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ABSTRACT 

Extremal Optimization is a recent method for solving hard optimization problems. 

It has been successfully applied on many optimization problems. Extremal 

optimization does not share the disadvantage of most of the other evolutionary 

algorithms, which is the tendency to converge into local minima. Design of finite 

word length FIR filters using deterministic techniques can guarantee optimality at 

the expense of exponential increase in computational complexity. Alternatively, 

Evolutionary Algorithms are capable of converging very fast to a minimum, but 

have higher chances of failure if the ratio of feasible solutions is very less in the 

search space. In this thesis, a set of feasible solutions are determined by linear 

programming. In the second step, Extremal Optimization is used to further refine 

these results. This strategy helps by reducing the search space for the EO algorithm 

and is able to find good solutions in much shorter time than the existing methods. 
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Chapter 1 

Introduction 

An analog filter in electronics is used to remove or attenuate certain frequencies from the 

input signal and allow others to pass. Digital filters have similar purpose, but they work on 

digital signals. A digital filter works by doing mathematical operations on the input signal 

and its delayed versions.  

The use of digital filters is widespread nowadays due to number of advantages over analog 

filters, some of which are shown below: 

1. Digital filters can be used to achieve frequency responses which are impossible or 

difficult to achieve using analog filters. For example, it is extremely difficult to 

construct linear phase analog filters. 

2. Digital filters are extremely stable due to their inherent mathematical construction. The 

frequency response does not change with time. On the other hand, due to the finite 

tolerances involved in the manufacture of electronic components the frequency 

response of similar analog filters are never exactly same. Also, the values of capacitors, 

resistors, etc. used in the analog filters may change with ageing, resulting in the change 

in filter characteristics. 

3. Analog filters usually take lots of space for their construction compared to digital 

filters. 

4. The characteristics of the digital filters can be easily changed by reprogramming, while 

an analog filter might need a complete redesign of the circuit. 

1.1 Types of filters  

1.1.1 Based on the frequency response 

Based on the frequency response, the filters can be categorized in the following 4 common 

types, as shown in the Fig. 1.1. 
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Fig. 1.1. Types of filters based on the frequency response 

 

These are described below: 

1. Low pass filter: The low pass filter allows low frequencies to pass while removing the 

high frequencies.  

2. High pass filter: The high pass filter allows high frequencies to pass while removing 

the low frequencies.  

3. Band pass filter: The band pass filter allows only a certain band of frequencies to pass.  

4. Band stop filter: The band stop filter allows all frequencies to pass except a band 

which it removes. 

In addition to these basic types, there are other types such as notch filters, comb filters, etc. 

The slant part of the frequency response of the filters is called the transition region, in 

which the frequency response transitions from the pass band to stop band or vice versa. A 

good filter must have a narrow transition band.  
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1.1.2 Based on the impulse response 

Based on the impulse response, there are 2 categories of digital filters, namely, finite 

impulse response (FIR) and infinite impulse response (IIR) filters. As the names suggest, 

when an impulse input is given to the FIR filter, the output decays to 0 in a finite amount 

of time. On the other hand the output takes infinite amount of time to decay to 0 in the case 

of an IIR filter. This is due to the recursive nature of an IIR filter, where the output is fed 

back to the filter, resulting in an output even when the input has been stopped.   

1.2 FIR filters 

Fig. 1.2 shows the direct implementation of an FIR filter. 𝑇 is delay and ℎ0, ℎ1… ℎ𝑁−1 are 

filter coefficients. 𝑥[𝑘], 𝑥[𝑘 − 1], … 𝑥[𝑘 − 𝑁 + 1] are the input and the delayed versions 

of the input. 𝑦[𝑘] is the output of the filter. It can be noted from the figure that there is no 

feedback from the output of the filter.  

T T

+

.  .  .
x[k]

y[k]

T
X[k-1] X[k-2] X[k-N+1]

h0 h1 h2 hN-1

+ + +
 

Fig. 1.2. FIR filter in direct form 

 

The output of the filter can be written in the following equation form: 

𝑦[𝑘] =   ℎ0𝑥[𝑘] + ℎ1𝑥[𝑘 − 1] + ⋯ + ℎ𝑛−1𝑥[𝑘 − 𝑁 + 1] 1.1 

 

The transfer function of the FIR filter in the 𝑧-domain can be written as 
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𝐻(𝑧) =  ∑ ℎ𝑛𝑧−𝑛

𝑁−1

𝑛=0

  1.2 

 

The frequency response of the filter can be found by substituting 𝑧 with 𝑒𝑗𝜔𝑇 as shown 

below, where 𝜔 is the frequency of the input signal. 

𝐻(𝑒𝑗𝜔𝑇 ) =  ∑ ℎ𝑛𝑒−𝑗𝜔𝑛𝑇

𝑁−1

𝑛=0

= ∑ ℎ𝑛cos (𝜔𝑛𝑇)

𝑁−1

𝑛=0

− 𝑗 ∑ ℎ𝑛sin (𝜔𝑛𝑇)

𝑁−1

𝑛=0

  1.3 

 

Generally, in practical implementations, the direct transposed form is used for the FIR 

filter. This has the advantage, as it does not require the extra shift register for the input.  

 

+

.  .  .
x[k]

y[k]

h0 h1 h2 hN-1

+ + +T T T

Multiplier 
block

 

Fig. 1.3. FIR filter in transposed direct form 

 

1.2.1 Linear Phase Filters 

The equations 1.1-1.3 represent general FIR filters with arbitrary magnitude and phase 

response. It can be shown that it is possible to construct FIR filters with linear phase 

response. This is possible when the filter coefficients have an even or odd symmetry. 

Depending on the order of the filter and the symmetry of the filter coefficients, the linear 

phase filters can be of four types as shown in the following table. 
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 Order Symmetry 𝐻(𝜔)at 𝜔 = 0 𝐻(𝜔) at 𝜔 = 𝜋/𝑇 

Type I even even any any 

Type II odd even any 0 

Type III even odd 0 0 

Type IV odd odd 0 any 
 

Table 1.1. Symmetric filters 

 

If ℎ0 , ℎ1… ℎ𝑁−1 are the filter coefficients, where 𝑁 is the length of the filter, then the 

following relations hold for the coefficients of the different types of filters. 

Type I:   ℎ𝑘 = ℎ𝑁−𝑘+1,   𝑁 is odd 

Type II:   ℎ𝑘 = ℎ𝑁−𝑘+1,   𝑁 is even 

Type III:   ℎ𝑘 = −ℎ𝑁−𝑘+1, 𝑁 is even 

Type IV:   ℎ𝑘 = −ℎ𝑁−𝑘+1,   𝑁 is odd 

1.4 

 

The amplitude responses of the four types of the filters can be expressed in the following 

equations: 

Type I: 

𝐻(𝜔) = ℎ(𝑀) + 2 ∑ ℎ𝑛cos ((𝑀 − 𝑛)𝜔)

𝑀−1

𝑛=0

 1.5 

Type II: 

𝐻(𝜔) = 2 ∑ ℎ𝑛cos ((𝑀 − 𝑛)𝜔)

𝑁/2−1

𝑛=0

 1.6 

Type III: 
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𝐻(𝜔) = 2 ∑ ℎ𝑛sin ((𝑀 − 𝑛)𝜔)

𝑀−1

𝑛=0

 1.7 

Type IV: 

𝐻(𝜔) = 2 ∑ ℎ𝑛cos ((𝑀 − 𝑛)𝜔)

𝑁/2−1

𝑛=0

 1.8 

Where, 𝑀 = (𝑁 − 1)/2 

It can be seen that Type I can be used to construct both low and high pass filters, Type II 

can be used to construct only low pass filters, Type IV can be used to construct only high 

pass filters and Type III can be used to construct only band pass filters. Due to this, Type 

I filters are most common. 

In the following figure, coefficient values of a Type I linear phase filter are shown: 

 

Fig. 1.4. Type I FIR filter coefficients 
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The coefficients are symmetric around the central coefficient, as can be seen in the above 

figure. 

The phase response of a linear phase filter is shown in the following figure: 

 

Fig. 1.5. Phase response of a linear phase filter 

 

We can see that the phase response of the filter varies linearly. The discontinuities are due 

to two reasons: 

1. 2𝜋 + 𝜃 = 𝜃, resulting in the phase being confined from−𝜋 to 𝜋. 

2. The sign reversal of the frequency response. 

1.3 Design of FIR filters 

FIR filters can be designed using various methods. The most common of these methods 

are: 
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1. Equi-ripple (minimax) design in which the maximum frequency response error from 

the specified frequency response is minimized. Parks-McClellan method can be used 

to design FIR filters based on minimax criterion. 

2. Least mean square design, in which the mean square error is minimized from the 

desired frequency response. 

3. Window-based methods based on inverse DFT. 

Here, we will focus on the minimax design of FIR filters, as this is the criterion on which 

the work in this thesis is based. 

1.3.1 Equi-ripple design of linear phase FIR filters 

The specifications of the filter are given, before it is designed. Fig. 1.6 shows the 

specifications of a low-pass filter, which is to be designed based on equi-ripple method. 

 

Fig. 1.6. Filter specifications 

 

The broken plot represents the desired filter response, which corresponds to an ideal low-

pass filter, with cut-off frequency 𝜔𝑐. The response is exactly 1 in the passband and drops 

to 0 in the stopband sharply. In practical filters of finite length, the frequency response 

deviates from the ideal response as shown in the solid curve in the figure. Therefore, the 

specifications of practical filters are relaxed compared to the ideal filters. 
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The interval 0-𝜔𝑝 is the pass-band and 𝜔𝑐-1 is the stop-band of the filter. For the designed 

filter, in the pass-band, the response can vary from 1-𝛿𝑝 to 1+𝛿𝑝 and in the stopband from 

-𝛿𝑠 to 𝛿𝑠. In the transition region, which is from 𝜔𝑝 to 𝜔𝑠 the response can take any value. 

𝛿𝑝  is called the pass-band ripple and 𝛿𝑠  the stop-band ripple. The tighter the filter 

specifications are, the higher the filter length, 𝑁 is required to design the filter. 

The above design problem can be formulated as a linear program shown in the following 

equations: 

Minimize 𝛿 

Such that: 1 −  𝛿 ≤ 𝐻(𝜔) ≤ 1 + 𝛿, for 𝜔 ∈ [0,  𝜔𝑝]  

−(𝛿𝑠𝛿)/𝛿𝑝 ≤ 𝐻(𝜔) ≤ (𝛿𝑠𝛿)/𝛿𝑝, for 𝜔 ∈ [ 𝜔𝑠, 1] 
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Where, 𝐻(𝜔) is the frequency response of the filter and is given by 

𝐻(𝜔) = ∑ ℎ(𝑛)Trig(𝜔, 𝑛)

⌊
𝑁−1

2
⌋

𝑛=0

 1.10 

 

Where N is the filter length and Trig is a trigonometric function depending on the type of 

the filter and whether the filter length is odd or even (See equations 1.5-1.8). 

Solving the linear program (LP), we can find the values of the filter coefficients ℎ(𝑛) and 

the ripple 𝛿. 

The filter can be instead designed using Parks-McClellan method which is very efficient. 

This is an iterative algorithm, reducing the maximum error in each iteration. The MATLAB 

function firpm is based on the Parks-McClellan method and can be used to design linear-

phase FIR filters with a given length and specified pass and stop bands. The syntax of the 

function is shown below: 
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b = firpm(n,f,a,w) 

where, n is the filter order, which is one less than the filter length, 

f and a define the pass and stop bands. For example, f = [0 0.3 0.5 1], and a = [1 1 0 0] 

represents a low pass filter with pass band from 0 to 0.3𝜋 and stop band from 0.5𝜋 to 𝜋. 

w is the weight vector of length equal to the number of bands. Each value in the vector 

represents the weight assigned to the corresponding band of the filter. 

1.3.2 Effect of finite precision 

In practice due to the finite length of registers in processors, a filter with continuous filter 

coefficients is not possible to implement. The coefficients must be represented by numbers 

of finite word-length. This affects the frequency response of the filter negatively.  

 

Fig. 1.7. Comparison between finite and infinite precision FIR filter responses 

 

In Fig. 1.7 the blue solid plot represents the response of an optimal un-quantized filter 

designed by firpm function of MATLAB. We can notice that the height of ripples is 
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constant. After the filter coefficients are quantized to an effective word-length (EWL) of 

10 bits excluding the sign bit, the frequency response is again plotted and is shown in green, 

dashed graph. It is seen that even with 10 bits EWL, there is a significant distortion in the 

frequency response of the filter, which is clearly noticeable in the stop band of the response. 

In addition, the equi-ripple character of the response is lost. 

1.4 Quantization of coefficients 

The continuous filter coefficients can be quantized using either uniform quantization or 

non-uniform quantization. The uniform quantization can be achieved by the following 

number representations: 

1.4.1 Signed magnitude representation 

In this representation the magnitude of the number is represented by the bits excluding the 

MSB and the sign of the number is represented by the MSB. 

For example: (0101)2 = +510 and (1010)2 = -210  

The number 0 has 2 possible representations in this system, which are (0000)2 and (1000)2. 

1.4.2 One’s compliment representation 

In this representation the negative of a number is equal to bitwise OR of the number. 

For example: (0110111)2 = +5510 and (1001000)2 = -5510 

In order to add two one’s compliment numbers, it is necessary to add the end-around carry 

to the result to obtain the correct answer. For example: 

(1110001)2 + (0010000)2 = (1 0000001)2 

To obtain the correct answer the carry bit is added to the remaining number, which gives 

 (1)2 + (0000001)2 = (0000010)2 



 

12 

 

1.4.3 Two’s compliment representation 

To avoid the task of adding the carry bit after the addition of two one’s compliment 

numbers, in the two’s compliment representation the negative of a number is formed by 

taking bit-wise not of the number and then adding 1 to the result.  

For example: -5510 is represented by (1001000)2 + (1)2 = (1001001)2 

The addition of two 2’s compliment numbers is straightforward and can be done using 

normal addition. 

1.4.4 Signed digit format 

In signed digit format each digit of the number has a sign associated with it. One example 

is balanced ternary, whose base is 3 and the digits can take the values from {-1, 0, 1}. 

For example: (1 0 -1 -1)2 = 23 - 21 -20 = 8 – 2 – 1 = 5 

The signed digit format is not unique. 

1.4.5 Canonical signed digit representation 

If in the signed digit representation no two consecutive digits are non-zero, then the 

resulting representation is called canonical signed digit representation (CSD). The CSD 

representation of a number is unique. 

1.4.6 Non-uniform quantization 

There are a number of quantization representations in which the difference between 2 

consecutive values in the range of the representation does not remain uniform. An example 

is limiting the number of signed non-zero digits in the representation of the filter 

coefficients. Limiting the number to 2, the filter coefficients are then represented by the 

following equation 

ℎ𝑛 = 𝑐𝑛12−𝑏𝑛1 + 𝑐𝑛22−𝑏𝑛2 1.11 
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Where, 

𝑐𝑛1, 𝑐𝑛2 ∈ {−1,0,1} and 𝑏𝑛1, 𝑏𝑛2 ∈ {1,2, … 𝑏} 

A plot of the values which ℎ𝑛 can take is shown in the Fig. 1.8. 

 

Fig. 1.8. Possible values in a non-uniform quantization scheme 

 

As can be seen, the values are closely spaced near 0 and the gaps between the values 

generally increases near -1 and 1. Therefore, quantizing larger coefficients results in large 

quantization errors.  

1.4.7 Integer representation of coefficients 

The coefficients are quantized to a certain number of bits in an algorithm. The number of 

digits in binary format of a coefficient, proceeding initial zeros, after quantization is called 

the effective word-length of the coefficient. For example, consider a filter with 3 

coefficients with values 0.4569, -0.2438 and 0.1211. The binary values of these coefficients 

are  

0.01110100111101110110…, -0.00111110011010011010… and 

0.00011111000000000110… 

If these are rounded to 9 digits after the binary point, then the values become 

0.011101010, -0.001111101 and 0.000111110 

The EWL of each coefficient is then equal to the number of digits of each coefficient after 

the initial zeros, which is 8, 7 and 6 respectively. 
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Instead of working on these values which are binary, these can be multiplied by a number 

which is a power of 2, i.e. 2n, such that the resulting values become integers. In the above 

example, it can be easily seen that this number is 29. Multiplying the coefficients with 29, 

we get 

11101010, -1111101 and 111110, which in decimal are 234, -125 and 62. 

1.5 Normalized Peak Ripple Magnitude (NPRM) 

The equations 1.5-1.8 give the frequency response of the filters. It can be noted that if all 

the coefficients of the filter are multiplied by a constant K, then the resulting frequency 

response is identical to the original response except that it is scaled by a factor of K. This 

is not important in most of the applications, as the filtered signal can be passed through an 

amplifier with gain 1/K, to cancel the scaling factor. Therefore, in the binary representation 

of filter coefficients, if all the coefficients are shifted left or right by same number, i.e. they 

are multiplied by 2, 4, 8, , etc., the resulting filter remains equivalent to the original filter. 

 

Fig. 1.9. Frequency response with scaling of the coefficients 
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In Fig. 1.9 blue solid plot represents frequency response of a filter with unity passband 

gain. If the coefficients are multiplied by 1.5, the frequency response of the resulting filter 

is identical but scaled by a factor of 1.5, as shown in green dashed line. And similar is the 

case with scaling with 0.7. 

Consider the example given in section 1.4.7, where the coefficients are scaled to integers. 

The largest coefficient is 234. But it can be easily seen that if the coefficients were scaled 

such that the largest coefficient lies between 128 and 255, even then the EWL of the filter 

would remain the same. In other words, if ℎ𝑚𝑎𝑥  is the largest coefficient in terms of 

magnitude and EWL is the effective word-length, then the gain of the scaled filter can be 

varied from 
2𝐸𝑊𝐿−1

ℎ𝑚𝑎𝑥
 to 

2𝐸𝑊𝐿

ℎ𝑚𝑎𝑥
. 

Therefore, it is possible that the optimum filter is realized while searching in the 

neighborhood of filters quantized using gain other than 1. Therefore while optimizing the 

filter coefficients the gain can be allowed to change. In order to do this, the optimization 

problem is defined as below: 

minimize:  𝛿
𝑔⁄ =

1

𝑔
max
𝜔∈𝐹

|𝐸(𝜔)| 1.12 

 

Where, 𝐹 is a set of frequency points excluding the transition bands. 

And, 𝐸(𝜔) = 𝑊(𝜔)(𝑔𝐷(𝜔) − 𝐻(𝜔)) 1.13 

 

Where,  𝐷(𝜔)  is the desired frequency response, which is 1 in passbands and 0 in 

stopbands, 𝐻(𝜔) is the frequency response of the designed filter and 𝑊(𝜔) is a weighting 

function. The weighting function is used to give different weights to different frequencies. 

The quantity 𝛿 𝑔⁄  is called the Normalized Peak Ripple Magnitude (NPRM) of the filter.  

The passband gain 𝑔 of the designed filter can be calculated using the following equations. 
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𝑔 =
𝑃𝑚𝑎𝑥 + 𝑃𝑚𝑖𝑛

2
   if 

𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛

2
  > 𝑆𝑚𝑎𝑥 

 𝑔 = 𝑆𝑚𝑎𝑥 + 𝑃𝑚𝑖𝑛   if 
𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛

2
 < 𝑆𝑚𝑎𝑥 

 

1.14 

Where, 𝑃𝑚𝑎𝑥 is the maxima of the frequency response in the pass-band, 𝑃𝑚𝑖𝑛 is the minima 

of frequency response in the pass-band and 𝑆𝑚𝑎𝑥 is the maxima of frequency in the stop-

band. 

1.6 Reduced hardware complexity designs 

Fig. 1.2 and 1.3 show two forms of hardware implementations of FIR filters. For linear-

phase filters the complexity can be further reduced by utilizing the fact that half of the 

coefficients have same magnitude as the other half. The following figure shows type I filter 

in transposed direct form, where only the distinct coefficients are used as multipliers, 

+

.  .  .
x[k]

h0 h1 h2 h(N-1)/2-1

+ + +T T T

Multiplier 
block

+ + +T T T
y[k]

 

Fig. 1.10. Linear phase type I FIR filter with reduced number of multipliers 

1.6.1 Using CSD coding of the coefficients 

The coefficients can be converted into CSD format. As CSD representation has minimum 

number of non-zero binary digits, therefore the complexity of the multiplier block is 

reduced significantly. 
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1.6.2 Reduced adder graph designs 

Although using CSD instead of simple multipliers can reduce the adder complexity in the 

multiplier block, yet it is possible to further reduce the number of adders by utilizing the 

common additive factors among the coefficients. For example the coefficients 5, 9 and 23 

can each be realized using 1, 1 and 2 adders (4+1, 8+1 and 32-8-1) respectively, requiring 

total of 4 adders. But if 23 is realized by utilizing the previously realized coefficients (5 

and 9) as 2×9+5, then only 1 adder is required for synthesizing 23. (Note that multiplying 

by 2 requires only shifts and has negligible hardware requirement). Various algorithms [2]-

[5] has been developed to find the optimal adder graph, some of which are explained in 

chapter 2. 

1.7 Motivation 

The focus of the thesis is the design of linear phase FIR filter which satisfies the given 

design specifications and also tries to achieve minimum number of hardware adders 

required for the multiplierless design. In the literature, there are algorithms which can 

design optimum filters having minimum number of adders, but the run-time of these 

algorithms usually increases exponentially as the length of the filter to be designed is 

increased. On the other hand there are some algorithms based on evolutionary methods 

which can design the filters in relatively less time but the number of adders of the designed 

filter is usually far from optimum. 

In this thesis, the recently proposed Extremal Optimization (EO) is used to design such 

filters trying to achieve near optimum results and on the other hand avoiding the 

exponential increase in run-time as the filter length increases. 

1.8 Thesis organization 

The rest of the thesis report is organized as follows: 

In the second chapter, the literature is reviewed focusing on some of the state of the art 

methods for designing linear phase FIR filters. Some of the important deterministic and 

heuristic methods are briefly explained. In addition, a couple of algorithms for designing 
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minimum adder multiplier graphs, such as [2] and RAG-n [4] are explained. In addition, 

some techniques used to reduce the search space and making the linear program based 

calculation of the filter coefficients faster are reviewed 

In the third chapter, the theoretical background of the extremal optimization (EO) method 

is given. Also, some major improvements such as 𝜏-EO and population based EO are 

discussed. 

In the fourth chapter, the proposed method is explained in detail. Various steps used in the 

algorithm like reducing the search space, partitioning the gain and the methods used to 

speed-up the calculations are discussed. 

In the fifth chapter, the analysis of the convergence characteristics of the algorithm is done. 

Some benchmark filters are designed using the algorithm and their multiplier blocks are 

synthesized and shown. The run-time of the algorithm is also calculated and discussed and 

a comparison is made with the state of the art methods. 

In the sixth chapter, the conclusion is given. 

1.9 Main contributions 

The main contribution of the work done here is the implementation of EO algorithm and 

adapting it to make it suitable for designing FIR filters. The algorithm has not been 

previously used for the design of digital filters. The disadvantage of other algorithms such 

as GA and PSO is that they require fine tuning of the parameters. Also there is a problem 

of early convergence to a local minimum. EO on the other hand has just one adjustable 

parameter, which is relatively easy to tune. Also, it is easy to tune EO such that it doesn’t 

get trapped in local minima, although at the cost of increasing the runtime. 

A specific technique is also developed to make the algorithm fast. The frequency response 

is not calculated entirely for each objective function evaluation. Instead, only the 

differential contributions are calculated.  
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Chapter 2 

Review of Literature 

Multiplierless digital filters can be realized without the use of multipliers by a shift and add 

network and thus are efficient in terms of hardware complexity and power consumption. 

The design goal is to minimize the number of adders. There are both deterministic as well 

as heuristic methods available for designing finite word length filters. Deterministic 

methods based on tree search are able to find the optimum solutions but consume lots of 

time if the filter length is high. 

Initially, the design of finite word length filters was concentrated on reducing the 

representation of filters coefficients. The canonic signed digits (CSD) and Signed Power 

of Two (SPOT) representation of numbers was utilized to minimize the bits needed to 

represent the filter coefficients. The minimal bit representation led to a reduction in the 

number of adders needed to implement the filter either using ripple carry adders (RCA) or 

using carry save adders (CSA). The RCA topology required less chip area and consumed 

less power but at the expense of reduced operating frequency. The CSA topology increased 

the speed at the expense of additional hardware. However, both the topologies had minimal 

adder counts under the SPOT design criteria. 

With time, research efforts in finite word length filter design drifted towards developing 

efficient multiple constant multiplication (MCM) algorithms. The FIR filter in its 

transposed direct form could be modelled as a case of MCM wherein the input is multiplied 

by all the filter coefficients and then saved in registers and added along the delay line. The 

MCM algorithms utilized the redundancies in the filter coefficients and modelled the shift 

and add network as a one-input-M-output network (M being the number of unique filter 

coefficients). The MCM algorithms were either graph based [3]-[4], or were pattern based 

[2].    

MCM algorithms produced the minimal adder count for a given set of filters coefficients 

but given a filter specification, the coefficient set that can meet the requirement is not 

unique. Thus, adder counts of other coefficients may be less and hence the filter design 
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problem and the implementation were consolidated. This led to the dynamically expanding 

subexpression space design methods. 

Deterministic methods based on tree search are able to find the optimum solutions at the 

expense of exponential computational complexity [6]. Thus, design of large order and high 

word length filters becomes infeasible. The research in deterministic methods is being 

carried out to reduce the search space by excluding the section of the search space from the 

algorithm that shows no promise of feasible solutions. However, the exponential 

computational growth is unavoidable in all tree search methods and a polynomial time 

algorithm can only be guaranteed if every node produces only one child. In [7], a method 

is proposed whose runtime is polynomial with the filter length. In this method the passband 

gain is divided into large number of sections. In each section a solution is found by 

successively finding the feasible range of a coefficient and fixing it the value near the 

middle of the range. A feasible solution is chosen which results in minimum number of 

adders. 

In heuristic methods for designing finite word length filters, the most common strategy is 

to find an initial solution, for example by rounding the continuous solution or by finding 

an initial good solution with greedy optimization and then search using small number of 

values around the rounded values. Totally random search with no initial solutions can only 

yield feasible solutions for filter orders less than 30. The shift and add network can be 

constructed using MCM algorithms and the objective function is created to direct the search 

for finding minimal adder coefficients. 

2.1 Filter design algorithms 

In the following section some important deterministic and heuristic algorithms from 

literature are reviewed. 

2.1.1 Deterministic algorithms 

1. In [8], a branch and bound algorithm (called FIRGAM) is proposed for the design of 

hardware efficient filters. The algorithm designs filters with reduced number of SPT terms. 

The coefficients are designed by finding the feasible range of each coefficient successively 
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and fixing the coefficient first to the quantization value nearest to the center of the feasible 

range. After a coefficient has been fixed the feasible range of the next coefficients is 

recalculated and the same procedure is repeated until all the coefficients has been 

successfully quantized.  

The number of SPT terms of the solution are calculated and the algorithm then goes through 

the search space again to find if a solution with lesser number of SPT terms can be found. 

If the feasible range of any coefficient is found to be empty at any stage, the algorithm 

backtracks to the previous quantized coefficient and quantizes it to the next nearest 

quantization value from the center of its feasible range. 

2. [6] proposes an algorithm to design optimum filters in terms of the number of adders. 

The method involves mixed integer linear programming (MILP). The filter coefficients are 

synthesized based on a dynamically expanding subexpression space. 

First, the lower and upper bound of each coefficient is calculated. This is done by solving 

the following linear program problem: 

minimize:  𝑓 = ℎ(𝑘) and 𝑓 = −ℎ(𝑘) 

such that:  𝑏 − 𝛿 ≤ 𝐻(𝜔) ≤ 𝑏 + 𝛿, for 𝜔 ∈ [0, 𝜔𝑝] 

− (𝛿𝑠𝛿) 𝛿𝑝⁄ ≤ 𝐻(𝜔) ≤ (𝛿𝑠𝛿) 𝛿𝑝⁄ , for 𝜔 ∈ [𝜔𝑠,𝜋]  

𝑏𝑙 ≤ 𝑏 ≤ 𝑏ℎ 

2.1 

 

Where,  𝑏 is the passband gain and 𝛿𝑝 and 𝛿𝑠 are the maximum allowed pass and stop-band 

ripple. 𝐻(𝜔) is the magnitude of the frequency response of the filter. 

After this a depth first search is done and filter coefficients are fixed to integers one by one. 

Once a coefficient is fixed the remaining un-quantized one are re-optimized. 

This algorithm is guaranteed to return optimum set of filter coefficients, but for filters with 

high word-lengths, the algorithm takes very long time to finish the search and becomes 

impractical. The run-time increases exponentially with the increase of the filter length. 
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3. In [7], a polynomial time algorithm is proposed. The method is inspired from FIRGAM 

[8] algorithm. In contrast to FIRGAM, the proposed method fixes each coefficient to the 

middle of its range and does not try to expand the search in the neighboring values. 

As the runtime of linear program is polynomial in number of filter coefficients and the 

number of linear programs to be solved also increases linearly with the number of the filter 

coefficients, therefore the above algorithm is polynomial in runtime. 

In this algorithm, first some of the coefficients are fixed to 0 before proceeding with the 

remaining algorithm. The reason is that, if a coefficient is 0, then there is an immediate 

reduction in two adders in the delay chain.  

After this, the passband gain is divided into number of partitions and the tree search 

algorithm, as in [8], is used to fix successively the coefficients to the middle of their feasible 

range. The filter coefficients from each gain are synthesized using an MCM algorithm [2] 

and the one which yields the result with minimum number of adders is chosen as the final 

solution. 

4. [9] proposes a polynomial time algorithm which optimizes the coefficients in two steps. 

The first step is similar to the one proposed in [7]. After the initial solutions for each gain 

are obtained, the ones which are feasible are selected for the second step of the 

optimization. 

In the second step the coefficients are divided into groups. Each group has 20 coefficients 

(the last group might have less than 20 coefficients).  Each group is optimized one by one 

using a tree search algorithm similar to [6]. Expanding subexpression technique is used to 

synthesize the coefficients as they are constructed to yield minimum number of adders. 

Once all the groups have been optimized, the process is repeated again several times 

starting from the first group. After 2-3 iterations the algorithm converges. The solution at 

the gain which yields the best result in terms of number of adders is chosen as the final 

solution. 

The above algorithm is capable of finding solutions which, in most of the cases, are optimal 

or near optimal. Also, the runtime of the algorithm is much less than the optimal algorithms. 
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2.1.2 Heuristic algorithms  

1. In [10], GA is used to design FIR filter with coefficients which are constrained to the 

sums of two numbers, which are powers of two. In order to constrain the search space, a 

specific coefficient coding scheme is used. Instead of coding the values of the coefficients 

directly, the differences from some leading values are chosen and coded. The leading 

values are chosen as the coefficients obtained after quantizing the optimal continuous 

coefficients. In the case, when sum of power of two terms (SOPT) is used, the quantization 

is done such that the quantized value is the nearest value in the domain of SOPT from the 

continuous value. 

As the optimal discrete filter coefficients are generally relatively not far away from the 

continuous filter coefficients, therefore the differences to be encoded are not very large and 

can be encoded using lesser number of bits, compared to encoding the full coefficient 

values. 

2. In [11], a genetic algorithm is proposed for the design of multiplierless filters. In this 

paper the search space is partitioned into a number of search spaces. This is done by 

dividing the passband gain into a number of partitions, such that the EWL remains same 

as specified. The continuous filter is constructed for each of the partition. Then a search 

space is constructed around each solution and GA is used to find feasible solution in this 

space having minimum hardware adders. The search space around the nth coefficient is 

defined in the following way: 

ℎ𝑞𝑚
𝑢 (𝑛) = ℎ𝑞𝑚

′ (𝑛) + 2𝑐𝑒𝑖𝑙(𝐵𝑚(𝑛)/3) − 1 

ℎ𝑞𝑚
𝑙 (𝑛) = ℎ𝑞𝑚

′ (𝑛) − 2𝑐𝑒𝑖𝑙(𝐵𝑚(𝑛) 3⁄ ) + 1 
2.2 

  

Where, ℎ𝑞𝑚
′  are the quantized coefficients scaled to integers. ℎ𝑞𝑚

𝑢  is the upper limit of the 

coefficients and ℎ𝑞𝑚
𝑙  is the lower limit of the coefficients. 𝐵𝑚(𝑛) is the EWL of the nth 

coefficient. 

3. Another GA based algorithm is proposed in [12] for the design of multiplierless filters. 

In this method, adaptive crossover and mutation rates are used, which prevents premature 
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convergence of the algorithm and also avoids the good solutions to be cast away. The gain 

is divided into a number of partitions as in [11]. In the second part of the paper the 

algorithm is used to design filters in cascade form. 

4.  In [13] a two stage algorithm is proposed with sums of SPT terms. In the first stage, a 

time domain method is used to assign SPT terms to the filter coefficients. In the second 

stage a Verterbi’s algorithm type method is used. The problem is cast as dynamic 

programming and a trellis search is done to iteratively add SPT terms one by one. The 

number of adders are further reduced by using a subexpression sharing method to exploit 

the redundancies among the coefficients. 

5. A gradient based method, is used in [1]. In this method, the gradient information is 

calculated and used to direct the search. The search is directed towards low gradients routes 

first and when further improvement stops, the search is redirected to the steeper routes. The 

method is semi-random in nature and has low computational cost. 

2.2 MCM algorithms 

In the following sub-sections two important MCM algorithms for designing multiplierless 

realizations of filter coefficients are explained. 

2.2.1 MCM algorithm of A. Yurdakul and G. Dündar [2] 

There are a number of algorithms in the literature to find the multiplierless realizations of 

filter coefficients. RAG-n and C1 algorithms are notable for producing realizations with 

optimal number of adders in most of the cases. But these algorithms suffer from the 

disadvantage of large memory requirements due to the use of large lookup tables. Also, 

when the word-length is higher, the lookup tables become prohibitively large. In this case, 

the algorithms can still construct these coefficients using heuristics, but do not guarantee 

the optimal number of adders. A fast and efficient algorithm has been introduced in [2]. It 

has pseudo-polynomial run-time and memory requirements in the worst case scenario.   

The algorithm is based on pattern search in the binary or CSD values of the coefficients. 

The pattern search is done at length of 2 throughout the algorithm. Pattern length is defined 

as the number of non-zero terms in the coefficient. For example, if a coefficient of effective 
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word-length 8 is given as 11010110. Then, 1001 and 101 shown in bold as 11010110 and 

11010110 respectively are patterns of length 2, whereas 1101 and 100101 are patterns of 

length 3 shown in bold as 11010110 and 11010110 respectively. The algorithm iteratively 

combines 2 non-zero terms to generate all the coefficients. The step by step realization of 

constant multiplication is shown in the following figure: 

Step 1:

Step 2:

Step 3:

1 0 1  0 1 0 0 1 0 1 0 1 0 0 1

Step 4:

 0 0 t2 0 0 0 0 t1 0 1 0 0 0 0 t1

 0 0 0 0 0 0 0 t4 0 0 0 0 0 0 t3

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t5  

Fig. 2.1. Constant multiplication realization using the algorithm.  
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Fig. 2.2. The adder tree for the above example 

 

From the figure, we can see that the number of adders required for the synthesis is 5. 

2.2.2 RAG-n algorithm 

RAG-n algorithm [4] synthesizes the coefficients in two steps. The first part of the 

algorithm is optimal and the second part is heuristic. If the algorithm is able to synthesize 

all the coefficients in the first step, then the synthesized set is guaranteed to be optimal. 

The algorithm uses a lookup table constructed by MAG algorithm. The lookup table 

contains the minimum adder graphs of all the integers up to a certain cost, where cost is 

the number of additions or subtractions required to synthesize that number. Only the odd 

integers are considered, because the even ones can be constructed from the odd ones by 
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multiplying with 2, which is cost-free. For example, 2, 4, 8, and so on have cost 0 as these 

can be constructed without any adders. 3, 5, 7, 9, etc. have cost 1 as they require one adder 

for their synthesis as shown below: 

4 - 1 = 3, 4 + 1 = 5, 8 - 1 = 7, 8 + 1 = 9 

The basic steps of the algorithm are as follows: 

 First, all the coefficients are reduced to odd-fundamentals. This is done by making any 

negative coefficients positive. Then making the coefficients odd by successively 

dividing by 2. 

 Any repeated values are removed. The values 0 and 1 are also removed from the set.  

 All the odd-fundamentals which have cost 1 are removed from the set. The set of 

remaining fundamentals is called incomplete set. The number of adders used until now 

is the number of fundamentals removed. The set of removed fundamentals is called 

complete set. 

 Use the complete set and try to construct fundamentals in the incomplete set by adding 

two coefficients from the complete set and their multiples with power of 2. The 

fundamentals which are able to be constructed in this step are added to the complete 

set and removed from the complete set. 

 The step 4 is repeated until there are no more fundamentals in the incomplete set or no 

more fundamentals in the incomplete set can be constructed. 

If by this time the incomplete set is empty then the algorithm stops and the resulting 

synthesis is optimal, otherwise the remaining fundamentals are constructed using the 

second part of the algorithm which is heuristic. 

As the number of coefficients increases for a given word-length the chances of a set 

constructed by the algorithm to be optimal increases. For example, when the word-length 

is 8, the chances of optimal set are already more than 50% with a set size of around 10 and 

almost 100% with a set size of 20. On the other hand, when the word-length is 12, around 

60 coefficients are required to reach 50% chances of optimality. 
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2.3 Speeding up the linear program 

The maximum number of extrema (i.e. maxima and minima) in the frequency response of 

a filter of length 𝑁 is equal to 

𝑁𝑒𝑥𝑡 = ⌊
𝑁 + 1

2
⌋ 2.3 

 

The above number includes the points at frequencies 𝜔 = 0 and 𝜋, but does not include 

the frequencies at the edge of the transition bands. 

The filter coefficients for a low pass filter with pass and stop band cut-off frequency 𝜔𝑝 

and 𝜔𝑠 respectively, can be evaluated by solving the following linear program 

minimize: 𝛿 

subject to:  1 − 𝛿 ≤ 𝐻(𝜔) ≤ 1 + 𝛿,   for 𝜔 ∈ [0, 𝜔𝑝] 

−
𝛿𝑠

𝛿𝑝
𝛿 ≤ 𝐻(𝜔) ≤

𝛿𝑠

𝛿𝑝
𝛿,   for 𝜔 ∈ [𝜔𝑠, 𝜋] 

2.4 

 

Where, 
𝛿𝑠

𝛿𝑝
 is the ratio of stop and pass band error tolerances and 𝐻(𝜔) is the frequency 

response of the filter. 

In order to account for all the frequencies, the number of points on the frequency grid need 

to be as large as possible. If the number of points is very large, then the number of 

constraints of the LP is also very large, which can create instability in the solving algorithm 

and also require large computational time. It can be noticed that the only points where 

optimization is required are the extremal points on the frequency response. The problem is 

that the extremal points are not known a priori.  
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In [14], a method, similar to the one used in Parks-mcCllellan is used to solve the above 

equations. The algorithm is explained below: 

1. 𝑁𝑒𝑥𝑡 number of points are initially chosen in the pass and stop band which are 

roughly equally spaced. 

2. The equations are solved at these points, in addition to pass and stop band cut-off 

frequencies, to get filter coefficients. 

3. Frequency response is evaluated using these filter coefficients at roughly 2𝑁 

equally spaced points on the frequency grid. 

4. Newton’s extrapolation method is applied to accurately determine the extrema of 

the frequency response, which are the new 𝑁𝑒𝑥𝑡 number of points. 

5. The steps 2-4 are repeated until the change in the extrema points is less than a given 

tolerance. 

2.4 Reducing the search space 

If the magnitude of the coefficients are quantized to an 𝐸𝑊𝐿 of 𝐵 bits and the filter length 

is 𝑁, then the total number of possible filter realizations are equal to (2𝐵+1)𝑁 = 2(𝐵+1)𝑁. 

Even for a moderate word-length of 8 and filter length 31, the number of possibilities 

is 2279 ≈ 1084, which is enormous. It is impossible to check each and every possibility by 

Brute force to optimize the filter. 

A large majority of these possibilities give filters which deviate greatly from the desired 

frequency response. The optimum filter coefficients lie close to the quantized filter 

coefficients. Therefore it makes sense to look for the optimum filter coefficients in the 

vicinity of the quantized filter coefficients. For example in [10], a neighborhood is selected 

around each coefficient, which is much less than the full range of the given coefficient. 

This way each filter’s neighborhood is encoded with a number of bits which is less than 

the 𝐸𝑊𝐿 of the given coefficient. In this way the search space is drastically reduced. 

Instead of quantizing the coefficients and then defining an arbitrary search space as 

explained above, a more accurate method is to find the range of each coefficient value 
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which satisfy the given filter specifications. This is done by solving the following LP for 

each of the coefficients. To find the feasible range of ith coefficient, solve 

minimize: 𝑓0 = ℎ(𝑖) and 𝑓1 = −ℎ(𝑖) 

subject to: (1 − 𝛿𝑝) ≤ 𝐻(𝜔) ≤ (1 + 𝛿𝑝), for 𝜔 ∈ [0, 𝜔𝑝] 

−𝛿𝑝 ≤ 𝐻(𝜔) ≤ 𝛿𝑝, for 𝜔 ∈ [𝜔𝑠, 𝜋] 

2.5 

 

Where, 𝐻(𝜔) = ∑ ℎ(𝑛)Trig(𝜔, 𝑛)
⌊

𝑁−1

2
⌋

𝑛=0  

The above equations represent two linear programs, one minimizing 𝑓0 = ℎ(𝑖) and the 

other minimizing 𝑓0 = −ℎ(𝑖). The results of these give the minimum and maximum value 

of the ith coefficient. The search space of the filter can now be limited to the feasible range 

of each coefficient. 
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Chapter 3 

Extremal Optimization 

Extremal Optimization is a recent heuristic method inspired by models of co-evolution 

such as Bak-Sneppen model [19]. It is one of many evolutionary algorithms, such as 

Genetic Algorithm (GA), Ant Colony Optimization (ACO), Particle Swarm Optimization 

(PSO), Artificial Bee Colony Optimization, etc. Evolutionary algorithms can successfully 

optimize a wide variety of optimization problems as they do not make any assumptions 

about the underlying fitness landscape of the problem. Therefore, these have been widely 

used in the optimization of engineering problems, which are otherwise very difficult to 

solve due to the complex nature of the fitness landscape, or due to the huge size of the 

search space which is intractable with other algorithms. 

GA algorithm is inspired from the Darwinian natural selection. It consists of basic steps of 

biological evolution, which are inheritance, crossover, mutation and selection. [10]-[12] 

and [15]-[17] use GA based algorithms for design of FIR filters. One of the limitations of 

GA is the tendency to converge to local optima instead of global optima. 

S. J. Gould [18], suggested that evolution of species takes place intermittently, instead of 

in a gradual way. The evolution of a species affects its neighboring species and instead of 

evolving towards an equilibrium state, they enter a state in which intermittent bursts of 

evolution take place separated by quite states. The changes resemble avalanches. The sizes 

of the avalanches come in all sizes and are scale free. In other words, there are sudden large 

changes which are rare in frequency like large extinction events and small changes which 

occur with high frequency. This state of the system is called self-organized critical state.  

In genetic algorithms (GA) better solutions are produced from previous solutions by 

selectively breeding good solutions. In contrast, in extremal optimization the bad 

components of the solution are successively eliminated in order to achieve a better solution. 

In order to achieve optimum solutions in GA, the parameters such as crossover and 

mutation rate should be selected properly. This is often hard to achieve and requires 
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experienced human intervention. On the other hand the original EO lacks any adjustable 

parameters and thus can be implemented easily on wide variety of problems. 

EO can be compared to Simulated annealing (SA) which also works on a single solution. 

In SA, initially the magnitude of the changes is high and as the time progresses the 

magnitude of changes decreases. After a long time the algorithm converges and the 

algorithm sticks to the minimum which it has found at that place. In contrast, in EO the 

changes occur forever. The probability of a change of a given magnitude remains the same 

throughout the algorithm. Also, the probability of the changes is inversely related to the 

magnitude of the changes. In other words, a change of small magnitude has higher chances 

of taking place and of larger magnitude has lower chances of taking place. Due to this, EO 

does not stick to a local minimum forever and always has chances of escaping a minimum 

of any depth. 

3.1 Bak-Sneppen Model 

Per Bak and Kim Sneppen [19] proposed a model of evolution in which they say that an 

entire species has a single fitness level. Multiple species affect the fitness of their 

neighboring species and therefore in turn affect their evolution. 

The species evolve only if, after mutation, the new configuration has higher fitness. There 

is some low probability of mutations with lower fitness, allowing the evolution to evolve 

out of the local minima of the fitness landscape. 

3.2 Extremal Optimization 

Extremal optimization was proposed by Stefan Boettcher and Allon Percus [20], [21] and 

is based on Bak-Sneppen model of co-evolution. The method successively eliminates bad 

components of a single solution, instead of breeding better solutions like GA. In the paper, 

the method has been successfully applied on graph partitioning and travelling salesman 

problem. The graph partitioning problem is NP hard, in which a graph has to be divided 

into 2 sub-sets, such that minimum number of edges cut through the two sub-sets. The 

results of large graphs are compared with those obtained from GA and SA (Simulated 
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annealing). It is observed that EO obtains optimal results in much shorter time for large 

graphs. The EO can be explained in the following steps: 

1. An individual is generated randomly by randomly initializing its 𝑛 variables in their 

respective feasible ranges. Let’s call this individual 𝑆. Set the optimal solution 𝑆𝑏𝑒𝑠𝑡 = 𝑆. 

2. For the current individual  𝑆: 

(a) Evaluate the fitness 𝜆𝑖 for each decision variable, 𝑥𝑖 ∈ (1, … , 𝑛) 

(b) Find 𝑗 satisfying 𝜆𝑗 < 𝜆𝑖 , for all 𝑖, i.e., 𝑥𝑗 is the worst variable. 

(c) Choose 𝑆′ ∈ 𝑁(𝑆) such that 𝑥𝑗 must change its state, where, 𝑁(𝑆) is the neighborhood 

of 𝑆. 

(d) Accept 𝑆 = 𝑆′ unconditionally. 

(e) If the current cost function value is less than the minimum cost function value, 

i.e. 𝐶(𝑆) < 𝐶(𝑆𝑏𝑒𝑠𝑡), then set 𝑆𝑏𝑒𝑠𝑡 = 𝑆. 

3. Repeat Step 2 as long as desired. 

4. Return  𝑆𝑏𝑒𝑠𝑡 and  𝐶(𝑆𝑏𝑒𝑠𝑡) . 

3.3 Generalized EO 

In [22], a generalized EO algorithm is presented, which can be applied to broad class of 

engineering problems. In an optimization problem consisting of 𝑁 design variables, each 

one is randomly initialized and represented in fixed number of binary bits. All these binary 

numbers are joined to form a string. 

1. Let’s call this individual 𝑆. Set the optimal solution 𝑆𝑏𝑒𝑠𝑡 = 𝑆. Let 𝐶 be the fitness of 

this individual. Set 𝐶𝑏𝑒𝑠𝑡 = 𝐶. 

2. For the current individual  𝑆: 
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(a) Evaluate the fitness 𝜆𝑖 for each decision variable, 𝑥𝑖 ∈ (1, … , 𝑛) of 𝑆. This is done by 

flipping each ith bit of 𝑆. The resulting fitness of the individual 𝑆′ with the flipped bit is 

calculated. Let 𝐶′ be its fitness. Then the fitness of the bit is 𝐶′ − 𝐶. 

(b) Rank the fitnesses of all the bits with rank 𝑘 = 1, for the best fitness and 𝑘 = 𝑛 for the 

worst fitness. 

(c) Select a random rank 𝑘, with probability distribution of 𝑘, proportional to 𝑘−𝜏, where 𝜏 

is a constant. 

(c) Choose 𝑆′ ∈ 𝑁(𝑆) such that 𝑥𝑘 must change its state, where, 𝑁(𝑆) is the neighborhood 

of 𝑆, 

(d) Accept 𝑆 = 𝑆′ unconditionally, 

(e) If the current cost function value is less than the minimum cost function value, 

i.e. 𝐶(𝑆) < 𝐶(𝑆𝑏𝑒𝑠𝑡), then set 𝑆𝑏𝑒𝑠𝑡 = 𝑆. 

3. Repeat Step 2 as long as desired. 

4. Return  𝑆𝑏𝑒𝑠𝑡 and  𝐶(𝑆𝑏𝑒𝑠𝑡) . 

3.4 Population based EO 

A population based EO algorithm is proposed in [23]. It claims to have higher search 

efficiency than the traditional EO. In this method instead of having only one individual, we 

have a number of individuals as in GA. The basic steps of this algorithm are as below. 

1. Generate 𝑚 individuals 𝑆, 𝑖 ∈ (1, … , 𝑚). Find the individual with best fitness and set 

𝑆𝑏𝑒𝑠𝑡 equal to this individual. Let 𝐶 be the fitness of this individual. Set 𝐶𝑏𝑒𝑠𝑡 = 𝐶. 

2. For each individual  𝑆: 
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(a) Evaluate the fitness 𝜆𝑖 for each decision variable, 𝑥𝑖 ∈ (1, … , 𝑛) of 𝑆. This is done by 

flipping each ith bit of 𝑆. The resulting fitness of the individual 𝑆′ with the flipped bit is 

calculated. Let 𝐶′ be its fitness. The fitness of the bit is 𝐶′ − 𝐶. 

(b) Rank the fitnesses of all the bits with rank 𝑘 = 1, for the best fitness and 𝑘 = 𝑛 for the 

worst fitness. 

(c) Select a random rank 𝑘, with probability distribution of 𝑘, proportional to 𝑘−𝜏, where 𝜏 

is a constant. 

(c) Choose 𝑆′ ∈ 𝑁(𝑆) such that 𝑥𝑘 must change its state, where, 𝑁(𝑆) is the neighborhood 

of 𝑆, 

(d) Accept 𝑆 = 𝑆′ unconditionally, 

(e) If the current cost function value is less than the minimum cost function value, 

i.e. 𝐶(𝑆) < 𝐶(𝑆𝑏𝑒𝑠𝑡), then set 𝑆𝑏𝑒𝑠𝑡 = 𝑆. 

3. Repeat Step 2 as long as desired. 

4. Return  𝑆𝑏𝑒𝑠𝑡 and  𝐶(𝑆𝑏𝑒𝑠𝑡) . 
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Chapter 4 

Proposed Method 

The original EO has very poor global search properties and gets stuck in local minima very 

easily. τ-EO is a significant improvement over the original EO and is used in this work. 

This algorithm has just one adjustable parameter called τ, whose optimum value in wide 

variety of problems lies in the range from 0.5 to 3 and thus easy to adjust. τ-EO never gets 

trapped in a local minima and thus given enough time it can potentially find the optimum 

solution. In actual world problems with limited computation time, good results can be 

achieved by choosing τ properly.  

As, the purpose of the algorithm developed in this thesis is to reduce the number of adders 

required for the synthesis of the coefficients, therefore the objective function for the EO 

algorithm is chosen in such a way that it decreases with the number of adders. The RAG-

n algorithm used in our method is very time consuming. Therefore, it is not used within the 

objective function until the algorithm has found the feasible solutions. The objective 

function is shown below. 

𝑂𝑏𝑗 = {

𝛿𝑚,        𝛿𝑚 > 𝛿𝑝 

𝛿𝑝 ∗
𝑛

𝑛𝑚𝑎𝑥
,      otherwise

 4.1 

 

𝛿𝑚 is the minimax error of the current solution in the current iteration. 𝑛 is the number of 

adders found using RAG-n for this solution and 𝑛𝑚𝑎𝑥 is a constant which is greater than 

the minimum number of adders achieved in the first step.  

The above objective function has the property that as long as error 𝛿𝑚 is greater than the 

specified passband error 𝛿𝑝, the objective function is equal to 𝛿𝑚. Once the error becomes 

less than 𝛿𝑝, the objective function depends only on the number of adders 𝑛. Using this 

type of objective function the algorithm first tries to decrease the passband error. Once the 

passband error decreases below the specified value the algorithm starts trying to decrease 
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the number of adders. 𝑛𝑚𝑎𝑥  in the objective function is taken as the number of adders 

achieved in the first step of the algorithm. The idea here is that 𝑛 < 𝑛𝑚𝑎𝑥 as we are trying 

to improve the first step solution. Due to this the objective function is monotonically 

decreasing function in 𝛿𝑚. 

The algorithm of this thesis is explained below: 

Step 1. Floating point filter coefficients are calculated with some coefficients fixed to 0. 

This step is explained in detail in section 4.2. 

Step 2. As floating the passband gain results in a filter with a scaled version of the 

frequency response, therefore the feasible gain is partitioned into a number of partitions. 

If  ℎ𝑚𝑎𝑥 is the coefficient with maximum magnitude in the floating point filter coefficients 

and EWL is the effective word-length of the filter, then the feasible range of the gain 

is [
2𝐸𝑊𝐿−1

ℎ𝑚𝑎𝑥
,

2𝐸𝑊𝐿

ℎ𝑚𝑎𝑥
]. The details are given in section 4.3. 

Step 3. An initial fixed point solution is found in each of the gains by, a) simple 

quantization, or b) quantizing each coefficient one by one and re-optimizing the rest of the 

coefficients or c) finding the feasible range of each coefficient one by one and quantizing 

the coefficient in the middle of its range and re-optimizing the rest of the coefficients. In 

the thesis the third approach is used. The details are given in section 4.5. 

Step 4. The EO algorithm is used to further improve the above solutions.  

The EO algorithm is explained below in detail: 

Step 1. For a given passband gain, let  ℎ = {ℎ0, ℎ1, … , ℎ𝑁}  be the initial fixed point 

coefficients. A neighborhood  𝑅 = {𝑟0, 𝑟1, … , 𝑟𝑁}   is defined around each coefficient. 

Therefore, each coefficient can take value in the range [ℎ𝑛 − 𝑟𝑛, ℎ𝑛 + 𝑟𝑛]. The search space 

of EO is limited to this neighborhood. The details of deciding the neighborhood are given 

in section 4.4. 

Step 2. Initialize, the solution ℎ𝑠𝑜𝑙 = ℎ. 
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Step 3. Calculate the objective function by changing each coefficient in its range and 

keeping others constant. If there are 𝑙 number of points obtained, then there are 𝑙 values of 

the objective function given by {𝑂𝑏𝑗1, 𝑂𝑏𝑗2, … , 𝑂𝑏𝑗𝑙}. Sort these values in ascending order. 

Step 4. Select an integer p from 1 to l randomly. 

Step 5. Select another random number rand from 0 to 1. 

Step 6. If 𝑟𝑎𝑛𝑑 < 𝑝−𝜏, select the point in the search space corresponding to the 𝑝𝑡ℎ  value 

of the sorted objective functions and replace ℎ𝑠𝑜𝑙 with this point, else go to step 4 until a 

replacement is achieved. 

Step 7. Repeat steps 3 to 6 until desired number of iterations. 

The variation of cost function with the iterations is shown in the Fig. 4.1. It can be noticed 

that even late during the evolutionary process there are large fluctuations in the cost 

function. This is an important property which helps EO in exploring wider search space 

and avoid getting stuck in local minima. 

 

Fig. 4.1. Variation of cost function with iterations 
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Start Filter 
specification

Find the indices of 
zero coefficients

Determine the 
passband gains Gm,

m = 1 to M

For each gain Gm generate the 
initial solution using tree search 

algorithm

Select the solutions with error 
within the threshold and construct 
search space around each solution

Run Extremal optimization method to 
further improve the initial solution

Record the solution for 
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For each selected solution

All solutions 
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A

B

C

D

Yes
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Fig. 4.2. Flowchart of the algorithm 
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filter htemp and record its value
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Rank all the objective functions in 
ascending order from 1 to l

Select a random integer 
p from 1 to l
 

Select a random number 
rand from 0 to 1
 

No

Yes

If
rand < p-τ

Replace hsol with the point in the neighborhood corresponding 
to pth value of ordered objective functions 

 

NoIf
Maximum number of 

iterations done

No

Yes
If

Obj(hsol) < Obj(hbest)

hbest = hsol

hbest is the final solution

Yes

Stop

 

Fig. 4.3. Extremal optimization algorithm 
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In the flowchart shown in Fig. 4.2, the parts marked with A, B and C are explained in more 

details in sections 4.2, 4.3 and 4.5 respectively. The part D has been explained in previous 

section. 

4.1  Finding the filter order and word-length 

From the filter specifications, first a continuous coefficient filter is constructed using firpm 

function of MATLAB. This is done by successively trying higher orders until the 

specifications are met. The filter order for the final design is initially chosen to be 2-4 

higher than the continuous one, although this can vary in the final design. The effective 

word-length is chosen to be as small as possible. Initially a value of 8 is chosen for the 

word-length. The first step of the algorithm is run after fixing the zeros as explained in the 

next section. If no feasible solution is found, the filter length is increased by one and the 

process repeated. If after increasing the filter-length several times no feasible solutions are 

found, then the effective word-length can be increased. 

Once feasible solutions are obtained, the algorithm can be run to find the best solution in 

terms of adders. Next, a higher effective word-length can be tried, as it might be possible 

to achieve fewer adders by doing this. The procedure to fix the word-length and the filter 

order is explained in the flowchart in the Fig. 4.4. 
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Start Filter 
specification

Select filter order
N

Design filter using 
firpm
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met

Yes

Increase filter order 
N

No

Filter order
N = N+1, EWL = 8

C = 0
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Run first step

N = N+1
C = C+1

C = 3
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N = N-C, C = 0
EWL = EWL +1

Run second step and 
record the best 

solution

Stop

 

Fig. 4.4. Estimating filter order and word-length  
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4.2 Fixing some coefficients to zero 

The fixing of coefficients to 0 is done as follows: 

 The set 𝑍, denoting the index of the coefficients whose value is 0, is set to empty. 

 The following LP is solved to find the filter coefficients and the corresponding minimax 

error. 

minimize:  𝛿 

such that:  1 − 𝛿 ≤ 𝐻(𝜔) ≤ 1 + 𝛿, for 𝜔 ∈ [0, 𝜔𝑝] 

− (𝛿𝑠𝛿) 𝛿𝑝⁄ ≤ 𝐻(𝜔) ≤ (𝛿𝑠𝛿) 𝛿𝑝⁄ , for 𝜔 ∈ [𝜔𝑠,𝜋]  

 

4.2 

Where 

𝐻(𝜔) = ∑ ℎ(𝑛)Trig(𝜔, 𝑛)

⌊
𝑁−1

2
⌋

𝑛=0,   𝑛∉𝑍

 4.3 

 

And Trig(𝜔, 𝑛) is an appropriate trigonometric function depending on the filter type 

and is given by equations 1.5-1.8. 

 Find the coefficient with minimum absolute value and note its index 𝑘. Add the index 

in the set 𝑍. Keep on repeating the second and the third step as long as the resulting 

error 𝛿 is less than the specified passband error 𝛿𝑝. 

The flowchart of the algorithm to fix the zero coefficients is shown in the Fig. 4.5. 



 

44 

 

Start Filter 
specification

Set the index set of 
zero coefficients,

 Z = empty

Solve LP to find the coefficients which minimize 
the passband error δ, keeping coefficients with 

index Z = 0 

If
 δ> δp 

Yes

No

Find the index k of the coefficient with 
minimum absolute value, given k   Z

 Z = {k}   Z 

Solve LP to find the coefficients which minimize 
the passband error δ, keeping coefficients with 

index Z = 0 

 Z =  Z  - {k}

Stop

 

Fig. 4.5. Flowchart of the algorithm for fixing the zero coefficients 
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4.3 Partitioning the gain 

To reduce the search space, the passband gain can be divided into smaller partitions 

in 
2𝐸𝑊𝐿−1

ℎ𝑚𝑎𝑥
 to 

2𝐸𝑊𝐿

ℎ𝑚𝑎𝑥
.  Let’s call 𝑔𝑚𝑖𝑛 =  

2𝐸𝑊𝐿−1

ℎ𝑚𝑎𝑥
 and 𝑔𝑚𝑎𝑥 =  

2𝐸𝑊𝐿

ℎ𝑚𝑎𝑥
. If the range is partitioned 

into M partitions, the ith partition is defined by the range [𝛾𝑚𝑖𝑛
𝑖 , 𝛾𝑚𝑎𝑥

𝑖 ]. 

𝛾𝑚𝑖𝑛
𝑖 =  𝑔𝑚𝑖𝑛 +

(𝑖 − 1)( 𝑔𝑚𝑎𝑥 −  𝑔𝑚𝑖𝑛)

𝑀
, and 

𝛾𝑚𝑎𝑥
𝑖 =  𝑔𝑚𝑖𝑛 +

(𝑖)( 𝑔𝑚𝑎𝑥 −  𝑔𝑚𝑖𝑛)

𝑀
 

4.4 

 

If a large number of partitions are made, then large number of solutions can be achieved. 

This results in high probability of one of the solutions having less number of adders. But 

this also results in longer runtime for the algorithm. The number of partitions M is decided 

in a similar way as in [7]. If Q is the word-length of the filter the number of partitions is 

given by 

𝑀 = 40 + 5(𝑄 − 12) 4.5 

 

This way, the number of partitions increase linearly with the increase in word-length, thus 

keeping the run-time of the algorithm tractable. 

The flowchart of the algorithm for partitioning the gain is shown in the Fig. 4.6. 
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Start

Find the coefficient 
with maximum 
magnitude, hmax

Stop

Find the continuous filter coefficients 
with coefficients with indices given by 

Z fixed to 0

Calculate gmin and gmax

as shown in section 4.3

Set i = 1

Calculate γi
 min and γi

 max

as shown in section 4.3

If
i = M (no. of 
partitions)

i = i+1
No

Yes

 
Fig. 4.6. Flowchart of the algorithm for partitioning the gain 
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4.4 Selecting the search neighborhood  

It is very important to select the search neighborhood properly. One exact method [8] is to 

find the range of each coefficient by solving the following LP 

minimize:  𝑓 = ℎ(𝑘) 

such that:  𝑏 − 𝛿 ≤ 𝐻(𝜔) ≤ 𝑏 + 𝛿, for 𝜔 ∈ [0, 𝜔𝑝] 

− (𝛿𝑠𝛿) 𝛿𝑝⁄ ≤ 𝐻(𝜔) ≤ (𝛿𝑠𝛿) 𝛿𝑝⁄ , for 𝜔 ∈ [𝜔𝑠,𝜋]  

𝑏𝑙 ≤ 𝑏 ≤ 𝑏𝑢 

4.6 

 

The above LP finds the lower limit of the kth coefficient. Changing  𝑓 = ℎ(𝑘) to  𝑓 =

−ℎ(𝑘), the upper limit of the coefficient can be found. 

As the computation of LP is intensive therefore a fast way to find the neighborhood size is 

to take into consideration the magnitude of the coefficients. The smaller coefficients are 

assigned a narrower neighborhood and the larger, a wider neighborhood. 

ℎ𝑚
𝑢 = round(ℎ𝑚 + 𝐾|ℎ𝑚|) 

ℎ𝑚
𝑙 = round( ℎ𝑚 − 𝐾|ℎ𝑚|) 

4.7 

 

Where ℎ𝑚 is the un-quantized mth coefficient and ℎ𝑚
𝑢  and ℎ𝑚

𝑙  is the upper and lower limit 

of the coefficient respectively. K is a constant which decides the size of the neighborhood. 

As in the first step of our algorithm the coefficients are fixed to the middle of their range 

one by one, therefore filter coefficients are already pre-optimized. It has been noticed that 

the initial few coefficients need not be optimized further by EO. Therefore in the actual 

algorithm, instead of using a constant multiplier K as in equation a more complicated 

function is used. 

In the algorithm in this thesis the neighborhood is defined as shown in the following 

equation 
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ℎ𝑚
𝑢 = round(ℎ𝑚 + f(𝑚)) 

ℎ𝑚
𝑙 = round( ℎ𝑚 − f(𝑚)) 

4.8 

 

Where f(𝑚) is a function of the index of the coefficient. 

4.5 Tree search algorithm to fix the coefficients 

After fixing some coefficients to 0, the remaining un-quantized coefficients are quantized 

using a tree search algorithm, in which each coefficient is fixed to the value nearest to the 

middle of its feasible range. This is done in a similar way as in [7]. 

1. For a given passband range Γ𝑚 = [l𝑚, u𝑚], set 𝑖 = 0. 

2. If   𝑖 ∈ 𝑍 , go to step 4, else find the feasible range of 𝑖 th coefficient by solving the 

following linear programming problem 

Minimize 𝑓0 = ℎ(𝑖) and 𝑓1 = −ℎ(𝑖) 

Subject to.: 𝑏𝑚(1 −  𝛿)2𝑄 ≤ 𝐻(𝜔) ≤ 𝑏𝑚(1 +  𝛿)2𝑄 ,   for 𝜔 ∈ [1,  𝜔𝑝]  

−𝛿𝑝𝑏𝑚2𝑄 ≤ 𝐻(𝜔) ≤ 𝛿𝑝𝑏𝑚2𝑄 , for 𝜔 ∈ [ 𝜔𝑠, 𝜋] 

l𝑚 ≤ b𝑚 ≤ u𝑚 

4.9 

 

Where 

𝐻(𝜔) = ∑ ℎ′(𝑛)Trig(𝜔, 𝑛)

𝑖−1

𝑛=0,∉𝑍

+ ∑ ℎ(𝑛)Trig(𝜔, 𝑛)

⌊
𝑁−1

2
⌋

𝑛=𝑖,∉𝑍

 4.10 

  

Where ℎ′(𝑛) are quantized coefficients and ℎ(𝑛) are variable coefficients. The feasible 

range of the coefficient is therefore, 𝑓0 − 𝑓1. 
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3. If feasible range is empty, then feasible solution is not found for this passband range and 

go to step 5, otherwise set ℎ′(𝑛) to the discrete value closest to the middle of the range. 

4. Set 𝑖 = 𝑖 + 1. If  𝑖 = 𝐷, a feasible solution is found for this gain. 

5. Stop. 

The flowchart of the algorithm is shown on the next page. 
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Start

Stop

Set i = 0

Find the feasible range of the ith 
coefficient using the Eq. 4.9-4.10

If
i   Z

Yes

No

If
Feasible range is 

empty

Yes

No

Set the coefficient hi to the integer value 
nearest to the middle of the feasible range

i = i + 1

If
i = N (the number

 of distinct 
coefficients)

Yes

No

 

Fig. 4.7. Tree search algorithm of the first step 
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4.6 Speeding-up the frequency response calculations 

Repeated cost function evaluations is the most computationally intensive step of the 

algorithm. 

The frequency response of a linear phase FIR filter is given by the equations 1.5-1.8, for 

the four types of filters. The four equations can be written in a generalized for as below:  

𝐻(𝜔) = ∑ ℎ𝑛Trig (𝜔, 𝑛)

⌊(𝑁−1)/2⌋

𝑛=0

 4.11 

 

Where, Trig (𝜔, 𝑛) is a sinusoidal function of 𝜔 and 𝑛 depending on the type of the filter. 

In the extremal optimization method proposed in this thesis, at each iteration, each 

coefficient is changed to all the values in its chosen range, keeping the others fixed to the 

previous iteration’s solution. For all the realizations obtained, the objective function is 

computed. To compute the objective function, the frequency response has to be computed 

first. From the equation 4.11, we can see that re-computing the whole equation is 

unnecessary. The trigonometric functions can be pre-evaluated at all the frequency points 

on the grid and saved in a matrix as shown below: 

Trig𝑀𝐴𝑇 = [
Trig(𝜔1, 0) ⋯ Trig(𝜔𝐾, 0)

⋮ ⋱ ⋮
Trig(𝜔1, ⌊(𝑁 − 1)/2⌋) ⋯ Trig(𝜔𝐾, ⌊(𝑁 − 1)/2⌋)

] 4.12 

 

The frequency response vector can be then written in the following matrix form: 

𝐻

= [ℎ0 … ℎ⌊(𝑁−1)/2⌋] [
Trig(𝜔1, 0) ⋯ Trig(𝜔𝐾, 0)

⋮ ⋱ ⋮
Trig(𝜔1, ⌊(𝑁 − 1)/2⌋) ⋯ Trig(𝜔𝐾, ⌊(𝑁 − 1)/2⌋)

] 
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𝐻 = 𝒉𝑇 . Trig𝑀𝐴𝑇  4.13 

 

If the nth coefficient is increased by amount 𝑐, the new frequency response becomes 

 

𝐻𝑛𝑒𝑤 = [ℎ0 … ℎ𝑛 + 𝑐 … ℎ
⌊
(𝑁−1)

2
⌋]. 

[
Trig(𝜔1, 0) ⋯ Trig(𝜔𝐾, 0)

⋮ ⋱ ⋮
Trig(𝜔1, ⌊(𝑁 − 1)/2⌋) ⋯ Trig(𝜔𝐾, ⌊(𝑁 − 1)/2⌋)

] 

 

= [ℎ0 … ℎ𝑛 … ℎ
⌊
(𝑁−1)

2
⌋]. 

[
Trig(𝜔1, 0) ⋯ Trig(𝜔𝐾, 0)

⋮ ⋱ ⋮
Trig(𝜔1, ⌊(𝑁 − 1)/2⌋) ⋯ Trig(𝜔𝐾, ⌊(𝑁 − 1)/2⌋)

]

+ 𝑐[Trig(𝜔1, 𝑛) … Trig(𝜔𝐾, 𝑛)] 

 

= 𝐻 + 𝑐[Trig(𝜔1, 𝑛) … Trig(𝜔𝐾, 𝑛)] 

4.14 

 

From the final result, we can notice that in a given iteration we need to compute only the 

second term, which requires significantly small computational time. 𝐻 is fixed, and can be 

simply added to the second term to find the frequency response of the mutated filter. 
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Chapter 5 

Results 

5.1 Convergence analysis 

The algorithm is run 60 times at different values of 𝜏. The value of 𝜏 is varied from 1 to 3 

in the steps of 0.1. It is noticed that at low values of 𝜏 the algorithm does not find good 

minima and the takes longer time to find filter with lower objective function. The plot of 

iterations vs the best objective function value found so far is plotted at 𝜏 = 1.0, 1.8, 2.4 and 

3.0 for different runs of the algorithm. 

 

Fig. 5.1. Convergence at 𝜏 = 1.0 
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Fig. 5.2. Convergence at 𝜏 = 1.8 

 

 

 

Fig. 5.3. Convergence at 𝜏 = 2.4 
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Fig. 5.4. Convergence at 𝜏 = 3.0 

 

It can be seen from the Fig. 5.1 that at very low value of 𝜏, the convergence of the algorithm 

is not very fast. Each individual line in the plot represents a single run of the algorithm. It 

can be seen that different runs of the algorithm do not converge to the same final value 

after fixed number of iterations (which are 2000 in this case). At 𝜏 = 1.0, the deviation of 

the final minima obtained in each run is very high, which can be seen from the spread of 

various lines at the extreme right of the figure. 

At 𝜏 = 1.8, most of the runs of the algorithm converge to the same final value. After 𝜏 =

2.0, the spread of the final values again starts increasing slowly. Therefore, from the above 

discussion, it can be concluded that the optimum value of 𝜏, lies in between these two 

extreme values. 
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Fig. 5.5. Variation of mean value of objective with 𝜏 

 

Fig. 5.5 shows the variation of mean value of objective with 𝜏. The mean value is obtained 

from the plots similar to Fig. 5.1-5.4 for different values of 𝜏. The final values (after 2000 

iterations) for each run at a given 𝜏, are found and their mean is calculated. The lower value 

denotes that the final result obtained is on average closer to the global optima.  

From the figure, it can be seen that the minimum occurs at around 1.7-1.8. After this, the 

mean value starts increasing again. Still, even at 𝜏 = 4.0, the increase is comparatively 

small. 
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Fig. 5.6.  The variance of the final objective with 𝜏. 

 

 

Fig. 5.7. Variance (dots) and mean value (stars, shifted vertically) 
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In Fig. 5.6 the mean value of the objective function is shown at various values of 𝜏. The 

lines represent the variance of the objective function around the mean value. In Fig. 5.7, 

the mean value and the variance are compared side by side for easier comparison. It can be 

seen that there is a high degree of correlation between the 2 plots. When the mean value is 

high the variance is also high and vice versa. 

In the next figure, the expected number of iterations for the objective function to fall below 

a specific value are calculated and plotted at different settings of 𝜏.  

 

Fig. 5.8. Expected number of iterations at different 𝜏. 

 

The analysis in this section was done on the filter A, but it has been observed that taking 

the value of 𝜏 from 1.7 to 2.0 gives good results for filters with wide range of specifications. 

In the design examples shown in the section 5.2 the value of 𝜏 used is 1.7 unless stated 

otherwise. 
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5.2 Design examples 

Eight design examples are shown in this section. The filters shown in Table 5.1 are standard 

benchmark filters taken from the literature [6], [7] and [12]. The filters A and S2 are 

medium order filters and the filters B and C are high order filters. 𝜔𝑝  and 𝜔𝑠  are the 

passband and stopband cut-off frequencies respectively and 𝛿𝑝 and 𝛿𝑠 are the maximum 

allowed passband and stopband errors.  All the filters are low pass filters and without the 

loss of generality the design method can be extended to other types of filters as well. 

The filters shown in Table 5.2 are designed to show the robustness of the design method. 

The first filter is a band-pass filter and the second one is a band-stop filter. Both of these 

filters are high order filters with filter orders 112 and 104 respectively.  

Ω𝑝 and Ω𝑠 are the normalized passband and stopband frequencies respectively. From the 

given passband and stopband error specifications the filter order is decided by first 

designing feasible floating point filters using Parks-McClellan algorithm. Next the filter 

order and word-length is chosen, such that the resulting fixed point filter with minimum 

number of adders is achieved. 

Filter Type Filter order 𝜔𝑝 𝜔𝑠 𝛿𝑝 𝛿𝑠 

A Low pass 58 0.125 0.225 0.01 0.001 

S2 Low pass 59 0.042 0.14 0.01158 0.001 

B Low pass 104 0.2 0.24 0.01 0.01 

C Low pass 324 0.125 0.14 0.005 0.005 

Y1 Low pass 29 0.3 0.5 0.00316 0.00316 

G1 Low pass 15 0.2 0.5 0.01 0.01 

 

Table 5.1. Specifications of the benchmark filters 
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Type Filter order Ω𝑝 Ω𝑠 𝛿𝑝 𝛿𝑠 

Band pass 112 [0.24, 0.5] [0, 0.2]U[0.55, 1] 0.01 0.005 

Band stop 104 [0, 0.06]U[0.25, 1] [0.1, 0.2] 0.01 0.01 

 

Table 5.2. Specifications of the Band pass and Band stop filters 

 

The design of each of these filters is shown below: 

5.2.1 Example 1: Design of filter A 

The filter A is an odd length filter. Initially some coefficients are fixed to 0. If ℎ(𝑛) are the 

filter coefficients, such that 0 ≤ 𝑛 ≤ 58, then due to the symmetry, we need to design only 

the first 30 coefficients. The indices of the coefficients with 0 value are found to be 𝑍 ∈

{6,12} . In other words, the coefficients ℎ(5) and ℎ(11) are 0. 

The gain is partitioned into 45 parts. After fixing the zero coefficients, at each partition of 

the gain a corresponding discrete filter is design as explained in the section (). The feasible 

solutions are selected and RAG-n algorithm is used to find the number of multiplier adders 

required for each of the solution. The feasible solution with minimum number of adders 

obtained in this step is found to be  

2, 4, 6, 6, 4, 0, -7, -15, -21, -21, -15, 0, 21, 42, 57, 59, 42, 6, -43, -94, -131, -136, -97, -

7, 128, 294, 466, 617, 719, 756 

 

The minimax error is 0.00993 and the number of multiplier block adders obtained is 16. 

In Fig. 5.9 the error of the filters quantized at different gains is shown. The Fig. 5.10 shows 

the number of adders achieved for different gains. 

The general trend, as would be expected, is the decrease in the error as the gain increases. 

This is because when the gain is higher the coefficients are scaled to integers with larger 

values and the rounding error when rounding the coefficients is lesser. Therefore the 
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coefficients when normalized to unity passband gain, are closer to the original un-quantized 

coefficients. 

On the other hand, the number of adders generally increases with the increase of gain. This 

is because with the increase in gain, the range of integer values which the coefficients can 

take increases, resulting in the decrease in the probability of achieving less distinct odd 

fundamentals. This is the same reason, why the filter with higher word-length has more 

probability of achieving higher number of adders. Due to this fact, it is preferable to design 

a filter with smaller word-length. This has an added advantage that the number of full 

adders is also less in the resulting hardware implementation. In addition it is easier for the 

algorithm to design a filter with smaller word-length and high order in comparison to a 

filter with low order and high word-length. 

 

Fig. 5.9. Variation of error of the filter quantized at different gains 
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Fig. 5.10. Variation of number of multiplier block adders at different gains 

 

For the second step involving EO algorithm, the solutions within 105% of 𝛿𝑝 are selected. 

The best solution is chosen as the final solution of the algorithm. The Table 5.3 shows the 

filter coefficients, the odd fundamentals (Basis set) and the synthesis of the filter 

coefficients. The number of adders achieved is 15. 

The magnitude of the frequency response of the filter A is shown in the Figure 5.11 and 

5.12. 



 

63 

 

Filter A, ℎ(𝑛) = ℎ(58 − 𝑛) for 0 ≤ 𝑛 ≤ 29 

Passband gain: 5268.16004, 𝐸𝑊𝐿 = 10 

3, 5, 7, 8, 6, 0, -8, -17, -24, -25, -17, 0, 24, 50, 68, 70, 50, 8, -50, -110, -154, -160, -115, 

-10, 149, 344, 546, 723, 844, 887 

Basis Set ={3, 5, 7, 17, 25, 35, 43, 55, 77, 115, 149, 211, 273, 723, 887} 

3 = 1×21+1 

17 = 1×24+1 

43 = 5×23+3 

115 = 7×24+3 

273 = 1×28+17 

5 = 1×22+1 

25 = 1×23+17 

55 = 7×23-1 

149 = 77×21-5 

723 = 43×24+35 

7 = 1×23-1 

35 = 1×25+3 

77 = 5×24-3 

211 = 3×25+115 

887 = 55×24+7 

 

Table 5.3. Filter A coefficients, basis set and its adder synthesis 

 

Fig. 5.11. Magnitude response of filter A 
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Fig. 5.12 Passband of the magnitude response of filter A 

 

5.2.2 Example 2: Design of filter S2 

The filter S2 is an even length filter. No coefficients are fixed to zero in this case. 

The gain is partitioned into 50 parts. The feasible solution with minimum number of adders 

obtained in this step is found to be  

5, 5, 6, 5, 2, -3, -10, -21, -34, -50, -66, -82, -95, -102, -102, -90, -66, -27, 27, 98, 182, 

279, 383, 492, 600, 700, 789, 860, 910, 936 

 

The minimax error is 0.01135 and the number of multiplier block adders obtained is 22. 

For the second step involving EO algorithm, the solutions within 105% of 𝛿𝑝 are selected. 

The best solution is chosen as the final solution of the algorithm. The following table shows 

the filter coefficients, the odd fundamentals (Basis set) and the synthesis of the filter 

coefficients. The number of adders achieved is 18. 
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Filter S2, ℎ(𝑛) = ℎ(59 − 𝑛) for 0 ≤ 𝑛 ≤ 29 

Passband gain: 1066.68719, 𝐸𝑊𝐿 = 8 

5, 5, 5, 5, 2, -2, -10, -20, -32, -47, -63, -78, -90, -97, -97, -86, 

-63, -26, 26, 93, 173, 266, 365, 470, 571, 668, 752, 821, 

868, 893 

Basis Set ={5, 13, 39, 43, 45, 47, 63, 93, 97, 133, 167, 173, 

217, 235, 365, 571, 821, 893} 

5 = 1×21+1 

43 = -5×22+63 

63 = 1×26-1 

133 = 1×27+5 

217 = 7×25-7 

571 = 133×22+39 

13 = 1×23+5 

45 = 5×23+5 

93 = -1×22+97 

167 = 1×27+39 

235 = 43×22+63 

821 = 43×24+133 

39 = 5×23-1 

47 = -1×24+63 

97 = 5×25-63 

173 = 1×27+45 

365 = 5×27+45 

893 = 45×24+173 

 

Table 5.4. Filter S2 coefficients, basis set and its adder synthesis 

 

The magnitude of the frequency response of the filter S2 is in the Figure 5.13 and 5.14. 
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Fig. 5.13. Magnitude response of filter S2 

 

 

Fig. 5.14. Passband of the magnitude response of filter S2 
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5.2.3 Example 3: Design of filter B 

The filter B is an odd length filter. The indices of the coefficients with 0 value are found to 

be 𝑍 ∈ {2, 3, 8 12, 21} . 

The gain is partitioned into 40 parts. No feasible solution is found in the first step for this 

filter. 

For the second step involving EO algorithm, the solutions within 105% of 𝛿𝑝 are selected. 

The best solution is chosen as the final solution of the algorithm. The following table shows 

the filter coefficients, the odd fundamentals (Basis set) and the synthesis of the filter 

coefficients. The number of adders achieved is 12. 

Filter B, ℎ(𝑛) = ℎ(104 − 𝑛) for 0 ≤ 𝑛 ≤ 52 

Passband gain: 1042.71367, 𝐸𝑊𝐿 = 8 

-2, 0, 0, 2, 3, 2, 1, 0, -2, -3, -2, 0, 2, 4, 4, 2, -1, -4, -6, -4, 0, 3, 7, 7, 

4, -2, -7, -10, -8, -2, 6, 12, 13, 8, -2, -12, -18, -16, -6, 10, 24, 27, 19, 

-2, -28, -46, -46, -20, 30, 96, 164, 211, 228 

Basis Set ={ 3, 5, 7, 9, 13, 15, 19, 23, 27, 41, 57, 211} 

3 = 1×21+1 

9 = 1×23+1 

19 = 9×21+1 

41 = 5×23+1 

5 = 1×22+1 

13 = 3×22+1 

23 = 3×23-1 

57 = 7×23+1 

7 = 1×23-1 

15 = 24-1 

27 = 7×22-1 

211 = 7×25-13 

 

Table 5.5. Filter B coefficients, basis set and its adder synthesis 

 

The magnitude of the frequency response of the filter B is shown in the Figure 5.15 and 

5.16. 
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Fig. 5.15. Magnitude response of filter B 

 

Fig. 5.16. Passband of the magnitude response of filter B 
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5.2.4 Example 4: Design of filter C 

The filter C is an odd length filter. The indices of the coefficients with 0 value are found to 

be  𝑍 ∈ {3, 4, 8, 11, 12, 13, 14, 18, 19, 20, 27, 28, 34, 35, 42, 43, 50, 57, 65,

80, 95} . 

The gain is partitioned into 45 parts.  

For the second step involving EO algorithm, the solutions within 105% of 𝛿𝑝 are selected. 

The best solution is chosen as the final solution of the algorithm. The following table shows 

the filter coefficients, the odd fundamentals (Basis set) and the synthesis of the filter 

coefficients. The number of adders achieved is 28. The magnitude of the frequency 

response of the filter C is shown in Figure 5.17 and 5.18. 

In the second step of the algorithm, the coefficients are optimized in groups of 40 each. 

Each group is optimized one by one. Once all groups has been optimized the process is 

repeated again until there is no further decrease in the number of adders in the resulting 

filter. This is done in order to avoid the exponential increase in the runtime of extremal 

optimization due to large number of coefficients to be optimized. 

The first step solution which results in the best solution after the EO algorithm is shown 

below. 

-4, -3, 0, 0, 1, 2, 3, 0, 3, 3, 0, 0, 0, 0, -3, -3, -3, 0, 0, 0, 2, 3, 4, 3, 2, 3, 0, 0, -3, -4, -4, -3, 

-3, 0, 0, 3, 4, 5, 5, 4, 3, 0, 0, -4, -5, -6, -5, -4, -2, 0, 3, 5, 7, 7, 6, 4, 0, -2, -5, -7, -8, -8, -6, 

-3, 0, 4, 7, 9, 10, 8, 6, 2, -3, -7, -10, -12, -11, -9, -5, 0, 5, 10, 13, 14, 13, 9, 3, -3, -9, -14, 

-16, -16, -13, -8, 0, 7, 14, 18, 20, 18, 13, 6, -3, -12, -19, -23, -23, -19, -12, -2, 9, 18, 26, 

28, 26, 20, 9, -4, -16, -28, -34, -35, -30, -19, -4, 12, 28, 39, 44, 42, 32, 16, -4, -25, -43, -

55, -59, -51, -35, -10, 18, 47, 70, 83, 82, 67, 37, -4, -50, -94, -128, -144, -136, -102, -37, 

52, 160, 281, 399, 509, 594, 650, 669 

 

The passband error of this solution is 0.0049879 and the number of adders is 29. 
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Filter C, ℎ(𝑛) = ℎ(324 − 𝑛) for 0 ≤ 𝑛 ≤ 162 

Passband gain: 5057.40188, 𝐸𝑊𝐿 = 10 

-4, -3, 0, 0, 1, 2, 3, 0, 3, 3, 0, 0, 0, 0, -3, -3, -3, 0, 0, 0, 2, 3, 4, 3, 2, 3, 0, 0, -3, -4, -4, -3, -

3, 0, 0, 3, 4, 5, 5, 4, 3, 0, 0, -4, -5, -6, -5, -4, -2, 0, 3, 5, 7, 7, 6, 4, 0, -2, -5, -7, -8, -8, -6, -

3, 0, 4, 7, 9, 10, 8, 6, 2, -3, -7, -10, -12, -11, -9, -5, 0, 5, 10, 13, 14, 13, 9, 3, -3, -9, -14, -

17, -16, -13, -8, 0, 7, 14, 18, 19, 18, 13, 6, -4, -12, -19, -23, -23, -19, -12, -2, 8, 19, 26, 28, 

26, 19, 9, -4, -17, -27, -34, -35, -31, -19, -5, 12, 27, 39, 44, 42, 32, 17, -4, -25, -44, -56, -

58, -51, -34, -10, 19, 47, 71, 83, 82, 67, 36, -4, -50, -94, -128, -144, -137, -101, -38, 52, 

160, 280, 400, 509, 595, 651, 670 

Basis Set ={3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 35, 39, 41, 47, 51, 67, 71, 83, 

101, 137, 335, 509, 595, 651} 

3 = 1×21+1 

9 = 1×23+1 

17 = 1×24+1 

23 = 1×24+7 

29 = -1×21+31 

39 = 1×25+7 

51 =5×22+31 

83 = 5×24+3 

335 = 83×22+3 

651 = 71×21+509 

5 = 1×22+1 

11 = 1×23+3 

19 = 1×24+3 

25 = 1×24+9 

31 = 1×25-1 

41 =1×25+9 

67 = 1×26+3 

101 = 7×24-1 

509 = 1×29-3 

 

7 = 1×23-1 

13 = 1×24-3 

21 = 1×24+5 

27 = -1×22+31 

35 =1×25+3 

47 = 1×26-17 

71 = 1×26+7 

137 = 1×27+9 

595 = 137×24+47 

 

 

Table 5.6. Filter C coefficients, basis set and its adder synthesis 
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Fig. 5.17. Magnitude response of filter C 

 

 

Fig. 5.18. Passband of the magnitude response of filter C 
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5.2.5 Example 5: Design of filter Y1 

The filter Y1 is a short even length filter. The indices of the coefficients with 0 value are 

found to be 𝑍 ∈ {3, 8, 13}. 

The gain is partitioned into 40 parts.  

For the second step involving EO algorithm, the solutions within 105% of 𝛿𝑝 are selected. 

The best solution is chosen as the final solution of the algorithm. The following table shows 

the filter coefficients, the odd fundamentals (Basis set) and the synthesis of the filter 

coefficients. The number of adders achieved is 6 and the passband error is 0.003029. The 

magnitude of the frequency response of the filter Y1 is shown on the next page. 

ℎ(𝑛) = ℎ(29 − 𝑛) for 0 ≤ 𝑛 ≤ 14 

Passband gain: 1400.65740, 𝐸𝑊𝐿 = 10 

-1, -4, 0, 9, 8, -11, -24, 0, 44, 36, -48, -108, 0, 277, 523 

Basis Set ={3, 9, 11, 27, 277, 523} 

3 = 1×21+1 

27 = 3×23+3 

9 = 1×23+1 

277 = 9×25-11 

11 = 1×23+3 

523 = 1×29+11 

 

Table 5.7. Filter Y1 coefficients, basis set and its adder synthesis 

 

In the following figure, the hardware implementation of the above designed filter is shown. 

For the remaining examples the hardware implementation is not shown. In the figure, the 

sign ‘<’ denotes left shifting the binary value, which is equivalent to multiplying by factor 

of 2. The part within the light dotted rectangle is the multiplier block of the filter.  
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Fig. 5.20. Magnitude response of filter Y1 

 

Fig. 5.21. Passband of the magnitude response of filter Y1 
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5.2.6 Example 6: Design of filter G1 

The filter G1 is an even length short filter. The indices of the coefficients with 0 value are 

found to be 𝑍 ∈ {3} . 

The gain is partitioned into 40 parts. The feasible solution with minimum number of adders 

in the first step is shown below. 

3, 6, 0, -16, -19, 12, 75, 127 

The number of adders achieved for this solution is 4 and the minimax error is 0.0091679. 

For the second step involving EO algorithm, the solutions within 105% of 𝛿𝑝 are selected. 

The best solution is chosen as the final solution of the algorithm. The following table shows 

the filter coefficients, the odd fundamentals (Basis set) and the synthesis of the filter 

coefficients. The number of adders achieved is 12. 

Filter G1, ℎ(𝑛) = ℎ(15 − 𝑛) for 0 ≤ 𝑛 ≤ 7 

Passband gain: 377.00004, 𝐸𝑊𝐿 = 7 

3, 6, 0, -16, -19, 12, 76, 128 

Basis Set ={ 3, 19} 

3 = 1×21+1 19 = 1×24+3  

 

Table 5.8. Filter G1 coefficients, basis set and its adder synthesis 

 

The magnitude of the frequency response of the filter G1 is shown in the Figure 5.22 and 

5.23. 
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Fig. 5.22. Magnitude response of filter G1 

 

Fig. 5.23. Passband of the magnitude response of filter G1 
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5.2.7 Example 7: Band-pass filter 

The filter order is found to be 112. This is found by first finding the filter order of 

continuous filter which meets the specifications using the Parks-McClellan method. The 

indices of the coefficients with 0 value are found to be 𝑍 ∈ {11, 24, 29, 31, 37} . 

The gain is partitioned into 40 parts.  

For the second step involving EO algorithm, the solutions within 105% of 𝛿𝑝 are selected. 

The best solution is chosen as the final solution of the algorithm. The following table shows 

the filter coefficients, the odd fundamentals (Basis set) and the synthesis of the filter 

coefficients. The number of adders achieved is 16 and the minimax error is 0.009969. The 

magnitude of the frequency response of the filter is shown on the next page. 

ℎ(𝑛) = ℎ(112 − 𝑛) for 0 ≤ 𝑛 ≤ 56 

Passband gain: 2101.65208, 𝐸𝑊𝐿 = 10 

-4, -2, 1, 2, 2, 4, 3, -4, -7, -3, 0, -2, 2, 11, 8, -4, -5, -1, -7, -13, 2, 17, 9, 0, 7, 4, -20, -26, 0, 

12, 0, 12, 35, 13, -32, -28, 0, -17, -28, 29, 72, 22, -26, 3, -4, -91, -86, 55, 104, 14, 41, 164, 

-4, -409, -384, 239, 643 

Basis Set ={3, 5, 7, 9, 11, 13, 17, 29, 35, 41, 43, 55, 91, 239, 409, 643} 

3 = 1×21+1 

9 = 1×23+1 

17 = 1×24+1 

41 = 1×25+9 

91 = 3×25-5 

643 = 5×27+3 

5 = 1×22+1 

11 = 1×23+3 

29 = 1×25-3 

43 = 5×23+3 

239 = 1×28-17 

7 = 1×23-1 

13 = 1×24-3 

35 = 1×25+3 

55 = 1×26-9 

409 = 29×24-55 

 

Table 5.9. Band pass filter coefficients, basis set and its adder synthesis 
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Fig. 5.24. Magnitude response of Bandpass filter 

 

Fig. 5.25. Passband of the magnitude response of Bandpass filter 
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5.2.8 Example 8: Band-stop filter 

The filter order is found to be 104. This is found by first finding the filter order of 

continuous filter which meets the specifications using the Parks-McClellan method. No 

coefficient is fixed to zero initially 

The gain is partitioned into 40 parts.  

For the second step involving EO algorithm, the solutions within 105% of 𝛿𝑝 are selected. 

The best solution is chosen as the final solution of the algorithm. The following table shows 

the filter coefficients, the odd fundamentals (Basis set) and the synthesis of the filter 

coefficients. The number of adders achieved is 12 and the minimax error achieved is 

0.0098798. The magnitude of the frequency response of the filter is shown on the next 

page. 

ℎ(𝑛) = ℎ(104 − 𝑛) for 0 ≤ 𝑛 ≤ 52 

Passband gain: 1122.05977, 𝐸𝑊𝐿 = 10 

3, 2, 1, 0, -3, -4, -4, -4, -2, -1, 0, -1, -2, -4, -5, -4, 0, 5, 10, 12, 10, 7, 2, -1, -1, 2, 7, 10, 8, 

0, -10, -22, -28, -28, -20, -7, 3, 7, 2, -9, -19, -19, -4, 26, 64, 97, 111, 94, 48, -19, -90, -144, 

960 

Basis Set ={3, 5, 7, 9, 11, 13, 15, 19, 45, 47, 97, 111} 

3 = 1×21+1 

9 = 1×23+1 

15 = 1×24+1 

47 = 5×23+7 

5 = 1×22+1 

11 = 1×23+3 

19 = 1×24+3 

97 = 7×24-15 

7 = 1×23-1 

13 = 1×24-3 

45 = 5×23+5 

111 = 3×25+15 

 

Table 5.10. Band stop filter coefficients, basis set and its adder synthesis 
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Fig. 5.26. Magnitude response of Band stop filter 

 

Fig. 5.27. Passband of the magnitude response of Band stop filter 
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5.3 Summary of the results 

The results obtained with the algorithm are compared with other methods from the 

literature. Note: NA means not available. 

Filter Q EWL Method MA SA Minimax error 

A 14 10 

FIRGAM [8] 18 58 NA 

Ye and Yu [9] 14 54 0.009885 

Proposed 15 54 0.009618 

S2 14 10 

FIRGAM [8] 27 59 NA 

Ye and Yu [9] 16 59 0.01130 

Proposed 18 59 0.01145 

B 11 8 

FIRGAM [8] 11 100 NA 

Ye and Yu [9] 12 94 0.009965 

GA [12] 10 98 NA 

Proposed 12 94 0.009906 

C 13 10 

FIRGAM [8] 22 306 NA 

Ye and Yu [9] 28 282 0.004993 

GA [12] 31 306 NA 

Proposed 28 282 0.004995 

Y1 12 10 

FIRGAM [8] NA NA NA 

Ye and Yu [9] 6 23 0.002955 
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Proposed 6 23 0.003029 

G1 9 7 

FIRGAM [8] NA NA NA 

Shi and Yu [6] 2 13 0.009986 

Proposed 2 13 0.009986 

 

Table 5.11. Comparison of the results with other methods 

 

It can be shown [8] that the size of a structural adder (SA) is less than the size of a multiplier 

block adder (MA). Therefore for comparing the complexity of two designs, the number of 

SA has higher priority than MA. If two designs have same number of SA, then MA can be 

compared to compare the complexities. 

Comparing the proposed method with GA [12] and FIRGAM [8], it can be seen that the 

number of SA is less. Therefore, the proposed method achieves significant reduction in 

complexity compared to GA [12] and FIRGAM [8]. Comparing the method with [6] and 

[9], it is seen that the number of SA achieved are same in all cases and number of MA are 

comparable in most of the cases. 

Comparing filter B and C with state of the art GA based method [12]. It can be seen that 

the algorithm clearly outperforms [12]. The limitation which is noticed is that when the 

filter word-length is high, as in L1 filter designed in [9] and [12], the proposed method is 

not able to further improve the solutions obtained from the first step. This is because the 

neighborhood size required is comparatively large in this case and the optimum solutions 

are very sparsely distributed. With EWL less than or equal to 10 the proposed method can 

easily find good solutions.   

In case of deterministic methods such as [6], [8] and [9], the proposed method achieves 

similar results in many cases, though in a significantly less time.  
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In Table 5.12, the results of a band-pass and a band-stop filter are shown. These filters have 

not been taken from the literature and it was felt that an example involving a band-pass and 

–stop filter should be included in this report. 

Filter EWL Method MA SA Minimax error 

Band-pass 10 Proposed 16 102 0.009618 

Band-stop 10 Proposed 12 96 0.009880 

 

Table 5.12. Results of Band-pass and Band-stop filters 

 

5.4 Run-time of the algorithm 

As the initial solutions are obtained using the tree search method as in [9], therefore the 

time taken by the algorithm is similar for this step. In the following table the run time of 

the algorithm for different filters is compared with the other methods. 

For low order filters, such as G1 and Y1, although the proposed algorithm can achieve 

optimum results in a very short time, yet it is impossible for it to do it in less time than the 

deterministic methods such as [6], [8] and [9]. This is because the search space is very 

small in these cases and the above methods can exhaustively finish the search very fast. 

On the other hand for larger filters with moderate word-lengths the proposed method can 

significantly improve the total runtime while achieving near optimum results. 
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Filter Method Run-

time 

MA SA Filter Method Run-

time 

MA SA 

A 

FIRGAM [8] 4h12m 18 58 

Y1 

FIRGAM [8] 23s NA NA 

Ye and Yu [9] 37m 14 54 
Ye and Yu 

[9] 
28s 6 23 

Proposed 15m 15 54 Proposed 2m 6 23 

S2 

FIRGAM [8] 27m 27 59 

G1 

FIRGAM [8] NA NA NA 

Ye and Yu [9] 1h47m 16 59 
Ye and Yu 

[6] 
<1s 2 13 

Proposed 25m 18 59 Proposed 2m 2 13 

B 

FIRGAM [8] 24h 11 100 

Band-

pass 
Proposed ~14m 16 102 Ye and Yu [9] 39m 12 94 

Proposed 12m 12 94 

C 

FIRGAM [8] 24h 22 306 

Band-

stop 
Proposed ~14m 12 96 Ye and Yu [9] 6h24m 28 282 

Proposed 3h 28 282 

 

Table 5.13. Comparison of the run-time with different algorithms 
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Chapter 6 

Conclusion 

The algorithm proposed in this paper is able to find the filter coefficients with the number 

of adders which are on par with the state of the art methods. With other evolutionary 

methods like GA and ACO it is very difficult to achieve global optimum solutions in a 

reasonable amount of time. In addition, the major advantage of EO is that it does not require 

a large number of adjustable parameters compared to other evolutionary methods. The 

design examples show that feasible results with similar number of adders can be achieved 

in a much shorter time compared to other methods. The simplicity of the algorithm with 

just one adjustable parameter, means that the algorithm can be implemented with ease with 

very less expert intervention when near optimum results are required. 

Although the scope of the thesis is to minimize the number of adders (structural and 

multiplier block), but the proposed algorithm can be used to optimize the filter based on 

other criteria, such as , number of full adders, total chip area, etc.  

The major limitation, which needs to be further addressed is to efficiently deal with higher 

word-length designs as the performance of the algorithm deteriorates with higher word-

lengths (greater than 10). At moderate EWL up to 10 bits the algorithm can achieve good 

results most of the times.  
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