4.3.2 Pt catalysts supported by carbon-embedded/carbon-free Nb-doped TiO2 

nanofibers 

4.3.2.1 Nanostructure and nanomorphology 

20 wt. % Pt nanoparticles were deposited onto synthesized Nb-doped TiO2 NFs through 

microwave-assisted polyol technique [25]. PXRD patterns of NFs after deposition of Pt 

nanoparticles are shown in Fig. SI-4.3. Comparing with Fig. 4.2, the additional reflections 

located at 2 values of 39.80, 46.28, and 66.53º shown in Fig. SI-4.3 agree well with the 

reflections of metallic Pt at these 2 values [60]. The size of Pt crystallites which have been 

deposited onto both CF- and CE-NFs  were estimated to be in average of 6 nm, using 

Scherrer equation [44]. 

Figs. 4.6a and 4.6c show BF-TEM images of 20 wt. % Pt/CE10 nanofibers, while high-

resolution images of the selected areas in Figs. 4.6a and 4.6c are shown in Figs. 4.6b, 4.6d, 

and 4.6e. As shown in Fig. 4.6a and low magnification TEM images in Fig. SI4.4, there is 

a high and uniform coverage of Pt NPs onto CE10 nanofibers. However, a few areas, i.e. 

Fig. 4.6c, are poorly coated and exhibiting different support morphology with relatively 

larger domains in the range of 30 to 40 nm. The predominance of rutile phase titania in 

CE10 nanofibers confirmed by correlation of both of the collected selected area diffraction 

(SAD) pattern from a single Pt deposited NF, inset of Fig. 4.6a, and interplanar spacings 

of 0.33 and 0.27 nm between lattice fringes, Figs. 4.6b and 4.6e, with the d-spacing between 

(110) and (101) planes in rutile lattice, matching the powder diffraction of file no. 01-089-

554 from the international centre for diffraction data (ICDD). Furthermore the HRTEM 

images (Figs. 4.6b and SI-4.4c, showed that spherical Pt NPs are mostly single crystals 

with an interplanar spacing of 0.22 nm matching with the d-spacing between (111) planes 

in pure metallic Pt, diameters are between 3-5 nm shown in Fig. SI-4.4c.  
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We further observed that graphite-like crystalline domains containing turbostratically 

stacked graphene layers with interplanar d-spacing of 0.34 nm are either embedded in 

between rutile domains of NFs (as shown in Figs. 4.6d and 4.6e) or inlaid onto NFs (as in 

Figure 4.6. Bright field (BF) TEM and HRTM images from 20 wt. % Pt deposited 

CE10 NFs. (a) TEM image from a single Pt deposited NF along with collected SAD 

pattern; (b) HRTEM image from a selected area shown in (a); (c) TEM image from Pt 

deposited nanofibers with relatively different morphologies; (d) HRTEM image from 

a selected area shown in (c). 
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Fig. SI4.4c). To be able to quantify both carbon content and bulk Ti:Nb atomic ratio, energy 

dispersive X-ray spectroscopy (EDX) measurements were taken in scanning transmission 

electron microscopy (STEM) mode. Dark field (DF) images along with collected EDX 

measurements from two areas with different Pt dispersions and support morphologies are 

shown in Fig. SI-4.5. The Ti:Nb atomic ratio calculated from EDX spectrum taken from a 

single Pt coated nanofiber, Figure SI-4.5a, which exemplifies the majority of the NFs,  is 

1:0.107, close enough to the targeted ratio of 1:0.11 for CE10 nanofibers. However, there 

are still a few areas with ratios of 1:0.19, which suggests the formation of domains (i.e. 16 

at. % Nb-doped TiO2) enriched with NbO2, whereas the formation of lager crystalline 

domains in these areas remain uncertain. Furthermore presence of 22 at. % carbon in both 

taken EDX spectra, as shown in Fig. SI-4.5, suggests homogeneous embedment of carbon 

into CE10 nanofibers. 

Overall TEM and HRTEM studies confirm the following facts: first, the crystal structure 

of nanofibers are mainly rutile which agrees well with PXRD patterns; second, the  Pt 

nanoparticles are uniformly dispersed onto nanofibers in the form of single crystals which 

is critical for the increase of Pt utilization; third, the embedment of carbon into/onto NFs 

is relatively homogeneous in the form of stacked graphene layers with highly distorted 

graphitic structure, which correlates very well with Raman spectroscopy measurements as 

discussed in section 4.3.1.4.  

4.3.2.2 Elemental composition, chemical and electronic state at the surface 

X-ray photoelectron spectroscopy (XPS) measurements were used to further investigate 

the surface elemental composition and electronic state of the synthesized Pt catalysts 

supported by Nb-doped TiO2 NFs. For Pt catalysts, the XPS survey spectra and the XPS 

high-resolution spectra at C, O, Ti, Nb, and Pt primary XPS regions are shown in Figs. SI-

4.6 to SI-4.9, inclusive, and Figs. SI-4.10 to SI-4.14†, respectively. The peak deconvolution 

results obtained from these high resolution spectra were tabulated in Tables SI-4.3 to SI-

4.7, inclusive.  

From survey spectra, Figs. SI-4.6 to SI4.9 inclusive, photoelectron peaks have been 

revealed for C 1s (284.35 eV), O 1s (530.75 eV), Ti 2p (458.65 eV), Nb 3d (207.35 eV), 

and Pt 4f (71.55 eV). The relative surface elemental composition of Pt catalysts supported 



Carbon-Embedded Mesoporous Nb-doped TiO2 Nanofibers 

83 

 

by both CF- and CE-NFs are shown in Table 4.2. The quantification of survey spectra were 

performed through integration of respective XPS peak for each element.  

 

Table 4.2. Relative surface elemental composition of the synthesized Nb-doped TiO2 

nanofibers obtained from XPS survey spectra. 

 20 wt.% Pt/CF10 20 wt.% Pt/CF25 20 wt.% Pt/CE10 20 wt.% Pt/CE25 

Ti:Nb 1:0.08 1:0.32 1:0.12 1:0.35 

Ti:Pt 1:0.67 1:0.88 1:0.70 1:0.49 

Ti:C 1:1.14 1:1.53 1:4.82 1:4.07 

Ti:O 1:3.09 1:3.92 1:3.5 1:3.62 

 

The most obvious differences between the relative surface compositions of synthesized Pt 

catalysts were in the niobium and carbon relative atomic concentrations versus to titanium. 

As shown in Table 4.2, the obtained Ti:Nb ratios at the surface of Pt catalysts correlated 

very well with the corresponding doping ratios of Nb in their corresponding supporting 

NFs. We did not observed any considerable surface enrichment/depletion of the Nb versus 

to the bulk Ti:Nb ratios of 1:0.11 and 1:0.33 for any of supporting CE- or CF-NFs doped 

with different levels of Nb. We assumed that the niobium surface enrichment/depletion 

observed in other studies [61, 62] could be due to their relatively long time and high 

temperature oxidizing/reducing treatments (i.e. reduction at 900 ºC for 50 hrs) [61]. 

Furthermore, the obtained Ti:C ratios at the surface of Pt-deposited NFs also correlated 

with the type of heat treatment of the corresponding supporting nanofibers. The detected 

carbon atoms at the surface of Pt-deposited CF-NFs are most probably adventitious carbons 

[63] (mainly Sp3 bonded carbon that comes from atmosphere) due to their extremely high 

Sp3/Sp2 ratios obtained from their corresponding high resolution XPS spectra in C1s 

region, Fig. SI-4.10 and Table SI4.3.   

In terms of the electronic state of chemical components at the surface, it has been well 

known that the evolution of the different oxidation states for titanium and niobium in Nb-

doped TiO2 nanoparticles depends on the synthesis condition [39, 46]. The solubility limit 

of Nb in rutile lattice exhibits high degree of dependency on the synthesis condition, 

heating temperature and oxygen partial pressure.[46, 64] It has been shown that excessive 
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Nb doing could lead to the formation of secondary oxides (NbO2 and Nb2O5) or ternary 

phase of TiNb2O7 which are neither electronically conductive nor electrochemically stable 

[22, 46]. By assuming that the introduced Nb into TiO2 lattice (within solubility limits) 

would prefer to stay in pentavalent oxidation state (Nb5+) rather than tetravalent oxidation 

state (Nb4+)- more similar relative radius of Ti4+ (0.0605 nm) and Nb5+ (0.064 nm) with the 

same coordination number of 6- one extra charge of Nb5+ vs. Ti4+ must be compensated for 

charge neutralization. Charge compensation could happen in two different ways depending 

on having oxidative or reductive condition in the environment (oxygen partial pressure). 

The two possible reactions can be described by Eqs. (4.3) and (4.4) :[46] 

 

 1

2
 𝑁𝑏2𝑂5 +  𝑇𝑖4+  →  𝑁𝑏5+ +

1

4
 𝑉𝑇𝑖

4+ + 𝑇𝑖𝑂2 +  
1

2
 𝑂2 

(4-3) 

 

 1

2
 𝑁𝑏2𝑂5 +  𝑇𝑖4+  →  𝑁𝑏5+ + 𝑇𝑖3+ + 𝑇𝑖𝑂2 +  

1

2
 𝑂2 

(4-4) 

 

The above two equations were also shown using the Kroger-vink notations[65] in the 

ESI† (see Eqs. (SI-4.3) and (SI-4.4)). Oxidative condition would be in favour of Eq. (4.3) 

by preferably keeping cations in their higher oxidation states and compensating the extra 

charge via the introduction of one Ti4+ vacancy (𝑉𝑇𝑖
4+) per four Nb5+ cations. On the 

contrast, reductive condition would be in favour of Eq. (4.4) by stoichiometrically reducing 

one Ti4+ to Ti3+ per each pentavalent Nb (Nb5+) introduced. In heating protocol CF the 

oxidative condition was provided first to oxidize carbon and then reductive condition was 

provided at 800 ºC, whereas in protocol CE reductive condition was provided from room 

temperature up to 800 ºC (without the introduction of any oxidative condition). In both 

protocols reductive condition was provided to introduce free electrons into TiO2 lattice 

through charge compensation according to Eq. (4.4). Ideally if the charge compensation 

fully occurs through Eq. (4.4) (without any contribution from Eq.(4.3)) the atomic 

concentration of Nb5+ and Ti3+ should be equal at the surface, i.e., the compensation degree 
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([Ti3+]at./[Nb5+]at.) should be equal to 1 [66]. But if the compensation degree deviates from 

1, it suggests that both mechanisms as shown in Eqs. (4.3) and (4.4) contributed to the 

charge compensation at the same time and some other mechanisms maybe also involved 

as follow: compensation degree higher than 1 could suggest the direct reduction of Ti4+ 

into Ti3+ (e.g. formation of Ti4O7 domains) under reductive condition, whereas 

compensation degree less than 1 could suggest the formation of ternary phases such as 

TiNb2O7[46] where there is no need for charge compensation.  

On the other hand, the detection of any Nb4+ at the surface suggests the direct reduction 

Nb5+ into Nb4+ without any need for charge compensation (e.g. formation of NbO2 

domains). Here, a combination of three different atomic concentration ratios 

([Ti3+]at./[Nb5+]at.., [Ooxide]at./[Ti]at., and [Nb5+]at./[Nb4+]at.) obtained from high resolution 

XPS spectra at Nb, Ti, and O regions (Figs. SI-4.11 to SI-4.13 inclusive) will be used to 

understand the surface electronic and chemical state of both CF- and CE-NFs doped with 

Nb at two different doping levels.  

 

Table 4.3. Atomic concentration ratios for the supporting NFs obtained from high-

resolution XPS spectra shown in Figs. SI-4.11 to SI-4.13, inclusive, and their tabulated 

peak parameters shown in Tables SI-4.5 to SI-4.7, inclusive.  

 20 wt.% Pt/CF10 20 wt.% Pt/CF25 20 wt.% Pt/CE10 20 wt.% Pt/CE25 

[Ti3+]at./[Nb5+]at. 1.27 0.573 0.78 0.335 

[Ooxide]at./[Ti]at. (Theor. 

valuea) 
1.76 (2.22) 2.14 (2.66) 2.20 (2.22) 2.75 (2.66) 

[Nb5+]at./[Nb4+]at. 14.6 9.20 18.6 13.5 
aTheoritical values were Calculated for supporting NbxTi(1-x)O2 (x = 0.1 or 0.25) nanofibers. 

 

With respect to the [Ti3+]at./[Nb5+]at, the higher doping level of Nb, the lower the value 

of the compensation degree. If we assume that all of Nb5+ ions have been doped into TiO2 

lattice (without forming ternary phase), lower compensation degree suggests Eq. (4.3) to 

be the dominant mechanism for charge compensation. Accordingly, this observation could 

suggest higher doping levels to be less effective in providing free electrons into TiO2 lattice 

through Eq. (4.4). Moreover, the value of 1.27 (compensation degree higher than 1) 
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obtained for 20 wt. % Pt/CF10 catalyst suggests the direct reduction of Ti4+ into Ti3+ at the 

surface of CF10 supporting NFs.   

With respect to [Ooxide]at./[Ti]at., the values for CF-NFs are lower than the theoretical 

values, whereas the values for CE-NFs are very close to the theoretical values. Lower 

values than theoretical values could suggest introduction of oxygen vacancies at the surface 

of NFs. Accordingly, this observation could suggest formation of more oxygen-deficient 

oxides at the surface of CF-NFs than CE-NFs. For instance, the [Ooxide]at./[Ti]at. value 

obtained for supporting CF10 nanofibers is very close to the theoretical value for oxygen-

deficient Ti4O7 (the theoretical [Ooxide]at./[Ti]at. value for Ti4O7 is 1.75). The presence of 

oxygen-deficient oxides at the surface of CF-NFs also agrees well with the observed weight 

gains in their corresponding TGA data plots under air stream, as shown in Fig. 4.4.   

With respect to [Nb5+]at./[Nb4+]at., the higher doping level of Nb, the lower the values. 

In addition, for the same doping levels, the values for CF-NFs are smaller than CE-NFs. 

Smaller [Nb5+]at./[Nb4+]at. value at the surface of NFs could suggest more of the direct 

reduction of Nb5+ into Nb4+ (formation of NbO2 domains rather than doping into the titania 

lattice). Accordingly, Of the above two observations- with respect to keeping Nb in its 

pentavalent oxidation state rather than forming NbO2 domains- the former suggests 10 at.% 

to be more effective than 25 at.% Nb doping level and the later suggests Protocol CE to be 

more efficient than Protocol CF. Formation of NbO2 domains at the surface of NFs with 

smaller [Nb5+]at./[Nb4+]at. value also agrees well with the weight gain obtained in the TGA 

data plot of CF25 nanofibers (with smallest [Nb5+]at./[Nb4+]at. value of 9.2) under air stream, 

as shown in Fig. 4.4.    

Overall, all of the above observations at the surface of supporting NFs suggest the 

followings: first, the Nb doping level of 10 at.% is more effective than 25 at.% in providing 

free electrons for TiO2 lattice which is in agreement with electronic conductivity 

measurements, see Table 4.1; second, Protocol CE is more effective than Protocol CF in 

preventing the formation of electrochemically unstable oxygen-deficient oxides which will 

be discovered by doing electrochemical durability tests under acidic conditions in section 

4.3.3.  
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To further investigate the structure of embedded carbon in CE-NFs, high-resolution 

XPS spectra at C 1s region, as shown in Fig. SI-4.10 and Table SI-4.3, have been used to 

calculate Sp3/Sp2 hybridization ratios [63]. The main peak of XPS C 1s spectra were fitted 

by two peaks centred around 284.47 - 284.63 and 284.77 - 284.93 corresponding to Sp2 

and Sp3 bonded carbons [67]. Table SI-4.4 clearly showed that, in terms of predicting 

highly distorted graphitic structure, the calculated Sp3/Sp2 hybridization ratios for both 20 

wt. % Pt/CE10 and 20 wt. % Pt/CE25, 2.26 and 1.86 respectively, are in agreement with 

DX/G band area ratios (Table SI-4.2) obtained from the peak analysis of their 

corresponding Raman spectra. In addition, high-resolution XPS spectra collected from Pt 

catalysts supported by CE or CF nanofibers at Pt 4f region (Fig. SI-4.14 and Table SI-4.7), 

confirmed the presence of Pt NPs only in the form of metallic Pt at the surface of supporting 

NFs.  

4.3.3 Electrochemical activity and durability of Pt catalysts for oxygen 

reduction reaction  

The electrochemical characteristics of Pt catalysts supported by either Nb-doped TiO2 

NFs or Vulcan XC-72R were examined via potential cycling in a conventional three 

electrode system, the electrochemical characteristics of a commercial carbon black-based 

Pt catalyst (Hi Spec 40 wt. % Pt/C, Johnson Matthey) was also examined as a reference. 

Table 4.4 summarizes the electrochemical data (before and after durability tests) obtained 

from both cyclic and linear sweep voltammograms. The results will be explained in 

sequence at the following subsections. 
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Table 4.4. ECSA and ORR mass activities at 0.9 V measured for 20 wt. % Pt/Nb-doped 

TiO2 nanofiber and 20 wt. % Pt/Vulcan catalysts before and after Durability Tests 

(potential cycling experiments). 

Catalyst 

Before Durability Tests  After Durability Tests 

ECSA, m2 g-1 
Mass activity @ 0.9 

V, A gPt
-1 

Specific activity @ 0.9 

V, 

mPt
-2 

 ECSA, m2 g-1 

(% of 

retention) 

Mass activity @ 

0.9 V, A gPt
-1  

(% of retention) 

20 wt.% Pt/CF10 25 7 0.28  19.5 (78) 5.6 (80) 

20 wt.% Pt/CF25 23 7 0.30  17.48 (76) 5.4 (79) 

20 wt.% Pt/CE10 39 17 0.43  31.6 (81) 14.5 (85) 

20 wt.% Pt/CE25 34 14 0.41  26.18 (77) 11.5 (82) 

20 wt.%Pt/C  67 19 0.28  44.2 (66) 13.5 (71) 

HiSpec 40 wt.% Pt/C 65 19 0.29  44 (68) 13.7 (72) 

 

4.3.3.1 Electrochemical activity of Pt catalysts before durability tests 

With respect to the electrochemically active surface areas (ECSAs) of fresh catalysts 

under acidic conditions, cyclic voltammograms were recorded in Ar-saturated solutions of 

0.5M H2SO4 (shown in Fig. 4.7a). As shown in Fig. 7a, Pt catalysts supported by Vulcan 

XC-72R (20 wt.%Pt/C) or CE-NFs (20 wt.%Pt/CE10 and 20 wt.%Pt/CE25), were 

exhibited characteristic hydrogen adsorption/desorption (in the potential range 0.05-0.35 

V) and Pt oxide formation (potentials larger than 0.75 V) and reduction (in potential range  

0.5-1 V) peaks, whereas Pt catalysts supported by CF-NFs (20 wt.%Pt/CF10 and 20 

wt.%Pt/CF25) were only exhibited much less significant hydrogen adsorption/desorption 

peaks. Among Pt catalysts supported by CF- or CE-NFs, the observed lower faradaic and 

nonfaradaic currents for those supported by CF-NFs than CE-NFs (as shown in Fig. 4.7a) 

was expected due to extremely lower electronic conductivities and lower external surface 

areas of CF-NFs, see Table 4.1. Accordingly, the obtained ECSA values were lower for Pt 

catalysts supported by CF-NFs than those supported by CE-NFs, as shown in Table 4.4. 

Moreover, despite having similar external surface areas, the ECSA values obtained for Pt 

catalysts supported by CE-NFs were still remarkably lower than those supported by carbon 
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blacks, most probably due to higher electronic conductivity of carbon blacks, i.e. 4 vs. 0.12 

S cm-1. 

 

With respect to the electrochemical activity of fresh catalysts for oxygen reduction 

reaction (ORR), linear sweep voltammograms (LSVs) were recorded in O2 saturated 

solutions of 0.5M H2SO4 (Shown in Fig. 4.7b). As shown in Fig. 4.7b, three diffusion 

limited (0.35 V to 0.7 V), mixed diffusion-kinetic limited (0.7 V to 0.9 V) and purely 

kinetically controlled (> 0.9V) regions which are relevant to ORR process have been 

observed in all of our synthesized Pt catalysts.[68, 69] Less purely diffusion limited region 

Figure 4.7. Cyclic voltammograms (CV) and linear sweep voltammograms (LSVs) 

obtained for different Pt catalysts. (a) CVs obtained in Ar-saturated aqueous solutions 

of 0.5M H2SO4 at a potential scan rate of 50 mV/s; and (b) LSVs obtained in O2 

saturated aqueous solutions of 0.5M H2SO4 with a potential sweep rate of 5 mV/s and 

rotation speed of 1600 rpm.  
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(0.35 V to 0.7V) has been observed for Pt catalysts supported by CF-NFs which is most 

probably due to low electronic conductivity of CF-NFs. As shown in Table 4.4, ORR mass 

activities were also significantly lower for Pt catalysts supported by CF-NFs than those 

supported by CE-NFs. However, less notable difference can be noticed between fresh 

(before durability tests) ORR mass activities obtained for Pt catalysts supported by CE-

NFs and those supported by carbon blacks, about 11-35% higher for carbon black, despite 

remarkably higher ECSAs obtained for Pt catalysts supported by carbon blacks (about 55-

100%). The higher activity of Pt nanoparticles onto Nb-doped TiO2 nanofibers have been 

best represented by their specific activities with a unit of A mPt
-2.  Much higher specific 

activities of Pt nanoparticles supported by CF- or CE-NFs in comparison to commercial 

carbon black supports (0.43 vs. 0.28 A mPt
-2 for 20 wt.% Pt/CE10 vs. 20 wt.% Pt/C) is 

known to be due to synergetic interaction between Pt nanoparticles and metal-oxide based 

supports [2, 28, 70, 71]. 

Furthermore, to determine whether ORR reaction produces H2O (4-electron pathway) 

or H2O2 (2-electron pathway), Koutecky-Levich equation [27, 72] (see SI Chapter 4) was 

used. The linear relationship between the reciprocal of the experimentally measured current 

densities at 0.4 V (j-1) vs. 1/2 in Fig. SI-4.15f can be taken as an indication of the first 

order reaction with respect to dissolved oxygen. The experimental value of the slops (1/B) 

of the K-L plots for all Pt catalysts supported by CF- or CE-NFs were between 2.75 to 2.85 

which agree, within experimental errors, with the theoretical slop value of 3.1 (B=0.32)[73] 

for 4-electron pathway. This suggests that the number of exchanged electrons in ORR 

reactions are close to 4 and as a result all of our synthesized 20 wt. % Pt catalysts supported 

by CF- or CE-NFs are mainly forming water without generating considerable amounts of 

hydrogen peroxide as side product. 

4.3.3.2 Electrochemical activity of Pt catalysts after durability tests 

To track the ECSAs, Pt catalysts were subjected to continuous potential cycling between 

0 to 1.2 V and the obtained cyclic voltammograms after applying 100, 500 and 1000 full 

potential cycles were shown in Figs. 4.8a, 4.8b, and 4.8c; ECSA values after applying 1000 

potential cylces (after durability tests) are shown in Table 4. At the same time, to track 

ORR mass activities, LSVs were also recorded in O2 saturated solutions of 0.5M H2SO4 
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before and after durability tests as shown in Figs. 4.8d, 4.8e, 4.8f and SI-4.16; ORR mass 

activity values after durability tests are shown in Table 4.4. 

 

As shown in Figs. 4.8 and Table 4.4, with respect to the retention of ECSAs and ORR 

mass activities after durability tests, both ECSA and ORR retentions are higher for Pt 

catalysts supported by CF- or CE-NFs than those obtained for Pt catalysts supported by 

carbon balcks. Among Pt catalysts supported by CF- or CE-NFs, the percentage of ECSA 

and ORR retentions are higher for those supported by CE-NFs than those supported by CF-

NFs. Lower ECSA and ORR activity retentions for Pt deposited onto CF-NFs was to some 

extent expected due to their extremely lower surface areas which can facilitate the 

agglomeration of Pt nanoparticles during potential cycling tests [4, 6]. However, with 

respect to the low durability of Pt catalysts supported by CF-NFs, observed weight gains 

under oxidative conditions for CF-NFs (Figure 4.4), and the atomic concentration ratios 

Figure 4.8. Series of CV and LSV plots obtained for different catalysts during 

durability experiments.  (a, b, and c) Series of CV curves obtained after certain 

numbers of potential cycling between 0 to 1.2 V in Ar saturated aqueous solutions of 

0.5M H2SO4 at a potential scan rate of 50 mV/s; (d, e, and f) Oxygen reduction LSVs 

obtained in O2 saturated aqueous solutions of 0.5M H2SO4 with a potential sweep rate 

of 5 mV/s and rotation speed of 1600 rpm, before and after 1000 potential cycles.   
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obtained from surface chemical components (Table 4.3), suggest electro-oxidation of 

oxygen-deficient surface oxides (e.g. Ti4O7 and/or NbO2) to be mainly responsible. It has 

been shown that the electro-oxidation of any of these oxygen deficient surface oxides into 

more stable oxides (e.g. TiO2 and/or Nb2O5) could lead to a poor interaction between the 

support and Pt nanoparticles and accordingly lower ORR activities [25, 74]. 

 In addition under the same heat treatment, the percentage of ECSA and ORR retentions 

are slightly lower for Pt catalyst supported by CF25 (20 wt.% Pt/CE25) than that supported 

by CF10 (20 wt.% Pt/CE25), i.e. 82% vs. 85%. Based on XPS measurement results (Table 

4.3), this observation can be speculated to be mainly due to the formation of more of not 

electrochemically stable NbO2 domains at the surface of NFs doped with 25 at.% Nb than 

those doped with 10 at.% Nb. 

4.4 Conclusions 

An electrochemically durable and catalytically active catalyst support is presented as an 

alternative for conventionally used carbon black catalyst supports for PEM fuel cell 

applications. More electronically conductive and electrochemically durable catalyst 

support is only achieved if distorted graphite-like carbon domains are embedded in the Nb 

doped TiO2 NFs. Doping the rutile phase of TiO2 with 10 at. % Nb rather than 25 at. % Nb 

found, first, to be more effective in terms of providing free electrons to the ideal lattice of 

TiO2; second, to make the surface less prone to the formation of secondary oxides. Future 

work will focus on the evaluation of the in-house prepared catalysts under real fuel cell 

conditions and propose an innovative strategy to prepare more electrochemically durable 

PEM fuel cells with optimized performances. 
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Koutecky-Levich Equation  

Furthermore, to determine whether ORR reaction produces H2O (4-electron pathway) 

or H2O2 (2-electron pathway), Koutecky-Levich equation, Eq. (SI-4.1): [1, 2] 

 

 
1

j
=  

1

jk
+

1

Bω1/2
 (SI-4.1) 

Where j is the experimentally measured current density (mA.cm-2), jk is kinetic current 

density (mA.cm-2), jd is the diffusion limiting current density (mA.rad1/2.s-1/2.cm-2) and  

is the angular velocity frequency of rotation derived from f/60, f is the rotation rate 

in rpm. Constant B in Eq. (5) which is the simplified form of koutecky-Levich (K-L) 

equation by assuming the resistance of Nafion layer sufficiently small [3], can be 

expressed as follow: 

 

 B = 0.62nFD
O2

2
3 CO2

ν−
1
6 (SI-4.2) 

 

The theoretical values for 2-electron (n=2) and 4-electron (n=4) ORR pathways can be 

calculated by extracting diffusion coefficient of O2 (D02 = 1.4 × 10-5 cm2.s-1), maximum 

solubility of O2 (CO2 = 1.1 ×10-6 mol.cm-3), and kinematic viscosity of O2 ( = 10 × 10-3 

cm2.s-1) in 0.5 M H2SO4 aqueous solution at room temperature from literature.[4]  
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 t-plots  

 

 

  

Figure SI-4.1. t-plots of all synthesized NbxTi(1-x)O2 (x = 0.1 and 0.25) nanofibers and 

a Vulcan XC-72R.  
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Raman peak analysis parameters and results 

Table SI-4.1. Sadezky et al.[5] reported vibration modes and line shapes for the best 

curve-fitting of first-order Raman bands for carbonaceous materials. 

Band 
Raman Shift 

(cm-1) 
Vibration mode Line shape 

G ~ 1580 cm-1 Ideal graphitic lattice (E2g-symmetry) Lorentzian 

D1 ~ 1350 cm-1 
Disordered graphitic lattice (graphene layer edges, A1g 

symmetry) 
Lorentzian 

D2 ~ 1620 cm-1 
Disordered graphitic lattice (surface graphene layers, 

E2g symmetry) 
Lorentzian 

D3 ~ 1500 cm-1 Amorphous carbon Gaussian 

D4 ~ 1200 cm-1 Disordered graphitic lattice (A1g symmetry) Lorentzain 

 

Table SI-4.2. Relative band area ratios of the D1-D4 bands to G band, ADX-band/AG-band (X 

= 1, 2, 3, 4).  

 Nanofiber 

Name 

Peak Area Ratio 

D1/G D2/G D3/G D4/G 

CE10 8.478 1.244 1.609 0.500 

CE25 6.56 0.923 1.200 0.1212 
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Figure SI-4.2. Peak analyses of the ordered/disordered graphite second-order bands 

observed in the Raman spectra of CE-NFs. (a) CE10; and (b) CE25. 
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PXRD patterns of Pt-deposited nanofibers 

 

 

  

Figure SI-4.3. PXRD patterns of 20 wt. % Pt deposited NbxTi(1-x)O2 (x = 0.1 and 

0.25) nanofibers. 
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Transmission electron microscopy (TEM) and energy dispersive X-ray 

spectroscopy (EDX) results 

 

 

 

 

Figure SI-4.4. BF-TEM and HRTEM images of 20 wt. % Pt deposited CE10 

nanofibers at different magnifications. 

Figure SI-4.5. Dark field-TEM images and collected EDX spectra from 20 wt. % Pt 

deposited CE10 nanofibers.   
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X-ray photoelectron spectroscopy (XPS) survey scans  

 

 

Figure SI-4.6. XPS survey spectra of 20 wt. % Pt deposited CF10 nanofibers.   

Figure SI-4.7. XPS survey spectra of 20 wt. % Pt deposited CF25 nanofibers.   
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Figure SI-4.8. XPS survey spectra of 20 wt. % Pt deposited CE10 nanofibers.   

Figure SI-4.9. XPS survey spectra of 20 wt. % Pt deposited CE25 nanofibers.   
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High-resolution XPS scans in C 1s region  

 

  

Figure SI-4.10. High resolution XPS spectra of different catalysts along with 

component fits in C 1s region. 
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Table SI-4.3. XPS peak parameters and Area % of different components in C 1s region. 
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High-resolution XPS scans in O 1s region  

 

  

Figure SI-4.11. High resolution XPS spectra of different catalysts along with 

component fits in O 1s region.. 
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Table SI-4.4. XPS peak parameters and Area % of different components in O 1s region. 
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High-resolution XPS scans in Ti 2p region  

 

  

Figure SI-4.12. High resolution XPS spectra of different catalysts along with 

component fits in Ti 2p region.. 
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Table SI-4.5. XPS peak parameters and Area % of different components in Ti 2p region. 

Sample # CF10 CE10 CF25 CE25 

At.% of 

Ti2p 
16.2 9.8 13 10.4 

Chemical 

State 

Ti 2p3/2 

(Ti4+) 

 

Ti 2p3/2 

(Ti3+) 

 

Ti 2p3/2 

(Ti4+) 

 

Ti 2p3/2 

(Ti3+) 

 

Ti 2p3/2 

(Ti4+) 

 

Ti 2p3/2 

(Ti3+) 

 

Ti 2p3/2 

(Ti4+) 

 

Ti 2p3/2 

(Ti3+) 

 

Peak  

Position, 

eV 

459.59 463.91 459.35 457.95 459.47 458.07 459.36 457.96 

FWHM 1.05 2.00 1.11 1.88 1.08 2.00 1.12 1.88 

Area % 89.7 10.3 90.9 9.1 83.3 16.7 88.9 11.1 

*Peak splitting value for Ti2p spin-orbit components is 5.72 eV.  
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High-resolution XPS scans in Nb 3d region  

 

  

Figure SI-4.13. High resolution XPS spectra of different catalysts along with 

component fits in Nb 3d region.. 
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Table SI-4.6. XPS peak parameters and Area % of different components in Nb 3d region. 

Sample # CF10 CE10 CF25 CE25 

At.% of 

Nb3d 
1.4 1.2 4.2 3.7 

Chemical 

state 

N
b

 3
d

5
/2

 (
N

b
5
+
) 

N
b

 3
d

5
/2

 (
N

b
4
+
) 

N
b

 3
d

5
/2

 (
N

b
5
+
) 

N
b

 3
d

5
/2

 (
N

b
4
+
) 

N
b

 3
d

5
/2

 (
N

b
5
+
) 

N
b

 3
d

5
/2

 (
N

b
4
+
) 

N
b

 3
d

5
/2

 (
N

b
5
+
) 

N
b

 3
d

5
/2

 (
N

b
4
+
) 

Peak 

Position, 

eV 

208.08 206.30 207.80 206.30 207.91 206.30 207.75 206.30 

FWHM 1.13 1.13 1.26 1.26 1.21 1.21 1.24 1.24 

Area % 93.6 6.4 94.9 5.1 90.2 9.8 93.1 6.9 

*Peak splitting value for Nb3d spin-orbit components is 2.72 eV.  
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High-resolution XPS scans in Pt 4f region  

 

  

Figure SI-4.14. High resolution XPS spectra of different catalysts along with 

component fits in Pt 4f region.. 
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Table SI-4.7. XPS peak parameters and Area % of different components in Pt 4f region.  

Sample # CF10 CE10 CF25 CE25 

At.% of Pt4f 10.9 6.9 11.5 5.1 

Chemical state Pt 4f7/2 (Pt0) Pt 4f7/2 (Pt0) Pt 4f7/2 (Pt0) Pt 4f7/2 (Pt0) 

Peak  

Position, eV 
71.10 71.07 71.03 71.05 

FWHM 0.90 0.96 0.88 0.93 

*Peak splitting value for Pt4f spin-orbit components is 3.32 eV.  
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Kroger-vink notations 

 

 
1

2
 𝑁𝑏2𝑂5 + 𝑇𝑖𝑇𝑖

×  →  𝑁𝑏𝑇𝑖
° +

1

4
 𝑉𝑇𝑖

′′′′ + 𝑇𝑖𝑂2 + 
1

2
 𝑂2 (SI-4.3) 

 

 
1

2
 𝑁𝑏2𝑂5 + 𝑇𝑖𝑇𝑖

×  →  𝑁𝑏𝑇𝑖
° + 𝑇𝑖𝑇𝑖

′ +
5

2
 𝑂2 (SI-4.4) 

 

Table SI-4.8. Descriptions of Kroger-vink notations used in Eqs. (SI-4.3) and (SI-4.4). 

Kroger-vink 

notation 
Description  

𝑇𝑖𝑇𝑖
𝑋  A titanium ion siting on a titanium lattice site with neutral charge (𝑇𝑖4+) 

𝑁𝑏𝑇𝑖
°  

A niobium ion sitting on a titanium lattice site with single positive 

charge 
(𝑁𝑏5+) 

𝑉𝑇𝑖
′′′′ A titanium vacancy with quadruple negative charge  

𝑇𝑖𝑇𝑖
′  

A titanium ion siting on a titanium lattice site with single negative 

charge 
(𝑇𝑖3+) 
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Electrochemical characterization results 

 

Figure SI-4.15. ORR Linear sweep voltammograms (LSVs) recorded at a potential 

scan rate of 5 mV s-1 and various rotation speeds along with Koutecky-Levich plots at 

0.7 V for different  catalysts in O2 saturated aqueous solution of 0.5M H2SO4. LSVs 

for (a) 20 wt.%Pt/CF10; (b) 20 wt.%Pt/CF25; (c) 20 wt.%Pt/CE10; (d) 20 

wt.%Pt/CE25; (e) 20 wt.%Pt/Vulcan; and (f) K-L plots at 0.7V.  



Carbon-Embedded Mesoporous Nb-doped TiO2 Nanofibers (SI) 

122 

 

 

 

References   

1. Senevirathne, K., et al., Nb-doped TiO2/carbon composite supports synthesized by 

ultrasonic spray pyrolysis for proton exchange membrane (PEM) fuel cell 

catalysts. Journal of Power Sources, 2012. 220(0): p. 1-9. 

2. Levich, V.G., Physicochemical hydrodynamics. Prentice-Hall international series 

in the physical and chemical engineering sciences. 1962, Englewood Cliffs, N.J.: 

Prentice-Hall. 700 p. 

3. Paulus, U.A., et al., Oxygen reduction on high surface area Pt-based alloy catalysts 

in comparison to well defined smooth bulk alloy electrodes. Electrochimica Acta, 

2002. 47(22–23): p. 3787-3798. 

4. Song, C. and J. Zhang, Electrocatalytic Oxygen Reduction Reaction, in PEM Fuel 

Cell Electrocatalysts and Catalyst Layers, J. Zhang, Editor. 2008, Springer 

London. p. 89-134. 

5. Sadezky, A., et al., Raman microspectroscopy of soot and related carbonaceous 

materials: Spectral analysis and structural information. Carbon, 2005. 43(8): p. 

1731-1742. 

 

Figure SI-4.16. ORR linear sweep voltammograms of different catalysts recorded in 

O2 saturated aqueous solutions of 0.5M H2SO4 with a potential sweep rate and rotation 

speed of 5 mV/s and 1600 rpm, respectively, before and after 1000 potential cycles. 

(a) 20 wt.% Pt/CF10; (b) 20 wt.% Pt/CF25. 
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5.1 Introduction 

Polymer electrolyte membrane fuel cells (PEMFCs) are regarded as a promising 

candidate for transportation and mobile electronics applications. Cost and durability have 

been identified as the major challenges that have to be met in order to commercialize fuel 

cell technology in these applications [1]. U.S. Department of Energy (DOE) has set the 

targets for 2020 in its most recent fuel cell technical plan as follows: less than 40% loss of 

initial mass activity under automotive load cycle and less than 0.125 mgPt∙cm-2 total (anode 

+ cathode) platinum group metal (PGM) loading [2]. Despite of the evolution of 

nanostructured carbon-based catalysts with outstanding catalytic properties [3-6], the 

electro-oxidation caused by carbon at high potentials [7, 8] is still inevitable with the state 

of the art commercial carbon black supports. This fact kept researchers to work hard to 

search for an electrochemically durable and active noncarbon catalyst supports [9-11] and 

to further investigate the degradation mechanisms [12-16]. Among several proposed 

noncarbon catalyst supports [17-20], titanium dioxide (TiO2) is widely studied due to its 

high chemical stability and favorable strong metal-support interaction (SMSI) for PEMFC 

applications [21-27]. However, to make TiO2 appealing for PEMFC catalyst support, its 

inherent low electronic conductivity and low surface area must be improved [28-31]. 

Recently it has been shown that blending transition-metal doped TiO2 nanostructures with 

commercial carbon blacks can combine their advantages and make more appealing catalyst 

supports with much higher electronic conductivities and surface areas [32-39]. Commercial 

carbon blacks were mostly blended with titanium and doping element (e.g. niobium) 

containing precursor solutions and the final reduced blend was commonly referred as 

composite or hybrid catalyst support [34, 36]. The most important deficiency of catalysts 

supported by these composite or hybrid catalyst supports, despite much enhanced oxygen 

reduction reaction (ORR) mass activities, was their relatively lower [34] or just slightly 

improved [36] durability under acidic condition. The ORR mass activities of Pt alloy 

catalysts supported by hybrid supports were improved only by blending high contents of 

carbon NPs (75 wt.%) with transition metal-doped TiO2 NPs  [36]. Therefore, most 

probably due to the high contents of carbon NPs, the electrochemical durability was only 

slightly improved [36]. Furthermore, under certain synthesis conditions [34], blending high 
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contents of carbon NPs with Nb-doped TiO2 nanocrystals even increased the ORR mass 

activity loss compared to pure carbon based Pt catalysts.  

Additionally, despite large number of studies which were just relied on ex-situ 

measurements such as rotating disk electrode (RDE) measurements to evaluate the catalytic 

performances of catalysts supported by transition metal-doped TiO2 or blended supports, 

only a few groups  evaluated the in-situ performnace of treansition metal-doped TiO2 

supported Pt catalysts under real PEMFC operating conditions [10, 22, 23, 35, 40]. In fact 

the catalytic activity evaluation under real fuel cell conditions is more critical than 

simulated RDE conditions with pure oxygen saturated flooded electrolytes. In real fuel cell 

conditions, the sluggish ORR reaction will not occur unless triple phase boundary (TPB) 

condition satisfies in the catalyst layer (CL) [41-43].  Proton conducting ionomer phase 

(Nafion) incorporation into the CL under real fuel cell conditions was shown to be very 

critical in terms of providing enough proton conductive paths deep into the CL [44] 

whereas its excessive amount could either block the active sites or increase the resistivity 

[45]. Therefore many studies have been done to find a criterion to be able to formulate the 

required optimized Nafion amounts to be applied to the catalyst layers [46-49]. Despite 

widespread use of optimized Nafion weight percentages (NWPs) in the range of 20 – 40% 

[45, 46, 50] for commercial pure carbon-based catalysts, it has been shown that optimized 

NWPs are highly dependent on catalyst type (e.g. the type of catalyst support or metal 

percentages) and cannot be directly applied to any type of catalyst layer [51-53]. Recently, 

in comparison to the use of catalyst weight, the use of catalyst volume was shown to be 

more effective in predicting optimized Nafion loadings for Pd/C catalysts with different 

metal percentages [52]. However, the proposed volumetric ratios were only validated to 

pure carbon black supported Pd catalysts. Hence using volumetric ratios as a fixed value 

for any type of catalyst support (specifically for composite or hybrid supports) needs to be 

validated.  Despite a few studies which were performed on the PEMFC performance 

evaluation of transition metal doped TiO2 supports, to the best of the present author’s 

knowledge, the optimization of Nafion amount to be applied to their corresponding CLs 

has not been investigated. The optimized Nafion loadings were also shown to be highly 

dependent on the catalyst layer preparation method [53]. Furthermore, electrospraying 
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technique has shown to be a very promising alternative way to make highly active CLs 

through improving the distribution and interaction of Nafion ionomer in the CL [53, 54].  

Recently, using an in-situ reductive embedment (ISRE) strategy, the present authors 

have successfully synthesized carbon-embedded mesoporous Nb-doped TiO2 nanofibers 

(NFs) as catalyst support, with relatively high electronic conductivity about 0.12 S∙cm-1 

and high surface area of 102 m2∙g-1 [55]. In order to increase the electronic conductivity of 

Nb-doped TiO2 nanomaterials (NFs or NPs), ISRE strategy using organic carbon sources 

(i.e. Polyvinylpirrolidone) was shown to be more effective method than the one blending 

with already graphitized carbon NPs used in the literature [34], because the ISRE strategy 

used much less carbon amount (11 wt.% [55] vs. 25 wt.% [34]) to achieve sufficiently 

conductive catalyst supports. The Pt catalysts supported by carbon-embedded 10 at.% Nb-

doped TiO2 (C/Nb0.1Ti0.9O2) NFs, evaluated through RDE measurements, have showed 

much enhanced durability with comparable ORR mass activity, when compared with pure 

carbon-based catalysts for oxygen reduction reaction (ORR) [55].  

Our main goal here is to composite C/Nb0.1Ti0.9O2 NFs with commercial carbon blacks 

to combine their advantages through physical mixing, and then evaluate the catalytic 

activity of the synthesized composite-supported Pt catalysts under both, acidic and real 

PEMFC operating conditions. To reach this goal, first, a new methodology is introduced 

to prepare CLs out of composite-supported Pt catalysts so that the PEMFC performances 

at optimized Nafion loadings can be compared; second, an optimized amount of carbon 

black which is needed to be composited with C/Nb0.1Ti0.9O2 NFs is identified that balances 

performance and durability. 

5.2 Experimental 

5.2.1 Synthesis and characterization of composite supported Pt catalysts  

5.2.1.1 Synthesis of carbon-embedded Nb-doped TiO2 nanofibers  

An electrospinning setup developed in the Clean Powertrain Lab at the University of 

Windsor [56] was used to fabricate carbon-embedded 10 at.% Nb-doped TiO2 

(C/Nb0.1Ti0.9O2) nanofibers and the details of the synthesis processes are reported 
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elsewhere [55]. The heat treatment of the as-spun nanofibers described in this work is as 

follows: First, the as-spun fibers were left at ambient environment with room temperature 

for 24 hours, second, they were reduced under pure hydrogen atmosphere from room 

temperature up to 500ºC at a heating rate of 5ºC∙min-1 and kept at 500ºC for 2 hours; and 

then continuously heated up to 800ºC with the same heating rate and kept at that 

temperature for 6 hours.  

5.2.1.2 Synthesis of composite catalyst supports 

Before the composite catalyst supports can be made, the surface functionalization 

treatment on carbon blacks (Vulcan XC-72R, Cabot Inc.), shown to be in favor of uniform 

distribution of Pt nanoparticle [57-59], was performed by refluxing desired amounts of 

carbon blacks (4 mg∙mL-1) into aqueous solution of 0.5M HNO3 at 100ºC for 2 hours. Then, 

the pre-functionalized carbon blacks were washed with copious amount of deionized (DI) 

water until the washed-out water achieved pH of 7. Later Composite catalyst supports were 

prepared by physically mixing, using a mortar and pestle, pre-functionalized pure carbon 

blacks with C/Nb0.1Ti0.9O2 nanofibers at four different weight percentages, i.e. 0, 25, 75 

and 100 wt.%. In this study, two cases for pure C/Nb0.1Ti0.9O2 nanofibers and pure carbon 

blacks were treated as composite catalyst supports, only for the convenience of  discussion 

and fluency of reading,  which are containing 0 and 100 wt.% carbon blacks.  

5.2.1.3 Pt deposition  

Using microwave-assisted polyol technique described in [55], Pt nanoparticles were 

deposited onto composite catalyst supports. In a typical catalyst synthesis, a desired amount 

of composite catalyst support was first dispersed into ethylene glycol. The Pt precursor 

solution was prepared seperately by adding the desired amount of chloroplatinic acid 

hexahydrate (H2PtCl6.6H2O), with a target Pt weight percentages of 20 wt.%, into the 

mixture of DI water and ethylene glycol as solvent. And then the above two solutions were 

mixed, and the pH value of this mixture was adjusted to 10 by adding 0.1 M NaOH solution 

in ethylene glycol. This solution then has been reduced at 185 °C for 2 minutes in a 

Biotage® (Initiator Classic) microwave reactor. After the reduced suspension (Pt catalyst 

+ solvent) being cooled down to 50ºC, the reduction step was repeated for one more time. 

Finally, Pt catalysts were separated from the solvent, washed with copious amounts of DI 



Electrosprayed Cathode Catalyst Layer with Composite-Supported Pt Catalyst 

128 

 

water, and then vacuum dried at 80 °C for overnight.  Table 5.1 shows corresponding 

abbreviated names and CBWPs (CBWPs) of all synthesized Pt catalysts along with 

commercial 40 wt.% Pt/C (HiSpec 4000, Johnson Matthey) catalyst used as a reference. 

 

Table 5.1. List of investigated Pt catalysts. Samples TC, C25C, C75C and VC were 

prepared While JM was purchased from Johnson Matthey. CBWP=carbon black weight 

percentage.  

Catalyst 

Name 
Catalyst Composition 

CBWPs in composite 

support, wt.% 

TC 20 wt.% Pt/(C/Nb0.1Ti0.9O2) 0 

C25C 20 wt.% Pt/(Vul.25wt.%-(C/Nb0.1Ti0.9O2)75wt.%) 25 

C75C 20 wt.% Pt/(Vul.75wt.%-(C/Nb0.1Ti0.9O2)25wt.%) 75 

VC 20 wt.% Pt/Vulcan XC-72R 100 

JM HiSpec 40 wt.% Pt/C 100 

 

5.2.1.4 Material characterization of composite supported Pt catalysts  

Powder X-ray diffraction (PXRD) measurements were performed on a Bruker D8 Discover 

diffractometer equipped with a Vantec-500 area detector and GADDS software package. 

For All PXRD measurements, the X-ray tube was operated at 40 kV and 40 mA with 

monochromatized radiation source of CuKα1 (wavelength = 1.54187 Å) and an initial 

beam diameter of 0.5 mm was used. Van der Pauw method [60] was used to measure the 

electronic conductivity of composite catalyst supports, the details for the process of 

measurements were reported elsewhere [55]. Thermogravimetric analyses were performed 

using a Thermal analysis (TA) instrument (SDT Q-600) under air stream with 3ºC/min 

heating rate from room temperature up to 1050 ºC. The true densities of catalyst supports 

were measured using a gas pycnometer (Micromeritics Accupyc II 1340) at 25ºC, and the 

average of last three measurements were reported with a standard deviations less than 
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0.0005. The NOVA 1200e pore size and surface area analyser (Quantachrome Instruments) 

equipped with NovaWin software package was used for surface area and average pore size 

measurements. The amount of adsorbed nitrogen onto different supports at constant 

temperature of 77°K (-196°C) have been used for Brunauer-Emmett-Teller (BET) surface 

area measurements. The t-plot of de Boer [61] offered by NovaWin software [40, 62] was 

used for the calculation of external surface area of different supports, i.e., the area of pores 

with diameters larger than 2nm. Further, the pore size distributions were calculated from 

desorption branch of the isotherms using Barrett, Joyner and Halenda (BJH) method [62].  

High resolution transmission electron microscopy (HRTEM) images were taken at an 

image-corrected low-base microscope (FEI Titan), operated at 300kV, equipped with an 

Oxford x-sight energy dispersive spectrometer (EDS) detector (Oxford Instruments). X-

ray photoelectron spectroscopy (XPS) measurements were performed on an Axis Ultra X-

ray photoelectron spectrometer (Kratos Analytical). Powder samples were pressed into 

indium foil using a clean glass slide before XPS measurements. Both survey scan and high 

resolution analyses were carried out with an analysis area of 300 × 700 microns and pass 

energies of 160 eV and 20 eV, respectively. The instrument work function was calibrated 

to give a binding energy (BE) of 83.96 eV for the Au 4f7/2 line for metallic gold and the 

spectrometer dispersion was adjusted to give a BE of 932.62 eV for the Cu 2p3/2 line of 

metallic copper. The Kratos charge neutralizer system was used on all specimens. Spectra 

were charge corrected so that the main line of the C 1s spectrum (adventitious carbon) set 

to 284.8 eV.  

5.2.1.5 Electrochemical characterization of composite-supported Pt catalysts 

Electrochemical characterizations were conducted using a rotating disk electrode (BASi 

RDE-2) with a conventional three-electrode system contained in a glass cell and a 

potentiostat. Pt wire and saturated Ag/AgCl electrodes were used as counter and reference 

electrodes, respectively, and a 0.076 cm2 (D = 3 mm) area glassy carbon (GC) rotating disk 

electrode (RDE) tip coated with a thin layer of catalyst served as a working electrode, the 

details of the catalyst coating method were described elsewhere [55]. The total catalyst 

mass coated onto the GC electrodes was 10 µg with 2 µg of Pt and then the catalyst coated 

GC electrodes were impregnated by 2 µL of diluted Nafion ionomer solution (5 wt.% in 

aliphatic alcohols, Type: D-520 from DuPont) before any electrochemical test.  
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All Cyclic Voltammograms (CVs) were performed in Ar saturated solutions of 0.5 M 

H2SO4 between 0 to 1.2 V versus to the reversible hydrogen electrode (RHE) at a scan rate 

of 50 mV/s. To investigate the electrochemical durability of the catalysts, the 

electrochemically active surface areas (ECSAs) were calculated and compared for the fresh 

catalysts and potentially cycled catalysts after 1000 full potential cycles between 0-1.2 V. 

The ECSAs were calculated through the charge integration under the hydrogen adsorption 

peaks appearing between 0.05 and 0.38 V (RHE) in the negative going potential sweep, a 

standard hydrogen monolayer full coverage charge of 210 µC∙cm-2 was assumed on a pure 

Pt surface [63]. 

For Oxygen reduction reaction (ORR) mass activity measurements, linear sweep 

voltammograms were recorded at a scan rate of 5 mV/s in O2 saturated solutions of 0.5 M 

H2SO4 with a rotation speed of 1600 rpm at room temperature and ambient pressure.  

Similarly to check the durability of synthesized catalysts, the ORR mass activities were 

reported and compared for fresh catalysts and potentially cycled catalysts after 1000 cycles. 

The linear current-voltage curves at the negative sweep scan at the potential range of 0.4 

V to 1.1 V were used to estimate ORR mass activities at 0.9V with a unit of mA∙mgPt
-1 [55, 

63].   

5.2.2 Evaluation of composite supported Pt catalysts by optimized H2-air 

PEMFC performance  

Generally to be able to evaluate the H2-air PEMFC performances with the synthesized 

Pt catalysts on the cathode side, first, they need to be mixed with other components (Nafion 

and solvent) at pre-determined relative amounts to form a catalyst ink precursor; second, 

the catalyst ink needs to be coated onto either gas diffusion layers or Nafion membranes in 

the form of a catalyst layer (CL). To be able to compare PEMFC performance of different 

catalysts at their highest PEMFC performance conditions, Nafion loading in the CL 

identified to be a key parameter which needs to be effectively optimized and correlated to 

either weight or volume of the catalyst (catalyst support + PGMs) in the CL. In the 

remaining of this section, the methodology that will be used to compare the PEMFC 

performance of synthesized composite supported Pt catalysts will be explained. The 

optimization of Nafion loading using Nafion Volume percentages (NVPs) will be defined 
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first and then catalyst layer preparation procedure through electrospray deposition 

technique will be explained.   

5.2.2.1 NVP vs. NWP in the catalyst layer 

In order to compare the performance of PEMFCs with different composite-supported Pt 

catalysts, Nafion volumetric percentage (NVP) is defined as the percentage of dry Nafion 

volume in the CL, as shown in Eq. (5-1):  

 

 

NVP =  
(

𝐿𝑁𝑎𝑓𝑖𝑜𝑛
𝜌𝑁𝑎𝑓𝑖𝑜𝑛

⁄ )

(
𝐿𝑁𝑎𝑓𝑖𝑜𝑛

𝜌𝑁𝑎𝑓𝑖𝑜𝑛
⁄ ) + (

𝐿𝑆𝑢𝑝𝑝𝑜𝑟𝑡
𝜌𝑆𝑢𝑝𝑝𝑜𝑟𝑡

⁄ ) + (
𝐿𝑃𝑡

𝜌𝑃𝑡
⁄ )

× 100 (5-1) 

 

Where Nafion, Support, and Pt are the true densities, with units of mg∙cm-3, and LNafion, 

LSupport, and LPt are the target loadings of dry Nafion, catalyst support, and platinum, with 

units of mg∙cm-2, in the CL, respectively. The true densities for different types of composite 

catalyst supports (Support) were determined through gas pycnometry (Micromeritics 

Accupyc II 1340) measurements, as shown in Table 5.2, and a value of 21400 mg∙cm-3 was 

used as the true density of metallic Platinum (Pt). The dry Nafion density (Nafion.) is set 

to a value of 1134 mg∙cm-3 that was reported by Bonifácio et al. [52] for the same type of 

Nafion solution employed in this study for catalyst ink preparation, i.e., Type D-520 from 

DuPont.  

 

Table 5.2. True densities of composite catalyst supports measured through gas 

pycnometry.  

 C/Nb0.1Ti0.9O2 

Vul.25 wt.%-

(C/Nb0.1Ti0.9O2)75 wt.% 

Vul.75 wt.%-

(C/Nb0.1Ti0.9O2)25 wt.% 

Vulcan 

XC-72R 

Density, mg∙cm-3 4259 3737 2693 2171 
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To be able to compare the effectiveness and efficiency of working with NVPs rather 

than commonly used NWPs, NWPs were also reported in the present study. NWPs were 

determined using the well-established equation proposed by Passalacqua et al. [46] as the 

percentage of dry Nafion Loading in the CL (previously known as NFP), as shown in Eq. 

(5-2): 

 

 NWP =  
𝐿𝑁𝑎𝑓𝑖𝑜𝑛

𝐿𝑁𝑎𝑓𝑖𝑜𝑛 + 𝐿𝑆𝑢𝑝𝑝𝑜𝑟𝑡 + 𝐿𝑃𝑡
× 100 (5-2) 

 

5.2.2.2 Catalyst Layer preparation 

Cathode Catalyst layers were prepared onto 24BC SIGRACET® carbon papers with an 

area of 5 cm2 through only electrospray deposition technique, whereas anode CLs were 

prepared either by airbrush or electrospray deposition techniques. Before adopting any 

method to form a CL, desired amounts of catalysts and Nafions have to be dispersed 

homogeneously in a solvent to create target Pt loadings and NVPs in the CL. In this study, 

catalyst volumetric loading (CVL) with a unit of cm3∙cm-2, as defined in Eq. (5-3), was 

used to calculate the required Nafion loadings (mg∙cm-2), defined in Eq. (5-4), to create the 

target NVPs in the CLs, as follows:  

 

 𝐶𝑎𝑡𝑎𝑙𝑦𝑠𝑡 𝑉𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝐿𝑜𝑎𝑑𝑖𝑛𝑔 (𝐶𝑉𝐿) = (𝐿𝑆𝑢𝑝𝑝𝑜𝑟𝑡 × 𝜌𝑆𝑢𝑝𝑝𝑜𝑟𝑡
−1 ) + (𝐿𝑃𝑡 × 𝜌𝑃𝑡

−1) (5-3) 

 

 𝐿𝑁𝑎𝑓𝑖𝑜𝑛 =  (
NVR

1 − NVR
) × CVL × ρ𝑁𝑎𝑓𝑖𝑜𝑛 (5-4) 

 

 

Where NVR stands for Nafion volumetric ratio (NVR), and it equals to NVP divided 

by 100. Isopropyl alcohol was used as solvent to prepare the catalyst inks and the 
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concentration of dry Nafion in the solvent was 0.6 mg∙mL-1 for both airbrush and 

electrospray deposition techniques. After about 3 hours sonication of the catalyst inks at 

room temperature, the well-dispersed catalyst inks can be airbrushed (only used for anode 

CLs) using a commercial dual-action airbrush gun (VL-SET, Paasche) at a back pressure 

of 10 psig, or can be electrosprayed by an electrospinning apparatus with a heated 

aluminum collector. During catalyst layer deposition, the carbon paper substrates were 

always placed on the heated aluminum collector at 60ºC to accelerate the solvent 

evaporation process. The amount of deposited catalyst onto dried carbon paper substrates 

were controlled by weighing them using a 5 digit accuracy balance (ACCULAB) before 

and after deposition.  

As an example, Table SI-5.1 shows a typical series of calculations which are needed to 

be done to prepare an electrosprayed catalyst layer out of TC catalysts with a target Pt 

loading of 0.17 mgPt∙cm-2 and NVP of 45%. Table SI-5.1 shows that typically to prepare 

an electrosprayed CL with the above specifications, 4.25 mg of TC catalysts will be 

dispersed into 1.29 mL of diluted Nafion ionomer solution in isopropanol (17 µL of 5 wt.% 

Nafion stock solution + 1.29 mL isopropanol).  This suspension will be sonicated for at 

least 3 hours to form a well-dispersed catalyst ink. Then the well-dispersed catalyst ink will 

be loaded into a plastic syringe with a 22 gauge stainless steel blunt needle. After placing 

the loaded syringe into a syringe pump (KDS scientific), it will be electrodeposited by 

using a DC voltage of 8kV (ES50, Gamma high voltage research) at 1 mL/hr feeding rate 

while the substrate (carbon paper) is placed onto a heated aluminum collector. The distance 

between the thermostated collector at 60ºC and needle tip will be 5 cm, and the catalyst ink 

has to be sonicated every 15 minutes to keep it homogenized during electrodeposition 

process.  

5.2.2.3 Membrane electrode assembly (MEA) fabrication 

By using an automatic hydraulic press (CARVER®) under 600 pounds force at 130 °C for 

3 minutes, MEAs have been prepared via sandwiching NRE212 (non-reinforced membrane 

with an equivalent weight of 1100 g∙eq-1 and thickness of 50.8 m) type Nafion membrane 

between air-dried anode and cathode electrodes.  
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5.2.2.4 Polarization curves 

PEMFC polarization curves have been recorded by using an entirely automatic fuel cell 

test station (FCTS) developed in the Clean Powertrain Lab (CTL) at the University of 

Windsor. The entirely automated fuel cell test station which have been used in our previous 

study [64] was upgraded by a 5 cm2 research fuel cell with Pneumatic compression (TP5E, 

Tandem Technologies Inc.), standard back pressure unit (850BP Scribner Associates Inc.) 

and a house-made fully automated bubble humidifier with heated transfer lines. Both H2 

and air were saturated with water at 80°C and were provided with constant excess 

coefficients of 1.5 and 2.5 to anode and cathode compartments, respectively.  Before 

recording polarization curves, as-fabricated MEAs were activated first in the constant 

voltage mode (through 6 cycles of alternating the voltage from 0.7 V for 20 minutes to 0.5 

V for 20 minutes) and then in the constant current mode (at 0.5 A∙cm-2 for 12 hours). The 

polarization curves were recorded at the cell temperature of 80°C and back pressure of 30 

psig.  

5.3. Results and discussion 

5.3.1. Development of composite-supported Pt catalysts 

5.3.1.1 Physical characteristics of composite catalyst supports 

 Crystal structure 

PXRD was employed to investigate the crystal structure of all proposed composite 

catalyst supports, C/Nb0.1Ti0.9O2; physical mixture of 25 wt.% Vulcan XC-72R with 75 

wt.% C/Nb0.1Ti0.9O2 NFs (Vul.25wt.%-( C/Nb0.1Ti0.9O2)75wt.%); physical mixture of 75 wt.% 

Vulcan XC-72R with 25 wt.% C/Nb0.1Ti0.9O2 NFs (Vul.75wt.%-( C/Nb0.1Ti0.9O2)25wt.%); and 

Vulcan XC-72R, and the PXRD patterns of these supports are shown in Fig. SI-5.1. As 

discussed in our previous study [55], C/Nb0.1Ti0.9O2 nanofibers (the composite with 0 wt.% 

carbon black) were crystallized into a mixture of rutile and anatase polymorphs of TiO2 

lattice, predominantly 85% rutile, without any distinct features of niobium oxide or ternary 

phases. Both having rutile phase TiO2 and Nb incorporation into the TiO2 lattice, without 

forming any secondary oxide, are extremely critical in order to produce electronically 
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conductive Nb-doped TiO2 as a catalyst support for PEMFC applications [65, 66]. Fig. SI-

5.1 also showed that, after mixing 75 wt.% carbon black with C/Nb0.1Ti0.9O2 NFs, 

Vul.75wt.%-(C/Nb0.1Ti0.9O2)25wt.%, composite support showed distinguishable feature of 

added Vulcan XC-72R at 24.9º which is in agreement with the predominance of graphitic 

carbon in this sample. Furthermore, the crystal structure of C/Nb0.1Ti0.9O2 NFs was 

remained intact, evidenced by no shift in the peak positions of rutile structure after 

physically mixing with carbon blacks. 

 Actual carbon content, electronic conductivity, and surface area  

The physical properties of the synthesized catalyst supports are summarized in Table 

5.3.  

 

Table 5.3. Physical properties of in-house prepared catalyst supports and pure Vulcan 

XC-72R carbon blacks (purchased from Cabot Corporation). 

Catalyst Support 
CBWPs, 

wt.% 

Actual Carbon 

Contenta, wt.% 

Electronic 

Conductivity

, (S∙cm-1) 

BET 

Surface 

Area, 

(m2∙g-1) 

Micropore 

Areac, 

(m2.g-1) 

External 

Surface 

Aread, 

(m2∙g-1) 

C/Nb0.1Ti0.9O2 0 11 0.12 102 16 86 

Vul.25 wt.%-

(C/Nb0.1Ti0.9O2)75 wt.% 

25 30 1.2 130 35 95 

Vul.75 wt.%-

(C/Nb0.1Ti0.9O2)25 wt.% 
75 77 3.3 189 80 100 

Vulcan XC-72R 100 > 97.5%b 4 215 110 105 

aActual carbon contents were obtained from TGA data plots except for Vulcan XC-72R;  b Physical properties 

of Vulcan XC-72R is available from Cabot Corporation Website (http://www.cabotcorp.com); c Micropore 

areas were obtained from t-plots; d External surface areas were obtained by subtracting micropore areas from 

BET surface areas.  

 

http://www.cabotcorp.com/
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Thermogravimetric analyses (TGAs) were employed to verify the actual carbon content 

of composite catalyst supports that is represented by the weight loss percentage, assuming 

the only source of weight loss would be the carbon oxidation. TGA results are shown in 

Fig. 5.1. The composite catalyst supports with 25 or 75 wt.% carbon black clearly 

demonstrated much higher weight loss than that for C/Nb0.1Ti0.9O2 NFs. It is important to 

note that the actual carbon content includes the carbon sources from both the carbon 

embedment and physically mixing. Therefore the actual carbon content of a composite 

catalyst support is higher than the CBWP for the same composite support, e.g 30 wt.% vs. 

25wt.%. This difference correlates very well with the contribution from the oxidation of 

the embedded carbon in C/Nb0.1Ti0.9O2 NFs, around 11%. Additionally, carbon 

decomposition temperature is higher for the composite catalyst supports with non-zero 

carbon black percentages than that for C/Nb0.1Ti0.9O2 NFs which is with zero carbon black 

percentage, e.g, 500ºC vs. 300ºC, that is in agreement with less graphitization degree of 

the embedded carbon than that for the graphitized carbon blacks [67], the embedded carbon 

into Nb-doped TiO2 NFs has been previously shown to exhibit highly distorted garphitic 

structure [55].  

 

 

Figure 5.1. Weight loss vs Temperature from TGA tests for composite catalyst 

supports C/Nb0.1Ti0.9O2, Vul25wt.%-(C/Nb0.1Ti0.9O2)75wt.% and Vul75wt.%-

(C/Nb0.1Ti0.9O2)25wt.%. 
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 As shown in Table 5.3, the electronic conductivity of the composite support Vul.25wt.%-

(C/Nb0.1Ti0.9O2)75wt.%, formed by adding 25 wt.% carbon blacks (Vulcan XC-72R) to 

C/Nb0.1Ti0.9O2 NFs, is 10 times higher than that of C/Nb0.1Ti0.9O2, i.e., 1.2 vs 0.12 S∙cm-1.  

Adding more carbon black, e.g., 75 wt.%, the electronic conductivity of the composite 

support was further increased and only slightly lower than the electronic conductivity of 

pure carbon blacks, e.g., 3.3 vs. 4 S cm-1. The observed as expected monotonic increase in 

the electronic conductivity of the composite supports by the increase of CBWP in the 

composite support  most probably would favor the electron transfer from Pt nanoparticles 

to/through composite supports during the ORR in PEM fuel cells [27, 36].    

Fig. SI-5.2 shows, for all synthesized composite supports, the nitrogen 

adsorption/desorption isotherms for surface area analysis, the BJH pore size distributions 

and t-plots for external surface area calculations. It has been shown that micropores (pore 

with diameter smaller than 2 nm) merely serve as active sites for platinum depositions  [68], 

instead external surface areas (micropore surface area subtracted from BET surface area) 

is more representative of the area that can contribute to the enhanced fuel cell 

performances. As shown in Fig. SI-5.2c, by an increase in CBWP, t-plots are cleraly 

demonstrating larger positive intercepts (an increase in micropore areas), because carbon 

blacks have much larger micropore area than C/Nb0.1Ti0.9O2 NFs, as shown in Table 5.3. 

Accordingely, as shown in Table 5.3, although adding carbon blacks to C/Nb0.1Ti0.9O2 NFs 

significantly improved BET surface areas (e.g. from 102 to 189 m2.g-1), the external surface 

areas of composite supports were only slightly improved (e.g. from 102 to 189 m2.g-1). 

Furthermore, pore size distribution curves, as shown in Fig. SI-5.2b, showed that pore 

diameters in Vulcan XC-72R support are more centered on around 40 Å (4 nm) rather than 

around 80 -100 Å (8-10 nm) for composite catalyst supports, that can be also correlated to 

having larger micropore area in pure Vulcan XC-72R supports. 

It is noteworthy to see that, from Table 5.3, by increasing the CBWP in the composite 

supports, a monotonic increase in the electronic conductivity of the composite supports has 

been clearly observed, however, only slightly improved external surface areas could be 

achieved.   
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5.3.1.2 Physical characteristics of composite-supported Pt catalysts 

Nanostructure and nanomorphology 

Microwave-assisted polyol technique have been used to deposit 20 wt.% platinum NPs 

onto composite catalyst supports with different weight percentages of carbon blacks in the 

range of 0-100 wt.%. Fig. SI-5.3 shows the PXRD patterns of different composite 

supported-20 wt.% Pt catalysts. All samples are showing clear peaks of metallic Pt at 

39.90º, 46.1º, and 67.5º with all other peaks identical to the ones shown in Fig. SI-5.1, 

confirmed that the deposition of Pt NPs onto NFs does not change the structure of catalyst 

supports. 

TEM was used to investigate the structure and morphology of Vul.75wt.%-

(C/Nb0.1Ti0.9O2)25wt.% composite-supported 20 wt.% Pt catalyst.  As shown in Figs. 5.2a 

and 5.2b, bright filed (BF) TEM images, the Pt nanoparticles are quite uniformly deposited 

onto both C/Nb0.1Ti0.9O2 NFs and carbon blacks. This observation confirmed the 

effectiveness of the pre-functionalization treatment of carbon blacks in moderating their 

hydrophobicity to be able to compete with highly hydrophilic C/Nb0.1Ti0.9O2 NFs in 

interaction with Pt nanoparticles, which is critical to create an active and durable composite 

catalyst. However at some areas in Fig. 5.2a, carbon blacks are heavily or less coated with 

Pt NPs that are consistent with previously observed relatively inhomogeneous coating of 

Pt onto commercial carbon blacks [65]. 
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HRTEM images which are taken from only Pt/Vulcan XC-72R, Fig. 5.2c, or 

Pt/C/Nb0.1Ti0.9O2, Fig. 5.2d, areas are both confirming the deposition of Pt NPs mostly in 

the form of single crystals with diameters in the range of 3-5 nm, which is critical for 

having higher Pt utilization. The inter-planar spacings (d-spacing) of 0.22 and 0.19 nm 

between platinum lattice fringes are correlating very well with the distance between (111) 

and (200) crystallographic planes in the metallic platinum lattice, respectively. Moreover 

the d-spacings of 0.33 nm observed for both stacked graphene layers (Fig. 5.2c) and titania 

lattice fringes (Fig. 5.2d)  agree well with the distance between (200) planes in graphite 

and (110) planes in rutile phase titania. We also observed inlaid graphite-like structures at 

Figure 5.2. Bright filed (BF)-TEM and HRTEM images for the sample of C75C 

catalyst (20 wt.% Pt/ Vul.75wt.%-(C/Nb0.1Ti0.9O2)25wt.%). (a) and (b) BF-TEM 

images from different areas; (c) HRTEM image from a representative Pt/C area; 

and (d) HRTEM image from a representative Pt/NF area. G stands for Graphite 

and R stands for Rutile.   



Electrosprayed Cathode Catalyst Layer with Composite-Supported Pt Catalyst 

140 

 

the surface of Pt deposited C/Nb0.1Ti0.9O2 NFs (Fig. 5.2d), which could be originated from 

previously observed inlaid carbon onto C/Nb0.1Ti0.9O2 NFs [55] or physically mixed carbon 

blacks.  

3.1.2.2 Elemental composition and chemical state at the surface 

XPS measurements were used to further study the surface elemental composition of 20 

wt.% Pt catalyst supported by Vul.75wt.%-(C/Nb0.1Ti0.9O2)25wt.% supports. The collected XPS 

survey spectra, as shown in Fig. SI-5.4, reveal that the majority of the atoms at the surface 

are carbon, around 88 at.%, which is in agreement with the high actual carbon content 

confirmed by TGA analysis (77 wt.%, see Fig. 5.1). The presence of more unprotected 

carbon at the surface may lead to higher corrosion rates and lower durability which will be 

investigated in the next section. The high-resolution XPS spectra at C 1s, O 1s, Ti 2p, Nb 

3d, and Pt 4f regions were deconvoluted using different chemical states (Fig. SI-5.5), the 

XPS peak parameters for different chemical state fits are tabulated in Tables SI-5.2a-e. The 

obtained high-resolution XPS spectra at different regions, first, showed that the detected 

carbon at the surface is mostly graphitrized carbon black represented by Sp2 and it is in 

agreement with high weight percentage of graphitized carbon blacks; and second, 

confirmed the presence of Pt NPs only in the form of metallic Pt, rather than having Pt 

oxide, at the surface of supporting composite catalyst support. 

5.3.1.3 Electrochemical activity and durability of Pt catalysts for oxygen reduction 

reaction 

Electrochemical cell with a three electrode system with RDE was employed to 

investigate the electrochemical activity and durability of our in-house prepared 20 wt.% Pt 

catalysts with composite catalyst supports and a commercial catalyst (HiSpec 40 wt.% 

Pt/C, Johnson Matthey) as the reference. Fig. SI-5.6 shows both cyclic and linear-sweep 

voltammograms obtained from Pt catalysts supported by composite supports before and 

after applying 1000 potential cycles between 0 to 1.2 V vs. RHE. The obtained 

electrochemical data were summarized in Table SI-5.3. 

As shown in Fig. 5.3, except for the case with CBWP of 100 wt% (i.e., pure carbon 

black), increasing the CBWP (equivalent to increasing actual carbon content) of the 

composite catalyst supports, both ORR mass activities and ORR losses were increased. 
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Accordingely, among the cases studied here, the most durable but least active catalyst is 

the Pt catalyst supported by C/Nb0.1Ti0.9O2 NFs with 0 wt.% carbon black, and the most 

active and least durable catalyst is C75C with 75 wt.% carbon black. Furthermore, in both 

cases of before and after durability tests, it is very interesting to note that, for C75C and 

C25C catalysts, the incorporation of masoporous C/Nb0.1Ti0.9O2 NFs into carbon blacks 

improved not only the durability but also the catalytic activity, comparing with the VC 

catalyst.  

 

 

The monotonic increase in the ORR mass activities caused by adding carbon blacks is 

most probably due to a monotonic increase in the electronic conductivity of the composite 

catalyst supports as shown in Table 5.3; the enhancement of the electrocatalytic activity 

(ORR mass activity) of C25C and C75C catalysts versus VC catalyst can be reasoned by 

the partial charge transfer from metal oxide supports onto Pt NPs [26, 69] induced by 

Figure 5.3. ORR mass activities and ORR activity losses for in-house 

synthesized Pt catalysts versus the CBWP in composite catalyst supports. 

The actual carbon contents were obtained from TGA data plots represented 

in Fig. 5.1.  
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C/Nb0.1Ti0.9O2 NFs in the composite catalyst supports which is in agreemnt with the results 

from literature [27, 36]. Howoever, composite catalyst supports with lower CBWP (higher 

weight percentgae of C/Nb0.1Ti0.9O2  NF)  showed less mass activity than those with higher 

carbon blackweight percentage (i.e. mass activity of TC<C25C<C75C). This observation 

suggests the electron transfer between Pt NPs to/through supports to be the limiting factor 

for the ORR mass activity of the catalyst supports with lower CBWPs [27], because 

electronic conductivity of composite catalyst supports is significantly lower for the ones 

with lower CBWP, as shown in Table 5.3.  

As shown in Fig. 5.3, increase in the ORR losses was observed with the increase of the 

CBWP or actual carbon content of the composite catalyst supports. However, after 

durability tests, TC, C25C, and C75C catalysts exhibited higher ORR mass activities and 

less ORR losses than those of VC catalyst, which effectively demonstrated the role of  

C/Nb0.1Ti0.9O2 NFs in the composite supports.   

5.3.2 H2-Air PEMFC performance evaluations 

The ORR mass activity and ORR losses reported in the above section are the ex-situ 

performance of the Pt catalysts supported by these composite supports.  In order to evaluate 

the in-situ performance, PEMFC with Pt catalysts supported by these composite supports 

have to be evaluated and compared. 

If NWP is used, before being able to compare the performance of PEMFCs with 

electrosprayed cathode catalyst layers that have different composite-supported Pt catalysts, 

the Nafion loading would have to be optimized for each case independly. Here, 

experimentally optimized fixed value of NVP was used to predict optimized Nafion 

loading for electrosprayed cathode catalyst layers that have different composite-supported 

Pt catalysts. The efficiency of using fixed NVP value rather than fixed NWP value will be 

also demostrated.   

To be able to use fixed NVP value to predict optimized Nafion loadings, initially, 

optimized NVP has to be experimentally found for electrosprayed (ES) cathode CLs, as 

demonstrated in section 5.3.2.1.   
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5.3.2.1 Optimized NVP for electrosprayed catalyst layers 

From literature [53, 54], optimized NWPs were found  between 15% to 35%, based on 

Table SI-5.4 where the conversion between NWP and NVP has been demonstrated, the 

equivalent optimized NVPs were found to be in the range of 29% to 57%.  Fig. 4 shows 

the polarization curves (Fig.5.4a) and power density curves (Fig. 5.4b) obtained from 

single cells with different ES cathode CLs that have different NVP values with same Pt 

loading of 0.2 mgPt∙cm-2; all anode CLs were fabricated by airbrushing JM catalyst with 

same Pt loading of 0.4 mgPt∙cm-2 and same NWP of 30%.  Fig. 5.4c shows the maximum 

power density versus NVP, constructed from Fig. 5.4b, clearly showing that ES cathode 

CLs obtained their maximum power density of 0.49 W∙cm-2 at NVP of 43.7%, or 

equivalently NWP of 25%.  

 

 

Furthermore, in order to reach the goal set by DOE to lower total PGM (anode+cathode) 

loadings, the effect of Pt loading on the performance of H2/Air PEMFCs at optimized NVP 

was investigated. Fig. 5.5 depicts the polarization curves (Fig. 5.5a) and power density 

curves (Fig. 5.5b) corresponding to single cells with different ES cathode CLs that have 

different loadings of Pt in the range between 0.05 to 0.40 mgPt∙cm-2 with same NVP of 

43.7%; all anode CLs were fabricated by airbrushing JM catalyst with same Pt loading of 

0.4 mgPt∙cm-2 and same NWP of 30%. Fig. 5.5c shows the maximum power density versus 

Pt loading, constructed from Fig. 5.5b, showing that Pt loading of 0.17 mgPt∙cm-2 can be 

Figure 5.4. Effect of NVP of the cathode CL on H2/Air PEMFC performance. (a) 

Polarization curve; (b) Power density curve; and (c) Maximum power density 

versus NVP values. 
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suggested as an optimized Pt loading for ES CLs within the work presented here. The 

decrease in the maximum power densities of the ES CLs with Pt loadings beyond 0.2 

mgPt∙cm-2, that is consistent with literature [53], can be reasoned by the decrease of the Pt 

utilization efficiency with the increase of the Pt loading. On the other hand, the remarkable 

decrease in the maximum power densities of the ES CLs with Pt loadings lower than 0.17 

mgPt∙cm-2, especially in the case of 0.05 mgPt∙cm-2 (slightly lower than DOE target for 

2020), further confirmsed that the mass activity of the state of the art Pt catalysts (e.g. VC 

catalyst) also have to be improved to reach DOE goals. 

 

 

To compare our optimized Nafion loadings with the values reported in the literature, 

Fig. 5.6 compares the H2/Air PEMFC performance of ES CL of this work (at optimized Pt 

and Nafion loadings) with the H2/O2 PEMFC performance reported by Chaparro et al. [54] 

with the same Pt loading of 0.17 mgPt∙cm-2 and optimized NWP of 15%. Our results for 

H2/O2 PEMFCs were estimated based on the H2/Air PEMFC performance obtained in our 

lab and an unsteady model of single PEMFC developed in Dr. Zhou’s previous’s work as 

shown in [70] for the sake of comparison of the present work with the available literature. 

This estimation is needed because that H2/Air PEMFC performance similar to our work is 

not available in the literature, and, in our lab, H2/O2 PEMFC tests were not doable for safety 

conserns. Despite using higher value of optimized NWP than that reported by Chaparro et 

Figure 5.5. Effect of Pt loading of the ES cathode CL on H2/Air PEMFC performance 

at optimized NVP.  (a) Polarization curves; (b) Power density curves; and (c) 

Maximum power density versus Pt loading. 
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al. [54] (25% vs. 15%), Fig. 5.6b clearly shows a higher peak power density for the 

estimated H2/O2 PEMFC performance of this work, comparing with that from [55].  

 

 

The obtained higher value of the optimized NWP for our in-house synthesized Vulcan 

XC-72R supported Pt catalysts (VC catalyst) than that reported for commercial 20 wt.% 

Pt/C (E-tek) catalyst is most probably due to the previously observed dissimilarity between 

the densities of the catalysts [52]. Recently, gas pycnometry measurements revealed a 

significant difference between the Vulcan XC-72 used in commercial Pt/C catalysts (sold 

by BASF) and that available for synthesis (as purchased from Cabot Inc.) [51]. This 

observation further suggested the fact that using NVP as a criterion is more effective and 

efficient than NWP to report optimized Nafion loadings for even commercial Pt/C 

catalysts.  

As shown in Fig. SI-5.7, in an attempt to decrease the total PGM loadings, we also used 

electrosprayed CL with a Pt loading of 0.17 mgPt∙cm-2 on the anode side. As expected due 

to the higher kinetics of hydrogen oxidation reaction (HOR) on the anode side, by lowering 

the Pt loading even slightly increased the performance at high current density region.  

Figure 5.6. Performance comparison for PEMFCs with the house-made ES CL (VC 

catalyst) at optimized NVP with ES CL (E-tek catalyst) reported in literature [54] with 

the same Pt loading of 0.17 mgPt∙cm-2. The dashed lines represent the expected H2/O2 

PEMFC performance based on the model in [70]. 
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5.3.2.2 Predicted optimized Nafion loadings for composite-supported Pt catalysts  

Table 5.4 shows the predicted optimized Nafion loadings for ES CLs employing 

composite-supported Pt catalysts listed in Table 1. The predictions were done by taking the 

assumption that the experimentally optimized NVP for ES CL employing VC catalysts 

would be valid for pt catalyst with any catalyst supports.  

 

Table 5.4. Predicted optimized Nafion loadings, according to experimentally optimized 

NVPs, for ES catalyst layers that are employing different catalyst supports. 

Catalyst 

Type 

NVP 

(%) 

CVLa 

(cm3∙cm-2) 

Predicted optimized  

LNafion
b (mgNa.∙cm-2) 

NWPc 

C75C 43.7 26×10-5 0.229 21.3 

C25C 43.7 19×10-5 0.167 16.4 

TC 43.7 16.8×10-5 0.147 14.8 

a CVLs were calculated according to Eq. (3); b LNafions were calculated according to Eq. (4); c NWPs were 

calculated according to Eq. (2).  

 

As shown in Table 5.4, using fixed optimized NVP obtained experimentally for ES CL 

employing VC catalysts as the criterion to predict the optimized Nafion loadings led to 

different NWPs corresponding to each catalyst. This is because of the difference in the 

densities of these catalyst supports.  

To be able to evaluate the effectiveness of using fixed optimized NVP in predicting 

optimized Nafion loadings for composite-supported Pt catalysts, the case with ES CL 

employing TC catalyst was chosen to validate the prediction of Nafion loadings using fixed 

optimized NVP. This is done because the catalyst type of TC catalyst (the density of 

catalyst support) is totally different than that of VC catalyst which was used to find the 

optimized NVP value of 43.7%. 
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Fig. 5.7 shows the effect of Nafion loading (represented by NWPs on the cathode side) 

on the PEMFC performance of TC catalysts. Fig. 5.7 clearly demonstrated that 

experimentally optimized NWP for TC catalyst (15%) is correlating very well with 

predicted LNafion of 14.8% through using fixed NVP value as shown in Table 5.4. This 

observation strongly suggests that using fixed NVP instead of fixed NWP in predicting 

optimized LNafion is more efficient and more effective. Accordingly through using fixed 

NVP, the tedious experimentation for finding optimized Nafion loadings (e.g. typical 

experiments that were done on TC catalyst in Fig. 5.7) can be avoided and simply the fixed 

experimentally optimized NVP can be used for predicting optimized LNafion for catalysts 

with different catalyst supports.  

In the following, the methodologies of using fixed NVP versus fixed NWP will be 

further evaluated by comparing the performances of PEMFCs with different composite-

supported Pt catalysts. 

5.3.2.3 PEMFC performances at fixed NVP versus fixed NWP   

Figure SI-5.8 compares the H2/Air PEMFC performances of ES cathode CLs that are 

employing composite-supported Pt catalysts. In an attempt to further investigate the 

Figure 5.7. Polarization and power density curves of H2/Air PEMFCs employing 

electrosprayed VC CL on the anode side, with a Pt loading of 0.17 mgPt∙cm-2 and NVP 

of 43.7%, and electrosprayed TC CL on the cathode side prepared with a Pt loading of 

0.17 mgPt∙cm-2  at different NVPs or NWPs. (a) Polarization curves; (b) Power density 

curves. 
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effectiveness of using fixed NVP rather than fixed NWP values to predict the optimized 

Nafion loadings, the H2/Air PEMFC performances of ES cathode CLs were reported for 

both fixed NVP and NWP values of 43.7% and 25%, respectively.  

Figure 5.8 shows Peak power densities of ES CLs that are employing composite-supported 

Pt catalysts prepared under both fixed NVP and NWP values versus actual carbon contents 

or CBWPs of the composite catalyst supports. The ORR losses of composite-supported Pt 

catalysts obtained under acidic conditions were also reported. The employed fixed NVP 

and NWP values were 43.7% and 25%, respectively, and the actual carbon contents were 

obtained from TGA data plots as shown in Fig. 5.1. As shown in Figure 5.8, it is very clear 

that pure carbon black-based Pt catalyst (VC) outperformed all other composite-supported 

Pt catalysts, under real fuel cell conditions, despite much-enhanced mass activity obtained 

for C75C than VC catalyst under acidic conditions (see Fig. 5.2). Moreover, excluding VC 

catalyst which has 100 wt% of carbon black, by an increase in the CBWP in composite 

supports, the rate of increase in the peak power densities of ES CLs can be broken up into 

two sections, despite exhibiting a continuous rise in the ORR mass activities at a fixed rate 

as shown Fig. 5.3.  The maximum peak power densities of ES CLs were significantly 

improved at 25 wt.% carbon black in the composite catalyst support, whereas the increase 

in the peak power densities was much less significant after adding more of carbon black 

(i.e. 75 wt.%). As a result, the hatched area in Fig. 5.8 could resemble an optimum range 

of the weight percentage of carbon black that should be composited with C/Nb0.1Ti0.9O2 

NFs. Because compositing more carbon blacks (e.g. 75 wt.%) with C/Nb0.1Ti0.9O2 NFs 

increased more of the ORR loss (less durability) rather than a noticeable increase in the 

maximum power density. Furthermore, excluding VC catalyst which has 100 wt% of 

carbon black, it is apparent that PEMFC performances with the ES CLs prepared at fixed 

NVP are higher than those prepared at fixed NWP.  
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Higher PEMFC performance obtained for ES carbon black-based Pt CL, despite having 

lower ORR mass activity under acidic conditions when compared with composite-

supported Pt catalysts with 25 wt.% and 75 wt.% carbon black, further suggests the fact 

that real fuel cell conditions are different than that in simulated flooded electrolytes in RDE 

measurements that were used to measure ORR mass activities [3]. On the other hand, by 

the increase of CBWP in composite catalyst supports, the change in the rate of PEMFC 

performance gain (as shown in Fig. 5.8), despite a continuous increase in the ORR mass 

activities (Fig. 5.3), can be reasoned by a trade-off between the decrease in the electronic 

conductivity of catalyst layer by an increase in the optimized Nafion loadings (see Table 

5.4) and an increase in the electronic conductivity of catalyst supports (see Table 5.3) at 75 

wt.% versus 25 wt.% CBWPs. Increasing the CBWP of composite catalyst supports shown 

to be very critical in terms of improving the electron transfer between Pt NPs to/through 

supports whereas it could be also detrimental due to an increase in the volume of the 

catalyst and accordingly an increase in the required Nafion loading to have sufficient 

proton conductivity.  It has been well understood that an increase in the concentration of 

Nafion (Nafion laoding) on the cathode CL will have a profound effect on the proton 

Figure 5.8. Peak Power densities and ORR activity losses for Pt catalyst with 

different composite supports. 
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transport to Pt clusters, on the one hand, and on the oxygen diffusivity and the internal 

resistance of the catalyst layer, on the other [53]. Accordingly less significant increase in 

the PEMFC performance of ES CLs with higher CBWPs (i.e. 75 wt.%) suggest internal 

resistance of the catalyst layer to be the limiting factor due to the incorporation of higher 

content of electronically nonconductive Nafion in the catalyst layer (0.229 vs. 0.167 

mgNafion∙cm-2, see Table 5.4), despite higher electronic conductivity of the composite 

catalyst supports. However, future works are needed to focus on discovering the effect of 

either carbon black/ C/Nb0.1Ti0.9O2 NFs content on other relevant catalyst layer properties 

such as pore and Nafion distributions.  

Additionally, with respect to the advantage of using fixed NVP rather than fixed NWP for 

comparing PEMFC performances of different catalysts, it can be concluded that the 

optimized Nafion loadings are more sensitive to and directly affected by the catalyst 

volumes rather than catalyst weights. Accordingly fixed NVPs could be used for the 

comparison between PEMFC performances of catalysts with different densities at their 

highest PEMFC performance conditions without any need for tedious Nafion loading 

optimization experiments.  

5.4 Conclusions 

Electrocatalytically more active and more durable composite-supported Pt catalysts 

were synthesized through depositing Pt nanoparticles onto composite catalyst supports 

obtained through physically mixing Vulcan XC-72R carbon blacks with carbon-embedded 

10 at.% niobium-doped titanium dioxide nanofibers (C/Nb0.1Ti0.9O2). HRTEM results 

confirmed the relatively uniform deposition of Pt nanoparticles with an average particle 

size of 3-5 nm onto both Vulcan XC-72R and C/Nb0.1Ti0.9O2 supports. By an increase in 

the carbon black content in the composite catalyst supports, despite having a monotonic 

rise in the ORR mass activities and ORR losses, PEMFC performance results suggested 

that adding 25 wt.% carbon black to the composite catalyst supports is more effective than 

75 wt.% to create sufficiently active and more durable cathode catalyst layers. Furthermore 

using fixed NVP in predicting optimized Nafion loadings for catalyst layers employing 

different catalyst supports was also validated and showed to be more efficient than using 

fixed NWP. Future work will focus on performing catalyst durability tests under actual fuel 
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cell conditions and the effects of either carbon black or C/Nb0.1Ti0.9O2 NFs content on the 

catalyst layer properties.  
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Typical Series of Calculations for Catalyst Ink Preparation 

Table SI-5.1. Typical series of calculations to prepare electrosprayed catalyst layers with 

predetermined Pt loadings and NVPs.   

Pre-determined Parameters 

Active area, cm2 5  

Catalyst Type 20 wt. % Pt deposited C/Nb0.1Ti0.9O2 nanofibers 

Catalyst support density (support), 

mg˖cm-2 4259 

Target Pt loading (LPt), mg˖cm-2 0.17 

Target Nafion volume percentage 

(NVP), %  
45 

Target Nafion volume ratio (NVR) =   45/100  = 0.45 

Calculated parameters 

Support loading (Lsupport), mg˖cm-2 =   ((0.17 × 0.2))/0.8 = 0.68   

Required amount of 20 wt. % Pt 

deposited catalyst, mg 
=  

(𝟎.𝟏𝟕×𝟓)

𝟎.𝟐
= 𝟒. 𝟐𝟓 𝒎𝒈   

Catalyst volumetric loading (CVL), 

cm-1 

=   (0.68 × 4259−1) + (0.17 × 21400−1) = 168 ×
10−6   

Nafion Loading (LNafion), mg˖cm-3 =   (
0.45

1−0.45
) × 168 × 10−6 × 1134 = 0.155   

Required amount of Dry Nafion, 

mg 
=   0.155 × 5 = 0.775 𝑚𝑔   

Required amount of Nafion stuck 

solution, L 
=  

𝟎.𝟕𝟓𝟓

𝟎.𝟎𝟓×𝟎.𝟖𝟕𝟓
= 𝟏𝟕. 𝟐𝟓 𝝁𝑳   

Required solvent, mL =   𝟎. 𝟕𝟕𝟓 × 𝟎. 𝟔 = 𝟏. 𝟐𝟗 𝒎𝑳   

Equivalent NWP, % = (
0.155

0.68+0.17+0.155
) × 100 = 15.5   
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PXRD Patterns of Composite Catalyst Supports 

 

 

 

  

Figure SI-5.1. Powder X-ray Diffraction patterns of different catalyst supports. 

C/Nb0.1Ti0.9O2; Vul.25wt.%-( C/Nb0.1Ti0.9O2)75wt.%; Vul.75wt.%-( C/Nb0.1Ti0.9O2)25wt.%; 

and Vulcan XC-72. 
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Surface Area Analysis and Pore Size Distributions 

 

 

  

Figure SI-5.2. Surface area, pore size analysis and t-plots of different catalyst 

supports; (a) Nitrogen adsorption/desorption isotherms; (b) BJH pore size 

distribution plots; and (c) t-plots.   
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PXRD Patterns of Composite-supported Pt Catalysts 

 

 

 

  

Figure SI-5.3. PXRD patterns of different composite supported-20 wt.% Pt 

catalysts. 
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Survey and High Resolution X-ray Photoelectron Spectroscopy (XPS) Results 

 

 

Figure SI-5.4. XPS survey spectra of 20 wt. % Pt/Vul.75 wt.%-(C/Nb0.1Ti0.9O2)25 wt.% 

catalyst. 
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Figure SI-5.5. High resolution XPS spectra of 20 wt.% Pt/Vul.75 wt.%-(C/Nb0.1Ti0.9O2)25 

wt.% catalyst with Chemical state fits at different regions. (a) C 1s region; (b) O 1s 

region; (c) Ti 2p region; (d) Nb 3d region; and (e) Pt 4f region. 



Electrosprayed Cathode Catalyst Layer with Composite-Supported Pt Catalyst (SI) 

166 

 

Table SI-5.2a. XPS peak parameters and % Area of different chemical states in C 1s 

region for 20 wt.% Pt/Vul.75 wt.%-(C/Nb0.1Ti0.9O2)25 wt.% catalyst. 

Chemical 

state 

Sp2 carbon 

(C=C) 

Sp3 carbon 

(C-C, C-H) 
C-OH, C-O-C C=O O-C=O * 

Position 284.5 284.8 286.30 287.70 288.80 290.91 

FWHM 0.82 1.30 1.30 1.30 1.30 2.70 

Line shape 
A(0.4, 0.38, 

20) GL(20) 
GL(30) GL(30) GL(30) GL(30) GL(30) 

Area% 81.7 6.4 6.5 2.1 3.4 0 

 

Table SI-5.2b. XPS peak parameters and % Area of different Chemical states in O 1s 

region for 20 wt.% Pt/Vul.75 wt.%-(C/Nb0.1Ti0.9O2)25 wt.% catalyst. 

Chemical state Oxide Hydroxide Water, Organic Oxygen 

Position 530.61 531.80 533.20 

FWHM 1.20 1.78 1.78 

Area% 37.9 36 26.1 

 

Table SI-5.2c. XPS peak parameters and % Area of different Chemical states in Ti 2p 

region for 20 wt.% Pt/Vul.75 wt.%-(C/Nb0.1Ti0.9O2)25 wt.% catalyst. 

Chemical state Ti 2p3/2 Ti4+ Ti 2p1/2 Ti4+ 

Position 459.33 465.05 

FWHM 1.11 1.95 

Line shape GL(30) GL(30) 

Area% 100.0 - 
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Table SI-5.2d. XPS peak parameters and % Area of different Chemical states in Nb 3d 

region for 20 wt.% Pt/Vul.75 wt.%-(C/Nb0.1Ti0.9O2)25 wt.% catalyst. 

Chemical state Nb 3d5/2 Nb4+ Nb 3d3/2 Nb4+ Nb 3d5/2 Nb5+
 Nb 3d3/2 Nb5+ 

Position 206.30 209.02 207.81 210.53 

FWHM 1.22 1.22 1.22 1.22 

Line shape GL(30) GL(30) GL(30) GL(30) 

Area% 3.3 - 96.7 - 

 

Table SI-5.2e. XPS peak parameters and % Area of different Chemical states in Pt 4f 

region for 20 wt.% Pt/Vul.75 wt.%-(C/Nb0.1Ti0.9O2)25 wt.% catalyst. 

Chemical state Pt 4f7/2 Pt0 Pt 4f5/2 Pt0 

Position 71.10 74.42 

FWHM 0.98 1.01 

Line shape LA(1.2,85,70) LA(1.2,85,70) 

Area% 100.0 - 
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Electrochemical Activity and Durability Measurements 

 

Figure SI-5.6. Cyclic and linear-sweep voltammograms obtained from Pt catalysts 

supported by different composite supports before and after durability test. (before 

and after applying 1000 potential cycles). (a, c, e, g) Series of CV curves obtained 

after certain numbers of potential cycling between 0 to 1.2 V. (b, d, f, h) linear 

sweep voltammograms (LSVs) obtained in O2 saturated aqueous solutions of 0.5M 

H2SO4. 
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Table SI-5.3. ECSA and ORR mass activities at 0.9 V measured for different catalysts 

before and after durability test (1000 full potential cycling experiments). 

Catalyst Formula 

 Before Durability Test  After durability Test 

Catalyst 

Name 

ECSA 

(m2.g-1) 

Mass activity 

@ 0.9 V 

(mA.mgPt-1) 

 
ECSA 

(m2.g-

1) 

ECSA 

loss (%) 

Mass activity 

@ 0.9 V 

(mA.mgPt-1) 

Mass 

activity 

loss (%) 

20 wt.% 

Pt/(C/Nb0.1Ti0.9O2) 

TC 43 17  34 22 14.5 15 

20 wt.% Pt/Vul.25wt.%-

(C/Nb0.1Ti0.9O2)75wt.% 

C25C 51 20  40 22 16.4 18 

20 wt.% Pt/Vul.75wt.%-

(C/Nb0.1Ti0.9O2)25wt.% 
C75C 59 25  42.5 28 18.8 25 

20 wt.% Pt/Vulcan XC-

72R 

VC 68 19  44 35 13.5 29 

HiSpec 40 wt.% Pt/C JM 65 20  44 33 14.6 27 
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PEM Fuel Cell Evaluation Tests 

Table SI-5.4. Converting NWPs to NVPs for electrosprayed catalyst layers using 20 wt.% 

Pt catalysts supported by carbon blacks. The calculations were performed for a Pt loading 

of 0.2 mgPt·cm-2.   

Proposed NWPs in the 

literature [1, 2], % 

LNafion
a, 

mg·cm-2 
NVPb, % 

15 
=

1 × 0.15

0.85

= 0.176 

=
(0.176×1134−1)

(0.8× 2171−1)×(0.2×21400−1)×(0.176×1134−1)
 × 100 = 29.1    

25 
=

1 × 0.25

0.75

= 0.333 

=
(0.333×1134−1)

(0.8× 2171−1)×(0.2×21400−1)×(0.333×1134−1)
 × 100 = 43.7    

35 
=

1 × 0.35

0.65

= 0.538 

=
(0.538×1134−1)

(0.8× 2171−1)×(0.2×21400−1)×(0.538×1134−1)
 × 100 = 55.6    

a LNafions were calculated according to Eq. (2). 𝐿𝑁𝑎𝑓𝑖𝑜𝑛 = (𝐿𝑃𝑡 + 𝐿𝑠𝑢𝑝𝑝𝑜𝑟𝑡) × [
(𝑁𝑊𝑃

100⁄ )

(1 − (𝑁𝑊𝑃
100⁄ )

⁄ ] 

b NVPs were calculated according to Eq. (1). 
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Figure SI-5.7. Effect of lowering Pt on the anode side on the H2/Air PEMFC 

performances of MEAs prepared using electrosprayed VC catalyst on the cathode 

side, with a Pt loading of 0.17 mgPt·cm-2. 

Figure SI-5.8. Polarization and power density curves of the H2/Air PEMFCs 

employing different electrosprayed CLs in their cathode compartments with optimized 

NVP of 43.7. 
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6.1 Introduction 

Polymer electrolyte membrane fuel cells (PEMFCs) are regarded as a promising 

technology for both automotive and stationary applications [1, 2]. However, they are not 

still reasonably cost competitive and sufficiently durable for automotive applications [3]. 

Catalyst layer (the region where fuel and oxidant convert to products) was received more 

attention than other components, to mitigate the challenges above [4, 5]. Generally to have 

maximum PEMFC performance, catalyst layer should facilitate the transport of reactant 

gases and protons to the catalyst site and remove the product water, on the one hand, and 

facilitate the electrical current flow to and from reaction sites, on the other hand. It is well-

known that the effectiveness of the catalyst layer in providing active sites, known as triple 

phase boundaries (TPBs) [6], depends heavily on the individual materials chemistry of its 

components, i.e. the catalyst [7, 8], the support [9] and the ionomer [10, 11]. However, the 

interplay and distribution of those components was also shown to be equally important [12-

14]. Furthermore, among catalyst layer components, despite the evolution of ultrathin 

ionomer-free catalyst layers [15, 16] and overriding role of catalyst in the electrochemical 

kinetics of PEMFCs, ionomer (e.g. Nafion) incorporation and its well distribution in the 

state-of-the-art catalyst layers was shown to be very critical [4]. Therefore, finding an 

optimized Nafion loading for the catalyst layers received the researcher’s attention as it is 

crucial to keep it as low as possible to have unimpeded gas transport (sufficient void space 

or porosity) and on the contrary it should create a connected network to create proton 

conductivity [17-21]. The state-of-the-art catalyst layers are commonly formed from a 

catalyst ink dispersions that comprise a catalyst (Pt + catalyst support), ionomer (e.g. 

Nafion), and dispersing solvent, initially, and subsequent layer formation onto either 

membrane or gas diffusion layers (GDLs) [22]. Therefore, apart from the influence of 

catalyst ink dispersing media (e.g. dielectric constant of dispersing solvent [23]) or 

aggregation processes that could happen during mixing [24-26], catalyst layer preparation 

method has shown to have a vital role in determining the catalyst layer properties and Pt 

utilization [17, 27-29]. For instance, through using electrospray deposition technique 

instead of commonly used airspray technique, optimized Nafion loadings have been 

demonstrated to be lower due to improvements in Nafion distribution and pore structure of 
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the catalyst layers [30-33]. Higher PEMFC performances obtained for electrosprayed 

catalyst layers rather than airsprayed catalyst layers was shown to be mainly due to lower 

internal electrical resistance and higher Pt utilization obtained for electrosprayed catalyst 

layers [30].  

Recently, the present authors recommended compositing 25 wt.% carbon blacks with 

carbon-embedded Nb-doped TiO2 NFs [34] to be in favor of a reasonable trade-off between 

high PEMFC performance and less oxygen reduction reaction (ORR) activity loss, through 

assessing the PEMFC performances of the electrosprayed catalyst layers [35]. Additionally 

a new strategy to optimize the Nafion loading of composite-supported Pt catalysts was also 

proposed by using fixed Nafion volume percentage (NVP) [35]. However, the validity of 

using fixed NVP for other catalyst layer preparation methods (e.g. airspraying) and the 

distribution of Nafion in the catalyst layers comprised from composite-supported Pt 

catalysts have not been investigated. Additionally, catalyst support properties (e.g. 

hydrophilicity/hydrophobicity [4, 36], and pore structure [37]) were also shown to affect 

the required optimum Nafion loading and water sorption property in the catalyst layer [13]. 

This observation further necessitated investigating the properties of catalyst layers 

employing composite-supported Pt catalysts.  

The objectives of this work are, first, validating using fixed NVPs rather than fixed 

NWPs for different catalyst layer preparation methods and comparing the resultant 

performances; and second, assessing the distribution of catalyst layer components 

employing composite-supported Pt catalysts at their corresponding NVPs.  

6.2 Experimental 

6.2.1 Synthesis of composite catalyst supports 

The composite catalyst supports were physical mixtures of pre-functionalized Vulcan 

XC-72R carbon blacks (Cabot Corporation) and carbon-embedded 10 at. % Nb doped TiO2 

nanofibers (C/Nb0.1Ti0.9O2) at two different weight percentages (i.e. 25 and 75 wt. %), the 

details of the synthesis have been reported elsewhere [34, 35]. In the following, the 

synthesized composite catalyst supports with 25 wt. % and 75 wt. % carbon black weight 
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percentages (CBWPs) will be denoted as Vul.25wt.%/ (C/Nb0.1Ti0.9O2)75wt.% and Vul.75wt.%/ 

(C/Nb0.1Ti0.9O2)25wt.%, respectively.  

6.2.2 Synthesis of Pt catalysts 

Microwave-assisted polyol technique, described in [35], was used to deposit 20 wt.% 

Pt nanoparticles (NPs) onto either composite catalyst supports or pure carbon blacks or 

pure C/Nb0.1Ti0.9O2 NFs, hexachloroplatinic acid hexahydrate (H2PtCl6.6H2O) from 

Sigma-Aldrich was used as Pt precursor. Table 6.1 shows corresponding abbreviated 

names and CBWPs of all synthesized Pt catalysts. 

Table 6.1. List of synthesized Pt catalysts. 

Catalyst Name Catalyst Type 

CBWP in 

Composite 

Support, wt.% 

TC 20 wt. % Pt/(C/Nb0.1Ti0.9O2) 0 

C25C 20 wt. % Pt/Vul.25wt.%-(C/Nb0.1Ti0.9O2)75wt.% 25 

C75C 20 wt. % Pt/Vul.75wt.%-(C/Nb0.1Ti0.9O2)25wt.% 75 

VC 20 wt. % Pt/Vulcan XC-72R 100 

 

6.2.3 Catalyst layer preparation 

Catalyst layers (CLs) were prepared onto 24BC SIGRACET® carbon papers with an 

area of 5 cm2 through either airspray or electrospray deposition techniques. Before 

adopting any method to form a CL, catalyst inks were prepared by dispersing desired 

amounts of catalyst (Pt + catalyst support) and Nafion in isopropyl alcohol, the required 

quantities of each component was determined based on targeted Pt loading and NVP [34]. 

NVPs were determined as the percentage of dry Nafion volume in the catalyst layer using 

Eq. (6.1), as follow [34]: 
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NVP =  
(

𝐿𝑁𝑎𝑓𝑖𝑜𝑛
𝜌𝑁𝑎𝑓𝑖𝑜𝑛

⁄ )

(
𝐿𝑁𝑎𝑓𝑖𝑜𝑛

𝜌𝑁𝑎𝑓𝑖𝑜𝑛
⁄ ) + (

𝐿𝑆𝑢𝑝𝑝𝑜𝑟𝑡
𝜌𝑆𝑢𝑝𝑝𝑜𝑟𝑡

⁄ ) + (
𝐿𝑃𝑡

𝜌𝑃𝑡
⁄ )

× 100 (6-1) 

 

Where Nafion, Support, and Pt are the true densities, with units of mg∙cm-3, and LNafion, 

LSupport, and LPt are the target loadings of dry Nafion, catalyst support, and platinum, with 

units of mg∙cm-2, in the CL, respectively. The true densities for different types of composite 

catalyst supports (Support) were determined through gas pycnometry (Micromeritics 

Accupyc II 1340) measurements, as shown in Table 6.2, and a value of 21400 mg∙cm-3 was 

used as the true density of metallic Platinum (Pt). The dry Nafion density (Nafion.) is set 

to a value of 1134 mg∙cm-3 [20].  

Table 6.2. True densities of composite catalyst supports measured through gas 

pycnometry.  

 C/Nb0.1Ti0.9O2 

Vul.25 wt.%-

(C/Nb0.1Ti0.9O2)75 wt.% 

Vul.75 wt.%-

(C/Nb0.1Ti0.9O2)25 wt.% 

Vulcan 

XC-72R 

Density, mg∙cm-3 4259 3737 2693 2171 

 

To be able to compare the effectiveness and efficiency of working with NVPs rather 

than commonly used NWPs, NWPs were also reported. NWPs were determined using the 

well-established equation proposed by Passalacqua et al. [36] as the percentage of dry 

Nafion Loading in the CL. 

After about 3 hrs sonication of the catalyst inks at room temperature, the well-dispersed 

catalyst inks can be airsprayed (AS) using a commercial dual-action airbrush gun (VL-

SET, Paasche) at a back pressure of 10 psig, or can be electrosprayed (ES) by an 

electrospinning apparatus with a heated aluminum collector, the details of the employed 

electrospraying technique can be found in [34]. The amount of deposited catalyst onto dried 
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carbon paper substrates were controlled by weighing them, before and after deposition, 

using a 5 digit accuracy balance (ACCULAB).  

6.2.4 Membrane Electrode Assembly (MEA) fabrication 

MEAs have been prepared via sandwiching NRE212 type Nafion membrane between air-

dried anode and cathode electrodes. An automatic hydraulic press (CARVER®) with 600 

pounds force at 130 °C for 3 mins was used to hot press the sandwitched layers.  

6.2.5 Polarization Curves 

An automatic fuel cell test station developed in the Clean Powertrain Lab at the University 

of Windsor (CPL-FCTS) [34] was used  to record PEMFC Polarization curves.  Before 

recording polarization curves, as-fabricated MEAs were activated first in the constant 

voltage mode (through 6 cycles of alternating the voltage from 0.7V for 20 mins to 0.5V 

for 20 mins) and then in the constant current mode (at 0.5 A˖cm-2 for 10 hours).  Both 100% 

humidified H2 and air were provided with constant excess coefficients of 1.5 and 2.5 to 

anode and cathode compartments, respectively.  The polarization curves were recorded at 

the cell temperature of 80°C and back pressure of 30 psig.  

6.2.6 AS and ES catalyst layer properties 

The morphology and elemental X-ray mappings of the airsprayed/electrosprayed 

catalyst layers were examined by scanning electron microscopy (FEI Quanta 200 FEG) 

equipped with an energy-dispersive spectrometer (EDAX SiLi Detector) in secondary and 

back-scattered modes operated at 15 kV and 20 KV, respectively. Mercury porosimetry 

(AutoPore IV 9500 V1.07), using Washburn equation for cylindrical pores [39, 40], was 

employed to analyze the pore structure of the airsprayed and electrosprayed catalyst layers. 

In the Washburn equation,  = 140.0º was used for both advancing and receding contact 

angles and  = 480 dyn·cm-1 was used as the mercury surface tension. Raman spectroscopy 

measurements were conducted on an ALPHA300 Raman system (WITec GmbH) using a 

laser excitation source with a wavelength of 532 nm and a laser power lower than 1 mW 

to avoid laser-induced local heating. A 100× objective lens with a numerical aperture (NA) 

of 0.95 was used for Raman mappings. The acquisition time was chosen to be 2 s for each 
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pixel (0.0057 m2) for an optimum of mapping time and detected Raman signal in a scan 

area of 3.8 m × 3.8 m.  

6.3 Results and discussion 

6.3.1 H2-Air PEMFC performance evaluation 

6.3.1.1 Optimized NVP for airsprayed cathode catalyst layers 

Before using fixed NVP [35] to compare the PEMFC performances of airsprayed 

cathode catalyst layers that are employing different composite-supported Pt catalysts, the 

optimized NVP needs to be experimentally found for VC catalyst as a reference. To be able 

to compare optimized NVP with previously reported optimized NWPs for carbon black-

based Pt catalysts, NVPs were chosen to fall within the range of previously proposed NWPs 

[19, 38], Table 6.2.  

 

Table 6.3. Converting proposed NWPs [19, 38] in the literature to NVPs for airsprayed 

catalyst layers using 20 wt. % Pt catalysts supported by pure carbon blacks. The 

calculations were performed for a Pt loading of 0.2 mgPt˖cm-2.   

 Proposed NWPs in the literature, 

% 
LNafion

a, mg˖cm-2 NVPb, % 

25 =
1 × 0.25

0.75
= 0.333 43.7 

30 =
1 × 0.30

0.70
= 0.428 50 

35 =
1 × 0.35

0.65
= 0.538 55.7 

45 =
1 × 0.45

0.55
= 0.818 65.6 

aNafion loading: 𝐿𝑁𝑎𝑓𝑖𝑜𝑛 = (𝐿𝑃𝑡 + 𝐿𝑠𝑢𝑝𝑝𝑜𝑟𝑡) × [
(𝑁𝑊𝑃

100⁄ )

(1 − (𝑁𝑊𝑃
100⁄ )

⁄ ]. 

 bNVPs were calculated according to the equation proposed in [35]. 
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Fig. 6.1 shows the polarization curves (Fig. 6.1a) and power density curves (Fig. 6.1b) 

obtained from single cells with different AS cathode CLs that have different NVP values 

with same Pt loading of 0.2 mgPt˖cm-2; all anode CLs were fabricated by airspraying JM 

catalyst with same Pt loading of 0.4 mgPt∙cm-2 and same NWP of 30%. Fig. 1c shows the 

maximum power density versus NVP that is constructed from Fig. 1b. Fig. 1c clearly shows 

that AS cathode CLs obtained their maximum power density of 0.43 W∙cm-2 at NVP of 

55.7%, equivalently at NWP of 35% that is in the range of previously reported optimized 

NWPs for carbon black-based Pt catalysts [18, 36].  

 

Fig. 6.1c clearly showed that airsprayed cathode catalyst layers obtained their maximum 

power density of 0.43 W˖cm-2 at NVP of 55.7% (equivalent to NWP of 35%), that is in the 

range of previously reported optimized NWPs for carbon black-based Pt catalysts [19, 38].  

After experimentally optimizing NVP, as shown in Fig. 6.1, the obtained optimized 

NVP value can be used to predict the optimized Nafion loadings for the other three 

composite catalysts, as shown in Table 6.2. The optimized Nafion loadings can be 

predicted by taking the assumption that fixed NVP can predict the Nafion loadings 

effectively through correlating the Nafion volume with the volume of the catalyst [35]. 

 

Figure 6.1. Effect of NVP of the air sprayed cathode CL (VC catalyst) on H2/Air 

PEMFC performance. (a) Polarization curve; (b) Power density curve; and (c) 

Maximum power density versus NVP values. 
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Table 6.4. Predicted optimized Nafion loadings, according to experimentally optimized 

NVP, for airsprayed catalyst layers that are employing different catalyst supports. 

Catalyst Type NVP 
Predicted LNafion

a, 

mgNa.˖cm-2 
NWP 

C75C 55.7 0.436 30.4 

C25C 55.7 0.318 24.1 

TC 55.7 0.281 21.9 

aNafion loading: 𝐿𝑁𝑎𝑓𝑖𝑜𝑛 = (𝐿𝑃𝑡 + 𝐿𝑠𝑢𝑝𝑝𝑜𝑟𝑡) × [
(𝑁𝑊𝑃

100⁄ )

(1 − (𝑁𝑊𝑃
100⁄ )

⁄ ]. 

 

Furthermore, the predicted optimized NWP for C75C was chosen to be validated 

experimentally. Fig. 6.2 shows the effect of Nafion loading on the PEMFC performances 

of airsprayed cathode catalyst layers that are employing C75C catalyst; all anode CLs were 

fabricated by airbrushing VC catalyst with same Pt loading of 0.17 mgPt∙cm-2 and same 

NVP of 55.7%. Fig. 6.2b clearly shows that the highest peak power density (among the 

three cases) happened at NWP of 30% that is in a good agreement with predicted Nafion 

loadings through using fixed NVPs.  
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6.3.1.2. Fixed NVP versus fixed NWP for airsprayed catalysts layers 

To further confirm the effectiveness of fixed NVP rather than fixed NWP to predict 

optimized Nafion loading of catalyst layers with different composite-supported Pt 

cayalysts, the PEMFC performances of airsprayed cathode catalyst layers prepared with 

either fixed NVP or fixed NWP were compared. Fig. 6.3 compares the PEMFC 

performances of airsprayed cathode catalyst layers prepared using Fixed NVP and fixed 

NWP values of 55.7% and 35%, respectively. In Fig. 6.3, all anode CLs were fabricated 

by airbrushing VC catalyst with same Pt loading of 0.2 mgPt∙cm-2 and same NVP of 55.7%.  

 

Figure 6.2. Effect of NVP of the AS cathode CL (C75C catalyst) on H2/Air PEMFC 

performance. (a) Polarization curve; (b) Power density curve; and (c) Maximum 

power density versus NVP values. 
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As shown in Figure 6.3, the PEMFC performances are clearly higher at fixed NVP than 

fixed NWP. This observation strongly confirms the effectiveness of using fixed NVP over 

using fixed NWP to compare the PEMFC performances of AS cathode CLs. However, the 

optimized NVP value for AS cathode CLs (i.e. 55.7%) is significantly higher than the 

optimized NVP value obtained for ES cathode CLs at a value of 43.7% [34]. This is in a 

good agreement with the literature [30], and it suggests a more uniform distribution of 

Nafion in ES than AS CLs.  

6.3.1.3 AS vs. ES CLs at corresponding optimized NVPs 

Figure 6.4 compares the PEMFC performances of airsprayed and electrosprayed 

cathode catalyst layers which were prepared at their corresponding optimized NVPs, the 

peak power densities for electrosprayed catalyst layer were reproduced from [35].  

 

Figure 6.3. Comparison of effectiveness in predicting the optimized Nafion loadings 

through using fixed NVP vs. fixed NWP values. (a) Polarization curve; (b) Power 

density curve. 
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As illustrated in figure 6.4, it is immediately apparent that using electrospraying method 

rather than airspraying is very critical to have high performance composite-supported Pt 

catalysts (i.e. C25C and C75C catalysts). The peak power densities for electrosprayed 

catalyst layers employing composite-supported Pt catalysts were significantly improved 

(e.g. 26% to 36%), when compared with airsprayed catalyst layers, whereas for those 

employing pure carbon-based or pure C/Nb0.1Ti0.9O2 nanofiber-based Pt catalysts were less 

significantly improved (e.g. 13.5% for VC catalyst) or remained the same (e.g. TC 

catalyst). In other words, from 100 wt.% to 25 wt.% CBWP, Fig. 6.4 suggests an increase 

in the effectiveness of electrospraying technique showing by the percentage of increase in 

peak power densities of ES than AS CLs. This observation could recommend the 

incorporation of hydrophilic C/Nb0.1Ti0.9O2 nanofibers in the composite supports to be in 

favor of an improvement in the interaction of Nafion in the catalyst layers. Recently, Paul 

Figure 6.4. Effect of catalyst layer preparation methods on the peak power densities 

of MEAs employing different composite-supported Pt catalysts (Black curves). The 

increase in the peak power densities through using electrospraying rather than 

airspraying method were also shown versus CBWP in composite supports (Blue 

curve). 
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et al. [35] observed a bimodal surface wettability (thickness-dependent wettability) for self-

assembled Nafion films. They found Nafion films thinner than 55 nm to have hydrophilic 

surface whereas thicker Nafion films found to have a hydrophobic surface. Given that the 

thickness of self-assembled Nafion films on aggregated Pt/C catalysts during the catalyst 

layer formation is found to be around 10 nm [12, 35], the self-assembled Nafion films 

inside the catalyst layers can be assumed to be hydrophilic based on Paul et al. [35] 

observation. Accordingly, the incorporation of hydrophilic C/Nb0.1Ti0.9O2 nanofibers into 

composite catalyst supports can be speculated to improve the interaction between the 

hydrophilic sulfonate groups with catalytically active sites that can yield into higher 

proton-donating characteristic [35].  

Generally Fig. 6.4 suggested the incorporation of hydrophilic C/Nb0.1Ti0.9O2 nanofibers 

in composite catalyst supports to be beneficial in terms of Nafion interaction with catalyst 

while the overall performance is still lower than pure carbon black-based Pt catalysts. 

Lower overall performance for composite-supported Pt catalysts suggests lower electronic 

conductivity of the composite catalyst supports to be still the limiting factor.  

6.3.2 AS or ES Catalyst layer Characteristics at optimized NVPs 

To explore the effect of catalyst preparation method on the H2/Air PEMFC 

performances, catalyst layer relevant characteristics, i.e. porosity and Nafion distribution, 

were studied for both airsprayed and electrosprayed catalyst layers.  

6.3.2.1 Morphology and Porosity 

Figure 6.5 compares the morphologies of different catalyst layers prepared onto 24BC 

SIGRACET® carbon papers through airspray or electrospray deposition techniques at their 

corresponding optimized NVPs (Optimized NVP values are 43.7% and 55.6% for ES and 

AS CLs, respectively).  Dendritic morphologies of the electropsrayed catalyst layers are 

clearly distinct from dense and flat morphologies of the airsprayed catalyst layers at 10 m 

scale, which is in agreement with literature [31].  
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Figure 6.6 shows the meso- and macropore distribution curves obtained for airsprayed 

and electrosprayed CLs employing C25C catalyst measured through mercury porosimetry. 

 

As shown in Fig. 6.6, there are two main peaks as follows: so called “primary porosity” 

peak centered in pore diameters less than 100 nm and “secondary porosity” centered around 

Figure 6.5. Field emission-SEM images of different AS/ES cathode CLs at their 

corresponding optimized NVPs at 10m scale. a, b, c, and d are for AS CLs; e, f, g, 

and h are for ES CLs. 

Figure 6.6. Pore size distributions for airsprayed/electrosprayed catalyst layers 

employing C25C catalyst at their corresponding optimized NVPs. 
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1000. It has been shown that the first peak centred ~ 100 nm can be ascribed to the voids 

in and between the primary catalyst particles and aggregates whereas the second peak ~ 1 

m is more associated with the voids between the agglomerates, the pores larger than 50 

m are mostly arising from carbon paper [31, 37, 41]. Figure 6 clearly suggested that 

airspraying method reduced more of both primary and secondary pores than 

electrospraying method, which is in agreement with the literature [31].  However, pore size 

distributions are not remarkably different between ES and AS CLs. This demonstrates that 

the pore size distribution alone cannot be responsible for the remarkable increase in the 

peak power densities of ES CLs, when compared with AS CLs (Fig. 6.4).  

6.3.2.2 Nafion, Carbon and TiO2 distributions 

To evaluate the Nafion distribution in the prepared CLs, the color coded (red) fluorine 

X-ray mappings were used as a fingerprint of the PTFE backbone of the ionomer phase, as 

shown in Fig. 6.7. The color coded (red) fluorine X-ray mappings with scale of 250 µm 

clearly demonstrates more uniform Nafion distribution in ES CLs than AS ones, especially 

for the CLs that are employing composite-supported Pt catalysts with 25 and 75 wt. % 

carbon blacks (C25C and C75C catalyst), as shown in Figs. 6.7b and 6.7c, 6.7f and 6.7g.   
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Figs. 6.8 compares the color coded, red for fluorine, orange for titanium, and green for 

carbon, X-ray mappings collected from airsprayed and electrosprayed C25C catalyst layers 

with a scale of   25 m.  

 

Figure 6.7. Back-scattered SEM images and Fluorine X-ray mapping of different 

AS/ES cathode CLs at their corresponding optimized NVPs. a, b, c, and d are for AS 

CLs; e, f, g, and h are for ES CLs. 
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As shown in Figure 6.8, it is immidiately apparent that, despite nonuniform distribution 

of flourine (fingerprint of Nafion) in AS CL, both carbon (fingerprint of carbon blacks) 

and titanium (fingerprint of C/Nb0.1Ti0.9O2 NFs) are uniformly distributed in both AS and 

ES CLs. Using Raman intensity mappings were identified to be a more effective tool than 

microscopic mappings to investigate the distribution of the composites containing carbon 

nanoparticles [40]. Because Raman spectra of TiO2 and graphitic carbon nanoparticles 

show non-overlapping well-defined features, their Raman intensity mappings were used to 

further investigate rutile phase TiO2 and carbon black distributions in AS or ES C25C CLs 

with a scale of < 1 m, as shown in Fig. 6.9.  

 

Figure 6.8. Back-scattered SEM images and elemental X-ray mappings of AS and ES 

catalyst layers employing C25C catalyst at their corresponding optimized NVPs. 
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The integrated Raman spectra in the wavenumber range of 400-450 cm-1 was used as a 

fingerprint of rutile phase C/Nb0.1Ti0.9O2 NFs [33, 41], whereas the wavenumber in the 

range of 1280-1610 cm-1 [42] was chosen as Vulcan XC-72R fingerprint. The scale bars 

next to Raman mappings are indicating the relative intensity of each color. The cluster 

analysis on collected Raman Intensity mappings, represented in Fig. 6.9 as blue and red 

colors, was used to identify the areas which may have concentrated TiO2 or carbon blacks.  

These analyses clearly showed that AS CLs even have nonuniform distributions of carbon 

and C/Nb0.1Ti0.9O2 NFs whereas ES CLs are more uniform except for a single 

C/Nb0.1Ti0.9O2 nanofiber concentrated area with a dimension < 1m.  

Overall the combination of X-ray and Raman intensity mappings revealed that the 

distribution of the catalyst layer components have been significantly improved in ES CLs 

Figure 6.9. Optical images and Raman intensity mappings collected from AS and ES 

catalysts layers employing C25C catalyst at their corresponding optimized NVPs. 

Optical images of (a) airsprayed and (b) electrosprayed C25C CLs along with Raman 

intensity maps of TiO2 and carbon. 
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that are employing composited-supported Pt catalysts when compared to AS CLs. The 

nonuniformity observed for AS composite-supported Pt catalyst layers can be explained as 

follows:  in airspraying method, hydrophilic C/Nb0.1Ti0.9O2 NFs and relatively 

hydrophobic carbon nanoparticles could create a preferential interaction of Nafion with 

either C/Nb0.1Ti0.9O2 NFs or carbon blacks; whereas in electrosprayinmg method, the 

electrostatic force between catalyst layer components will supersede that preferential 

inteaction of Nafion and will dominate the distribution processes of catalyst layer 

comonents.  

6.4 Conclusions 

Both of airspray and electrospray deposition methods were used to prepare cathode 

catalyst layers employing composite-supported Pt catalysts, and their PEMFC 

performances were evaluated.  Although using fixed NVP was shown to be more efficient 

than using fixed NWP in predicting the optimized Nafion loadings for both airsprayed and 

electrosprayed composite-supported Pt catalysts,  the optimized values were shown to be 

highly dependent on the catalyst layer preparation methods.  The comparisons of PEMFC 

performances at fixed NVPs revealed that electrospray deposited catalyst layers 

significantly outperformed airsprayed catalyst layers, which is most probably due to the 

much more uniform distribution of Nafion in the electrosprayed catalyst layers. 

Incorporation of hydrophilic carbon-embedded Nb-doped TiO2 nanofibers in the 

composite catalyst supports was speculated to be in favor of better interaction between self-

assembled Nafion layers and catalyst sites. Future work will focus on to get more insights 

from the possible interaction between self-assembled Nafion layers and the carbon-

embedded Nb-doped TiO2 nanofibers-based Pt catalysts. 
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7.1 Conclusions 

Making Nb-doped TiO2 nanofibers feasible for PEM fuel cells (PEMFCs) as a durable 

catalyst support, requires not only high electronic conductivity and high surface area but 

also a control on their doping level, crystallinity and heat treatment environment. For 

example, the adjustment of doping level is essential for the control over surface chemistry 

of nanofibers, crystallinity affects the electronic conductivity remarkably, and heat 

treatment environment may affect electronic conductivity and surface area. Furthermore, 

the well distribution of catalyst layer components (in particular hydrophilic metal oxide-

based Pt catalyst and Nafion) is essential to have higher performances under real PEMFC 

operating conditions.  

The objective of the studies described in Chapter 2 was to find a simple way to protect 

the interface between catalyst layer and gas diffusion backing layer for unitized 

regenerative fuel cell applications. The resistance towards oxidation of coated and 

uncoated carbon papers was probed by cyclic voltammetry for up to 72 hours to mimic the 

conditions in a unitized regenerative fuel cell. Cyclic voltammetry measurements revealed 

that oxidatively functionalized carbon paper coated with a relatively uniform layer of 

anatase phase Nb-doped TiO2 is more stable than uncoated carbon papers by a factor of 

4.3, whereas many of the redox active sites deep inside the carbon paper were not covered 

yet.  

In chapters 3 and 4, the use of Nb-doped TiO2 nanofibers as a catalyst support for 

PEMFCs was systematically investigated. Although using ethylene glycol as a reducing 

agent produced smaller sized Pt nanoparticles onto anatase phase Nb-doped TiO2 

nanofibers (Chapter 3), their oxygen reduction reaction (ORR) mass activities were 

extremely lower than pure carbon based Pt catalysts. In contrast, rutile phase Nb-doped 

TiO2 nanofibers showed to have much higher electronic conductivity, but still both of 

surface area and ORR mass activity of Pt catalysts supported by rutile phase nanofibers 

were not competitive to pure carbon based Pt catalysts. The embedment of carbon at the 

amount of about 11 wt. % with highly distorted graphitic structure into rutile phase Nb-

doped TiO2 nanofibers was shown to be very promising as it featured nanofibers with much 
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enhanced electronic conductivity and surface area, when compared with carbon-free rutile 

phase nanofibers (Chapter 4). Furthermore Nb doping level also shown to be very critical. 

Doping rutile phase TiO2 with 10 at. % Nb rather than 25 at. % Nb found, first, to be more 

effective in terms of providing free electrons to the ideal lattice of TiO2 (higher electronic 

conductivity); second, to make the surface less prone to the formation of electrochemically 

unstable oxides (higher electrochemical stability/durability). Although Pt catalysts 

supported by carbon-embedded nanofibers have showed much enhanced ORR specific 

activity and much-improved durability than those supported by carbon black (Vulcan XC-

72R), the ORR mass activities were still slightly lower than pure carbon black based Pt 

catalysts.  

Chapter 5 mainly focused on compositing carbon-embedded 10 at. % Nb-doped TiO2 

nanofibers with commercial carbon blacks to combine their advantages under real PEMFC 

operating conditions.  Additionally using fixed Nafion volume percentage (NVP) rather 

than commonly used fixed Nafion weight percentage (NWP) was shown to be more 

efficient in predicting optimized Nafion loadings for electrosprayed cathode catalyst layers. 

By an increase in the carbon black weight percentage of composite supports, there was a 

monotonic rise in both ORR mass activities and ORR losses at the same time. However, 

among the optimized cases of composite catalyst supports with different carbon black 

weight percentages (0 wt.% to 100 wt.%), considering both the performance and durability,  

the PEMFCs with electrosprayed catalyst layers clearly showed that there exist an optimum 

zone around 25 wt.% carbon blacks that features higher fuel cell performance with lower 

ORR loss.  

The objective of the studies described in Chapter 6 was to validate using fixed NVP for 

different catalyst layer preparation methods and further investigate the catalyst layer 

properties employing composite-supported Pt catalysts. Although the value of optimized 

NVP was higher for airsprayed catalyst layers when compared with electrosprayed catalyst 

layers, using fixed NVP was still more efficient than using fixed NWP regardless of the 

method that used for catalyst layer preparation.   Comparing the PEMFC performances at 

fixed NVPs revealed that electrospray deposited catalyst layers are remarkably 

outperforming airsprayed catalyst layers due to much uniform distribution of catalyst layer 
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components (Nafion + composite-supported Pt catalysts) in the electrosprayed catalyst 

layers.   

7.2 Recommendations 

Electronic conductivity measurements in Chapters 3 and 4 revealed that rutile phase 

Nb-doped TiO2 nanofibers that have been reduced under pure hydrogen atmosphere are 

much more conductive than anatase phase Nb-doped TiO2 nanofibers. Therefore, an 

obvious extension of the work presented in Chapter 2 is to reduce coated carbon papers at 

higher temperatures under a pure hydrogen atmosphere. More conductive coatings can 

decrease the overall internal resistance of the cell in unitized regenerative fuel cells because 

the interface between catalyst layer and gas diffusion layer should not impede the electron 

flow.  

The methodology for carbon-embedment that has been presented in Chapter 4 can be 

easily applied to any metal oxide nanofibers. Hence, an extension of this work is to use 

other doping elements such as Ta, Cr, F, and even co-doping to produce more conductive 

and still durable metal-oxide based nanofibers. Furthermore, both of atomic structure and 

amount of carbon embedment can be manipulated to increase the electronic conductivity 

and surface area of nanofibers.  

The catalytic performance evaluations under real PEMFC operating condition presented 

in Chapters 5 and 6 revealed how important is the distribution of catalyst layer components 

and the catalyst layer composition, regardless of the type of catalyst and catalyst support. 

More specifically Nafion incorporation is extremely vital to create more catalytically active 

triple phase boundaries (TPBs) and increase the overall performance without impeding gas 

transport at the same time. Accordingly coating electrosprayed catalyst layers directly onto 

Nafion membranes [1] could enhance more the PEMFC performances of composite-

supported Pt catalyst layers by creating a better connection between the proton conducting 

media and catalysts. Moreover, incorporation of Pt nanoparticles into the near-surface area 

of Nafion membranes (100-200 nm) has been also introduced a new avenue in being able 

to increase the Pt utilization in the catalyst layer [2].  
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To eliminate carbon corrosion, on top of finding corrosion-resistant alternatives, the 

investigation on the distribution and interaction of catalyst layer components has a vital 

importance to achieve higher performances under real PEMFC operating condition.  This 

investigation should lead or be fruitful for the preparation of ultrathin catalyst layers (with 

extremely lower Nafion loadings) that could feature sufficient proton conductivity and the 

minimum impediment in the flow of electrons and reactant gases to/from catalyst sites.     
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APPENDIX A 

Basic Operation Principles of various Fuel Cell Types 

Table A-1. Basic operation principles of various fuel cell types ((Source: 

http://americanhistory.si.edu/fuelcells/basics.htm)  

Fuel Cell 

Type 

Electrolyte 

Electrochemical reactions 

Operating Temp. 

(˚C) 

Charge carrier Fuel/Oxidant 

Alkaline 

(AFC) 

KOH, NaOH 

solution 
ANa: 2𝑂𝐻− + 𝐻2 → 2𝐻2𝑂 + 2𝑒− 

CAb: 
1

2
𝑂2 + 2𝐻2𝑂 + 2𝑒− → 2𝑂𝐻− 

50-200 

OH- H2/O2 

Proton 

Exchange 

Membrane 

(PEM) 

Nafion 
AN: 𝐻2 → 2𝐻+ + 2𝑒− 

CA: 
1

2
𝑂2 + 2𝐻+ + 2𝑒− → 𝐻2𝑂 

50-200 

H+ H2/O2, Air 

Phosphoric 

acid (PAFC) 

H3PO4 

AN: 𝐻2 → 2𝐻+ + 2𝑒− 

CA: 
1

2
𝑂2 + 2𝐻+ + 2𝑒− → 𝐻2𝑂 

170-210 

H+ 
H2, natural gas/O2, 

Air 

Molten 

Carbonate 

(MCFC) 

Na2CO3, Li2CO3 

or K2CO3 
AN: 𝐻2 +  𝐶𝑂3

2− → 𝐻2𝑂 + 𝐶𝑂2 +

2𝑒− 

CA: 
1

2
𝑂2 + 𝐶𝑂2 + 2𝑒− → 𝐶𝑂3

2− 

600-700 

CO3
2− H2, CH4/Air, O2 

Solid Oxide 

(SOFC) 

Solid ZrO2 AN: 𝐻2 + 𝑂2− → 𝐻2𝑂 + 2𝑒− 

CA: 
1

2
𝑂2 + 2𝑒− → 𝑂2− 

650-1000 

O2- H2, CH4, CO/Air, O2 

aAnode; bCathode.   
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APPENDIX B 

Copyright Permissions 
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