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ABSTRACT 

S phase kinase associated protein 2 (Skp2) is an E3 ubiquitin ligase, an established oncogene 

and an important G1-S regulator. The critical and well-studied target of Skp2 is the Cyclin 

dependent kinase inhibitor p27/Dap. Overexpression of Skp2 has been observed in a wide 

variety of cancer types and in most of these cancer types, downregulation of p27/Dap has 

also been observed. However, loss of Skp2 in mammals and in Drosophila also results in 

polyploidy in mitotic tissues. Polyploidy resulting from overexpression of Skp2 has been 

widely studied but there is still no clear understanding on how loss of Skp2 results in 

polyploidy. We found that loss of Skp2 results in premature degradation of Cyclin A and 

other mitotic cyclins - possibly by the premature activation of APC-CDH1/Fzr resulting in 

mitotic failure. The cells then enter a G-like state and start endoreplicating, causing 

polyploidy. Our results show that the N-terminus of Skp2 interacts directly with Cyclin A 

and is required for rescuing polyploidy in Skp2 null mitotic cells. We also showed that 

polyploidy resulting from overexpression of p27/Dap is different from polyploidy resulting 

from loss of Skp2. Our results show that the polyploid Skp2 null cells which enter mitosis, 

delay in prometaphase/metaphase of the cell cycle with the activation of the Spindle 

Assembly Checkpoint (SAC). These cells frequently undergo double stranded DNA damage 

and activates apoptosis and autophagy mediated cell death. Our results argue that it is not 

polyploidy but the entry of polyploid cells into mitosis that activates the checkpoints that 

cause apoptosis for genome stability. 
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1.1. Drosophila melanogaster as a model organism  

In early 1823, Swedish entomologist Carl Frederick Fallen first coined the 

name Drosophila, which means “lover of dew.” Two of the reasons why Drosophila 

caught scientists’ attention were because Drosophila were raised with little care and 

had a short generation time, usually 10 to 12 days at 25°C. In 1907, Drosophila were 

introduced to Thomas Hunt Morgan by Frank Lutz, and between 1910 and 1920 a 

significant amount of work was done on Drosophila in Morgan’s lab. Morgan 

discovered the white gene, the first sex-linked gene, which gave him the idea that 

genes are part of chromosomes. It was found out later that the white gene encoded a 

trans-membrane protein, ABC transporter. Members of ABC transporter protein 

family were found to be involved in drug resistance in cancer and other diseases. 

There were several examples of genes found in Drosophila long before the genes 

were known to have any connection to cancer or other diseases. Studies have shown 

that more than 50% of genes that cause human disease have orthologs in Drosophila.  

 The S phase kinase-associated protein 2 (Skp2) is a potential oncogene, 

meaning Skp2 has the potential to cause cancer in cells when overexpressed. Skp2 

has been studied in mammalian systems since 1995; and interest in it has since 

grown. It has been observed to be overexpressed in most cancer-tissue types, causing 

the premature degradation of the critical Gap/Growth1-Synthesis (G1-S) phase 

regulator and tumour suppressor p27/Dap (Hao and Huang, 2015). A significant 

amount of work has been done on Skp2 using the mammalian cell culture system, 

despite the fact that the cell culture system has not provided the microenvironment 

that truly reveals the potential of a gene. I chose Drosophila as my model organism 
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to study Skp2 and to better understand its cell cycle role using a simpler in vivo 

system.  

This introduction chapter focuses on the cell cycle role of some key 

regulatory proteins during Gap2-Mitosis (G2-M) transition, M (Mitosis) phase, G1-S 

transition and Gap/Growth 1 (G1) phase. Following a general discussion role of the 

cell cycle proteins, Skp2, Cyclin A and the activation of CDK will be reintroduced, 

later in the chapter and discussed in more detail. For ease of understanding, the 

literature review is separated into mammalian model systems and Drosophila model 

system. The genes and proteins with different names in Drosophila will be written as 

mammalian name/Drosophila name. 

1.2 G2 regulation and mitotic entry in mammalian model systems 

Cell cycle regulation in G2 phase, and its timely transition into M phase, is 

regulated by multiple protein complexes through overlapping or distinct pathways. 

Entry into mitosis depends on the activity of the maturation promoting factor, or 

MPF, which consists of a heterodimer composed of Cyclin-dependent kinase 1 

(CDK1), and mitotic Cyclin B (Draetta and Beach, 1988; Ducommun et al., 1991; 

Krek and Nigg, 1991). The other important Cyclin during G2 regulation and mitotic 

entry is Cyclin A. Mammals have two Cyclin A genes, Cyclins A1 and A2, and two 

Cyclin B genes, Cyclins B1 and B2. Cyclins A2 (which will be referred to as Cyclin 

A) and B1 (which will be referred to as Cyclin B) are primarily involved in mitosis 

(Porter and Donoghue, 2003). There is another kind of cyclin known as Cyclin B3. 

Even though Cyclin B3 shares similarities with both Cyclin A and Cyclin B it is 

more closely related to Cyclin A than Cyclin B (Jackman et al., 1995; Jackman et al., 
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2003). The synthesis of Cyclin B starts a little later than Cyclin A, in S phase and it 

reaches its peak activity as the cells enter mitosis. The subcellular localizations of 

Cyclin A and Cyclin B vary in interphase and mitotic cells. Despite Cyclin B’s 

constant shuttling between the nucleus and the cytoplasm during interphase, the 

majority of Cyclin B is cytoplasmic during interphase, because the rate of nuclear 

export is more than the rate of nuclear import (Pines and Hunter, 1991; Toyoshima et 

al., 1998). During prophase, Cyclin B is rapidly imported into the nucleus, although 

there have been contradictory results in regards to the mechanism of its rapid import. 

Some studies suggest that during G2-M phase transition, Polo-like kinase 1 (PLK1) 

phosphorylates cytoplasmic Cyclin B at the N-terminus. The N-terminus of Cyclin B 

has a cytoplasmic retention signal (CRS), which has a nuclear export signal (NES) 

inside it. PLK1-mediated phosphorylation of the NES impairs the nuclear export, 

resulting in rapid Cyclin B import into the nucleus (Jackman et al., 2003; Pines and 

Hunter, 1994). However, some other studies suggested that PLK1-mediated 

phosphorylation of Cyclin B is not required for nuclear translocation. Instead, Cyclin 

B is autophosphorylated at its N-terminus in the cytoplasm, and is first detected as 

active on the centrosome. During prophase, the active cytoplasmic Cyclin B rapidly 

enters into the nucleus through changes in the nuclear import machinery, not through 

the accessibility of the nuclear import signal (Gavet and Pines, 2010; Jackman et al., 

2003).  

Cyclin A is mostly nuclear in interphase as well as in mitosis (Moore, 2013; 

Nigg et al., 1991). The most important function of Cyclin A during G2-M is to 

promote the activation of nuclear Cyclin B (Fung et al., 2007). Cyclin A with its 
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partner Cyclin dependent kinase (CDK1) phosphorylates Wee1 and inactivates it. 

This results in the reduced inhibitory phosphorylation of Cyclin B when it is shuttled 

to the nucleus, causing the activation of nuclear Cyclin B. Active Cyclin B then 

shuttles back to the cytoplasm to activate CDC25/String. This starts a positive 

feedback loop, causing more cytoplasmic Cyclin B to be activated (Brown et al., 

2015; Fung et al., 2007; Margalit et al., 2005; Pagano et al., 1992). The low level of 

activation of Cyclin B-CDK1 begins 20 to 25 minutes before nuclear envelope 

breakdown (NEBD) in the cytoplasm. Cyclin B activation gradually increases, and 

full activation of Cyclin B is needed for NEBD (Boutros et al., 2007). Active Cyclin 

B-CDK1 phosphorylates nuclear lamins and other important structural proteins, and 

causes dissociation of the nuclear envelope (Gavet and Pines, 2010; Margalit et al., 

2005). Even though Cyclin B is the critical cyclin needed for mitotic entry in human 

cells, the activity of Cyclin A is also important because it is needed for the activation 

of Cyclin B  (Fung et al., 2007; Porter and Donoghue, 2003).  

The other mitotic cyclin, Cyclin B3, is not very well characterized in humans. 

It binds with Cyclin dependent kinase 2 (CDK2) instead of CDK1. It is required in 

meiosis but its mitotic function is not clear. Although overexpression of non-

degradable Cyclin B3 shows premature entry into mitosis, these cells delay in 

anaphase, and an overall delay in mitotic exit. This indicates that Cyclin B3 might 

have an unknown role in mitotic entry and its degradation is needed for mitotic exit 

(Nguyen et al., 2002; Tschöp et al., 2006). 
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1.2.1 Regulation by Emi1 

Apart from cyclins and Cyclin dependent kinases (CDKs), another key aspect 

of promoting timely mitotic entry is the regulation by the early mitotic inhibitor 1 

(Emi1). The primary function of Emi1 is the inhibition of the E3 ubiquitin ligase 

Anaphase Promoting Complex (APC) in S and G2 phases. It competes with APC 

substrates to bind with APC co-activators Cell division cycle 20 (CDC20) and 

CDC20 homologue 1 (CDH1) (Miller et al., 2006). Details about APC and its co-

activators will be discussed later. Emi1 can also block the elongation of the ubiquitin 

chain on substrates and inhibit the binding of the E2 ubiquitin ligase and APC (Wang 

and Kirschner, 2013). The knockdown of Emi1 causes an upregulation of APC-

CDH1 and APC-CDC20 activity, resulting in the premature degradation of APC 

substrates such as Cyclin A, Cyclin B, Geminin (Hsu et al., 2002; Machida and 

Dutta, 2007). In early prophase, Emi1 is phosphorylated by Cyclin B-CDK1 and 

Polo like kinase 1 (PLK1), and is targeted for destruction by Skp1 Cullin Fbox-beta 

transducin repeat containing protein (SCF-βTRCP), another important E3 ubiquitin 

ligase. (Hansen et al., 2004; Margottin-Goguet et al., 2003). This allows APC 

activation during M phase. 

       1.2.2 Regulation by CDC25 

Cell division cycle 25 (CDC25) is a dual specificity serine/threonine and 

tyrosine phosphatase that plays a critical role in activating cyclin/CDK complexes. 

There are 3 different CDC25 genes that have different functions in different phases 

of the cell cycle (Donzelli and Draetta, 2003). CDC25A is primarily active in G1-S, 

although it also shows some activity during the G2-M transition. Both CDC25B and 
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CDC25C play an active role in the G2-M transition. CDC25 is positively regulated 

by Cyclin B-CDK1, Cyclin A-CDK2, Cyclin E-CDK2, Aurora kinase A, and PLK1 

through phosphorylation in the regulatory domain. During the G2-M transition, 

CDC25B activates the centrosome-associated Cyclin B-CDK1, while the nuclear 

Cyclin B-CDK1 is activated by CDC25C. (Boutros et al., 2007). 

1.2.3 Regulation of the E3 ubiquitin ligase APC  

      The anaphase-promoting complex, or cyclosome (APC/C), is a 1.5 MDa 

protein complex with one or two copies of 19 different subunits. The complex also 

contains two tryptophan aspartic acid (WD) repeat-containing co-activators, CDC20 

and CDH1 (Pines, 2011). Two APC subunits, APC 4 and APC 5, form a platform 

where the Tetraricopeptide repeat (TPR) sub-complex and the catalytic sub-complex 

bind. The subunits of the TPR sub complex consists of homodimers of APC 6, APC 

7, APC 8, and APC 3. A Tetraricopeptide repeat domain is common to all the 

subunits of the TPR sub-complex and this domain is involved in co-activator 

interaction. The C-terminal motif as well as the C-terminal Isoleucine-Arginine (IR) 

tail on the co-activators interact with the TPR domain of the TPR sub complex. 

(Castro et al., 2005; Vodermaier et al., 2003). The catalytic sub complex consists of 

APC 2, APC 11, and APC 10. APC 2 and APC 11 have binding sites for E2 

enzymes. APC 10 has an IR tail and is possibly needed for binding with the TPR 

domain of APC 3. The catalytic sub complex cooperates with E2 enzymes for 

protein ubiquitination (Pines, 2011). Human APC works with two E2 enzymes, 

UBCH10 and Ube2S (Wang and Kirschner, 2013). Structural studies on APC show 

that it is somewhat triangular with a cavity in the middle. In this cavity, the substrate 
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binds with the WD-40 domain of the co-activator and the DOC domain of APC 10 

(Pines, 2011).  

The primary function of APC is to identify substrates and ubiquitinate them 

for degradation (Chang et al., 2015; Pines, 2011; Vodermaier, 2004). APC is known 

to have over one hundred different substrates, and is only active during M phase and 

G1. The WD-40 repeat domain of the co-activators identifies their substrates through 

a consensus RXXLXXXXN motif, known as destruction box (D box), or a 

consensus KEN motif, known as KEN box. (Peters, 2006). The APC complex is kept 

inactive during late G1, S, G2, and beginning M phases to allow the accumulation of 

different substrates (Wang and Kirschner, 2013).  

There are 43 phospho sites on APC, among which 34 are mitosis-specific and 

4 are S phase-specific (Kraft et al., 2003). During interphase, phosphorylation by 

Cyclin A-CDK2 inactivates CDC20 as well as CDH1 and inhibits them from binding 

with the APC core complex. However, prior to mitotic entry, phosphorylation by 

Cyclin B-CDK1 activates APC core complex and CDC20. This facilitates CDC20 

binding with the APC complex (Hein and Nilsson, 2016). This active APC-CDC20 

is now kept inactive against most substrates by the mitotic checkpoint protein 

complex (MCC). MCC is a group of proteins that primarily bind to kinetochores that 

are not attached to spindle microtubules and generates a signal that inhibits the 

progression of cells from metaphase to anaphase (Sacristan and Kops, 2015). The 

details of this complex will be discussed later.  
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1.3 Completion of mitosis in mammalian model systems 

Mitosis is a rapid and complicated cell cycle phase wherein a mother nucleus 

is carefully segregated into two daughter nuclei. Based on chromosomal 

arrangement, mitosis can be further divided into five distinct phases. These are 

prophase, prometaphase, metaphase, anaphase, and telophase. Cytokinesis is the last 

step and occurs after telophase to divide a mother cell into two identical daughter 

cells. The major events that happen during these phases are described below. 

1.3.1 Prophase 

The compaction of interphase chromatin is the first visible indication of 

prophase under the microscope. Cyclin B-CDK1 mediated phosphorylation of 

Condensin and other unknown proteins that are important for chromosome 

condensation start the process of chromatin compaction just prior to NEBD 

(Vagnarelli, 2012). There are two kinds of condensin complexes: condensin I and 

condensin II. The ratios of condensin I and II vary in different organisms. In 

mammalian cells, there is an equal ratio of condensin I and condensin II (Vagnarelli, 

2012). Apart from condensin, Topoisomerase IIα, chromokinesin, and cohesin 

complexes are important for the condensation of chromosomes. Cohesin complexes 

maintain an attachment between sister chromatids until anaphase (Vagnarelli, 2012).  

The phosphorylation of Histone H3 on serine 10 by the Aurora B kinase is an 

important modification of histone during prophase. It starts in the pericentromeric 

region of the chromosome in G2 and completes in prophase. There are several views 

regarding the significance of histone H3 phosphorylation during mitosis, but all 

studies point out that the phosphorylation of histone H3 causes its dissociation from 
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the DNA, and possibly allows the recruitment of other proteins that are needed for 

chromosome compaction during prophase (Prigent and Dimitrov, 2003).  

Another important event during prophase is the phosphorylation of CDC25C 

by PLK1.This results in translocating CDC25C to the nucleus. In the nucleus, 

CDC25C activates Cyclin B /CDK1 as mentioned before (Boutros et al., 2007; 

Toyoshima‐Morimoto et al., 2002). 

 1.3.2 Pro metaphase-Metaphase 

The breakdown of the nuclear envelope marks the beginning of 

prometaphase. Astral microtubules radiate from the centrosomes toward the nuclear 

envelope during prophase, and with the help of the microtubule motor protein 

dynein, the nuclear envelope is pulled toward the centrosomes, creating several small 

invaginations. In prometaphase, the concerted actions of microtubules and motor 

proteins, break the nuclear envelope to integrate the cytoplasmic and nuclear proteins 

and organelles (Beaudouin et al., 2002). At this point, the kinetochore of the 

chromosomes attaches to the microtubules, which is important for segregation later 

in anaphase. The stability of the kinetochore microtubule attachments were 

maintained by Cyclin A and Aurora B kinase. During prometaphase, Cyclin A keeps 

the microtubules flexible enough to facilitate proper attachment with the kinetochore 

(Kabeche and Compton, 2013). Just after NEBD during prometaphase, Cyclin A is 

degraded by APC-CDC20 mediated ubiquitination (den Elzen and Pines, 2001; 

Pagano et al., 1992). After the degradation of Cyclin A Aurora B kinase localizes to 

the centromere and destabilizes erroneous kinetochore microtubule attachments. This 
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signals the spindle assembly checkpoint (SAC) to stop the cell from entering 

anaphase (Foley and Kapoor, 2013; Li et al., 2015).  

1.3.3 Spindle assembly checkpoint (SAC) 

The spindle assembly checkpoint monitors the microtubule kinetochore 

attachment status of a cell. As mentioned before, when the SAC is active, anaphase 

is prevented until the microtubules are properly attached with the kinetochores. The 

key components of SAC are MAD1, MAD2, MAD3/ BUBR1, BUB1, BUB3, and 

CDC20 (Sudakin et al., 2001). Among the many SAC proteins, BUBR1, MAD2 and 

MAD1 are the most essential (Lara-Gonzalez et al., 2012). When the SAC is active, 

BUBR1 prevents APC-CDC20 activation by binding to CDC20 as a pseudosubstrate. 

BUBR1 can also inhibit substrate recognition by moving CDC20 away from APC10. 

The other SAC protein MAD2 stabilizes the interaction between CDC20 and 

BUBR1 (Lara-Gonzalez et al., 2012; Sacristan and Kops, 2015). After the spindle 

microtubules are properly attached to the kinetochores, the SAC is silenced by the 

removal of SAC proteins from the kinetochore. SAC silencing has not been studied 

in detail in the mammalian model systems, but phosphatases such as PP2A and PP1 

play important roles in SAC silencing (Lara-Gonzalez et al., 2012). BUBR1 also has 

a role in the alignment of chromosomes at the metaphase plate and recruits PP2A to 

the kinetochore. The BUBR1, PP2A complex then inhibits Aurora B kinase at the 

kinetochore as Aurora B kinase is no longer needed to destabilize erroneous 

microtubule kinetochore attachments (Sacristan and Kops, 2015; Xu et al., 2013).  
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1.3.4 Anaphase 

Sister chromatid cohesin is established in S phase by assembly of cohesin 

complexes that hold the sister chromatids together.  In human cells, cohesin complex 

proteins start to dissociate from the sister chromatid arms during prophase, but the 

chromatids are still held tightly until metaphase. During SAC activation, Securin 

stays bound to Separase and inhibits its protease activity. Soon after SAC is silenced, 

Securin is ubiquitinated by APC-CDC20 and this leads to Separase activation. 

Active Separase cleaves SCC1 and that causes sister chromatid separation and 

anaphase progression (Uhlmann, 2001; Waizenegger et al., 2000). In vitro 

experiments have shown that Securin can also be degraded by APC-CDH1 in a 

KEN-box dependent manner (Hagting et al., 2002). Following the degradation of 

Securin, Cyclin B is ubiquitinated by CDC20 (Clute and Pines, 1999). The 

degradation of Cyclin B and Cyclin A reduces the CDK1 activity and triggers the 

activation of APC-CDH1. Active CDH1 targets Aurora A kinase, Aurora B kinase, 

CDC20, and PLK1 for degradation during late anaphase (Floyd et al., 2008; Hyun et 

al., 2013). 

1.3.5 Telophase and Cytokinesis 

During anaphase, the framework for cytokinesis starts with the formation of 

the spindle midzone (Green et al., 2012). The spindle midzone is an array of 

interdigitating, bundled, central microtubules that do not attach to the kinetochores; 

they are formed between separating chromosomes. The formation of the spindle 

midzone requires the kinesin proteins MKLP1, KIF4 and PRC1, as well as the kinase 

activities of the chromosome passenger complex (CPC) and PLK1. Positioning of 

12 
 



the cleavage furrow is determined by the proteins that reside on the spindle mid -

zone (Barr and Gruneberg, 2007; Green et al., 2012). Cytokinesis marks the exit 

from mitosis with the formation of two daughter cells. 

1.4 G1 regulation in the mammalian model systems 

Every stage of the cell cycle involves multiple proteins doing multiple 

activities, and G1 is no exception. The cell enters G1 with low CDK activity; this is 

crucial, because it sets the stage for many important cellular events. The pre-

replication complex formation and activation of CDH1/Fzr are both triggered by low 

CDK1 activity. 

1.4.1 Pre-replication complex (pre-RC) formation 

During the late M phase of the cell cycle, origin recognition complexes 

(ORC), are formed to initiate the formation of a pre-RC. A pre-RC is formed by the 

assembly of ORC, CDC6, CDT1, and MCM (2 to 7) complexes (Nishitani and 

Lygerou, 2004). CDC6 and CDT1 are recruited to the ORC first; they then bring the 

MCM helicase to form the pre-RC. At this point the DNA becomes competent for 

replication and this event is referred to as replication licensing.  Licensing starts at 

the end of the M and G1 phases, and chromatin stays licensed until the replication of 

the chromatin starts in S phase, with the transcription and activation of S phase 

cyclins. At the G1-S transition, with the activation of Cyclin E-CDK2 and Cyclin A-

CDK2, some structural changes happen in the pre-RC. These changes allow the 

cyclins to load additional replication proteins to the pre-RC sites. DNA unwinds with 

the help of MCM helicase, which moves away from the pre-RC site. DNA 

polymerase is recruited to the pre-RC site and replication initiates. After replication 
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is initiated, the pre-RC factors are inactivated by proteolysis, phosphorylation, and 

translocation to the cytoplasm (Nishitani and Lygerou, 2004; Stoeber et al., 2001). 

CDT1 is degraded by E3 ubiquitin ligase SCF-Skp2, as well as CUL4-DDB1 in S 

phase. CDT1 is also inhibited by a protein called Geminin during the S, G2, and M 

phases. While Geminin inhibits CDT1, it also binds with CDT1 and prevents the 

degradation of it by SCF-Skp2, so that there is an accumulation of CDT1 during 

mitosis to start the next round of replication licensing (Ballabeni et al., 2004; 

Nishitani et al., 2006). At the end of M phase, Geminin is targeted by APC-CDH1. 

The degradation of Geminin frees CDT1 to bind with pre-RC to start another round 

of replication licensing (Benmaamar and Pagano, 2005; Skaar and Pagano, 2008).  

1.4.2 Regulation by APC-CDH1 

As mentioned before, APC-CDH1 is activated by the end of anaphase 

following the degradation of mitotic cyclins. During G1, CDH1 keeps the mitotic 

cyclin levels down through continuous ubiquitination of cyclins. It also targets Skp2 

and Cks1 in G1 (Bashir et al., 2004). Cks1 is a small CDK-interacting protein that 

has been shown to bind with Skp2 and increase its affinity for substrates. (Ganoth et 

al., 2001; Spruck et al., 2001).  

1.4.3 Regulation by Retininoblastoma (Rb) 

Retinoblastoma (Rb) proteins are the gatekeepers of the G1 phase. Changes 

to the phosphorylation of Rb control its activity and a cell’s advancement from G1-S 

phase. Rb is a member of a family of proteins that contains a pocket domain; they 

include Rb, p107, and p130. All of the pocket proteins can bind with the E2F family 

of transcription factors and represses their activity. (Henley and Dick, 2012). 
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Phosphorylation of Rb by Cyclin D/CDK4 and Cyclin A/CDK2 relieves its E2F 

repression, causing the transcription of genes needed for the G1-S transition, 

particularly Cyclin E, Cyclin A, Skp2, and Emi1. When the cells are in quiescence 

during G1, the cyclin-dependent kinase inhibitors (CKI) like p27 and p21 bind with 

Cyclin E-CDK2 and keep the cyclin-CDK complex inactive. During late G1, the 

Cyclin D-CDK4 complex sequesters CKIs from CDK2 and forms a ternary complex 

with CKIs. This event causes the activation of both CDK2 and CDK4. (Hsu et al., 

2002; Ohtani et al., 1995; Schulze et al., 1995; Zhang and Wang, 2006). Active 

Cyclin E-CDK2 phosphorylates Rb and p27/Dap and Cyclin A-CDK2 phosphorylate 

proteins that promote replication (Girard et al., 1991; Ohtsubo et al., 1995; Zindy et 

al., 1992). 
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Fig. 1: Schematic diagram of cell cycle regulation of Skp2 and CDH1 in 

mammalian cell cycle.  

 

16 
 



1.5 G2 regulation and mitotic entry in Drosophila melanogaster 

Extensive cell cycle studies have been done on Drosophila embryos. The first 

13 cell cycles during Drosophila embryogenesis are driven only by S and M phases 

(Lee and Orr-Weaver, 2003). During these rapid cycles, the embryos use only 

maternally deposited proteins for their cell cycles. At the end of the 13th division, the 

embryos consist of multiple nuclei in a shared cytoplasm. Very little zygotic 

transcription occurs at this point. These are referred to as “syncytial embryos.” 

During mitosis 10, each embryo’s nuclei start migrating toward the embryo 

periphery. After the 14th S phase, a G2 phase is introduced with the cellularization of 

each nuclei; this creates the cellular blastoderm. By this time, the maternal deposit of 

cellular proteins has been depleted, and zygotic transcription has been initiated. This 

transition is known as a mid-blastula transition. At this stage, the embryo is referred 

to as “cellularized.” During the 14th to 16th divisions, each cell undergoes an S-G2-M 

cycle. After mitosis 16, the epidermal cells exit the cell cycle, neuronal cells 

continue to undergo S-G2-M cycles, histoblasts arrest in G2, and cells that will 

differentiate into larval tissues undergo an S-G cycle to rapidly increase ploidy and 

cell size. At this point, the G1 phase is introduced to the imaginal disc cells. The 

imaginal discs later form the eyes, antennas, wings, legs, halters, and genitalia of an 

adult fly (Lee and Orr-Weaver, 2003). Syncitial embryos, cellularized embryos, wing 

imaginal discs, eye imaginal discs, and brains of 3rd-instar feeding or wandering 

larvae are widely used to study cell cycles. 

The wing imaginal disc of each Drosophila originates from an embryonic 

primordium. Starting with only 50 epithelial cells in the first instar larval stage, the 
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cells grow to 50,000 in number by the third instar larval stage (Neufeld et al., 1998). 

At this stage, an area at the dorsal ventral boundary of the wing imaginal disc 

undergoes programmed cell cycle arrest. This area is known as the zone of non-

proliferating cells (ZNC). In this zone, the cells are arrested into 2 stages: G1 and G2 

(Fig. 2 )(O'Brochta and Bryant, 1985). 
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Fig. 2: Zone of non-proliferating cells (ZNC) in 3rd instar wing imaginal disc 

of Drosophila. The area within the white dotted line marks the wing pouch/blade. 

The area within the black dotted rectangle is explained in the cartoon. In the 

cartoon, A refers to anterior side of the wing disc, B refers to the posterior side of 

the wing disc, V refers to the ventral side of the wing disc and D refers to the 

dorsal side of the wing disc. G1 and G2 refers to the cell cycle phase the cells are 

arrested in the ZNC.  
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1.5.1 Regulation by mitotic cyclins and CDC25/String  

In Drosophila, the three mitotic cyclins are Cyclin A, Cyclin B, and Cyclin 

B3. In flies, unlike mammals, Cyclin A is localized exclusively in the cytoplasm 

during interphase of cellularized embryos. It enters the nucleus during prophase and 

is degraded by metaphase (Lehner and O'Farrell, 1989). The localization of Cyclin B 

and Cyclin B3 are similar to mammals. During interphase, the majority of Cyclin B 

can be found in the cytoplasm, Cyclin B accumulates in the nucleus in prophase; it 

disappears by anaphase (Lehner and O'Farrell, 1989, 1990). Cyclin B3 is localized in 

the nucleus during interphase. During prophase it has an intense accumulation with 

the chromatin, which fades during metaphase and disappears during anaphase. 

Unlike mammals, all three mitotic cyclins interact with only CDK1 as their kinase 

partner (Jacobs et al., 1998; Sigrist et al., 1995).  

Among the three mitotic cyclins, Cyclin B and Cyclin B3 mutants are viable; 

Cyclin A mutants are lethal, indicating that Cyclin A is critical among all the mitotic 

cyclins (Jacobs et al., 1998). However, single mutant studies have shown that in 

Cyclin B mutants mitotic spindle organization is disrupted and mitosis takes longer 

than wild type. Cyclin A mutants never enter mitosis 16, indicating a necessity for 

Cyclin A at this particular stage. No mitotic abnormalities have been seen in Cyclin 

B3 mutants. To study the redundancy of cyclins, double mutants were made. Cyclin 

B and Cyclin B3 double mutants showed a delayed entry into mitosis, combined with 

severe abnormalities in spindle formation and delays in prophase. In Cyclin A and 

Cyclin B3 double mutants, spindle organization was normal, but chromosome 

condensation was severely affected. The double mutants did not enter mitosis 16 
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(Jacobs et al., 1998; Lehner and O'Farrell, 1989). However, the double mutants of 

Cyclin A and Cyclin B did not enter mitosis 15 (Knoblich and Lehner, 1993).  

The expression of a non-degradable form of Cyclin A results in a metaphase 

delay with normal spindles. The expression of a non-degradable form of Cyclin B 

had shown normal chromosome condensation, but mitotic spindle defects and defects 

of chromosome arrangements were also observed on the metaphase plate (Sigrist et 

al., 1995). The cells did not proceed into anaphase or telophase. There was an 

enrichment of early anaphase chromosomes with separated sister chromatids. The 

expression of a non-degradable form of Cyclin B3 show a late anaphase delay with 

chromosome segregation (Jacobs et al., 1998; Sigrist et al., 1995).  

In mitosis 14 of cellularized embryos, when maternal CDC25/String becomes 

depleted, cells are arrested at the G2 phase of the cell cycle. CDC25/String 

transcription is needed for cells to go into mitosis, implying that at this stage 

CDC25/String is an important regulator of mitotic entry (O'Farrell et al., 1989). 

Entry into mitosis 16 does not occur in Cyclin A mutant embryos despite the 

presence of cyclins B and B3, suggesting that at this stage the presence of Cyclin A 

is critical for mitotic entry with Cyclin B, having an intermediate effect. Cyclin B3 

has the least effect on mitotic entry (Jacobs et al., 2001; Jacobs et al., 1998). As 

mentioned before, G1 is introduced for the first time after mitosis 16. The expression 

of non-degradable Cyclin B, non-degradable Cyclin B3, or CDC25/String did not 

restore mitosis 16 in Cyclin A mutant embryos. In these embryos, Cyclin B, Cyclin 

B3, and CDC25String disappeared prematurely (Reber et al., 2006). All these proteins 

have D boxes, which make them targets for APC-CDH1/Fzr (Sigrist and Lehner, 
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1997). Levels of Cyclin B, Cyclin B3, and CDC25/String were restored in Cyclin A 

and CDH1/Fzr double mutant embryos indicating that Cyclin A is needed to inhibit 

CDH1/Fzr mediated degradation of these proteins. (Reber et al., 2006). Apart from 

Cyclin A, Cyclin E can also inhibit CDH1/Fzr. However, Cyclin E disappears before 

mitosis 16 and is not able to inhibit CDH1/Fzr. Thus, at this stage the presence of 

Cyclin A is needed for CDH1/Fzr inhibition. Cyclin A can inhibit CDH1/Fzr even 

when all phosphorylation sites on CDH1/Fzr are mutated, suggesting that in flies, the 

phosphorylation of CDH1/Fzr does not cause its inactivation (Reber et al., 2006). 

Emi1/Rca1 is an important regulator of the G2 phase in Drosophila. It is 

localized in the nucleus throughout the cell cycle. Similar to mammalian system, 

Emi1/Rca1 binds with CDH1/Fzr and inhibits it from becoming active in G2 

(Grosskortenhaus and Sprenger, 2002). Loss of Emi1/Rca1 results in premature 

overexpression of CDH1/Fzr, which causes a G2 arrest with the degradation of 

mitotic cyclins, and the inhibition of mitosis 16 (Grosskortenhaus and Sprenger, 

2002; Sigrist and Lehner, 1997). Mutants of the other APC activator, CDC20/Fzy, 

arrest during the metaphase of mitosis 16, indicating that CDC20/Fzy is required 

during the metaphase to anaphase transition, not during G2 or mitotic entry (Sigrist 

et al., 1995). 

1.5.2 Nuclear envelope breakdown 

During interphase, in the early embryo when there is only the S-M cycle, the 

nuclear envelope (NE) forms around the periphery of the chromatin as a circular 

structure. As prophase begins with the condensation of chromosomes, the NE 

invaginates inwards, toward the condensing chromatin just beside the centrosomes. 
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Spindle microtubules can pass through the nuclear membrane and attach to the 

condensed chromosome. After metaphase, the nuclear lamina partially breaks down 

and disperses as granular structures in the cytoplasm (Fuchs et al., 1983; Paddy et al., 

1996). Nuclear envelope breakdown in cellularized embryos has not been studied 

well. 

1.6 Mitosis in Drosophila melanogaster 

Similar to mammalian model system Drosophila mitosis is subdivided into 5 

phases: prophase, prometaphase, metaphase, anaphase and telophase. As mentioned 

before, during prophase, Cyclin A enters the nucleus from the cytoplasm. 

Chromosome condensation follows right after Cyclin A entry, implying that Cyclin 

A might have a role in chromosome condensation (Dienemann and Sprenger, 2004). 

Cyclin B accumulates near the centrosomes just prior to nuclear entry. It enters the 

nucleus right before nuclear envelope breakdown and localizes throughout the 

mitotic spindle. During metaphase, Cyclin B localizes to the plus end of the 

interpolar microtubules. The degradation of Cyclin B is spatially regulated. In the 

syncytial embryos, spindle associated Cyclin B is degraded whereas cytoplasmic 

Cyclin B is not degraded. However, in cellularized embryos cytoplasmic as well as 

spindle associated Cyclin B are both degraded through APC-mediated ubiquitination. 

(Huang and Raff, 1999). Similar to mammals, CDC20/Fzy ubiquitinates mitotic 

cyclins in an ordered sequence, starting with Cyclin A. It then degrades Securin/Pim, 

Cyclin B, and lastly Cyclin B3 (Leismann et al., 2000; Sigrist et al., 1995) .  

The main components of a Drosophila Spindle assembly checkpoint are 

BUBR1, BUB3, MAD2, MAD1, Rough Deal (Rod), Zw10, BUB1 and Mps1kinase. 
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Mps1 is upstream of the SAC proteins. Its function is to recruit SAC proteins to the 

kinetochore and phosphorylate BUBR1. The phosphorylation of BUBR1 results in 

recruitment of CDC20/Fzy to the kinetochore as well as the formation of the mitotic 

checkpoint complex. (Conde et al., 2013a). MAD2 stabilizes CDC20/Fzy and 

BUBR1 interactions in the kinetochore. Although flies have all the SAC proteins 

described in the mammalian system, SAC is not essential in flies. This indicates that 

the SAC proteins might have other essential roles that are not yet understood (Basto 

et al., 2004; Basu et al., 1999; Buffin et al., 2007; Conde et al., 2013b; Lopes et al., 

2005; Orr et al., 2007). 

1.7 G1 regulation in Drosophila 

Similar to mammalian model systems, APC-CDH1/Fzr is an important 

regulator during the G1 phase. In CDH1/Fzr deficient embryos, mitotic cyclins re-

accumulate after CDC20/Fzy ubiquitinates them in mitosis. These embryos do not 

enter G1; instead, they go for an extra replication phase (Sigrist and Lehner, 1997).  

Roughex (Rux) is a Drosophila-specific G1 regulator that acts as a cyclin-

dependent kinase inhibitor (CKI) specific to Cyclin A and Cyclin B (Foley et al., 

1999). Rux mutant flies prematurely enter the S phase without maintaining G1 phase 

arrest within the morphogenetic furrow of the Drosophila’s eye imaginal disc. Rux 

can interact with Cyclin A and Cyclin B, and it inhibits its CDK1-mediated kinase 

activity in mitosis. While it acts primarily to inhibit CDK1 activity, at low levels it 

can promote CDK1 activity (Foley et al., 1999). Cyclin E-CDK2 phosphorylates 

Rux; this causes Rux degradation at the G1-S transition (Foley et al., 1999; Foley 

and Sprenger, 2001; Thomas et al., 1997). 
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Dacapo (Dap) is the other CKI in Drosophila that has homology with both 

p21 and p27/Dap in mammals. The overexpression of p27/Dap causes a G1 arrest in 

transgenic embryos. Bacterially expressed p27/Dap inhibits Cyclin E-CDK2 activity 

in vitro, but does not inhibit Cyclin A-CDK1 or Cyclin B-CDK1 activity (de Nooij et 

al., 1996; Lane et al., 1996).  

1.8 G1-S transition in Drosophila 

Unlike mammals, Cyclin D does not regulate G1-S transition in flies. Instead 

it regulates growth. Cyclin E is the sole regulator of the G1-S transition in 

Drosophila melanogaster. Cyclin E phosphorylates Rb and promotes its own 

transcription through the E2F transcription factor (Lee and Orr-Weaver, 2003). 

1.9 Cyclins and cyclin-dependent kinases (CDKs) 

The following section discusses CDK activation and detailed review about 

Skp2 and Cyclin A. Unlike cyclins, CDK protein levels remain constant throughout 

the cell cycle (Draetta and Beach, 1988). However, the activity of CDKs is periodic, 

based on their association with their regulatory and substrate recognition partner 

cyclins (Kaldis and Lim, 2013). Drosophila have 11 CDKs and 14 cyclins, whereas 

humans have 20 CDKs and 29 cyclins. Among them, only a fraction of cyclins and 

CDKs are involved in the cell cycle (Malumbres, 2014). Cyclins are a large family of 

proteins that vary in size from 35 to 90 kDa. Structurally, all cyclins have a variable 

N-terminus and a more conserved C-terminus. All cyclins have a cyclin box in their 

C-terminal domain (Nugent et al., 1991). This cyclin box is further divided into two 

stretches of approximately 100 amino acids, both stretches containing 5 alpha 

helices. In some cyclins, the stretches are referred to as the N-terminal cyclin box 
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(CBOX1) and the C-terminal cyclin box (CBOX2). The N-terminal cyclin Box is 

structurally conserved in all cyclins, and is necessary for CDK association (Morgan, 

1997; Petri et al., 2007).  

CDKs range in size from 250 amino acids to 1500 amino acids. The crystal 

structure of CDK2 shows it is a two-lobed protein. The N-terminal lobe (residues 1 

to 85) contains beta sheets, while the C-terminal lobe contains alpha helices. ATP 

binds into the active site of the CDK, which is positioned between the two lobes (De 

Bondt et al., 1993). The C-terminal lobe contains the highly conserved PSTAIRE 

sequence which interacts directly with the cyclins. The C-terminal lobe also contain 

the inhibitory phosphorylation sites where Wee1 and Myt1 kinase adds the inhibitory 

phosphorylations on Thr 14 and Tyr 15 to inactivate the CDK. The CDK activating 

kinase (CAK) phosphorylates Thr 160 in the T-loop (residues 152-170). The T-loop 

blocks the active site and acts as an auto inhibitor for substrate binding (De Bondt et 

al., 1993; Jeffrey et al., 1995). CAK is a Cyclin H-CDK7 complex in mammals and 

flies (Merrick et al., 2008). In the steps toward the complete activation of CDK, 

cyclin binding is a critical step, apart from the phosphorylation of CDK (Ducommun 

et al., 1991). However, some studies have suggested that cyclin binding and CAK 

phosphorylation happen simultaneously for CDK1, but do not happen 

simultaneously for CDK2 (Merrick et al., 2008) . CDK2 is phosphorylated by CAK 

prior to cyclin binding (Fisher and Morgan, 1994; Merrick and Fisher, 2010; Russo 

et al., 1996b). During the Cyclin A-CDK2 interaction, the C-terminal helix of CDK2 

rotates and moves toward the cleft, causing a tilt in the N-terminal beta sheet. The T-

loop, the C-terminal PSTAIRE, and the N-terminal β sheet all interact with the N-
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terminal cyclin Box of Cyclin A. Binding with Cyclin A causes a conformational 

change in the PSTAIRE and the T-loop. When cyclin is not bound with CDK2, the 

T-loop blocks the active cleft, but when CDK2 binds with Cyclin A, the T-loop 

undergoes a conformational change that relieves the blockade (Jeffrey et al., 1995). 

1.10 Cyclin A 

Cyclin A was found to be present Xenopus, Drosophila, and S.pombe 

showing that Cyclin A is a conserved protein (Andrews and Measday, 1998; Lehner 

and O'Farrell, 1989; Minshull et al., 1990).  

1.10.1 Cyclin A in the mammalian model systems 

The human Cyclin A protein consists of 432 amino acids and has a predicted 

molecular mass of 58 kDa (Pines and Hunter, 1990). The crystal structure of Cyclin 

A was studied using residues 171 to 432. The crystal structure of Cyclin A shows it 

is a globular structure; the Cyclin Box is a compact domain of 5 α helices. α helix 1 

is conserved among all cyclin families. As mentioned before, there are two cyclin 

Boxes (100 amino acids each) that consist of residues 199 to 306. Residues 208 to 

303 consist of the N-terminal cyclin Box, and residues 309 to 399 consist of the C-

terminal cyclin Box (Bourne et al., 1996; Brown et al., 1995).  

The crystal structure complex of p27/Dap, CDK2, and Cyclin A show that 

p27/Dap can also separately bind with CDK2 and Cyclin A. The conserved RXLFG 

site of p27/Dap binds with the MRAILVDW site of Cyclin A. p27/Dap is brought to 

CDK2 after an initial binding with Cyclin A, where it inhibits the catalytic cleft of 

CDK2, which causes a block in ATP binding (Russo et al., 1996a). 
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1.10.2 Drosophila Cyclin A protein structure  

Drosophila Cyclin A is 499 amino acids long (Lehner and O'Farrell, 1989). 

Cyclin A proteins shows 2 bands that are 61 kDa and 59 kDa; the 59 kDa band is the 

inactive form and the 61 kDa band is the active form (Lehner and O'Farrell, 1990). 

The relative abundance of the bands shows differences during the different 

developmental stages (Lehner and O'Farrell, 1989). The N-terminus of Cyclin A is 1-

170 amino acids long, has two KEN boxes (KEN1 and KEN2), and has two D boxes 

(Dbs1 and Dbs2) (Fig. 3). The first degradation motif is KENPGIK (KEN2), which 

extends from 13 to 19 amino acids long. The second motif is RANFAVLNGN 

(Dbs2), which extends from 46 to 55 amino acids long. The third motif is 

KENHDVK (KEN1), which extends from 123 to 129 amino acids long. The last 

degradation motif is RSILGVIQS (Dbs1), which extends from 160 to 168 amino 

acids long. The Lehner lab shows that the deletion of 1 to 53 amino acids stabilizes 

Cyclin A (Jacobs et al., 2001). However, studies done by the Sprenger lab have 

shown that the deletion of 1 to 53 amino acids from Cyclin A delays its degradation 

but does not make it fully stable (Ramachandran et al., 2007). According to the 

Sprenger lab, with deletion of KEN2, Dbs2, another point mutation in D70, and the 

removal of the 5 Lysine residues K37, K40, K64, K85, and K86, are needed for 

complete stabilization of Cyclin A. Surprisingly, the deletion of the complete N-

terminus (1-170), which included all the above sites, did not fully stabilize Cyclin A. 

This means that there is a region in the C-terminus that also contributes to 

degradation. Cyclin A-CDK1 interaction requires the amino acid phenylalanine 329 

(F329) for its kinase activity (Fig. 3). Mutating this site can inhibit Cyclin A-CDK1 
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activity, but CDK1 can still bind with Cyclin A. Cyclin A can also be auto 

phosphorylated by CDK1 in the N-terminal (T145, S154, and S180) and in the C-

terminal (T333 and T397) (Ramachandran et al., 2007).  
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Fig. 3: Structure of Drosophila Cyclin A protein. A) Full-length Cyclin A, 

N-terminal 1–170 and C-terminal 171–499. Green boxes are cyclin boxes. 

F329 (shown as green box) is essential for CDK1 interaction. B) 1-225 Cyclin 

A. Blue boxes are KEN boxes, and red boxes are D boxes. Purple boxes are 

Lysine residues needed for ubiquitination. Orange boxes are 

autophosphorylation sites. 
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1.11 SCF Complex 

The E3 ubiquitin ligase  SKP1–CUL1–F-box-protein (SCF) complex is a well 

characterized RING Finger, type E3 ubiquitin ligase (Cardozo and Pagano, 2004). It 

consists of a complex of the three core proteins Cullin 1 (Cul1), S phase kinase-

associated protein 1 (Skp1), and Ring-Box 1 (Rbx1). Cul1 acts as a scaffold protein 

that holds Skp1 on the N-terminus and holds Rbx1 on the C-terminus. An E2 

ubiquitin ligase binds to Rbx1, F-box, and Skp1. The F-box protein is the co-

activator of the SCF complex. There are several F-box proteins found in mammals 

that are classified into three categories: FBW, FBL, and FBX. FBW proteins have 

beta propeller structures on their carboxy terminus for substrate binding, FBL 

proteins have Leucine-rich repeats (LRR) on their carboxy terminus for substrate 

binding and FBX proteins have neither beta propeller structures nor LRR structures 

on their carboxy terminus for substrate binding, but do contain other protein-protein 

interacting motifs. There are approximately 78 F-box proteins in humans and 

approximately 30 F-box proteins in flies, but only a few have been studied (Cardozo 

and Pagano, 2004).  

1.11.1 SCF-Skp2 in the mammalian model systems 

Skp2 is an F-box protein of the SCF-ubiquitin ligase that was first identified 

by Beach Lab in 1995 as a protein that forms a complex with Cyclin A, CDK2, 

Skp1, and Cks1/Cks85A in both normal and transformed fibroblasts (Zhang et al., 

1995). Skp2 is a protein of 435 amino acids with a calculated molecular mass of 48 

kDa. The C-terminal half of Skp2 is composed of seven imperfect leucine-rich 

repeats (LRR) of 26 amino acids, and were involved in substrate interaction.  
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Crystal structure studies of Skp1-Skp2 also revealed that its structure forms a 

sickle shape (Schulman et al., 2000). The curved surface of the sickle is formed with 

the 40 amino acid F-box domain, followed by a 3 LRR (Leucine-rich region) linker 

domain and a 7 LRR substrate binding domain (Fig. 4). The linker domain connects 

the F-box to the protein-protein interaction domain. Skp1, which binds with the F-

box domain, forms the handle of the sickle. All 10 LRRs have a β strand, and an α 

helix forms the sickle of Skp2. The C-terminal tail of 30 residues is loose and 

extends toward the first LRR of the linker domain. The tail lies on a concave surface 

that is formed due to the sickle shape of the LRR domain. In the crystal structure 

study, 88 residues from the N-terminus of Skp2 were truncated due to poor solubility 

and were not used (Schulman et al., 2000). 

Skp2 cooperates with H-RasG12V to transform primary rodent fibroblasts to 

malignancy (Gstaiger et al., 2001).  The overexpression of the Skp2 mRNA and the 

protein has been frequently observed in almost all human cancer types (Chan et al., 

2010; Frescas and Pagano, 2008; Wang et al., 2012). Skp2 overexpression was 

detected in 47.3% of adenocarcinomas (Shigemasa et al., 2003). A higher level of 

Skp2 mRNAs was observed in 61% of ER-negative breast cancers compared to ER-

positive breast cancers (Signoretti et al., 2002).  The overexpression of Skp2 has 

been observed in small-cell lung carcinoma, lymphoma, gastric carcinoma, cervical 

cancer, prostate cancer, and glioblastoma (Chen et al., 2007; Latres et al., 2001; 

Masuda et al., 2002; Saigusa et al., 2005; Yang et al., 2002; Yokoi et al., 2002). 

Skp2’s overexpression has been shown to be inversely correlated with p27/Dap 

downregulation (Carrano et al., 1999; Frescas and Pagano, 2008; Tsvetkov et al., 
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1999). In late G1, Cyclin E-CDK2 phosphorylates p27/Dap on T187. This 

phosphorylated p27/Dap is identified by Skp2 and is ubiquitinated for degradation 

(Carrano et al., 1999; Tsvetkov et al., 1999). Cks1/Cks85A enhances Skp2’s 

interaction with phosphorylated p27/Dap and is essential for p27/Dap ubiquitination 

(Ganoth et al., 2001).  

The generation of Skp2 null mice by Nakayama lab was very important in 

regards to understanding the role of Skp2 in an in vivo environment (Nakayama et 

al., 2000). Skp2 null mice were significantly smaller than their litter mates, although 

their external size proportion was normal. These mice had an increased ploidy and 

multiple centrosomes. An accumulation of Cyclin E and p27/Dap was observed in 

the Skp2 null mice, as Skp2 targets free Cyclin E and p27/Dap for degradation. The 

expression of the Skp2 phenotypes were tissue specific. It was only observed in 

hepatocytes, lungs, kidneys, testis, and embryonic fibroblasts. (Nakayama et al., 

2000).  The G1-S timing of Skp2-mediated degradation of p27/Dap was questioned 

by Nakayama lab. They reported that Skp2-mediated degradation of p27/Dap does 

not happen in G1-S; instead, Skp2 degrades p27/Dap during S-G2 phases. They 

showed that Skp2 null cells fail to enter mitosis due to p27/Dap overexpression. 

p27/Dap binds with Cdk1 in Skp2 null cells and that results in reduced kinase 

activity (Nakayama et al., 2004) 

As mentioned before, over the years, research on Skp2 have emphasized 

p27/Dap as a critical target (Carrano et al., 1999; Ganoth et al., 2001; Nakayama et 

al., 2000; Sutterlüty et al., 1999; Tsvetkov et al., 1999). However, a later study in 

2008 showed that in human melanoma cells p27/Dap knockdown in Skp2 depleted 
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cells did not rescue the Skp2 knockdown phenotype. The expression of nuclear-

localized Cyclin B rescued the Skp2 phenotype (Hu and Aplin, 2008). This shows 

that knockdown of Skp2 might have effect on other cell cycle regulators other than 

p27/Dap.  It might also suggest that the effect of depletion of Skp2 varies according 

to cancer types.  

To better understand the binding of Skp2 to p27/Dap, and to better 

understand how Cks1/Cks85A helps in this interaction, a crystal structure of the 

quarternary complex of Skp1, Skp2, Cks1/Cks85A, and p27/Dap was determined 

(Hao et al., 2005). An N-terminal truncated Skp1 and Skp2, a truncated Cks1 

(residues 5-73), and a 24-residue phosphopeptide of p27/Dap (residues 175 -197) 

were used for the study. Cks1/Cks85A binds with both the tail and the LRR domain 

of Skp2. Residues 181 to 184 of the short p27/Dap peptide bind with Skp2 alone, 

residue 185 binds with both Skp2 and Cks1/Cks85A, and residues 186 to 190 bind 

with only Cks1/Cks85A (Hao et al., 2005). 
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Apart from p27/Dap, Skp2 has other important targets. CDT1/Dup is an 

important target of Skp2. As mentioned before, CDT1/Dup is an important 

component of the pre-replication complex. Skp2 targets phosphorylated CDT1/Dup 

during the S and G2 phases and that prevents re-replication. Other than Skp2, 

CDT1/Dup is also ubiquitinated by DDB1-Cul4 for degradation during the S phase 

(Nishitani et al., 2006). Other targets of Skp2 are p21, p57, E2F1, Cyclin E, p130, 

BRCA2, Orc1, CDK9, cMyc, and FOXO (Kiernan et al., 2001; Kim et al., 2003; Li 

et al., 2003; Marti et al., 1999; Moro et al., 2006; Nakayama et al., 2000; Nakayama 

et al., 2004; Tedesco et al., 2002; Yu et al., 1998).    

Skp2 is a substrate of APC-CDH1/Fzr. As mentioned before, CDH1/Fzr 

identifies its substrates through a D box or a KEN box. Skp2 does not have a KEN 

box, but has a total of 5 RXXL motifs in residues 3 to 6 (D box1), 84 to 87 (D box2), 

234 to 237 (D box3), 294 to 297 (D box4), and 415 to 418 (D box5). The deletion of 

D box 1 causes the stabilization of Skp2 in the presence of CDH1/Fzr (Bashir et al., 

2004).  

1.11.2 SCF-Skp2 in Drosophila melanogaster 

Skp2 in Drosophila is 33% identical and 59% similar to the human Skp2. To 

study the function of Skp2 in Drosophila, Skp2 null flies were generated (Ghorbani 

et al., 2011). These flies were smaller than wild type flies without any compromise to 

their external size proportions. Skp2 null flies died during the larval-pupal transition 

stage. Skp2 null larvae were smaller than wild type larvae. The loss of Skp2 

increased ploidy in the mitotically dividing cells (brain, wing imaginal disc, and eye 

imaginal disc cells), but did not increase ploidy in endoreplicating cells (salivary 
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gland cells). Instead the ploidy in these cells was reduced compared to wild type 

(Ghorbani et al., 2011).  

Flow cytometry on the wing imaginal discs of Skp2 null showed a distinct 

tetraploid cell population (Ghorbani et al., 2011). Skp2 knockdown in the posterior 

half of wing imaginal discs showed reduced cell density and increased wing-hair 

spacing compared to the anterior half (control). Each hair in the adult wing arose 

from a cell, and the distance between two hairs was constant in the wild type adult 

wing. If cells become bigger, the distance between two hairs increases (Dui et al., 

2013; Ghorbani et al., 2011). The average doubling time of wild type wing imaginal 

disc cell is 11 hours, whereas for Skp2 knockdown cells it takes 16 hours (Dui et al., 

2013). It is also possible that the reduced cell density observed in Skp2 knockdown 

was due to a high degree of apoptosis. Wing imaginal disc cells of Skp2 null showed 

an increase in sub G1 population (Ghorbani et al., 2011). Although studies of Skp2 

in flies are limited to few labs, p27/Dap has been identified as a Skp2 substrate (Dui 

et al., 2013).  

1.12 Skp2-Cyclin A interaction in mammalian cells 

In normal human fibroblasts, Cyclin A forms a complex with CDK2, p21, 

and PCNA, but in transformed cell lines Cyclin A changes its partner and complexes 

with Skp2, CDK2, Cks1/Cks85A, and Skp1 (Zhang et al., 1995). Interestingly, the 

interaction between Skp2 and Cyclin A occurs on a unique non-RXL site on the N-

terminus of Cyclin A. This kind of binding site is unique because it does not 

maintain the traditional RXL-HP interaction between Cyclin A and non-CDK 

proteins (Ji et al., 2006). Two separate labs studied Skp2–Cyclin A interaction. Both 
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of their results confirmed that Skp2 is a substrate of Cyclin A-CDK2, and Cyclin A 

phosphorylates S76 of Skp2 (Ji et al., 2006; Yam et al., 1999). According to the 

Pagano lab, Skp2 interacts with Cyclin A to protect Cyclin A from p27/Dap 

mediated inhibition during the G1-S phase transition (Ji et al., 2006).  

 The Poon lab showed that the Skp2–Cyclin A interaction reduces the kinase 

activity of Cyclin A-CDK2 by 50% or more. The reduction in kinase activity is due 

to the conformational change of Cyclin A-CDK2 when it is bound to Skp2. Their 

results show that due to the conformational change, Cyclin A-CDK2 cannot be 

identified by CAK and Wee1. They also showed that Skp2 can also directly inhibit 

the kinase activity of Cyclin A-CDK2 by inhibiting substrate binding (Yam et al., 

1999).  

Skp2 interaction with Cyclin A points toward the possibility of an interesting 

non-traditional regulatory role of Skp2 that is independent of its role as E3 ubiquitin 

ligase. On one hand, Skp2 protects Cyclin A from p27 mediated inhibition during 

G1/S, but on the other hand it reduces the kinase activity of Cyclin A-CDK2 (Yam et 

al., 1999). This led to several open questions. Is this interaction only limited to G1/S 

or it is also essential during other phases, particularly G2/M? Is this interaction 

conserved in other organisms? If yes, then what is the significance of this 

interaction? We chose to study this interaction in Drosophila Melaonogaster where 

Cyclin A is strictly a mitotic cyclin and has no known role during G1/S phase 

transition. The major goal of this thesis is to explore the interaction between Skp2 

and Cyclin A and we also wanted to understand how loss of Skp2 results in 

polyploidy. 
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2.1 Summary 

S phase kinase associated protein Skp2 is the substrate recognition 

component of the SCF complex. Skp2 is a potential oncogene and is overexpressed 

in a variety of cancer types. Skp2 was first identified as a protein associated with 

Cyclin A, CDK2, Skp1 and Cks in transformed as well as normal cell lines. The 

critical target of Skp2 is Cyclin dependent kinase (CDK) inhibitor p27. 

Overexpression of Skp2 in cancer cells is directly related to premature degradation 

of p27. Previous studies on Skp2-Cyclin A interaction show that Skp2 can directly 

interact with Cyclin A and protect it from p27 mediated inhibition during G1-S phase 

transition. However, Cyclin A is not only a S phase cyclin it is also a mitotic cyclin 

and is therefore needed for mitotic entry. Accumulation of Skp2 and Cyclin A 

reaches its peak in G2 phase prior to mitotic entry. This raises an interesting 

possibility that Skp2 might also protect Cyclin A during G2-M transition. In this 

paper, we investigate Skp2 and Cyclin A interaction in Drosophila melanogaster 

where Cyclin A is strictly a mitotic cyclin. We showed evidence that Skp2 functions 

with Cyclin A in mitotic entry. We showed that loss of Skp2 in mitotic cells results in 

loss of mitotic cyclins and causes cells to skip mitosis and instead endoreplicate. 

This results in polyploidy. We also showed that the N-terminus of Skp2 interacts 

with Cyclin A in vitro and in vivo and and is required for for its role in genome 

stability.  
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2.2 Introduction 

The SCF ubiquitin ligase with its adaptor protein Skp2, is a critical regulator 

of the G1 to S transition and cell proliferation (Sutterlüty et al., 1999). Increasing 

evidence for the past two decades have established the role of Skp2 as a possible 

oncogene (Gstaiger et al., 2001). Overexpression of Skp2 has been linked to several 

different types of cancers (Abdou et al., 2012; Chiarle et al., 2002; Fagan‐Solis et al., 

2014; Latres et al., 2001; Lim et al., 2002; Masuda et al., 2002; Shigemasa et al., 

2003; Shim et al., 2003; Signoretti et al., 2002; Wei et al., 2013; Yang et al., 2002). 

The best characterized target of SCF-Skp2 is the Cyclin dependent kinase (CDK) 

inhibitor, p27 (Dap in Drosophila) (Carrano et al., 1999; Nakayama et al., 2000; 

Sutterlüty et al., 1999; Tsvetkov et al., 1999). In most of the cancers, Skp2 

overexpression has been shown to have a correlation with premature degradation of 

p27/Dap (Chen et al., 2007; Chiarle et al., 2002; Fagan‐Solis et al., 2014; Lim et al., 

2002; Masuda et al., 2002). 

Skp2 functions in tandem with CDK2, which first phosphorylates p27/Dap at 

T187, allowing p27/Dap to be recognized by SCF-Skp2 (Tsvetkov et al., 1999). 

p27/Dap destruction in turn leads to further CDK activation and S-phase entry. These 

findings have led to a growing interest in the possibility of suppressing Skp2 function 

as a promising therapeutic (Chan et al., 2013; He et al., 2009; Sumimoto et al., 2005; 

Wang et al., 2012a; Wang et al., 2012b; Wei et al., 2013). 

Interestingly, a study done by Nakayama lab in 2000, observed that Skp2 

knockout mice are polyploid and have reduced growth indicating a possible tumour 
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suppressive role of Skp2 (Nakayama et al., 2000). They found genetic evidence that 

suggests that both the reduced growth and polyploidy are due to elevated p27/Dap 

levels: Skp2, p27/Dap double mutants are largely rescued for both phenotypes 

(Nakayama et al., 2000; Nakayama et al., 2004). Studies in Drosophila also found 

that Skp2 null flies are polyploid and have reduced growth, strengthening the idea 

that the tumour suppressive function of Skp2 is not limited to mammals but is 

conserved in flies as well (Ghorbani et al., 2011) . As it is in mammals, studies in 

flies also showed that p27/Dap is an important substrate of Skp2 (Dui et al., 2013).  

According to Nakayama et al. 2004, Skp2 mediated degradation of p27/Dap 

is required in G2-M to activate CDK1 (Nakayama et al., 2004). In Drosophila, 

overexpression of p27/Dap has been shown to cause G1 arrest by inhibiting Cyclin 

E-CDK2 activity (de Nooij et al., 1996).  p27/Dap has not been shown to bind or 

inhibit CDK1 function in flies and the role of p27/Dap in flies appears to be limited 

to G1-S transition and not G2-M (de Nooij et al., 1996; Lane et al., 1996). This led 

us to suspect that there might be some other way that Skp2 prevents polyploidy that 

still needs to be explored. It is important to understand this question of how Skp2 

protects against polyploidy because a thorough understanding of the potential tumor 

suppressive role of Skp2 is essential. 

The small CDK-associated protein, Cks1, (Cks85A in Drosophila) associates 

with Skp2 to form part of the p27/Dap binding interface of the SCFSkp2 complex. 

Cks1/Cks85A has a conserved phosphate-binding domain that may be largely 

responsible for the specific interaction of SCFSkp2 with the phosphorylated T187 
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residue on p27/Dap (Ganoth et al., 2001; Hao et al., 2005; Spruck et al., 2001). 

CDK1 and CDK2 have also been identified in complexes with the SCF-Skp2, linked 

via Cks1/Cks85A, but their importance for SCF-Skp2 function is not clear (Hao et 

al., 2005). 

Skp2 was first identified as a protein that associates with Cyclin A-CDK2 in 

transformed as well as normal cells(Zhang et al., 1995). Later studies found that 

Skp2 interacts with Cyclin A to protect it from p27/Dap mediated inhibition (Ji et al., 

2006). In Drosophila, Cyclin A is a mitotic cyclin and only interacts with CDK1, not 

CDK2 as in mammals (Hassel et al., 2014; Knoblich et al., 1994; Mihaylov et al., 

2002; Sauer et al., 1995). It is not yet known if Drosophila Cyclin A interacts with 

Skp2, though interestingly, Cyclin A, like Skp2 seems to be required for preventing 

polyploidy. Skp2 has not yet been found to interact with mitotic cyclins and have a 

mitotic role apart from inhibition of p27/Dap (Nakayama et al., 2004).  

In this paper, we show that Skp2 has a critical role in mitotic entry. We show 

that N-terminus of Skp2 physically associates with Cyclin A to protect Cyclin A in 

G2 phase of the cell cycle. Cyclin A buildup then promotes entry into mitosis. The 

failure to enter into mitosis in Skp2 or Cyclin A mutants resulted in reversion to a G1 

state, leading to polyploidy. We have thus uncovered an important role of Skp2 with 

Cyclin A during G2/M transition in addition to its established role during G1/S 

transition. 
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2.3.1 Drosophila strains and genetics 

All flies were maintained at 25°C. The following stocks were obtained from 

Bloomington Drosophila Stock Centre: Cyclin AH170 (9096), Cyclin B2 (6630). yw 

was used as control unless otherwise indicated. The following stock was obtained 

from Vienna Drosophila Resource Centre: Cyclin Av103595 (Cyclin A95).  The 

following stock was obtained from National Institute of Genetics (NIG-FLY): Cyclin 

A5940R-1 (Cyclin AR1). Cyclin B3L6540 is a gift from Christian Lehner, University of 

Zurich. Fzre4 is a gift from Tadmiri Venkatesh, the City College of New York. UAS-

HA-Skp2, Skp2ex9, Cks85Aex15, Skp2GD15636, Skp2KK2101487 were described previously 

(Ghorbani et al., 2011) The following stocks were made in the Swan lab. UAS-

Venus-Cyclin A21c, UAS-Venus-Cyclin B31a (Dhaliwal, unpublished), UAS-Venus-

CyclinB3 (Swan, unpublished).  

 

2.3.2 Generation of UASp-HA- Skp2Δ170 transgenic line 

UASp-HA- Skp2Δ170 was made by deleting 1-170 amino acids from the N 

terminal of Skp2. Skp2 cDNA, RE1525 was used as a PCR template. To attach the attB 

recombination sites on the Skp2 gene a two-step PCR was performed. In the first step, the 

Skp2 gene was amplified by using the following forward and reverse primers attached with 

partial attB sequences. The Skp2 specific forward primer used is 5’- 

AAAGCAGGCTTAACGCATGGCCTACCGTTTGTCGACG - 3’ and the Skp2 specific reverse 

primer used is 5’- GAAAGCTGGGTATTAGTCGCGCGTGCGCAGACCCCA – 3’. In the 

second – step, PCR was performed to attach the full attB recombination sites (attB1 
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and attB2) to each end of the Skp2 gene. The full attB1 sequence is 5’ – 

ACAAGTTTGTACAAAAAAGCAGGCT – 3’ and the full attB2 sequence is 5’- 

ACCCAGCTTTCTTGTACAAAGTGGT – 3’. In both the steps, Phusion high-

fidelity DNA polymerase from Finnzymes was used. The PCR reaction conditions 

for the first-step PCR were as follows: initial denaturation at 98°C for 30 seconds 12 

cycles of denaturation at 98°C for 10 seconds, annealing at 64.3°C for 30 seconds, 

and elongation at 72°C for 25 seconds, and final elongation at 72°C for 5 minutes. 

The PCR conditions for the second step PCR were as follows: initial denaturation at 

98°C for 30 seconds, 12 cycles of denaturation at 98°C for 10 seconds, annealing at 

60°C for 30 seconds, and elongation at 72°C for 55 seconds, and final elongation at 

72°C for 5 minutes. The PCR product was cloned into Invitrogen Gateway vector 

pDONR221. The reaction was performed using Invitrogen Gateway BP Clonase 

enzyme. Once the pENTRY vector was obtained it was then recombined with pPHW 

vector (UASp promoter N-Terminal 3xHA tag) from Drosophila Genomics Resource 

Center (DGRC) using Invitrogen Gateway LR Clonase enzyme to obtain the UASp-

HA- Skp2Δ170 transgene. Several different transgenic lines were obtained. UASp-HA- 

Skp2Δ1702a transgene was used for most experiments. This line when crossed to 

daughterless-GAL4 (da-GAL4) showed similar levels of protein expression to 

UASp-HA-Skp2. The pENTRY vector was also recombined with pDEST 565 (Plasmid 

11520 from Addgene) to get GST-His- Skp2Δ170 plasmid. 
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 2.3.3 Generation of GST-His-Skp2, and MBP-His-Cyclin A plasmid  

For the GST-His-Skp2 and MBP-His-Cyclin A plasmids the steps were followed 

as above. The pENTRY Skp2 vector was recombined with pDEST 565 (Plasmid 11520 

from Addgene) to get GST-His-Skp2 plasmid and the pENTRY Cyclin A vector was 

recombined with pDEST- His-MBP (Plasmid 11085 from Addgene) For the generation 

of MBP-His-Cyclin A plasmid, Cyclin A cDNA (LD44443) was used.  

 

2.3.4 GST-His-Skp2, GST-His-Skp2Δ170 and His-MBP-Cyclin A protein expression 

and purification 

To express the desired proteins for GST pull-down experiments between 

GST-His-Skp2 or GST-His-Skp2Δ170 and His-MBP-Cyclin A, the plasmids were 

transformed into BL21-CodonPlus (DE3) RIL bacterial cells (a gift from Norah 

Franklin, University of Windsor). The steps used to express the proteins are as 

follows: A single colony was picked from the plated bacterial cells and inoculated 

overnight at 37˚C in 100ml of 2TY culture media supplemented with specific 

antibiotic. The following day 50 ml of the starter culture was added to 450 ml of 

2TY media supplemented with appropriate antibiotic and grown in a 37˚C shaker 

until the OD600 reached 0.7-0.8. At this time IPTG (Thermo Fisher Scientific) was 

added to the culture to a final concentration of 0.05mM. The culture was then 

transferred to a 28˚C shaker for 4 hours. After 4 hours, the cells were pelleted at 4˚C 

at 4000 x g for 15 minutes. The supernatant was decanted and the pellet was 

resuspended in lysis buffer (50mMTris (8), 2mM EDTA, plus Protease inhibitor 
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cocktail tablets (Roche Diagnostics) in ice for 40 minutes. The cell suspension was 

then sonicated on ice in 10 second pulses 10 times and then centrifuged at 4˚C, 

10000 x g for 15 minutes. 1ml aliquots of supernatant were collected in the cold 

room and saved at -80˚C for future use. To promote solubility some variations were 

done while expressing His-MBP-Cyclin A. IPTG concentration for induction of His-

MBP-cyclin A was changed to 1mM when OD600 reached 0.5. In some cases the 

induced culture was transferred to a 25˚C shaker for 5 hrs instead of 28˚C for 4 hrs. 

 

2.3.5 GST pull-downs  

For GST pull-downs 500µl of His-MBP-cyclin A was pre- incubated at 30˚C 

for 30 minutes followed by incubation on ice for 5 minutes. 1ml of GST His Skp2 or 

I ml of 1x PBS for controls was added to the His-MBP-Cyclin A lysate and 

incubated on ice for 15 minutes followed by incubation at 30˚C for 15 minutes. The 

lysates were then added to 100µl of prewashed Pierce Glutathione Sepharose beads 

(Thermo Fisher Scientific) and incubated for 2 hours at 4˚C. After 2 hours, the lysate 

was centrifuged at 2000 rpm for 1 minute at 4˚C. The supernatant was collected and 

the pellet was washed three times with wash buffer (50mM Tris (8), 150mM NaCl, 

0.05% Tween) and two times with wash buffer supplemented with Protease inhibitor 

cocktail tablets (Roche Diagnostics) at 4˚C. The supernatant and the pellet were 

boiled with 5x and 2x sample buffer respectively for 10 minutes and then centrifuged 

at 13,200 rpm for 10 minutes. Samples were then loaded on SDS PAGE gels for 

further detection and analysis. 

62 

 



 

 

2.3.6 Co-Immunoprecipitations (CoIPs) from Larvae and Embryos 

HA-Skp2 or HA-Skp2Δ170 was crossed with da-GAL4 to express the protein 

ubiquitously. 100 brains and imaginal discs of 3rd instar wandering larvae were 

dissected in 1xPBS and flash frozen in liquid nitrogen. The tissues were then lysed 

with lysis buffer (50mM Tris (8), 150mM NaCl, 0.05% Tween) supplemented with 

Halt phosphatase inhibitor cocktail (Thermo Scientific) and Protease inhibitor 

cocktail tablets (Roche Diagnostics). The lysate was then centrifuged at 14000 rpm 

for 20 minutes in 4˚C. CoIPs were performed using anti HA affinity agarose beads 

from Sigma Aldrich as in (Swan et al., 2005). The CoIP of embryos was performed 

as in (Ghorbani et al., 2011). 

 

2.3.7 Western Blotting 

Brains and imaginal discs of 3rd instar wandering larva were dissected in 

1xPBS and flash frozen in liquid nitrogen. 1mg of brain and imaginal disc tissues 

were lysed in 20 µl of 2x sample buffer, boiled for 10 minutes and then centrifuged 

at 13,200 rpm for 10 minutes at room temperature. Western blotting of the samples 

was done according to standard techniques. The samples were probed using the 

following antibodies: mouse anti-Cyclin A antibody (A12) at 1/10, mouse anti-

Cyclin B antibody (F2F4) at 1/20, mouse anti-actin antibody at 1/250, all from 

Developmental studies Hybridoma Bank, rabbit anti-Cyclin B3 antibody at 1/2000, 

(a gift from Christian Lehner), rabbit anti-Cdk1 (PSTAIRE) antibody from (Santa 

Cruz) at 1/1000, rat anti-HA antibody (Roche) at 1/1000, mouse anti-Cd2c antibody 
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at 1/40 (a gift from Christian Lehner). Chemiluminescence imaging and 

densitometry analysis was performed with an Alpha Innotech FluorChemTM HD2 

imager. 

 

2.3.8 Proximity Ligation Assay (PLA) 

Duolink in situ starter kit from Sigma Aldrich was used for PLA. 

Experiments were conducted according to the manufacturer’s protocol. Briefly, 3rd 

instar larval wing imaginal discs were incubated with anti-GFP antibodies to detect 

Venus-Cyclin A, and anti-HA antibodies to detect HA-Skp2. Then the wing 

imaginal discs were incubated with secondary antibodies provided in the PLA kit, 

which are conjugated with PLA specific oligonucleotide and a ligation mixture 

containing ligase and two “PLA probes” and fluorescently labeled nucleotides. If 

the two proteins of interest are in close proximity then the “PLA probes” will 

hybridize with oligonucleotides that are bound to the secondary antibody and a 

closed circular amplification will take place, which will incorporate the 

fluorescently labeled nucleotides. The amplified product formed as result of PLA 

specific reaction can be observed under a microscope due to fluorescent labeling. 

 

2.3.9 Drosophila FUCCI system 

 Fucci (Fluorescent ubiquitination-based cell cycle indicator) system was 

developed by Zielke and his colleagues to study cell cycle profiles in vivo (Zielke et 

al., 2014). Briefly, the system consists of GFP tagged E2F and mRFP tagged Cyclin 
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B. To study the cell cycle profile, these two tagged transgenes are expresssed in the 

cells of intrest. From late M phase to end of G1, E3 ubiqutin ligase APC/C is active.  

mRFP-cyclin B will be degraded and therfore, the G1 cells will appear green  due to 

accumulation of  GFP-E2F. During S phase ubuquitin ligase CRL4Cdt2 is active 

which ubiqutinate GFF-E2F. Therefore, cells appear red due to accucmulation of 

mRFP-cyclin B. Since APC/C and CRL4Cdt2  are absent from G2 to late M phase, the 

cells appear yellow due to accumulation of  both the transgenic proteins.  

 

2.3.10 Cytology and Immunostaining 

Third instar wandering larval wing imaginal discs were used for all the 

experiments unless otherwise stated. Third instar wandering larvae were inverted in 

1xPBS and fixed in 4% formaldehyde in 1xPBST (0.2%Tween added to 1xPBS) for 

20 minutes on a nutator at room temperature. The samples were then rinsed three 

times with 1x PBST followed by 3 washes in 1xPBST, 5 minutes each. Then they 

were blocked in 1x PBST plus 1% BSA for 2 hours on a nutator at room 

temperature. Primary antibody was added in presence of 1% BSA and nutated 

overnight at 4 ˚C. The primary antibodies used were rat anti-HA antibody (Roche) at 

1/100, rabbit anti-phosphohistone H3 antibody (Santa Cruz) at 1/1000, rat anti-alpha 

tubulin antibody (Milipore) at 1/500, mouse anti-gamma tubulin antibody (Sigma) 

at 1/500, rabbit anti-GFP antibody (Abcam) at 1/10000, mouse anti-HA antibody 

(Abcam) at 1/1000. The following day, the inverted larvae were rinsed three times 

with 1x PBST followed by 3 washes in 1xPBST, 20 minutes each. They were then 
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subjected to secondary antibody in the presence of 1% BSA on the nutator in room 

temperature for 4 hours. Alexa fluor secondary antibodies were used at 1/1000 

(Thermo fisher scientific).  Finally the larvae were rinsed and washed as before and 

preserved in 80% glycerol in 4 ˚C. The discs were then dissected out of the inverted 

larvae and mounted on slides and sealed with nail polish. EDU labelling was 

performed for detection of S phase cells as in (Ghorbani et al., 2011). 

 

2.3.11 Confocal microscopy 

Immunostained imaginal discs were imaged using an Olympus FluoView 

FV1000 laser scanning confocal microscope. Images were analyzed in Olympus 

Fluoview software version 1.5. The images were modified (brightness and contrast) 

and compiled through Adobe Photoshop 2014.  

 

2.3.12 Image J analysis of M phase and S phase indices 

Images taken on the confocal microscope were analyzed with image J version 

1.49. To measure the mitotic index and S phase index of different genotypes, the 

scanned images were changed to 8 bit images. The threshold of the image was kept at 

a default setting. The image particles were analyzed by setting the size of the particles 

between 70-infinite pixel areas. The image particles were measured from a predefined 

area within the domain where transgenes were expressed. Using Image J summarize 

option, the measurement of particles in a 100 pixel area is calculated. The 

measurements of particles were plotted on Microsoft Excel 2013 to calculate the 
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standard deviation between different sample measurements. This way of calculating 

cell cycle phase specific indexes was chosen to essentially determine the area instead 

of number of cells within an area. The reason for this is that different genotypes have 

different cell sizes. Thus in genotypes in which cell size is greater, total number of 

mitotic cells etc would be underestimated. The fucci results of G2-M indexes of 

different genotypes were calculated by adding RG2B plugin to Image J 1.49. The 

threshold of red channel and green channel was kept to auto threshold. 
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2.4 Results 

2.4.1 Skp2 is required for entry into mitosis 

Loss of Skp2 results in polyploidy in a number of experimental systems (Dui 

et al., 2013; Ghorbani et al., 2011; Nakayama et al., 2004). The exact cause of 

polyploidy, however, is not clear and it is possible that this phenotype can arise by 

more than one means depending on the cell type. In cell culture models, it has been 

shown that loss of Skp2 results in elevated Cdt1/Dup levels resulting in aberrant 

origin firing in G2 of the cell cycle (Li et al., 2003; Nishitani et al., 2006). To 

determine if the loss of Skp2 in Drosophila leads to aberrant DNA replication in G2, 

we examined the G2 arrested cells in the wing margin. These cells can be identified 

based on their expression of Achaete. To determine if these G2 cells replicate, we 

colabelled these cells for GFP-PCNA, a marker of DNA replication. While other S-

phase cells show expression of GFP-PCNA, we did not detect any PCNA in these 

cells in which Skp2 was knocked down (Fig. 1A, B) We also examined the cells 

posterior to the morphogenetic furrow of the eye that normally arrest in G2 to see if 

these cells incorporate the nucleotide analogue, EDU, a marker of DNA replication. 

In eye imaginal discs, in which Cdt1/Dup is overexpressed, cells posterior to the 

furrow continue to incorporate EDU, suggesting that they are re-replicating in G2 

(Thomer et al., 2004). In contrast, when we examined eyes from Skp2 mutants, these 

showed no sign of re-replication beyond the programmed S-phase in the 

morphogenic furrow (Fig. 1C). Together these results argue that Skp2 null cells do 

not undergo re-replication in G2. 

68 

 



 

 

The failure to complete cytokinesis can lead to polyploidy. Due to the fact 

that cytokinesis occurs after complete sister chromatid segregation in anaphase, the 

failure of cytokinesis would result in cells having double the number of distinct 

chromosomes. We performed fluorescent in situ hybridization (FISH) to a single 

chromosome, the X- chromosome, to determine if this is the case in Skp2 mutants. In 

wild type males we observe a single FISH signal at all phases of the cell cycle except 

anaphase when sister chromatids separate (Fig. 1D). In Skp2 males, we also detect 

only a single FISH signal per cell, though the FISH signal often appears to be larger 

than in wild type (Fig. 1D). This indicates that polyploid Skp2 null cells retain sister 

chromatid cohesion (at least along peri-centric regions corresponding to the site 

recognized by the FISH probe). We conclude that cytokinesis failure is not the cause 

of polyploidy in Skp2 mutants. 

The failure to enter mitosis can also lead to polyploidy (Weaver and 

Cleveland, 2005). This would be detectable as an overall reduction in the frequency 

of mitosis. Indeed, the mitotic index for Skp2 null imaginal discs is lower compared 

to controls (Figs. 1E, G, I) suggesting that Skp2 null cells are specifically delayed in 

the entry into mitosis. The frequency of S phase also appears to be decreased in Skp2 

null cells compared to controls (Figs. 1J-L). This might be due to the up-regulation 

of p27/Dap in Skp2 null cells, since upregulation of p27/Dap has been shown to 

arrest cells in G1 (de Nooij et al., 1996; Dui et al., 2013; Zielke et al., 2014). We also 

employed the fly FUCCI system to distinguish cell cycle phases in vivo (Figs. 1M-

P). This reveals that the G1 population is increased in Skp2 null cells (Fig. 1P). The 
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G2/M population in Skp2 null cells is similar to that of wild type cells (Fig. 1P). If 

we consider that fewer cells go into mitosis in Skp2 null, we can conclude that the 

G2 population is at least somewhat greater in the Skp2 mutant. We conclude that 

Skp2 mutants are delayed in G2 and may bypass mitosis. 
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Fig. 1: Skp2 is required for entry into mitosis 
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Fig. 1: Skp2 is required for entry into mitosis. A-B) Co-labeling of GFP-PCNA 

(S-phase marker shown in green) and Achaete antibody (G2- phase marker, shown 

here in red) in the above mentioned genotypes. C) Eye imaginal discs of 3rd instar 

wandering larvae probed with EDU to label cells in S-phase (red) and with Oligreen 

to mark DNA (green). Skp2 was knocked down in the dorsal compartment of these 

eye imaginal discs. D) Wing imaginal discs of 3rd instar wandering larvae were 

probed with X –Chromosome FISH probe (red) and stained with Oligreen to mark 

DNA (green). Metaphase cells in wild type and Skp2 show a single dot while 

anaphase in both genotypes have two distinct dots. 1E-H) Representative wild type 

(E), Cyclin AH170+/- (F) Skp2ex9 (G) and Skp2ex9, Cyclin AH170+/- (H) wing imaginal 

discs from 3rd instar wandering larvae immunostained with phospho-Histone H3 

antibodies. I) M phase index of above mentioned genotypes. J-K) Representative 

wild type (J) and Skp2ex9 (K) wing imaginal disc from 3rd instar wandering larvae 

stained with EDU (I hour incubation). L) S phase index of above mentioned 

genotypes. M-O’’) Representative FUCCI results for wing imaginal discs of different 

genotypes as shown. M-O) G1-G2-M cells are in green. M’-O’) S-G2-M cells are in 

red. M’’-O’’) G2-M cells are in yellow. P) Cell cycle phase indices of above 

mentioned genotypes based on fucci results. Scale bar in E =20 µm, applies to F-H, 

J-K. Scale bar in M =10 µm, applies to N-O’’. 
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2.4.2 Skp2 is required to maintain mitotic Cyclin levels 

The combined effects of mitotic Cyclin build up and activation of CDK-

Cyclin complexes determines mitotic entry. To determine how Skp2 could affect 

mitotic entry we first examined the levels of mitotic cyclins in Skp2 null cells. We 

found that loss of Skp2 results in a reduction in protein levels of all three mitotic 

Cyclins: A, B and B3 in larval mitotic tissues (Fig. 2A-B). This effect on cyclin level 

appears to be at the level of protein stability as transgenic Cyclin A, lacking native 

promotor or UTR sequences and thus refractory to transcriptional and translational 

control, also accumulates at lower levels in the Skp2 null background (Fig. 2C-D). 

We predict that the reduced level of mitotic cyclins, particularly mitotic 

Cyclin A, might at least partially explain the polyploidy seen in Skp2 mutants. As 

mentioned before, loss of Cyclin A has been shown to cause increased ploidy in 

mitotic cells (Hassel et al., 2014; Mihaylov et al., 2002; Sallé et al., 2012; Sauer et 

al., 1995).We used two different RNAi lines against Cyclin A (Cyclin A95 and Cyclin 

AR1) to examine the effects of Cyclin A loss in the wing imaginal disc. Both lines 

result in significant knockdown of Cyclin A, as judged by western blotting (Figs. 2E-

F), and both result in polyploidy in wing imaginal discs (Figs. 2G-I). They also cause 

increased wing hair spacing in the adult wings (Figs. 2J-L). Each cell of the wing 

gives rise to a single hair. If the cell becomes polyploid the distance between the 

wing hairs increases as well. Further, the degree of knockdown correlates with 

severity of these phenotypes: Cyclin A95 (Figs. 2F, I, L) results in a greater reduction 

in protein levels and a more severe wing phenotype compared to Cyclin AR1 (Figs. 
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2F, H, K). In addition to the increase in wing hair spacing, Cyclin A95 wings have an 

uneven spacing and aberrant orientation of wing hairs. In addition, the area of the 

wing corresponding to Cyclin A knockdown appears severely reduced compared to 

wild type or Cyclin AR1, suggesting that cell viability is compromised. 

To test if it is the reduction in Cyclin A levels that is responsible for the 

polyploidy in Skp2 null cells, we first asked if further decreasing the levels of Cyclin 

A (or the other major mitotic cyclins, Cyclin B and Cyclin B3) leads to enhancement 

of the Skp2 null phenotype. As previously shown, RNAi against Skp2 leads to an 

increase in wing hair spacing and this correlates with increased ploidy in the wing 

imaginal disc (Dui et al., 2013; Ghorbani et al., 2011). To determine the effect of 

cyclin dose on this phenotype we expressed Skp2 RNAi in a background 

heterozygous for either Cyclin A, Cyclin B or Cyclin B3 null mutants (Figs. 2M-Q). 

The reduction of one copy of Cyclin B, Cyclin B3 or Cyclin A did not show an 

increase in wing hair spacing compared to Skp2 RNAi phenotype (Fig. 2O- Q). 

However, the overall size of the posterior wing is reduced in Skp2 RNAi, Cyclin 

AH170+/- and that led to a difficulty in assessing the changes in the wing hair.  

Considering an unclear result from our wing hair spacing experiment, we 

generated flies homozygous mutant for Skp2ex9 and heterozygous for either Cyclin B 

or Cyclin A null alleles to study the larval stages of these flies. We performed DNA 

staining of their wing imaginal discs (Figs. 2R-U). Reduction of Cyclin B does not 

have an apparent effect on ploidy of Skp2 null cells (Fig. 2T), but the loss of one 

copy of Cyclin A leads to a dramatic increase in ploidy (Fig. 2U). 
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If reduced Cyclin A levels lead to increased polyploidy of Skp2 null cells we 

may also expect that overexpression of Cyclin A could rescue the Skp2 mutant 

phenotype. We therefore expressed wild type venus-tagged Cyclin A in the Skp2 

RNAi background. This leads to a clear rescue of the increased wing hair spacing 

phenotype (Fig. 2V). In contrast, overexpression of wild type venus-tagged Cyclin B 

has no effect on the Skp2 RNAi wing phenotype (Fig. 2W). Overexpression of wild 

type venus-tagged Cyclin B3 also led to a partial rescue of the increased wing hair 

spacing phenotype (Fig.2X). 
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Fig. 2: Skp2 is required for maintaining mitotic cyclin levels 
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Fig. 2: Skp2 is required for maintaining mitotic cyclin levels. A-B) Western blot 

and graph on brains and imaginal discs of 3rd instar wandering larvae of the above 

mentioned genotypes probed for Cyclin A, Cyclin B and Cyclin B3. Actin is used as 

loading control. C-D) Transgenic Cyclin A lacking native promotor and UTR 

sequences is reduced in Skp2ex9 compared to wild type. E-F) Western blot and graph 

showing the knockdown efficiency of two different Cyclin A RNAi lines. Actin is 

used as loading control. G-I) DNA stained with Oligreen in 3rd instar wing imaginal 

discs from the genotypes shown. J-L) Representative adult wings from wild type (J), 

rn-GAL4; Cyclin AR1 (K), rn-GAL4; Cyclin A95 M-Q, V-X) Representative adult 

wings of the above mentioned genotypes in which en-GAL4 is used to drive RNAi 

expression (R-U) DNA stained with Oligreen in 3rd instar wing imaginal discs from 

the genotypes shown. Scale bar in G =10 µm and applies to G-I, R-U. 
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2.4.3 Skp2 is required in G2 to protect Cyclin A from premature degradation 

To further examine the relationship between Skp2 and Cyclin A in the wing 

imaginal disc we compared the effects of Cyclin A knockdown to that of Skp2 null 

(Figs. 3A- D). While Skp2 loss results in only a modest decrease in mitotic index 

(Fig. 1I), knockdown of Cyclin A using the stronger RNAi line, Cyclin A95, leads to a 

near complete absence of mitotic cells (Fig. 3C-D). This result is consistent with a 

critical role for Cyclin A in the entry into mitosis as has been previously described 

(Buendia et al., 1992; Gong et al., 2007; Jacobs et al., 2001; Lehner and O'Farrell, 

1990; Stiffler et al., 1999).  

If Skp2 is required for entry into mitosis through Cyclin A we might expect 

that reducing Cyclin A in the Skp2 null background would result in a further 

decrease in mitotic index. To further test this idea we examined flies null for Skp2 

and heterozygous for Cyclin A (Skp2ex9, Cyclin AH170+/-). Consistent with this 

expectation, Skp2ex9, Cyclin AH170+/- wing imaginal discs have a very low mitotic 

index (Fig. 1I), similar to the stronger Cyclin A knockdown (Figs. 2E-F). 

Interestingly, Skp2ex9, Cyclin AH170+/- cells also show a greater predominance of G1 

cells than Skp2ex9 alone, and unlike Skp2ex9 alone, a reduced frequency of G2 cells, 

and reduced S-phase index (Figs. 1M-P). 

Collectively our results argue that the Skp2 null phenotype is due to reduced 

Cyclin A. A partial reduction in Cyclin A level as seen in the Skp2 null background 

causes cells to delay in G2. Polyploidy could result if some of these cells, instead of 

entering mitosis, revert to a G1-like state. These cells then become polyploid after 

the next S-phase. When Cyclin A is further reduced, as in Cyclin A95 or Skp2ex9, 

78 
 



 

 

Cyclin AH170+/-, the G2 state is not maintained and cells instead progress through a 

G1-S endocycle. 
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Fig. 3: Knockdown of Cyclin A results in less cells in mitosis 
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Fig. 3: Knockdown of Cyclin A results in less cells in mitosis A-D) Wing blade 

region of the imaginal discs from 3rd instar wandering larvae stained with phospho-

Histone H3 to identify the mitotic cells. Representative pictures of wild type (A), 

Cyclin AR1 (B), and Cyclin A95 (C). rn-GAL4 is used to drive the expression of the 

RNAi. D) M-phase index of above genotypes. Scale bar in B =20 µm and applies to 

A-C.  
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2.4.4 A complex of Skp2 and Cyclin A in larval mitotic cells 

Skp2 was first identified as a Cyclin A-interacting protein (Yam et al., 1999; 

Zhang et al., 1995). Skp2 interacts directly with Cyclin A-CDK2 complexes via the 

N-terminal 90 amino acids of Skp2 (Ji et al., 2006). Given the similar phenotypes 

and genetic interactions between Skp2 and Cyclin A we wanted to see if these 

proteins physically interact in Drosophila. We therefore, performed co-

immunoprecipitations (coIPs) with HA-tagged Skp2 in Drosophila brains and 

imaginal discs. These experiments show that HA-Skp2 interacts in vivo with Cyclin 

A and Cyclin B3 but not with Cyclin B (Figs. 4A-B). We note that Skp2 interacts 

specifically with the higher molecular weight form of Cyclin A (61 kDA), the form 

that predominates in mitosis and therefore presumably the active form (Fig. 4A).We 

also noticed that this band migrates a little higher than 61 kDA when it interacts with 

Skp2. We are not sure about the kind of modification that happens to Cyclin A when 

it binds to Skp2, we predict that the migration of Cyclin A band might be due to 

some post translational modifications, possibly phosphorylation.  

Surprisingly, HA-Skp2 did not detectably pull down CDK1 in these same 

experiments (Fig. 4A), suggesting either that Skp2 interacts with free Cyclin A that 

is not within CDK1 complexes, or that Skp2 bound Cyclin A is associated with 

another CDK. In support of this latter possibility, HA-Skp2 pulls down CDK2 in 

these coIPs (Fig. 4B). Cyclin A associates with both CDK1 and CDK2 in other 

organisms, but in Drosophila it has only been shown to interact with CDK1 

(Knoblich et al., 1994; Sauer et al., 1995). However, the conclusion that Cyclin A 

can only interact with CDK1 came from IP experiments performed in embryos. In 
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embryos, Cyclin A did not CoIP with HA-Skp2 but CDK1 did (Fig. 4C). To test the 

possibility that Cyclin A and CDK2 can interact in larval tissues, we performed CoIP 

using brain and imaginal discs of 3rd instar wandering larva using MYC-tagged 

CDK2 and probed for Cyclin A. Our results show that CDK2 does not interact with 

Cyclin A (Fig. 4F). Presence of Skp2 has been shown to change Cyclin A 

conformation (Yam et al., 1999). To test if presence of Skp2 results in any change in 

Cyclin A conformation that leads to Cyclin A-CDK2 interaction, we will perform 

MYC-tagged CDK2 CoIP in the presence of Skp2. We are currently using CoIPs to 

test for the existence of Cyclin A-CDK2 complexes in the presence of HA-Skp2 in 

mitotic tissues of the Drosophila larva. The presence of CDK2 in our HA-Skp2 IPs 

could also represent an interaction between HA-Skp2 and Cyclin E-CDK2 

complexes, a possibility that we will also address. 
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Fig. 4: Skp2 interacts with Cyclin A in larval mitotic cells 
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Fig. 4: Skp2 interacts with Cyclin A in larval mitotic cells. A) HA-Skp2 IP in wild 

type or Cks1/Cks85A null (indicated by a + or -). IP was performed with 3rd instar larval 

brains and imaginal discs. Cyclin A but not Cyclin B or Cdk1 is pulled down (S, 

Supernatant; P, IP pellet). B) HA-Skp2 IP in wild type 3rd instar brains/imaginal discs. C) 

Cyclin B3 and the lower molecular weight band of Cdk2 is pulled down. C) HA-Skp2 IP 

in wild type embryos. Cdk1 but not Cyclin A is pulled down. D-E) HA-IP with above 

mentioned genotypes in wild type 3rd instar brains and imaginal discs. (E) Cyclin A is 

pulled down with HA-Skp2 but not with HA-Skp2Δ170. (F) Myc-CDK2 IP was performed 

with 3rd instar larval brains and imaginal discs. Cyclin A was not coIP’d with Myc-

CDK2. * indicates antibody heavy/light chain. 
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2.4.5 Skp2-Cyclin A interaction is independent of Cks1/Cks85A 

Skp2 could potentially interact with Cyclin A indirectly through 

CKS1/Cks85A since CKS1/Cks85A interacts with Skp2 and with CDKs (Cardozo 

and Pagano, 2004). To determine if this is the case, we repeated the HA-Skp2 IP in a 

background homozygous for Cks85ex15, a null allele of CKS1/Cks85A. We find that 

Cyclin A still interacts with Skp2 in the Cks85ex15 background (Fig. 4A) indicating 

that the interaction is not dependent on CKS1/Cks85A. Skp2 in human appears to be 

able to interact directly with Cyclin A on the N-terminal domain of Skp2 (Ji et al., 

2006). To determine if this domain is similarly mediating interaction with Cyclin A 

in Drosophila we generated a N-terminal truncated form of Skp2, HA-Skp2Δ170 that 

retains the N-terminal F-box and LRR repeats required for SCF interaction and 

substrate recognition respectively. CoIPs with HA-Skp2Δ170 reveals that it is not able 

to interact with Cyclin A (Fig. 4E). 

To determine if Skp2 and Cyclin A directly interact, we expressed these 

proteins in bacteria (Figs. 5A-B) and performed a GST pull-down assay. GST-Skp2 

but not GST-Skp2Δ170 is able to pull down MBP-Cyclin A in vitro (Fig. 5C-D). An 

N-terminal mutated version of Skp2 (GST-SKP2AAAA) has shown not to interact with 

Cyclin A in human. We expressed GST-Skp2AAAA in bacteria and found that it pulls 

down MBP-Cyclin A in vitro (Fig. 5D). Our results show that Drosophila Skp2 

interacts directly with Cyclin A, and this interaction depends on sequences on the N- 

terminus of Skp2. 
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Fig. 5: Skp2 interacts directly with Cyclin A 
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Fig. 5: Skp2 interacts directly with Cyclin A. A-B) Coomassie staining of bacterially 

produced His-MBP-Cyclin A, His-MBP-Cyclin AΔ1-53, His-MBP-Skp2 (A), and GST-

His-Cyclin A, GST-His-Cyclin AΔ1-53, GST-His-Skp2 (B), before (U) and after induction 

(I) with IPTG C) GST pull-down assay with GST Skp2 and His-MBP-Cyclin A. D) GST 

pull-down assay with indicated GST fusion proteins and His-MBP-Cyclin A. His-MBP-

Cyclin A was not pulled down by GST-His-Skp2Δ170 whereas GST-His-Skp2AAAA and 

GST-His-Skp2 pulled down His-MBP-Cyclin A.  Indicated GST fusion proteins labelled 

with anti GST antibody. 
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2.4.6 Skp2 and Cyclin A interact in G2 

We predict that Skp2 interacts with Cyclin A in G2 of the cell cycle and that 

this is important either for Cyclin A activity or to maintain the stability of Cyclin A, 

or both. Cyclin A protein accumulates in the cytoplasm and nucleus in S-phase and 

increases in levels until prometaphase when it is subjected to degradation via APC- 

CDC20/Fzy mediated ubiquitination (Sigrist et al., 1995; Su et al., 1998). We found 

that HA-Skp2 shows a similar localization: it is present in both cytoplasm and 

nucleus (Figs. 6A-A’’). To determine if Skp2 also shows the same temporal 

accumulation as Cyclin A we co-labeled imaginal discs with phospho Histone H3 

and gamma tubulin to determine mitotic phases. Skp2 seems to slowly disappear in 

prometaphase/metaphase (Figs. 6C- E’) similar to Cyclin A. Using the tagged, 

constitutively expressed HA-Skp2 and Venus-Cyclin A transgenes we performed co-

localization studies. The relatively uniform distribution of both Cyclin A and HA-

Skp2 make it difficult to assess co-localization, though many specific sites of high 

Skp2 concentration correspond to sites of strong Cyclin A accumulation (Figs. 6F- 

F’). To better assess co-localization we employed the proximity ligation assay 

(PLA). In PLA, a fluorescent signal is generated only in cases where the two proteins 

are within 40 nm of each other. By this method we detect a specific interaction 

between HA-Skp2 and Venus-Cyclin A (Fig. 7A-A’). This signal is found in both 

nuclei and cytoplasm. Interestingly, PLA signal is enriched in a stripe of cells in the 

wing disc that appears to correspond to the G2 arrested cells of the Zone of non-

proliferating cells (Fig. 7A’,C).  
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Fig. 6: Localization of Skp2 in larval mitotic cells 

 

 

 

 

 

 

M 

M M 

M 

M 

M 

P 

P 

M A 

A 

T 

T 

90 
 



 

 

Fig. 6: Localization of Skp2 in larval mitotic cells. A-A’’) Expression of UAS-HA-

Skp2 in the blade region of wing imaginal disc of 3rd instar wandering larvae showing 

nuclear and cytoplasmic localization of Skp2. C-E’) Localization of Skp2 in different 

phases of mitosis. P refers to prophase, M refers to metaphase, A refers to anaphase and 

T refers to telophase. F-F’) Skp2 and Cyclin A protein show nuclear and cytoplasmic 

colocalization. Scale bar in D =5 µm, applies to C-E’, F-F’’. Scale bar in B’ =10 µm, 

applies to A-B’’. 
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Fig. 7: Skp2 and Cyclin A interacts in G2 
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Fig. 7: Skp2 and Cyclin A interacts in G2. A-B’) Wing imaginal disc of 3rd instar 

wandering larvae of the mentioned genotypes. The proximity ligation assay (PLA) 

signals (white dots) show Skp2 and Cyclin A interaction. C) Cartoon showing the region 

of G2 arrested cells in the wing imaginal disc. Scale bar in A =10 µm, applies to A-B’.  
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2.4.7 N- terminus of Skp2 is important for maintaining diploidy 

We predicted that Skp2 mutants that lack the ability to interact with Cyclin A 

would be non-functional. We tested this by expressing HA-Skp2Δ170 in Skp2 null 

background. While full length HA-Skp2 rescues Skp2ex9, this truncated form 

completely fails to rescue (data not shown). This is despite the fact that the truncated 

protein retains its F-box and its C-terminal LRR domains, and is therefore predicted 

to still be able to interact with the SCF complex, and with substrates such as p27.  

Polyploidy in Skp2 null wing imaginal disc cells can be fully rescued by 

overexpressing HA-Skp2. To address if the N-terminal Skp2 is responsible of this 

rescue, we expressed HA-Skp2Δ170 in Skp2 null background. The results show that the 

ploidy observed in Skp2 null is not rescued by HA-Skp2Δ170 whereas full length Skp2 

completely rescued the phenotype (Fig. 8C-D). This result indicates that Skp2- 

Cyclin A interaction is important for genome stability. 

Could HA-Skp2Δ170 failed to interact with Cyclin A due to mis localization? 

We considered this because the N-terminus of Skp2 might have a putative NLS and 

deleting it might localize Skp2 in the cytoplasm. Our staining shows that the N- 

terminal deleted Skp2 is localized in the nucleus as well as the cytoplasm like full 

length Skp2 (Fig. 6A-B’’). Interestingly, the accumulation of HA-Skp2Δ170 was 

persistent in mitotic cells (Fig. 8B-B’’). We observed strong often punctate 

accumulation of HA-Skp2Δ170 in metaphase and anaphase cells whereas full length 

Skp2 slowly disappears during prometaphase and metaphase (Fig. 8A-B’’). 

Persistence of HA-Skp2Δ170 signal longer than full length Skp2 might indicate that 

the N terminal of Skp2 is needed for its degradation. Indeed we found one potential 
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D box, RLSLGSTGD (amino acid sequences 52-61) in the N terminus of Drosophila 

Skp2 that is similar to the D box 2 in human Skp2 (RKHLQEIPD, sequences 84-93). 

However, mutated D box 2 in human Skp2 was efficiently degraded like wild type 

Skp2 (Bashir et al., 2004). Despite the persistence of Skp2 in anaphase cells, it does 

not cause any lethality because ubiquitous expression of the transgene HA-Skp2Δ170 

in flies is not lethal (data not shown).  Our CoIP and GST pull down experiments 

showed that the sequences on the N terminus of Skp2 is necessary for Cyclin A 

interaction (Fig. 4D-E, 5E). Because there is no interaction between the N-terminal 

deleted Skp2 and Cyclin A, we predict that in our Proximity Ligation assay we will 

not observe any signal in the cells that are expressing HA-Skp2Δ170 and Venus-

Cyclin A. As anticipated, we observed strong PLA signal in wing disc that were 

expressing HA-Skp2 and Venus-Cyclin A but not in the wing disc that were 

expressing HA-Skp2Δ170and Venus-Cyclin A (Fig. 7A-B’).  
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Fig. 8: Skp2-Cyclin A interaction is important to maintain diploidy 
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Fig. 8: Skp2-Cyclin A interaction is important to maintain diploidy. A-A’’) Blade 

region of wing imaginal disc of 3rd instar wandering larvae showing mitotic localization 

of HA-Skp2 and HA-Skp2Δ170. A-A’’) Localization of full length Skp2 in metaphase and 

anaphase. No HA-Skp2 localization in metaphase (blue arrowheads in (A-A’’) or 

anaphase cells (yellow arrowheads in A-A’’). B-B’’) Localization of HA-Skp2Δ170 in 

metaphase and anaphase. The blue arrowheads in (B-B’’) show strong Skp2 protein in 

metaphase and the yellow arrowheads in (B-B’’) also show Skp2 protein in anaphase. C-

D) Rescue of ploidy in full length HA-Skp2 and HA-Skp2Δ170 expressed region. These 

transgenes are expressed with en-GAL4 driver in Skp2 null background.  In (F) full length 

HA-Skp2, ploidy is rescued completely whereas in (G) HA-Skp2Δ170 the ploidy did not get 

rescued. en-GAL4 is expressed on the right side of the white line. Scale bar in A =10 µm, 

applies to A-B’’. Scale bar in C =10 µm, applies to C-D.  
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2.5 Discussion 

         Skp2 and its partner, Cks1/Cks85A have a well characterized function in 

targeting the CKI, p27/Dap for destruction (Carrano et al., 1999; Sutterlüty et al., 

1999; Tsvetkov et al., 1999). This critical function explained to a large degree the 

oncogenic properties of Skp2: its overexpression leads to a decrease in p27/Dap 

levels resulting in a failure to arrest cells in G1 (Chiarle et al., 2002; Fagan‐Solis et 

al., 2014; Lim et al., 2002). Conversely, the loss of Skp2 results in reduced overall 

growth, apparently due to elevated p27/Dap levels and thus inhibition of cell 

division. The Drosophila Skp2 and Cks1/Cks85A proteins appears to share with 

vertebrates this important role in regulating p27/Dap levels (Dui et al., 2013). In 

addition to this oncogenic activity, Skp2 might have tumour suppressive functions. 

Mice and Drosophila null for Skp2 displayed polyploidy, a phenotype that is 

frequently associated with tumour formation (Ghorbani et al., 2011; Nakayama et al., 

2000; Nakayama et al., 2004). In this paper, we investigated the cause of this 

polyploidy. We showed evidence that polyploidy in Skp2 null Drosophila is a 

consequence of failure of cells to enter mitosis. Cells that failed to enter mitosis 

revert to a G1-like state and thus were able to undergo replication at the next S-phase 

(Davoli and de Lange, 2011; Hassel et al., 2014). Our results clearly showed that the 

N-terminus of Skp2 is responsible for maintaining the genome stability as HA-

Skp2Δ170 (lacking the N- terminal of Skp2) did not rescue the ploidy of Skp2 whereas 

full length Skp2 did.  We are currently in the process of expressing HA-Skp2Δ171- 499 

(lacking the LRR domains) in flies. We would predict that this version of Skp2 will 

retain its ability to bind and protect Cyclin A, and thus would rescue the polyploidy 
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phenotype of a Skp2 null mutant. We will also make smaller deletions of the N-

terminus of Skp2 to identify the interaction domain of Cyclin A.  

The G2 role of Skp2 appeared to be distinct from its activity in G1-S role. 

Loss of Skp2 resulted in both a decrease in S-phase and mitotic indexes. The former, 

we expected based on the established role for Skp2 in p27/Dap destruction (Carrano 

et al., 1999; Dui et al., 2013; Sutterlüty et al., 1999; Tsvetkov et al., 1999). The 

latter, we proposed is due to a partial failure of these cells to enter mitosis. 

Importantly, the effect on mitosis (but not on S-phase) is dramatically enhanced by 

loss of a single copy of Cyclin A. This is a key result in that it confirms that Skp2 is 

indeed required for entry into mitosis and equally important it points towards a 

critical interaction between Skp2 and Cyclin A.  

The CoIP experiments showed that the N-terminus of Skp2 interacts 

physically with the active phosphorylated form of Cyclin A, which in Drosophila 

functions primarily if not exclusively in mitosis (Sigrist et al., 1995; Sigrist and 

Lehner, 1997).  The active form of Cyclin A might result from auto phosphorylation 

of Cyclin A, as fly Cyclin A has five auto phosphorylation sites (Ramachandran et 

al., 2007). Results from our PLA experiment showed that Skp2 and Cyclin A appear 

to form a complex specifically in G2 of the cell cycle and both proteins disappear 

early in mitosis. In the absence of Skp2, Cyclin A levels are reduced and we showed 

that the effect on these levels is posttranslational. In addition to this, we also found 

that the mitotic specific active form of Cyclin B3 also interacts with Skp2. Cyclin B3 

has not been paid much attention in cell cycle regulation but it will be interesting to 

tease apart the function of this specific interaction. 

99 
 



 

 

          Another interesting observation that emerges from our research is the finding 

that in mitotic tissues (brain and associated mitotic discs) Cyclin A interacts with 

Skp2 in a complex that does not involve Cdk1. On the other hand we find that the 

active form Cdk2 is able to interact with Skp2 (O'Connor et al., 1993; Pagano et al., 

1993). It is possible that Skp2 only interacts with a complex of Cyclin A-Cdk2 in the 

mitotic brain tissues. However, our Cyclin A-Cdk2, CoIP experiments did not show 

such interaction. Another possibility might be that Cyclin A-CDK2 interacts only in 

the presence of Skp2 overexpression. We are currently testing on this possibility. It is 

also possible that Cdk2 exists within a distinct Skp2 complex from that containing 

Cyclin A. In Drosophila, the only known partner of Cdk2 is Cyclin E. Skp2 targets 

Cyclin E for destruction in mammalian cells and therefore, the interaction between 

Skp2 and Cdk2 may reflect the targeting of Cyclin E for ubiquitination.  
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3.1 Summary 

S phase kinase associated protein Skp2 is the F box protein and substrate 

recognition component of the E3 ubiquitin ligase, the SCF complex. Skp2 is a 

potential oncogene and its critical target is Cyclin Dependent kinase inhibitor 

p27/Dap. Overexpression of Skp2 results in down regulation of p27/Dap and is 

observed in a variety of cancer types. Skp2 protects Cyclin A during G1-S phase 

transition as well as during mitotic entry. Loss of Skp2 results in loss of Cyclin A 

and other mitotic cyclins that results in impaired mitotic entry. This forces the 

mitotic cycle to enter an endoreplication cycle. The exact mechanism by which loss 

of Skp2 results in loss of Cyclin A and other mitotic cyclins is still unknown. Our 

paper tries to address this question?  Here we show that Skp2 and Cyclin A are 

antagonistic with CDH1/Fzr, which is the substrate recognition component and 

activator of another E3 ubiquitin ligase, the Anaphase Promoting Complex, APC. 

Our studies show that Skp2 does not affect the protein stability or localization of 

CDH1/Fzr nor does it compete with CDH1/Fzr to bind on Cyclin A. We also tested 

the idea that p27/Dap overexpression might indirectly lead to Cyclin A 

downregulation in Skp2 null background. Our results show that the loss of Cyclin A 

leading to inability to enter mitosis in Skp2 null cells is not due to p27/Dap 

overexpression.  
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3.2 Introduction 

A cell cycle is the controlled regulation of a transition from one cell phase to 

another cell phase involving the strategic cooperation of a community of key 

regulatory proteins. Programmed protein degradation by ubiquitination is a critical 

pathway for cell cycle regulation. Two well-characterized and studied E3 ubiquitin 

ligases are the Skp1 Cullin F box (SCF) complex and Anaphase Promoting Complex 

(APC) (Nakayama and Nakayama, 2006; Vodermaier, 2004). The Anaphase 

Promoting Complex, or Cyclosome, is a 1.5 MDa protein complex with one or two 

copies of 19 different subunits (Pines, 2011). The subunits are divided into two 

distinct functional sub-complexes: the substrate recruitment sub-complex and the 

catalytic sub- complex. The substrate recruitment sub-complex is composed of 

Tetratricopeptide repeats (TPR) containing proteins and binds to the substrates. The 

catalytic complex interacts with the E2 ubiquitin ligase. Two WD repeat containing 

co-activators, CDC20/Fzy and CDH1/FZR, act as the substrate recognition subunit 

of the APC complex (Pines, 2011; Schwab et al., 1997; Schwab et al., 2001; Sigrist 

and Lehner, 1997; Visintin et al., 1997).  

APC activity is regulated by Cyclin-CDK-mediated phosphorylation 

throughout the cell cycle to ensure proper cell cycle progression (Kraft et al., 2003). 

Unscheduled APC activation can trigger premature cyclin degradation and sister 

chromatid separation without proper kinetochore microtubule attachment. This can 

lead to an unequal division of nuclear material, and ultimately genome instability. 

The APC core complex and its activators are regulated by phosphorylation, which 
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can either activate or inactivate the APC co-activators. The Cyclin B-CDK1 

mediated phosphorylation dependent activation of the APC activator CDC20/Fzy has 

been well studied (Kraft et al., 2003; Kramer et al., 2000). However, a recent study 

showed that phosphorylation can also inactivate CDC20/Fzy (Hein and Nilsson, 

2016). According to the recent study, Cyclin A-CDK2 inactivates CDC20/Fzy 

during interphase; and in G2 just before entry into mitosis, Cyclin B-CDK1 activates 

CDC20/Fzy, which then binds to the APC core complex (Hein and Nilsson, 2016). 

Although APC-CDC20/Fzy is active during prophase of mitosis, it cannot degrade 

key mitotic substrates such as Securin/Pim and mitotic cyclins such as Cyclin B and 

Cyclin B3; this is due to the inhibitory binding of spindle assembly checkpoint 

(SAC) proteins. Spindle assembly checkpoint (SAC) proteins bind to APC-

CDC20/Fzy and prevent its substrate degradation until the proper kinetochore 

microtubule attachment happens during metaphase (Lara-Gonzalez et al., 2011; 

Sacristan and Kops, 2015). Interestingly, Cyclin A is degraded by CDC20/Fzy 

despite the activation of SAC. Several studies have examined the ubiquitination of 

Cyclin A by CDC20/Fzy. Some studies have suggested that Cks1/Cks85A or 

Cks2/Cks30A binds to Cyclin A-CDK1 and recruits Cyclin A to the active 

CDC20/Fzy. This results in the degradation of Cyclin A during prometaphase 

(Wolthuis et al., 2008). Other studies have suggested that Cyclin A competes with 

SAC proteins to bind to CDC20/Fzy so that Cyclin A can be degraded (Di Fiore and 

Pines, 2010). After the SAC is satisfied, the active APC-CDC20/Fzy degrades 

Securin/Pim and the mitotic cyclins, Cyclin B and Cyclin B3, causing sister 

chromatid separation and the metaphase to anaphase transition (den Elzen and Pines, 
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2001; Geley et al., 2001; Hagting et al., 2002). Degradation of mitotic cyclins then 

result in low CDK1 activity, which activates CDH1/Fzr, the other APC activator. 

Unlike CDC20/Fzy, dephosphorylation activates CDH1/Fzr during late M phase. 

CDH1/Fzr stays active until late G1 phase as long as CDK activity is low and 

continues to promote the degradations of the mitotic cyclins, Cyclin A, Cyclin B, and 

Cyclin B3 (Kraft et al., 2003; Kramer et al., 2000).  

CDH1/Fzr was first identified in Drosophila by Sigrist and Lehner in 1997, 

when they used CDC20/Fzy cDNA of Xenopus to clone a homologous gene from 

Drosophila. They named the gene fizzy-related (Fzr) (Sigrist and Lehner, 1997). 

Later, it was shown that the already-identified Drosophila gene rap (retina aberrant 

in pattern) encodes the CDH1/Fzr protein (Karpilow et al., 1989; Pimentel and 

Venkatesh, 2005). A maternally-derived CDH1/Fzr transcript disappears during the 

onset of syncytial embryonic cycles; zygotic appearance of CDH1/Fzr was observed 

during the 13th embryonic divisions. In embryos, CDH1/Fzr is expressed in salivary 

gland placodes and tissues that are post mitotic (Reber et al., 2006). A high level of 

CDH1/Fzr was observed in mitosis 16 just before terminal mitosis, when G1 phase is 

introduced in cellularized embryos (Reber et al., 2006). During G1, mitotic cyclins 

are ubiquitinated by CDH1/Fzr (Sigrist and Lehner, 1997). In cellularized embryos, 

overexpression of CDH1/Fzr down-regulates mitotic cyclins and in CDH1/Fzr 

mutant embryos, the G1 phase is not established and cells enter S phase. (Reber et 

al., 2006; Sigrist and Lehner, 1997).  

In Drosophila, Cyclin A is a mitotic cyclin. Cyclin A mutant embryos do not 

enter mitosis 16, despite the presence of Cyclin B and Cyclin B3 in those embryos 

113 
 



(Jacobs et al., 2001; Jacobs et al., 1998; Reber et al., 2006). Even the overexpression 

of Cyclin B and Cyclin B3 does not restore mitosis 16 in Cyclin A mutant embryos. 

(Reber et al., 2006). However, mitosis 16 is fully restored in Cyclin A and CDH1/Fzr  

double mutant  embryos (Reber et al., 2006). These results point towards the critical 

role that Cyclin A has in mitotic entry, which is to inhibit CDH1/Fzr. Interestingly, 

Cyclin A can also inhibit CDH1/Fzr during the S and G2 phases of the cell cycle 

(Reber et al., 2006; Sigrist and Lehner, 1997; Sørensen et al., 2001). In mammals, 

the phosphorylation-dependent inhibition of CDH1/Fzr by Cyclin A is well 

established, but in Drosophila, the inhibition of CDH1/Fzr is not phosphorylation-

dependent (Reber et al., 2006; Sørensen et al., 2001). The mechanism by which 

Cyclin A regulates CDH1/Fzr in Drosophila has not yet been addressed.  

As discussed in previous papers, the E3 ubiquitin ligase SCF-Skp2 is a well-

known oncogene. The most critical and well-studied target of Skp2 is p27/Dap 

(Carrano et al., 1999; Dui et al., 2013; Ganoth et al., 2001; Hara et al., 2001; 

Nakayama et al., 2004; Sutterlüty et al., 1999; Tsvetkov et al., 1999). Our work with 

Skp2 showed that it is essential for maintaining mitotic cyclin levels (Das et al., 

2016). We also observed that the low mitotic cyclin level in Skp2 null cells was due 

to a premature degradation of Cyclin A. Our studies showed that Skp2 and Cyclin A 

can interact in G2 of the cell cycle (Das et al., 2016). This suggests that Skp2 has a 

role in preventing the degradation of Cyclin A before mitotic entry; protection from 

Skp2 can enable Cyclin A to inhibit CDH1/Fzr. This paper tests the idea that Skp2 

protects Cyclin A from CDH1/Fzr, then attempts to determine the mechanism by 

which CDH1/Fzr is inhibited by Skp2 and Cyclin A. Our results, discussed in this 
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paper, show that Skp2 and Cyclin A are antagonistic with CDH1/Fzr. Our study 

shows that Skp2 does not directly target CDH1/Fzr for degradation, nor does it cause 

any change to CDH1/Fzr localization. We tested the idea that Skp2 competes with 

CDH1/Fzr so that it can bind to Cyclin A. Our results showed that Skp2 might not 

compete with CDH1/Fzr to bind to Cyclin A.  
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3.3 Materials and methods 

3.3.1 Drosophila strains and genetics 

All flies were maintained at 25°C unless stated otherwise. The following 

stocks were obtained from Bloomington Drosophila Stock Centre: Cyclin AH170 

(9096), daughterless-GAL4, patched-GAL4, rotund-GAL4 and engrailed-GAL4. The 

following stock was obtained from Vienna Drosophila Resource Centre: Cyclin 

Av103595 (Cyclin A95).  Fzre4 is a gift from Tadmiri Venkatesh, The City College of 

New York. UAS-HA-Skp2, Skp2ex9, yw, and Skp2KK2101487 were described previously 

(Ghorbani et al., 2011). UAS-MycDap51 is a gift from Renjie Jiao, Chinese Academy 

of Sciences. UASt-Fzr is a gift from Christian Lehner, University of Zurich. The 

following stocks were made in Swan lab UASp-Venus- Cyclin AΔ1-53, UASp-Venus-

Fzr40 (Rajdeep Dhaliwal, unpublished) and UASp-HA-Skp2Δ170 (Nilanjana Das, 

unpublished).  

3.3.2 Generation of His-MBP-Cyclin A, GST-His-Cyclin A and His-MBP-Cyclin 

AΔ1- 53, GST-His-Skp2 and His-MBP-Skp2 plasmids 

For the generation of His-MBP-Cyclin A, GST-His-Skp2, His-MBP-Skp2 

plasmid and His-MBP-Cyclin AΔ1- 53 the steps that were followed is described in (Das 

et al., 2016). For the generation of His-MBP-Cyclin AΔ1-53, pENTRYCyclin AΔ1-53 

(Rajdeep Dhaliwal unpublished) was used. The destination vector used to generate 

the His-MBP-Cyclin A, His- MBP- Cyclin AΔ1-53 and His- MBP-Skp2 constructs is 

pDEST-His-MBP (Plasmid 11085 from Addgene).  The destination vector used to 
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generate GST-His-Skp2 and GST-His-Cyclin A is pDEST 565 (Plasmid 11520 from 

Addgene). 

3.3.3 Generation of Flag-Fzr plasmid 

For the generation of Flag-Fzr plasmid, pTiger-GFP-Fzr plasmid (Rajdeep 

Dhaliwal, unpublished) was used. The Fzr cDNA was taken out from the donor 

plasmid by flanking the sites with two fast digest restriction enzymes BamH1 and 

Xba1 and ligated into a mammalian expression vector, pcDNA3. The pcDNA3 

vector was a gift from Elizabeth Fidalgo, and Lisa Porter, University of Windsor.  

3.3.4 His-MBP-Cyclin A, GST-His-Cyclin A and His-MBP-Cyclin AΔ1-53, His-MBP-

Skp2, GST-His-Skp2, and Flag- Fzr protein expression and purification 

The steps involving the expression and purification of His-MBP-Cyclin A, 

GST-His-Skp2 proteins were described in (Das et al., 2016). Expression and 

purification of GST-His-Cyclin A and His-MBP-Cyclin AΔ1-53, His-MBP-Skp2 

expression and purification were performed according to the protocol explained in 

our paper (Das et al., 2016). All these above mentioned plasmids except 

pcDNA3Fzr were expressed in BL21-CodonPlus (DE3) RIL bacterial cells (a gift 

from Norah Franklin, University of Windsor). 

pcDNA3Fzr was expressed in Human Embryonic Kidney 293 (HEK-293) cell 

line, a gift from Elizabeth Fidalgo, and Lisa Porter, University of Windsor.  

3.3.5 Human Embryonic Kidney 293 (HEK293) cell culture 

HEK 293 cells were grown in Dulbecco’s Modified Eagle Medium 

(DMEM) supplemented with 10% Fetal Bovine Serum (FBS) (Thermo-Fisher) and 
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1% Penicillin-Streptomycin (Thermo-Fisher). The HEK 293 cells were cultured in 

a special 10 cm cell culture plate with fresh media containing the above mentioned 

media supplemented with FBS and antibiotics. The cells were raised in a 37oC 

incubator with 5% CO2 until it reached 80% confluency.  

3.3.6 Transfection of pcDNA3Fzr and protein expression  

10 µg of the plasmid, pcDNA3Fzr was incubated for 10 minutes at room temperature 

with 500 µl of DMEM media and 30 µg of transfection agent branched 

polyethylenime (PEI) from Sigma. This plasmid mixture was then added dropwise 

on to the HEK 293 cells and left in the 37°C incubator with 5% CO2 for 20 hours for 

transfection.  

The following day the cells were collected from the plate and centrifuged at 800 x g 

for 5 minutes at 4°C. The pellet containing the cells was lysed using a lysis media 

containing 20 mM Tris (pH 7.5), 100 mM NaCl, 5 mM EDTA, 1 mM PMSF, and 

5µg/mL of each of leupeptin and aprotinin and incubated in this media for 30 

minutes on ice. Following the incubation the cells were centrifuged at 10,000 x g for 

15 minutes at 4° C. The supernatant was aliquoted into 1.5ml eppendorf tubes and 

stored in -80°C for future use. 

3.3.7 GST pull-down experiments 

For the GST-His-Skp2 pull-down experiments 500µl of His-MBP-Cyclin A 

and 500µl of His-MBP-Cyclin AΔ1-53were pre-incubated at 30˚C for 30 minutes 

followed by incubation on ice for 5 minutes. 1ml of GST-His-Skp2 or 1ml of 1x PBS 

for controls was added to the His-MBP-Cyclin A lysate and incubated on ice for 15 
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minutes followed by incubation at 30˚C for 15 minutes. The lysates were then added 

to 100µl of prewashed glutathione sepharose beads (Thermo Fisher Scientific) and 

incubated for 2 hours at 4˚C. After 2 hours, the lysate was centrifuged at 2000 rpm 

for 1 minute at 4˚C. The supernatant was collected and the pellet was washed three 

times with wash buffer (50mM Tris (8), 150mM Nacl, 0.05% Tween) and two times 

with wash buffer supplemented with protease inhibitor cocktail tablets (Roche 

Diagnostics) in 4˚C. The supernatant and the pellet were boiled with 5x and 2x 

sample buffer respectively for 10 minutes and then centrifuged at 13,200 rpm for 10 

minutes. Samples were then loaded on SDS PAGE gel for further detection and 

analysis. 

For the GST-His-Cyclin A pull-down experiments the above mentioned 

protocol was followed. As a negative control GST protein was used.  

3.3.8 Competition assay 

For the competition assay, the relative amount of His-MBP-Skp2 and GST 

protein were determined by comparing them with equalized amounts of GST-His-

Cyclin A in Coomassie Blue stained gels. For this experiment, GST-His-Cyclin A 

and GST were pre- incubated with Flag-Fzr at 30˚C for 30 minutes, followed by 

incubation on ice for 5 minutes. Increasing amounts of His-MBP-Skp2 were added to 

the GST-His-Cyclin A and Flag-Fzr lysates and incubated on ice for 15 minutes 

followed by incubation at 30˚C for 15 minutes. The lysates were then added to 100µl 

of prewashed glutathione sepharose beads (Thermo Fisher Scientific) and incubated 

for 2 hours at 4˚C. After 2 hours, the lysate was centrifuged at 2000 rpm for 1 minute 

at 4˚C. The supernatant was collected and the pellet was washed three times with 
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wash buffer (50mM Tris (8), 150mM NaCl, 0.05% Tween) and two times with wash 

buffer supplemented with protease inhibitor cocktail tablets (Roche Diagnostics) at 

4˚C. The supernatant and the pellet were boiled with 5x and 2x sample buffer 

respectively for 10 minutes and then centrifuged at 13,200 rpm for 10 minutes. 

Samples were then loaded on SDS PAGE gel for further detection and analysis. 

3.3.9 Western Blotting 

Western blotting of the samples was done according to the protocol described 

in (Das et al., 2016). The samples were probed using the following antibodies: 

mouse anti-Cyclin A antibody (A12) at 1/10, from Developmental Studies 

Hybridoma Bank, rabbit anti-Fzr antibody at 1/500, a gift from Christian Lehner, 

University of Zurich and mouse anti-Flag antibody, a gift from Lisa Porter, 

University of Windsor.  Chemiluminescence imaging was performed using an Alpha 

Innotech FluorChemTM HD2 imager. 

3.3.10 Cytology and Immunostaining 

The steps used for cytology and immunostaining were described in (Das et 

al., 2016). The primary antibodies used were rat anti-HA antibody (Roche) at 1/100, 

rabbit anti-phospho histone H3 antibody (Santa Cruz) at 1/1000, rat anti-alpha 

tubulin antibody (Millipore) at 1/500, mouse anti-gamma tubulin antibody at 1/500, 

rabbit anti-GFP antibody (Abcam) at 1/10000, mouse anti-HA antibody (Abcam) at 

1/1000 and rabbit anti-Fzr antibody at 1/50, a gift from Christian Lehner, University 

of Zurich.  The following antibodies were from Developmental Studies Hybridoma 

Bank. They were mouse anti-Cyclin B antibody (F2F4) at 1/20, mouse anti-Dacapo 

antibody (NP1) at 1/5, mouse anti-Myc antibody (9E 10) at 1/15.  
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EDU labelling was performed for detection of S phase cells as in (Ghorbani 

et al., 2011). 

3.3.11 Confocal microscopy 

Immunostained imaginal discs were imaged using an Olympus FluoView 

FV1000 laser scanning confocal microscope. Images were analyzed in Olympus 

Fluoview software version 1.5. The images were modified (brightness and contrast) 

and compiled through Adobe Photoshop 2014.  

3.3.12 Image J analysis of M phase and S phase indexes 

The M phase and S phase analysis were done as described in (Das et al., 

2016). 
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3.4 Results 

3.4.1 Overexpression of CDH1/Fzr causes polyploidy and downregulation of mitotic 

cyclins in larval mitotic cells 

Our previous studies of the larval mitotic tissues of Skp2 and Cyclin A 

mutants led to our interest in CDH1/Fzr. Previous studies that have characterized the 

cell cycle role of CDH1/Fzr in Drosophila have been primarily conducted on 

cellularized embryos. (Grosskortenhaus and Sprenger, 2002; Sigrist and Lehner, 

1997). To stay consistent with our previous work, we wanted to confirm the 

phenotypes resulting from overexpression of CDH1/Fzr in the larval and adult 

stages. We used two independent transgenic lines, UAS-Fzr (Sigrist and Lehner, 

1997) and UAS-Venus-Fzr40, (Rajdeep Dhaliwal, unpublished) and expressed the 

transgenes using the GAL4-UAS system. We tested these transgenes using 3 different 

GAL4 drivers: engrailed-GAL4 (en-GAL4), patched-GAL4 (ptc-GAL4) and rotund-

GAL4 (rn-GAL4). All GAL4 drivers were induced in different parts of the wing, as 

discussed later. The flies were raised at two different temperatures, 25°C and 29°C, 

to test if the phenotypes vary in different temperatures. In flies, the expression of a 

transgene by the GAL4-UAS system can vary at different temperatures. Generally, 

higher temperatures increase the expression of a transgene. For ease of use, UAS-Fzr 

will be referred to as UAS-Fzr1, and UAS-Venus Fzr40 will be referred to as UAS-

Fzr40. 

 We overexpressed CDH1/Fzr in the adult wing using the transgene UAS-
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Fzr40, under the control of en-GAL4. en-GAL4 is expressed in the posterior half of 

the adult wing. The anterior half of the wing serves as the control. Each hair in the 

adult wing arise from a cell, and the distance between two hairs is constant in the 

wild type adult wing and reflects the size of the cells. If cells become bigger, the 

distance between two hairs increases (Dui et al., 2013). We observed an increase in 

wing hair spacing (WHS) in the posterior half of the wing (Fig. 1A, B). The distance 

between the wing hairs increased as the temperature increased from 25°C to 29°C 

(Fig. 1A, B). The expression of UAS-Fzr1 with en-GAL4 led to embryonic lethality at 

both 25°C and 29°C likely as a result of higher expression from this transgene.  

In the adult wing, ptc-GAL4 is expressed in the region between the anterior 

and posterior boundary of the wing, defined by the two longitudinal veins L3 and L4. 

(St Pierre et al., 2002). When we overexpressed UAS-Fzr40 in the adult wing using 

the ptc-GAL4 driver, we observed an increase in WHS at both temperatures (Fig. 1C, 

D).  

In the adult wing rn-GAL4 driven expression is observed in the entire wing. 

The expression of UAS-Fzr40 with the rn-GAL4 driver also showed an increase in 

WHS (Fig. 1E, F). The expression of UAS-Fzr1 with the rn-GAL4 driver led either to 

no wing formation or to a rudimentary wing. Our WHS results confirm that the 

transgene UAS-Fzr40 is weaker than the transgene UAS-Fzr1; the phenotypes are also 

temperature dependent. 

Looking at wing hair spacing is an indirect way of looking at ploidy. Hence, 

after the study on adult wing, we wanted to test the larval wing imaginal disc to 

study the ploidy. UAS-Fzr40 and UAS-Fzr1 were expressed with the rn-GAL4 driver. 
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We stained the wing imaginal discs with the DNA dye Oligreen. UAS-Fzr40 showed 

very little change in nuclear size compared to the wild type (Fig. 1G, H). However, 

when we overexpressed the UAS-Fzr1 transgene, we observed that the size of the 

nucleus had significantly increased compared to the wild type, indicating polyploidy 

(Fig.1I, J). These results support previous observation that overexpression of 

CDH1/Fzr causes polyploidy (Grosskortenhaus and Sprenger, 2002; Sigrist and 

Lehner, 1997). 

CDH1/Fzr mutant cellularized embryos showed reaccumulation of mitotic 

cyclins after mitosis 16 where as wild type cells entered G1 with no accumulation of 

mitotic cyclins (Sigrist and Lehner, 1997). Overexpression of CDH1/Fzr in 

cellularized embryos also resulted in mitotic cyclin degradation (Grosskortenhaus 

and Sprenger, 2002; Sigrist and Lehner, 1997). To find whether the overexpression 

of CDH1/Fzr also causes a reduction of mitotic cyclins in larval mitotic tissues, we 

expressed CDH1/Fzr using the en-GAL4 driver and looked in the wing imaginal disc 

of the 3rd instar wandering larvae. We observed low Cyclin B level in the posterior 

half of the wing imaginal disc compared to the control anterior half (Fig. 1K-K’’). 

This result confirms the embryo results that showed that mitotic cyclins were 

reduced when CDH1/Fzr is overexpressed (Grosskortenhaus and Sprenger, 2002; 

Sigrist and Lehner, 1997).  

Cdc25/String is another G2/M protein that is a substrate of the CDH1/Fzr in 

flies and mammals. To test whether overexpression of CDH1/Fzr causes down-

regulation of the Cdc25/String protein level, we used a protein trap for Cdc25/String. 

We did not observe any change to the Cdc25/String protein level (Fig. 1K’’’). The 
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reason might be that perhaps in CDH1/Fzr overexpressing cells the substrate 

specificity is different in embryos than in larval mitotic cells. Overexpressing 

CDH1/Fzr and studying the level of Cdc25/String protein in the embryos and then 

comparing it in larval tissues will give us the ability to better understand the result.   
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Fig. 1: Overexpression of CDH1/Fzr causes polyploidy and lower mitotic Cyclin B 

level. 
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 Fig. 1: Overexpression of CDH1/Fzr causes polyploidy and lower mitotic Cyclin B 

level. A-F) Representative wings expressing UAS-FZR40 us ing different GAL4 drivers 

(A-B), engrailed-GAL4 (C-D), patched-GAL4 and (E-F) rotund-GAL4 at different 

temperatures. (A, C, E) flies were raised in 25°C and (B, D, F) flies were raised in 29°C. 

(A-F) Blue bars indicate the region of transgene expression on the wings. G-J) DNA 

stained with Oligreen in 3rd instar wing imaginal discs from the genotypes shown. Blue 

dashed line indicate the region of transgene expression. J) Nuclei appear larger in UAS-

FZR1, indicative of polyploidy. K-K’’’) engrailed-GAL4 driven expression of UAS-FZR1 

in 3rd instar wing imaginal discs. The discs are stained with Oligreen, Cyclin B, or 

CDC25/String. K’’) overall protein level of Cyclin B is reduced in CDH1/Fzr 

overexpressing cells compared to control cells. K’’’) CDC25/String expression shows no 

difference on both sides of the white dashed line.  Scale bar in G =10 µm and applies to 

G-H. Scale bar in J =20 µm and applies to I-K’’’.  
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3.4.2 CDH1/Fzr overexpression phenocopies Skp2 null and Cyclin A knockdown 

We expect that overexpression of CDH1/Fzr will result in a lower mitotic 

index, as observed in Skp2 null and Cyclin A knockdown cells. We used phospho-

Histone H3 to immunostain the cells of the wing imaginal disc of the 3rd instar 

wandering larva. Consistent with our expectation, we observed a strong reduction of 

the mitotic index in CDH1/Fzr overexpressing cells (Fig.. 2A-C). This result also 

confirms the previous observation in embryos (Sigrist and Lehner, 1997)  The results 

so far indicate a correlation between Skp2 null and CDH1/Fzr overexpression. We 

did not see any change to the S phase index in CDH1/Fzr overexpressing cells 

compared to the wild-type cells (Fig. 2D-F). This is in contrast with the previous 

observation in Skp2 null cells where we observed a reduction of the S phase index 

(Das et al., 2016). 
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Fig. 2: Overexpression of CDH1/Fzr results in lower mitotic index in wing 

imaginal discs 
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Fig. 2: Overexpression of CDH1/Fzr results in lower mitotic index in wing 

imaginal discs. A-B) Representative wild type (A), UAS-Fzr1 (B) wing imaginal 

discs from 3rd instar wandering larvae immunostained with phospho-Histone H3 

antibodies. C) M phase index of above mentioned genotypes. D-E) Representative 

wild type (D) and UAS-FZR1 (E) wing imaginal discs from 3rd instar wandering 

larvae stained with EDU (I hour incubation). F) S phase index of above mentioned 

genotypes. Scale bar in A =20 µm, applies to A-B and D-E. The orange dotted lines 

in B and E show the region of transgene expression.   
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3.4.3 Skp2 knockdown phenotype may be rescued by weak allele of CDH1/Fzr 

To date, our results suggest that Skp2 is important for maintaining Cyclin A 

levels, and that reduced Cyclin A levels lead to an endoreplication cycle in which 

mitosis is bypassed. The overexpression of CDH1/Fzr results in polyploidy and 

premature degradation of mitotic cyclins. Our results support the idea that there is an 

antagonistic relationship between Skp2 and CDH1/Fzr. If this the case then we 

predict that loss of CDH1/Fzr in the Skp2 null background, will rescue the loss of 

Skp2 phenotype. We tested this and our results showed that a partial loss of function 

mutation in CDH1/Fzr (fzre4) can suppress the wing hair spacing (WHS) phenotype 

in Skp2 RNAi wings (Figs. 3C, D). An antagonistic relationship between Cyclin A 

and CDH1/Fzr was observed before in embryos (Sigrist and Lehner, 1997). To 

confirm if this is the case in larval imaginal discs, we tested this.  Indeed, fzre4 

partially suppresses the increased WHS phenotype of Cyclin A RNAi (Figs. 3A, B). 
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Fig. 3: Skp2 and Cyclin A are antagonistic to CDH1/Fzr. 
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Fig. 3: Skp2 and Cyclin A are antagonistic to CDH1/Fzr. A-D) en-GAL4 driven 

expression of Cyclin A RNAi (Cyclin AR1) (A) or Skp2 RNAi alone (C) or in a Fzre4/e4 

background (B, D). All panels show a region of the adult wing at the border between 

engrailed expressing (indicated by black bar) and non-expressing cells. Cyclin A 

knockdown results in increased wing hair spacing. This is partially rescued by 

CDH1/Fzr hypomorph. Skp2 knockdown results in increased wing hair spacing. This 

is completely rescued by CDH1/Fzr hypomorph.  
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3.4.4 Investigation of possible mechanisms of CDH1/Fzr antagonism 

To investigate the possible mechanism of CDH1/Fzr antagonism, we 

predicted that Skp2 as an E3 ubiquitin ligase might cause instability of CDH1/Fzr 

protein. To test this idea, we examined CDH1/Fzr protein levels in the mitotic discs 

and brains of Skp2-null 3rd instar wandering larvae by western blotting method. We 

predicted that if Skp2 targets CDH1/Fzr for destruction then loss of Skp2 will result 

in an increase in CDH1/Fzr protein level and overexpression of Skp2 will result in a 

decrease in CDH1/Fzr protein level. Our results showed that there was no change in 

the CDH1/Fzr protein level in Skp2-null cells compared to wild type cells, although 

we observed a slight increase in the CDH1/Fzr protein level in Skp2 overexpressing 

cells (Fig.. 4A). To further validate this result, we looked at CDH1/Fzr protein in 

Skp2 overexpressing cells through immunofluorescence, but we did not see any 

change in the overall level of CDH1/Fzr in Skp2-overexpressing cells. Our results 

argue that CDH1/Fzr is not a substrate of Skp2 (Fig. 4B - B’’’). 

The activity of a protein might also be regulated by a change in localization. 

To test whether loss of Skp2 results in a change in the localization of endogenous 

CDH1/Fzr, we compared localization of CDH1/Fzr in wild-type mitotic cells with 

Skp2 null cells. CDH1/Fzr is cytoplasmic during interphase (Fig. 4D-D’’) which 

confirms the previous observation by the Lehner lab (Jacobs et al., 2002). Our results 

show no change in CDH1/Fzr localization in Skp2 null cells nor in cells that are 

overexpressing Skp2 (Fig. 4D-F’’). These results indicate that the regulation of 

CDH1/Fzr by Skp2 might not be through protein stability or a change in localization.  
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Fig. 4:  Skp2 does not regulate protein level or localization of CDH1/Fzr 
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Fig. 4:  Skp2 does not regulate protein level or localization of CDH1/Fzr.  A) 

Western blot shows CDHI/Fzr level does not change in Skp2ex9. Asterisks denote 

the non-specific bands and is used as loading control. B-B’’’) en-GAL4 driven 

expression of UAS-GFP and UAS-HA-Skp2 in the wing imaginal disc of 3rd instar 

wandering larvae. Total protein level of CDH1/Fzr remains unchanged in HA-Skp2 

expressing area (GFP). C-C’’’) Localization of CDH1/Fzr in different phases of 

mitosis. The yellow arrowheads in C’) show presence of CDH1/Fzr in metaphase 

and the white arrowheads in C’) show presence of CDH1/Fzr in anaphase. D-F’’) 

CDH1/Fzr localization does not change in the interphase cells of wild type, Skp2ex9 

and HA-Skp2 expressing wing imaginal disc cells. Scale bar in B =10 µm, applies to 

B-B’’’. Scale bar in C =5 µm, applies to C-C’’’ and D- F’’.  
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3.4.5 Skp2 does not interact with Cyclin A through first 53 amino acids of Cyclin A 

Active CDH1/Fzr ubiquitinates Cyclin A for degradation during late M and 

G1 phases. The first 53 amino acids on the N-terminus of Cyclin A is required for 

identification of Cyclin A by CDH1/Fzr in flies (Jacobs et al., 2001; Sigrist and 

Lehner, 1997). We predicted that Skp2 might interact with Cyclin A through the first 

53 amino acids on the N-terminus of Cyclin A and protect it from CDH1/Fzr 

mediated ubiquitination. In mammals, the N-terminus of Cyclin A is also needed for 

the interaction with  Skp2 (Ji et al., 2006).  

To test this model, we made transgenic flies that did not have the first 53 

amino acids on the N-terminus of Cyclin A (Rajdeep Dhaliwal, unpublished). We 

expressed the stable Cyclin A transgene (Cyclin AΔ1-53) along with HA-Skp2 in the 

wing pouch of the wing imaginal disc using rn-GAL4 (Fig. 5A-C’’’). To test if Skp2 

and Cyclin AΔ1-53 interact, we looked at their colocalization. As anticipated, we 

observed a strong accumulation of Cyclin AΔ1-53 in prophase and metaphase cells 

(Fig.. 5C-C’). We were unable to assess colocalization due to insufficient resolution 

and relatively uniform accumulation of Cyclin A. We also observed a high degree of 

abnormality in mitotic chromosomes with the expression of Cyclin AΔ1-53 in the wing 

blade.  

To better study the interaction of Skp2 and Cyclin AΔ1-53, we tried to perform 

an in vivo CoIP experiment. However, when we expressed Cyclin AΔ1-53 with the 

ubiquitous driver daughterless-GAL4, they were embryonic lethal. To bypass this 

problem we made Cyclin AΔ1-53 construct (His-MBP-Cyclin AΔ1-53) and expressed it 

in bacterial cells (Fig. 5D). We then performed a GST pull-down experiment using 
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GST-Skp2 and either His-MBP-Cyclin A or His-MBP-Cyclin AΔ1-53. The amount of 

His-MBP-Cyclin AΔ1-53 was equalized with His-MBP-Cyclin A. This was done by 

running different dilutions of His-MBP-Cyclin AΔ1-53 and fixed amount of His-MBP-

Cyclin A on a gel (Fig. 5F). We observed a stable interaction between GST-Skp2 

and His-MBP-Cyclin AΔ1-53 (Fig. 5G). Our in vitro experiment showed that Skp2 can 

interact with Cyclin AΔ1-53, indicating that the interaction domain of Skp2 and Cyclin 

A might not involve the 1-53 amino acids of Cyclin A as in mammals. A verification 

with an in vivo result will better confirm our observation. 
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Fig. 5: The first 53 amino acid of the N-terminus of Cyclin A does not have 

Skp2 interaction domain. 
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Fig. 5: The first 53 amino acid of the N-terminus of Cyclin A does not have 

Skp2 interaction domain. A-A’’’) Wing imaginal blade of 3rd instar wandering 

larvae showing transgenic expression of Skp2 and Cyclin AΔ1-53. Scale bar in A - 5 

µm, applies to A-A’’’. Scale bar in B - 10 µm, applies to B-C’’’. D) Expression of 

His-MBP-Cyclin AΔ1-53 before and after IPTG induction. Lane 1 is the uninduced 

lane and lane 2 shows the expression of His-MBP-Cyclin AΔ1-53.  E) Coomassie 

staining of bacterially produced His-MBP-Cyclin A and His-MBP-Cyclin AΔ1-53. F) 

Coomassie staining of 4 different sets of dilutions (indicated by 1-4) of His-MBP-

Cyclin AΔ1-53 with fixed amount of His-MBP-Cyclin A. G) GST pull-down assay 

with GST Skp2 and His-MBP-Cyclin A and His-MBP-Cyclin AΔ1-53. GST Skp2 

pulled down His-MBP-Cyclin A and His-MBP-Cyclin AΔ1-53.  
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3.4.6 Skp2 does not compete with CDH1/Fzr to bind to Cyclin A  

In mammals, the RXL motif on the WD 40 domain of CDH1/Fzr interacts 

with Cyclin A (Sørensen et al., 2001). In Drosophila, CDH1/Fzr also has an RXL 

motif on its WD 40 domain. However, there is no clear understanding of the way in 

which Drosophila CDH1/Fzr interacts with Cyclin A and whether or not the 

hydrophobic patch on Cyclin A is necessary for this interaction. We predicted that 

Skp2 might compete with CDH1/Fzr for binding to Cyclin A. To test this, we did a 

competition assay. We first incubated GST-tagged Cyclin and Flag-tagged Fzr. 

Amount of His-MBP-Skp2 or GST was equalized with fixed amount of GST-Cyclin 

A by densitometry analysis. We then added a 1x or 5x higher amount of MBP-Skp2, 

relative to GST-Cyclin A, to fixed amounts of GST-Cyclin A and Flag-Fzr. Our 

results show that the binding between Flag-Fzr and GST-Cyclin A was not 

diminished by increasing amounts of MBP-Skp2 (Fig.. 6B). Our result argues that 

Skp2 does not compete with CDH1/Fzr to bind Cyclin A. 
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Fig. 6: Skp2 does not compete with CDH1/Fzr to bind to Cyclin A. 
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Fig. 6: Skp2 does not compete with CDH1/Fzr to bind to Cyclin A. A-B) GST 

Cyclin A pull down assay with Flag-Fzr. A) GST-Cyclin A pulled down Flag Fzr. 

Flag Fzr was probed with Fzr antibody. B) GST pull down assay shows no change in  

Flag Fzr pull down even when increasing amounts of His-MBP-Skp2 (1x or 5x), 

relative to GST-Cyclin A were added.  
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3.4.7 Overexpression of p27/Dap does not have an effect on mitotic entry 

p27/Dap, a cyclin-dependent kinase inhibitor, is a critical target of Skp2 

during the G1/S transition of the cell cycle (Carrano et al., 1999; Dui et al., 2013; 

Nakayama et al., 2004; Sutterlüty et al., 1999; Tsvetkov et al., 1999). Loss of Skp2 

results in upregulation of p27/Dap. Upregulation of p27/Dap can cause inhibition of 

CDK activity which can cause failure of mitotic entry.  If this is the case then 

overexpression of p27/Dap phenotype should be similar to loss of Skp2 phenotype. 

To test this idea, we looked at overexpressed p27/Dap expression in adult wings 

using the transgene UAS-MycDap51. Similar to WHS observed in Skp2 RNAi we 

observed increased WHS in p27/Dap overexpressing adult wings compared to wild 

type wings. (Fig. 7A’, B’). We also observed an overall reduction of wing margins, 

presumably due to cell loss, something not seen with Skp2 loss (Fig. 7A, B). Our 

observation confirmed a previous observation that was made by Jiao lab (Dui et al., 

2013). Next we wanted to look at the localization of p27/Dap in mitotic cells. Our 

results show a strong nuclear accumulation of p27/Dap in interphase cells (Fig. 7C-

C’’’). We also observed accumulation of p27/Dap in prophase and metaphase cells 

(Fig. 7D-D’’’). Similar localization was observed for endogenous p27/Dap (Biju 

Vasavan, unpublished). This indicates a possible role for p27/Dap in mitotic entry.  

However, unlike Skp2 null, overexpressing p27/Dap in Cyclin AH170+/- 

background did not show any change in mitotic entry (Fig.. 8A-E), indicating that  

failure to mitotic entry in Skp2 null is not due to p27/Dap overexpression.  
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Fig. 7:  Transgenic p27/Dap accumulates in interphase and mitotic cells of wing 

imaginal disc 
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Fig. 7:  Transgenic p27/Dap accumulates in interphase and mitotic cells of wing 

imaginal disc A-B’) Representative wings from wild type (A-A’) rotund-GAL4; 

UAS-Myc-p27/Dap (B-B’) Increased WHS and loss of wing margin is observed in 

p27/Dap  overexpression compared to wild type. C-D’’’) rotund-GAL4 driven 

accumulation of UAS-Myc-p27/Dap in the wing blade of 3rd instar wandering larvae 

shows accumulation of p27/Dap in interphase and mitotic cells. C-C’’’) Strong 

nuclear accumulation of p27/Dap is observed. D-D’’’) Localization of p27/Dap in 

different phases of mitosis. The yellow arrowhead shows p27/Dap protein 

accumulation in prophase and the white arrowhead shows p27/Dap protein in 

metaphase. Scale bar in B =10 µm, applies to C-C’’’. Scale bar in D =5 µm, applies 

to D-D’’’. 
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Fig. 8: Overexpression of p27/Dap results in lower mitotic index 
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Fig. 8: Overexpression of p27/Dap results in lower mitotic index A-D) Representative 

wild type (A), Cyclin AH170+/- (B), UAS-Myc-p27/Dap, and Cyclin AH170+/-, UAS-Myc-

p27/Dap wing imaginal discs from 3rd instar wandering larvae immunostained with 

phospho-Histone H3 antibodies. E) M phase index of above mentioned genotypes. Scale 

bar in C =20 µm, applies to A-D. 
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The N-terminus of Skp2 interacts with Cyclin A, and the C-terminus LRR 

domain is needed for p27/Dap degradation (Das et al., 2016; Ji et al., 2006). We 

predicted that HA-Skp2Δ170 which cannot interact with Cyclin A can still degrade 

p27/Dap. We compared endogenous p27/Dap expression in wild-type and Skp2 null 

cells. We observed a strong accumulation of endogenous p27/Dap in metaphase of 

Skp2 null cells, compared to wild type cells (Fig. 9A-B’’’). If HA-Skp2Δ170 is still 

able to target p27/Dap we predict that there would be less p27/Dap accumulation in 

HA-Skp2Δ170 cells in Skp2 null background than in Skp2 null cells alone. Our results 

showed a strong accumulation of p27/Dap in the nucleoplasm and on the chromatin 

of Skp2 null metaphase cells (Fig. 9C-C’’). However, in HA-Skp2Δ170 metaphase 

cells there was a reduction of p27/Dap accumulation in the nucleoplasm (Fig. 9E-F’). 

We also studied p27/Dap accumulation in HA-Skp2 as above, but did not observe 

any reduction in p27/Dap accumulation (Fig. 9D-D’). This result was surprising, as 

HA-Skp2 has a C-terminal LRR tail and has been shown to rescue the lethality of 

Skp2 null. However, HA-Skp2Δ170 may be more stable as discussed in (Das et al., 

2016), and might have resulted in an increased Skp2 expression compared to wild 

type HA-Skp2. Our results argue that HA-Skp2Δ170 is still able to target p27/Dap for 

destruction. Its failure to rescue a Skp2 null mutant argues therefore that Skp2 has a   

G2/M role that is independent of its ability to target p27/Dap. 
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Fig. 9: Overexpression of p27/Dap does not cause failure to mitotic entry in 

Skp2 null cells 
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 Fig. 9: Overexpression of p27/Dap does not cause failure to mitotic entry in 

Skp2 null cells. A-B’’’) Endogenous p27/Dap expression in wild type and Skp2 null 

wing imaginal disc cells. Wing imaginal disc of third instar wild type larva 

immunostained with anti–Dap antibodies. Blue dotted circle shows the cells that are 

in metaphase. C-F’’) Representative Skp2 null (C-C’’), HA-Skp2, Skp2 null (D-D’’) 

and HA-Skp2Δ170, Skp2 null (E-E’’, F-F’’) wing imaginal discs from 3rd instar 

wandering larvae immunostained with anti-Dap antibodies. Strong p27/Dap 

expression is observed in the chromatin and nucleoplasm in Skp2 null metaphase 

cells (C, C’’) and HA-Skp2, Skp2 null metaphase cells (D, D’’) compared to p27/Dap 

expression in HA-Skp2Δ170, Skp2 null metaphase cells (E, E’’ and F, F’’). The white 

and blue dotted circles mark the metaphase cells. Scale bar in C= 5 µm, applies to A-

F’’. 
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3.5 Discussion 

Our previous work with Skp2 revealed an interesting mitotic role of Skp2 

plays in protecting Cyclin A from degradation. That led to our focus on CDH1/Fzr. 

Our rescue experiment on Skp2 RNAi and Cyclin A RNAi adult wings showed a 

genetic antagonism between Skp2, Cyclin A, and CDH1/Fzr.  

We tried to study the mechanism that Skp2 uses in protecting Cyclin A in G2 

by inhibiting CDH1/Fzr. We proposed that Skp2 binds to Cyclin A through the first 

53 amino acids of Cyclin A, and this prevents CDH1/Fzr from identifying Cyclin A. 

To test this model, we sought to first identify the sequence on Cyclin A needed for 

Skp2 interaction. Our results shows that the first 53 amino acids on the N-terminus 

of Cyclin A are not needed for Skp2 interaction unlike the situation in CDH1/Fzr. 

This suggests that Skp2 interacts with Cyclin A through some other domain. Our 

future work will focus on identifying Cyclin A–Skp2 interaction domain. We have 

made two deletion constructs of Cyclin A: an N-terminal Cyclin A construct (Cyclin 

AΔ 171-491) and a C-terminal Cyclin A construct (Cyclin AΔ1-170). We predict that Skp2 

probably interacts with the N-terminus of Cyclin A as the sequences on the N–

terminus are not conserved in Cyclin B.  

In our quest to understand the mechanism of Skp2 mediated inhibition of 

CDH1/Fzr, we proposed that SKP2 and CDH1/Fzr competes to bind to Cyclin A. 

However the results of our competition assay showed that Skp2 does not compete 

with CDH1/Fzr to bind to Cyclin A. There might be several reasons why we did not 

see any change in CDH1/Fzr interaction with Cyclin A. Firstly, the assay was done 

with lysates not with purified protein. Other proteins in the lysate might have 

152 
 



interfered with result. Secondly, when we performed the experiment we incubated 

Cyclin A with CDH1/Fzr and then added increasing amounts of Skp2. If we incubate 

Cyclin A with Skp2 first and then add CDH1/Fzr we might see a different outcome. 

There is also a possibility that Cyclin A-Skp2 interaction might change the 

conformation of Cyclin A which causes its stability through means other than 

CDH1/Fzr interaction. Degradation of Cyclin A in flies and in mammals is very 

complex and different than any other cyclins. Apart from the D box or the KEN box 

( not present in mammals) there are lysine residues near the D box or far away from 

the D box which plays an important role on Cyclin A stability. If that is the case then 

Skp2 and Cyclin A can both bind with CDH1/Fzr and still Skp2 can protect Cyclin 

A.  There is also a possibility for the involvement of accessory proteins in protecting 

Cyclin A stability in G2.  

Skp2Δ170 cannot bind with Cyclin A but appears to bind to p27/Dap, and also 

cannot rescue the polyploidy (Das et al., 2016) argues that polyploidy arising from 

loss of Skp2 is different from polyploidy arising from overexpression of Skp2. 

Moreover, we showed that p27/Dap overexpression does not cause the mitotic failure 

that we observe in Skp2 null nor does the degradation of p27/Dap in HA-Skp2Δ170 

rescue the polyploidy phenotype of Skp2 null.  
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CHAPTER 4 

MITOTIC ENTRY IN SKP2 NULL CELLS 

TRIGGERS SPINDLE ASSEMBLY CHECKPOINT 

AND APOPTOSIS 
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4.1 Summary 

S phase kinase associated protein Skp2 is the substrate recognition 

component of the E3 ubiquitin ligase SCF complex. Loss of Skp2 results in 

tetraploidy, a critical first step that can lead to cancer. Skp2 functions with 

Cyclin A during mitotic entry and loss of Skp2 results in impaired mitotic entry. 

Instead Skp2 null cells start endoreplication. Loss of Skp2 also results in cell 

death. To understand the fate of tetraploid cells in Skp2 mutant has interested 

us particularly we wanted to study if Skp2 has any role in determining the fate 

of these cells. Our study shows that the endoreplicating Skp2 null cells 

sometimes enter mitosis but they delay in prometaphase due to Spindle 

assembly checkpoint activation. We also observed DNA damage in these cells 

that led to either Chk1 mediated G1/S arrest or Chk2 and p53 dependent 

apoptosis. Our results show that if polyploid cells enter mitosis they activate 

these checkpoints that led to cell cycle arrest or cell death. However, if the 

polyploid cells skip mitosis they avoid DNA damage and evade these 

checkpoints and continue to endoreplicate.  
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4.2 Introduction 

A common theme in all cancers is evasion of checkpoints. A large number of 

checkpoints that operate in normal cells have to detect problems that could lead to 

cancer and trigger pathways to take action to fix the problem while at the same time 

delaying cell division; and if the problems are too great, checkpoints induce 

permanent cell arrest or apoptosis. The best known of these checkpoints are those 

responding to DNA damage or improper chromosome attachments in mitosis. In the 

DNA damage response (DDR), exposed single stranded or double stranded DNA act 

as signals to activate key sensor kinases, ATM and ATR. Signaling through these 

kinases can lead to, amongst other outcomes, stabilization and activation of the p53 

tumour suppressor. p53 in turn promotes cellular senescence or apoptosis. Failure of 

this checkpoint leads to chromosomal instability, aneuploidy and cancer (Kastan and 

Bartek, 2004). 

By delaying anaphase in the presence of incorrect kinetochore attachments 

the Spindle Assembly Checkpoint (SAC) plays a key role in inhibiting aneuploidy 

(Burgess et al., 2007; Burgess et al., 2014), and a weakened SAC is frequently 

implicated in cancer (Malmanche et al., 2006). While the SAC has a protective role it 

does not produce a permanent cell cycle arrest. In vitro experiments using 

microtubule poisons to activate the SAC have shown that SAC arrest can eventually 

be overcome – a process called mitotic slippage – and that this can lead to further 

aneuploidy. In vitro experiments point to a critical role for p53 in driving these cells 

that escape SAC arrest into senescence (Davoli et al., 2010). 
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Polyploidy, and in particular, tetraploidy – an exact doubling of DNA content, 

is a critical first step in many cancers. Tetraploidy can arise via many different paths 

including re-replication, failed cytokinesis or failure to enter mitosis. While the 

causes of tetraploidy are clear it is not clear how this leads to tumourigenesis and nor 

is it well understood how cells respond to tetraploidy. The existence of tetraploidy 

checkpoints has been postulated but these are not well understood (Davoli et al., 

2010; Ganem et al., 2007). 

Skp2 is the substrate recognition component of the SCF-Skp2 ubiquitin ligase, 

a major regulator of the cell cycle and an important oncogene (Nakayama and 

Nakayama, 2006). The best-characterized function of Skp2 is to target the CDK 

inhibitor, p27/Dap (Carrano et al., 1999; Sutterlüty et al., 1999; Tsvetkov et al., 

1999). It does this in cooperation with the small CDK-interacting protein, 

Cks1/Cks85A (Ganoth et al., 2001; Spruck et al., 2001). In doing so Skp2 promotes 

entry into S-phase. This role accounts for a large part of the oncogenic activity of 

Skp2. Less well characterized, Skp2 has potential tumour suppressive functions as 

loss of Skp2 in diverse organisms from Drosophila to mice, results in tetraploidy and 

further polyploidy (Ghorbani et al., 2011; Nakayama et al., 2000; Nakayama and 

Nakayama, 2006).  

We previously found that Skp2 cooperates with Cyclin A to promote mitotic 

entry in Drosophila. We found that the loss of Skp2 leads to a bypass of mitosis 

resulting in tetraploidy or further polyploidy (Das et al., 2016). Here we study the 

consequences of polyploidy in Drosophila Skp2 mutants. We show that polyploid 

Skp2 null cells undergo SAC-mediated mitotic arrest as well as DNA damage 

160 

 



checkpoints leading to a Chk1-dependent cell cycle arrest or Chk2 and p53-

dependent apoptosis. We show that the JNK pathway also contributes to the 

polyploidy checkpoint response in these cells. We provide evidence that it is mitosis 

that triggers these checkpoints and that polyploid cells that avoid mitosis also avoid 

these checkpoints. 
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4.3 Materials and methods 

4.3.1 Drosophila strains and genetics 

All flies were maintained at 25°C. The following stocks were obtained from 

Bloomington Drosophila Stock Centre: UASp-GFP-mCherry Atg8a (37749), 

Chk2RNAi (35152), Cyclin AH170 (Bl9096), p53 (Bl23283), puclacZ (109029), JNKDN 

(Bl9311), BUBR1 (Bl10526), GFP-LC3 (Bl8730), UAS-p35 (Bl5072). Following 

Stocks were obtained from Vienna Drosophila RNAi center (VDRC): 

Chk1RNAiv12860, HidRNAiv8269, Reaper RNAiv12045, Cyclin Av103595 (Cyclin A95), 

MAD2p (gift from Roger Karess), MAD1-GFP (gift from Roger Karess, Paris 

Diderot University), Cyclin A5940R-1 (Cyclin AR1) , and GST-D1 (gift from Helen 

McNeill, University of Toronto), Cks85A, Skp2, (Ghorbani et al., 2011), Venus-

Cyclin A 21C (R.Dhaliwal, unpublished).  

4.3.2 Cytology and immunostaining  

Immunostaining and BrdU labeling of wing imaginal discs and brains 

obtained from wandering 3rd instar larvae was performed as described in (Ghorbani 

et al., 2011). BrdU incorporation was done for 30 min. Cleaved Caspase staining was 

performed according to (McNamee and Brodsky, 2009) with slight modification. 

Briefly, wing imaginal discs of third instar wandering larvae were dissected in 1x 

PBS and fixed in 4% paraformaldehyde for 30 min at room temperature (RT). 

Samples were rinsed 3 times in 1x PBS and extracted with 1 ml PBST (1x 

PBS+0.3% triton X-100) for 30 min at RT. Samples were then blocked in blocking 

solution (1xPBS+0.3% triton X-100+1% BSA) for 1 hr at RT. Samples were then 

incubated with primary antibody in blocking solution overnight at 4°C. After 
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incubation with primary antibodies, the samples were rinsed 3 times with 1 ml PBST 

followed by three washes for 20 min each in 1 ml PBST. Samples were then 

incubated with secondary antibody at RT for 4 hr. Following secondary incubation, 

the samples were rinsed 3 times with 1 ml PBST followed by three washes for 20 

min each in 1 ml PBST. After the washes, samples were stored in 80% glycerol in 1x 

PBS at 4°C until slides were prepared.  80% glycerol in 1x PBS was used as 

mounting medium for all slide preparations. The above-mentioned protocol was used 

for all antibodies except the following that required some modification such as p-

JNK. For ASL and γH2AV antibodies, tissues were extracted, blocked and incubated 

in both primary and secondary antibodies containing 1x PBS+0.1% triton X-100. β-

galactosidase, anti-phospho-Histone H3, anti-alpha Tubulin and anti-gamma Tubulin 

antibodies required extraction in 1x PBS+0.2% tween 20+0.05% Triton-X-100. The 

extraction step was omitted for all other antibodies. The following primary antibodies 

were used:  Rabbit anti-cleaved Caspase 3 1/100 (Cell Signaling Technology), rabbit 

anti-phospho-Histone 3 antibody 1/1000 (Santa Cruz), rat anti-alpha Tubulin 

antibody 1/500 (Milipore), mouse anti-gamma Tubulin antibody 1/500 (Sigma), 

rabbit anti-GFP 1/10000 (Abcam).  Rabbit anti-γH2AV 1/500 (gift from Kim 

McKim, Rutgers University), rabbit anti-p-JNK1/500, rabbit anti-Asl 1/500 (gift 

from Jordan Raff, University of Oxford), mouse anti-β-galactosidase 1/500. 
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4.3.3 Western Blotting 

Immunoblotting was performed using standard techniques as described in 

(Das et al., 2016). The following antibodies were used: mouse anti-Cyclin A (A12) 

at 1/10, mouse anti-Cyclin B antibody (F2F4) at 1/20, mouse anti-Actin at 1/250 (all 

obtained from Developmental Studies Hybridoma Bank), rabbit anti-Cyclin B3 at 

1/2000 (a gift from Christian Lehner, University of Zurich), rabbit anti-GFP at 

1/10000 (Torrey Pines Biolabs).  Densitometry analysis was performed in Alpha 

Innotech FluorChemTM HD2 imager. 

4.3.4 Confocal microscopy and image analysis 

Images were captured on Olympus FluoView FV1000 laser scanning 

confocal microscope. In general pictures were taken in Z-stacks. The step-size was 

set to optimum and all layers obtained were merged and used for analysis. They 

were analyzed in Olympus Fluoview software version 1.5. Adobe Photoshop used for 

brightness/Contrast adjustment. 
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4.4 Results 

4.4.1 Polyploid Skp2 mutant cells undergo SAC-mediated mitotic delay 

We previously found that Skp2 is required for the entry into mitosis, and that 

it physically associates with Cyclin A and protects Cyclin A from premature 

destruction (Das et al., 2016). In keeping with a requirement for entry into mitosis, 

we had found that Skp2 null cells have a lower mitotic index than controls. To 

determine if those cells progress normally through mitosis, we examined Skp2 

imaginal disc cells using phospho-Histone H3, γ-Tubulin and α-Tubulin antibodies. 

With these antibodies we can readily detect the major phases of mitosis in wild type 

cells (Figs.  1A-E).  We noticed that compared to wild type cells in mitosis, Skp2 null 

cells in mitosis appear larger, and the chromatin appears more dispersed, rarely 

showing the compact arrangement seen in wild type metaphase cells (Fig. 1F–J). We 

classified cells with dispersed chromatin on a fully formed mitotic spindle as being 

in anaphase based on absence of BUBR1 staining in those cells. In wild type cells 

BUBR1 is present in prometaphase and disappears in anaphase. We also noted that 

such cells are particularly common in the Skp2 mutants (Fig. 1G). We rarely see a 

normal anaphase in which 2 equal and compact DNA masses are seen separating 

towards opposite poles. (Fig. 1I). Drosophila Skp2 functions with the CDK-

interacting protein, Cks1/Cks85A (Dui et al., 2013; Ghorbani et al., 2011). 

Consistent with a close functional relationship, Cks1/Cks85A null mutants show the 

same mitotic phenotype (Fig.  1K, L).  

We determined the frequency of prophase, prometaphase/metaphase, 

anaphase/telophase and cytokinesis amongst mitotic cells from wild type, Skp2 and 
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Cks1/Cks85A mutants. Representative wing discs for each genotype are shown in 

Fig. 1M and the quantification of this analysis is shown in Fig. 1R. This mitotic 

profile confirms that Skp2 and Cks1/Cks85A null mutants have a higher incidence of 

prometaphase/metaphase cells and lower incidence of anaphase than wild type (Fig. 

1 M-O, R).  
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Fig. 1: Polyploid Skp2 null cells undergo SAC mediated mitotic delay. 
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Fig. 1: Polyploid Skp2 null cells undergo SAC mediated mitotic delay.  A-L) 

Mitotic progression in the wing imaginal discs of 3rd instar wandering larvae of wild 

type, Cks85A and Skp2 mutants was monitored by immunostaining for phospho-

Histone H3 (red), microtubules (green) and the centrosomal marker γ-tubulin (blue). 

A-E) Representative wild type cells undergoing prophase, prometaphase, metaphase, 

anaphase and cytokinesis. F-J) Skp2 cells undergoing prophase, prometaphase, 

anaphase and cytokinesis. K-L) Cks85A cells in pro-metaphase. M-O) Compared to 

wild type, Cks85A and Skp2 show high frequency pro-metaphase/metaphase. P-Q) 

Loss of SAC gene MAD2 in a Cks85A or Skp2 background suppresses the 

prometaphase/metaphase delay. R) Graph showing relative frequencies of mitotic 

phases in wild type, Cks85A, Skp2, MAD2, Cks85A, MAD2 double mutants along 

with Skp2, MAD2 double mutants. Scale bar in A is =2 μm and applies to all panels.   
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In addition to increased DNA content in Skp2 mutants, we noticed larger 

centrosomes. Centrosome duplication is frequently observed in Skp2 null cells in 

mammals (Nakayama et al., 2000). To test if Skp2 null cells in flies also show 

centrosome duplication, we probed Skp2 null cells with centriole-specific marker, 

Asl. While wild type cells have single Asl focus, interestingly Skp2 cells show two 

overlapping foci (Fig. 2A, B). This increase in apparent centrosome size appears to 

be a result of the combined effects of increased centrosome number and clustering of 

these centrosomes as we describe later. The correlation between increased 

centrosome number and increased ploidy indicates that centrosome amplification 

occurs in parallel with genome reduplication. This fits with our previous evidence 

that Skp2 mutant cells bypass mitosis and go into S-phase with duplicated 

chromosomes and centrosomes (Das et al., 2016) 

Polyploid cells make up only 30% of the total population in Cks1/Cks85A 

(25°C) and Skp2 null wing imaginal discs (Ghorbani et al., 2011). It is striking, then, 

that almost all Cks1/Cks85A and particularly Skp2 null cells in mitosis appear to have 

more chromatin and larger centrosomes than wild type cells (Fig. 1F-L). To more 

precisely compare centrosome sizes we measured the diameter of centrosomes from 

mitotic cells of wild type and Skp2 null and plotted them (Fig. 2D). The graph shows 

almost no overlap between wild type and Skp2 null cells, indicating that essentially 

all Skp2 null that are in mitosis have larger centrosomes than wild type suggesting 

that almost all are polyploid. Putting together these findings it may mean that in Skp2 

mutants, the cells that become polyploid tend to delay or arrest in mitosis and argue 

against the idea that delay in metaphase leads to polyploidy in these cells.  
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Fig.  2: Prometaphase/metaphase delayed cells are polyploid 
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Fig.  2: Prometaphase/metaphase delayed cells are polyploid A-C) Representative 

wing imaginal discs of 3rd instar wandering larvae were stained to mark DNA using 

Oligreen (green) and immunostained for centriole specific antibody, Asl, (red).  D) 

The majority of Skp2 cells delayed in pro-metaphase/metaphase have larger 

centrosomes based on the area. Scale bars in A - 2 μm applies to A-C. 
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Knockdown of Cyclin A in mitotic cells also bypass mitosis and enters an 

endoreduplication cycle. Interestingly, the weaker knockdown of Cyclin A (Cyclin 

AR1) more closely resembles the phenotype seen in Skp2 mutants. We observed 

multiple centrosomes as well as centrosome clustering in all of the Cyclin A 

knockdown cells that are in prometaphase or metaphase (Fig. 3A, B’’’).  Centrosome 

clustering is more prevalent in Cyclin AR1 (weaker knockdown) (Fig. 3C, C’) and 

multiple centrosomes are more prevalent in Cyclin A95 (stronger knockdown) (Fig. 

3D, D’). Cyclin AR1 cells also show a partial reduction in mitotic index with 

consistently more cells arrested in prometaphase – metaphase than anaphase or 

telophase (Fig. 3E, G) (Das et al., 2016). The classification was done based on 

chromosomal arrangement, and microtubule positions. Due to small sample size we 

were not able to quantify our observation. Our findings might indicate a correlation 

between the phenotype that we observed in mitotic cells of Skp2 null and Cyclin AR1. 
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Fig. 3: Knockdown of Cyclin A in mitotic cells results in centrosome 

amplification 
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Fig. 3: Knockdown of Cyclin A in mitotic cells results in centrosome 

amplification A-B’’) Wing imaginal discs of 3rd instar wandering larvae were 

stained to mark mitotic cells with phospho-Histone H3 antibodies (red), α-Tubulin 

antibodies (green) to identify microtubules, and γ-Tubulin antibodies (blue) to 

identify the centrosomes. C-D’) zoomed in figure of mitotic cells showing increase 

in centrosome number and larger centrosome foci in Cyclin AR1 and Cyclin A95 

mitotic cells. E-G) wing discs from 3rd instar wandering larvae immunostained with 

phospho-Histone H3 antibodies (red), α-Tubulin antibodies (green), and γ-Tubulin 

antibodies (blue) to identify the different phases of mitotic cells. Representative wild 

type (E), Skp2ex9 (F), Cyclin AR1 (G).  The cell phases indicated as P for prophase, M 

for metaphase, P/M for prometaphase/metaphase, A for anaphase, T for telophase, 

and U for unclassified. Chromosomal arrangement and γ-Tubulin positions indicate a 

higher number of prometaphase/metaphase cells in Skp2ex9 and Cyclin AR1 than wild 

type. Scale bar in E=5µm, applies to A-B’’’and E-G. Scale bar in C=2µm, applies to 

C-D’. 

 

 

 

 

 

 

 

 
174 

 



4.4.2 SAC activation in Skp2 null cells  

The timing of this apparent delay of polyploid in Skp2 and Cks1/Cks85A cells 

in prometaphase or metaphase suggests the possibility that they encounter a spindle 

assembly checkpoint (SAC)-mediated delay or arrest. To test this possibility, we 

looked for evidence of SAC activation in these cells by examining the distribution of 

the SAC proteins BUBR1 and MAD1. In wild type cells, BUBR1 appears on 

chromosomes in prometaphase and seems to abruptly disappear at anaphase (Figs.   

3A, B). The cells that we classify as prometaphase in Skp2 null are also BUBR1 

positive, indicating that they are in prometaphase (Fig.  4C). Using BUBR1 staining 

as a guide we could also see that in Skp2 null cells where chromatin appears to 

stretch to either spindle pole, BUBR1 staining is absent, indicating that these are 

undergoing an aberrant anaphase (Fig. 4E), perhaps due to escape from the SAC 

arrest. We also examined the localization of MAD1, using a MAD1-GFP transgene. 

Though MAD1 appears more diffuse, it shows a similar temporal appearance in wild 

type or present in prometaphase and then disappearing at anaphase (Figs. 4F, G). It 

also shows a similar pattern in Skp2 mutant cells, and like BUBR1 its overall levels 

appear higher than is seen in wild type cells (Figs.  4H, I).  

To confirm that Skp2 and Cks1/Cks85A null cells undergo a SAC-mediated 

delay in the cell cycle we generated flies double mutant for MAD2 and either Skp2 or 

Cks1/Cks85A. These flies lack a functional SAC and we therefore expect them to no 

longer show an elevated frequency of pro-metaphase/metaphase. Indeed, 

Cks1/Cks85A, MAD2 and Skp2, MAD2 double mutants are rescued with respect to 

the increased metaphase and prometaphase frequency (Figs. 1P, Q, R). MAD2 alone 
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has no appreciable effect on mitotic profile (Fig. 1R). While MAD2, Skp2 double 

mutants are rescued for the prometaphase delay, mitosis appears even more 

dramatically disrupted than in Skp2 alone. In the double mutants we frequently 

observe cells in late anaphase or telophase with chromosomes having failed to 

segregate (Figs. 4J, K, L). We also observe isolated chromosome fragments in these 

mutants that are undergoing late anaphase or telophase, indicating chromosome 

breakage (Fig. 4L). The degree of polyploidy is also greater (Figs. 4J, L and Fig. 5H), 

suggesting that the SAC-mediated cell cycle delay is important in these polyploid 

cells for limiting polyploidy. 

As mentioned above, Skp2 mutant cells appear to have larger/more centrioles, 

apparently resulting from centrosome re replication and clustering. It was previously 

found that some components of the SAC are required for centrosome clustering – in 

particular BUBR1 and MAD2 has been shown to be required for this (Kwon et al., 

2008).  It is interesting to note that in Skp2, MAD2 cells in mitosis there are still only 

2 centrioles even though they often appear even larger than those observed in Skp2 

(Figs. 2B,C). Therefore, centrosome clustering still seems to occur relatively 

normally even though the SAC is non-functional. We tried to compare Skp2, MAD2 

to Skp2, BUBR1 mutants. However, the latter were extremely difficult to obtain due 

to high lethality of this mutant combination. Nonetheless, in a preliminary result, out 

of only a small number of mitotic cells we found evidence of multiple centrosomes 

in the Skp2, BUBR1 mutant, but not in BUBR1 alone (Figs. 4M,N).  While this result 

will need to be repeated it suggests the interesting possibility that centrosome 
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clustering depends not on SAC activity per se but rather on specific components of 

the SAC.  

 

 

 

 

 

 

 
177 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: SAC is active in pro-metaphase/metaphase delayed Skp2 mutant cells. 
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Fig. 4: SAC is active in pro-metaphase/metaphase delayed Skp2 mutant cells. A-

E) The wing imaginal discs of 3rd instar wandering wild type and Skp2 larva were 

probed with BUBR1 antibodies (red). DNA is stained with oligreen (green) and 

microtubules are stained with α-tubulin antibodies (blue). F-I) GFP–MAD1 can be 

seen in wild type pro-metaphase and disappears in anaphase likewise in Skp2, GFP–

MAD1 accumulates in pro-metaphase and disappears in anaphase. Strong 

accumulation of GFP–MAD1 is seen in Skp2. J-N) Wing imaginal discs were 

immunostained for phospho-Histone H3 (red), microtubules (green) and the 

centrosomal marker γ-tubulin (blue). J-L). Representative images of abnormal-

anaphase phenotype seen in Skp2, MAD2 double mutants. L) Arrows showing 

chromosome fragments in a cell undergoing abnormal anaphase. M-N) BUBR1, Skp2 

double mutants show a scattered centrosome phenotype, while in BUBR1 alone they 

seem to be clustered together. Scale bar in A is - 2 μm and applies to all panels. 
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4.4.3 Polyploid Skp2 null cells undergo a DNA damage response 

Our results suggest that Skp2 cells undergo aberrant mitoses that may lead to 

genome instability, and that SAC activity helps protects Skp2 null animals from this 

genomic instability. Skp2 and Cks1/Cks85A null mutants undergo a high degree of 

apoptosis (Ghorbani et al., 2011) (Figs. 5A, B). We predict that this apoptosis is the 

outcome of a pathway or pathways that sense genome instability. If this is the case 

we expect that in the absence of SAC function, Skp2 null cells will be subject to 

increasing genome instability and as a consequence, they will show elevated levels 

of apoptosis. Indeed we find that Skp2, MAD2 double mutants have much greater 

levels of apoptosis than Skp2 alone (Figs. 5B, D) while MAD2 alone has no effect 

(Fig. 5C). This indicates that SAC arrest protects Skp2 mutant cells from genome 

instability and resultant activation of a checkpoint pathway that leads to apoptosis.  
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Fig. 5: Skp2 cells undergo apoptosis to reduce genomic instability 
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Fig. 5: Skp2 cells undergo apoptosis to reduce genomic instability. A-E) Wing 

imaginal discs of 3rd instar wandering larvae were assayed for apoptosis by probing 

with anti-cleaved Caspase 3 antibodies. Expression of Baculoviral protein p35 in half 

of Skp2 null imaginal wing disc using en-GAL4 driver (area within dotted line), 

almost completely abolishes apoptosis (E). F-H) Wing imaginal disc were stained 

with Oligreen to mark DNA to show the level of ploidy seen in Skp2 alone, Skp2, 

p35 and Skp2, MAD2. I-M) Wing imaginal discs of 3rd instar wandering larvae were 

assayed for apoptosis by probing with anti-cleaved Caspase 3 antibodies. (N) 

Graphical representation of regulation of apoptosis by various genes in Skp2 null 

background. Scale bar =30 μm and applies to A-E, I-M and while scale bar in F-J =2 

μm.  
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Fig. 6: Hid and reaper are both necessary for apoptosis in Skp2 
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Fig. 6: Hid and reaper are both necessary for apoptosis in Skp2 A-I) Cleaved 

Caspase 3 staining of wing imaginal discs of the above mentioned genotypes. The 

dotted lines represent the wing blade region where the genes are knocked down. (J) 

Graphical representation showing percentage of apoptosis of the above mentioned 

genotypes. Scale bar =30 μm applies to A-I. 
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Aberrant mitosis can lead to chromosome breaks, which in turn can signal a 

DNA damage response that leads to apoptosis. To determine if such a pathway is 

activated in Skp2 and in Skp2, MAD2 cells we probed wing imaginal discs from these 

mutants for the presence of phosphorylated H2Av Histone (γH2Av). This variant 

histone is phosphorylated at sites of chromosome breaks and can thus be used as a 

marker of DNA breaks in Drosophila (Jang et al., 2003; Mehrotra et al., 2008). We 

find that Skp2 mutant wing imaginal discs show an increase in number of γH2Av 

foci, suggesting that cells in this mutant do in fact incur DNA damage, possibly as a 

result of mitotic defects (Fig. 7B). We then examined Skp2, MAD2 double mutants 

and found that the number of γH2Av foci is much greater than Skp2 alone (Fig. 7C). 

These results indicate that Skp2 null cells undergo apoptosis, possibly as a result of 

DNA damage, and that the SAC helps to protect these cells from this fate.  

We previously showed that apoptosis in the Cks1/Cks85A null mutant is 

suppressed by expression of the Baculoviral p35 protein (Ghorbani et al., 2011). 

Similarly, almost all apoptosis in the Skp2 null wing disc is suppressed by expression 

of p35 (Fig. 5E). We also find that the suppression of apoptosis results in an overall 

increase in cell ploidy (Fig. 5G), indicating that apoptosis serves to restrict 

polyploidy in the Skp2 mutant. Similarly loss of SAC also increases ploidy (Fig. 5H), 

indicating that this checkpoint also helps to control ploidy in the Skp2 mutant. 
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Fig.  7: Skp2 null cells signal a DNA damage response 

 

186 

 



Fig.  7: Skp2 null cells signal a DNA damage response. A-D) Wing imaginal discs 

of 3rd instar wandering larvae were assayed for γH2av by probing with anti-γH2av 

antibodies. E-F) γH2av staining of wing imaginal discs were done in which rn-GAL4 

was used to knock down Cyclin A either using Cyclin AR1 or Cyclin A95. G-H) 

Cleaved Caspase 3 staining of wing imaginal discs in which rn-GAL4 was used to 

knock down Cyclin A either using Cyclin AR1 or Cyclin A95 lines. I) Graph shows the 

level of apoptosis observed when Cyclin A is knocked down using the two different 

RNAi lines.  Scale bar in A is=50 μm and applies to all panels.   
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Apoptosis in Drosophila is mediated through the activity of anti-IAPs Grim, 

Hid and Reaper (Goyal et al., 2000).To determine if these are involved in Skp2 cell 

death we combined Skp2 knockdown with RNAi against Reaper and Hid. We found 

that loss of Hid strongly reduces apoptosis in the Skp2 background while loss of 

Reaper also significantly reduces apoptosis (Fig. 6C, E, and J). Therefore the pro-

apoptotic anti-IAPs, Hid and Reaper are both necessary for apoptosis in the Skp2 null 

background. 

γH2Av is generated by the activity of the ATR and ATM kinases in response 

to double strand breaks in mammals(Stiff et al., 2004; Ward and Chen, 2001). These 

kinases recruit proteins involved in repair and they activate a DNA damage response 

that triggers apoptosis (Tanaka et al., 2007). To characterize the pathway activated in 

Skp2 cells we tested for a requirement for known checkpoint genes in the Skp2 

mutants. In Drosophila as in mammals, a number of cell stresses including DNA 

damage converge on the p53 tumour suppressor. We find that loss of p53 reduces the 

degree of apoptosis by approximately 70% (Fig. 5J, N) indicating that it plays a 

major role. On the other hand, comparing the effect of the p53 null to that of p35 

overexpression it is clear than p53 is not responsible for all of the apoptosis in 

polyploid Skp2 cells (Fig. 5N).  
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 4.4.4 DChk1 and DChk2 function in distinct checkpoints in polyploid Skp2 null cells 

The checkpoint kinases, Chk1 and Chk2 function downstream of ATM (and 

ATR) to transduce DNA damage signaling(Song, 2005). We found that Chk2, Skp2 

double knockdown results in a reduction in apoptosis similar to that seen in the p53, 

Skp2 double mutant (Fig.  5J, N and Fig. 6I, J). It is consistent with the possibility 

that Chk2 plays a key role upstream of p53 in the apoptotic response of Skp2 null 

cells.   

In striking contrast to the Skp2, Chk2 double knockdown which showed 

reduced apoptosis; in Skp2, Chk1 double mutants, apoptosis is greatly elevated (Fig. 

5L, N). Therefore, as with MAD2, Chk1 may be required for a cell cycle checkpoint 

that if compromised, might lead to activation of the Chk2 dependent apoptotic 

pathway. To identify a possible Chk1-dependent cell cycle checkpoint in Skp2 null 

cells, we compared cell cycle profiles for Skp2, Chk1 double knockdown and Skp2 

alone. If Chk1 affects a G2 arrest or G1 arrest in Skp2 null cells, we expect to 

observe a higher mitotic index or S-phase index respectively in the double 

knockdown than in Skp2 alone. We find that the S-phase index of Skp2, Chk1 double 

knockdown is higher than Skp2 alone (Fig. 7J). This suggests that Chk1 promotes a 

G1 arrest in the Skp2 mutant background. Surprisingly, the mitotic index of Skp2, 

Chk1 double knockdown is highly reduced (Fig. 7K). We also looked at the mitotic 

phase profile of Skp2, Chk1 double knockdown to look for any difference compared 

to Skp2 alone. The profile appears similar to Skp2 alone with one exception – we 

observe a higher frequency of cytokinesis in the double (Figs. 7L, H, I).  
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Fig.  8: DChk1 activates checkpoint response in Skp2 null cells 
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Fig. 8: DChk1 activates checkpoint response in Skp2 null cells. A-D) BrdU 

labeling was used to label S-phase cells of wild type, DChk1 knockdown, Skp2 

knockdown and Skp2, DChk1 double knockdown. Wing blade region (marked by 

dotted lines) specific knockdown was done using rn-GAL4 driver. E-G) Mitotic 

frequency using anti-phospho-Histone H3 antibody was determined in Skp2 RNAi, 

DChk1 RNAi and double knock down of Skp2, DChk1 H-I) Mitotic progression in 

the wing imaginal discs of 3rd instar wandering larvae of Skp2 RNAi and Skp2, 

DChk1 double knockdown was monitored by immunostaining for phospho-Histone 

H3 (red), microtubules (green) and the centrosomal marker γ-tubulin (blue). The 

arrow points to one of the cells undergoing cytokinesis. J) Graphical representation 

of S-phase index. K) Graphical representation of M-phase index. L) Graph showing 

relative frequencies of mitotic phases in mentioned genotypes. Scale bar in A=30 μm 

and applies to panels A-F.  Scale bar in H = 2 μm and applies to panels H-I.  
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4.4.5 JNK pathway activation in Skp2 null cells 

While Hid knockdown or p35 expression largely suppresses apoptosis in the 

Skp2 null background, p53 has only a partial effect, suggesting that another pathway 

functions in parallel with p53 to promote apoptosis in Skp2 null animals. The JNK 

pathway has been implicated as a proapoptotic pathway in mammalian and 

Drosophila cells  (McEwen and Peifer, 2005; Stadheim and Kucera, 2002), so we 

tested for a role in Skp2 null cells. First we looked for evidence that the JNK (Basket, 

in Drosophila) pathway is activated in Skp2. We probed wing discs with a phospho-

JNK antibody and found that in the region of Skp2 knockdown, phospho-JNK levels 

are elevated (Fig. 9A). JNK pathway activation is also be assessed by looking at 

transcription of a downstream target puckered (puc) (Martín-Blanco et al., 1998). 

Using the puc-lacZ reporter we see activation of JNK in cells where Skp2 has been 

knocked down (Fig 9B). To determine if JNK activation in Skp2 null wing discs 

promotes apoptosis, JNKDN, which is a dominant negative form of JNK, was co-

expressed along with Skp2 RNAi. These show a reduction in apoptosis (Fig. 6G, J) 

indicating that this pathway is also activated in Skp2 and serves to promote apoptosis.  

The JNK pathway is activated in response to a number of different cellular 

stresses. One of the better-established triggers is the accumulation of free radical 

oxygen species (ROS). Glutathione-S-Transferase (GST), encoded by gstD1 gene, 

can be used as a direct readout of ROS, and gstD-GFP reporter flies can be used to 

monitor the level of ROS (Sykiotis and Bohmann, 2008). Using gstD-GFP reporter 

flies, we find that indeed Skp2 mutant cells accumulate reactive oxygen species 

(ROS) (Fig. 9C). While we do not yet know if the ROS accumulation in Skp2 null 
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cells contributes to JNK pathway activation, these results nonetheless suggest that 

some of the apoptosis observed in the Skp2 null mutant may be due to an ROS-

triggered JNK-mediated stress response.  
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Fig.  9: JNK pathway is active in Skp2 null cells 
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Fig.  9: JNK pathway is active in Skp2 null cells. A-F). Wing imaginal discs of 3rd 

instar wandering larvae were immunolabeled using anti-phospho-JNK (p-JNK) 

antibody to monitor JNK activity, probed with anti- β-galactosidase in wing discs of 

puc LacZ enhancer trap lines, monitored for the activity of JNK target Puckered 

(Puc) or GST accumulation was monitored in gstD-GFP transgene expressing wing 

discs to see the level of ROS. A-C) Skp2 was knocked down in wing blade region of 

these discs using rn-GAL4 (marked by dotted lines). Scale bar in A =30 μm and it 

applies to all panels.  
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The JNK pathway can transcriptionally upregulate autophagic genes in 

Drosophila to protect them from oxidative stress(Wu et al., 2009).  We knocked 

down Skp2 in wing imaginal discs of flies that expressed GFP-tagged LC3 (homolog 

of human ATG8) that labels the autophagosome (Rusten et al., 2004). We observed 

GFP–LC3 accumulation in the region of the wing disc where Skp2 was knocked 

down, confirming autopahgic activity (Fig. 10 B). Extracts of larval brain and wing 

disc shows the free GFP that is generated as a result of autopahgic degradation of 

mCherry-GFP-Atg8a. Free GFP is not observed in imaginal disc extracts from larvae 

expressing mCherry-GFP-Atg8a alone but can be observed when mCherry-GFP-

Atg8a is expressed in Skp2 mutant background (Fig. 10 C). We further analyzed the 

rate of autopahgic degradation using mCherry-GFP-Atg8a. Autophagosome bound 

mCherry-GFP-Atg8a is positive for both GFP and mCherry but when 

autophagosomes fuse with lysosomes to form autolysosomes, GFP gets quenched, 

rendering the reporter positive only for mCherry (Nagy et al., 2013).Therefore, 

mCherry positive cells are a confirmation of active autophagy. While we hardly see 

any mCherry puncta in wild type discs, the discs in which Skp2 is knocked down 

contain many mCherry dots (Fig. 10 D, E). This clearly confirms that Skp2 cells are 

undergoing autophagy.     
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Fig. 10: Skp2 mutants undergo autophagy 
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Fig. 10: Skp2 mutants undergo autophagy. A-B) GFP-LC3 and Skp2RNAi was 

expressed in in the wing blade region using rn-GAL4 represented by dotted line.  C) 

Immunoblot of larval brain and wing disc extracts that was probed with anti-GFP 

antibody.  Free GFP is not observed in imaginal disc extracts of larvae expressing 

mCherry-GFP-Atg8a alone but can be observed when mCherry-GFP-Atg8a is 

expressed in Skp2 mutant background. Wild type imaginal disc extract serves as a 

control for non-specific bands. Asterisk denotes the band that is used as a loading 

control. D-F) mCherry and GFP expression was monitored in imaginal discs of 

larvae expressing either mCherry-GFP-Atg8a alone or in the background of Skp2 or 

Skp2, Cyclin AH170. D’-F’) Picture taken at higher magnification of wild type (G), 

Skp2 (H) and Skp2, AH170+/-. Scale bars-30 μm and applies to A-F. 
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4.4.6 Are checkpoints due to a Skp2-specific pathway or polyploidy? 

We have shown that Skp2 null cells are subject to multiple checkpoint 

pathways, apparently arising from the presence of DNA damage (as shown by 

γH2Av accumulation) and from cell stress resulting from ROS. We were interested 

to understand what causes the DNA damage and cell stress. We consider the 

following possibilities: 1st polyploidy itself may lead to DNA replication errors or 

incomplete replication that can lead to the accumulation of γH2av marks. 2nd, Skp2 

may have a role in protecting the genome that is distinct from its role in preventing 

polyploidy. 3rd aberrant mitosis in Skp2 null cells could lead to DNA damage, 

possibly through chromosome breakage resulting from aberrant anaphase.   

Previously we showed that Skp2 null cells become polyploid in part as a 

result of failure to enter mitosis, which in turn reflects a role for Skp2 in protecting 

Cyclin A (Das et al., 2016). Strong knockdown of Cyclin A results in polyploidy but 

unlike Skp2, these cells rarely enter mitosis, instead they seem to enter an endocycle. 

We had found that loss of a single copy of Cyclin A in the Skp2 null background 

converts these cells to endocycling cells (Das et al., 2016). We considered that by 

comparing checkpoint activation in Cyclin A RNAi lines and in Skp2, Cyclin AH170/+ 

cells we could distinguish between models for how Skp2 promotes these checkpoints. 

We first examined apoptosis in flies expressing the RNAi line, Cyclin A95 and found 

that these cells do not undergo any apoptosis (Fig.  6F, I). This is despite the fact that 

these cells are significantly more polyploid than Skp2 null cells (Das et al., 2016). 

We next examined Skp2, Cyclin AH170+/- cells. Like Cyclin A95 knockdown, 

these cells do not enter into mitosis but become considerably more polyploid than 
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Skp2 alone (Das et al., 2016). When we performed cleaved Caspase staining, we 

found that these cells do not undergo apoptosis (Fig. 4 M, N). The observation that 

Skp2 null cells avoid apoptosis when heterozygous for Cyclin A strongly argues 

against, the idea that the apoptosis observed in Skp2 is due to a specific role for Skp2 

in apoptosis. It also argues against polyploidy per se as the stimulus for apoptosis, an 

argument that is further supported by the fact that apoptosis is not observed when 

Cyclin A is knocked down using Cyclin A95 (Fig. 7 G, H, I) 

It has been recently shown that endocycling cells are resistant to apoptosis 

even under conditions of DNA damage that lead to a strong apoptotic phenotype in 

mitotic cells (Mehrotra et al., 2008). Our results could therefore indicate that Skp2, 

Cyclin AH170+/- cells are protected from apoptosis despite the damage they incur. We 

examined γH2Av to determine if indeed these cells incur DNA damage. Strikingly, 

we saw very low levels of γH2Av in Skp2, Cyclin AH170+/- cells (Fig. 7D). The 

absence of γH2Av signal indicates that somehow Skp2, Cyclin AH170+/- cells avoid 

DNA damage and thus avoid induction of apoptosis. Given that the obvious 

difference between Skp2 and Skp2, Cyclin AH170+/- is that Skp2 cells undergo mitosis, 

we hypothesized that it is aberrant mitosis resulting from polyploidy that results in 

DNA damage and DDR.  

 

Knockdown of Cyclin A using the Cyclin AR1 results in a weaker polyploid 

phenotype than the stronger Cyclin A95 (Das et al., 2016). Furthermore, these cells 

enter mitosis like Skp2 null cells. If passage through mitosis that triggers apoptosis 

then we predict that Cyclin AR1 will show an increase of apoptosis compared to 
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Cyclin A95. To test this we performed cleaved Caspase assay on these wing discs. 

Indeed, we find that these wing discs undergo apoptosis (Fig. 7G, I) and they have a 

slightly elevated γH2Av foci compared to Cyclin A95 knockdown (Fig. 7A, E, F).  

We found that in addition to the DDR, Skp2 null cells have an active JNK 

pathway, possibly as a consequence of accumulation of reactive oxygen species, and 

that Skp2 null cells undergo autophagy. To determine if these pathways differ in their 

activation in Skp2 cells versus endocycling cells, we looked at Cyclin A95 with the 

reporters for JNK pathway and reactive oxygen species (Fig. 9D, E, F).  We do not 

see any JNK activation or upregulation of ROS in these cells. To check if 

endocycling cells undergo autophagy we looked for autophagy in Skp2, Cyclin 

AH170+/-. The results suggest that this occurs in the endocycling cells but at a lower 

level (Fig.  10F).  
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4.5 Discussion 

There is a clear link between polyploidy and cancer and accumulating 

evidence suggests that polyploidy specifically tetraploidy is an important early step 

in cancer progression (Storchova and Pellman, 2004). Here we investigate the 

consequences of the polyploidy that arises in Skp2 null cells. We found that Skp2 

null cells are subject to a SAC arrest. The relationship between the SAC and 

polyploidy is complex and there are multiple causal relationships between these two 

phenomena. Cells that arrest due to SAC activation can exit from this arrest through 

a process known as mitotic slippage. Mechanistically, this occurs because of gradual 

depletion of mitotic cyclins that occurs despite this arrest. As a consequence of 

mitotic slippage, cells can bypass mitosis, re-enter a G1-like state, and become 

polyploid after the next S-phase. In this scenario SAC arrest leads (indirectly) to 

polyploidy (Ganem et al., 2007).  

It is possible that at least some of the polyploidy found in Skp2 null cells is 

due to mitotic slippage. However, it is likely not the only or even the major reason for 

polyploidy in Skp2 null cells. 1st, we found that the SAC arrested cells observed in 

Skp2 invariably were already polyploid, even though most cells in these mutants are 

diploid (Ghorbani et al., 2011). 2nd, the polyploidy that results from loss of Skp2 is 

elevated when a single copy of Cyclin A is removed. However, in this genetic 

background the cells almost completely bypass mitosis and rarely undergo SAC-

mediated arrest. Therefore, polyploidy appears to occur independent of SAC function.  

It is possible that in Skp2 null cells we see the opposite relationship between 

SAC and polyploidy: that polyploidy leads to SAC activation. If this is the case, 

202 

 



what is the specific feature of polyploidy that triggers SAC activation in these 

mutants? One possibility is that abnormal chromosomes in these cells fail to make 

proper bipolar attachments to the mitotic spindle. Our FISH experiment against a 

peri-centromeric region of the X-chromosome shows, that polyploid Skp2 null cells 

do not have more chromosomes than wild type (Das et al., 2016). Thus these 

chromosomes are polytene – they remain attached as they endoreplicate. The 

presence of multiple centromeres may affect kinetochore assembly, possibly even 

allowing for multiple attachments to a single polytene chromosome. In Skp2, 

polyploid chromosomes appear to lag at the midzone or sometimes appear near the 

poles and this may be due to aberrant kinetochore attachments. When the SAC is 

eliminated in the Skp2,MAD2 double mutant we found a much greater incidence 

anaphases with lagging chromosomes, and we see examples of fragmented 

chromosomes, consistent with the idea that in Skp2, chromosomes do not establish 

proper bipolar attachments to spindle microtubules and that this normally results in a 

SAC-mediated arrest.   

A third possible cause of the SAC arrest in Skp2 null cells may be the 

presence of supernumerary centrosomes. Supernumerary centrosomes are expected 

to result in the formation of multipolar spindles and a consequent SAC-mediated 

arrest. We showed that Skp2 null cells have ectopic centrosomes. However, we find 

that the extra centrosomes appear to efficiently cluster and the majority of mitotic 

spindles appear to be bipolar. Therefore it is not clear if the presence of extra 

centrosomes seen in Skp2 null mitotic cells can explain the SAC arrest phenotype. 

When centrosome clustering is disrupted, as in the Skp2, BUBR1 double mutant, this 
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appears to lead to a far more severe mitotic phenotype, and likely accounts for the 

high degree of larval lethality of these double mutants. 

We found that polyploid cells resulting from loss of Skp2 or to a lesser degree, 

partial knockdown of Cyclin A, accumulate DNA damage. DNA damage results in 

the activation of a well-characterized DNA damage response that can in turn lead to 

cell cycle arrest or apoptosis. We show that the apoptotic response occurs in Skp2 

null cells and that this depends in part on the checkpoint kinase, Chk2 as well as p53. 

P53 in Drosophila promotes apoptosis in large part by transcription of pro-apoptotic 

genes hid, grim and reaper. We show that both Hid and Reaper contribute to the 

apoptosis that occurs in Skp2 null cells.  

Chk1 and Chk2 are thought to play somewhat overlapping roles in 

transducing checkpoint signals from the upstream sensor kinases, ATM and ATR. 

We find that loss of Chk1 has a dramatically different effect on Skp2 mutants than 

does loss of Chk2. In the absence of Chk1, Skp2 null cells undergo extensive DNA 

damage and apoptosis. In this respect, loss of Chk1 in this background resembles the 

effect of loss of the SAC. We propose that, like the SAC, Chk1 is required for a cell 

cycle checkpoint that arrests Skp2 null cells. In the absence of Chk1, cells continue 

through aberrant cell divisions, incur further DNA damage and activate the Chk2-

dependent apoptotic pathway. In many ways this double checkpoint is similar to the 

situation in the embryo during the midblastula transition. In late state syncytial 

embryos Chk1 mediates a cell cycle arrest that is necessary for cellularization and 

other gastrulation events. In the absence of Chk1, a Chk2-dependent checkpoint is 

activated that leads to centrosome inactivation (Sakurai et al., 2011). Chk1 in flies 
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has been implicated in G1 and G2 checkpoints. Our result suggests that Chk1 is 

required for G1 cell cycle arrest in the Skp2 null background.  

We also show that the JNK pathway is active and contributes to the apoptotic 

response in Skp2 null cells. The JNK pathway promotes apoptosis through Hid 

specifically (McNamee and Brodsky, 2009). Thus, in Skp2 mutants the Chk2/p53 

and JNK pathways are likely to both rely on Hid to mediate the apoptotic response. 

This explains the near complete inhibition of apoptosis in Skp2 null cells upon Hid 

knockdown. The JNK pathway is activated through a number of cell stresses. It has 

been shown that Drosophila cells exposed to IR undergo JNK dependent apoptosis, 

though it appears likely that it is not the DNA damage per se that triggers the JNK 

pathway following IR, but rather some cellular stress that occurs as a consequence of 

DNA damage or anneuploidy (McNamee and Brodsky, 2009). We show that one of 

the known signals for JNK activation, ROS, accumulates in Skp2 null cells and 

therefore it is likely that this at least in part contributes to the JNK arm of the 

apoptotic pathway.  

It is interesting that DNA damage occurs and DNA damage checkpoints are 

activated in Skp2 null cells and in cells with a weak Cyclin A knockdown, but not in 

Skp2 null cells that are also heterozygous for Cyclin A or upon strong knockdown of 

Cyclin A. This is despite the fact that these latter genotypes incur more polyploidy 

than Skp2 null cells. The critical difference between Skp2 null cells and these others 

is that Skp2 null cells undergo mitosis. This correlation suggests that DNA damage 

results from progression through mitosis. There are a number of ways that passage of 

polyploid cells through mitosis may lead to DNA damage (Hayashi and Karlseder, 
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2013). In Skp2 null cells it is rare to observe an anaphase in which all sister 

chromatids appear to be separating cleanly. In most cases we observe chromosomes 

spread over the spindle. These aberrant anaphases are much more common when the 

SAC is eliminated. In particular, in Skp2, MAD2 double mutants we see many 

examples in which chromosomes seem to get caught in the cleavage furrow during 

cytokinesis. We predict that these chromosomes break at the completion of 

cytokinesis. Therefore, chromosome breaks resulting from failed chromosome 

segregation may result in activation of the DNA damage response.    

Recent work from the Calvi lab has shown that polyploid cells in Drosophila 

inactivate DNA damage checkpoints and as such are incapable of undergoing 

apoptosis following induced DNA damage(Hassel et al., 2014; Hayashi and 

Karlseder, 2013; Mehrotra et al., 2008; Zhang et al., 2014). They showed that cells 

induced to enter an endocycle downregulate several components of the apoptotic 

pathway, including p53. Our results add another layer to this picture of how 

polyploid cells evade apoptosis. One of our major conclusions is that polyploid cells 

evade checkpoint-mediated cell cycle arrest or apoptosis by avoiding mitosis and 

thereby avoiding DNA damage.  

Upregulation of autophagy has been observed in a number of diseases like 

cancer and neurodegeneration and in most cases it appears to have a role in 

protecting these cells (Hara et al., 2006; Høyer-Hansen and Jäättelä, 2008). Similarly, 

Drosophila becomes hypersensitive to H2O2 in the absence of important autopahgic 

genes such as ATG7 and ATG8A (Wu et al., 2009). Autophagy has been implicated 

as a means to survive against oxidative stress. Wu and colleagues have shown that 
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JNK pathway can upregulate the transcription of autopahgic genes when Drosophila 

cells are subjected to oxidative stress(Wu et al., 2009) . Skp2 cells show high level of 

ROS and it has been shown that ROS can activate JNK pathway. Therefore, the 

autophagy seen in Skp2 could be a protective mechanism employed by these cells to 

survive the oxidative stress.  

Autophagy can also be used by cells to promote cell death. For example, 

developmentally regulated autophagy is involved in the programmed cell death of 

salivary gland and midgut cells of Drosophila. It is possible that autophagy in the 

Skp2 mutant contributes to cell death. We found that over the course of larval 

development, Cyclin A95 and Skp2, Cyclin AH170+/- wing imaginal discs grow larger 

than Skp2 wing discs, consistent with a lack of apoptosis in the latter endocycling 

cells. However, at least in the case of Cyclin A95, the size of the adult wing is greatly 

reduced in the region corresponding to knockdown. This suggests that these cells 

eventually are killed, likely during pupal stage. It will be interesting to determine if 

autophagy plays a role here or if the apoptotic pathway is reactivated.  

 

 

 

 

 

 

 

 

207 

 



Acknowledgements 

We thank Dr. Roger Karess and Dr. Helen McNeill for the generous gift of 

Drosophila stocks. We also thank Christian Lehner for antibodies. This research was 

funded by grants to Dr. Andrew Swan from Seeds For Hope and Canadian Cancer 

Society.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

208 

 



References 

 

Burgess, A., Rasouli, M., Rogers, S., 2007. Stressing mitosis to death. Molecular 

mechanisms of cellular stress responses in cancer and their therapeutic implications, 81. 

Burgess, A., Rasouli, M., Rogers, S., 2014. Stressing mitosis to death. Front Oncol 4, 140. 

Carrano, A.C., Eytan, E., Hershko, A., Pagano, M., 1999. SKP2 is required for ubiquitin-

mediated degradation of the CDK inhibitor p27. Nature cell biology 1, 193-199. 

Das, N., Vasavan, B., Swan, A., 2016. Skp2 -Cyclin A interaction is necessary for 

genome stability. Manuscript in preparation. 

Davoli, T., Denchi, E.L., de Lange, T., 2010. Persistent telomere damage induces bypass 

of mitosis and tetraploidy. Cell 141, 81-93. 

Dui, W., Wei, B., He, F., Lu, W., Li, C., Liang, X., Ma, J., Jiao, R., 2013. The Drosophila 

F-box protein dSkp2 regulates cell proliferation by targeting Dacapo for degradation. 

Molecular biology of the cell 24, 1676-1687, S1671-1677. 

Ganem, N.J., Storchova, Z., Pellman, D., 2007. Tetraploidy, aneuploidy and cancer. 

Current opinion in genetics & development 17, 157-162. 

Ganoth, D., Bornstein, G., Ko, T.K., Larsen, B., Tyers, M., Pagano, M., Hershko, A., 

2001. The cell-cycle regulatory protein Cks1 is required for SCFSkp2-mediated 

ubiquitinylation of p27. Nature cell biology 3, 321-324. 

Ghorbani, M., Vasavan, B., Kraja, E., Swan, A., 2011. Cks85A and Skp2 interact to 

maintain diploidy and promote growth in Drosophila. Developmental biology 358, 213-

223. 

209 

 



Goyal, L., McCall, K., Agapite, J., Hartwieg, E., Steller, H., 2000. Induction of apoptosis 

by Drosophila reaper, hid and grim through inhibition of IAP function. The EMBO 

journal 19, 589-597. 

Hara, T., Nakamura, K., Matsui, M., Yamamoto, A., Nakahara, Y., Suzuki-Migishima, R., 

Yokoyama, M., Mishima, K., Saito, I., Okano, H., 2006. Suppression of basal autophagy 

in neural cells causes neurodegenerative disease in mice. Nature 441, 885-889. 

Hassel, C., Zhang, B., Dixon, M., Calvi, B.R., 2014. Induction of endocycles represses 

apoptosis independently of differentiation and predisposes cells to genome instability. 

Development 141, 112-123. 

Hayashi, M.T., Karlseder, J., 2013. DNA damage associated with mitosis and cytokinesis 

failure. Oncogene 32, 4593-4601. 

Høyer-Hansen, M., Jäättelä, M., 2008. Autophagy: an emerging target for cancer therapy. 

Autophagy 4, 574-580. 

Jang, J.K., Sherizen, D.E., Bhagat, R., Manheim, E.A., McKim, K.S., 2003. Relationship 

of DNA double-strand breaks to synapsis in Drosophila. Journal of cell science 116, 

3069-3077. 

Kastan, M.B., Bartek, J., 2004. Cell-cycle checkpoints and cancer. Nature 432, 316-323. 

Kwon, M., Godinho, S.A., Chandhok, N.S., Ganem, N.J., Azioune, A., Thery, M., 

Pellman, D., 2008. Mechanisms to suppress multipolar divisions in cancer cells with 

extra centrosomes. Genes Dev 22, 2189-2203. 

Malmanche, N., Maia, A., Sunkel, C.E., 2006. The spindle assembly checkpoint: 

preventing chromosome mis-segregation during mitosis and meiosis. FEBS letters 580, 

2888-2895. 

Martín-Blanco, E., Gampel, A., Ring, J., Virdee, K., Kirov, N., Tolkovsky, A.M., 

Martinez-Arias, A., 1998. puckered encodes a phosphatase that mediates a feedback loop 

210 

 



regulating JNK activity during dorsal closure in Drosophila. Genes & development 12, 

557-570. 

McEwen, D.G., Peifer, M., 2005. Puckered, a Drosophila MAPK phosphatase, ensures 

cell viability by antagonizing JNK-induced apoptosis. Development 132, 3935-3946. 

McNamee, L.M., Brodsky, M.H., 2009. p53-independent apoptosis limits DNA damage-

induced aneuploidy. Genetics 182, 423-435. 

Mehrotra, S., Maqbool, S.B., Kolpakas, A., Murnen, K., Calvi, B.R., 2008. Endocycling 

cells do not apoptose in response to DNA rereplication genotoxic stress. Genes & 

development 22, 3158-3171. 

Nagy, P., Varga, Á., Pircs, K., Hegedűs, K., Juhász, G., 2013. Myc-driven overgrowth 

requires unfolded protein response-mediated induction of autophagy and antioxidant 

responses in Drosophila melanogaster. PLoS Genet 9, e1003664. 

Nakayama, K., Nagahama, H., Minamishima, Y.A., Matsumoto, M., Nakamichi, I., 

Kitagawa, K., Shirane, M., Tsunematsu, R., Tsukiyama, T., Ishida, N., 2000. Targeted 

disruption of Skp2 results in accumulation of cyclin E and p27Kip1, polyploidy and 

centrosome overduplication. The EMBO journal 19, 2069-2081. 

Nakayama, K.I., Nakayama, K., 2006. Ubiquitin ligases: cell-cycle control and cancer. 

Nature Reviews Cancer 6, 369-381. 

Rusten, T.E., Lindmo, K., Juhász, G., Sass, M., Seglen, P.O., Brech, A., Stenmark, H., 

2004. Programmed autophagy in the Drosophila fat body is induced by ecdysone through 

regulation of the PI3K pathway. Developmental cell 7, 179-192. 

Sakurai, H., Okado, M., Ito, F., Kawasaki, K., 2011. Anaphase DNA bridges induced by 

lack of RecQ5 in Drosophila syncytial embryos. FEBS letters 585, 1923-1928. 

Song, Y.-H., 2005. Drosophila melanogaster: a model for the study of DNA damage 

checkpoint response. Mol Cells 19, 167-179. 

211 

 



Spruck, C., Strohmaier, H., Watson, M., Smith, A.P., Ryan, A., Krek, W., Reed, S.I., 

2001. A CDK-independent function of mammalian Cks1: targeting of SCFSkp2 to the 

CDK inhibitor p27Kip1. Molecular cell 7, 639-650. 

Stadheim, T.A., Kucera, G.L., 2002. c-Jun N-terminal kinase/stress-activated protein 

kinase (JNK/SAPK) is required for mitoxantrone-and anisomycin-induced apoptosis in 

HL-60 cells. Leukemia research 26, 55-65. 

Stiff, T., O’Driscoll, M., Rief, N., Iwabuchi, K., Löbrich, M., Jeggo, P.A., 2004. ATM 

and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing 

radiation. Cancer research 64, 2390-2396. 

Storchova, Z., Pellman, D., 2004. From polyploidy to aneuploidy, genome instability and 

cancer. Nature reviews Molecular cell biology 5, 45-54. 

Sutterlüty, H., Chatelain, E., Marti, A., Wirbelauer, C., Senften, M., Müller, U., Krek, W., 

1999. p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. 

Nature cell biology 1, 207-214. 

Sykiotis, G.P., Bohmann, D., 2008. Keap1/Nrf2 signaling regulates oxidative stress 

tolerance and lifespan in Drosophila. Developmental cell 14, 76-85. 

Tanaka, T., Halicka, H.D., Traganos, F., Seiter, K., Darzynkiewicz, Z., 2007. Induction 

of ATM activation, histone H2AX phosphorylation and apoptosis by etoposide: relation 

to cell cycle phase. Cell cycle 6, 371-376. 

Tsvetkov, L.M., Yeh, K.-H., Lee, S.-J., Sun, H., Zhang, H., 1999. p27 Kip1 

ubiquitination and degradation is regulated by the SCF Skp2 complex through 

phosphorylated Thr187 in p27. Current Biology 9, 661-S662. 

Ward, I.M., Chen, J., 2001. Histone H2AX is phosphorylated in an ATR-dependent 

manner in response to replicational stress. Journal of Biological Chemistry 276, 47759-

47762. 

212 

 



Wu, H., Wang, M.C., Bohmann, D., 2009. JNK protects Drosophila from oxidative stress 

by trancriptionally activating autophagy. Mechanisms of development 126, 624-637. 

Zhang, B., Mehrotra, S., Ng, W.L., Calvi, B.R., 2014. Low levels of p53 protein and 

chromatin silencing of p53 target genes repress apoptosis in Drosophila endocycling cells. 

PLoS Genet 10, e1004581. 

 

 

213 

 



 

 

 

 

 

 

 

 

 

CHAPTER 5 

GENERAL DISCUSSION 

 

 

 

 

 

 

 

 

 

 

214 
 



In the mid-1990s, Beach Lab discovered an interesting protein that associates 

with Cyclin A in transformed cell lines. They named this protein S-phase kinase-

associated protein 2, or Skp2 (Zhang et al., 1995). Interest in Skp2 grew over the 

years, as it was seen to be overexpressed in a variety of cancer types and had strong 

correlation with the p27/Dap downregulation in those cell types, reviewed in 

(Frescas and Pagano, 2008). p27/Dap is an important tumor suppressor and a G1/S 

regulator. In 2004, it was established as a critical target of Skp2 (Nakayama et al., 

2004). During the G1/S transition, Skp2 targets p27/Dap and other cyclin-dependent 

kinase inhibitors for degradation; this activates the Cyclin A/E-CDK2 complex that 

is necessary for a successful transition from G1 to S phase. In cancer cells, 

overexpression of Skp2 promotes an early G1 to S transition by causing premature 

degradation of p27/Dap. This led to precocious S phase without proper G1 arrest. 

Hence, the inhibition of Skp2 function was thought to be an excellent way to prevent 

tumorigenesis (Frescas and Pagano, 2008). While inhibition of Skp2 was thought to 

prevent genetic instability, it was shown in 2000 that Skp2 knockout mice were also 

polyploid (Nakayama et al., 2000). They showed that Skp2 null mice had a smaller 

body size than their littermates. The cells in these mice had an accumulation of 

multiple centrosomes, enlarged nuclei, and accumulation of Cyclin E and p27/Dap. 

They also observed slower than normal growth rate and a high degree of apoptosis 

(Nakayama et al., 2000).  

When our lab started to work with Skp2 in Drosophila, our findings were 

similar to that of Nakayama lab (Nakayama et al., 2000). We observed that Skp2 null 

flies had a smaller body size than wild type flies (Ghorbani et al., 2011). The mitotic 
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cells in these flies had enlarged nuclei. We also observed that loss of Skp2 in 

Drosophila resulted in a slower growth rate and a high degree of cell death. We saw 

that Skp2 null flies were not viable after the third instar larval stage. This indicates 

that the function of Skp2 is essential in flies unlike the case in mammals. Another 

interesting point that we observed in Skp2 null flies was that the nuclei of their 

endoreplicating cells were smaller than those of wild-type flies, indicating that  Skp2 

promotes diploidy in mitotic cells where as it promotes polyploidy in endoreplicating 

cells. Understanding the role of Skp2 in endoreplicating cells will be included in our 

future work. 

 This initial work on mice and flies left us with a fundamental question: How 

does inhibiting the function of Skp2 lead to polyploidy in mitotic cells? In 2004, 

Nakayama lab showed that Skp2 function is needed in G2/M for the downregulation 

of p27/Dap (Nakayama et al., 2004). According to them, the overexpression of 

p27/Dap during G2 phase can cause CDK1 inhibition, which might lead to G2/M 

arrest in Skp2 null cells (Nakayama et al., 2004).  

This thesis is focused on finding the reason for polyploidy in Skp2 null, 

discussed in our first paper (Das et al., 2016b), finding the mechanism wherein loss 

of Skp2 leads to premature degradation of cyclins, discussed in our second paper 

(Das et al., 2016a) and lastly finding the consequences of polyploidy in mitotic cells, 

discussed in our third paper (Vasavan et al., 2016).  

Reason for polyploidy in Skp2 null cells 

In Skp2 null cells, Cyclin A is prematurely degraded. This results in a lower 

mitotic index in these cells. Further reduction of Cyclin A, not Cyclin B in Skp2 null 
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cells (Skp2-/-, Cyclin A+/-) results in almost complete loss of cells entering mitosis. 

The cells in Skp2-/-, Cyclin A+/- have enlarged nuclei compared to Skp2 null alone 

arguing that reduction of  Cyclin A in Skp2 null results in less cells entering mitosis. 

We have shown that the N-terminus of Skp2 directly interacts with Cyclin A; our 

PLA experiments have shown that G2-arrested cells in wing imaginal disc cells have 

an increase in Skp2-Cyclin A interaction foci. We have also shown that the N-

terminus of Skp2 is required for its role in genome stability. Therefore, our results 

point to a novel role that Skp2 plays in protecting Cyclin A during G2/M of the cell 

cycle. In flies, Cyclin A is critical for mitotic entry. A loss of Cyclin A also causes a 

premature activation of APC-CDH1/Fzr. This leads to the premature degradation of 

Cyclin B and Cyclin B3, which in turn results in cells not entering mitosis. They 

enter into a G1-like state and start endoreduplicating instead. 

How does Skp2 protect Cyclin A? 

In our second paper, we discussed our attempt to find the mechanism wherein 

Skp2 protects Cyclin A (Das et al., 2016a), Even though our studies have showed 

that an overexpression of CDH1/Fzr is antagonistic with loss of Skp2, we were not 

able to determine the possible role of Skp2 in regards to inhibiting the premature 

activation of CDH1/Fzr. We showed that loss of Skp2 or overexpression of Skp2 did 

not cause any change in CDH1/Fzr protein level or its localization, and that Skp2 did 

not compete with CDH1/Fzr for binding to Cyclin A. Our results also indicate that 

the role that Skp2 have in protecting Cyclin A was independent of its role in p27/Dap 

degradation. Finding the domain of Skp2-Cyclin A and Cyclin A-CDH1/Fzr 

interaction will be useful in understanding the mechanism of Cyclin A protection. 
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Additionally, it may also be a possibility that Skp2 interacts with Cyclin A to protect 

itself from CDH1/Fzr mediated degradation.  

Consequences of Skp2 loss 

Our third paper discusses the consequences of polyploidy in Skp2 mutants 

(Vasavan et al., 2016). Our results argue that the activation of SAC in Skp2 mutants 

does not cause polyploidy, but polyploid cells enter mitosis and activate SAC. These 

cells then delay in prometaphase/ metaphase due to SAC activation. Skp2 null cells 

undergo extensive DNA damage which might be the reason for high degree of 

apoptosis in them. We also observed similar rate of apoptosis in the weaker Cyclin A 

knockdown (Cyclin AR1), which enters mitosis in similar frequency to Skp2 null cells. 

In contrast, the stronger Cyclin A knockdown (Cyclin A95), which skips mitosis and is 

more polyploid undergoes reduced rate of apoptosis. We also observed reduced rate 

of apoptosis in Skp2ex9, Cyclin AH170+/-. This shows that it is not the polyploidy itself 

that leads to apoptosis but the entry into mitosis that leads to several checkpoint 

activation which might lead to cell death as a survival mechanism to prevent genome 

instability. 

Overall, our results show that the function of Skp2 is important not only 

during the G1/S transition but also during the G2/M transition where it protects 

Cyclin A from premature degradation. Maintaining Cyclin A levels during mitotic 

entry is important for successful mitosis and this prevents polyploidy and genome 

instability. 
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Future Directions 

It was interesting to find that the N terminus of Skp2 is essential for Cyclin A 

interaction as well as to maintain diploidy. Future work will be focused on finding 

the domain and later the exact amino acid sequences needed for the interaction 

between Skp2 and Cyclin A. Mutating those amino acid sequences will enable us to 

understand the significance of this stable and conserved interaction between Skp2 

and Cyclin A. 

In our study we showed that Skp2 interacts with Cyclin B3, a mitotic cyclin 

that is conserved in all organisms but not well understood. It will be interesting to 

see if this interaction between Skp2 and Cyclin B3 is conserved in mammals. 

Exploring this interaction might help us understand the versatility and importance of 

G2-M role of Skp2. 

It will be also interesting to find out some novel interactors of Skp2. For this 

we will Co-immunoprecipitate Skp2 and perform mass spectrometry analysis.  
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