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Abstract 

The sea lamprey is a basal lineage vertebrate and an invasive species in the Great Lakes. 

It possess a diffuse chemosensory system with microvillous solitary chemosensory cells 

(SCCs) located on papillae along the gill pore, oral disc and tail. The objectives of this 

study were to assess the abundance of SCCs across life stages, and to characterize the 

innervation and biochemical properties. At all three locations, SCCs were most abundant 

in the spawning stage compared to earlier life stages, suggesting a role during 

reproduction. Prominent calretinin and 5-HT labeling show homology to previously 

identified taste cells and to SCCs in other vertebrates. Labeling for phospholipase C (also 

seen in mammalian SCCs) suggests that chemosensory signal transduction occurs by an 

IP3 mediated cascade. This study suggests that SCC function is important during the end 

of the sea lamprey life cycle and shows homology between lamprey SCCs and more 

derived vertebrates. 
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Chapter 1: GENERAL INTRODUCTION 

Vertebrates possess three chemosensory cells, olfactory sensory neurons in the 

olfactory system (Kotrschal, 2000), taste cells grouped forming taste buds in the 

gustatory system (Finger, 1997), and extra-nasal solitary chemosensory cells (SCCs) 

which are part of the diffuse chemosensory system (Kotrschal, 1991; Whitear, 1992; 

Kotrschal, 1996). SCCs were first described in aquatic vertebrates such as the lamprey 

and in triglids in early nineteenth-century literature (Whitear, 1992) but were more 

recently characterized by Whitear and Lane in 1983, who found SCCs (also referred to as 

oligovillous cells) expressed along the skin, gills arches, oral disc and tail of Lampetra 

fluviatilis and Lampetra planeri. In mammals SCCs are found in the nasal respiratory 

epithelium (mice: Finger et al., 2003; Saunders et al., 2014) and along the respiratory 

tract, larynges, and trachea (cow: Tizzano et al., 2006). These SCCs are classified as a 

group of apical microvilli that project independently from the surface of the skin 

(Whitear and Lane 1983; Kotrschal, 1997). Each SCC connects to a basolateral 

membrane that is densely supplied with nerve endings indicating these SCCs can transmit 

their signals to higher brain structures (Kinnamon, 2012).  

Mammalian solitary chemosensory cells 

The exact role of this sensory system in fish is still unknown; it has been 

postulated that they are involved in discriminating conspecifics and alert functions in 

rocklings (Teleostei, Gadidae: Ciliata mustela) as SCCs are present on their undulating 

dorsal tail fin respond to fish body mucus (Peters et al., 1991; Finger 1997), foraging and 

food related behaviours in the sea robin (Teleostei,Triglidae: Prionotus carolinus) where 

SCCs are on their free pectoral-fin rays and respond to nutritionally relevant substances 
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such as amino acids (Kotrschal, 1995, 1996; Finger, 1997), or possibly for other 

behaviours, such as mating (Finger, 1997). SCCs have been found in many fish species 

(Finger 1997; Hansen et al., 2014; Kotrschal, 1991, 1995; Whitear, 1992). They are also 

present in alligators nasal cavities (Hansen, 2007), and in the respiratory systems of 

mammals (Sbarbati and Osculati, 2003). Multiple studies have helped to elucidate SCCs 

and their chemosensory abilities, but more research is still needed on behaviour and 

development to understand the function and purpose of this diffuse chemosensory system 

(Whitear, 1992).  

In mammals, SCC activation has been identified by Saunders et al., in 2014, 

where they found that SCCs present in the nasal cavity of mice respond to bitter irritants 

to induce an inflammatory response (Fig. 1, Saunders et al., 2014 Fig. 4). Bitter irritants 

will bind to g-protein coupled receptors on the membrane and activate inositiol 

trisphosphate (IP3) through a phospholipase C mediated cascade. The IP3 binds to its type 

3 receptor (IP3R3) to mediate the release of calcium from intracellular storage in the 

endoplasmic reticulum. This calcium influx signals TRPM5 channels to open, leading to 

depolarization and acetylcholine release onto nociceptive fibers. Substance P is released 

from these fibers onto blood vessels to cause an inflammatory response. These 

mammalian respiratory SCCs have also been shown to be innervated by the trigeminal 

nerve and monitor for potential toxins entering the air way to initiate protective reflexes 

such as sneezing (Finger et al., 2003).  
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Taste cells and solitary chemosensory cells 

SCCs share many characteristics and signaling pathways with taste cells from the 

gustatory system (Finger, 1997; Sbarbati et al. 2005; Kinnamon 2012). (Fig. 2, Finger 

2007 Fig. 5). They are both secondary receptor cells, where their synapse located in the 

peripheral nervous system (Finger, 1997) (in contrast to olfactory sensory neurons that 

are primary receptor cells with their synapse in the olfactory bulb of the brain), and in the 

lamprey, oral disc SCCs and taste cells are both innervated by the glossopharyngeal or 

vagus nerves (Daghfous et al., 2015; Finger, 1997). Taste and SCCs both show apical 

microvilli (Fig. 2, Finger, 2007), while taste cells are grouped forming buds, SCCs are 

individually scattered throughout the epithelial surface (Whitear, 1992; Finger, 1997). In 

the lamprey, both are immunoreactive for calretinin (Barreiro-Iglesias et al., 2008; 

Hansen et al., 2014), a calcium binding protein involved in controlling intracellular 

calcium storage needed for neurotransmission (Diaz-Regueira et al., 2000). Mouse taste 

cells use ATP as their neurotransmitter (Finger et al., 2005).  While the neurotransmitter 

in fish SCCs is currently unknown (Whitear, 1992) mammalian SCCs release 

acetylcholine (Saunder et al., 2014).  SCCs are present along the head and body during 

the hatching of zebrafish eggs, before taste cells which appear 2 days later (Kotrschal et 

al., 1997), and this has led some to postulate that taste buds evolved from SCCs 

(Kotrschal et al., 1997; Finger, 1997). Adult lamprey pharyngeal taste buds respond to 

classical taste stimuli (sweet, bitter, salty, sour) (Baatrup and Doving, 1985A), whereas 

oral disc SCCs did not, instead they responded to sialic acid (found in trout body mucus) 

(Baatrup and Doving, 1985B), indicating that these chemosensory cells have evolved 
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different functional chemoreception spectrums based on their distributions along the body 

(Kotrschal, 1992). 

The life cycle of the Sea lamprey 

 The Sea lamprey, Petromyzon marinus, is basal lineage vertebrate and an invasive 

species in the Great Lakes that parasitically feeds on the blood of its prey (Applegate, 

1950). It has a phasic life cycle (Fig. 3, GLFC) starting in sediments as filter feeding 

larvae (Moore and Mallatt, 1980) which undergoes a metamorphosis stage into a juvenile 

parasitic stage that feeds in the deep lakes on approximately 40 lbs in a 12-18 month 

period which greatly affects the native fish populations (Johnson et al., 2015). As adults, 

they migrate at the end of their life cycle from the deep lakes where they feed, to the 

streams and rivers where spawning occurs. During upstream migration, pheromones 

released by the larvae located in spawning streams attract migrating adults (Meckley et 

al, 2012). Once sexually mature males arrive at nesting sites, these males release sex 

pheromones to attract ovulating females (Walaszczyk et al., 2013). Chemosensory 

systems are necessary for the life history behaviours and ecosystem functioning of 

lamprey within their environment.  

 Thesis objectives 

Studying SCC distribution and neuroanatomy in the sea lamprey will help to shed 

light on the function of the diffuse chemosensory system. Combining microscopy 

visualization techniques with physiology will be needed to know how this system 

functions. 
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 In the first data chapter of this thesis, the distribution of SCCs present around the 

gill pore of larval, metamorphic, juvenile, pre-ovulated and pre-spermiated adult 

migrating stage and ovulated and spermiated spawning adult stage sea lamprey were 

examined using scanning electron microscopy and immunohistochemistry techniques. 

The hypothesis of this chapter was that the stage that possessed the most abundant 

amounts of observed SCCs would also utilize the detection capabilities the most, and 

therefore infer a function of the diffuse chemosensory system in the sea lamprey, as each 

stage has very different life history behaviours, ranging from filter feeding, to active 

parasitically feeding, and to migrating and spawning while not feeding. 

Immunohistochemistry was also used to investigate the neuroanatomy and biochemistry 

of lamprey SCCs in comparison to mammalian SCCs, as well as to the lamprey taste 

system. This allowed for the characterization and comparison of traits to be identified, 

such as the presence of microvilli, innervation patterns and transduction pathways.   

The second data chapter of this thesis compares the SCC (oligovillous) 

distribution of larval, metamorphic, juvenile, pre-ovulated and pre-spermiated adult 

migrating stage and ovulated and spermiated spawning adult stage lamprey SCCs across 

oral disc and tail papillae. Again, the life history stage that possessed the most SCCs 

would infer a function of the diffuse chemosensory system. Also, as SCCs occur on 

papillae present in these separate locations, there may be different function based on the 

spatial relationship of SCCs and their distribution.   
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Figure 1.1 SCC transduction pathway in mice. Image from Saunders et al., 2014. SCCs 

present in the nasal respiratory epithelium detect bitter irritants from the airways and 

release acetylcholine onto nociceptive nerve fibers that release substance P onto NK1 

receptors on blood vessels present in the connective tissue layers initiating an 

inflammatory response. Capsaicin also initiates the same inflammatory pathway of 

nociceptive fibers and blood vessels.  

(Inset) G-protein coupled receptors are stimulated by bitter irritants and activate the βγ-

subunit of α-gustducin protein. This catalyzes the formation of inositol triphosphate (IP3) 

through a phospholipase C mediated cascade. IP3 then binds to its type 3 receptor (IP3R3) 

to release calcium from the endoplasmic reticulum. This influx of calcium activates 
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TRMP5 receptors on the membrane to allow cations to enter and the SCC will depolarize 

and release acetylcholine.  

 

 

Figure 1.2 Drawing of a comparison of a typical teleost SCCs (a) and taste buds (b). 

(Image modified from Finger, 2007).  

A. Monovillous SCCs are individually present within the epithelium, and are contacted 

by branching nerve fibers.  

B. Multiple cell types are present within one taste bud with an open pore to the external 

environment.  Nerve fibers approach the base of the taste bud. 

(B, basal cell; Bm, basal lamina (basement membrane); ec, edge cell; MB, Merkel-like 

basal cell; N, nerve fiber; Np, nerve plexus; R, receptor cell; Sz, mucous cell; Sg, 

glandular supporting cell; St, type II supporting cell).   

 

A.    B. 
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Figure 1.3 The sea lamprey, Petromyzon marinus life cycle. The sea lamprey begins its 

life in the sand as a filter feeder. It then undergoes metamorphosis and migrates from 

streams and tributaries to the deep lakes. They are then in a juvenile parasitic stage where 

the lampreys are feeding on other fish species. After this stage they stop feeding and start 

to become sexually mature as they migrate back to streams to lay their own eggs in one 

spawning event.  

(Image from the Great Lakes Fishery Commission website, 

http://www.glfc.org/sealamp/images/sea_lamprey_life_cycle.jpg) 

  



 

13 
 

Chapter 2: LIFE HISTORY, BIOCHEMICAL AND NEURAL TRAITS OF GILL 

PORE SOLITARY CHEMOSENSORY CELLS IN THE SEA LAMPREY 

Tina E Suntres
1
, Gheylen Daghfous

3,4
, Réjean Dubuc

3,4
, Barbara Zielinski

1,2
. 

1
Department of Biological Sciences, University of Windsor, Windsor, ON, Canada 

2
Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, 

Canada 

3
Groupe de Recherche en Activite Physique Adaptée, Dept. of Kinesiology, Université du 

Quebec a Montréal, Montréal, QC, Canada 

4
Groupe de Recherche sur le Système Nerveux Central, Dept. of Neurosciences, 

Université Montréal, Montréal, QC, Canada  

CHAPTER 2 SUMMARY 

Solitary chemosensory cells (SCCs) innervated by nerve fibers are located near 

respiratory areas in many vertebrates.  While SCCs have been observed on papillae that 

line the posterior surface of gill pores in lampreys, little is known regarding the 

development of these structures during life cycle, innervation patterns or the biochemical 

traits of SCCs in this basal vertebrate which is an invasive species in the Laurentian Great 

Lakes.  In this study, we found that papillae were absent and that SCCs were sparse in the 

larval stage and during metamorphosis; few SCCs were seen on small nub-like papillae 

during the juvenile stage but SCCs were abundant on prominent papillae during the adult 

stages.  Calretinin and 5-HT labeling of these SCCs, and basal innervation by acetylated-

tubulin immunoreactive fibers showed homology to previously identified taste cells in the 

lamprey pharynx and to SCCs in other vertebrates.  Immunolabeling for phospholipase C 

suggests that chemosensory signal transduction occurs by an IP3 mediated cascade. This 
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study infers that SCC function is important during the adult stage of the sea lamprey life 

cycle and shows homology between the SCCs lamprey and more derived vertebrates. 

Key words: solitary chemosensory cell, anatomy, lamprey, development 

 

INTRODUCTION 

 The specialized epithelial chemosensors known as solitary chemosensory cells 

(SCCs) are located on the skin of aquatic vertebrates (Whitear, 1992), including the body, 

oral cavity and gills of fish (Kotrschal et al., 1996; Finger, 1997), in the nasal cavity of 

amphibians (Hansen, 2007) and in mammalian respiratory epithelium (rodent: Finger, 

2003; cow: Tizano, 2006). In mammals, bitter irritants evoke changes in respiratory rates 

by activating trigeminal protective reflexes (Finger et al., 2003).  In teleost fish such as 

sea robins (Teleostei, Triglidae: Prionotus carolinus), SCCs aid in detecting feeding cues 

and promoting foraging (Bardach and Case, 1965; Finger, 1982; Kotrschal, 1995, 1996); 

and in rocklings (Teleostei, Gadidae: Ciliata mustela) SCCs sample the water for fish 

body mucus and bile as a method of detecting prey or predators (Bardach and Case, 1965; 

Silver and Finger, 1984). Extracellular recordings from individual lamprey gill papillae 

showed multi-unitary action potentials in response to amino acids and dead trout water 

washings (Daghfous, 2014).  

The different stages of the sea lamprey life cycle are associated with specific 

behaviours. It is expected that SCC abundance correlates to the importance of these cells 

during a particular stage. Several changes occur during the life cycle; the larval stage is a 

benthic filter feeder (Moore and Mallat, 1980), and then undergoes a metamorphic stage 

into a juvenile stage that feeds on the blood and tissues of fishes for 12-18 months 
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(Hardisty, 2006). The lampreys then cease feeding and migrate up streams and rivers as 

pre-ovulated and pre-spermiated adults into spawning grounds for reproduction as fully 

mature ovulated and spermiated adults (Manion and Mclane, 1971). Sexually mature 

males arrive at nesting sites first to construct nests, and release sex pheromones to attract 

ovulating females (Walaszczyk et al., 2013). While pheromones (Li et al., 1995) and 

migratory behavioral responses (Applegate, 1950; Bjerselius et al., 2000; Fine et al., 

2004; Johnson et al., 2009) have been well characterized, the diffuse chemosensory 

system is still poorly understood in lampreys. 

In lampreys, SCCs are located on papillae protruding along the oral disc, nasal 

pore, gill pores and dorsal tail fins (Whitear and Lane, 1983) and are similar to the cells 

that are grouped in taste buds on the pharynx and gill arches (Mallat, 1979). Lamprey 

SCCs (also referred to as oligovillous cells) are characterized by multiple microvilli 

projecting from the apical surface of the skin (Whitear, 1983B). Calretinin has been 

shown to localize in teleost SCCs (Hansen et al., 2014) and may also localize in lamprey 

SCCs, as this calcium binding protein has been show in lamprey pharyngeal taste buds. 

Inositol triphosphate (IP3) is a second messenger prevalent in mammalian SCCs 

(Saunders, 2014), the formation of IP3 is catalyzed though a phospholipase C-mediated 

cascade and but it is not known whether lamprey SCCs utilize this same pathway.  

Vertebrate SCCs are embedded in the epidermis and are innervated by spinal and cranial 

nerves (Dagfous, 2015; Finger, 1997; Hansen et al., 2014), single nerve fibers approach 

and are adjacent to the base of the SCCs (Whitear, 1992).  Neural fibers that are α-

tubulin-immunoreactive approach the base of lamprey taste buds with serotonergic fibers 

present below the taste buds in the basal lamina as well as in lamprey taste cells 
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themselves (Barreiro-Iglesias et al., 2008C).This labeling has not been explored within 

lamprey SCCs.  

The aim of the present study was to gain understanding of the evolution and 

function of the diffuse chemosensory system. Investigating the abundance of brachial 

SCCs during the phasic life cycle of the sea lamprey, with feeding taking place during a 

separate phase from reproduction, will shed light on the importance of the SCCs. 

Neurochemical characterization will improve knowledge of potential signal transduction 

and neurotransmission strategies utilized by the SCCs in this basal vertebrate.  

MATERIALS AND METHODS  

Experimental animals and tissue preparation 

Sea lamprey, Petromyzon marinus larvae (n = 2), metamorphic (n = 4), juvenile 

(n = 4), pre-ovulated and pre-spermiated adult stage (n= 24) and sexually mature 

ovulated and spermiated spawning adult stage fish (n = 30) were caught from Lake Huron 

and the surrounding tributaries by Hammond Bay Research Station, MI and transported 

to the University of Windsor Biology Building.  Each animal’s weight and length were 

measured and recorded (See Table 1, Appendix B). The Lamprey were euthanized by 

anaesthetic overdose (1 g/L MS-222), and dissected to collect both sides of seven gill 

pores.  All protocols were approved by the Canadian Counsel for Animal Care. The right 

side of each animal was drop fixed in 5% gluteraldehyde fixative for scanning electron 

microscopy (SEM) and the left side of each animal was drop fixed in 4% 

paraformaldehyde fixative for less than 24 hours for immunohistochemistry.  
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Migrating pre-ovulated and pre-spermiated adult male and female sea lampreys 

were captured in traps from Lake Huron tributaries (United States Fish and Wildlife 

Service, Marquette, Michigan, USA) and held in 1000 L tanks supplied with Lake Huron 

water at ambient temperature at United States Geological Survey, Great Lakes Science 

Center, Hammond Bay Biological Station, Millersburg, Michigan, USA. They were 

brought to the University of Windsor Animal Quarters on May 13th, 2015. Sexually 

mature (ovulated and spermiated) spawning adult lamprey were captured directly from 

spawning nests by hand from the Ocqueoc River on June 8
th

 2015 and brought to the 

University of Windsor on June 9
th

 2015. Both groups were processed for experimental 

use. 

Tissue preparation for scanning electron microscopy 

Lamprey gill pores were fixed in a 5% glutaraldehyde 0.2M sodium cacodylate 

solution. Tissue samples were washed with 0.1M sodium cacodylate buffer then treated 

with 2% osmium tetraoxide in 0.1M sodium cacodylate buffer, and an ethanol 

dehydration series was completed. The samples were taken to the Integrated Microscopy 

Biotron Facility, Western University to undergo critical point drying and gold sputter 

coating. All SEM micrographs were taken on a FEI Quanta 200 FEG environmental 

scanning electron microscope at the Great Lakes Institute for Environmental Research at 

the University of Windsor, ON.  

Counts of SCCs on gill papillae of sexually immature migrating and spawning adult 

lampreys 

The 2
nd

 most rostral gill pore was assessed by SEM from 3 pre-spermiated males, 

3 pre-ovulated females, 3 spermiated spawning males and 3 ovulated spawning female 
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lampreys since a previous study reported similar amounts of papillae on gill pores 2-6 of 

the 7 gills (Beamish, 2010). Images were standardized by rotating center gill pore 

papillae to in a horizontal plane in the SEM, and magnified to 1500X. These were then 

centered with the tip of the papilla at the edge of the field of view then magnified to 

3000X. This produced the same image area and had a set distance from the SEM detector 

to standardize the size of the area examined to (45 µm x 45 µm= 2025 µm
2
). The number 

of SCCs was counted from three different gill papillae for each specimen. Counts were 

performed with no sample information to minimize bias. 

Tissue preparation for immunohistochemistry  

Samples were fixed overnight in 4% paraformaldehyde in 0.1 M phosphate buffer 

(pH 7.4). Excess tissue surrounding the areas of interest then drop fixed in fresh 4% 

paraformaldehyde for 1-3 hours. Tissue was then transferred to 20% and 30% sucrose 

solutions for cryosectioning. Samples were sectioned on a Leica CM3050S cryostat. The 

gill pores were serial sectioned in 20 µm horizontal sections or in 20 µm cross sections. 

All tissue was thaw-mounted onto Superfrost Plus slides (Fisher Scientific).  

Immunohistochemistry 

Slides were washed with phosphate buffered saline solution (PBS) with 0.1% 

triton X-100 (PBS-T) over 2 hours with the PBS-T wash solution replaced every 30 

minutes. PBS plus 0.1% sodium azide was used as a preservative against bacterial growth 

in all antibody keepers. All steps in the protocol were completed covered on a shaker at 

4ºC. Slides were incubated in a 5% goat serum (Sigma, G9023) in PBS-T for 2 hours 

then transferred into the primary antibody (Table 1) for 3 days, monocolonal acetylated 

tubulin (1:1000, Sigma, T7451), rabbit polycolonal anti-calretinin (1:1000, Swant, 
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7699/3), polyclonal anti-phospholipase C 140 (1:1000, kind donation from Dr. Jane 

Mitchell, University of Toronto), mouse monocolonal anti-SV2 (1:500, the SV2 purified 

synaptic vesicle antibody, developed by Buckley, K.M., Harvard Medical School, was 

obtained from the Developmental Studies Hybridoma Bank, created by the NICHD of the 

NIH and maintained at The University of Iowa, Department of Biology, Iowa City, IA 

52242),  polyclonal anti-5-HT (1:5000, Immunostar 20080). A 5-HT protocol was 

followed from Frontini et al. (2003). Wash steps were completed in 5 cycles of 0.1M PBS 

on a shaker for 30 minutes. Slides were then transferred to a secondary antibody for 1-3 

days, monocolonal anti mouse Alexa Fluor 488 (1:100, Life Technologies A11001) or 

polycolonal anti rabbit Alexa Fluor 568 (1:250, Life Technologies A11011). A phalloidin 

label was also used (Life Technologies, Alexa 488 A12372 or Alexa 568 A12380) diluted 

5µL in 400µL PBS, applied directly to slides for 30 minutes then washed. Finally slides 

were washed according to the above cycle and coverslipped with Vectashield Mounting 

Medium. The slides then dried overnight and sealed with nail polish.  

Western blotting - Adult sea lamprey (n = 4) were anesthetized with 0.3g/L MS-222 and 

dissected in Ringers solution to remove gill pores and brain tissue.  Papillae from the gills 

were dissected out. The tissue samples were homogenized at 4°C in 6X the volume of 

tissue in modified RIPA buffer (Villar-Cheda, 2006), (50 mM Tris–HCl, 1 mM EDTA, 

150 mM NaCl, 1 mM phenylmethylsulfonylfluoride, 1% Triton X-100, 0.1% 

sodiumdodecylsulfate, 5 μg/ml aprotinin, pH 7.4) and left on ice for 20 min for lysis. The 

homogenate was centrifuged at 20,000 × g at 4 °C for 20 min, and the supernatant 

collected. Samples (40µg) were loaded on 12 % (Calretinin) or 8% (Phospholipase C) 

acrylamide gels, run at 1 hour at 150volts, resolved by SDS-PAGE and then 
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electroblotted at 111 volts for 1 hour (Calretnin) or 1.5 hours (Phospholipase C) onto 0.33 

nitrocellulose membrane (Biorad). Non-specific binding was blocked with a 5% milk 

powdered non-fat milk dissolved in tris buffered saline and tween 20 solution (TBS-T) 

for 1 hour. After blocking, the membranes were incubated in rabbit polycolonal anti-

calretinin (Swant) and anti-phospholipase C (kind donation from Dr. Jane Mitchell, 

University of Toronto) diluted 10:10 000 in TBS-T overnight. The membranes were 

rinsed in TBS-T (3x 5 min) then incubated in a mouse anti rabbit HRP-conjugated 

antibody diluted at 1:10 000 in TBST (Santa Cruz), They were rinsed again in TBS-T (3x 

5 min), and then imaged on an Alpha – Innotech imaging system. Page Ruler Prestained 

protein ladder (Thermo-Scientific) was used as a molecular weight marker.  

Antibody characterization 

The specificity of the antibodies used (see table 1 for information) were all first tested by 

the suppliers. As a control for non-specific labeling, the primary or secondary antibodies 

were omitted from the staining procedures for all tested antibodies.  

Calretinin has been previously reported in lamprey taste cells (Barreiro-Inglesias 

et al., 2008), and in SCCs of Big headed carp (Hansen et al., 2014). Western blots 

analysis yielded appropriate protein sizes (Fig.1) for calretinin (29kDa) (Villar-Cheda, 

2006, Barreiro-Iglesias et al., 2008C) using lamprey brain as it is important for regulating 

intracellular calcium storage at synpases (Diaz-Regueira et al., 2000).  A phospholipase C 

140 western blot protocol was modified from Mobley et al. (2007) and yielded 

appropriate protein sizes (140kDa) in both lamprey gill tissue and squid optic lobe (kind 

donation from Dr. Mary Baum and Dr. Dan Morse University of California at Santa 

Barbara) which was used as a positive control as this phospholipase C 140 antibody was 
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previously shown to be immunoreactive in squid (Loligo) chemoreceptors (Mobley et al., 

2007).  

The acetylated tubulin antibody was used as a general probe for neuronal tissue. It 

was previously used for labeling sea lamprey neural fibers by Zaidi et al. (1998), Frontini 

et al. (2003) and Barreiro-Iglesias et al., (2008, 2009). It has been shown to label 

acetylated α-tubulins in multiple species by the supplier (Sigma). Brain tissue sections 

were used as a positive control for labeling. The SV2 antibody was obtained from the 

Developmental Studies Hybridoma Bank to detect axon terminals and fibers. It positively 

cross reacts in multiple species, including fish. It is also reported by the Hybridoma Bank 

that it recognizes all three isoforms of synaptic vesicles (SV2A, SV2B, and SV2C).  The 

5-HT (serotonin) antibody was used to label serotonergic fibers and cells previously 

tested by western blot in lamprey tissue (Villar-Cervino et al., 2006), and was previously 

used to label lamprey taste cells (Barreiro Iglesias et al., 2008). Brain tissue sections were 

again used as positive controls for serotonergic nerve labeling. Preadsorption control 

experiments were performed using diluted antiserum preadsorbed for 1 hour at room 

temperature then overnight at 4°C with 5-HT antigen (5mg) (Sigma). No immunostaining 

was detected (See Fig 2, Appendix C).  

Microscopy 

Photomicrographs of slides were taken on a Nikon Eclipse 800 epifluorescence 

microscope, or on an Olympus Fluoview FV1000 (Fluoview version 2.1C) confocal laser 

microscope, Adobe Photoshop CS6 and ImageJ were used to adjust for brightness and 

contrast levels.  
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RESULTS 

Gill pores from larval, metamorphic, juvenile and adult stage lampreys were 

examined for the presence of SCCs by SEM.  In accordance with Whitear and Lane’s 

(1983) classification of lamprey oligovillous cells, the SCCs were identified on papillae 

by their protruding tuffs of microvilli.  Gill papillae were absent during the larval stage 

examined and a single SCC was found on the flat posterior surface from the second most 

rostral gill pore (Fig. 2D).   During the metamorphic stage, the posterior surface of the 

gill pore was slightly undulated (Fig. 2F) with few SCCs (Fig. 2G).  The papillae were 

developed and SCCs were prominent in the juvenile and the adult stage, including 

migrating (pre-ovulatory females and pre-spermiated males) and spawning (ovulatory 

females and spermiating males) adults (Fig. 2H-V). A central process is present in the 

center of the gill pore, that did not possess any SCCs and it is thought that it may play a 

role in opening and closing the external branchiopore (Beamish, 2010). The number of 

SCCs in a representative papillar area (45 µm x 45 µm) (Table 2) was greater in 

spawning adults (ovulated/spermiated) than in juveniles or preovulated/prespermiated 

adults (p ≤ 0.001; Fig. 3A). A post hoc Tukey’s test also showed no difference in densely 

packed SCCs along the side of brachial pore papillae observed between males and 

females for both preovulated/prespermiated (p = 0.44) and spawning 

(ovulated/spermiated)  (p = 0.52) life stages (Fig. 3A). Overall, a trend was seen that 

ovulated/spermiated adult lamprey possessed more densely packed SCCs along the side 

of gill pore papillae observed than pre-ovulatory/pre-spermiating adults, and that females 

have more SCCs than males.  
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Biochemical characterization of SCCs  

  Phalloidin labeling of actin was useful for localizing the SCCs in sectioned 

preparations. Phalloidin labeling was seen in SCC microvilli (Fig. 4 A, B) and around the 

cell membranes the oval-shaped SCCs (Fig. 4 C, D).  

 Double labeling with phalloidin showed that the SCCs were immunoreactive to 

phospholipase C, calretinin and to 5-HT (Fig. 5).  In these preparations, every microvillar 

cell (labeled with phalloidin) was immunoreactive to phospholipase C, calretinin or to 5-

HT. Because of this similar patterning and cell shape, it is possible that phospholipase C, 

calretinin and 5-HT co-localize in SCCs.  

 

Spatial relationship between nerve fibers and the SCCs  

Acetylated tubulin immunoreactive fibers were present in the lamina propria 

underlying the papillae and reached the apex of the papillae (Fig. 6A, B).  In the lamina 

propia some fibers double labeled for 5-HT and acetylated tubulin and some were single 

labeled for 5-HT or for acetylated tubulin (Fig. 6A, B).  Although 5-HT-ir fibers were 

observed entering the base of the papillae, these fibers were not seen towards the papillar 

apex nor in the epithelium (Fig. 6 A, B).  In acetylated tubulin, calretinin (or 

phospholipase C) double-labeled preparations (Fig. 7A,B), it was clear that acetylated 

tubulin-IR fibers extended into the papillar lamina propria and reached the SCCs within 

the epithelium, sometimes encircling the base of SCCs (Fig. 7 A).  The SCCs themselves 

were not acetylated tubulin or SV2-IR (Fig. 8). The SV2 labeling was confined to fibers 

within the lamina propria and did not enter the epithelium (Fig. 8). 
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DISCUSSION 

This study has shown that gill SCCs in lampreys are most abundant during the 

adult stage, and that these cells share biochemical properties and innervation similar to 

SCCs in more derived vertebrates and to lamprey taste buds.  

The morphology of the SCCs on gill pore papillae matched cells previously 

characterized in lamprey by Whitear and Lane (1983B). Abundant SCCs in the adult 

stage of the life cycle compared to larval, metamorphic, and juvenile stage lamprey 

reflects that found in zebrafish, where SCC density increased throughout its development 

to adulthood (Kotrschal, 1997). In contrast to the zebrafish which feeds throughout its 

life, the adult stage of the sea lampreys does not feed.  During this stage, the lampreys 

migrate upstream (pre-ovulating/pre-spermiating), select a spawning location, construct a 

nest from gravel, and spawn (adult ovulating/ spermiating) (Applegate, 1950). We 

hypothesize that the SCCs are important for collecting sensory information during these 

activities. Length and/or total body size may also be correlated to SCC amount, as 

smaller collected juvenile lamprey possessed very few SCCs compared to the abundant 

SCCs that the larger migrating lamprey possessed. It should also be noted that both pre-

ovulated/pre-spermiated and spawning stage lamprey are not feeding (Manion and 

Mclane, 1971) and therefore are investing metabolic energy into this diffuse 

chemosensory system which infers a benefit during the adult stage.  

The function of papillae located on the gill pore may be to minimize damage to 

gill filaments by reducing debris entering the gill pore as they face the flow of water 

through the gill pores (Beamish, 2010). It has also been postulated by Beamish (2010) 

that papillae may be a secondary sexual characteristic (a trait that appears during sexual 



 

25 
 

maturity separate from that of the reproductive system that may infer fitness) because of 

this increase in size prior to spawning. Male spawning sea lamprey possess another 

secondary sexual characteristic known as a “rope”, a swollen dorsal ridge (Johnson et al., 

2014) that is composed of thermogenic adipose tissue (Chung-Davidson et al., 2013).  In 

the presence of a sexually mature female, males will generate heat at the expense of large 

amounts of energy into this sexual advertisement.  Contact between the female urogenital 

pore which has been shown to possess SCCs (Whitear and Lane, 1983B) and the rope 

tissue may play a role in reproduction (Chung-Davidson et al., 2013).  We found that 

females had slightly more gill pore SCCs than males (regardless of sexual maturity 

stage). Another gill pore-related sexual dimorphism was previously found by Pickering in 

1977, where he examined gill tissues of spawning stage lamprey and found that males 

had more type 1 “male glandular” cells than females which only possessed type 2 cells 

suggesting a difference between sexes in ion-regulation during spawning. Spermiating 

male gills have also been shown to be the site of sex pheromone release that will attract 

ovulating females (Siefkes et al., 2003). 

The abundant SCCs in adult stages may be beneficial for choosing a nest site and 

to collect more sensory information about spawning locations. Males arrive at the 

breeding grounds before females (Applegate, 1950) and collect rocks to build a nest. 

Recently it has been shown that SCCs respond to dead trout water washings in 

electrophysiology recording experiments (Daghfous, 2015), which may indicate that this 

diffuse chemosensory system is used as a method of irritant detection as SCCs have been 

shown in lamprey to respond to mucus, acids, and bitter irritants (Baatrup and Doving, 

1985B; Daghfous, 2015; Finger, 1997).  While mammalian SCCs function to detect 
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irritants including immune response stimuli (Finger et al., 2003, Saunders et al., 2014), 

lamprey would benefit from detecting irritants, toxins and decaying material by avoiding 

these locations for poor egg development (Silva et al., 2015). The diffuse chemical 

system may function as a “push” behaviour by directing lamprey away from 

inappropriate spawning sites for propagating the next generation, rather than a “pull”, like 

olfactory (pheromones) mediated locomotor behaviour (Daghfous et al., 2012, Derjean et 

al., 2010). As visual information is easily obstructed by turbidity and vegetation, the 

lampreys may benefit from collecting diverse chemosensory information may at this 

stage (Wansenbock et al., 1996).  It has been shown that vision plays no role in upstream 

migration of adult sea lampreys during blinding experiments (Binder and McDonald, 

2007), as most of their migration occurs as nocturnal movements with light avoidance 

behaviours during the day (Applegate, 1950; Johnson et al., 2014), therefore 

chemosensory systems must guide the lamprey to the appropriate spawning location 

during migration (Binder and McDonald, 2007).  

SCCs were identified by the apical microvilli seen by scanning electron 

microscopy, and in sectioned tissue by phalloidin labeling of actin filaments abundant in 

microvilli and by the tall oval cell body shape that matched that described previously 

shown in transmission electron microscopy preparations (Whitear and Lane, 1983B). The 

localization of phospholipase C to microvillar cells (Fig. 5A) further supports the identity 

of these cells as SCCs.  Mice SCCs have been shown to utilize phospholipase C to 

initiate a cascade that activates an IP3 mediated transduction pathway (Saunders, et al., 

2014). This lamprey localization is the first report of phospholipase C in non-mammalian 

SCCs and suggests that the SCCs also use an IP3 mediated transduction pathway.  This 
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chemosensory transduction cascade has also been identified in olfactory sensory neurons 

in squid (Mobley, 2007), teleosts (Hansen et al., 2003; Laframboise and Zielinski, 2011), 

and in mammalian vomeronasal sensory neurons (Szebenyi et al., 2014; Hegg et al., 

2010), indicating a conserved chemosensory transduction pathway.  In taste cells, 

phospholipase C mediates the release of calretinin from intracellular stores to open 

cellular channels (Kinnamon, 2012). The presence of calretinin-immunoreactive cells 

matches that of the lamprey taste cells (Barreiro-Iglesias et al., 2008C, 2010), and of 

SCCs in other teleost fish (Germana, 2007, Hansen et al., 2014). Calretinin is important 

for neurotransmission of signals by controlling intracellular calcium concentrations 

(Diaz-Regueira et al., 2000; Levanti et al., 2008). Prominent calretinin labeling of gill 

SCCs shows homology to previously identified taste cells in the lamprey pharynx and to 

SCCs in other vertebrates (Barreiro-Iglesias et al., 2008C; Hansen et al., 2014).  

The presence of 5-HT labeling within SCCs and fibers innervating papillae but 

not approaching SCCs directly matches previous reporting of 5-HT labeling in the 

lamprey peripheral taste buds (Barreiro-Iglesias et al., 2008C). Calretinin may modulate 

the release of serotonin (5-HT) by regulating calcium influx of activated chemosensory 

cells (Evans et al., 2000; Barreiro-Iglesias et al., 2010). The role of 5-HT in these cells in 

unknown, but may affect the perception of SCC sensory signals as it is thought to play a 

role in neurotransmission of taste buds to neurons (Larson et al., 2015).  

 Acetylated tubulin labeled nerve fibers extended from the base of the papilla and 

approached the basolateral region of the SCCs. This organization matched previous 

transmission electron microscopy, which showed the profiles of neurites adjacent in the 

basolateral regions of the SCCs (Whitear 1983B, 1992). This innervation pattern also 
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occurs in the taste system where fibers approach but do not directly enter the taste buds 

(Barreiro-Iglesias et al., 2008C). Gill pores are innervated by the glossopharyngeal and 

vagal nerves (Daghfous, 2015) and project into the brain via the trigeminal nerve, which 

is conserved across teleosts (Finger, 1997; Whitear 1992; Hansen et al., 2014) and 

mammals (Finger, 2003). Fibers innervating the papillae were shown to be AT-

immunoreactive and some were also 5-HT-immunoreactive, which shows SCCs are 

actively signaling higher brain structures to induce a response.   

The neurotransmitter in fish SCCs is unknown (Whitear, 1992). SV2 

immunofluorescence was not present in SCCs, suggesting that synaptic vesicle transport 

is not used for neurotransmission of chemosensory information. Other types of vesicles 

are present in SCCs and are located in the sub-apical regions which are thought to be for 

apical membrane renewal (Whitear and Lane, 1983; Whitear 1992). Mammalian SCCs, 

which do have vesicles (Finger et al., 2003; Kinnamon, 2012) release acetylcholine to 

activate receptors on the trigeminal nerves to induce inflammation (Finger et al, 2003; 

Saunders et al., 2014). Lamprey and other teleosts SCCs do not possess the gene that 

encodes for gustducin (Ohmoto et al., 2011), this is the g-protein coupled receptor that 

mammalian SCCs use to activate phospholipase C (Saunders et al., 2014), and therefore 

lampreys may use a different g-protein cascade pathway to stimulate the IP3 mediated 

pathway for SCC synapse activation. Although the full lamprey genome was not 

sequenced at the time Ohmoto et al. published their paper and further investigations could 

be performed. Fish SCCs also do not shown any ecto-ATPase activity ruling out ATP as 

a neurotransmitter (Kirino et al., 2015), which is the neurotransmitter released by taste 

cells in mice (Finger, 2005). It has been suggested that chemosensory cells may use 
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amino acids as their neurotransmitter which would account for the absence of vesicles 

near the synapse (Roper 1989; Whitear, 1992). Further exploration of signaling and 

neurotransmission pathways of lamprey SCCs is needed to elucidate SCC activation and 

synapse signaling to the nervous system. 

 

CONCLUSION 

This study has shed light on SCCs in basal lineage vertebrates.  In the sea 

lamprey, gill SCC abundance is greatest during the adult stage, when lampreys do not 

feed, but migrate to spawning grounds and select sites then spawn and die.  These SCCs 

contain the enzyme phospholipase C, indicative of an IP3 transduction cascade; the 

calcium binding protein calretinin and the biogenic amine 5-HT, but not the synaptic 

vesicle protein SV2.  Nerve fibers reach the SCC basolateral region and serotonergic 

fibers remain in the lamina propria in the basal region of the papillae. These findings 

show homology between lamprey SCCs and the lamprey taste buds and to SCCs in 

derived vertebrates. This is the first study to show phospholipase C in the SCCs of non-

mammalian vertebrates. Future studies can expand on these findings by determining SCC 

physiological and behavioural responses to stimulatory substances.  
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TABLES 

Table 2.1 List of antibodies used during immunohistochemical experiments 

Name Host Source & catalog 

No. 

Dilution Lot Immunogen 

Calretinin Rabbit Swant, 7699/3, 7697 1:1000 1893-

0114 

Recombinant human 

calretinin 

Phospholipase 

C 

Squid Dr. Jane Mitchell, U 

of Toronto 

1:1000  purified from the 

cytosol of squid 

photoreceptors  

5-HT Rabbit Immunostar, 20080 1:3000 1131001 Serotoninformaldehyd

e-  BSA conjugate 

a-tubulin Mouse Sigma, T 7451, 

clone 6-11B-1 

1:1000 051M47

70  

062M48

41V 

Aceylated tubulin 

from the outer arm of 

Strongylocentrotus 

purpuratus 

SV2 Mouse DSHB, SV2 A  1:100 7/2/15 Purified synaptic 

vesicles 
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Table 2.2 Papillar SCC density in the gill pore of juvenile, preovulated, pre spermiated 

and spawning (spermiated and ovlultated) adult sea lampreys. An area of 45 µm x 45 µm 

=2025 µm
2
 was analyzed from three papillae per individual lamprey. Spawning 

individuals had reduced weights compared to pre-spermiated/pre-ovulated stage 

individuals due to the depositing of milt and eggs at spawning sites during capture from 

nests. 

Group Body 

Weight (g) 

Body 

Length (cm) 

Papillar SCCs / 

2025 µm
2
 

Group average 

SCCs / 2025 

µm
2
 

Juvenile (males) 187.5 48.5 1, 3, 4  

 85.3 39 1, 2, 5 2 

 72 33 0, 1, 1  

 79 38 1, 4, 5  

Prespermiated males 181 42.5 6, 10, 12  

  231.9 50 7, 14, 16 9.89 

 253.8 54 5, 8, 12  

Preovulated Females 280.5 52 9, 14, 15  

  248.3 50 11, 12, 12 14.44 

  193.2 48.5 12, 19, 26  

Spawning Males 171 39.5 10, 20, 23  

  175.7 43 17, 18, 26 17.44 

  288 47.5 13, 15, 15  

Spawning Females 165.1 44 15, 16, 22  

  182.5 43 18, 22, 30 21.56 

  156.6 43 19, 24, 28  
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FIGURES 

 

Figure 2.1. Western blotting of lamprey protein extracts with calretinin (CR) and 

phospholipase C 140 (PLC) antibodies.  

Calretinin: L- lamprey brain extracts run on a 12% acrylamide gel. The antibody 

recognized a 29kDa calretinin protein.  

Phospholipase C 140: L- lamprey gill papillae and S- Squid optic lobe tissue positive 

control (kind donation from Dr. Mary Baum and Dr. Dan Morse, University of California 

Santa Barbara) run on an 8% acrylamide gel. A band 140 kDa was recognized in both the 

squid and lamprey tissue extracts. 
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Figure 2.2 Gill pore SCCs during the sea lamprey life cycle. A. is taken under a 

stereomicroscope. B to W are scanning electron micrographs. 

A: Spawning stage sea lamprey. There are seven brachial gill pores on the lateral surface 

behind the eye.  The box shows the location of the second gill pore that was examined in 

the study.  

B -D: Larval stage. 

B. The caudal surface of the two gill pores is smooth.  The area outlined by a box, shown 

at higher magnification in C shows the smooth caudal surface. 

D. A single tuft of short microvilli was seen on the caudal surface of a larval gill pore. 

 

E - G: metamorphic stage. 

E. The caudal surface of the gill pores has a single vertical fold indicated by the black 

arrow. The area outlined by the rectangle is shown at higher power in F. 

F. There is a low wavy contour on the surface on vertical fold on the caudal surface of 

gill pore.  

G. An example of the sparse microvillar SCCs seen on the caudal surface of the gill pore.  

H - L Juvenile stage 

H. The caudal surface of gill pore has nub-like papillae. A central process in seen in the 

middle of the gill pore that possessed no SCCs during any life stages. The area enclosed 

by a rectangle is shown at higher power in I. 

I. The abundant papillae have broad base and taper to a point.  The area surrounded by 

the square is shown at higher power in J. 
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J. The papilla is covered by epidermal cells circled.   

K. Microvilli are seen between epidermal cells. 

L. A SCC on a papilla recognized by the microvillar tuft. 

M - Q: pre-ovulated/pre-spermiated adult sexually immature stage 

M. A row of papillae are located on the caudal surface of the gill pore. The area enclosed 

by a rectangle is shown at higher power in O. 

N. Crowded papillae line the caudal surface of the gill pore.  The area outlined by a 

square is shown at higher power in O. 

O. Epidermal cells cover the papilla and tufts of microvillar are at the epithelial cell 

boundaries throughout the papilla. 

P.  The microvillar SCCs are abundant on the surface of the papilla. 

Q. A typical SCC on the surface of the papilla. 

R - V: spawner adult stage 

R. There are abundant papillae on the caudal surface of the gill pore. The area enclosed 

by a rectangle is shown at higher power in S. 

S. Abundant finger-like papillae populate the caudal surface of the gill pore. The area 

surrounded by the square is shown at high power in U. 

T. Plentiful microvillar tufts are seen protruding from the surface of the papilla. 

U. The epidermal cells are clearly demarcated and the microvillar SCCs between the 

epidermal cells.  

V. The SCC cell contains abundant microvilli. 

Scale bar is 1mm in B, E, H, M, R;  50 µm in C, F;  250 µm in I, N,S;  20 µm in J, O, T; 

10 µm in K, P, U and 1 µm in D, G, L,Q, V.  
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Figure 2.3 ANOVA comparison of SCCs observed on gill pore papillae in juvenile, 

sexually immature migrating adults and spawning adult sea lamprey. 

A. Comparison of SCCs observed on gill pore papillae throughout the sea lamprey 

lifecycle, with sexes combined. One-way analysis of variance was performed on gill pore 

density data collected from juveniles (J; n = 3), combined sexes of sexually immature 
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adults (PSM/POF; n = 6) and combined sexes of spawning adults (SM/OF; n = 6), shown 

with standard error bars (F = 20.689, p < 0.001). Pairwise comparisons were made using 

post hoc Bonferroni-Holm test with statistical significance illustrated via groups a, b (p ≤  

0.001).  

B. Comparison of SCCs observed on gill pore papillae of males and females throughout 

the sea lamprey lifecycle. One-way analysis of variance was performed on gill pore 

density data collected from juveniles (J), pre-spermiated males (PSM), pre-ovulated 

females (POF), spermiated males (SM) and ovulated females (OF; n = 3 per group), 

shown with standard error bars (F = 14.972, p < 0.001). Pairwise comparisons were made 

using post hoc Bonferroni-corrected Tukey’s test with statistical significance illustrated 

via groups a, b (p ≤ 0.001).  

  

 

Figure 2.4. Under SEM and in sections SCCs on gill papillae are recognized by their 

microvillar surface. All are from spawning stage lampreys.  
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A. A gill pore papilla visualized using SEM showing microvilli between epidermal cells. 

B. A confocal z-stack (15 slices, 1.32 µm z-step) of a sectioned papilla labeled with 

phalloidin showing the microvilli and actin adjacent to the cell membrane boundary of 

the papillar cells.  

C. Scanning electron microscopy of a fractured papilla revealing the shape of the SCC 

cell and microvilli protruding from the apical the surface. 

D. Phalloidin labeling of SCC microvilli and of actin adjacent to the cell membrane. 
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Figure 2.5. Double labeling of sea lamprey gill pore papillae. In all micrographs, 

phalloidin is green. 

A. Phalloidin labels microvilli and the cell membrane boundary.  Phospholipase C 

immunoreactivity (magenta) is cytoplasmic in the microvillous cells.  

B. The cytoplasm is calretinin-immunoreactive for the cells covered by microvilli.  

C. The microvillar cells are 5-HT-immunoreactive.  
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Figure 2.6. 5-HT and acetylated tubulin labeling in the gill papillae. 

A and B. Confocal z-stack micrographs of acetylated tubulin-immunoreactive neuronal 

fibers projecting into the base of the papilla, and are also located in the lamina propria 

near the tip of the papilla indicated by the white arrows. Double labeling of some fibers 

with 5ht (magenta) and acetylated tubulin (green) is seen as white fibers. Acetylated 

tubulin fibers in green are more abundant and project all the way to the tip of a papilla 

compared to the 5-HT fibers in magenta that only project half way (top arrow in B). (A: 

15 slices, 1.5 µm z-step, B: 16 slices, 1.5 µmz-step).  

C. 5HT-immunoreactive cells also seen within the papillar epithelium approached by 

acetylated tubulin fibers (also seen in the top of B). 
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Figure 2.7. Acetylated tubulin fibers contacting the base of SCCs. 

A. Confocal z-stack micrograph showing bright AT-ir fibers are shown projecting up the 

base of a papilla and branching outward toward the tip where they approach and encircle 

CR-immunoreactive SCCs. (10 slices, 0.73 µm z-step). 

B. PLC-immunoreactive SCCs with an AT fiber running along their base. 
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Figure 2.8. Anti- SV2 labelled nerve fibers extend into gill papillae. 

A. Intensely labeled fibers are located deep into the connective tissue layer of the gill 

pore and extend into the papillae.  The region enclosed by a square is shown at higher 

power in B. 

B. Confocal z-stack showing SV2 labeled fibers project into the lamina propria of the gill 

papilla. (24 slices, 0.41 z-step). 
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 CHAPTER 3 SUMMARY 

 The sea lamprey is an invasive species in the Great Lakes with a diffuse 

chemosensory system composed of finger-like papillae on the gill pores, oral disc and 

dorsal tail fins. Small microvilliar solitary chemosensory cells (SCCs) are located on 

these papillae and the function of this system is unknown.  Life stages of the lamprey 

were examined for prevalence of SCCs on oral disc and tail papillae as a means for 

evaluating function as each life stage possesses phasic behaviours.  Oral disc papillae 

were absent during the larval and metamorphic stages, but were present during the 

juvenile parasitic feeding stage, during the adult pre-ovulated/pre-spermiated migrating 

stage and during the adult spawning stage. Abundant SCCs were found during the late 

adult stages of life compared to earlier stages. This patterning was also found on the 

dorsal tail papillae with spawners possessing more SCCs, suggesting a function related to 
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end of life behaviours such as mating. Highly innervated tail papillae were revealed by 

labeling against acetylated tubulin. Various locations of SCCs along the body may also 

be collecting separate spatial chemosensory information as they are innervated by 

different cranial and spinal nerves and therefore may have different/specific functional 

purposes.  This study aids in understanding the diffuse chemosensory system and how it 

varies based on the locations of SCCs along the surface of the body.  

INTRODUCTION 

Sea lampreys are an invasive species in the Great Lakes that use their oral disc to 

latch on to prey and suck their bodily fluids, with each individual capable of killing 

upwards of 40 lbs of fish in a 12-18 month feeding period (Applegate, 1950). They 

possess short finger-like tissue protrusions called papillae on the outer surface of the 

body that face the flow of water and collect sensory information (Whitear and Lane, 

1983; Baatrup and Doving, 1985).  These papillae are present around the gill pore (See 

chapter 1), oral disc and on the dorsal tail fins (Whitear and Lane, 1983B). Microvilliar 

solitary chemosensory cells (SCCs) are located on these papillae and make up the diffuse 

chemosensory system. The function of this diffuse chemosensory system is currently 

unknown. 

The oral disc is composed of several rows of concentrically arranged teeth 

(Dawson, 1905) with a ring of mucus producing flat irregular leaf-shaped fimbriae that 

help the fish to create a secure suction on its prey, and an outer ring of finger-like papillae 

that collect sensory information (Cook et al., 1990; Khidir and Renaud, 2003). Electro-

physiology recordings have shown these oral disc SCCs have a different chemosensory 

spectrum than that of the taste system as they respond to acetic acid, sialic acid, fish body 
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mucus, and trout water washings, over canonical taste solutions and amino acids (Baatrup 

and Doving, 1985A, B). Oral disc SCCs are innervated by the trigeminal nerve 

(Daghfous, 2015).  

Lamprey dorsal fin SCCs have not been extensively studied.  It is known that they 

occur on papillae on the posterior border of the fin in lampreys (Whitear and Lane, 1983), 

but the nerves that innervate these SCCs are unknown. Most of the research on fin SCCs 

has been done in rocklings (Teleostei, Gadidae: Ciliata mustela) where SCCs are present 

on their long undulating dorsal tail fin which is innervated by the recurrent facial nerve, 

(Kotrschal et al., 1993, 1998; Kotrschal and Whitear, 1988; Peters and Kotrschal, 1987) 

and in sea robins (Teleostei,Triglidae: Prionotus carolinus) SCCs are located on their 

free pectoral-fin rays and are innervated by spinal nerves (Bardach and Case, 1965; 

Finger, 1982; Kotrschal, 1995, 1996). Benthic rocklings will probe the water with their 

undulating dorsal fin to sample for mucous, indicating the presence of prey and predators 

(Kotrschal, 1995, 1996). Sea robin SCCs have been shown to respond to amino acids and 

extracts from marine invertebrates (Bardach and Case, 1965; Silver and Finger, 1984), 

indicating chemosensory-foraging related behaviours. Due to the variety of SCCs 

locations within fish species, and their varying chemical responsiveness and innervation 

patterns, it is likely the behavioural use of this diffuse chemosensory system is diverse 

(Finger 1997).  

The objectives of the present study were to compare papillae and SCCs from the 

oral disc and dorsal tail fin locations using scanning electron microscopy to assess 

distribution and immunohistochemistry to assess innervation patterns across the sea 

lamprey lifecycle, as it has distinctive stages where specific behaviours occur such as 
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feeding, migration, or spawning. Comparing locations of SCCs may infer a function of 

the diffuse chemosensory system based on body positions highlighting a relationship 

between form and function. 

MATERIALS AND METHODS 

Experimental animals and tissue preparation  

Sea lamprey, Petromyzon marinus larvae (n = 2), metamorphic stage (n = 2), 

juveniles (n = 4), pre-ovulated/pre-spermiated migrating adult stage (n= 24) and 

spawning adult stage fish (n = 30) were caught from Lake Huron and the surrounding 

tributaries by Hammond Bay Research Station, MI and transported to the University of 

Windsor Biology Building. Each animal’s weight and length were measured and recorded 

(*See Appendix B, Table 1). The lamprey were euthanized by anaesthetic overdose (1 

g/L MS-222), and dissected to collect their oral disc and anterior and posterior dorsal tail 

fins.  All protocols were approved by the Canadian Counsel for Animal Care. Tissue 

collected from the right side of the oral disc was drop fixed for scanning electron 

microscopy in 5% gluteraldehyde 0.2M sodium cacodylate fixative and tissue collected 

from the left side was drop fixed in 4% paraformaldehyde (PFA) fixative for less than 24 

hours for immunohistochemistry (*See Appendix A, protocols and solutions). Tail 

samples from individuals were either drop fixed in glutaraldehyde for SEM or into PFA 

for immunohistochemistry. 

Tissue preparation  

Oral discs and tail clippings were removed from fixative and washed with either 

0.1M sodium cacodylate wash buffer for SEM or 0.1M PB for immunohistochemistry 
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before being examined under a dissection microscope. Oral disc samples were orientated 

so papillae could be examined (Fig. 5B) and a tissue sample was taken from the ventral-

medial portion of the disc. Both the anterior and posterior fins were studied but only the 

posterior tail data is presented here as there were more abundant papillae and a larger 

surface area to examine (Whitear and Lane, 1983B). Posterior tail samples were cut from 

the most posterior portion of the fin clip where papillae were identified (Fig. 5C). These 

tissue samples were prepared according to the materials and methods listed in chapter 2.  

(See Chapter 2, materials and methods, “Tissue preparation for SEM”, “Tissue 

preparation for sectioning”, and “Immunohistochemistry”).  

RESULTS 

Oral disc papillae and SCCs during the lamprey lifecycle 

Oral discs were examined from larval to spawning stage lamprey. The right side 

of each oral disc was examined and a sample from the bottom portion of the disc was 

analyzed under SEM. The larval stage did not possess an oral disc with fimbriae or 

papillae (Fig 1.A). A smooth oral hood surface was observed around an opening of 

prominent oral cirri. Metamorphic stage lamprey did not have papillae (Fig 1B, 2A) but 

did have a ring of fimbriae around their oral disc with well-developed teeth (Fig. 1 B). In 

the juvenile stage, papillae were located outside the ring of fimbriae. In juvenile parasitic 

lamprey papillae were slightly smaller than their fimbriae (Fig. 1C). In the pre-

ovulated/pre-spermiated adult stage, the papillae and the fimbriae were large (Fig. 1D). 

Lastly the largest papillae appeared to be located in the spawning adult stage compared to 

the other age classes examined (Fig. 1E).  
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 In juvenile lamprey, surface of the oral disc papillae was  smooth (Fig. 2B), with 

very few SCCs found (Fig. 2C). The papillae on pre-ovulated/pre-spermiated adult 

lampreys had some mucus build up which fixed to the tissue and created a rough surface 

at the tip of examined papillae (Fig. 2E) but did have little dips where SCCs were located. 

Figure 2F shows a zoomed in view of the pre-ovulated/pre-spermiated adult papilla in 2E, 

several SCCs were evenly distributed along the surface. Examples of the SCCs are shown 

in Figure 2 G and H. The spawning adult stage has large papillae, with abundant SCCs 

scattered all over the epithelial surface (Fig. 2I). Several large SCCs were identified (Fig. 

2J), with several microvilli per SCC (Fig. 2K and L). Comparison of the SCCs across the 

three life stages shows the same general characteristics that match Whitear and Lane’s 

(1983B) description of oligovillous cells possessing several independent microvilli 

protruding from the surface  (Fig. 2 D, G, H, K, L).  Over all, SCC abundance seemed to 

increase with papillae and animal size and life stage, as the spawning adult stage had the 

most SCCs observed and the largest oral disc papillae.   

Dorsal tail fin papillae and SCCs during the lamprey lifecycle 

 Tail clippings were examined from larval, metamorphic, juvenile, pre-

ovulated/pre-spermiated adult stage and spawning adult stage lamprey. Fin clips from the 

posterior tail were taken from the most posterior portion for each individual as that area 

possessed the most papillae (Whitear and Lane, 1983). The larval stage tail fin had a very 

smooth surface with no papillae (Fig. 3A), with no SCCs observed. The metamorphic 

stage also had a smooth surface with small indentations that look like little nubs but not 

yet papillae and no SCCs found (Fig. 3B). The juvenile stage had small papillae that were 

square shaped with a pointed tip, roughly 50 µm in height and very few SCCs identified 
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(Fig. 3C). The papillae of pre-ovulated/pre-spermiated adults were slightly larger than in 

the juvenile stage, approximately 80-100 µm in height, they were taller than they were 

wide (Fig. 3D). The spawner adult stage had the largest papillae of the stages examined, 

over 100 µm wide (Fig. 3E.) Overall, papillae seemed to increase in size correlated to 

body size/developmental stage. 

 Comparison of the juvenile stage to the spawning adult stage shows how SCC 

distribution changes from a few SCCs during the juvenile stage (Fig. 4A) to many SCCs 

during the spawning adult stage (Fig 4E). The SCCs also change from being mono-

villous or possibly coalesced during the juvenile stage (Fig. 4 B, C, D), to having several 

well-defined microvilli per SCC (Fig. 4 F, G, H, I).  

Innervation of spawner oral disc and tail papillae 

Oral disc and tail tissues were examined under a stereoscope to identify papillae 

then sectioned and labeled using immunohistochemistry for acetylated tubulin (Fig. 5 D 

and E) and 5-HT (Fig. F and G). Oral disc papillae were hard to recognize in cross-

sections due to the abundance of fimbriae (Fig. 5B), but were positively identified by 

their triangular shape compared to the irregular leaf-shaped fimbriae (Fig. 5D). Small 

acetylated tubulin-immunoreactive fibers were in the lamina propria of the papillae. Tail 

papillae (Fig. 5C) were sectioned in cross and longitudinal sections. Bright acetylated 

tubulin-immunoreactive fibers can be seen in the lamina propria, branching towards the 

tip of each papilla (Fig. 5E). 5-HT imunoreactive fibers were not seen in the oral disc 

papilla, but were seen in tail papillae (Fig. 5F, G).  These fibers were present in the 

lamina propria, from the base to the apex of the tail papilla.   
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DISCUSSION 

The results of the present study show that spawning adult stage lamprey possessed 

large papillae with many SCCs on their oral disc and tail papillae compared to the few 

observed SCCs from pre-ovulated/pre-spermiated adults or from the juvenile stage. 

Larval and metamorphic stages did not possess any oral disc or tail papillae. In general, 

oral disc papillae appear to have slightly less observed amounts of SCCs than tail papillae 

(and gill papillae, *see chapter 1). Whitear and Lane in 1983 also reported finding more 

SCCs on the gill pore and dorsal fins of Lampetre planeri than on the oral disc papillae.  

While oral disc papillae do not appear to have as many SCCS as in the other body 

locations, they still may play an important role in collecting sensory information. It is 

thought that oral disc papillae aid lamprey in finding a good attachment site as the disc is 

not flared out while swimming and therefore the outer papillae would be the first 

structures to come into contact with potential prey (Cook et al., 1990). Recordings from 

adult brook lamprey oral disc papillae have shown they respond to dead trout water and 

sialic acid found in body mucus (Baatrup and Doving, 1985b). In taxonomic comparisons 

of adult lamprey species, blood feeding parasitic lamprey have been shown to possess 

more oral disc papillae than flesh eating and non-parasitic lamprey (Khidir and Renaud, 

2003). Together, these findings suggest that oral disc papillae may function during an 

initial response in prey detection during the parasitic stages.  

As we have found that SCCs increase in abundance during the spawning adult 

stages, the function may change to aid in nest building and spawning behaviours. Male 

spawning lampreys migrate to streams ahead of females and will collect rocks to 

construct nests in riffle areas (Applegate, 1950; Manion and Mclain, 1971). Oral discs are 
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used to pick up rocks (Applegate, 1950, Johnson et al., 2015) and collecting sensory 

information at this stage may be beneficial for nest building. During spawning, males and 

females intertwine and males attach their oral disc on the back of females heads (Johnson 

et al., 2015), perhaps oral disc papillae, as well as genital papillae with SCCs (Whitear 

and Lane, 1983), collect sensory information about mate choice during spawning.  

The function of the diffuse chemosensory system may be diverse in many species, 

but at a basic level in aquatic species, it seems to be for scanning ambient water for 

stimuli as SCC locations face the flow of water over the surface of the body (Kotrschal, 

1995). Benthic rocklings will probe the water with their undulating dorsal fin to sample 

the presences of other fish (Kotrschal, 1995). This behaviour allows the fish to remain 

motionless in a shelter while remaining able to predict the presence of a fish upstream. 

While beneficial, this behaviour also disrupts stimuli concentrations as the flow of water 

is affected and means that the fish would need to interpret fin frequency and flow 

velocity to determine the change in stimuli detection (Kotrschal, 1995, 1996). Lamprey 

dorsal fin SCCs cannot independently move, as in the rockling, and therefore stimuli 

detection is likely produced by active swimming to sample the environment and 

maximize the collection of spatial information (Kotrschal, 1996). This hypothesis is 

further supported by odour-mediated locomotor responses, where odour cues will 

stimulate movement (Derjean, 2010) and this pathway could also be utilized by SCCs 

where olfactory stimuli could be combined with SCC information and initiate movement 

(Kotrschal, 1995). Testing of the olfactory versus the diffuse chemosensory system’s 

input on influencing behaviour may be challenging to definitively conclude, as 

stimulatory substances for both systems are applied directly in the water and that 
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olfactory-impaired fish will not behave normally (Essler and Kotrschal, 1994) and 

therefore it would be difficult to infer if behaviours are due to the diffuse chemosensory 

system or an artifacts of experimentation.  

Nerve fibers labelled using acetylated tubulin in the papillae show that these 

SCCs are capable of sending their signals to higher brain structures. Innervation of the 

oral disc by the trigeminal nerve (Daghfous, 2014, 2015) and the tail possibly by the 

spinal or cranial nerves (Finger, 1997) may indicate that each is involved in different 

functions and behaviours as the nerves connect to different parts of the brain. More 

research is needed on the chemosensory spectrums of each location and how receptors 

detect stimuli from the environment.  

CONCLUSION 

 Studying the SCCs of a basal lineage vertebrate will help to shed light on the 

function and development of the diffuse chemosensory system. Oral disc and tail papillae 

were largest during the spawning adult stage and possessed abundant SCCs, indicating 

that the diffuse chemosensory system may be used during migration, nest building and 

reproductive behaviours. Comparison of SCCs across body locations as well as to other 

fish species with specialized appendages and various life history strategies contrasts and 

highlights an evolutionary relationship between form and function of this diffuse 

chemosensory system. As Kurt Kortschal said in his 1995 paper “if we do not understand 

functions and biological roles of SCCs, it will not be possible to explain behaviour and 

ecology of fishes”.  
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Figure 3.1. Oral disc papillae comparison by scanning electron microscopy during larval, 

metamorphic, juvenile, pre-ovulated/pre-spermiated adult stage and spawning adult stage 

lamprey, with green pseudo-coloured papillae.  

A. Larval oral cavity. A smooth edge can be seen all the way around the oral cavity. 

Large filtering tissue protrusions (oral cirri or tenticles) can be seen inside the 

mouth.   

B. Metamorphic oral disc. Only fimbriae are present around the periphery of the oral 

disc at this stage.  Teeth are present at this stage, seen in the lower portion of the 

micrograph. 

C. Juvenile oral disc. Three papillae in green on the periphery of the oral disc can be 

seen poking up in between large fimbriae.  

D. Sexually immature (pre-ovulated/pre-spermiated) adult oral disc. Three papillae 

in green close in size to the fimbriae are shown. 

E. Spawner adult oral disc. Two large papillae in green can be seen outside the 

fimbriae lining the oral disc. 
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Figure 3.2.  Oral disc papillae and SCC distribution by scanning electron microscopy 

among juvenile, pre-ovulated/pre-spermiated adult stage, and spawning adult stage 

lamprey.  

A. Metamorphic oral disc. No papillae are present at this stage, only fimbriae can be 

seen. 

B-D: Juvenile  

B. Juvenile papillae with a smooth surface 

C. The ridges of epidermal cells can be seen creating a smooth surface.  

D. An example micrograph of an SCC taken from a juvenile oral disc papilla.  

E-H: Sexually immature (pre-ovulated/pre-spermiated) adult stage 

E. A smooth papilla is shown with little concave dips where SCCs are present. 

F. Several SCCs can be seen in the field of view. Mucus present creates a rough 

epidermal surface. 

G and H: SCCs from F under high power magnification. Several microvilli can be 

seen protruding in all directions. 

I-L: Spawner adult stage 

I. A large spawner oral disc papilla is shown, speckled with SCCs. 

J. Several large SCCs can be seen in the field of view in between epidermal cells.  

K and L: SCCs from J under high power magnification.  
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Figure 3.3. Tail papillae comparison by scanning electron microscopy from larval, 

metamorphic, juvenile, pre-ovulated/pre-spermiated and spawning stage lamprey.  

A. Larval tail clipping. The top of the tail clipping is a smooth surface with no 

papillae.  

B. Metamorphic tail. Small indentations that create nub-like papillae can be seen on 

the top of the tail.  

C. Juvenile tail. Small papillae are present at this stage.  

D. Pre-ovulated/pre-spermiated adult tail. Large papillae are present, with mucus 

residues on the tips.  

E. Spawning adult stage papillae. Large papillae are abundant at this stage.  
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Figure 3.4. Scanning electron microscopy of tail papillae and SCCs in juvenile and 

spawner lamprey. 

A-D: Juvenile 

A. Few microvillar tufts are seen in between prominent epidermal cells.  

B-D. Examples of SCCs. There are few microvilli per SCC and the microvilli seem to 

be coalesced.  
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E-I: Spawner 

E. Many SCCs are located across the surface of epidermal cells.  

F-I. Several microvilli per SCC can be seen. They range from long protrusions to 

short stubs. 

 



 

75 
 

 

 



 

76 
 

Figure 3.5. Labeling of nerve fibers in oral disc and tail papillae using acetylated tubulin 

and 5-HT antibodies. B and C are stereomicroscope images. D to E are epifluorescnece  

F. Drawing of a spawner lamprey showing the location of the oral disc papillae and 

tail papillae. 

G. Stereoscope micrograph of a spawner oral disc. Three large papillae (indicated by 

the arrows) are outside a ring of fimbriae. 

H. Stereoscope micrograph of a spawner posterior tail fin. Papillae (indicated by the 

arrow) are ridge-like along the dorsal surface.  

I. Epifluorescence micrograph of an oral disc papilla labeled with acetylated 

tubulin. A nerve fiber is located in the lamina propria. 

J. Epifluorescence micrograph of tail papillae labeled with acetylated tubulin. Many 

bright fibers are located near the base and the tip of each papilla.  

K. Epifluorescence micrograph of an oral disc papilla labeled with 5-HT. No labeling 

is present in this papilla.  

L. Epifluorescence micrograph of a tail papilla labeled with 5-HT. A bright fiber 

runs is located in the lamina propria of the papilla.   
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Chapter 4: THESIS SUMMARY 

The objectives of this thesis were to study the distribution, neuroanatomy and 

biochemical characteristics of the sea lamprey solitary chemosensory cells that make up 

the diffuse chemosensory system in the hopes of understanding the function of lamprey 

SCCs, their involvement in life history behaviours, and to compare aspects to SCCs in 

derived vertebrates.  

In the chapter 2, gill pore SCCs were examined across the life cycle of the sea 

lamprey using SEM and immunohistochemistry techniques.  Spawning adult stage 

individuals possessed abundant SCCs compared to that of larval, metamorphic, juvenile, 

and pre-ovulated/pre-spermiated adult stage lampreys. Since adults (specifically 

spawning stage individuals) possessed more SCCs than younger age classes, it is 

postulated that the diffuse chemosensory system may be used for behaviours that occur 

later in life, such as migrating and spawning, as these adults are not feeding and are 

investing valuable energy into developing this chemosensory system. Prominent 

calretinin, 5-HT and phospholipase C labeling was present within SCCs double labeled 

with phalloidin and acetylated tubulin-immunoreactive fibers approached the base of 

these cells. This was the first report of phospholipase C labeling within non-mammalian 

SCCs and indicated that lamprey SCCS may use a conserved IP3 mediated transduction 

cascade like mammalian SCCs (Saunders et al., 2014) and olfactory sensory neurons 

(Hansen et al., 2003). Calretinin and 5-HT patterning showed homology to the lamprey 

taste system and to that of other vertebrate SCCs (Barrerio-inglesias et al., 2008C, 

Hansen et al., 2014; Saunders et al., 2014). 
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In chapter 3, oral disc and tail papillae were examined across age classes to 

understand how the diffuse chemosensory system varies based on the locations of SCCs 

along the surface of the body. Papillae were present in juvenile, pre-ovulated/pre-

spermiated adult stage and spawning adult stage lamprey but were absent during larval 

and metamorphic stages. Similar to chapter 2 studying the gill pores, adult lamprey 

possessed abundant SCCs on these papillae compared to younger stages. In the adults, 

these papillae were also shown to be innervated. Based on the distribution of SCCs being 

most abundant during the spawning adult stage and based on behaviours such as oral disc 

latching on to rocks during nest building and during spawning and tail movements 

possibly for water sampling (like the SCCs of the rockling’s undulating dorsal tail fin), it 

is postulated that locations of SCCs on papillae in the mouth, gills and tail may serve 

various purposes for migratory and reproductive behaviours by collecting and relaying 

separate spatial chemosensory information to specific cranial and spinal nerves that 

project to different areas in the brain.   

The sea lamprey, a basal lineage vertebrate, represents a phylogenetically ancient 

component of this diffuse chemosensory system which still exists in modified forms in 

higher vertebrates. In rocklings, SCCs are located on their dorsal fin and function for 

prey/predator detection (Kotrschal et al., 1993, 1998; Peters and Kotrschal, 1987), and in 

sea robins it functions during foraging behaviours (Bardach and Case, 1965; Kotrschal, 

1995), in mammals (rodents) airway SCCs function to initiate a protective reflex against 

bitter irritants and toxins (Finger et al., 2003, Saunders et al., 2014). SCCs have also been 

shown in alligator nasal cavities (Hansen, 2007), and cow laryngeal taste buds (Tizzano 
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et al., 2006).  All these locations seem to be for collecting chemosensory stimuli 

important for influencing behaviour and survival.  

The sea lamprey has been shown to have olfactory-mediated locomotor responses 

from stimulation by odours and pheromones in the water (Derjean et al., 2010; Daghfous, 

2012). This sensory-locomotor process has been exploited against the lamprey by 

applying male released pheromones to lure females into traps for population control 

management (Johnson et al., 2009). A juvenile parasitic sea lamprey can eat about 40 lbs 

of fish in their short feeding period (Applegate, 1950), which has a large effect on the 

fishing industry in the Laurentian Great Lakes. The mechanisms underlying the diffuse 

chemosensory systems responses to stimuli and whether it also induces a locomotor 

response are still poorly understood and more research is needed. This knowledge could 

then be used for stronger population control methods by making more effective traps that 

function by affecting multiple chemosensory systems that would benefit not only the 

ecosystem but also the economy. 

This study is the first to look at SCCs across the lamprey lifecycle and to show 

localization of phospholipase C to non-mammalian SCCs (mammalian SCCs: Saunders et 

al., 2014), indicating that lamprey SCCs may also utilize an IP3 mediated transduction 

cascade. Knowledge of the diffuse chemosensory system in lamprey aids in 

understanding chemosensory stimuli detection and its influences on behaviours, which 

could be put to use in lamprey population management strategies. Future work could look 

at physiological and behavioural responses to stimulatory substances of spawner sea 

lamprey SCCs, specifically gill pore SCCs as chapter 2 data has shown that SCCs are the 

most abundant at that location compared to oral disc and tail locations. Additional 
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experiments on the biochemical characterization of SCCs could be performed to elucidate 

the neurotransmitter involved in fish SCCs synapses and to study the genome of the 

lamprey to probe for protein involved in the SCC transduction pathway. 
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APPENDIX A: Protocols and solutions 

Scanning electron tissue preparation 

5% Gluteraldehyde fixative (also known as modified Karnofsky’s fixative) 

Stock solution of sodium cacodylate 

((CH3)2AsO2Na · 3H2O;  MW = 214.03) 

0.2M Sodium cacodylate 

Dissolve 4.28 g / 100 mL deionized water 

0.1M Sodium cacodylate buffer 

Mix 50 ml 0.2M sodium cacodylate with 50mL deionized water 

 

Gluteraldehyde fixative (for 100mL’s) 
50mL 0.2M sodium cacodylate 

20mL 25% Gluteraldehyde  

30mL deionized water 

 

1) Add 50mLs 0.2M sodium cacodylate to a flask with a stir bar 

2) Add the gluteraldehyde  

3) Pore some of the water into the empty gluteraldehyde tinctures. Use a glass transfer 

pipette to remove all water and gluteraldehyde residue and add to the flask. Pour 

remaining water into the flask. 

4) Mix for several minutes  

 

Osmium Tetroxide, 2% in 0.1M cacodylate buffer 

Stock 4%, 250mg OsO4  

Safety protocols should be followed with notices put on doorways and fume hoods. 

Double nitrile gloves should be worn with fume-resistant goggles. 

1) Run ampule under warm water to melt crystals 

Solution should be made in a glass container big enough for the ampule to fit in and a 

strong screw lid. This container should fit into a secondary container. (preferably a brown 

glass bottle) 

2) Open ampule carefully and pore stock osmium and glass ampule into 6.25 mL 

ultrapure water 

 

3) Cover tightly and put in a secondary container away from light. Leave overnight to 

dissolve. 

4) Add 7 mL 0.2M sodium cacodylate, and mix well. 
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Tissue preparation for Scanning Electron Microscopy 

1) Tissue should be fixed in gluteraldehyde fixative. Selected tissues should be cut 

and prepared to fix on a metal stub. Tissue should be transferred to individual 

vials that are tall with a small diameter and posted fixed for 1-2 days. 

2) Gluteraldehyde is removed from vials and 0.1M sodium cacodylate buffer added 

to remove residual fixative 

3) The Buffer is removed and 0.1M 2% Osmium is added to just cover the tissue 

sample. This is left on ice for an hour, checking every 20 minutes. 

4) Samples are removed from ice and left for another hour, checking for forming 

precipitate, (indicating an air leak in the snap lid) 

5) The osmium is removed and emptied into a container for proper disposal. 50% 

ethanol is added to the top of the vial, samples must be kept submerged in ethanol 

after this point 

6) 50% ethanol is removed after 10 minutes and 70% ethanol is added for 20 

minutes 

7) 70% ethanol is removed after 20 minutes and 85% ethanol is added for 20 

minutes 

8) 85% ethanol is removed after 20 minutes and 95% ethanol is added for 20 

minutes 

9) 95% ethanol is removed after 20 minutes and 100% ethanol is added for 20 

minutes 

10) Four changes of 100% ethanol every 20 minutes 

 

Samples were transferred to labeled microporous specimen capsules in 100% ethanol and 

taken to the University of Western Ontario, London, ON. Tissue was critical point dryed 

and placed onto metal stubs to be gold sputter coated, this made the tissue conductive. 

The samples were then stored in air tight containers with dririte until imaged at GLIER at 

the University of Windsor, on an Environmental SEM. 

Immunohistochemistry 

 

Phosphate Buffer (PB) and Phosphate Buffered Saline (PBS) and Phosphate Buffered 

Saline with Triton X-100 (PBS-T)  

Make stock solutions of sodium phosphate monobasic (NaH2PO4 . H2O; MW = 137.99) 

and sodium phosphate dibasic anhydrous (Na2HPO4; MW = 141.96) 

0.2 M Sodium Phosphate Monobasic 

Dissolve 27.6 g into 1 L of deionized water 

0.2 M Sodium Phosphate Dibasic 

Dissolve 28.4 g into 1 L of deionized water 

0.2 M PB: 

Mix 190 mL of sodium phosphate monobasic and 810 mL of sodium phosphate dibasic 

for pH 7.4 
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0.1 M PB: 

Add 500 mL of deionized water to 500 mL of 0.2 M PB 

0.1 M PBS: 

Add 8.0 g NaCl and 0.2 g KCl to 1 L of 0.1 M PB 

 

Add 1g NaN3 per 1 L solution 

0.1 M PBS-T: 

Add 1 mL of Triton X-100 to 1 L of 0.1 M PBS 

4% Paraformaldehyde (PFA) for 250 mL 

55 mL deionized water 

10 g paraformaldehyde 

1) Add PFA to deionized water 

2) Heat to approximately 55 °C and stir solution for 10 minutes, then clear by adding 

NaOH chips (approximately 1 chip) while stirring. Add 5 M NaOH dropwise until 

clear 

3) Solution is clear when dissolved 

4) Cool solution (on ice if desired) to 10°C 

5) Bring volume up to 125 mL by adding 70 mL of distilled water 

6) Bring volume up to 250 mL by adding 125 0.2 M phosphate buffer 

7) Check pH using pH strips and adjust to 7.4 

 

Acetylated Tubulin Immunocytochemistry Protocol as a general label of neural tissue 

Adapted from: Frontini, 2002 (MSc Thesis) 

1) Rehydrate slides in 0.1M PBS with 0.1% Triton X-100 for 30-40 min 

2) Incubate in primary antibody: monoclonal mouse anti-acetylated tubulin  

(6-11B, Sigma) 1/1000 in 0.1 M PBS plus 0.1% sodium azide at 4 °C for two 

days 

3) Wash 3x in 0.1 M PBS for 20 min each 

4) Incubate in secondary antibody: Alexafluor 488 antimouse IgG (A11001, Life 

Technologies Inc) diluted 1/100 in 0.1 M PBS plus 0.1% sodium azide overnight 

at 4 °C 

5) Wash 3x in 0.1M PBS for 20 min each 

6) Coverslip with Vectashield Hardset Mounting Medium or Vectashield Mounting 

Medium with dapi to label nuclei. 

 

Calretinin and Phospholipase C Protocol: Probes to label SCCs 

Adapted from: Barreiro-Iglesias et al., 2008C; Hansen et al., 2014 

1) Rehydrate sections in 0.1M PBS plus 0.1% Triton X-100 4 times for 30 minutes 

each 

2) Block with 5%  Goat Serum in 0.1M PBS-T  for 2 hours 
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3) Incubate with  Calretinin polycolonal antibody produced in goat and rabbit 

(7699/3, 7697, Swant) OR Phospholipase C antibody (Jane Mitchell, U of 

Toronto) at 1/1000 in 0.1 M PBS plus 0.1% sodium azide in keeper at 4°C on 

shaker for 3 days  

4) Rinse five times (48 min each) in PBS at 4°C on shaker 

5) Incubate with goat antirabbit Alexafluor 568 IgG (A11011, Life Technologies Inc) 

diluted 1/200 in 0.1 M PBS plus 0.1% sodium azide overnight-to-two days at 4°C 

in keeper on shaker. 

6) Rinse five times (48 min each) in PBS at 4°C on shaker 

7) Coverslip with Vectashield Hardset Mounting Medium or Vectashield Mounting 

Medium with dapi to label nuclei. 

 

5-HT Protocol: Probe for serotonin-immunoreactive cells and fibers 

Adapted from: Frontini et al., 2003 

1) Rehydrate sections in 0.1M PBS 10 minutes 

2) Wash in acetone for 10 minutes at -20°C 

3) Wash in 0.1M PBS for 10 minutes 

4) Block with 10%  Goat Serum in 0.1M PBS plus 0.1% sodium azide for 30 minutes 

on a shaker 

5) Incubate with 5-HT polyclonal antibody (20080, Immunostar) at 1/5 000 in 0.1 M 

PBS-T plus 0.1% sodium azide in keeper at 4°C on shaker for three days. 

6) Rinse three times (20 min each), then two times (1 hour) in PBS at 4°C on shaker 

7) Incubate with goat antirabbit Alexafluor 568 IgG (A11011, Life Technologies Inc) 

diluted 1/200 in 0.1 M PBS plus 0.1% sodium azide for overnight at 4°C in keeper 

on shaker 

8) Rinse three times (20 min each), then two times (1 hour) in PBS at 4°C on shaker 

9) Coverslip with Vectashield Hardset Mounting Medium or Vectashield Mounting 

Medium with dapi to label nuclei. 
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APPENDIX B: Tables and graphs 

 

Table 1. Sample information from all specimens used in thesis. 

(Abbreviations: SPMM spawner migrant male, SPMF spawner migrant female, SPIM 

spawner immature male, SPIF spawner immature female, MM migrant male, MF migrant 

female, SM spawner male, SF spawner female). Note: transformer is a metamorphic 

stage, parasite is a juvenile stage, and spawner 1 and 2 are both ovulatory/spermiating 

stage lamprey. 

Age Class Date fixed/ 

Dissected 

Weight (g) Length cm 

Spawner 1 2013   

Parasite    

Transformer 1 22-May-14 3.9g 14.5cm 

Transformer 2 23-May-14 4.30g 15.5cm 

Spawner 2 18-Jun-14 426.6g 48cm 

    

SPMM1 28-Jun-14 358.7 53.5 

SPMM2 28-Jun-14 255.3 49.7 

SPMM3 28-Jun-14 254.4 48.2 

SPMM4 28-Jun-14 165.5 43.3 

SPMM5 28-Jun-14 289.2 50.5 

SPMM6 28-Jun-14 269.7 50 

    

SPMF1 28-Jun-14 256.3 49.7 

SPMF2 28-Jun-14 266.3 46.5 

SPMF3 28-Jun-14 276.9 50 

SPMF4 28-Jun-14 70.8 32 

SPMF5 28-Jun-14 162.9 42.2 

SPMF6 28-Jun-14 X 45.5 

    

SPIM1 28-Jun-14 212 47.5 
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SPIM2 28-Jun-14 235.1 48.5 

SPIM3 28-Jun-14 161.6 45 

SPIM4 28-Jun-14 227 39.5 

SPIM5 28-Jun-14 158.7 40.3 

SPIM6 28-Jun-14 270.1 54 

    

SPIF1 28-Jun-14 241.4 48 

SPIF2 28-Jun-14 215.4 48 

SPIF3 28-Jun-14 283.7 54 

SPIF4 28-Jun-14 158.5 39.5 

SPIF5 28-Jun-14 294.2 54 

SPIF6 28-Jun-14 160 46.5 

    

Larvae 1 28-Jun-14 X X 

    

Parasite 1 

(Male) 

23-Oct-14 187.5 48.5 

Parasite 2 

(Male) 

27-Oct-14 85.3 39 

    

MM1 May 13 2015 204.5 46.5 

MM2 May 13 2015 181 42.5 

MM3 May 13 2015 231.9 50 

MM4 May 13 2015 253.8 54 

MM5  May 14 2015 213.5 51.5 

    

MF1 May 13 2015 192.4 43.4 

MF2 May 13 2015 280.5 52 

MF3 May 13 2015 248.3 50 

MF4 May 13 2015 193.2 48.5 

MF5 May 14 2015 120.5 42 
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SM1 June 8 2015 165 38.3 

SM2 June 8 2015 171 39.5 

SM3 June 8 2015 175.7 43 

SM4 June 8 2015 288 47.5 

    

SF1 June 8 2015 X X 

SF2 June 8 2015 165.1 44 

SF3 June 8 2015 182.5 43 

SF4 June 8 2015 156.6 43 

 

 

      

Parasite 1 

(male) 

Dec 3 2015 72g 33 

Parasite 2 

(male) 

Dec 3 2015 79g 38 

 

 

Table 2. Papillar SCC density in the gill pore of captured and maturated spawning stage 

sea lamprey (2014).  

First Field season 2014 - Sexually immature male and female sea lampreys were 

captured in traps from Lake Huron tributaries (United States Fish and Wildlife Service, 

Marquette, Michigan, USA) and held in 1000 L tanks supplied with Lake Huron water at 

ambient temperature at United States Geological Survey, Great Lakes Science Center, 

Hammond Bay Biological Station, Millersburg, Michigan, USA.  Immature sea lampreys 

were placed in cages (1 m
3
) to mature in the Ocqueoc Rivers, Michigan, USA, and 

checked daily.  Females were termed “ovulated” if eggs were released after manual 

pressure to the abdomen. Males were termed “spermiated” if they had a thick connective 

tissue dorsal rope and if milt was released after manual pressure. Ovulated females and 

spermiated males were removed from in-stream cages and returned to Hammond Bay 

Biological Station. Immature lamprey held in 1000L 10°C tanks and Ocqueoc river 

maturated lamprey were then collected and brought to the University of Windsor for 

experimental use. 
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Immature males and females possessed more variation within their groups than mature 

males and females. Mature females possessed the most abundant amount of SCCs. 

describe the experiment.  

   Group          Weight (g)        Length (cm)     Number of SCCs / 45µm
2
 Group Average 

Immature 

captured males 

212 47.5 1, 5, 8     

  235.1 48.5 10, 19, 28  13   

  158.7 40.3 11, 15, 20     

        

Maturated 

spawning  

Males 

358.7 53.5 11, 14, 28     

  255.3 49.7 17, 24, 32  21.89   

  289.2 50.5 21, 23, 27     

        

Immature 

captured 

females 

241.4 48 6, 10, 17     

  215.4 48 6, 8, 12  14.33   

  294.2 54 14, 25, 28     

        

Maturated 

spawning 

females 

276.9 45.5 20, 29, 29     

  266.3 46.5 22, 23, 26  23.11   

  162.9 42.5 18, 20, 21     



 

92 
 

 

 

0

5

10

15

20

25

30

35

SP
IM

 1

SP
IM

 2

SP
IM

5

SP
M

M
1

SP
M

M
2

SP
M

M
5

SP
IF

 1

SP
IF

2

SP
IF

5

SP
M

F6

SP
M

F2

SP
M

F5

Immaure Male Mature Male Immature Female Mature Female

N
u

m
b

e
r 

o
f 

O
lig

o
vi

llo
u

s 
ce

lls
 c

o
u

n
te

d
 in

 a
 4

5
X

4
5
μ

m
 a

re
a 

Papillar Oligovillous Cell Density (2014) 

Area
Count

Group
Average

0

5

10

15

20

25

30

35

MM2 MM3 MM4 SM2 SM3 SM4 MF2 MF3 MF4 SF2 SF3 SF4

Migrant Males Spawning Males Migrant Females Spawning
FemalesN

u
m

b
e

r 
o

f 
O

lig
o

vi
llo

u
s 

ce
lls

 c
o

u
n

te
d

 in
 a

 4
5

X
4

5
μ

m
 a

re
a 

Sex and sexual maturity 

Papillar Oligovillous Cell Density (2015) 

Area
Count

Group
Average



 

93 
 

Graph 1 and 2. Papillar oligovillous cell density counts from 2014: artificially maturated 

individuals and 2015: collected sexually immature migrants and sexually mature 

spawning lamprey. Three gill pore papillae per individual were counted for number of 

oligovillous cells/SCCs present in a 2025 µm
2 

area. This was repeated for three 

individuals in each group, being defined by sexually maturity status and sex. These were 

then averaged to calculate the “group average”. In both data sets, the mature females 

possessed the most abundant amount of cells counted; females also possessed more cells 

on average than males, regardless of sexual maturity status. 

 

 

 

Graph 3. Gill pore papillae oligovillous cell density group averages from 2014: 

artificially maturated individuals and 2015: collected sexually immature migrants and 

sexually mature spawning lamprey. Mature females possessed the most abundant amount 

of SCCs compared to males and immature females. This was found both in the artificially 

maturated groups from 2014 and the actual migrants and spawning adults from 2015. In 
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2014 adult lamprey that had been previously captured were placed back into the Ocqueoc 

River to become sexually mature while the rest were held at a constant temperature which 

stops maturation. This is contrasted by 2015 samples where actual migrating lampreys 

from the deep lakes to the streams and rivers were collected and the following month 

sexually mature lamprey were collected directly from spawning nests.   



 

95 
 

APPENDIX C: Figures 

 

Figure 1. Phosopholipase C labeling and negative controls of spawner gill pore papillae.  

A: Merge of phalloidin labeling in green (A’) and phospholipase C labeling in magenta 

(A’’). 

B: Negative control. The phospholipase C antibody omitted to check for non-specific 

binding from the secondary antibody.  

B’: Negative control. The secondary antibody anti-rabbit Alexa Fluro 568 was omitted to 

check for non-specific binding from the phospholipase C antibody.  

Both show no labeling indicating that the labeling seen in A’’ is specific. 
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APPENDIX D: 5-HT preadsorption experiment for antibody specificity in gill 

papillae 

 INTRODUCTION 

 Immunohistochemistry utilizes antibodies conjugated to antigens as a method of 

visualizing traits within sectioned or whole mount preparations. A preadsorption control 

is performed to verify that experimental labeling is specific to the antigen in question. 

The antibody being tested is fully saturated with its antigen before following 

immunolabeling  protocols. A standard protocol is also performed as a control with the 

same dilution of antibody used in the preadsorbed solution. 

 MATERIALS AND METHODS 

Antibody preadsorption and preparation 

(This protocol is in part adapted from Paulk et al., 2009. Color processing in the medulla 

of the bumble bee (Apidae: Bombus impatients). J Comp Neuro. 513(6):441-456.) 

A 5-HT immunohistochemistry was prepared as a positive control for 5-HT 

labeling and a 5-HT preadsorbed with 5-HT solution was made to test for antibody 

specificity within tissue samples.  

We thawed out a 5µl aliquot of 5-HT antibody (lyophilized whole serum, 

Immunostar, 20080). To prepare a 1/5000 anti-5-HT positive control solution, 1 µl of 5-

HT antibody was added to a plastic keeper with 5000 µl PBS plus 0.1% sodium azide and 

labeled as ‘5-HT control’. The preadsorbing solution was prepared in a 1.5 ml autoclaved 

Eppendorf tube by adding 1µl 5-HT antibody to 5 mg 5-HT (Sigma, H-9523) and 500 µl 

PBS plus 0.1% sodium azide and labeled as ‘5mg 5-HT preadsorbed’.  This solution was 
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vortexed and allowed to incubate at room temperature on a shaker for 1 hour, then 

transferred to a shaker at 4°C overnight. The preadsorbed 5-HT solution was spun down 

at 14 500 RPM for 20 minutes at 4°C. The supernatant was collected and added to a 

plastic keeper with 4500 µl PBS plus 0.1% sodium azide.  

Labeling protocol 

Cryostat sections were collected from a spawner gill pore and prepared according 

to a 5-HT protocol adapted from Frontini et al. (2003). Briefly, slides were washed with 

PBS for 10 minutes, then 10 minutes in actone at -20°C followed by another PBS wash 

for 10 minutes at 4°C. Slides were blocked in a 10% goat serum in PBS for 30 minutes 

on a shaker at 4°C, then incubated on a shaker at 4°C in either the positive control 5-HT 

1/5000 keeper or the 5mg 5-HT preadsorbed keeper overnight. Slides were washed in 

PBS for 2 hours then incubated in goat antimouse Alexafluor 568 IgG (Life Technologies 

Inc) diluted 1/200 in 0.1 M PBS plus 0.1% sodium azide overnight at 4°C on shaker. 

Slides were washed for a final time and coverslipped with Vectashield mounting 

medium.  

 

RESULTS 

 Bright labeling was observed in both 5-HT immunoreactive fibers present in the 

connective tissue layers of the gill pore (Fig. 1A) and within SCCs on cross-sectioned 

papillae (Fig. 1B). In contrast to the control labeling, the 5mg preadsorbed slides showed 

no bright labeling in either the connective tissue layer (Fig. 1C) or in the cross-sectioned 

papillae (Fig. 1D). 
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DISCUSSION 

 The purpose of this control is to show that the labeling observed in a standard 

protocol is due to the antibody binding to its antigen. The 5-HT antibody preadsorbed 

with the 5-HT antigen showed no bright labeling indicating that most of the antibody was 

already bound to its antigen and did not bind to the antigen present within the tissue 

sample. This verifies that the labeling observed in Figure 1A and B is from the antibody 

binding to the proper antigen present within the tissue and not non-specific binding to 

another antigen. 

 

Figure 2. 5-HT pre-adsorption control of spawner gill pore and SCCs. 

A. Positive control of 1/5000 5-HT antibody in PBS  immunolabeling protocol of the 

middle of a spawner gill pore. The structure in the center is the central process 
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and beneath that there are bright 5-HT immunoreactive fibers seen in white. 

Epifluorescence microscopy 

B. Positive control 5-HT standard immunolabeling protocol of a cross-section of the 

tip of a papilla. Bright 5-HT immune-reactive cells can be seen along the 

periphery. Confocal microscopy 

C. 1/5000 5-HT antibody in PBS preadsorbed with 5mg 5-HT antigen tested on a 

spawner gill pore. The same view seen in A is shown in C, where the beneath the 

central process has no white brightly labeled fibers.  

D.  1/5000 5-HT antibody in PBS preadsorbed with 5mg 5-HT antigen tested on a 

spawner gill pore papilla cross-section. Almost no labeling is seen within the 

micrograph of a similar area to that shown in B.  
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Appendix F: Copyright permissions 

Figures permissions 

Figure 1.1 
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neurotransmission links solitary chemosensory cells to nasal inflammation. PNAS16: 6075-
6080"  
 
I have properly cited and referenced the article both within the section and in the references. 
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- Tina Suntres 
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2008, a copyright note is not needed. There is no charge for this material, either. Let us know 
if you have any questions.  

Best regards, 

Kay McLaughlin for Diane Sullenberger 
Executive Editor 
PNAS 

 
 

 



 

101 
 

Figure 1.2  
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Figure 1.3 
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