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ABSTRACT 

Plasma transferred wire arc (PTWA) process was employed to deposit wear resistance 

coating (approximate 240 μm) on the aluminum engine bore surface. The PTWA coating 

has a lamellae structure with splats, pores, oxides, and unmelt particles. The volume 

fraction of porosity was 5.8 %.  

The coated bore was subjected to non-firing floating-liner test. Cast iron bore was 

tested for comparison purposes. The friction force of the coated engine bore was recorded 

lower than that of cast iron engine bore.  

The surface and cross-sectional microstructural analysis was performed at TDC and 

mid-stroke after the engine tests. The unworn region (virgin) was analyzed for comparison 

to determine the wear mechanisms. Abrasive wear and splat delamination contributed the 

wear of aluminum engine bore with the PTWA coating.  Adhesion tests were performed on 

virgin part. A cohesion strength of 19.51 MPa and a adhesion strength of 29.03 MPa were 

recorded. 
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CHAPTER 1 INTRODUCTON 

The development of lightweight internal combustion aluminum-silicon engines 

represents one of the most significant technological developments in the automotive 

industry because, when compared to traditional cast iron engines, they are lighter and 

consume less oil. Using cast aluminum alloys components to replace the traditional cast 

iron components has become increasingly popular and replacing cast iron with aluminum 

for engine cylinder blocks has the potential for a sizable reduction in block weight: up to 45% 

[1]. However, limitations such as low wear resistances, low Young’s modulus, low tensile 

strength and low hardness prevents the further application of cast aluminum parts in 

moving components [2]. In order to provide a suitable cylinder running surface, thick coats 

are applied to the engine bore surface. Coatings improve functional performance by 

allowing higher exposure temperature. They are referred to as thermal barrier coatings. 

The application of thermal barrier coatings can extend component life significantly by 

improving the wear resistance property of the engine bore surface. Various technologies 

are currently employed to provide coatings on the engine bore surface; however, few of 

them can reduce the overall cost while significantly improving wear resistance property at 

the same time. Thermal spray coating deposition technologies have found their way into 

the automotive industry and are common and have an expanding variety of uses because of 

their low cost and high compatibility. Thermal spray coating deposition technologies can 

deposit thick coatings ranging from 20 micrometers to several millimetres [3] on a large 
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area at high deposition rate, which gives them an advantage over other coating deposition 

processes, such as electroplating, physical vapour deposition and chemical vapour 

deposition. The coating materials employed in thermal spray deposition process include 

metals, alloys, ceramics, plastics and composites.  

Plasma transferred wire arc (PTWA) process is one of the most commonly used 

thermal spray process. PTWA is a wire based rotating spray process with a combination of 

plasma spray process and twin wire arc spray process.   

This thesis studies the performance and the wear mechanisms of plasma transferred 

wire arc (PTWA) coatings applied on engine bore. Plasma transferred wire arc (PTWA) 

deposition was employed to deposit wear resistant coatings on the aluminum engine bore 

surfaces to improve the tribological properties of the engine bore surface. The aluminum 

engine with the PTWA steel coating was investigated to provide a detailed metallographic 

characterization of the PTWA coating. The surfaces and cross sectional microstructure after 

non-firing floating-liner tests were analyzed to characterize the wear mechanisms. The 

adhesion strength of the PTWA coating was also evaluated. The surfaces and cross 

sectional microstructure of a cast iron engine bore were investigated under the same 

conditions as a comparison. The adhesion strength of a PTWA coating on BWM engine bore 

was investigated for comparison. 

This thesis contains six chapters. Chapter one gives an introduction for this research. 

Chapter two focuses offers a literature review on PTWA coating deposition process and the 

properties of the PTWA coating. The relevant literatures on the internal combustion engine 
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theory, scuffing behaviour of internal combustion engines and the wear mechanism of 

thermal spray coatings are also reviewed. 

Chapter three illustrates the materials and experimental procedures employed in this 

work. The experimental procedures that characterize the microstructures and the 

mechanical properties of the PTWA coatings are presented. 

Chapter four describes the results. The surface roughness and porosity analysis of 

tested PTWA coatings after the non-firing floating-liner tests as well as the non-firing 

floating-liner tests results are presented, followed by microstructural analysis of unworn 

and worn region. The adhesion test results are also displayed.  

Chapter five discusses the experimental observations. The sliding behaviours of PTWA-

A coating engine bore in comparison with cast iron engine bore are discussed to 

characterize the relationship between the microstructures and wear mechanisms of PTWA 

coatings.  

The conclusions and suggestions for future work are given in Chapter six.  
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CHAPTER 2 LITERATURE SURVEY 

In this chapter, the existing literature on the introduction of plasma transferred wire 

arc thermal spray coating deposition technology; the parameters influenced the coating as 

well as the microstructure of coating are reviewed. Also, the wear mechanisms and failure 

modes of thermal spray coating are studied. At last but not least, a review of wear of 

internal combustion engines is also given because the thermal spray coatings are 

developed for the engines to reduce the weight while keep the wear resistance.  

2.1 Plasma transferred wire arc thermal spray coating deposition 

process 

2.1.1 General introduction of thermal spray coating deposition 

processes 

Thermal spray coating deposition technology is a way to offer an effective thick or thin 

coating upon the surface to change the properties of the surface. Thermal spray is a generic 

term for a group of coating processes where the coating is deposited on a prepared 

substrate by applying a stream of particles, metallic or nonmetallic, which flatten more or 

less to form platelets, called splats. With several layers of these splats the coating formed 

[4]. The droplets would adhesion to the prepared surface, overlap and interlock when 

solidifying during impacting. The final thickness of coating can be built up through multiple 

passes of the coating device.  
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In 1911, M.U. Schoop of Switzerland [5] first invented the flame spray. He and his 

collaborators made the thermal spray able for commercial and started the investigation of 

thermal spray processes. Schoop recognized the importance of the droplet velocity and 

temperature on the coating [5]. Later in 1962, plasma spray was studied by R.M. Gage, O.H. 

Nestor and D.M. Yenni [6]. Till now, many researchers studied the thermal spray coating 

deposition technologies. Figure 2-1 [7] showed milestones in the development of the 

thermal spray industry.  

 

Figure 2-1 History a of thermal spray industry [7] 

There are many advantages of thermal spray coating processes. Almost any material 

that melts without decomposing can be used in thermal spray processes [8]. The second is 

that recoating the damaged surface would not change the properties of coating in most 

cases [9]. Another advantage is that even high melting point materials can also be applied 

to finely machined and heat-treated parts without changing the properties [6].  

Choosing thermal spray techniques for applications according to a specific condition is 

complex. Figure 2-2 [10][11] illustrated the industrial applications of thermal spray. The 

main use of thermal spray coating deposition technologies is offering a protective surface 
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showing properties of wear resistance, corrosion resistance, thermal insulation and 

electrically conductive on aerospace, automotive, power and chemical industries 

[8][9][11][12].  The wear resistant coatings and corrosion resistant coatings are usually used 

to against erosion, abrasion, cavitation wear, galling, fretting and friction. Coatings can also 

achieve protection against high-temperature corrosion or oxidation. As listed, thermal 

spray coating deposition technologies are widely used to reduce the cost while improve the 

properties of the surface. 

 

Figure 2-2 Industrial applications of thermal spray technology in Europe in 2001[10] 

The working principle of thermal spray processes is that a heat source melts the 

feedstock in powder, wire, rod or cord form and then process gases accelerate the molten 

material or semi-molten material onto a prepared base material. At last the droplets would 

rapidly solidify and form a solid thin layer adhering to the top of the prepared base material. 

The formed thin layer would be impinged by the next droplets repeating the processes. 

Thus all the droplets are built up and a well bonded deposit is formed on the top of the 

base material. The Figure 2-3 shows the principle of thermal spray [13].  
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Figure 2-3 Principle of thermal spray process [13] 

There are various types of thermal spray coating techniques, such as plasma spraying, 

detonation spraying, wire arc spraying, flame spraying, warm spraying, cold spraying and 

high velocity oxy-fuel. Spray torch, feeder, media supply, robot, power supply and control 

system are the main components in thermal spray process. Spray torch is the device that 

contains a combustion chamber used for melting and accelerating coating material. Feeder 

is used to preheat and supply the powder, wire or liquid to the torch. Media supply 

provides gases or liquids for combustion and carrying coating material. Robot manipulates 

the spray torch or substrate. Power provides electricity for the equipment and the control 

system connects all the mentioned components. Materials without decomposing during 

melting can be sued for thermal spray coatings. The feedstock can be in wire or powder 

form depending on the required processes. Polymers and glass are used for powder spray 

processes. Refractory glass has been flame sprayed onto stainless steel where it formed 

hard, uniform and well-adherent coatings [4]. Among alloys the most popular is Ni–Cr for 

which adherence is very high on stainless steel substrates and is not affected by thermal 
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fatigue. Ceramics are also used to introduce the ceramic coatings. But ceramic coatings are 

not the strongest point of High velocity oxy fuel thermal spray process because the process 

is more prone to achieve high velocities than high temperatures. Titania is well melted in 

processes working with propylene. Alumina is mostly sprayed with chromia, which allows 

stabilizing the phase and it is suggested that sintering can play a role with good adhesive 

and cohesive coatings [4]. In Table 2-1 [13], some of the most frequently used classes of 

materials are listed, along with a typical example, characteristics and sample applications. 

Choosing a suitable material for specific applications requires special knowledge about the 

service environment as well as knowledge about the materials. Many factors such as 

coefficient of expansion, density, heat conductivity and melting point, additional factors, 

such as particle shape, particle size distribution and manufacturing process of powder 

material will influence coating performance. 

Table 2-1 Powder materials used in actually thermal spray application [13] 

Material class Typical alloy Characteristics  Example application 

Pure metals Zn Corrosion protection Bridge construction 
Self-fluxing alloys FeNiBSi High hardness, fused 

minimal porosity 
Shafts, bearings 

Steel Fe 13Cr Anti-fretting Repair 
MCrAlY NiCrAlY Oxidation resistance, high 

hardness 
Gas turbine blades 

Nickel-graphite Ni 25C Wear resistance Compressor inlet ducts 

2.1.2 Plasma transferred wire arc process 

Plasma transferred wire arc (PTWA) coating process was developed in order to 

increase fuel efficiency, automakers are placing emphasis on decreasing overall vehicle 
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weight as well as improving engine efficiency by reducing internal friction losses by Flame-

Spray Industries and Ford Motor Company [14]. It is a wire based rotating spray process 

with combination of plasma spray process and twin wire arc spray process.  

The plasma spray process is a thermal spray process in which arc generating plasma 

within a plasma torch works as a source of heat ionizing gas and melting the coating 

material, in-flight and propels it to the work piece. Plasma is an electrically neutral state 

resulting from the ionization of gas. It is composed of same amount of ions and electrons. 

The direct current arc struck between the cathode and the anode nozzle of the torch can 

increase the temperature to the required level [15]. The plasma gases which are usually Ar, 

H2, He, or N2 are injected at the base of the cathode and heated by the arc. When the gas 

temperature reaches 7,000–8,000 K at atmospheric pressure, the thermal plasma will 

happen to ionize the plasma gases into the equilibrium mixture of ions and electrons, then 

exits the nozzle as a high temperature, high velocity jet. Thus the molten droplet will be 

accelerated towards the substrate by plasma and propellant gases. Figure 2-4 [7] is a 

schematic representation of plasma spray process. The plasma spray process is able to 

provide sufficient energy to melt almost any coating feedstock materials because the 

temperature in plasma spray process can reach as high as 15,000 °C [6], significantly above 

the melting point of any known material. Repeatable and predictable coating results can be 

obtained due to the accurately regulated gas flow and the applied current. Additionally, the 

shape and bore size of the nozzle, the point and angle that the material is injected into the 

plume, as well as the distance of the gun to the target surface are controlled, the 
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reproducible parameters for materials can be developed flexibly. But provisions for cooling 

or regulating the spray rate such as the distance of the plasma gun from the target 

components, the relative motion of the spray gun and target component to each other, as 

well as part cooling methods may be required to maintain substrate temperatures in the 95 

to 205 °C range [8].  

 

Figure 2-4 Schematic representation of plasma spray process [7] 

The plasma spray system contains a plasma torch, cooling water supply, gas supply, 

power supply, high frequency starter and control unit. The control unit not only adjusts all 

the operating parameters such as arc initiation and current, plasma and carrier gas flow 

rates but also controls safety interlocks to avoid starting the arc without cooling water flow. 

The most central piece of the system is the plasma spay torch. The current flowing through 

the gas causes resistive energy dissipation resulting electric arc generating the high 

temperature plasma. It is reported that [16] the required temperatures for most plasma 

gases are 8,000 K and above at atmospheric pressure to cause ionization. There are 

cathode region, arc column region and anode region inside a plasma spray torch, shown in 

Figure 2-5 [7]. The cooling water supply is assembled by a closed loop of deionized water. 

As the boiling of water has to be avoided and the heat flux in the torch anode is 
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concentrated in a narrow area, the high pressure of the water is required. The water will be 

cooled in a heat exchanger after passing through the torch. About 50 % of the power 

supplied to the torch is carried away by the cooling water [7]. The cooling water is supplied 

to the torch through the power cables connecting the high frequency starter unit to the 

torch. The gas supply includes two or more high pressure gas cylinders with the gas flow 

rates controlled separately in control unit by mass flow controllers and sonic orifices. The 

gases are mixed and introduced into the plasma torch to push the arc root downstream. 

Argon is usually used as this primary gas due to its low energy density and low torch 

erosion rates and hydrogen or helium is used as secondary gas to provide a higher power 

density, gas velocity and the heat transfer rates. A current controlled rectifier works as the 

power supply in plasma spray process. Besides a starting circuit consisting of a high voltage 

transformer and capacitor is employed to initiate the arc breaking down a spark gap. The 

breakdown results in a high induced voltage spike in the power supply circuit leading to a 

breakdown of the arcing gap and initiation of the current flow. The final major component 

of the plasma spray process is the powder supply. A powder hopper is in the powder supply. 

By heating the powder hopper can avoid powder agglomeration and pick-up of moisture. 

The powder flow is controlled by a rotating wheel with a slot mounted at the bottom of the 

powder hopper and transported into the powder supply line is carried to the torch by the 

carrier gas.  
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Figure 2-5 Schematic diagram of a plasma torch [7] 

The wire arc spray process is one of the oldest thermal spray processes patented by 

Schoop MU [5]. Wire arc spray is a thermal spray process in which an arc is struck between 

two consumable electrodes of a coating material, compressed gas is used to atomize and 

propel the material to the substrate. In the process, an arc is formed by contact of two 

oppositely charged metallic wires, which are electrically connected to a power supply. The 

deposition material is introduced as wire and molten and atomized by an electric arc and a 

high-velocity gas flow. The high velocity gas flow between the wires and across the arc 

constantly removes the molten material from the wire tips, breaks down the larger droplets 

into smaller ones in a secondary atomization process and accelerates them toward the 

substrate. The process is shown in Figure 2-6 [7]. Most of the energy in wire arc spray is 

used for melting the metal so that the droplets experience only cooling during their flight to 

the substrate and heat flux of the droplet essentially determines the heat transfer to the 

substrate, which is lower than the heat flux experienced in processes in which a high-

temperature gas flow is used. In this perspective, the low melting point substrates can be 
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coated with this process while for the substrates need preheating to improve the coating 

adhesion would require an additional heat source. 

 

Figure 2-6 Schematic diagram of wire arc spray process [7] 

The thermal spray coatings used for engine bores require special system. The thermal 

spray gun head has to be smaller than the diameter of the engines so that it can enter the 

bore easily to apply the process. Also, rotating the head gun is more preferable rather than 

rotating the engine. Based on those two considerations, the thermal spray system is 

characterized by rotating spindle. In industry manufacturing facilities, using wire is more 

controllable and less costly than using powder. Within all those perspectives, plasma 

transferred wire arc deposition process was invented and applied for the automotive 

industry.  

The head gun mounted to a rotating spindle consists of a tungsten cathode, an air-

cooled pilot nozzle made of copper and an electrically conductive consumable wire as the 

anode in PTWA process. The wire is fed perpendicularly to the center orifice of the nozzle. 

A high voltage discharge is initiated allowing the ionization and dissociation of gas mixture 
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happen between the cathode and the nozzle in the process. The plasma is forced to exit the 

nozzle at supersonic velocity because of a constricting orifice in the pilot nozzle. The 

elongated plasma is transferred to the consumable anode, the wire, completing the 

electrical circuit. A constant current power supply maintains the plasma from the cathode 

to the wire with an arc voltage of 100-120 V and a current of 60-100 amps to melt the tip of 

the wire and then the high-pressure plasma gas together with the atomizing gas strips the 

molten particles from the end of the wire [18]. Therefore a jet of finely atomized particles is 

created, which is accelerated toward the substrate at high speed. The atomizing gas can be 

any non-combustible gas, usually a mixture of argon and hydrogen will be used as the 

plasma and compressed air to atomize and accelerate the molten particles. In PTWA 

process, due to the high speed of the spray particles, dense coatings with a porosity of less 

than 2% will be created. So generally speaking, the PTWA thermal spray process utilizes a 

single wire as the feedstock material. The wire is melted, atomized and propelled to the 

substrate by a supersonic plasma jet that is formed by a transferred arc between a non-

consumable cathode and the tip of the wire and then a large flow of forced air through the 

nozzle transports the stream of molten droplets onto the bore wall. The high kinetic energy 

causes the particles to flatten when they impinge on the surface of the substrate; the heat 

transfer between the flattened particles and the substrate causes a rapid solidification. 

Thus the coating is made up of these solidified droplets stacked one on top of another 

along the surface.  
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The equipment of a typical plasma spray system usually powered by two DC rectified 

constant current power supply devices. The plasma gun consists of a thoriated tungsten 

cathode and a copper anode in a water cooled brass housing. Plasma gases, power and 

cooling water are routed through a control panel to the plasma gun. Cooling water flow 

rates are stetted up from about 2 gpm incoming to 5-7 gpm at 200 psi to achieve proper 

spray gun cooling [29]. The wire feeder and wire straighteners are independent of the 

control panel and are adjusted directly on the individual device. Working distances are 

measured and set manually. Translation of the plasma jet is also performed manually. 

Further automation, even computer controlled operation, of the spray process could be 

implemented, however during the research phase it is impractical. The schematic diagram 

of the typical equipment of plasma spray, the PTWA system and the process are shown in 

Figure 2-7 [17], [29] 

15 
 
 



 

 

Figure 2-7 (a) Plasma sprayed system [29]; (b) Plasma transferred wire arc system and schematic diagram 
of PTWA process [17]. 

2.1.3 Application processes of PTWA coating 

The PTWA process influences the quality of coatings. The process of PTWA coating 

application to the aluminum engine include four steps which are bore machining in order to 

give bores the correct diameter, surface activation to obtain the highest bonding strength 

for the coating, coating application and coating honing. The first two processes are known 

as the pre-treatment and the process after coating application is known as post-treatment 

for thermal spray coating deposition technologies to stable the coating formation and 

smooth the coating surface. The most critical step for apply coating is the preparation of 

substrate prior to spraying. There will be a high chance of failure of the coating without 
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surface preparation because coating adhesion quality is directly related to the cleanliness, 

the roughness and the proper machining for optimal coating performance [8]. 

Proper machining would be adapted before any steps to mill undercutting the 

substrate target area to accept the coating in the PTWA coating application to aluminum 

engine bores. Besides, machining is used for creating grooves or threads into the surface to 

improve the adhesion. The machining process includes as-casting and fine boning in this 

project. The inner diameter of aluminum engine bore is pre-machined to 82.8 mm in the as-

casting process. Then the grooves are crated during the fine boning process as mechanical 

interlocks the pre-machined cylinder for better adhesion during the coating formation.   

Cleaning is extremely important for the process after machining. All the contaminants 

have to be removed from the surface in cleaning. The most common contaminants that 

may exist on the surface are oil, grease and paint. Besides, the fingerprints and airborne 

debris are also considered as contaminants that need to be handled with clean fixtures and 

materials. Vapor degreasing, baking in an oven, ultrasonic cleaning, wet or dry blasting, acid 

pickling, brushing, dry ice blasting are the ways to get rid of the contaminants in industry 

[20].  

The next step following is surface roughening. The aim of roughening is to enhance the 

surface roughness to provide a mechanical interlock for coatings. As a result, the spayed 

coating will adhere to the substrate. Dry abrasive grit blasting is probably the most 

commonly used roughening technique. Dry abrasive particles are propelled toward the 

substrate at relatively high speeds. In the process, the sharp angular particles act like 
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chisels, cutting small irregularities into the surface. The substrates itself, grit blasting 

equipment, blasting parameters as well as grit material all affect the surface roughness of 

substrate, which will in turn influence the adhesion of the coating and substrate.  

Blasting must always be performed in an enclosure designed and equipped with 

exhaust and dust collection facilities for recycling the used grits and the environment 

considerations. In order to recycle the grit used, it must be cleaned, rescreened and sized 

after each use. Once finer particles and dust have been removed, reusable material is 

transferred back to the blasting tank. The blasting parameters such as the diameter, the 

specific mass, the hardness and the speed and angle at which it is directed toward the 

substrate of the impacting particle all influence the amount of substrate deformation and 

irregularity created at the surface [21]. Griffiths et al. [22] found that upon impact, two 

main types of surface damage were observed. One is produced by an impact from a sharp, 

angular grit particle. A crater formed by plastic indentation of the surface region and elastic 

compression of the hinterland immediately beneath will be appear as angular with steep 

sides and resembles the shape and form of the impinging grit. The other type is produced 

when an impinging particle strikes the surface and micro-machines a crater with a large lip 

or prow at its exit end. The metal is cut by the sharp edge of the particle, through which a 

new surface is created. The metal is pushed and folded over onto the undisturbed surface. 

The new crater still has very angular features especially in the region of the microchip but 

more cured than the previous one. Grit blasting influences the adhesion of the sprayed 

coatings strongly. Blasting parameters affect the coating–substrate bond. The efficiency of 
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impacting grit particles reduces because they collide in-flight when the blasting distance is 

short and the particle velocity decreases when the distance is too long. Blasting pressure, 

time and grit size can affect the bond strength as well. The most commonly used grits in grit 

blasting are: aluminum oxide, silicon carbide and steel grit. Aluminum oxide is an angular 

and durable blasting abrasive and can be recycled many times. Usually aluminum oxide is 

used for hard surfaces because aluminum oxide is hard. If applied aluminum oxide on soft 

surfaces, embedding may happen. Silicon carbide is the hardest blasting used and it is 

manufactured to be blocky grain shape. As a result, splinters and makes grit particles 

having rather sharp edges. Because the silicon and carbon with oxygen exist both in base 

material and coating, damage to the base material and coating deterioration may happen 

[21]. Steel grit has two functions depending on its hardness. The softer one with hardness 

of 40-50 HRC is mainly used for stripping oxides and cleaning and the harder one with 

hardness of 55-65 HRC provides a good cutting action [8]. Table 2-2 [8] shows the 

properties of the main grit materials. 

Table 2-2  Properties of the main grit materials [8] 

Grit Material  Properties  
Alumina Hard, angular, durable, easily recycled, embedded in soft surfaces 

Silicon carbide Hardest, very angular, break down easily, produces sharp peaks 
Angular chilled iron Soft (40-50 HRC) rounds off rapidly, hard (40-50 HRC) maintains 

angular sharp 
Silica Inexpensive, angular, breaks down very fast, may cause silicosis 

 

After grit blasting, it is necessary to cleaning again to get rid of residue. The cleaning 

processes include blowing compressed air at a pressure of 0.4–0.5 MPa with a nozzle for a 
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few tens of seconds and then immersing the substrate in an acetone bath solution 

ultrasonically agitated.  

After all the pre-treatments to substrate, the surface of substrate is ready for coating 

process. Generally speaking, in thermal spray coating deposition processes the feedstock 

particles with certain temperatures and velocities impact and flattens on the prepared 

substrate forming splats no matter what form the feedstock are. While in PTWA coating 

process, the molten particles are from the tip of wire fed perpendicularly to the center 

orifice of the nozzle. The temperature of feedstock will increase to melt or semi-melt the 

wire tip and this is accomplished by introducing the wire to high-pressure plasma gas 

together with the atomizing gas. And then those molten or semi-molten particles are 

accelerated toward the substrate at high speed. Once the accelerated particles impact the 

prepared surface, particles deform into flattened splats on the substrate surface 

conforming to the substrate topography. Once the particles hit the substrate, they 

quenched rapidly forming a mechanical interlock and a diffusion bonding with the substrate. 

Many researchers [24][25] studied how the coating formation happened by illustrating 

particle flattening on a smooth substrate. They noticed that solidification usually started 

even when flattening was not completed and digitations appear after a relatively 

symmetrical flattening stage, which is up to 1.4 ms. This is how the fingered splats formed 

and strongly depending on the dynamic wetting angles, drop surface tension and velocity 

and on solidification taking place before flattening is completed and modification of the 

liquid flow. 
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Usually one particle impacts on the substrate, the next particle would impact one the 

previous one. The time between two successive impacts is typically in the range of ten to a 

few tens of μs, so the next particle impacts on an already solidified splat. Coatings appear 

as layered splats, containing porosities, unmelted or partially melted particles and oxides 

for metals and alloys. Porosities are often caused by the poor ability of the flattening 

particle to follow the cavities present in the previously deposited layer. The feedstock 

feeding rate, process deposition efficiency and finally the spray pattern including the 

relative torch–substrate velocity control the formation of splat layers together. 

Microstructure of sprayed coating is affected by defects and it depends strongly on spray 

parameters. The parameters are including the working parameters (such as the spray 

distance and pattern), the temperature control of substrate and coating during the 

preheating, spraying and cooling phases and the shaped, size, thickness and preparation of 

the substrate shape and coating particles (such as composition, size distribution and 

injection parameters).  

Scrivani et al. [26] investigated the effect of particle impact velocities and 

temperatures, as well as of the surrounding atmosphere by using same CoNiCrAlY 

commercial powder sprayed with three different processes. They found that these different 

temperatures and especially velocities, as well as the surrounding atmosphere, will result in 

various coating properties. That is because of the reaction between the oxygen and the hot 

particles in-flight. Usually the oxygen comes from air and the combustion oxygen. Beside, 

oxidation can occur at the surface of successive passes [4][7], while temperature control of 
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the coating can limit this oxidation. Moreover, oxidation present can also modify 

composition of sprayed materials. Villiers Lovelock [27] studied the microstructure and 

phase composition of WC–Co (12 and 17 wt%) during spraying powders and he found that 

the WC–Co powder experienced oxidation, decarburization and reduction because the 

powder react with the oxygen during plasma spraying. Reaction between WC and the 

cobalt binder metal during spraying was also studied. This results the formation of hard and 

brittle phases such as W2C, Co3W3C, Co6W6C, Co2W4C, Co3W9C4 and even WO3 and tungsten 

[27]. Particle size distribution and morphology as well as their injection conditions influence 

the temperatures and velocities of particles. Narrow size distribution is required to limit 

particle trajectory dispersion, which depend on their injection force.  

When the coating processes finish, post treatments of thermal spray coating are 

necessary as they can relax partially or totally residual stress, create compressive residual 

stress, close or reduce porosity, enhance the bond strength, create a barrier to corrosive or 

oxidizing products, improve coating homogeneity, improve splat or particle cohesion, 

obtain hard phase precipitation, or induce chemical modifications. Some commonly used 

post treatments include annealing for thermal spray coating performed at high 

temperature but below the coating melting temperature at atmospheric pressure in air or 

more generally in a controlled atmosphere or under vacuum; Austempering to promote 

diffusion at the substrate and coating interface and to collapse the internal pores and it is 

usually performed in molten salt bath; Sealing  to prevent corrosive liquids or gases to 
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penetrate the coating and attack the interface between coating and substrate; limit the 

lodging of wear debris in the coating and enhance inter-splat cohesion [24][26]. 

2.1.4 Parameters that influence the PTWA coating performance 

There are lots of parameters from feedstock to equipment settings effect the quality 

of the PTWA coatings on the coating microstructure and performance. The coating 

formation and quality depend on the particle or droplet impact, flattening, splat formation 

and cooling and splat layering first on the prepared substrate and then on already 

deposited layers. All the spray parameters such as the feedstock, equipment working 

parameters, the spray distance and pattern, temperature control of substrate and coating 

before, during and after the process as well as the situation of substrate will affect the 

particle or droplet impact, flattening, splat formation and cooling and splat layering. In this 

section, the effects of those parameters will be discussed.  

The feedstock will influence the coating formation and quality strongly as the 

composition, particle size and particle distribution of feedstock have a significant impact on 

the coating performance. For different suppliers, the chemical composition as well as the 

size distribution and particle morphology can be different. In this project, the 1080 steel 

with composition of 0.75-0.88 carbon, 0.6-0.9 manganese; (≤) 0.04 phosphorus and (≤) 0.05 

sulphur in the wire form will be used as feedstock in the process.  

In the process, the wire should be ductile materials that allow smooth and consistent 

wire feeding and propelled by the plasma. Only when the wire feeding is in a continuous 
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feeding rate can it make sure that little variation of the arc gap occurs. At the beginning of 

the process, a desired voltage is set and the electrodes are consumable resulting in a 

varying arc length, the rectifier uses voltage control. When the arcing gap gets too small 

resulting in too low voltage values, or if the wires even touch to each other resulting in a 

momentary short, the current will increase to increase the melt rate. And when the melt 

rate of the wires is higher than the feed rate, the arc voltage will increase surpassing the set 

desired voltage, the power supply control will respond by reducing the arc current and 

therefore the melt rate until the set voltage value is again reached. Since the loss of a metal 

droplet from the wire tips usually leads to a stepwise increase in the arc voltage, one has 

continuous fluctuations of the arc voltage and arc current with the principal frequencies 

between 500 and 2,000 Hz. These fluctuations can be minimized by judiciously adjusting 

the arc voltage; the wire feed rate and the atomizing gas flow. The wire has to be as 

perfectible aligned as possible to minimize voltage fluctuations. The wire made of ductile 

and electrically conductive material frequently run through a wire straightener, consisting 

of an assembly of rolls forcing the wire through a straight path to reduce the wire curvature 

resulting in even melt rates. Additionally, density of material and particle size is 

consideration of both powder and wire.  

The molten particles are mostly spherical during flight and upon impact flatten, the 

material flows outward and then solidifies into a final shape. The impact flatten is 

dependent largely upon particle temperature, the atmospheric pressure and the 

composition, impact velocity, viscosity and surface tension of the droplet.  

24 
 
 



 

The particle temperature affects the oxidation happening between the in-flight 

particles and the oxide as the process is operated in air. Oxidation of the sprayed metal can 

take place either in the vapor phase surrounding the droplet or at the surface of the droplet. 

Oxidation can also occur at the surface of successive passes, but the coating temperature 

control can significantly limit this phenomenon. The in-flight particle oxidation is controlled 

by diffusion and convection. Formed oxide layer can result in a considerable reduction of 

the evaporation rate from the droplet surface [7]. Besides, as the operation is in the air, the 

atmospheric pressure and the composition have a strong influence on the jet appearance 

and the heat and momentum transfer to the spray particles because the surrounding gas is 

mixed with the plasma gas. The plasma gas mixing with air results in the strongest 

quenching of the jet. The quenching will be even stronger when there is a high humidity in 

the air. Lower atmospheric pressures not only will result in less quenching and longer jets 

but will also reduce the heat and momentum transfer to the particles. Substrate 

temperature is found to be an important factor that will influence the splat shape because 

it can cool down the melted particles when the particles hit the substrate. Bianchi et al. [47] 

found if droplets landed on a cold substrate, the splats formed in irregular shape, because 

the droplets splashed extensively after impact by using scanning electron micrographs of 

individual alumina and zirconia splats deposited by plasma torches on a stainless steel plate. 

If droplets landed on a hot substrate, splats formed almost perfectly circular and were 

shaped like disks. Sampath et al. [33] confirmed this conclusion by studying how the 

substrate temperature effects the formation of splat as well as microstructure and 
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additionally affect the properties of the deposit coatings. They found that there is a critical 

substrate temperature regime above which the splats will form as round contiguous disks 

and below which they are fragmented and without easily definable shape. When the 

temperature is high, substrates will yield well layered lamellae. While when the substrate 

temperature is low, disarray deposits will display containing the small particles which are 

the products of the fragmented splat. The structures evolve from fragmented particles 

formed on low temperature substrates shows a higher chance to contain porosity than 

these evolve from high temperature substrates.  

Impact velocity also affects the splat formation. The porosity and poor adhesion at the 

substrate interface and poor cohesion within the coating thickness can happen as the splat 

cannot penetrate into all the surface cavities if the particle velocity is too low. While if the 

particle velocity is too high, the larger splats may shatter upon impact yielding a malformed 

splat with poor adhesion. Usually high impact velocities and small particle sizes are 

optimized for the spray parameters as they can help the formation of low porosity, tightly 

adhering and small grained coatings.  

The working distance for the spray process is important. It must be far enough to 

attain full melting and high speeds, yet close enough not to allow vaporization of small 

particles. Fully melting and high particle speed, resulting from heat and momentum 

transfer from the plasma jet to the particles is required to achieve dense, low porosity 

coatings. If the working distance is too long, the particles especially heavy particles will fall 

below the center of the splat resulting in falling out of the high temperature, high velocity 
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region, possibly missing the target entirely. While if the distance is too short, unmelted 

particles will bounce off and partially melted particles will be held as inclusions in the 

resulting coating. 

In PTWA, the plasma torch and jet characterization will influence the spray process. 

Most plasma torches operate in a current control mode which is kept constant through a 

feedback control loop in the power supply which compensates by changing the voltage in 

order to maintain the current at the required set value. A specific plasma torch is 

characterized by the time-averaged arc voltage, its standard deviation and the cooling 

water temperature rise and these two quantities allow determination of the torch 

operation, its energy efficiency and the power carried into the plasma jet, as well as the 

average specific enthalpy of the plasma gas, its average temperature and velocity. The 

plasma gas, gas injector design, anode nozzle design, cathode shape are the parameters 

influence the arc voltage and torch efficiency. The argon usually used as the plasma gas and 

a small addition of hydrogen to the argon results in a strong increase in arc voltage and in 

torch efficiency as the fast diffusion of the smaller hydrogen atoms into the arc column 

fringes would happen increasing thermal conductivity. But a large addition of hydrogen will 

increase electrode erosion which is not advisable [8]. The radial injector, the axial injector 

and the vortex or swirl injector are the most commonly used plasma gas injector designs. It 

is reported that lower temperatures for using the radial injection, while higher voltage and 

power with using the axial the axial injector. As for anode nozzle design, a smaller nozzle 

diameter or a constriction of the nozzle downstream of an arcing chamber will result in 
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shorter arcs, lower temperatures at the nozzle exit, but possibly higher velocities for the 

same current and mass flow rate. The effect of a divergent anode nozzle or a Laval-type 

anode nozzle has been shown to result in less cold gas entrainment and higher deposition 

efficiencies [30][31]. The cathode shapes especially the tip influence the current density in 

the cathode attachment of the arc consequently the acceleration of the plasma gas into the 

nozzle. The peak velocities and steeper radial profiles of the cathode with the sharp-tip 

appear higher than the cathode with rounded tip. Besides, narrow conical cathode tip will 

be molten during operation and therefore eroding quickly due to ejection of small molten 

droplets, resulting in a change of cathode shape within the first hour of operation. 

The pre-treatments and the post-treatment of processes also determine the quality of 

the coatings as discussed in the application processes.  

2.2 Coating Properties 

The thermal spray coatings are typically applied to components where high wear 

resistance is required to provide an acceptable service life. Extremely wear and corrosion 

resistant coatings can be applied by thermal spraying processes without changing the 

properties of the base material. Particularly, in the development of the light weight 

combustion engines, the light metal alloys combined with cylinder bores are more and 

more widely used. To ensure the optimum tribology of those light metal alloys engines, the 

thermal spray coatings which can be applied directly to the cylinder bores in the block are 

used. The required coating properties are reviewed in the remainder of this section to aid 

in the depiction of the required properties of a high quality thermal spray coating. 
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2.2.1 Microstructures 

The microstructure of a polished cross-section of coating can be observed using an 

optical or electron microscopy. The microstructure of thermal spray coatings can indicate 

the quality of the coatings. The microstructure of thermal spray coatings can be described 

as a layered structure. The high temperature and speed of particles in the thermal spray 

processes usually result in droplet deformation. The deformed particles will be on impact at 

a prepared surface, which will produce a thin layers or lamellae. This is always referred as 

splat. Generally speaking, the coating is an accumulation of individual particles built up 

during spraying. The particles impact, flatten and solidify with a sufficient time lapse 

between one particle impacting and the next one that hits the same spot such that 

solidified droplets can be built up particle by particle, layer by layer rapidly as a continuous 

stream of droplets impact to form continuous rapidly solidified layers. The single splat is 

very thin, with a thickness of 1 to 20 μm, but as the coating is built up layer by layer, its 

thickness can be up to hundreds of microns. In the spray process, the individual particle 

tends to form an elongated splat rather than the idealized flat, round pancake splat when 

impact on the prepared substrate as the spray gun rotates. The solidified particles are of 

varying random size distribution when they hit the substrate. As a result, these factors 

combine to produce a layered microstructure with uneven thickness in layers. This mixture 

of individual splat shapes and sizes make up individual lamella with different thicknesses 

and with size and shape variations within the layers. This results in a coating with 
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undulations in the lamellar microstructure. The orientation of the lamellae is generally in a 

curvature that follows the surface shape of the substrate [29]. 

In addition, structure coating porosity is also a good indication of the quality. For 

PTWA coating the porosity is usually low because of good control over the process with 

high-deposition rates.  Coating porosity is formed because of the insufficient particles 

velocity or insufficient thermally softened resulting in the particles ineffectively interlock 

with the previously deposited splats. Coating pores in a kind of coating defects. The coating 

defects also include inter-lamellar cracks and delamination features. The pores in the 

coating can be classified into a closed void network or an open void network based on the 

void connectivity within the coating microstructure. A closed void network is used to 

describe the condition where the voids are not connected and reside within the interior of 

the structure, where an open void network accounts for all the pores and cracks are 

connected to the coating surface.  

Another feature of the microstructure is the interface between the coating and the 

substrate. The interface is important as it suggests the adhesion of the entire coating. 

Usually the interface provides a mechanical interlock suggesting the interface should be 

sufficiently roughened by a process that does not promote particle embedment, as 

embedded particles have been suggested to act as stress-risers at the interface. Figure 2-8 

[18] shows a typical micrograph of PTWA coating. In the micrograph, we can clearly see the 

layered structures, the porosity, the oxides and the interface.  
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Figure 2-8 Micrograph of a 0.82% C-steel coating applied with the PTWA system. In the figure, the oxide 
phases appear darker than the Fe matrix [18] 

2.2.2 Mechanical properties 

The quality and performance of thermal spray coatings are strongly dependent on the 

adhesion between the coating and substrate because the debonding of coating will result in 

the collapse of the sprayed system. The basic bonding mechanisms between thermal spray 

coatings are actually depends on really contact between the coating and substrate which is 

between about 15 and 60 % of their surface [7]. Fauchais [4] defined adhesion as “Adhesion 

can be defined through fracture mechanics that consider the energy required to initiate or 

propagate cracks and evaluate the adhesion of the coating system in terms of fracture 

toughness“. The adhesion between the coating and substrate decide the quality and 

performance of thermal spray coatings. The spray process, operating conditions, feedstock 

particle size distribution and morphology, the substrate material, the residual stress and 

the environment conditions decide the coating adhesion. Zaat [35] proposed that the 

bonding mechanisms between the thermal spray coating and the substrate are categorized 

into mechanical interlocking, metal to metal bonding and chemical bond. The metal to 
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metal bonding is caused by diffusion and chemical bonding which is caused by the 

formation of an intermetallic compound with a substrate. Kvernes [36] mentioned that 

residual stress can also enhance or decrease the adhesion of the coatings especially for the 

thick ones.  

The metallic feedstock melts and flows at the substrate surface easily and imparts a 

high specific area of contact, which cause high adhesion between the intermediate coatings 

and the ceramic overlay. In the meanwhile, the bond coat acts as a compliant layer 

between the ceramic overlay and substrate so that lower stresses are transferred to the 

ceramic coating [28]. The adhesion of thermally sprayed coatings is the combination 

problem of lamella structures within the coating, the interface between the substrate and 

coating, residual stresses, crack population and pore size and distribution [32].  According 

to the ASTM C366, the failure modes of the thermal spray coating under tensile test 

conditions are interfacial failure, cohesive failure and mixed mode failure. If the failure 

happens in the interface between the coating and substrate, the adhesion strength of the 

coating has been measured. If the failure happens within the coating, the cohesive strength 

of the coating has been measured. Sometimes if the strength of the adhesive is greater 

than the minimum required adhesion or cohesion strength of the coating, the epoxy failure 

happens. If the failure happens in a combination of the first two modes, it is mixed mode 

failure [19].  It has been reported [34] that the coating cohesive failure would happen 

either within the bond coat, within the ceramic top coating or at the interface between 

bond coat and ceramic if the coating is a duplex system such as a thermal barrier coating. 
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The failure happens in a region and then expanding to other ones. No matter what failure it 

is, the strength represents the weakest part of the tensile test system. The possible failure 

locations are shown in Figure 2-9 [23]. 

 

Figure 2-9 Specimen arrangement and possible failure modes for tensile adhesion tests [23] 

2.3 Wear mechanism  

2.3.1 Introduction of wear modes 

The damage to a solid surface, generally involving progressive loss of material, due to 

relative motion between the surface and a contacting substance is defined as wear [41]. 

And friction is the resistance of the relative movement between two bodies. The wear 

usually includes abrasive wear, chemical and oxidative wear, erosion, fretting wear, impact 

wear, sliding wear, etc.  

Abrasive wear is due to hard particles or hard protuberances forced against and 

moving along a solid surface. Abrasive wear typically operates by the cutting or plowing of a 

surface by particles of equal or greater hardness. These particles can be embedded within 

the counterface or loose within the contact zone. Two-body abrasive wear and three-body 

abrasive wear are the most commonly known abrasive wear. The two-body abrasive wear 
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is caused by hard pits on the counterface and the three-body abrasive wear is caused by 

free rolling hard particles between sliding surfaces [51].  

The chemical and oxidative wear is due to the reaction happening on wearing surfaces 

in almost any environment. The cause of the chemical and oxidative wear is a chemical 

reaction between the worn material and a corroding medium that can be a chemical 

reagent, reactive lubricant or even air. This reaction will influence wear and frictional 

behavior of the tribosystem [39]. When the surface is worn because of the presence of air 

or oxygen under unlubricated conditions, the oxidative wear happens. During the sliding 

wear, the load and sliding speeds are high enough to increase the frictional contact 

temperature, wear debris will change from metallic to metallic oxides, the oxidative wear 

will dominant. If the oxide films are present on the worn surface, it is the mild wear, while if 

the oxide films are absent or removed, the sever wear happens.  

Erosion usually caused by the repeated particle impacts of small hard particles 

suspended in a fluid. It usually results in thinning of components and occasionally 

roughening of the exposed surface. Those can lead stress increasing due to the removal of 

material, leading to pre-mature failure. Fretting wear is a phenomena taking place between 

two surfaces having oscillatory motion of small amplitude occurring over a large number of 

cycles and impact wear is defined as the loss and/or displacement of surface material 

resulting from the mechanical interaction and collision of two or more solid bodies [39].  

Sliding wear is the most common and most complex wear which can be referred as dry 

sliding wear and lubricated wear. It is a relative motion between two moving bodies. 
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Delamination, subsurface fatigue, oxidation, material transformation from one surface to 

another and other behaviors are often found in sliding wear. Adhesion was found to be one 

of the sliding wear which would happen under lubricated or dry sliding conditions. When 

the surfaces contact to each other, asperity junctions would take place and then softer 

surface would happen to adhere to the harder surface resulting in formation of adhesive 

wear fragment [38]. Some other mechanisms such as surface fatigue caused by plastic 

deformation on ductile surface, surface fatigue due to cracking by void nucleation and 

propagation and delamination of die highly strained subsurface layers on ceramics solids 

and tribochemical reaction and cracking of reaction films are also found in sliding wear [39].  

2.3.2 Introduction of lubrication  

Lubricant is a material of low shear strength between two sliding surfaces of higher 

shear strength. It can reduce the strengths of junctions formed and minimize asperity 

contact. By using lubricant the wear rate will be reduced in sliding wear. Lubricants typically 

consist of base oils and additives. Mineral oils and Viscosity are the most important 

properties of in lubricate. Hydrodynamic lubrication, elastohydrodynamic lubrication, 

boundary lubrication and solid lubrication are the most common types of lubrication 

systems. 

When the sliding surfaces are separated by a relatively thick film of fluid lubricant and 

the pressure generated hydrodynamically within the film supports the normal load, the 

hydrodynamic lubrication happens. In hydrodynamic lubrication, opposing surfaces must be 
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conformal and only a small gap allowing converge for a hydrodynamic film between the 

sliding surfaces and is filled with lubricating fluid. The relative motion between the sliding 

surfaces generates viscous force which will result in the pressure within the lubricant to 

support the normal load. The viscous force is sufficient to keep the two sliding surfaces 

from having any contact and that the only friction is the system was the viscous resistance 

of the lubricant. Viscosity of the lubricant is an important feature. The friction and the 

thickness of hydrodynamic film will increase as the viscosity increase. But the heat 

generated by friction will reduce the viscosity, the thickness of the film and may result in 

metal to metal contact. The distance between the two surfaces decreases with higher loads 

on the bearing, less viscous fluids and lower speeds. The increase of the load and decrease 

of the speed cause the increase of the pressure within the film, which results a rise in the 

film viscosity, possible elastic deformation under the high load and asperity contact. As a 

result, coefficient of friction will rise at high loads and low sliding velocities [39], showing 

inFigure 2-10.  

 

Figure 2-10 Effects of viscosity, velocity and load on the coefficient of friction [39] 
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When the contacting surfaces are counterformal, the local pressures in the contact 

zone are higher than those in hydrodynamic lubrication and elastic deformation of the 

contacting bodies and the changes of viscosity with pressure play fundamental roles, the 

elastohydrodynamic lubrication happens. The elastohydrodynamic lubrication is also 

refereed as EHL, including a soft EHL and a hard EHL. The soft EHL is used to describe the 

contact surfaces have soft elastic bodies while the hard EHL is used for the bodies have 

higher elastic modulus [42]. The high pressure in EHL will increase the viscosity of the 

lubricant, resulting in the film thickness increasing so that elastic distortion of the surfaces 

will have a large impact on EHL. Figure 2-11 [42] shows an elastic sphere pressed on a rigid 

plane through modified Hertzian equations. It is shown that the film is nearly parallel for 

the most of its length and then develops a sharp constriction in the exit region, where its 

thickness reduced. For hard EHL contact of a sphere on a plane the minimum film thickness 

can be represented as: 

hmin= 1.79R0.47α0.49η0.68U0.68E-0.12W-0.07 

 Where E is the reduced modulus of the surface, R is the radius of the shape. The 

minimum film thickness for soft EHL can be represented as: 

hmin= 2.8R0.77η0.65U0.65E0.68W-0.21 
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Figure 2-11 Elastic distortion of a sphere (shown exaggerated for clarity) under combined normal load 

and sliding motion [42] 

Under high contact pressures or at low sliding speeds, hydrodynamic lubrication 

cannot maintain even a thin EHL film between sliding surfaces and the direct contact will 

occur between asperities. The wear rate and the friction will increase sharply unless the 

boundary lubrication happens [42]. Boundary lubricants functions by forming absorbed 

molecular films on the sliding surfaces; repulsive forces between the films help support the 

load. The lubricant molecules adhere strongly to the oxide layer present in the metal, align 

perpendicular to the surface and are stabilized by mutual repulsion. This results in a 

lowered frictional force and substantially less wear. Many oils natural contain some 

molecular species with boundary lubrication properties that a lubricant of only one 

molecule thick is sufficient to protect a surface [42]. Under severe conditions in the contact 

zone these additives react with the sliding surfaces and produce compounds with low shear 

strength, in turn creating a lubricating film at precise locations. Therefore, a comparison of 

the chemical attack to the mechanical damage is of great importance for optimum 

effectiveness of anti-wear additives [37]. 
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Solid lubricants can also provide lubrication under the conditions that oil usually 

cannot be used such as at extremes of temperature, under vacuum conditions or in the 

presence of strong radioactivity. Solid materials usually exhibit low coefficients of friction. 

The scope of solid lubrication has been extended for depositing the solid film onto the 

wearing surface to produce a self-lubricating system. The lubricant deposition method is 

critical to the efficiency of the lubricating medium, since even the most powerful lubricant 

will be easily scraped off a wearing surface if the mode of deposition is incorrect.  

2.3.3 Wear behavior of thermal spray coatings  

Lots of efforts have been made in order to investigate the wear mechanism and failure 

modes of thermal spray coatings. Critical sliding speed and pressure depending on the 

composition of steel and the transitions between mild wear and sever wear were reported  

by studying the wear behavior of steel and because of the friction heating process, the 

phase of the steel will change resulting from a self-quench hardening process. Ashby and 

coworkers [44] summarized the wear mechanisms of steel are mainly four kinds wear 

mechanisms which are seizure, melt-dominated, oxidation dominated and plasticity 

dominated wear through accounting for the frictional heating and calculating the flash 

temperatures. The oxidation dominated wear can also be grouped as mild wear and sever 

wear. The plasticity dominated wear also referred as delamination wear. Similarities 

between wear of steel and thermal spray steel coatings have been found. The oxidation 

dominated wear and the delamination wear are the most commonly wear in thermal spray 
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steel coatings. Based on Quinn’s model of oxidational wear in which oxide film and that the 

film might flake off from the rubbed surfaces when the oxide reached a critical thickness 

(usually 1–3 μm) and appear as wear debris, So and coworkers [45] detailed studied the 

oxidational wear through microscopic analysis on the wear surfaces and by the 

measurement of the main factors occurring in the rubbing process of the pin-on-disc 

configuration.  They pointed out that the oxidational wear actually depends on the 

combination effects of normal load and sliding speed. When the load and speed increased 

over certain limit, thick ferrous oxide films will be continuously formed covering a large 

area of the worn surface and the oxidational wear prevails. They proved that some part of 

the oxide film might crack and flake off from the rubbed surfaces causing by fatigue 

mechanism. 

Rabiei et.al [43] studied the microstructure, deformation and cracking characteristics 

of thermal spray ferrous coatings found that cracks prefer to propagate within the FeO, 

along the interface of Fe and FeO and along the intersplat oxide. The thin oxide layers 

between splats comprise the dominant sites for cracking while thicker oxides and the 

inclusion are relatively resistant to cracking. The oxide phase presents in the material and 

preferred pathways for local cracking, especially thin intersplat oxide layers emerge as 

preferential sites. The low fracture toughness of the interfacial oxide could cause splat 

delamination upon frictional contact in thermal spray ferrous coatings. High wear rates 

were associated with the formation and propagation of subsurface cracks within the oxide 

veins, which is the weakest links in the coating, resulting in the removal of entire splats 
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during the sliding process by using thermally sprayed cylinder liners and piston rings on a 

bench-top wear tester. They showed splat delamination was also the common wear 

mechanism in thermal spray coatings. 

2.3.4 Internal Combustion Engine 

The reciprocating internal combustion (as shown in Figure 2-12) is considered as the 

most important component in vehicles as well as other transportation devices [37]. The 

high performance, reliability and versatility of the reciprocating internal combustion make 

it widely used in transportation devices. The most common types of engines are four stroke 

engine, two stroke engine and diesel engine. The main difference of those types of engine 

is which fuel is used and how the fuel is ignited. Usually the diesel engine is used in large 

vehicles such as trucks because diesel engines are associated with increased pollutant 

outputs and heavy engine blocks that exert high power and torque [39].  

 

Figure 2-12 Main engine components in an internal combustion engine [39] 
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2.3.5 Operating principles of the internal combustion engine 

The basic principle of all the internal combustion engines is converting the converting 

the chemical energy to mechanical energy by burning a mixture of fuel and air in a narrow 

cylinder.  

The four stroke spark ignition engines are used in almost all passenger vehicles 

because of its low fuel consumption and exhaust emissions comparing to two stroke spark 

ignition engines [39]. The working principle of the four stroke engine consists of four stages. 

The first stage is intake stroke, the second is compression stroke, the third stage is called 

expansion or power stroke and the last stage is exhaust stroke. Figure 2-13 shows the four 

stages schematically [39]. 

In the intake stroke stage, the intake valve would open and the piston moves 

downward to let the mixture of the air and fuel into the combustion chamber. The air and 

fuel can mix in a carburetor or intake port. In this stage, the pressure is equal to the 

atmospheric pressure. After the mixture of fuel and air comes in, the inlet and exhaust 

valve would both close. The piston is raised to compress the mixture of the fuel and air and 

the compression stroke happens. The spark plug is initiated and explosively ignites the 

compressed mixture when the piston reaches the top dead center of the cylinder. The 

power stroke happens. In this stage, the pressure increases because of the explosion which 

force the piston move downwards. At last, exhaust valve opens and the piston moves 

upwards to push the burned fumes out of the chamber. The cycle would repeat to provide 

energy for the automotive. 
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Figure 2-13 The Otto cycle of four stroke engine [39] 

2.3.6 Piston assembly 

The piston assembly forms a critical linkage in transforming the energy generated by 

combustion of the fuel and air mixture into useful kinetic energy. Typically, the piston 

consists of ring pack, the piston head, piston pin bore, skirt, pin, ring grooves and ring lands. 

The ring pack is a series of the metallic rings. Figure 2-14 [37] is a schematic representation 

of a piston assembly from a modern automotive engine. The role of the piston rings is to 

maintain an effective gas seal between the combustion chamber and the crankcase, to 

transfer heat from the piston into the cylinder wall and thence into the coolant and to limit 

the amount of oil that is transported from the crankcase to the combustion chamber. There 

basically are two types of the piston rings. One type is compression rings and the other type 

is oil-control rings. The top two piston rings are referred as compression rings. The top 

compression ring is the major gas seal and encounters the highest loads and temperatures 

as the ring nearest the combustion chamber. The second compression ring is designed to 

assist in limiting upward oil flow in addition to providing a secondary gas seal. The oil 

control ring is the bottom ring in the ring assembly. It has two running faces, or lands and a 
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spring element to enhance radial load. The role of the oil control ring is to limit the amount 

of oil transported from the crankcase to the combustion chamber and it has no gas sealing 

ability [37]. 

 

Figure 2-14 Piston assembly and piston ring function from an internal combustion engine [37] 

The most complicated tribological component in the internal combustion engine is the 

piston ring because the piston rings would experience large variations of load, speed, 

temperature and lubricant availability [37]. The cylinder, piston and piston rings, lubricating 

oil and crankcase air are the elements in piston assembly tribosystem.  

In the engine cycle, piston moves up and down, while the piston bears unevenly 

against the walls of the cylinder. This results thrusts against the sides of the cylinder. The 

side thrust load varies with cylinder pressure. The thrusts are referred as the major and 

minor thrusts. The major thrust side happens in the power stroke and it is more important 

as it bears the large side load and longer contact durations. The major thrust side is on the 

right side when viewing the engine from the flywheel end with the crankshaft rotating 

counterclockwise. The minor thrust side is a less thrust because the downward force from 

compression is much less than the downward force of combustion and it is on the opposite 

side of the major thrust side.  
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The internal combustion engine works under extreme environment including large 

variations in load, speed, temperature and lubrication. B. Slattery [39] described that in a 

single stroke of the piston, the piston ring interface with the cylinder wall can experience 

hydrodynamic (full), elastohydrodynamic (mixed) and boundary lubrication. At the top 

dead center and the bottom dead center, the velocity of piston is zero and the preloaded 

piston ring will squeeze the lubricated oil out of the gap generate pressure. In this position, 

the oil film thickness is less than the surface roughness, thus a mixed regime is observed. 

On the other hand, during the engine cycle between TDC and BDC the piston approaches its 

maximum velocity that hydrodynamic lubrication caused by the increased piston velocity is 

typically observed.  

2.3.7 Engine wear 

Usually, the reciprocating engines operate with lubrication. The motor oil is used for 

engine lubrication of easy starting, to prevent wear, minimize friction by removing heat 

from engine surfaces, protect against rust and corrosion, keep engine parts clean by 

flushing away wear particles and seal combustion chamber etc. Engines operate under 

varying conditions as the temperatures, stress, sliding speed, even the lubrication change. 

All those factors influence the engine wear. Three major stages are found in the wear of 

engine. They are break-in stage, progressive wear stage and the final catastrophic wear 

stage. The cylinder will experience different wear mechanisms with the variations of 

cylinder gas pressure, temperature, the sliding speed of the piston rings on the cylinder 
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liner, load and quantity of lubricant and frequency of use, dirt, corrosion, surface finish [51]. 

The most common wear mechanisms found in engine are scuffing, abrasion and corrosion, 

each can occur separately or together [38][39][51]. 

Scuffing is also referred as adhesive wear. It is caused by the insufficient lubrication in 

the piston ring-cylinder wear system. It usually happens in the early stages of engine life 

when the oil film thickness is less than the surface roughness. The situation of insufficient 

lubrication causes a plastic deformation in surface liners and removing of the contacting 

asperities. With combination of high temperatures generated by friction and pressure 

exerted by the piston rings [38] can result in breakdown of the lubrication film, thus leading 

the agglomeration of removed asperities forming large work hardened particles [39]. As a 

result, the welding or adhesion of the surface happens. 

 Abrasion especially the three-body abrasive wear caused by the cutting and ploughing 

action of hard particles [51] is reported to be responsible for the normal mechanical wear 

that occurs in the majority of liners [38]. When the engine runs in extremely temperature, 

the corrosion wear is observed. Corrosive wear occurs in oxidizing or corrosive 

environment.  At cold temperature, the oil loses its fluidity resulting in a thin oil layer. This 

allows moisture to make contact with the engine bore thus oxidizing or corrosive 

environment forms. The combined action of abrasion and corrosion appears to produce a 

smooth surface with well-defined graphite and a pitted and etched surface which may aid 

the retention of lubricant on the surface [38].  
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CHAPTER 3 MATERIAL AND EXPERIMENT PRODUCERS 

The materials preparation methods and experimental procedures employed to 

characterize the microstructural and mechanical properties of plasma transferred wire arc 

(PTWA) coating were described in this chapter. The engine bore with the PTWA coating as 

well as one traditional cast iron engine bore have been thoroughly examined using a variety 

of materials characterization techniques. The methodology used in this research is 

presented in Figure 3-1. Optical microscopy (OM), scanning electron microscopy (SEM) with 

energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) with Rietvelt refinement 

methods were employed to characterize microstructures, morphologies and compositions 

of the engine surface. Pull-out adhesion and hardness measurements were carried out to 

evaluate the mechanical properties of the engine surface.  

 

Figure 3-1 Flow chart illustrating the methodology used for engine bore characterization 
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3.1 Materials 

Coatings were deposited on A380 aluminum cylinder bores by plasma transferred wire 

arc spray process. The substrate selected for the engine to be coated was A380 aluminum 

alloy. A380 aluminum alloy is one of the most commonly specified aluminum alloys offering 

the best combination of casting, mechanical and thermal properties as well as exhibiting 

excellent fluidity, pressure tightness and resistance to hot cracking. The typical composition 

of A380 was: Si 7.5-9.6 % wt, Fe max 1.3% wt, Cu 3.0-4.0% wt, Mn max 0.1% wt, Ni max 0.5% 

wt, Mg max 0.1% wt, Zn max 0.3% wt and Sn max 0.35% wt [49].  

Prior to deposition, the inner diameter of bores were subjected to functional honing, 

roughening and pre-machining to final diameter of 82.8mm. The substrate surfaces were 

machined prior to the deposition to provide a mechanical interlock for the coating adhering 

to the substrate. The surface after activation was shown in Figure 3-2. Figure 3-3 showed 

the change of the inner diameter of cylinder bore during the process of surface preparation 

and coating deposition.  

 

Figure 3-2 The Schematic illustrating the mechanical interlock after surface activation 
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Figure 3-3 The Schematic illustrating the fabrication of the engine bores before and after applying PTWA 
coatings 

3.1.1 Plasma transferred wire arc (PTWA) coating on A380 aluminum 

bore  

The feedstock used for the PTWA coatings was 1080 steel wire with a composition of 

0.75-0.88 % wt C, 0.6-0.9 % wt Mn, less than 0.04 % wt P and less than 0.05 % wt S. The 

coating was deposited on A 380 aluminum, which was referred to as PTWA-A coating in this 

thesis. 

3.1.2 Cast iron bore 

A cast iron sample was used for friction analysis comparison with the PTWA-A coating 

sample. The composition of cast iron liner was 2.5-4.0 % wt C, 0.1-1.0 % wt Mn, 1.5-3.0 % 

wt Si, 0.01-0.1 % wt P and 0.01-0.03 % wt S. It was a cast iron engine bore. The mechanical 

properties comparison of cast iron and A380 aluminum alloy is shown in Table 3-1 [50][56]. 
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Table 3-1 Mechanical comparison of cast iron and A380 aluminum alloy [50][56]  

Mechanical properties  A380 aluminum alloy Cast iron 

Density (g/cm
3
) 2.74 7.2 

Modulus of Elasticity (GPa) 76 66-160 
Elongation to Failure (%) 3 1 
Fatigue Strength (MPa) 140 69-169 
Shear Strength (MPa) 190 179-610 
Ultimate Tensile Strength (MPa) 320 140-430 
Yield Strength (MPa) 160 98-276 
Melting Onset (°C) 530 1090 

3.1.3 Plasma transferred wire arc (PTWA) coating on aluminum bore 

with different surface preparation  

A ferrous-based PTWA coating deposited on B aluminum engine bore was also 

received as a case study to characterize the unworn part and for adhesion comparison with 

the PTWA-A coating sample. The coating was referred to as PTWA-B in this thesis. 

The information of samples was shown in the Table 3-2. 

Table 3-2 Information of specimens to be investigated 

ID Deposition Technique Description 

PTWA-A 
coating  

PTWA 1080 steel wire used as feedstock deposited 
on A380 aluminum alloy 

(0.75-0.88C, 0.6-0.9 Mn, <0.04 P, <0.05 S, Bal. 
Fe)   

Cast Iron Casting Cast Iron liner engine  
(2.5-4.0 C, 0.1-1.0 Mn, 1.5-3.0 Si, 0.01-0.1 P, 

0.01-0.03 S, Bal. Fe)  
PTWA-B 
coating 

PTWA A thermally sprayed aluminum engine bore 
was received as case study as well as 

adhesion comparison with PTWA-A coatings 
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3.2 Optical surface profilometer  

The surfaces of PTWA-A coating engine bore and cast iron engine bore were examined 

before and after the non-firing floating-liner tests using a 3D optical confocal measurement 

system at NanoFocus. The inspections were performed at top dead center (TDC), which was 

23 mm from the deckface and at mid-stroke, which was 50 mm from deckface. At TDC, 8 

locations, which were 45°from each other and each one was of 2x2mm, were chosen for 

the surface inspection, showing in Figure 3-4 (a). While at mid-stroke, 4 locations, which 

were 90°from each other and each one was of 2x2mm, were chosen for the surface 

inspection, showing in Figure 3-4 (b).  

Surface roughness, surface pore analysis and oil retention volume were measured 

through the 3D optical confocal measurement system.  
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Figure 3-4 The Schematic illustrating the surface inspection locations at (a) TDC and (b) mid-stroke 
respectively (provided by NanoFocus) 

A 10 mm*20 mm sample was cut from the virgin region on the PTWA-B coating sample. 

Care was taken to ensure that the residual stresses to the sample were kept to a minimum 

and the oil residue on the surface was not cleaned during sample cutting. The sample was 
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rinsed with hexanes and dried in cool air. The surface topography and the surface 

roughness of the coating were examined using an optical profilometer (Veeco, Wyko). The 

analysis of surface roughness and morphology were performed based on similar profiles 

using an image analyzing software. 

The surface statistic results of PTWA-A coating sample, cast iron sample and PTWA-B 

coating sample were based on average value of core roughness depth (Sk), reduced peak 

height (Spk) and reduced valley depth (Svk). The core roughness depth Sk is the height 

difference between the intersection points of the found least mean square line. The 

reduced peak height Spk is the average height of the protruding peaks above the roughness 

core profile. The reduced valley depth Svk is the average depth of the profile valleys 

projecting through the roughness core profile.  

3.3 Non-firing floating-liner tests  

The non-firing floating-liner tests were performed on the cast iron engine bore and the 

PTWA-A coating engine bore. The tests were performed under the lubrication of Shell 

0W20 for 100 hours at 100 °C. The speed of the engine was set as 1200 rpm and the 

pressure at TDC was 25 bar. During non-firing floating-liner tests, the engine bore moved 

along the axis of the cylinder under the influence of the friction force between piston and 

cylinder. Even if firing condition was not applied, oil temperature, lubrication and in-

chamber pressure condition were set, the pairing components contact is properly 
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reproduced and friction and sliding surfaces performance were evaluated. The friction force 

data were recorded for 2 minutes every 5 hour by means of three piezoelectric sensors.  

3.4 Cross-Sectional preparation for microstructural observation  

To analysis and compare the unworn and worn microstructures of the samples, cross 

sections of the samples were prepared. Individual engine bore was cut from coating to 

substrate by a saw band into major thrust side, minor thrust side, back and front side for 

further sectioning. As the major thrust side was the most worn part of the engine bore, a 

low speed saw fitted with a 150 mm diameter circular diamond rotating at approximately 

250 rpm with a dead load of approximately 500g was used to section worn samples into 10 

mm*20mm from TDC and mid-stroke. The unworn samples were cut into 10 mm*20mm by 

diamond low speed saw at the location where was 15 mm away from the end of the virgin 

region from the back side or the front side. Figure 3-5 showed the sample section. Care 

must be taken during sectioning the samples to avoid placing the coating and interface in 

tension which will affect the soundness of the coating and the interface between the 

coating and the substrate.  
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Figure 3-5 Sample section: (a) the main sides of an engine bore after non-firing floating-liner test; (b) the 
samples sectioned for further microstructural analysis, worn and unworn surface comparison; the area of 

each sectioned sample was 10 mmx20 mm 

After sectioning, each sample was rinsed with hexanes to remove oil and dust and 

then cleaned in an ultrasonic acetone bath for five minutes to remove remaining residue 

and dried in cool air. After cleaning, samples were mounted using VariDur 3000 20-3580 

cold mounting epoxy.  

The morphology of the plan view unworn and the worn cylinder surface as well as the 

polished cross-section microstructure of samples were examined using a light microscope 

and a scanning electron microscope (SEM) fitted with an energy dispersive X-ray 

spectrometer (EDS) under high vacuum to determine the coatings microstructural 

characteristics and morphology.  
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3.5 Microstructural analysis 

3.5.1 Cross-sectional microstructure 

Metallography is a critical step to characterize coatings. Because PTWA coating 

microstructure consists of layered splats with porosities and unmelted particles, ceramic 

coatings that are more brittle than substrate and mixtures of many phases, this makes a 

challenge for metallography. If inappropriate metallographic methods are used, the 

apparent amount of porosity and linear detachment will increase by excessive edge 

rounding, or decrease by smearing of material into voids. Therefore a properly prepared 

metallographic surface based on standard guide for metallographic preparation of thermal 

sprayed coatings must be made. For cross-sectional microstructure analysis, the mounted 

samples were polished using a Buehler MetaServ 250 semi-automatic grinder/polisher 

under the instruction of ASTM E1920 − 03 [52]. 

3.5.2 Volume fraction of porosity within the coating 

Porosity is a key microstructural feature of thermal spray coatings. Porosity analysis 

can be quantified based on the light reflectivity from a polished cross-section of the coating. 

Splat breakup and cracking due to rapid solidification, splat shrinkage upon cooling and 

trapped unmelted particles are some of the traditional explanations for porosity formation. 

After the cross-sections are properly prepared, the image of cross section can be captured 

and post processed using image analysis software to measure the porosity percentage.  
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To measure the porosity of coatings, ASTM E-2109 [53] was used for instruction. The 

optical images of prepared cross section samples were cropped to best fill the screen with 

the entire coating thickness. Then threshold the porosity in the field of view to adjust the 

range of gray values used to create a binary image result in pores appearing as dark pixels 

with the background as white pixels [53]. After threshold was set, the statistical analysis 

was performed by presenting the porosity percent as a ratio of black pixels to white pixels, 

which translates into the coatings porosity by percent area. Figure 3-6 was an example of 

the binary mask of a coating cross section containing 2.0 % porosity by area from ASTM E-

2109-14 [53]. To measure the coating thickness, the scale of the software was set according 

to the optical or SEM image scale so that the software converted the scale into terms of 

pixels per micron. And then, draw ten lines along the coating cross-section and measured in 

length of pixels which can then be converted into microns by using the set scale. The 

average length and standard deviation were then calculated from the ten measurements. 

 

Figure 3-6 Example of binary mask of coating cross-section containing 2.0 % porosity by area [53] 
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3.6 Hardness Evaluation 

ASTM E-18 [54] was used as instruction to measure the macro-hardness of all the 

samples by using a Mitutoyo Rockwell hardness tester. Before using the Mitutoyo Rockwell 

hardness tester, calibration test was conducted on a calibration block to confirm the 

hardness tester was calibrated and operating normally. In the measurements, a diamond 

indenter was used with an indentation force of 60 kgf. For each sample, at least seven tests 

have to be performance and then removed the highest and lowest outliers. To get the 

hardness, the middle five readings were averaged out, as well as the standard deviation. 

When performing the measurements, the distance between each indentation has to be at 

least three times than the diameter of the previous indentation to avoid error associated 

with strain hardening of the sample. Besides, after measuring one sample, calibration test 

has to be conducted to confirm the equipment was still operating accurately before 

switching to the tests of next sample.  

3.7 Adhesion Evaluation 

Adhesion tests were performed in accordance with the ASTM 633 standard test 

method [23] to evaluate the adhesion tensile strength of PTWA-A coating sample and 

PTWA-B coating sample. Samples of 10 mm × 10 mm area were cut from the virgin region 

of the bores. The samples were rinsed with hexanes and dried in cool air. Loading fixtures 

with self-aligning capability were designed and fabricated to accommodate the curvature 

on the surface of samples. Figure 3-7 showed a schematic illustration of adhesion test 

fixture modified for surfaces with curvature.  
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Figure 3-7 Schematic illustration showing the adhesion test modification for surfaces with curvature 
[23][55] 

The test sample was glued to the sample holders in the loading fixture using 

polyamide-epoxy FM-1000 adhesive film. The surfaces of the sample holder and the 

uncoated side of the test sample were roughened for maximum mechanical bonding with 

the adhesive. Roughening was performed by blasting the surfaces with glass beads in a 

sand blaster. The optimum conditions for curing the adhesive film to its maximum strength 

were found after several attempts (tabulated in Table 3-3). The optimal curing cycle of the 

adhesive tape was heating at 190˚C for 120 minutes under a 5 lb weight. After 120 minutes, 

the furnace was turned off and the assembly was allowed to cool down to room 

temperature. A bond strength of 6.3 kN (corresponding to 63 MPa) was recorded for the 

adhesive film. Tensile load was applied at a constant cross-head speed of 0.03 inch/min 

(0.013 mm/s) using until rupture and the maximum applied load was recorded (MTS 
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Criterion model 45). The test set-up and the self-aligning assembly mounted inside the 

tensile testing machine are shown in Figure 3-8. 

 

Figure 3-8 Schematic graph for the curved sample glued to the sample holders 

Table 3-3 Conditions attempted to find the optimum conditions for curing the FM1000 adhesive film 

  
Temperature (˚C) Time (min) Failure load (kN) Adhesive strength 

(MPa) 

190 100 4.06 40.6 

190 120 6.3 63 

190 140 - adhesive was over-cured 
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CHAPTER 4 EXPERIMENTAL RESULTS 

In this chapter, the results obtained from the tests are presented.  The order of test 

results in this chapter follows the order of experiments represented in the previous chapter 

for convenience.  

4.1 Optical surface profilometer results 

This section described the optical surface profilometer results of the PTWA-A coating 

sample and the cast iron sample including the surface morphology, surface roughness and 

porosity analysis of the inspected locations at TDC and mid-stroke regions. 

The optical surface profilometer for the PTWA-A coating engine bore and the cast iron 

engine bore were studied using a 3D optical confocal measurement system by NanoFocus. 

Eight measurements were obtained at TDC and 4 measurements were obtained at mid-

stroke. Surface roughness, porosities were averaged out based on these measurements. 

4.1.1 Surface morphology   

The surface morphologies of the cast iron sample and the PTWA-A coating sample 

were studied using a 3D optical confocal measurement system by NanoFocus. 

Figure 4-1 shows the surface morphology of the cast iron sample before the non-firing 

floating-liner test at TDC (Figure 4-1a) and mid-stroke (Figure 4-1b). The pores and honing 

marks are observed in the graphs at TDC and mid-stroke. Figure 4-2 shows the surface 

morphology of the cast iron sample after the non-firing floating-liner test at TDC (Figure 
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4-2a) and mid-stroke (Figure 4-2b). The graphs also show the wear traces besides surface 

pores and honing marks. It is shown that surface pores were decently removed after non-

firing floating-liner tests. 

 

Figure 4-1 Unworn surface morphology of the cast iron sample at (a) TDC; (b) Mid-stroke, showing the 
presence of pores and honing marks 

 

Figure 4-2 Worn surface morphology of the cast iron sample at (a)TDC; (b)Mid-stroke, showing the 
presence of pores, honing marks and wear scars 

Figure 4-3 shows the surface morphology of the PTWA-A coating sample before the 

non-firing floating-liner test at TDC (Figure 4-3a) and mid-stroke (Figure 4-3b). The presence 
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of pores and honing marks are obvious in the graphs at TDC and mid-stroke. Figure 4-4 

shows the surface morphology of the PTWA-A coating sample after the non-firing floating-

liner test at TDC (Figure 4-4a) and mid-stroke (Figure 4-4b) respectively. The graphs also 

showed the wear traces besides surface pores and honing marks.  

 

Figure 4-3 Unworn surface morphology of the PTWA-A coating sample at (a)TDC; (b)Mid-stroke, showing 
the presence of pores, honing marks and wear scars 

 

Figure 4-4 Worn surface morphology of the PTWA-A coating sample at (a) TDC; (b) Mid-stroke, showing 
the presence of pores, honing marks and wear scars 

63 
 
 



 

4.1.2 Surface roughness  

The surface roughness of the PTWA-A coating engine bore and the cast iron engine 

bore were studied at TDC and mid-stroke using a 3D optical confocal measurement system 

by NanoFocus. Eight measurements were obtained at TDC and 4 measurements were 

obtained at mid-stroke. Surface roughness of cast iron and PTWA-A coating were averaged 

out based on these measurements.  

The average Sk, Spk and Svk of PTWA-A coating bore at TDC before the non-firing 

floating-liner test were 0.177±0.133 μm, 0.111±0.015 μm and 1.872±0.513 μm. These 

values increased to 0.255±0.198 μm, 0.138±0.026 μm and 3.551±0.613 μm after the non-

firing floating-liner test. The Sk decreased from 0.19 ± 0.058 μm to 0.171±0.102 μm and Spk 

decreased from 0.116±0.012 μm to 0.089±0.006 μm, while Svk increased from 1.705±0.102 

μm to 2.525±1.551 μm at mid-stroke. The results are showed in Figure 4-5.  

 

Figure 4-5 Surface roughness results of the PTWA-A coating engine bore 
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The cast iron engine bore had an average Sk of 0.155±0.020 μm, Spk of 0.048±0.011 

μm and Svk of 0.271±0.097 μm at TDC before the non-firing floating-liner test. These values 

changed to 0.141±0.021 μm, 0.048±0.012 μm and 0.219±0.081 μm after the non-firing 

floating-liner test. The average Sk of cast iron engine bore decreased from 0.165±0.044 μm 

to 0.146±0.027 μm, the average Spk dropped from 0.058±0.022 μm to 0.046±0.003 μm and 

the average Svk reduced from 0.382±0.181 μm to 0.249±0.084 μm at mid-stroke after the 

non-firing floating-liner test. The results are showed in Figure 4-6. 

 

Figure 4-6 Surface roughness results of the cast iron engine bore 

4.1.3 Surface pore analysis for PTWA- A coating engine bore 

The surface pore analysis for the PTWA-A coating sample was analyzed through the 3D 

optical confocal measurement system by NanoFocus. The observed area for each 

measurement was 2mm*2mm. The features of porosities including average pore number, 

depth, area and volume, all of which were all analyzed before and after the non-firing 
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floating-liner tests. The surface pore analysis was also performed on the cast iron sample, 

but as the flake graphite in the surface of cast iron acted as pores during the analysis. This 

made the pore analysis of the cast iron sample incomparable with PTWA-A coating sample.  

The average number of pores for the PTWA-A coating sample at TDC and mid-stroke 

were 703.50±131.70 and 677.00±32.76 before the non-firing floating-liner test. The 

average numbers of pores at TDC and mid-stroke decreased to 664.37±113.43 and 

575.75±73.13 respectively after the non-firing floating-liner test. The results are showed in 

Figure 4-7.  

 

Figure 4-7 Average number of pores for the PTWA-A coating sample 

A slight increase happened to the average areas of pores for the PTWA-A coating 

sample at TDC from 377.77±42.74 μm2 to 388.26±46.30 μm2 and at mid-stroke from 

304.18±41.26 μm2 to 336.32±53.01 μm2 after the non-firing floating-liner test. The results 

are showed in Figure 4-8. 
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Figure 4-8 Average pore area (um2) of the PTWA-A coating sample 

The average volume of pores for the PTWA-A coating sample raised from 1650.81 ± 

391.72 μm3 to 2260.30 ± 508.79 μm3 at TDC and from 1337.46 ± 519.40 μm3 to 1971.55 ± 

648.05 μm3 at mid-stroke after the non-firing floating-liner test. The results are showed in 

Figure 4-9. 
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Figure 4-9 Average pore volume (um3) of the PTWA-A coating sample 

The average depths of pores for the PTWA-A coating sample went up from 2.97 ± 0.45 

μm to 3.06 ± 0.45 μm at TDC and from 2.78 ± 0.31 μm to 3.26 ± 0.29 μm at mid-stroke after 

the non-firing floating-liner test. The results are showed in Figure 4-10. 

 

Figure 4-10 Average pore depth (um) of the PTWA-A coating sample 
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4.1.4 Oil retention volume of the cast iron sample and the PTWA-A 

coating  

The oil retention volumes of the cast iron sample and the PTWA-A coating after the 

non-firing floating-liner tests were established. Data were only available after the non-firing 

floating-liner tests as the oil retention was oil residual of the lubricant oil. The oil retention 

volume was measured based on the pore size distributions.   

The oil retention volume for the pores with size of 10-50μm2, 50-100μm2, 100-500μm2, 

500 -1000μm2 and 1000-999999μm2 were 0.013±0.009 ml/m2, 0.021±0.013 ml/m2, 

0.093±0.048 ml/m2, 0.078±0.045 ml/m2 and 0.513±0.344 ml/m2 at TDC and 0.020±0.008 

ml/m2, 0.020±0.014 ml/m2, 0.104±0.054 ml/m2, 0.075±0.012 ml/m2 and 0.447±0.30ml/m2 

at mid-stroke. The oil retention volume results of the cast iron sample are shown in Figure 

4-11.  
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Figure 4-11 Oil retention volume (ml/m2) of the cast iron sample after non-firing floating-liner test 

The pores with size of 10-50μm2, 50-100μm2, 100-500μm2, 500 -1000μm2 and 1000-

999999μm2 for the PTWA-A coating sample had an oil retention volume of 0.135±0.021 

ml/m2, 0.158±0.018 ml/m2, 1.061±0.187 ml/m2, 1.233±0.374 ml/m2 and 22.041±3.559 

ml/m2 at TDC and 0.127±0.017 ml/m2, 0.162±0.017 ml/m2, 1.077±0.094 ml/m2, 

1.223±0.396 ml/m2 and 16.242±5.465 ml/m2 at mid-stroke. The oil retention volume results 

of the PTWA-A coating are shown in Figure 4-12.  

70 
 
 



 

 

Figure 4-12 Oil retention volume (ml/m2) of the PTWA-A coating sample after non-firing floating-liner 
tests 

4.1.5 Surface morphology and surface roughness for PTWA-B coating  

The ferrous based thermal spray engine bore, which was referred as the PTWA-B 

coating, was received as a case study as well as an adhesion test comparison sample. The 

surface topography of the PTWA-B coating was examined using an optical profilometer 

(Veeco, Wyko). Figure 4-13a shows the two-dimensional optical profile of the coated 

surface and Figure 4-13b shows the typical line profiles collected from the same area. The 

pore depth values were calculated based on this area and the result were 6.82±3.21 μm.  
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Figure 4-13 (a) A typical 2D profile of the PTWA-B coating surface showing presence of pores and honing 
marks, (b) several line profiles collected from the same area based on which the pore depth values were 

calculated. 

The analyses of surface roughness and pore morphology were performed using an 

image analyzing software. The Sk, Spk and Svk of the PTWA-B coating were 805.7±64.3 nm, 

446.8±105.9 nm and 1152.9±170.2nm. The surface roughness results were shown in Figure 

4-14.  
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Figure 4-14 Surface roughness results of the PTWA-B coating 

4.2 Non-firing floating-liner tests  

The PTWA-A coating engine bore and cast iron engine bore were performed for 

durability tests to obtain friction force measurements. Figure 4-15 showed the friction force 

measured during the non-firing floating-liner tests. The initial friction of the PTWA-A 

coating engine bore was 230 N and then it dropped to 205 N. The friction force of the 

PTWA-A coating engine bore remained stable with some fluctuations after the break-in 

period. The initial friction force of the cast iron engine was 269 N, which was much higher 

than that of the PTWA-A coating engine bore. However, the friction force of the cast iron 

engine continued to decline.  
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Figure 4-15 Average Friction Force Results: Time History 

4.3 Microstructural analysis 

In this section, the surfaces and cross-section microstructural of the samples before 

and after the non-firing floating-liner tests were presented. 

4.3.1 Surfaces before and after the non-firing floating-liner tests 

The unworn surface areas were sectioned from the virgin part and the worn 

surfaces were sectioned from TDC of engine bores as discussed in section 3.4. 

Figure 4-16 shows detailed SEM images of the unworn surfaces of the PTWA-A 

coating (Figure 4-16a) and the cast iron sample (Figure 4-16b). Honing grooves were 

observed running up and down at an angle. Surface pores and micro-cracks were apparent 
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all over the surface. Ridges were observed on the surfaces. In addition, graphite flakes were 

also obvious all over the surface of the cast iron sample.  

 

Figure 4-16 Mixed SEM image of (a) unworn surface of the PTWA-A coating, (b) unworn surface of the 
cast iron sample 

Figure 4-17 shows detailed SEM images of the worn surface of the PTWA-A coating, 

showing the wear direction, surface defects, wear scars and other characteristics. Figure 

4-17a shows surface texture of the PTWA-A coating after the non-firing floating-liner test. 

Honing grooves and wear scars of different width and length along the piston ring sliding 

direction were visible. The lamellae structure of the PTWA-A coating can be seen in Figure 

4-17a, showing that the coating was built up layer by layer. Figure 4-17b is a back scattered 

(BSE) image of the selected area in Figure 4-17a and shows that the surface pores tended to 

merge into each other and become a large surface defect. The surface cracking can be seen 

and particles were ready to flake off from the surface. The particles would eventually be 

removed by the movement of piston ring. This indicated that the surfaces were quite weak 

around the pores and were good sources for removing materials. Figure 4-17c is a BSE 
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image that shows the removed wear debris adhered to the surface. A mixed image (Figure 

4-17d) shows the beginning of a severe wear scar being formed from removed debris at the 

edge of a poorly adhered splat close to the surface. This wear scar started from a micro-

crack, suggesting the weak edges of the micro crack would naturally deform or break off 

during the initial engine break-in period and cause wear of the cylinder liner and piston 

rings. The BSE image shows a particle scale ready to flake off from the surface (rounded 

area) and that the inside material was forced out of the pore resulting in deep and wide 

pore. An EDS spectroscopy was adopted to analysis Figure 4-18c and the result is shown 

below in Figure 4-18. The detection of the elements such as iron, carbon, oxide and Mn. 

showed the wear debris originally from the cylinder.  
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Figure 4-17 Detailed SEM images of the worn surface features of the PTWA-A coating: (a) Mixed SEM 
image shows the worn surface texture of the PTWA-A coating, (b) Back scattered image of the selected area in 

(a) shows that the surface pores tend to connect with each other and become a large surface defect. (c)BSE 
image shows the removed wear asperity adhered to the surface. (d)A mixed image shows the beginning of a 
severe wear scar. (e) BSE image shows a particle scale ready to flake off from the surface (rounded area) and 

the inside material was forced out of the surface resulting in deep and wide wear scars 
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Figure 4-18 Selected area for EDS analysis (b) elements mapping results; (c) result of EDS elements 
analysis of the selected area 

The worn surface of the cast iron sample was presented in Figure Figure 4-19. Wear 

direction, wear scars, micro-cracks and surface defects were all visible. Honing grooves can 

be seen in Figure 4-19a. The micro cracks exist around the pores suggest that the edges of 

pores are the weak parts of the surface (Figure 4-19b).Moreover, the graphs illustrates that 

wear scars started away from the honing grooves or surface pores. 
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Figure 4-19 Detailed SEM images of the worn surface features of the cast iron sample: (a) The worn 
surface of the cast iron showing wear direction, honing marks and wear scar started away from the honing 
grooves or surface pores, (b) The worn surface of the cast iron showing surface pores, micro cracks and the 

pile-up of the materials 

4.3.2 Cross-sectional microstructure results of PTWA-A coating engine 

bore 

Figure 4-20 showed the cross-section microstructure of the PTWA-A coating at virgin 

region. In the image, the pores, micro cracks, oxides and surface pores were apparent. The 

coating was approximately 237.6 μm. ASTM E-2109 was used to locate the porosity within 

the unworn microstructure of the PTWA-A coating. The average volume fraction of porosity 

within the coating was 5.8 %. 
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Figure 4-20 OM image shows the cross-sectional view of the unworn PTWA-A coating 

Figure 4-21 shows back-scattered images and presents detailed information of the 

cross-section microstructure of the PTWA-A coating at virgin region. Figure 4-21 (a) is a BSE 

image that shows grooves and semi-circular stacking lamellae. Figure 4-21 (b) is a BSE 

image that shows a close-up of the semi-circular stacking lamellae of the unworn PTWA-A 

coating and the surface defects caused by thermal spray processes and honing process. 

Figure 4-21(c) is a BSE image that displays a close-up of the groove that contains the central 

pore and pores around interface. Figure 4-21 (d) is a close-up of the selected area in Figure 

4-21 (c) and shows the presence of oxides, micro-cracks and the unmelt particles.  
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Figure 4-21 Back-scattered images giving detailed information of the cross-section microstructure of the 
PTWA-A coating at virgin region 

Figure 4-22 establishes the EDS analysis results of central porosity in Figure 4-21(c). 

Figure 4-22(a) shows the selected area for EDS analysis. In Figure 4-22(b), the oxides 

concentrated around the edge of pore and within the pores can be seen. Figure 4-22(c) is 

the result of element analysis of the selected area, showing abundance of oxide within and 

around the central pore. It also shows the abundance of iron and the presence of carbon in 

this region.  

81 
 
 



 

 

 

Figure 4-22 (a) Selected area of the virgin part for EDS analysis (b) oxide concentration results (c) result 
of EDS elements analysis of the selected area around the central pore 

Figure 4-23 (a) shows the cross-sectional microstructure of the PTWA-A coating at TDC 

and Figure 4-23 (b) is a magnified view of the selected area. In the graphs, the gray regions 

were found to be oxides and the semi-circular stacking lamellae structure was obvious. The 

micro-cracks and pores were also apparent. Moreover, the surface at TDC displayed more 

defects compared to the surface of virgin area, especially in Figure 4-23 (b), where the 

poorly adhered, oxide-rich surface lamellae separation from the coating was evident.  

 

Wear 
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Figure 4-23  (a) OM cross-sectional view of the PTWA-A coating at TDC, (b) magnified view of the 
selected area showing the presence of oxides, pores, lamellae and micro-cracks 

Figure 4-24(a) illustrates the selected areas at TDC for EDS analysis. Figure 4-24(b) 

established the oxide concentrations of the selected areas shown in Figure 4-24(a). Figure 

4-24(c) and (d) are the elements analysis results of selected area 1 and 2 respectively. The 

result of selected area 1 indicated an abundance of oxide and iron as well as the presence 

of carbon in this region. The result of selected area 2 indicated abundance of iron and the 

presence of carbon and oxide in this region. 

Wear 
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Figure 4-24 (a) Selected areas for EDS analysis (b) oxide concentration results (c)(d) results of EDS 
elements analysis of the selected area 1 and selected area 2 respectively 

The graphs in Figure 4-25 show the cross-sectional microstructure of the PTWA-A 

coating at mid-stroke. Figure 4-25(a) shows the surface defects as well as a crack 

propagated along the semi lamellae. In addition, pores and micro-cracks were obvious 

within the coating. Figure 4-25(b) displays a surface pore, in which the inside material was 

trying to escape out of the pore. This would have resulted in the depth growing of the 

surface pore. Figure 4-25(c) and Figure 4-25(e) show the delamination of semi lamellae 
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near the surface and this was confirmed by the height scan result, shown in Figure 4-25(d) 

and (f) respectively.   

 

Figure 4-25 OM images showing cross-section microstructure of the PTWA-A coating at mid-stroke :( a) 
the surface defects as well as a crack propagated along the semi lamellae; Additionally, pores and micro-
cracks are obvious within the coating. (b) The growing of a surface pore, in which the inside material was 

trying to escape out of the pore. (c) The magnified view of a half delaminated semi lamellae near the surface. 
(d) the result of the height scanning of (c), showing the semi lamellae near the surface was half 

delaminated.(e) The magnified view of several half delaminated semi lamellae near the surface. (f) The result 
of the height scanning of (e), proving the semi lamellae near the surface was half delaminated 

4.3.3 Cross-sectional microstructure results of cast iron  

The microstructures of the cast iron sample before non-firing floating-liner test and 

after non-firing floating-liner test were similar, except that after engine the microstructure 

near the surface showed some fragments fractures along the intersection of graphite and 

surface and material deformation on the surface. Figure 4-26(a) shows the unworn 

Wear direction 
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microstructure of the cast iron sample. The cross-section view showed typical cast iron 

features with graphite appeared in the matrix as randomly oriented coarse distorted flakes 

and fine rosettes. Figure 4-26(b) is the cross-sectional view of the worn cast iron surface at 

TDC. It demonstrates that fractures happened along the intersection of graphite and 

surface. The magnified view of the fractures near surface is shown in Figure 4-26(c). Figure 

4-28(d) is the cross-sectional view of the worn cast iron surface at mid-stroke. It illustrates 

material deformation at graphite. The magnified view of material deformation on the 

surface of worn cast iron at the mid-stroke was given in Figure 4-26(e).  
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Figure 4-26 BSE images showing the cross-section microstructure of the cast iron sample (a) at virgin 
showing typical cast iron features while the surface is uniform; (b) at TDC, showing fractures happened along 
the intersection of graphite and surface; (c) Magnified view of the fracture at TDC in selected area; (d) at mid-
stroke showing material deformation at graphite; (e) magnified view of material deformation on the surface 

of worn cast iron at the mid-stroke in selected area. 

4.3.4 Surface and cross-sectional microstructure analysis for PTWA-B 

coating 

The PTWA-B coating was received as a case study to characterize the unworn part and 

for adhesion comparison with the PTWA-A coating engine bore. For surface features and a 

cross-section microstructural analysis, cross-sectional sample was prepared as discussed in 

section 3.5.2 and studied under optical and electron microscopes (OM, SEM/EDS).  
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Figure 4-27(a) is a typical secondary electron (SE) SEM image of the PTWA-B coating 

and shows the presence of hone marks and porosity on the surface. The back-scattered 

electron (BSE) view of the same location is illustrated in Figure 4-27(b). 

 

 

Figure 4-27 (a) A typical secondary electron (SE) image of the surface of the PTWA-B coating showing 
presence of hone marks and surface porosity. The enclosed location marked as “I” is where the higher 

magnification images shown in Figure 4-30 were taken (b) A back-scattered electron (BSE) image of the same 
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area shown in Figure 4-28 (a) illustrating band contrast and floret-like structure which indicates presence of 
two different phases in the coating (light grey and dark grey regions) 

The elemental contrast in this image indicated the presence of floret-like structure and 

presence of two different phases in the coating (light grey and dark grey regions). Figure 

4-28(a) and Figure 4-28(b) are higher magnification images of this area that show the 

presence of unmelted particles and layers of dark grey and light grey phases in the 

coating.Figure 4-28(c) is a three-dimensional optical profile of the same region shown in 

Figure 4-28(b). Figure 4-28(a) shows a typical back-scattered electron (BSE) image of the 

surface and the enclosed areas were the locations where elemental analyses, such as EDS, 

were performed.  
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Figure 4-28 (a) Back-scattered electron (BSE) image of the enclosed area marked as “I” in Figure 2 
showing the morphology of on the surface of the PTWA-B coating, the enclosed area is the location where 

higher magnification image shown in “b” was taken. (b) A back-scattered electron (BSE) image of the enclosed 
area marked in “a” showing presence of unmelted particles within this region. (c) A 3D-optical profile of the 

area selected in “a” 

Figure 4-29(b) shows the EDS spectrum collected from “selected area 1” and “selected 

area 3” and highlights the abundance of iron and presence of carbon in these regions. 

Figure 4-29(c) shows the EDS spectrum corresponding to “selected area 2” and illustrates 

the abundance of iron and oxygen and the presence of carbon in this region.  
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Figure 4-29 Back-scattered electron (BSE) image of the surface: The enclosed areas are the locations 
where elemental analyses (e.g., x-ray energy dispersive spectrometry (EDS)) was performed. (b) EDS spectrum 
collected from “selected area 1” and “selected area 3” showing abundance of iron and presence of carbon in 
these regions. (c) EDS spectrum corresponding to “selected area 2” showing abundance of iron and oxygen 

and presence of carbon in this region 
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Figure 4-30 shows typical secondary electron (SE) images of the honed surface of the 

PTWA-B coating bore. Features such as cutting chip-like and micro cracks were observed on 

the surface. For cross-sectional microstructural analysis of the coating, the sample was cut 

using a low-speed diamond saw and mounted in an epoxy. Conventional metallography 

procedure for ferrous alloys was followed and the (unetched) microstructure was 

investigated under optical and scanning electron microscopes.  

 

Figure 4-30 (a) A typical secondary electron (SE) image of the honed surface of the coating showing 
presence of cutting chip-like features and micro cracks. The enclosed area is the location where higher 

magnification image shown in “b” was taken. (b) SE image of the area marked in “a” showing the cutting chip-
like features on the honed surface. 

Figure 4-31(a) shows a typical cross-sectional back-scattered electron SEM image of 

the PTWA-B coating on the Al substrate. The layered structure of the coating and presence 

of porosity are some of the features evident in this image. The coating thickness was 

measured at 490.0 ± 9.6 μm using an image analyzing software. Porosity in the form of 

voids and micro-voids were observed within the coating. The coating had a lamellar 

microstructure consisting of light grey splats and dark grey veins were observed between 

the splats. Moreover, the presence of unmelted particles and micro-cracks within the dark 
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grey phase were also observed within the intersplat regions. Figure 4-31(b) shows the 

presence of unmelted particles, porosity and dark grey veins in the intersplat regions, while 

Figure 4-31(c) shows the presence of micro-cracks within the dark grey phase in the 

intersplat region. ASTM E-2109 was used to locate the porosity within the microstructure. 

The average fraction of porosity within the coating was 2.5 %. 

 

Figure 4-31 (a) Cross-sectional back-scattered electron SEM images of the PTWA-B coating on the Al 
substrate: The coating had a dovetail morphology interface with the aluminum substrate. The layered 

structure of the coating is evident from the images (b) presence of unmelted particles, porosity and dark grey 
veins in the intersplat regions, (c) presence of micro cracks within the dark grey phase in the intersplat region 

Elemental analysis revealed that the light grey regions were rich in iron in the form of 

steel splats and that the dark grey regions where rich in oxygen and iron, possibly as a 

result of the iron oxide phase. The EDS map obtained from the location shown in Figure 
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4-32(a) was given in Figure 4-32(b). The corresponding EDS spectra of the iron-rich splats 

and oxygen-rich areas between the splats were also given Figure 4-32(c) and Figure 4-32(d).  

 

 

 

Figure 4-32 (a) A  cross-sectional microstructure (back-scattered SEM image) of the PTWA-B coating, (b) 
corresponding energy dispersive x-ray spectroscopy (EDS) map of the same area showing that the light areas 

were rich in iron and the dark grey regions consisted of oxygen. (c), (d) Typical EDS spectra of the O-rich (blue) 
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and Fe-rich (red) regions indicating that the O-rich veins consisted of iron oxides and the Fe-rich regions were 
steel splats 

4.4 Hardness tests 

Macro-hardness measurements on the surface were carried out using Rockwell B scale 

testing according to the ASTM E18 standard based on seven measurements. The average 

hardness value of the PTWA-A coating was 71.71 ±3.44 HRB, while the average hardness of 

cast iron was 79.78 ±9.37 HRB. It was also found that the average hardness of the PTWA-B 

coating was 90.4 ± 0.3 HRB, and the depths of the indents of PTWA-A coating, cast iron, and 

PTWA-B coating were 0.116 mm, 0.100 mm, and 0.079 mm respectively. 

4.5 Adhesion tests  

PTWA-A coating and PTWA-B coating were subjected to adhesion testing. The 

adhesion strength of the coatings was evaluated according to ASTM C633 using a uniaxial 

tensile machine as discussed in section 3.5.4.  

The coating thickness of the PTWA-A coating was approximately 240 μm with an 

average fraction of porosity within the coating of 5.8 %. The average hardness value was 

71.71 ±3.44 HRB. The coating thickness of the PTWA-B coating was about 500 μm with an 

average fraction of porosity within the coating of 2.5 %. The average hardness value was 

90.4 ± 0.3 HRB. 

The adhesion test results revealed that the failure for the PTWA-B coating occurred at 

4.4 kN of the applied load, corresponding to a bond strength (i.e., (failure load)/ (failure 

area)) of 44 MPa. The cohesive failure and adhesive failure for the PTWA-A coating 
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occurred at 1.951 kN applied load (corresponding to 19.51 MPa) and 2.903 kN applied load 

(corresponding to 29.03 MPa) respectively. The results are tabulated in Table 4-1. 

Figure 4-33 shows that the stereo micrographs of the failed surfaces indicate that the 

coating was detached from the aluminum substrate at the coating/substrate interface (i.e., 

adhesive type of failure). Figure 4-33(a) is a top view of the failed surface and illustrates the 

keyhole pattern made on the aluminum prior to the deposition of the PTWA-B coating. 

Figure 4-33(b) is a side view of the failed surface and shows the detachment of the PTWA-B 

coating from the substrate at the coating/substrate interface and Figure 4-33(c) is a high 

magnification view of the failed surface shown in “b” that illustrates the detachment of the 

coating at the aluminum substrate interface and the keyhole pattern made on the Al 

surface prior to the coating deposition. Figure 4-34 shows that the coating was detached 

from the aluminum substrate in PTWA-A coating at the coating/substrate interface (i.e., 

adhesive type of failure). Additionally, Figure 4-35 highlights the failure happened within 

the coating in PTWA-A coating (i.e., cohesive type of failure). Figure 4-35(a) offers a top 

view of the failed surface showing the failure on PTWA-A coating, while Figure 4-35(b) 

offers a side view of the partial detachment of the PTWA-A coating from the substrate. 

Table 4-1  Results of adhesion pull tests 

Samples Failure load( kN) Failure strength (MPa) Failure type 

PTWA-B coating 4.4 44 Adhesion failure 

PTWA-A coating (test #1) 2.903 29.03 Adhesion failure 
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PTWA-A coating (test #2) 1.951 19.51 Cohesion failure 

 

Figure 4-33 Stereo micrographs taken form the failure surfaces of the PTWA-B coating. (a) Top view of 
the failed surface showing the keyhole pattern made on aluminum prior to the deposition of the PTWA-B 

coating, (b) side view of the failed surface showing the detachment of the PTWA-B coating from the substrate 
at the coating/substrate interface; (c) a high magnification view of the failed surface shown in “b” illustrating 
the detachment of the coating at the aluminum substrate interface and the keyhole pattern made on the Al 

surface prior to the coating deposition. 

   

Figure 4-34 Adhesive failure surface of PTWA-A coating: (a)Top view of the failed surface, (b) side view of 
the failed surface showing the coating/substrate interface 

 

Figure 4-35 Cohesive failure surface of  PTWA-A coating  (a) Top view of the failed surface showing the 
failure on PTWA-A coating, (b) side view of the partial detachment of the PTWA-A coating from the substrate  
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CHAPTER 5 DISCUSSION 

This section discusses the results obtained during this research investigation. The first 

section encompasses the results obtained during observation of the surfaces and cross 

sectional microstructure to study the wear mechanisms. The second section includes the 

lubrication conditions. In the remaining sections, the comparison between the PTWA-A 

coating bore and the PTWA-B coating bore are given in order to address the possibility of 

putting the PTWA-A coating engine bore in to production. 

5.1 Sliding Behavior of PTWA-A coating engine bore in comparison 

with Cast Iron engine bore 

The friction force of the PTWA-A coating engine bore (the initial friction force of the 

PTWA-A coating engine bore was 230 N) was lower than that of the cast iron engine (the 

initial friction force of the cast iron engine was 269 N).  The surface roughness of the PTWA-

A coating engine bore showed higher core roughness depth, higher reduced peak height 

and higher reduced valley depth compared to that the cast iron engine both before and 

after the non-firing floating-liner tests (Figure 4-5, 6). The parameters of roughness 

illustrate that the surface of the PTWA-A coating engine bore has sharp asperities and deep 

pores. The surface of the PTWA-A coating engine bore is more capable of storing oil than 

the cast iron sample. This demonstrates that the rougher and porous surface helps the 

PTWA-A coating engine store oil and in turn provides better lubrication and protects engine.  
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The friction force of the PTWA-A coating engine bore is stable (approximately 205 N) 

with some fluctuations after the break-in period. However, the friction force of the cast 

iron engine decreases dramatically (269 N to 190 N) (Figure 4-15). The porous surface of 

the PTWA-A coating engine bore helps decrease friction force in break-in period. This 

proves that the roughness is needed only in the early stages of engine operation to 

enhance the removal of cylinder wall and ring material in places of high interference 

between these components to produce conformity between each [46]. Therefore, 

roughness allows an initial high wear rate.  

The depths of valleys on the engine surface influence the oil retention capacity. As the 

surface valley parameter determines the volume of oil reserve, increasing the depth of the 

valleys, the oil retention capacity would be increased [40]. The surface of the PTWA-A 

coating engine bore (number of pores at TDC and mid-stroke were 703.50±131.70 and 

677.00±32.76 before the non-firing floating-liner tests), when compared with the cast iron 

surface shows porous structure. This porous microstructure of the PTWA-A coating engine 

bore results in an increased lube oil consumption and exhaust emission of soot and 

particles, carbon oxides and hydrocarbons during the non-firing floating-liner test [40]. Oil 

retention volumes of the PTWA-A coating engine bore are higher than that of the cast iron 

engine, which means there was higher oil consumption and greater emission of CO and HC 

during non-firing floating-liner tests.  

The surface of the PTWA-A coating engine bore contributes to the low friction force of 

the PTWA-A coating engine bore during the non-firing floating-liner tests. This low and 

99 
 
 



 

constant friction force of PTWA-A coating engine bore makes it a promising replacement 

for the traditional cast iron engine. However, the rough and porous surface results in higher 

oil consumption and exhaust emission of soot and particles, carbon oxides and 

hydrocarbons of the PTWA-A coating engine bore. This has to be solved in replacing the 

tradition cast iron engine. 

5.1.1 Wear mechanism 

Honing marks are observed running up and down at an angle in the unworn surface 

morphology (Figure 4-1, 3, 16). The honing marks are produced to store oil, which in turn 

improve the lubrication condition. The honing grooves also trap wear debris (Figure 4-19) 

to remove them from the contact interface between the cylinder wall and the piston during 

piston movement [57].  

Micro cracks are presented in different directions suggesting that micro cracks are not 

only created by the honing process but also during the manufacturing processes. The 

honing process also reveals the micro cracks generated in manufacturing processes, 

especially on the cast iron bore surface, on which the micro cracks are the graphite flakes 

revealed by the honing processes (Figure 4-19, 27).  

The wear scars on the worn surfaces (Figure 4-17, 19) shows that wear scars with 

different width and length are produced along the wear direction (piston sliding direction) 

after the non-firing floating-liner tests. Wear debris is found “sitting” on the worn surfaces, 

which indicates that wear scars are actually abrasive scratches parallel to the ring motion 
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direction. The wear that occurred during the non-firing floating-liner tests can be attributed 

to abrasive wear.  

In the normal wear region, the peaks on the surface were broken off during the break-

in period, then the piston, the broken off debris and the cylinder wall surface formed a 

three-body abrasive wear. The wear debris was free to roll and slide between the two 

sliding surfaces or was carried by the piston at every stroke resulting in wear on surface of 

the cylinder. The ploughed and piled aside ridges and micro-cracks were also observed 

(Figure 4-16) along the honing grooves produced during the honing process and around the 

pores. The ploughed-aside ridges and micro cracks were partially worn and partially plastic 

deformed. This proves that the folded materials created by manufacturing and honing 

processes are the weakest points on the surface, which are the first to be worn off during 

non-firing floating-liner tests. The breaking-off folded materials along the honing grooves 

and weak edge materials around the pores act as the debris in abrasive wear between 

engine bore surface and piston surface [51]. The abrasive wear mechanism is the principal 

wear mechanism for the PTWA-A coating engine bore and cast iron engine bore during the 

non-firing floating-liner tests.  

However, it was observed that the pores on the PTWA-A coating engine bore surface 

merged into each other after the non-firing floating-liner test (Figure 4-17) and became a 

large surface defect. Thus, material from inside the pores was forced out of the surface, i 

which is demonstrated by the increase of Svk after the non-firing floating-liner test. As a 
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result, deep and wide wear scars formed. This is because the reciprocating motion creates a 

changing stress field [59] underneath the surface in the internal combustion engine system.  

The forming of large surface defects initiates surface cracks, which propagate along 

the splat boundaries during the non-firing floating-liner tests (Figure 4-17). The cross-

section microstructures clearly show that the near surface splats at normal wear region are 

gradually flaked off the coating. Moreover, the cross-section view of the surface appears to 

be more damaged than the virgin surface, which was caused by the splat delamination. This 

was also demonstrated by the height scanning results (Figure 4-26), which show that gaps 

exist between the splats and coating. Eventually, micro cracks can result in the top lamellar 

flaking off the coating surface. In addition, the smooth layers within the PTWA-A coating 

hinder the interlocking between layers, which leads to the failure of preventing the removal 

of the whole splat particle from the substrate.   

This surface delamination corresponds to splat delamination wear. The failure of the 

PTWA-A coating engine bore surface is initiated by the undersurface shear stresses and 

enhanced by the surface defects produced during the manufacturing and honing processes 

[58].  

The wear of the cast iron engine is attributed to abrasive wear. The peaks on the 

surface of cast iron engine bore were removed in the break-in period and formed a three-

body abrasive with the two counterfaces. The wear of the PTWA-A coating engine bore is 

attributed to the co-work of abrasive wear and splat delamination wear. The peaks on the 

surface, the weak ridges around the honing grooves, and surface pores are removed, 

102 
 
 



 

resulting in abrasive wear. The abrasive wear debris and the extreme loading condition of 

the engine bore accelerate the propagation of cracks, resulting in the splat delamination 

wear. The flaked off splats would, in turn, enhance the abrasive wear as particles.   

5.1.2 Lubrication conditions 

The lubrication condition influenced the wear behavior of the engines during the non-

firing floating-liner tests. The cross section microstructure of the PTWA-A coating engine 

bore after the non-firing floating-liner test showed a more damaged surface at TDC than 

that at mid-stroke. The pressure at TDC is higher than that at mid-stroke and the speed is 

lower at TDC than that at mid-stroke. This results in lubrication starvation at TDC.  

At TDC, speed decreases to zero and the pressure that is generated in the lubrication 

gap squeezes the lubricated oil out of the gap [39]. In this situation, the oil film thickness is 

less than the surface roughness, the metal-to-metal contact occurs, and because the 

contact area between the two surfaces is limited to the contacting peaks of the asperities, a 

mixed lubrication mechanism is observed. As a result, there is an occurrence of abrasive 

wear caused by the rubbing the hard piston-ring surface or the hard particles in the 

lubricate oil. While at mid-stroke, the piston increased to the maximum speed, a 

hydrodynamic lubrication mechanism was observed, and the surface was lubricated 

enough.  Upon competition, the wear was less severe than at TDC. 

The friction force result of the cast iron engine shows continuous decrease after the 

break-in period, which is attributed to the feeding of graphite flakes during the non-firing 
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floating-liner test. The lubricate condition of the cast iron engine changes from oil lubricate 

to oil plus graphite lubricate after the break-in period, while the lubricate condition of the 

PTWA-A coating engine bore is oil lubricate throughout the non-firing floating-liner test. 

5.2 Evaluation of adhesion strength 

The three most common failure types found in adhesion tests are epoxy failure, 

cohesive failure, and adhesive failure. When the failure happens within the adhesive film, it 

is epoxy failure. When the failure happens within the coating, it is called cohesive failure. 

When the failure happens at the coating and substrate interface, it is referred as adhesive 

failure.  

The adhesion test results of the PTWA-A coating show two types of failures happened 

in the tests. One failure happened at the interface between coating and substrate, 

corresponding to an adhesive type of failure and one failure happened within coating, 

corresponding to a cohesive type of failure. The adhesion strength was 29.03 MPa and 

adhesion strength was 19.51 MPa. The result of the B sample shows that the failure 

happened at the interface between coating and substrate, corresponding to an adhesive 

type of failure. The adhesion strength was 44 MPa. It is clear that the PTWA-B coating has 

higher adhesion strength than the PTWA-A coating.  

The presence of hone marks and surface porosity are observed on the virgin surfaces 

of the PTWA-A coating and the PTWA-B coating. The layered structures and presence of 

porosity are evident in the cross-sectional microstructural analysis of both samples. The 

presence of unmelted particles, micro cracks, and oxides are also clear. The PTWA-B 
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coating has a dense coating with an average fraction of porosity within the coating of 2.5 %. 

However, the PTWA-A coating shows more porous coating with an average fraction of 

porosity within the coating of 5.8 %, especially along the interface between coating and 

substrate.  In addition, the grooves of the PTWA-B coating are machined to match a tooth-

like shape with round corners, which allows a wider angle for the gun head that sprays 

more evenly and provides better adhesion during the thermal spray process. 

The cohesion failure of the PTWA-A coating is attributed to the pores and micro-cracks 

in the coating. During the adhesion tests, a tension load applies perpendicular to the 

coating, resulting in stress concentration around those defects. The cracks would propagate 

easily around those defects as the areas around defects are weaker and bear more 

comparisons to the defect-free areas. As a result, failure happens and partial coating is 

pulled off the main coating.   

The adhesion strength measures the bond between the coating and substrate. The 

tension load applies perpendicular to the coating and tries to break the mechanical 

interlock between coating and substrate. When compared to the PTWA-B coating, more 

pores and micro cracks are observed along the interface between coating and substrate in 

the PTWA-A coating. This means the coating of the PTWA-A sample poorly adheres to the 

substrate.  
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CHAPTER 6 CONCLUSIONS 

6.1 Conclusions 

The lubricated sliding behaviour and wear mechanisms of the PTWA-A coating 

deposited on aluminum engine after the non-firing floating-liner test were studied and 

compared to traditional cast iron engine bore. The microstructures of surface and the 

cross-section of coated engine bores were analyzed before and after the non-firing floating-

liner tests. The following conclusions are presented:  

 The microstructure of the PTWA coating shows a lamellae structure in which 

splats, pores, oxides, and unmelt particles were embedded. The thickness of 

PTWA-A coating is approximately 237.6 μm and the volume fraction of porosity 

within the coating is 5.8%.  

 The PTWA-A coating engine bore shows lower friction force (the initial friction 

force of the PTWA-A coating engine bore is 230 N) when compared to the cast 

iron engine bore (the initial friction force of the cast iron engine is 269 N). This is 

attributed to the surface porosity and the surface roughness of the PTWA-A 

coating. The average number of pores for PTWA-A coating engine bore at TDC 

and mid-stroke are 703.50±131.70 and 677.00±32.76. The Svk of PTWA-A coating 

engine bore at TDC and mid-stroke are 1.872±0.513 μm and 1.705±0.102 μm. 

Surface porosity serves well for oil storage and helps the PTWA-A coating engine 

bore improve the lubrication condition.  

106 
 
 



 

 The oil retention volume of the PTWA-A coating engine bore is larger than that of 

cast iron. This suggests that the PTWA-A coating engine bore consumes more oil 

and produces more emission compared to the cast iron engine bore. 

 The micromechanisms of wear for PTWA-A coating engine bore:  

1) The wear is initiated by abrasive wear. Surface peaks, weak edges of cracks, 

and pores are removed during the break-in period and become wear debris while 

creating wear scars on the surface.  

2) The wear is then enhanced by splats separation, which is caused by the 

propagation of cracks at splat interfaces along the oxides. The PTWA coating 

layers are removed as a result of surface fatigue and act as the third body 

particle in later abrasive wear process. 

 The PTWA-A coating with an interfacial morphology of square shape shows the 

adhesion strength of 29.5 MPa, however, PTWA-B coating with an interfacial 

morphology of dovetail shape shows much higher adhesion of 44 MPa. This 

suggests the adhesion strength of PTWA coating depends on the shape of the 

pre-machined interfacial morphology prior to the thermal spray processes and it 

can be improved by changing the interfacial morphology.  

The work presented in this thesis has shown that the PTWA-A coating engine bore 

does have the promising potential to replace cast-iron cylinder liners in production vehicles, 

although some improvements are needed for the coating processes. It is remarkable that 

the friction force of the PTWA-A coating engine bore is lower than that of the traditional 
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cast iron engine bore. In addition, this research has provided insight into the wear 

mechanisms of the PTWA-A coating engine bore. Moreover, a specific design criterion for 

thermal spray coated Al-Si engine has been developed by comparing the PTWA-A coating 

engine bore with the PTWA-B coating engine bore. This suggests the pre-machined grooves 

on the substrate need to be shaped with round corners and wide angles to provide better 

mechanical interlocks for the coating. 

6.2 Recommendations for future research 

The following work is suggested for future research: 

 Microstructural and chemical analysis of piston rings can provide more insight 

into the wear mechanism of the coating.  

 No obvious wear was present but it would be valuable to check the time 

dependant wear volume of the PTWA-A coating engine bore. This would help to 

quantify wear results of the PTWA-A coating engine bore.   
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