Response of an anemometer with an oscillating hot-wire.

Vernon Marian Fernandez
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation
https://scholar.uwindsor.ca/etd/6796

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.
RESPONSE OF AN ANEMOMETER WITH AN OSCILLATING HOT-WIRE

A Thesis
submitted to the
Faculty of Graduate Studies
through the Department of
Mechanical Engineering in Partial Fulfilment
of the requirements for the Degree
of Master of Applied Science at
the University of Windsor

by

VERNON MARIAN FERNANDEZ

Windsor, Ontario, Canada
1986
UMI Number: EC54785

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

UMI

UMI Microform EC54785
Copyright 2010 by ProQuest LLC
All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, MI 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
ABSTRACT

The effects of various factors on the response of a hot-wire, subjected to a sinusoidal oscillation in a steady flow, have been studied.

A magnetic shaker was used to oscillate the hot-wire. The output of an accelerometer was used to determine the hot-wire velocity. The output from the accelerometer and the hot-wire were recorded on a floppy diskette by using a computer and an A/D converter.

A comparison between the static and dynamic response indicates that within the range of frequency of oscillation (0 to 55 Hz), amplitude of oscillation (0 to 2.52 mm) and mean velocity tested (0.0 to 5.19 m/s), the response of the hot-wire is independent of the frequency and the amplitude of oscillation.
ACKNOWLEDGEMENTS

The author expresses his deep and sincere gratitude to Drs. K. Sridhar and G. W. Rankin for their excellent guidance and generous aid during this study.

Thanks are due to Dr. Z. F. Reif, Head of the Mechanical Engineering Department for his kindheartedness, interest and support.

Thanks are also due to the University of Windsor and the Natural Sciences and Engineering Research Council, Canada for their financial support through Grant Numbers A-2190 and A-1403.

Technical assistance rendered by Mr. Werner Beck and Mr. Robert Tattersall during this study is gratefully acknowledged.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>ix</td>
</tr>
</tbody>
</table>

Chapter

I INTRODUCTION

1.1 Subject of Study

1.2 Objectives

1.3 Significance

II LITERATURE SURVEY

2.1 Existing Hot-wire Techniques to Measure the Sense and Magnitude of the Velocity

2.2 Hot-wires in Oscillation

2.3 Heat Transfer from Oscillating Heated Wires

III PRINCIPLE AND THEORY OF HOT-WIRE ANEMOMETRY

3.1 General Theory of Hot-wire Anemometry
B.3 Data Processing Program in Basic

VITA AUCTORIS
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Calibration Curve of a Hot-wire</td>
<td>31</td>
</tr>
<tr>
<td>1.2</td>
<td>Sinusoidal Probe Velocity</td>
<td>32</td>
</tr>
<tr>
<td>1.3</td>
<td>Sketch of Hot-wire Voltage vs Relative Velocity</td>
<td>33</td>
</tr>
<tr>
<td>2.1</td>
<td>Probe with Hood and its Output Characteristics</td>
<td>34</td>
</tr>
<tr>
<td>2.2</td>
<td>Pulsed-wire Probe</td>
<td>35</td>
</tr>
<tr>
<td>2.3</td>
<td>Shielded Dual-Sensor Hot-wire Probe</td>
<td>36</td>
</tr>
<tr>
<td>2.4</td>
<td>Reverse Flow Sensing Hot-wire Probe</td>
<td>37</td>
</tr>
<tr>
<td>2.5</td>
<td>Bidirectional Hot-wire Probe</td>
<td>38</td>
</tr>
<tr>
<td>2.6</td>
<td>Distorted Signal of a Hot-wire Probe</td>
<td>39</td>
</tr>
<tr>
<td>3.1</td>
<td>Schematic of a Constant Temperature Hot-wire Anemometer</td>
<td>40</td>
</tr>
<tr>
<td>4.1</td>
<td>Schematic of the Experimental Set-up</td>
<td>41</td>
</tr>
<tr>
<td>4.2</td>
<td>Probe with Brass Sleeve and Steel-rod Assembly</td>
<td>42</td>
</tr>
<tr>
<td>4.3</td>
<td>Square Wave Response</td>
<td>43</td>
</tr>
<tr>
<td>5.1</td>
<td>Accelerometer and Hot-wire Outputs (U<sub>j</sub> < u<sub>p</sub>)</td>
<td>44</td>
</tr>
<tr>
<td>5.2</td>
<td>Accelerometer and Hot-wire Outputs (U<sub>j</sub> > u<sub>p</sub>)</td>
<td>45</td>
</tr>
<tr>
<td>5.3</td>
<td>Accelerometer and Hot-wire Output Voltage</td>
<td>46</td>
</tr>
<tr>
<td>5.4</td>
<td>Dynamic Calibration (f = 25 Hz, X = 2.16 mm)</td>
<td>47</td>
</tr>
<tr>
<td>5.5</td>
<td>Dynamic Calibration (f = 25 Hz, X = 2.01 mm)</td>
<td>48</td>
</tr>
<tr>
<td>5.6</td>
<td>Dynamic Calibration (f = 25 Hz, X = 1.64 mm)</td>
<td>49</td>
</tr>
<tr>
<td>5.7</td>
<td>Dynamic Calibration (f = 25 Hz, X = 1.62 mm)</td>
<td>50</td>
</tr>
<tr>
<td>5.8</td>
<td>Dynamic Calibration (f = 25 Hz, X = 1.32 mm)</td>
<td>51</td>
</tr>
<tr>
<td>5.9</td>
<td>Dynamic Calibration (f = 35 Hz, X = 2.35 mm)</td>
<td>52</td>
</tr>
<tr>
<td>5.10</td>
<td>Dynamic Calibration (f = 35 Hz, X = 2.07 mm)</td>
<td>53</td>
</tr>
</tbody>
</table>
Figure 5.11 Dynamic Calibration (f = 35 Hz, X = 1.83 mm) 54
Figure 5.12 Dynamic Calibration (f = 35 Hz, X = 1.41 mm) 55
Figure 5.13 Dynamic Calibration (f = 35 Hz, X = 1.2 mm) 56
Figure 5.14 Dynamic Calibration (f = 35 Hz, X = 0.5 mm) 57
Figure 5.15 Dynamic Calibration (f = 45 Hz, X = 2.46 mm) 58
Figure 5.16 Dynamic Calibration (f = 45 Hz, X = 2.07 mm) 59
Figure 5.17 Dynamic Calibration (f = 45 Hz, X = 1.73 mm) 60
Figure 5.18 Dynamic Calibration (f = 45 Hz, X = 1.33 mm) 61
Figure 5.19 Dynamic Calibration (f = 55 Hz, X = 2.52 mm) 62
Figure 5.20 Dynamic Calibration (f = 55 Hz, X = 2.13 mm) 63
Figure 5.21 Dynamic Calibration (f = 55 Hz, X = 1.67 mm) 64
Figure 5.22 Dynamic Calibration (f = 55 Hz, X = 1.20 mm) 65
Figure 5.23 Time Variation of Probe Position 66
Figure 5.24 Effect of Amplitude on the Maximum Response (f = 25 Hz) 67
Figure 5.25 Effect of Amplitude on the Maximum Response (f = 35 Hz) 68
Figure 5.26 Effect of Amplitude on the Maximum Response (f = 45 Hz) 69
Figure 5.27 Effect of Amplitude on the Maximum Response (f = 55 Hz) 70
Figure 5.28 Effect of Frequency on the Maximum Response (X = 2.0 mm) 71
Figure 5.29 Static and Dynamic Calibrations.
(f = 25 Hz, X = 2.16 mm) 72

vii
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Dynamic Calibration (f = 25 Hz, X = 2.16mm)</td>
<td>73</td>
</tr>
<tr>
<td>Table 2</td>
<td>Dynamic Calibration (f = 25 Hz, X = 2.10mm)</td>
<td>74</td>
</tr>
<tr>
<td>Table 3</td>
<td>Dynamic Calibration (f = 25 Hz, X = 1.64mm)</td>
<td>75</td>
</tr>
<tr>
<td>Table 4</td>
<td>Dynamic Calibration (f = 25 Hz, X = 1.62mm)</td>
<td>76</td>
</tr>
<tr>
<td>Table 5</td>
<td>Dynamic Calibration (f = 25 Hz, X = 1.32mm)</td>
<td>77</td>
</tr>
<tr>
<td>Table 6</td>
<td>Dynamic Calibration (f = 35 Hz, X = 2.35mm)</td>
<td>78</td>
</tr>
<tr>
<td>Table 7</td>
<td>Dynamic Calibration (f = 35 Hz, X = 2.07mm)</td>
<td>79</td>
</tr>
<tr>
<td>Table 8</td>
<td>Dynamic Calibration (f = 35 Hz, X = 1.83mm)</td>
<td>80</td>
</tr>
<tr>
<td>Table 9</td>
<td>Dynamic Calibration (f = 35 Hz, X = 1.41mm)</td>
<td>81</td>
</tr>
<tr>
<td>Table 10</td>
<td>Dynamic Calibration (f = 35 Hz, X = 1.2mm)</td>
<td>82</td>
</tr>
<tr>
<td>Table 11</td>
<td>Dynamic Calibration (f = 35 Hz, X = 0.50mm)</td>
<td>83</td>
</tr>
<tr>
<td>Table 12</td>
<td>Dynamic Calibration (f = 45 Hz, X = 2.46mm)</td>
<td>84</td>
</tr>
<tr>
<td>Table 13</td>
<td>Dynamic Calibration (f = 45 Hz, X = 2.07mm)</td>
<td>85</td>
</tr>
<tr>
<td>Table 14</td>
<td>Dynamic Calibration (f = 45 Hz, X = 1.73mm)</td>
<td>86</td>
</tr>
<tr>
<td>Table 15</td>
<td>Dynamic Calibration (f = 45 Hz, X = 1.33mm)</td>
<td>87</td>
</tr>
<tr>
<td>Table 16</td>
<td>Dynamic Calibration (f = 55 Hz, X = 2.52mm)</td>
<td>88</td>
</tr>
<tr>
<td>Table 17</td>
<td>Dynamic Calibration (f = 55 Hz, X = 2.13mm)</td>
<td>89</td>
</tr>
<tr>
<td>Table 18</td>
<td>Dynamic Calibration (f = 55 Hz, X = 1.67mm)</td>
<td>90</td>
</tr>
<tr>
<td>Table 19</td>
<td>Dynamic Calibration (f = 55 Hz, X = 1.20mm)</td>
<td>91</td>
</tr>
<tr>
<td>Table 20</td>
<td>Static Calibration</td>
<td>92</td>
</tr>
</tbody>
</table>
NOMENCLATURE

A, B, n constants in King's Law
D diameter of jet nozzle (m)
d diameter of the hot-wire (m)
E, E₁, E₂ output voltage of the hot-wire (volts)
f frequency of oscillation (Hz)
Gr Grashof number
h total heat transferred out of the hot-wire (J)
I electric current (amps)
k instrument sensitivity factor
kₐ heat conductivity of the gas (J/m/K)
l length of the wire (m)
m mass of water collected in drum (kg)
Nu Nusselt number
Pr Prandtl number
Re Reynolds number
Rₑ, Rₒ, R₇ total electric resistance of the wire (ohms)
S₀, Sᵢ temperature coefficients of resistance (ohms/K)
T period of oscillation (s)
Tₐ temperature of the gas (K)
Tₒ reference temperature (K)
Tₑ temperature of the hot-wire (K)
t time for collecting water (s)
U velocity of the fluid (m/s)
Uᵢ jet velocity (m/s)
\(u \) \hspace{1cm} \text{instantaneous probe velocity (m/s)} \\
\(u_p \) \hspace{1cm} \text{probe velocity amplitude (m/s)} \\
\(v_a \) \hspace{1cm} \text{output voltage from charge amplifier (volts)} \\
\(X \) \hspace{1cm} \text{displacement amplitude of oscillation (m)} \\
\(x \) \hspace{1cm} \text{probe position (m)} \\
\(\alpha \) \hspace{1cm} \text{heat transfer coefficient (J/m}^2/\text{K)} \\
\(\pi \) \hspace{1cm} 3.14159 \\
\(\rho_f \) \hspace{1cm} \text{density of the gas at the film temperature (kg/m}^3\) \\
\(\mu_f \) \hspace{1cm} \text{viscosity of the gas at the film temperature (kg/m}\ast\text{s)} \\
\(\omega \) \hspace{1cm} \text{radian frequency of oscillation (rad/s)}
1.1 **Subject of Study**

One of the main variables in experimental fluid mechanics is the velocity of the fluid. Several methods and instruments have been developed to measure velocities in a flow. The hot-wire anemometer is an instrument used for measurement of mean and fluctuating velocities in turbulent flows. The principle of operation of this instrument relies on the phenomenon of heat flow from a heated element due to forced convection. The sensing element is a fine platinum or tungsten wire, which is heated by electrical power. When introduced into a flow, heat is transferred out of the wire mainly by forced convection. A measure of the heat loss, which is proportional to the power supplied is taken as a measure of the flow velocity.

The hot-wire responds mainly to the component of the velocity normal to the wire axis. The heat loss from the wire is insensitive to the sense of the flow direction and hence the output voltage of the hot-wire, may be expressed in general as:

\[E = g(U) = g(-U). \]

(1.1)

This is referred to as directional ambiguity and is represented by a graph in Figure 1.1. The function \(g \) relates the output voltage, \(E \), to the flow velocity, \(U \), and is most commonly given by King's Law \([H1]\). In practice, \(E \) is obtained by measurement and the graph (calibration curve), is used to
determine \(U \). However, due to the problem of directional ambiguity there are two values of \(U \) (positive or negative), for one value of \(E \). Therefore, the hot-wire can only be used to measure the magnitude of the flow. This places a severe limitation on the use of hot-wires, especially in situations where flow reversals occur.

Several researchers have developed techniques to solve this problem and improve the capability of the hot-wire. These techniques, however, suffer from drawbacks of their own. Application of a bias velocity of sufficient magnitude so as to prevent a local flow reversal over the hot-wire has been shown to be an effective solution to this problem. The equipment that has been used to provide the bias velocity, however, is cumbersome to operate and requires a large space \([W1]\). This problem may be overcome by applying a sinusoidal probe velocity of amplitude \(u_p \) as shown in Figure 1.2. The hot-wire output would be recorded between points E-F and G-H, where the velocity is assumed to be constant. Using the above mentioned form of the bias velocity there are two methods of obtaining the magnitude and sense of the flow.

Method 1

The probe is given a sinusoidal velocity of such a magnitude \(u_p \), that the relative velocity \((U-u_p)\) never changes sign. This is shown in Figure 1.3. This way of imposing a probe velocity allows the path of travel to be limited in order to apply this method in small regions. The acceleration, however, would have to be kept low to prevent the hot-wire from breaking. This restricts its application to very low velocities.

Method 2

An improvement over the first solution is to take two readings, one
between E-F and the other between G-H in Figure 1.2. The two equations obtained are:

\[E_1 = g(U + u_p) \quad \text{and} \]
\[E_2 = g(U - u_p), \]

where \(E_1 \) and \(E_2 \) are the hot-wire voltages. The larger value of these two voltages corresponds to a reading where the flow velocity is opposite to the probe velocity, thus the sense of the flow is determined. Using a calibration curve, the magnitude of \(U \) can be obtained. The advantage of this method over the first is that the flow velocity \(U \) is not restricted in magnitude to that of \(u_p \).

1.2 Objectives

The objective of the present study is to evaluate the response of an oscillating hot-wire by comparing the dynamic and static calibrations.

The parameters that influence the response of an oscillating hot-wire are:

1) frequency of oscillation,
2) amplitude of oscillation and
3) the mean flow velocity.

The effect that each of these has on the output of the hot-wire anemometer is to be determined.

1.3 Significance

In every fluid flow situation, whether experimental or in industrial applications, knowledge of the flow velocity involves simultaneous
determination of three unknowns. These are:

1) the magnitude of the flow,
2) the direction of the flow and
3) the sense of the flow.

In some cases the direction of the flow is known from past experience, however, the magnitude and sense have to be determined. The flow sense is important in situations that experience flow reversals. Flow reversals may be time dependent as in oscillatory flows or space dependent as in recirculating flows. In such cases the hot-wire is subjected to errors due to its ambiguous response to variations in the sense of the flow direction. The oscillating hot-wire can be used in such a case to determine the sense and magnitude of the flow velocity. Oscillatory flows occur in the inlet and outlet pipes of internal combustion engines and piston compressors.

Another area of application of the oscillating hot-wire technique is in situations that experience recirculating flows. In recirculating flows the sense of velocity changes sign as the flow region is traversed. The oscillating hot-wire can be used to measure the sense and magnitude of the flow in such cases. These flows occur around buildings, in wakes, cavities and in certain fluidic devices.
CHAPTER II

LITERATURE SURVEY

The literature covered in this survey can be grouped into three major areas. These are:

1) existing hot-wire techniques used to measure the sense and magnitude of the velocity,
2) hot-wires in oscillation and
3) heat transfer from oscillating heated wires.

2.1 Existing Hot-wire Techniques to Measure the Sense and Magnitude of the Velocity

In order to solve the problem of directional ambiguity several methods have been developed. Although they are conceptually different from the method used in the present work, a brief description is presented in the following.

Neuerburg [NI] designed an instrument to measure flow reversal. The directional sensitivity of this instrument is accomplished by means of a simple hood in the form of an obliquely cut pipe end which partially encloses the probe wire. Due to the "wind shadow" effect there is only one maximum and one minimum output as the probe is turned through 360° in the flow, as shown in Figure 2.1. The disadvantages of this method are that a large obstruction is introduced in the flow and mercury slip rings are required.

Bradbury and Castro [B3] developed a technique which relies on the
time of flight required for a heated tracer, emitted by a pulsed wire, to reach a sensor wire placed at a known distance from the pulsed wire. By placing two sensor wires one on each side of the pulsed wire, the sense can be determined (Figure 2.2). The disadvantages are that very specialized electronic equipment and three wires are required.

Cook and Redfearn [CI] constructed a probe, shown in Figure 2.3, similar to the probe constructed by Gunekal et al. [GI]. The directional ambiguity of the flow is resolved by shielding the probe with a disk having a hole in its centre. Two wires are placed close and parallel to each other inside the hole, normal to the hole axis. Due to the effect of the thermal wake of the upstream wire on the downstream wire, the output from the downstream wire is lower than that from the upstream wire. A comparison is made by an electronic logic circuit, which determines the flow direction. The disadvantages are that it introduces a large obstruction in the flow and two wires are required.

The reverse flow sensing hot-wire probe designed by Downing [DI], and shown in Figure 2.4, consists of a single hot-wire with temperature sensors on either side to detect the thermal wake of the hot-wire and hence the sense of the flow. The major disadvantage is that, while it is able to resolve flow reversals, it is unable to cope with large lateral components of velocity. Another drawback is that it is a three wire system, which requires more complex electronics.

The directional sensitivity of the hot-wire anemometer designed by Mahler [M1], is caused by placing one wire in the flow, to be measured and another in the wake of a cylinder, as shown in Figure 2.5. Each wire is placed in a different arm of the bridge. When a current of air passes over
the wires there is an imbalance in the bridge and the voltage is measured. The disadvantages are that it uses two hot-wires and hence specialized equipment is required. Also the probe acts as an obstruction.

2.2 Hot-wires in Oscillation

One of the earliest studies on an oscillating hot-wire was published in 1923 by Richards [R1]. In his study and in some of the subsequent work by other researchers, the constant current anemometer was used (at present, constant temperature anemometers are used). These studies are not discussed but are included in the references ([M3], [M4]). Studies concerning the oscillation of a hot-wire which are pertinent to the present work are discussed below.

Perry and Morrison [P1] developed an alternate hot-wire calibration procedure for the use of the hot-wire in determining turbulent fluctuations based on oscillating the hot-wire. The conventional approach is to first obtain a static calibration curve by plotting the output \(E \) vs the velocity \(U \). This curve is then differentiated at a set of velocity values to obtain the sensitivity factor, \(\partial E / \partial u \), at those values. A calibration curve is obtained by plotting \(\partial E / \partial u \) vs \(U \).

In the new method of calibration, the hot-wire is oscillated in a mean flow. The rms voltage and velocity are recorded. The sensitivity factor at a particular mean velocity is obtained by dividing the rms voltage by the rms velocity. The calibration curve is obtained by plotting this ratio vs \(U \). The calibration is performed for a peak velocity perturbation in the range of 0.3 to 5 m/s at frequencies of 1 - 15 Hz respectively. The dynamic calibration method gives more accurate results than the conventional calibration.
method.

Hon and Teong [H2] oscillated a hot-wire in the vertical plane, in a stagnant fluid (air). The output of the hot-wire was observed on an oscilloscope. The output of the hot-wire which was expected to represent a rectified sine wave, actually showed distortions, as shown in Figure 2.6. They assumed that the oscillating hot-wire heated the surrounding air, along its path and due to natural convection, created a positive temperature gradient along the vertical direction. Thus the output voltage at the lowest point of its travel was higher than that at the top most point.

2.3 Heat Transfer from Oscillating Heated wires

In the references quoted above the main emphasis is on dynamic calibration of a hot-wire. A study was also made of the available basic heat transfer literature on oscillating cylinders and wires.

Armaly and Madsen [A1] experimentally investigated the effect of oscillation on the heat transfer from a heated wire in free convection. They oscillated the wire along a horizontal straight line keeping the wire axis horizontal. The wire was electrically heated. The range of amplitude variation was 0-67.5 mm. and the frequency varied from 0 to 20 Hz. They obtained the correlation,

\[\text{Nu} = 0.891 \times (\text{Re})^{0.33}, \]

for \(1 < \text{Re} < 4 \)

\[\text{Nu} = 0.821 \times (\text{Re})^{0.385}, \]

for \(4 < \text{Re} < 40 \).

Thrasher and Schaetzle [T1] experimentally studied the instantaneous heat transfer from an oscillating wire in free convection. They subjected the
wire to an alternating current. Due to the internal resistance of the wire, the alternating current produced thermal expansions and contractions in the wire thus producing the vibrating motion. The frequency of variation of the current matched the natural frequency of the wire which was from 20 Hz to 40 Hz. The amplitude of oscillation was from 0 - 31.75 mm. The wire diameters used were 0.20 mm and 0.08 mm. They obtained the correlation,

\[\text{Nu} = 0.76, \]
for \(\text{Re} \leq 1.3 \) and

\[\text{Nu} = 0.76 \, (\text{Re})^{0.291}, \]
for \(\text{Re} > 1.3 \)

using a wire diameter of 0.20 mm and

\[\text{Nu} = 0.74, \]
for \(\text{Re} \leq 1.4 \) and

\[\text{Nu} = 0.66 \, (\text{Re})^{0.312}, \]
for \(\text{Re} \geq 1.4 \), with a wire diameter of 0.08 mm.

Sreenivasan and Ramachandran [S1] studied the effect of vibration on heat transfer from a horizontal copper cylinder. The cylinder was placed normal to an air stream and was sinusoidally vibrated in a direction perpendicular to the air stream. The flow velocity varied from 5.79 m/s to 28 m/s. The frequency of vibration was 3 Hz to 47 Hz, with an amplitude of 3.75 mm to 16 mm. They obtained the correlation,

\[\text{Nu} = 0.226 \, (\text{Re})^{0.6}, \]
for \(2500 < \text{Re} < 15000 \).
CHAPTER III

PRINCIPLE AND THEORY OF HOT-WIRE ANEMOMETER

3.1 General Theory of Hot-wire Anemometry

The detecting element of a hot-wire anemometer consists of a very fine, short metal wire, which is usually made of tungsten or platinum and has a diameter of the order of 5 microns (10^{-6} m); having a length of 1-2 mm and welded to the tips of two prongs. The wire is heated to about 300\degree C by applying electrical power so that its resistance becomes almost double its ambient value of approximately 3.5 ohms \[B1,B2\]. The total amount of heat transferred out of the wire depends on:

1) the flow velocity,
2) the difference in temperature between the wire and the fluid,
3) the physical properties of the fluid and
4) the dimensions and physical properties of the wire.

The last three parameters mentioned above are known and kept constant in order to measure the first parameter. The modes by which heat is transferred out of the wire are:

1) conduction,
2) free-convection,
3) forced-convection and
4) radiation.

In general, radiation heat transfer to the ambient air is negligible for wire temperatures less than 300\degree C. Experimentally it has been determined that the free convection effect is a function of the non-dimensional group,
Gr*Pr. Van der Hegge Zijnen [VI] demonstrated that this effect may be neglected if Re > 0.5 and if Gr*Pr < 10^{-4}. For air and a wire of 5 micron diameter, Gr*Pr is of the order 10^{-6}. The effect of conduction to the prongs is minimized by using large posts and hence keeping the heat loss due to conduction a constant. Therefore, when introduced into a flow, the major contribution to the heat transfer is due to forced convection. The convective heat transfer coefficient, which is expressed by the Nusselt number, Nu, is a function of the Reynolds number, Re, Prandtl number, Pr, and Grashof number, Gr [HI].

Kramer's empirical formula, which gives very satisfactory results for many gases [HI], is expressed as

$$Nu = 0.42 Pr^{0.2} + 0.57 Pr^{0.3} 3 * Re^{0.5}, \quad (3.1)$$

for $0.01 < Re < 10,000$, where

$$Nu = \alpha \frac{d}{k_f}, \quad (3.2)$$

and α is the heat transfer coefficient; k_f, the heat conductivity of the gas at the film temperature and d is the diameter of the wire. The heat loss per unit time, h, out of the wire with length l and uniform temperature distribution is given by

$$h = \alpha \pi d l (T_W - T_g) \quad (3.3)$$

where T_g and T_W are the gas and wire temperature respectively. When
the value of α is substituted in Equation 3.3, according to Equation 3.1 and Equation 3.2,

$$ h = k_f \pi l (T_w - T_g) [0.42 \text{Pr}^{0.2} + 0.57 \text{Pr}^{0.33} \text{Re}^{0.5}]. \quad (3.4) $$

For thermal equilibrium conditions, this heat loss per unit time from the wire must be equal to the amount of heat generated per unit time by the electric current passing through the wire; i.e.; it must be equal to $I^2 R_w$. Where I is the electric current through the wire and R_w the total electric resistance of the wire. Thus for the thermal equilibrium of the wire

$$ I^2 R_w = \pi k_f l (T_w - T_g) [0.42 \text{Pr}^{0.2} + 0.57 \text{Pr}^{0.33} \text{Re}^{0.5}]. \quad (3.5) $$

Also, the resistance of the wire R_w, may be expressed in terms of the resistance R_0 and a series expansion as

$$ R_w = R_0 [1 + S_0 (T_w - T_0) + S_1 (T_w - T_0)^2 + \ldots] \quad (3.6) $$

where S_0, S_1, ... are the temperature coefficients of electric resistivity of the wire and R_0 is the resistance of the wire at a reference temperature T_0. Neglecting higher order terms, Equation 3.6 may be expressed as

$$ R_w = R_0 [1 + S_0 (T_w - T_0)]. \quad (3.7) $$

From Equation 3.7
\[
\frac{(R_w - R_o)}{(R_0 S_0)} = T_w - T_o \tag{3.7a}
\]

and

\[
\frac{(R_g - R_o)}{(R_0 S_0)} = T_g - T_o. \tag{3.7b}
\]

Where \(R_g \) is the resistance of the wire at the gas temperature. Using

Equation 3.7a and Equation 3.7b, the temperature difference may be expressed as

\[
T_w - T_g = \frac{(R_w - R_g)}{(S_0 R_0)}. \tag{3.8}
\]

Substituting Equation 3.9 into Equation 3.6 the relationship can be written as

\[
I^2 R_w = k_f \pi l (R_w - R_g)[0.42 \ Pr^{0.2} + 0.57 \ Pr^{0.33} \ Re^{0.5}] / (R_0 S_0). \tag{3.9}
\]

For application to hot-wire anemometry, it is convenient and usual to write this relationship in the form

\[
\frac{(I^2 R_w)}{(R_w - R_g)} = A + B \sqrt{U}, \tag{3.10}
\]

where

\[
A = 0.42 \pi K_f l (Pr^{0.20}) / (S_0 R_0). \tag{3.11}
\]
U is the velocity of the fluid and

\[B = 0.57 k_f (Pr^{0.33})(\frac{\rho_f d}{\mu_f})^{0.50}/(S_0 R_0) \] \hspace{1cm} (3.12)

Equation 3.10 is a widely accepted relationship and is known as King's law. It is generally used for calibrating the hot-wire.

The wire forms one arm of a Wheatstone Bridge, as shown in Figure 3.1. The heat transferred is indirectly measured as a change in the voltage. There are two types of anemometers.

1) Constant current anemometer (CCA): In this case, the heating current which passes through the wire is kept constant and the variation in the voltage across the wire is taken as a measure of the flow velocity. Due to the thermal inertia of the wire it cannot follow fluctuations which have a frequency higher than approximately a thousand Hertz [B2, H1]. To improve the performance at high frequencies, a compensation circuit must be used.

2) Constant Temperature Anemometer (CTA): This type uses a negative feedback loop in an attempt to keep the resistance of the wire constant. A feedback amplifier is used across the diagonal of the Wheatstone Bridge which senses a bridge imbalance. If an imbalance is detected the current through the hot-wire is changed so as to keep the temperature and hence the resistance of the wire constant. The voltage across the feedback resistor is taken as a measure of the flow velocity.
CHAPTER IV

EXPERIMENTAL DETAILS

4.1 Introduction

This chapter describes the facility constructed for the experiment. It also includes a description of the experimental procedure. A schematic diagram of the setup is shown in Figure 4.1 and consists of three main units. These are:

1) the Flow Unit,
2) the Shaker and Hot-wire Unit and
3) the Data Acquisition Unit.

4.1.1 The Flow Unit

This unit was constructed to provide a constant mean flow of air and consisted of a constant head tank, airtight drum, weighing scale and settling chamber. The constant head tank (approximately 479 mm by 479 mm by 277 mm) was suspended at an approximate height of 3.9 meters above the floor. Water was supplied to the constant head tank by a 25 mm diameter nozzle, which was connected to the main water supply and the water level in the constant head tank was maintained by overflow outlets (nozzle and outlets are not shown in the diagram).

The main outlet was at the base of the tank and had a nozzle diameter of approximately 32 mm. It was connected to a copper tube through a plastic hose, which was provided for flexibility. The copper tube had an
internal diameter of 25 mm, and ended in an airtight drum. A valve mounted on the copper tube, controlled the flow of water into the drum. In order to prevent air from escaping through the tube, the lower end was connected below the water level in the drum. The diameter of the drum was approximately 550 mm. The drum was placed on a scale, to measure the weight of the water collected in the drum. A drain with a stop cock (not shown in the diagram) was provided at the base of the drum to drain it when necessary. An inverted L-shaped copper tube of diameter 15.88 mm was connected to the upper lid of the drum. This was the main air outlet from the drum and was connected to the jet chamber by means of plastic tube. The jet chamber consisted of a settling chamber and a nozzle. The settling chamber was made of a cylindrical shell, fabricated out of sheet metal and closed at one end by a sheet metal disc, through which the air supply was connected. Two wire mesh screens were provided inside the settling chamber. The length of the chamber was approximately 693 mm and the outer diameter was 302 mm. The other end of the jet chamber consisted of a plexiglass disc on which the jet nozzle was mounted. The inner diameter of the nozzle was 19.05 mm.

4.1.2 The Shaker and Hot-wire Unit

The unit consisted of a magnetic shaker, power amplifier, shaker controller, accelerometer, charge amplifier, Constant Temperature Anemometer and hot-wire probe. The hot-wire probe (DISA Type P11), was mounted in a brass sleeve, which was threaded onto a steel rod. The hot-wire was modified by connecting lead wires directly to the posts. Details of the brass sleeve and steel rod assembly are shown in Figure 4.2.
The natural frequency of the steel rod and brass sleeve assembly was greater than the operating frequency range.

The steel rod assembly was mounted on a flat plate whose acceleration was monitored by an accelerometer (B&K Type 4339) also mounted on it. The plate was mounted on a magnetic shaker head (B&K Type 4811). The displacement range of the shaker was ± 6.35 mm and had a velocity range of 0 to 1.25 m/s. The mass of the head was 0.18 kg and the maximum acceleration was 210 g (2060 m/s²). The magnetic shaker was mounted on a steel frame, which conformed to the exciter body (B&K Type 4801S) which was mounted on a work bench. The oscillation produced was in the horizontal plane. The magnetic shaker was connected to a shaker controller (B&K Type 1047), through a power amplifier (B&K Type 2707). In order to ensure an accurate sine wave, a closed loop feedback system was employed. An accelerometer (B&K Type 4339) was used in conjunction with the charge amplifier (B&K Type 2626), to measure the probe velocity and served as a feedback sensor.

4.1.3 The Data Acquisition Unit

An Apple II microcomputer was the heart of the data acquisition unit. An A/D converter card manufactured by Interactive Structures, Inc. (Type AI13), was used. The card was inserted into slot number 5 of the Apple II microcomputer. The AI13 A/D converter had the capability of reading a voltage between -5v to +5v and returned a number proportional to the result for analysis. It had 16 input channels each of which could be scaled to any of the 8 full-scale ranges. One reading could be taken in about 128 * 10⁻⁶s. In order to activate the A/D converter to record the readings.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
and feed it into the computer memory, program B.1 was developed in Basic. The program makes use of an assembly language subroutine, program B.2. Program B.1 and program B.2 are listed in appendix B. The accuracy of the A/D converter was 0.024% of full scale. Since some of the voltages were higher than 5 volts, a signal conditioner which subtracted a fixed voltage was used. The CTA and charge amplifier were connected to channels 1 and 2 of the A/D converter respectively.

4.2 Procedure

The probe and steel rod assembly were mounted on the shaker head. The CTA (DISA Type D01) was then set up according to the instructions given in the manual for a 1:20 bridge ratio. The probe was connected to the CTA unit through a 5-metre cable. Before using the CTA for any measurements, optimum adjustments of the 'GAIN', HF FILTER 'L' and 'Q' settings had to be made, while applying a square wave signal to the wire. This was done until an output, shown in Figure 4.3 (as per the manual), was obtained.

After the optimum settings were made, the probe support axis (see Figure 4.2) was aligned with the axis of the jet. The hot-wire was then placed in the potential core region of the jet and subjected to oscillations at a known frequency and amplitude. The frequency was controlled by means of the shaker controller.

Water was supplied to the constant head tank and a steady overflow maintained. The flow into the drum was then started by controlling the valve. After permitting sufficient time for the flow to settle, the computer was activated and the data recorded. The computer recorded the hot-wire
and accelerometer voltage alternately, every 128 microseconds. The data were stored in the computer memory and later saved on a diskette. This was done by running program B.1 of Appendix B.

The same procedure was repeated for different jet velocity settings, (0 - 5.2m/s), while maintaining the same amplitude and frequency of oscillation. This constituted one data set. Different data sets were obtained by changing the amplitude settings, (0 - 2.5 mm), for frequencies of 25, 35, 45 and 55 Hz. After every fifth data set, a static calibration was performed, to check for drifts in the instrument.
CHAPTER V

RESULTS AND DISCUSSION

In section 1.1, the problem of directional ambiguity was discussed. Thus, when a hot-wire is subjected to a sinusoidal velocity in a stagnant fluid (air), the output voltage is expected to be a rectified sine wave. The hot-wire output would therefore have twice as many peaks as the probe velocity (or acceleration). This effect is shown in Figure 5.1. The output from the hot-wire as well as the output from the accelerometer are plotted on the y-axis and time on the x-axis, for a frequency of 35 Hz, an amplitude of 2.35 mm and a jet velocity of 0 m/s. However, when the hot-wire is oscillated in a jet with a mean velocity greater than or equal to the amplitude of the probe velocity, there is no rectification and the output is a sine wave superimposed on a dc. voltage. This is shown in Figure 5.2 for the same conditions as in Figure 5.1 except the jet velocity is 4.93 m/s.

5.1 Data Reduction

The maximum hot-wire voltage corresponding to the maximum probe velocity and the time mean voltage were determined from the previously recorded data using program B.3. Program B.3 is listed in Appendix B and is briefly explained below. In order to compute the maximum hot-wire voltage, the program first scans the accelerometer output for data points that lie on either side of the zero line, shown in Figure 5.3 (between 85^0 and 95^0). The data consist of a sequence of alternate hot-wire and accelerometer output voltage readings, hence, the value of the
data point that lies between the above mentioned acceleration data points is a maximum and therefore stored. This value, when multiplied by a gain constant represents the hot-wire voltage, which corresponds to the maximum relative velocity (i.e., probe velocity at its maximum value in the direction opposite to the jet velocity). At least seven hot-wire voltages were stored in an array. The elements in this array were averaged. This average voltage is shown in the first column of Table 1 for \(f = 25 \text{ Hz}, X = 2.16 \text{ mm} \).

The probe velocity amplitude was determined by scanning the accelerometer data for maximum and minimum values. These values were first averaged and then multiplied by \(k/2\pi f \), where \(k \) is an instrument sensitivity factor and \(f \) is the frequency. The jet velocity was obtained by using the formula

\[
U_j = \frac{4m}{\rho \pi D^2 t}, \tag{5.1}
\]

where \(m \) is the mass of the water collected in the drum, \(\rho \) is the density of water, \(D \) is the diameter of the jet nozzle and \(t \) is the time required for collecting the water. The relative velocity which is entered in the second column of the above mentioned table, is obtained by subtracting the probe velocity amplitude from the jet velocity. The program then computes a time average of a certain number of complete cycles of the hot-wire voltage and it is tabulated in the third column. The fourth column contains the jet velocity. Each row in Table 1 corresponds to a different value of jet velocity. Tables 2 to 19 are similar to Table 1 but obtained for different combinations of \(f \) and \(X \).
A static calibration of the hot-wire was also performed by placing the hot-wire in the potential core of the jet. The hot-wire voltage readings for different jet velocities were recorded. The static calibration data are presented in Table 20. A graph of the voltage vs the velocity gives the static calibration curve. Dynamic calibration curves were obtained by plotting the maximum and mean hot-wire voltage on the y-axis and the relative velocity on the x-axis. A comparison and discussion of the calibration curves corresponding to the maximum, mean and static hot-wire values are presented in the following sections.

5.2 Comparison of Maximum and Mean Calibrations

A comparison of the above mentioned calibrations is presented in Figures 5.4 through 5.22. At high relative velocity there is no significant difference between the two methods of processing the data. This indicates that the probe velocity has negligible effect on the response of the hot-wire at a fixed frequency and amplitude. Time averaging of the instantaneous voltage to obtain the mean voltage, in effect amounts to nulling the effects of the probe velocity. However, it is noticed that the calibration curve which corresponds to the maximum values is lower than the mean curve. As can be seen from the figures, the two curves converge as the mean flow increases. This effect can be explained by the results presented by Perry and Morrison [P1]. As the flow velocity increases, while holding the probe velocity amplitude constant, the relative velocity increases and the system sensitivity, $\partial E/\partial U$, decreases. The lower the value of $\partial E/\partial U$, the closer the two curves get. e.g., if $\partial E/\partial U$ is zero the two curves will coincide exactly.

At low relative velocity there is a significant difference between the
two methods. This observation may be explained in the following way.

Consider the time variation of the position of a hot-wire probe which is oscillating in a jet of velocity U_j. This is shown in Figure 5.23. The path of oscillation is in the x-direction along ABC. The probe velocity is maximum at point B (i.e., $X = 0$) and the maximum used in this study occurs at B' (i.e., $t = t_{\text{probe}}$). When the hot-wire is at point A it heats a particle of the fluid. The time for this heated particle to be transported by the jet to point B is given by

$$t_{\text{particle}} = \frac{X}{U_j},$$ \hspace{1cm} (5.2)

where X is the distance between point A and B (displacement amplitude). The time required by the probe to travel along ABCB is given by

$$t_{\text{probe}} = \frac{3T}{4},$$ \hspace{1cm} (5.3)

where T is the period of oscillation. Equation 5.3 can be expressed as

$$t_{\text{probe}} = \frac{3}{4f},$$ \hspace{1cm} (5.4)

where f is the frequency of oscillation. For a sinusoidal oscillation of frequency f the probe velocity amplitude u_p is given by

$$u_p = 2\pi X f.$$ \hspace{1cm} (5.5)

Using Equations 5.4 and 5.5

$$t_{\text{probe}} = \frac{3\pi X}{2u_p}.$$ \hspace{1cm} (5.6)

In order that the heated particle not affect the probe output, the time for the particle to reach point B should be less than the time required by the probe. Thus combining Equations 5.2 and 5.6

$$\frac{U_j}{u_p} > \frac{2}{3\pi} = 0.21.$$ \hspace{1cm} (5.7)

When the ratio U_j/u_p is less than or equal to 0.21 the output will be affected by the heated particle. The hot-wire output in this case is expected to be lower than the output at a velocity of magnitude u_p. This is due to the
fact that when the hot-wire is placed in a heated region, the temperature difference between the hot-wire and its surroundings decreases. As a result the heat transferred out of the hot-wire reduces, causing its output voltage to drop. In the above discussion the heat diffusion effects have been neglected.

A value of $U_j/u_p = 0.21$ corresponds to a relative velocity of $1.21*u_p$. This condition is shown by a vertical dotted line in Figures 5.4 to 5.22 inclusive. It is seen that the difference between the two methods is applicable in the region to the left of the dotted line. This agrees with the explanation given above.

5.3 Comparison of Maximum Response for Different Amplitudes

The effect of variation of the amplitude of oscillation at a fixed value of frequency on the maximum output of the hot-wire is shown in Figure 5.24 to Figure 5.27. These figures indicate that, for the range of variables considered, the amplitude of oscillation has negligible effect on the response of the hot-wire. A small difference between the curves is observed at low relative velocities. This is possibly due to the fact that the probe velocity is directly dependent on the amplitude at a constant frequency and hence the value $1.21*u_p$ shifts to the right with increasing amplitude.

5.4 Comparison of Maximum Response for Different Frequencies

Figure 5.28 shows the calibration corresponding to the maximum values of the hot-wire output for frequencies of 25, 35, 45 and 55 Hz at an amplitude of 2.00 mm. This figure indicates that, within the experimental range, the frequency has negligible effect on the response of the hot-wire. A
slight scatter is observed at lower jet velocities. At higher jet velocities, however, the points seem to be distributed about a mean value. There is one exception. At a frequency of 35 Hz, it is noticed that the calibration curve is higher than the rest, considering an uncertainty of 0.01 volts (see appendix A). An explanation of this observation is not currently available.

5.5 Comparison of Static and Dynamic Calibration

The calibration corresponding to the maximum and mean values at a frequency of 25 Hz and an amplitude of 2.16 mm are compared with the static calibration in Figure 5.29. It is observed that the dynamic calibration compares well with the static calibration. As the frequency tends to zero, it is expected that the static calibration would coincide with the dynamic calibration. Hence it appears that King's Law can be used, with negligible error at frequencies lower than 25 Hz.

In the region where the relative velocity is less than 1.21 times the probe velocity amplitude, the calibration curve corresponding to the maximum and the mean values disagree as seen previously. However, the static and mean calibration curves agree. At a relative velocity of 0.0 m/s, the mean voltage is higher than the static value. This may be explained as follows. Whenever the probe velocity amplitude is more than the jet velocity, the hot-wire voltage is, approximately, a rectified sine wave and hence its time average is higher than the unrectified signal.
6.1 Conclusions

The response of an oscillating hot-wire in a mean flow has been studied experimentally. This information leads to the following conclusions.

1) The static and maximum calibration curves indicate that, for a relative velocity greater than 1.21\(u_p\), the maximum calibration curve is close to the static. However, at lower relative velocities there is a significant difference.

2) The effect of the amplitude on the response of an oscillating hot-wire is negligible within the range of the experiments.

3) The effect of the frequency on the response of the hot-wire is negligible within the range of the experiments.

6.2 Recommendations

1) The experiment should be performed with a different style and size of probe (eg. DISA sub-miniature probe).

2) The effect of orientation of the hot-wire axis, on the voltage output waveform should be investigated.
3) The response of the hot-wire should be studied more closely at lower jet velocities where the ratio of jet velocity to probe velocity is less than unity.
REFERENCES

H2 Hon, C.C. and Teong, K.H., "Hot-Wire Anemometer Calibration at Low Speeds". Final Year Project Report, Department of Mechanical Engineering, University of Windsor, Ontario, Canada, 1984.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.1 Calibration Curve of a Hot-wire
Figure 1.2 Sinusoidal Probe Velocity
Figure 1.3 Sketch of Hot-wire Voltage vs Relative Velocity
Figure 2.1 Probe with Hood and the Velocity Output Characteristic [N1]
Figure 2.2 Pulsed-wire Probe [B3]
Figure 2.3 Shielded Dual-Sensor Hot-Wire Probe [C1]
Figure 2.4 Reverse Flow Sensing Hot-wire Probe [D1]
Figure 2.5 Bidirectional Hot-wire Probe [M1]
Figure 2.6 Distorted Signal of a Hot-wire Probe [H1]
Figure 3.1 Schematic of a Constant Temperature Hot-wire Anemometer
Figure 4.1 Schematic of the Experimental Set-up
Figure 4.2: Probe with Brass Sleeve and Steel-rod Assembly
Figure 4.3 Square Wave Response of the CTA
Frequency = 35 Hz. Amplitude = 2.35 mm. Jet Velocity = 0.0 m/s.

Figure 5.1 Accelerometer and Hot-wire Outputs $U_j < U_p$
Frequency = 35 Hz. Amplitude = 2.35 mm. Jet Velocity = 4.93 m/s.

Figure 5.2 Accelerometer and Hot-wire Outputs (Uj > Up)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure 5.3: Accelerometer and Hot-wire Output Voltage
Frequency = 25 Hz.
Amplitude = 2.16 mm.

Figure 5.4 Dynamic Calibration.
Frequency = 25 Hz.
Amplitude = 2.01 mm.

Figure 5.5 Dynamic Calibration.
Frequency = 25 Hz.
Amplitude = 1.64 mm.

Figure 5.6 Dynamic Calibration.
Figure 5.7 Dynamic Calibration.

Frequency = 25 Hz.
Amplitude = 1.62 mm.
Figure 5.8 Dynamic Calibration.

Frequency = 25 Hz.
Amplitude = 1.32 mm.
Frequency = 35 Hz.
Amplitude = 2.35 mm.

Figure 5.9 Dynamic Calibration.
Figure 5.10 Dynamic Calibration.

Frequency = 35 Hz.
Amplitude = 2.07 mm.

- Mean Calibration
- Maximum Calibration
Frequency = 35 Hz.
Amplitude = 1.83 mm.

Figure 5.11 Dynamic Calibration.
Frequency = 35 Hz.
Amplitude = 1.41 mm.

Figure 5.12 Dynamic Calibration.
Figure 5.13 Dynamic Calibration.

Frequency = 35 Hz.
Amplitude = 1.2 mm.
Figure 5.14 Dynamic Calibration.

Frequency = 35 Hz.
Amplitude = 0.5 mm.
Figure 5.15 Dynamic Calibration.

- Frequency = 45 Hz.
- Amplitude = 2.46 mm.

![Graph showing the relationship between voltage (E) and relative velocity. The graph includes points indicating mean and maximum calibration.]
Figure 5.16 Dynamic Calibration.

Frequency = 45 Hz.
Amplitude = 2.07 mm.
Figure 5.17 Dynamic Calibration.

Frequency = 45 Hz.
Amplitude = 1.73 mm.
Figure 5.18 Dynamic Calibration.

Frequency = 45 Hz.
Amplitude = 1.33 mm.
Frequency = 55 Hz.
Amplitude = 2.52 mm.

Figure 5.19 Dynamic Calibration.
Frequency = 55 Hz.
Amplitude = 2.13 mm.

Figure 5.20 Dynamic Calibration.
Figure 5.21 Dynamic Calibration.

Frequency = 55 Hz.
Amplitude = 1.67 mm.
Frequency = 55 Hz.
Amplitude = 1.2 mm.

Figure 5.22 Dynamic Calibration.
Figure 5.23 Time Variation of Probe Position
Figure 5.24. Effect of Amplitude on the Maximum Response
Figure 5.25 Effect of Amplitude on the Maximum Response

Frequency = 35 Hz.

Amplitude (mm.)
- 2.35
- 2.07
- 1.83
- 1.41
- 1.20
- 0.50

Relative Velocity (m/s)

E (volts)
Figure 5.26 Effect of Amplitude on the Maximum Response

Frequency = 45 Hz.

- Amplitude (mm.):
 - 2.46
 - 2.07
 - 1.73
 - 1.33

- Relative Velocity (m/s)

- E (volts)
Figure 5.27 Effect of Amplitude on the Maximum Response

Frequency = 55 Hz.

Amplitude (mm.)

Relative Velocity (m/s)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure 5.28 Effect of Frequency on the Maximum Response

Amplitude = 2.0 mm.

Frequency (Hz)
- 25
- 35
- 45
- 55

Relative Velocity (m/s)

E (volts)
Frequency = 25 Hz.
Amplitude = 2.16 mm.

Figure 5.29 Comparison of Static and Dynamic Calibrations.
Table 1

Dynamic Calibration

Frequency of oscillation = 25 Hz.
Amplitude of oscillation = 2.16 mm.

<table>
<thead>
<tr>
<th>Maximum Hot-wire Voltage in Volts</th>
<th>Relative Velocity in m/s</th>
<th>Mean Voltage in Volts</th>
<th>Jet-Velocity in m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.95</td>
<td>0.34</td>
<td>2.92</td>
<td>0.0</td>
</tr>
<tr>
<td>3.07</td>
<td>0.53</td>
<td>2.99</td>
<td>0.19</td>
</tr>
<tr>
<td>3.33</td>
<td>1.46</td>
<td>3.28</td>
<td>1.13</td>
</tr>
<tr>
<td>3.46</td>
<td>2.49</td>
<td>3.47</td>
<td>2.15</td>
</tr>
<tr>
<td>3.61</td>
<td>3.54</td>
<td>3.59</td>
<td>3.20</td>
</tr>
<tr>
<td>3.71</td>
<td>4.53</td>
<td>3.69</td>
<td>4.19</td>
</tr>
<tr>
<td>3.79</td>
<td>5.37</td>
<td>3.77</td>
<td>5.05</td>
</tr>
</tbody>
</table>
Table 2

Dynamic Calibration

Frequency of oscillation = 25 Hz.
Amplitude of oscillation = 2.01 mm.

<table>
<thead>
<tr>
<th>Maximum Hot-wire Voltage in Volts</th>
<th>Relative Velocity in m/s</th>
<th>Mean Voltage in Volts</th>
<th>Jet-Velocity in m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.93</td>
<td>0.32</td>
<td>2.91</td>
<td>0.0</td>
</tr>
<tr>
<td>3.12</td>
<td>0.65</td>
<td>3.04</td>
<td>0.34</td>
</tr>
<tr>
<td>3.33</td>
<td>1.46</td>
<td>3.29</td>
<td>1.14</td>
</tr>
<tr>
<td>3.49</td>
<td>2.50</td>
<td>3.47</td>
<td>2.19</td>
</tr>
<tr>
<td>3.60</td>
<td>3.42</td>
<td>3.58</td>
<td>3.11</td>
</tr>
<tr>
<td>3.71</td>
<td>3.49</td>
<td>3.70</td>
<td>4.18</td>
</tr>
<tr>
<td>3.79</td>
<td>5.36</td>
<td>3.77</td>
<td>5.05</td>
</tr>
</tbody>
</table>
Table 3

Dynamic Calibration

Frequency of oscillation = 25 Hz.
Amplitude of oscillation = 1.64 mm.

<table>
<thead>
<tr>
<th>Maximum Hot-wire Voltage in Volts</th>
<th>Relative Velocity in m/s</th>
<th>Mean Voltage in Volts</th>
<th>Jet-Velocity in m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.91</td>
<td>0.26</td>
<td>2.90</td>
<td>0.0</td>
</tr>
<tr>
<td>3.02</td>
<td>0.40</td>
<td>2.67</td>
<td>0.14</td>
</tr>
<tr>
<td>3.32</td>
<td>1.44</td>
<td>3.29</td>
<td>1.18</td>
</tr>
<tr>
<td>3.48</td>
<td>2.41</td>
<td>3.46</td>
<td>2.16</td>
</tr>
<tr>
<td>3.60</td>
<td>3.41</td>
<td>3.59</td>
<td>3.15</td>
</tr>
<tr>
<td>3.71</td>
<td>4.40</td>
<td>3.69</td>
<td>4.14</td>
</tr>
<tr>
<td>3.78</td>
<td>5.15</td>
<td>3.77</td>
<td>4.90</td>
</tr>
</tbody>
</table>
Table 4

Dynamic Calibration

Frequency of oscillation = 25 Hz.
Amplitude of oscillation = 1.62 mm.

<table>
<thead>
<tr>
<th>Maximum Hot-wire Voltage in Volts</th>
<th>Relative Velocity in m/s</th>
<th>Mean Voltage in Volts</th>
<th>Jet-Velocity in m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.91</td>
<td>0.25</td>
<td>2.90</td>
<td>0.0</td>
</tr>
<tr>
<td>3.02</td>
<td>0.38</td>
<td>2.97</td>
<td>0.14</td>
</tr>
<tr>
<td>3.32</td>
<td>1.43</td>
<td>3.29</td>
<td>1.18</td>
</tr>
<tr>
<td>3.48</td>
<td>2.41</td>
<td>3.46</td>
<td>2.16</td>
</tr>
<tr>
<td>3.60</td>
<td>3.37</td>
<td>3.59</td>
<td>3.15</td>
</tr>
<tr>
<td>3.71</td>
<td>4.39</td>
<td>3.69</td>
<td>4.14</td>
</tr>
<tr>
<td>3.78</td>
<td>5.15</td>
<td>3.77</td>
<td>4.90</td>
</tr>
</tbody>
</table>
Table 5

Dynamic Calibration

Frequency of oscillation = 25 Hz.
Amplitude of oscillation = 1.32 mm.

<table>
<thead>
<tr>
<th>Maximum Hot-wire Voltage in Volts</th>
<th>Relative Velocity in m/s</th>
<th>Mean Voltage in Volts</th>
<th>Jet-Velocity in m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.91</td>
<td>0.21</td>
<td>2.90</td>
<td>0.0</td>
</tr>
<tr>
<td>3.02</td>
<td>0.38</td>
<td>2.97</td>
<td>0.17</td>
</tr>
<tr>
<td>3.30</td>
<td>1.36</td>
<td>3.28</td>
<td>1.15</td>
</tr>
<tr>
<td>3.61</td>
<td>3.39</td>
<td>3.59</td>
<td>3.19</td>
</tr>
<tr>
<td>3.70</td>
<td>4.35</td>
<td>3.69</td>
<td>4.14</td>
</tr>
<tr>
<td>3.77</td>
<td>5.39</td>
<td>3.76</td>
<td>5.19</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 6

Dynamic Calibration

Frequency of oscillation = 35 Hz.
Amplitude of oscillation = 2.35 mm.

<table>
<thead>
<tr>
<th>Maximum Hot-wire Voltage in Volts</th>
<th>Relative Velocity in m/s</th>
<th>Mean Voltage in Volts</th>
<th>Jet-Velocity in m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.06</td>
<td>0.52</td>
<td>3.01</td>
<td>0.0</td>
</tr>
<tr>
<td>3.18</td>
<td>0.72</td>
<td>3.05</td>
<td>0.21</td>
</tr>
<tr>
<td>3.42</td>
<td>1.69</td>
<td>3.34</td>
<td>1.18</td>
</tr>
<tr>
<td>3.57</td>
<td>2.70</td>
<td>3.51</td>
<td>2.19</td>
</tr>
<tr>
<td>3.68</td>
<td>3.61</td>
<td>3.63</td>
<td>3.10</td>
</tr>
<tr>
<td>3.78</td>
<td>4.70</td>
<td>3.74</td>
<td>4.18</td>
</tr>
<tr>
<td>3.84</td>
<td>5.44</td>
<td>3.81</td>
<td>4.93</td>
</tr>
</tbody>
</table>
Table 7

Dynamic Calibration

Frequency of oscillation = 35 Hz.
Amplitude of oscillation = 2.07 mm.

<table>
<thead>
<tr>
<th>Maximum Hot-wire Voltage in Volts</th>
<th>Relative Velocity in m/s</th>
<th>Mean Voltage in Volts</th>
<th>Jet-Velocity in m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.03</td>
<td>0.46</td>
<td>2.99</td>
<td>0.0</td>
</tr>
<tr>
<td>3.13</td>
<td>0.59</td>
<td>3.02</td>
<td>0.13</td>
</tr>
<tr>
<td>3.40</td>
<td>1.58</td>
<td>3.32</td>
<td>1.13</td>
</tr>
<tr>
<td>3.56</td>
<td>2.61</td>
<td>3.50</td>
<td>2.16</td>
</tr>
<tr>
<td>3.67</td>
<td>3.55</td>
<td>3.62</td>
<td>3.10</td>
</tr>
<tr>
<td>3.77</td>
<td>4.63</td>
<td>3.74</td>
<td>4.18</td>
</tr>
<tr>
<td>3.84</td>
<td>5.41</td>
<td>3.81</td>
<td>4.95</td>
</tr>
</tbody>
</table>
Table 8

Dynamic Calibration

Frequency of oscillation = 25 Hz.
Amplitude of oscillation = 2.16 mm.

<table>
<thead>
<tr>
<th>Maximum Hot-wire Voltage in Volts</th>
<th>Relative Velocity in m/s</th>
<th>Mean Voltage in Volts</th>
<th>Jet-Velocity in m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.01</td>
<td>0.40</td>
<td>2.98</td>
<td>0.0</td>
</tr>
<tr>
<td>3.10</td>
<td>0.53</td>
<td>3.00</td>
<td>0.13</td>
</tr>
<tr>
<td>3.38</td>
<td>1.57</td>
<td>3.32</td>
<td>1.17</td>
</tr>
<tr>
<td>3.54</td>
<td>2.55</td>
<td>3.50</td>
<td>2.15</td>
</tr>
<tr>
<td>3.66</td>
<td>3.54</td>
<td>3.62</td>
<td>3.15</td>
</tr>
<tr>
<td>3.75</td>
<td>4.55</td>
<td>3.72</td>
<td>4.16</td>
</tr>
<tr>
<td>3.83</td>
<td>5.42</td>
<td>3.80</td>
<td>5.02</td>
</tr>
</tbody>
</table>
Table 9

Dynamic Calibration

Frequency of oscillation = 35 Hz.
Amplitude of oscillation = 1.41 mm.

<table>
<thead>
<tr>
<th>Maximum Hot-wire Voltage in Volts</th>
<th>Relative Velocity in m/s</th>
<th>Mean Voltage in Volts</th>
<th>Jet-Velocity in m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.98</td>
<td>0.31</td>
<td>2.95</td>
<td>0.0</td>
</tr>
<tr>
<td>3.08</td>
<td>0.45</td>
<td>3.00</td>
<td>0.14</td>
</tr>
<tr>
<td>3.38</td>
<td>1.53</td>
<td>3.33</td>
<td>1.21</td>
</tr>
<tr>
<td>3.53</td>
<td>2.42</td>
<td>3.49</td>
<td>2.11</td>
</tr>
<tr>
<td>3.64</td>
<td>3.38</td>
<td>3.62</td>
<td>3.07</td>
</tr>
<tr>
<td>3.76</td>
<td>4.58</td>
<td>3.74</td>
<td>4.27</td>
</tr>
<tr>
<td>3.82</td>
<td>5.29</td>
<td>3.80</td>
<td>4.99</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 10

Dynamic Calibration

Frequency of oscillation = 35 Hz.
Amplitude of oscillation = 1.2 mm.

<table>
<thead>
<tr>
<th>Maximum Hot-wire Voltage in Volts</th>
<th>Relative Velocity in m/s</th>
<th>Mean Voltage in Volts</th>
<th>Jet-Velocity in m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.96</td>
<td>0.26</td>
<td>2.94</td>
<td>0.0</td>
</tr>
<tr>
<td>3.09</td>
<td>0.42</td>
<td>3.01</td>
<td>0.15</td>
</tr>
<tr>
<td>3.37</td>
<td>1.41</td>
<td>3.33</td>
<td>1.14</td>
</tr>
<tr>
<td>3.53</td>
<td>2.43</td>
<td>3.51</td>
<td>2.17</td>
</tr>
<tr>
<td>3.65</td>
<td>3.38</td>
<td>3.63</td>
<td>3.13</td>
</tr>
<tr>
<td>3.76</td>
<td>4.44</td>
<td>3.74</td>
<td>4.18</td>
</tr>
<tr>
<td>3.83</td>
<td>5.30</td>
<td>3.82</td>
<td>5.04</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 11

Dynamic Calibration

Frequency of oscillation = 35 Hz.
Amplitude of oscillation = 0.50 mm.

<table>
<thead>
<tr>
<th>Maximum Hot-wire Voltage in Volts</th>
<th>Relative Velocity in m/s</th>
<th>Mean Voltage in Volts</th>
<th>Jet-Velocity in m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.92</td>
<td>0.11</td>
<td>2.91</td>
<td>0.0</td>
</tr>
<tr>
<td>3.03</td>
<td>0.18</td>
<td>2.30</td>
<td>0.17</td>
</tr>
<tr>
<td>3.33</td>
<td>1.28</td>
<td>3.31</td>
<td>1.17</td>
</tr>
<tr>
<td>3.49</td>
<td>2.24</td>
<td>3.48</td>
<td>2.12</td>
</tr>
<tr>
<td>3.61</td>
<td>3.23</td>
<td>3.61</td>
<td>3.13</td>
</tr>
<tr>
<td>3.72</td>
<td>4.25</td>
<td>3.71</td>
<td>4.14</td>
</tr>
<tr>
<td>3.79</td>
<td>5.10</td>
<td>3.78</td>
<td>4.99</td>
</tr>
</tbody>
</table>
Table 12

Dynamic Calibration

Frequency of oscillation = 45 Hz.
Amplitude of oscillation = 2.46 mm.

<table>
<thead>
<tr>
<th>Maximum Hot-wire Voltage in Volts</th>
<th>Relative Velocity in m/s</th>
<th>Mean Voltage in Volts</th>
<th>Jet-Velocity in m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.05</td>
<td>0.69</td>
<td>2.99</td>
<td>0.0</td>
</tr>
<tr>
<td>3.15</td>
<td>0.85</td>
<td>3.03</td>
<td>1.15</td>
</tr>
<tr>
<td>3.38</td>
<td>1.82</td>
<td>3.29</td>
<td>1.13</td>
</tr>
<tr>
<td>3.54</td>
<td>2.87</td>
<td>3.47</td>
<td>2.18</td>
</tr>
<tr>
<td>3.65</td>
<td>3.83</td>
<td>3.60</td>
<td>3.14</td>
</tr>
<tr>
<td>3.75</td>
<td>4.89</td>
<td>3.71</td>
<td>4.20</td>
</tr>
<tr>
<td>3.82</td>
<td>5.67</td>
<td>3.78</td>
<td>4.96</td>
</tr>
</tbody>
</table>
Table 13

Dynamic Calibration

Frequency of oscillation = 45 Hz.
Amplitude of oscillation = 2.07 mm.

<table>
<thead>
<tr>
<th>Maximum Hot-wire Voltage in Volts</th>
<th>Relative Velocity in m/s</th>
<th>Mean Voltage in Volts</th>
<th>Jet-Velocity in m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.01</td>
<td>0.59</td>
<td>2.97</td>
<td>0.0</td>
</tr>
<tr>
<td>3.16</td>
<td>0.85</td>
<td>3.04</td>
<td>0.26</td>
</tr>
<tr>
<td>3.39</td>
<td>1.79</td>
<td>3.31</td>
<td>1.21</td>
</tr>
<tr>
<td>3.52</td>
<td>2.72</td>
<td>3.47</td>
<td>2.13</td>
</tr>
<tr>
<td>3.64</td>
<td>3.75</td>
<td>3.59</td>
<td>3.16</td>
</tr>
<tr>
<td>3.74</td>
<td>4.70</td>
<td>3.70</td>
<td>4.12</td>
</tr>
<tr>
<td>3.81</td>
<td>5.52</td>
<td>3.77</td>
<td>4.94</td>
</tr>
</tbody>
</table>
Table 14

Dynamic Calibration

Frequency of oscillation = 45 Hz.
Amplitude of oscillation = 1.73 mm.

<table>
<thead>
<tr>
<th>Maximum Hot-wire Voltage in Volts</th>
<th>Relative Velocity in m/s</th>
<th>Mean Voltage in Volts</th>
<th>Jet-Velocity in m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.98</td>
<td>0.49</td>
<td>2.94</td>
<td>0.0</td>
</tr>
<tr>
<td>3.16</td>
<td>0.82</td>
<td>3.05</td>
<td>0.33</td>
</tr>
<tr>
<td>3.37</td>
<td>1.67</td>
<td>3.31</td>
<td>1.18</td>
</tr>
<tr>
<td>3.53</td>
<td>2.80</td>
<td>3.49</td>
<td>2.31</td>
</tr>
<tr>
<td>3.63</td>
<td>3.62</td>
<td>3.59</td>
<td>3.13</td>
</tr>
<tr>
<td>3.74</td>
<td>4.73</td>
<td>3.71</td>
<td>4.24</td>
</tr>
<tr>
<td>3.80</td>
<td>5.48</td>
<td>3.77</td>
<td>4.99</td>
</tr>
</tbody>
</table>
Table 15

Dynamic Calibration

Frequency of oscillation = 45 Hz.
Amplitude of oscillation = 1.33 mm.

<table>
<thead>
<tr>
<th>Maximum Hot-wire Voltage in Volts</th>
<th>Relative Velocity in m/s</th>
<th>Mean Voltage in Volts</th>
<th>Jet-Velocity in m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.95</td>
<td>0.38</td>
<td>2.93</td>
<td>0.0</td>
</tr>
<tr>
<td>3.12</td>
<td>0.64</td>
<td>3.03</td>
<td>0.26</td>
</tr>
<tr>
<td>3.37</td>
<td>1.63</td>
<td>3.32</td>
<td>1.25</td>
</tr>
<tr>
<td>3.51</td>
<td>2.56</td>
<td>3.48</td>
<td>2.19</td>
</tr>
<tr>
<td>3.63</td>
<td>3.56</td>
<td>3.60</td>
<td>3.19</td>
</tr>
<tr>
<td>3.74</td>
<td>4.64</td>
<td>3.71</td>
<td>4.27</td>
</tr>
<tr>
<td>3.80</td>
<td>5.42</td>
<td>3.78</td>
<td>5.05</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 16

Dynamic Calibration

Frequency of oscillation = 55 Hz.
Amplitude of oscillation = 2.52 mm.

<table>
<thead>
<tr>
<th>Maximum Hot-wire Voltage in Volts</th>
<th>Relative Velocity in m/s</th>
<th>Mean Voltage in Volts</th>
<th>Jet-Velocity in m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.10</td>
<td>0.87</td>
<td>3.02</td>
<td>0.0</td>
</tr>
<tr>
<td>3.22</td>
<td>1.15</td>
<td>3.06</td>
<td>0.28</td>
</tr>
<tr>
<td>3.41</td>
<td>2.04</td>
<td>3.29</td>
<td>1.17</td>
</tr>
<tr>
<td>3.54</td>
<td>2.96</td>
<td>3.46</td>
<td>2.09</td>
</tr>
<tr>
<td>3.66</td>
<td>3.95</td>
<td>3.59</td>
<td>3.08</td>
</tr>
<tr>
<td>3.75</td>
<td>5.08</td>
<td>3.69</td>
<td>4.21</td>
</tr>
<tr>
<td>3.82</td>
<td>5.77</td>
<td>3.77</td>
<td>4.90</td>
</tr>
</tbody>
</table>
Table 17

Dynamic Calibration

Frequency of oscillation = 55 Hz.
Amplitude of oscillation = 2.13 mm.

<table>
<thead>
<tr>
<th>Maximum Hot-wire Voltage in Volts</th>
<th>Relative Velocity in m/s</th>
<th>Mean Voltage in Volts</th>
<th>Jet-Velocity in m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.04</td>
<td>0.74</td>
<td>2.98</td>
<td>0.0</td>
</tr>
<tr>
<td>3.17</td>
<td>0.94</td>
<td>3.03</td>
<td>0.20</td>
</tr>
<tr>
<td>3.41</td>
<td>2.01</td>
<td>3.32</td>
<td>1.27</td>
</tr>
<tr>
<td>3.54</td>
<td>2.87</td>
<td>3.47</td>
<td>2.13</td>
</tr>
<tr>
<td>3.65</td>
<td>3.91</td>
<td>3.60</td>
<td>3.17</td>
</tr>
<tr>
<td>3.74</td>
<td>4.82</td>
<td>3.70</td>
<td>4.09</td>
</tr>
<tr>
<td>3.81</td>
<td>5.64</td>
<td>3.77</td>
<td>4.90</td>
</tr>
</tbody>
</table>
Table 18

Dynamic Calibration

Frequency of oscillation = 55 Hz.
Amplitude of oscillation = 1.67 mm.

<table>
<thead>
<tr>
<th>Maximum Hot-wire Voltage in Volts</th>
<th>Relative Velocity in m/s</th>
<th>Mean Voltage in Volts</th>
<th>Jet-Velocity in m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.17</td>
<td>0.89</td>
<td>3.04</td>
<td>0.31</td>
</tr>
<tr>
<td>3.38</td>
<td>1.79</td>
<td>3.31</td>
<td>1.21</td>
</tr>
<tr>
<td>3.52</td>
<td>2.72</td>
<td>3.46</td>
<td>2.14</td>
</tr>
<tr>
<td>3.63</td>
<td>3.64</td>
<td>3.58</td>
<td>3.06</td>
</tr>
<tr>
<td>3.73</td>
<td>4.67</td>
<td>3.69</td>
<td>4.10</td>
</tr>
<tr>
<td>3.80</td>
<td>5.54</td>
<td>3.77</td>
<td>4.96</td>
</tr>
</tbody>
</table>
Table 19

Dynamic Calibration

Frequency of oscillation = 55 Hz.
Amplitude of oscillation = 1.20 mm.

<table>
<thead>
<tr>
<th>Maximum Hot-wire Voltage in Volts</th>
<th>Relative Velocity in m/s</th>
<th>Mean Voltage in Volts</th>
<th>Jet-Velocity in m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.95</td>
<td>0.42</td>
<td>2.93</td>
<td>0.0</td>
</tr>
<tr>
<td>3.08</td>
<td>0.57</td>
<td>2.98</td>
<td>0.16</td>
</tr>
<tr>
<td>3.35</td>
<td>1.55</td>
<td>3.29</td>
<td>1.14</td>
</tr>
<tr>
<td>3.51</td>
<td>2.59</td>
<td>3.47</td>
<td>2.17</td>
</tr>
<tr>
<td>3.63</td>
<td>3.59</td>
<td>3.60</td>
<td>3.18</td>
</tr>
<tr>
<td>3.72</td>
<td>4.44</td>
<td>3.69</td>
<td>4.03</td>
</tr>
<tr>
<td>3.80</td>
<td>5.37</td>
<td>3.77</td>
<td>4.96</td>
</tr>
</tbody>
</table>
Table 20

Static Calibration

<table>
<thead>
<tr>
<th>Output Voltage in volts</th>
<th>Velocity in (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.89</td>
<td>0.0</td>
</tr>
<tr>
<td>2.96</td>
<td>0.15</td>
</tr>
<tr>
<td>3.28</td>
<td>1.10</td>
</tr>
<tr>
<td>3.45</td>
<td>2.04</td>
</tr>
<tr>
<td>3.59</td>
<td>3.22</td>
</tr>
<tr>
<td>3.69</td>
<td>4.18</td>
</tr>
<tr>
<td>3.76</td>
<td>4.99</td>
</tr>
</tbody>
</table>
APPENDIX A

UNCERTAINTY ANALYSIS

The jet velocity is given by

\[U = 4 * \frac{m}{\pi \rho D^2 t} \] \hspace{1cm} (A.1)

The uncertainty in \(U \) is given by

\[\omega_U = \left\{ \left(\frac{\partial U}{\partial m} \omega_m \right)^2 + \left(\frac{\partial U}{\partial D} \omega_D \right)^2 + \left(\frac{\partial U}{\partial t} \omega_t \right)^2 \right\}^{1/2} \] \hspace{1cm} (A.2)

where

\[\frac{\partial U}{\partial m} = \frac{4}{\rho \pi D^2 t}, \] \hspace{1cm} (A.3)

\[\frac{\partial U}{\partial D} = -\frac{8m}{\rho \pi D^3 t}, \] \hspace{1cm} (A.4)

\[\frac{\partial U}{\partial t} = -\frac{4m}{\rho \pi D^2 t^2}, \] \hspace{1cm} (A.5)

and the percentage uncertainty in \(U \) is given by

\[\left(\frac{\omega_U}{U} \right) * 100 = \left\{ \left(\frac{\omega_m}{m} \right)^2 + \left(\frac{\omega_D}{D} \right)^2 + \left(\frac{\omega_t}{t} \right)^2 \right\}^{1/2} * 100 \] \hspace{1cm} (A.6)

for table 5, row 3

\(m = 13.61 \text{ kg} \)
\[\omega_m = 0.045 \text{ kg} \]
\[D = 19.05 \text{ mm} \]
\[\omega_D = 0.01 \text{ mm} \]
\[t = 42.0 \text{ secs} \]
\[\omega_t = 0.5 \text{ secs} \]

The estimated uncertainty in \(U \) is 0.01 m/s.

The uncertainty in the hot-wire voltage measurements is given by 0.024 percent of the range. The uncertainty in the voltage (voltage range was 5 volts) measured was
\[\omega_v = 5 \times 0.24/100 = 0.01 \text{ volts}. \]

The probe velocity amplitude is given by
\[u_p = k \times \frac{v_a}{2\pi f} \tag{A.7} \]

where \(v_a \) is the output voltage from the charge amplifier

\[\frac{\partial u_p}{\partial f} = -k \times \frac{v_a}{2\pi f^2} \tag{A.8} \]

\[\frac{\partial u_p}{\partial v_a} = \frac{k}{2\pi f} \tag{A.9} \]

the uncertainty in \(u_p \) is given by
\[\omega_u = \left\{ \left(\frac{\partial u_p}{\partial f} \omega_f \right)^2 + \left(\frac{\partial u_p}{\partial v_a} \omega_v \right)^2 \right\}^{1/2} \tag{A.10} \]
for table 5, row 3
\(v = 0.11132 \) volts
\(f = 35 \) Hz
\(\omega_{va} = 0.00048 \) volts
\(\omega_f = 0.1 \) Hz

The estimated uncertainty in \(u_p \) is 0.0001 m/s

The relative velocity is given by

\[
\text{Relative velocity} = U - u_p \tag{A.11}
\]

The uncertainty in the relative velocity is given by

\[
\omega_{\text{relative velocity}} = \left\{ (\frac{\partial \text{rv}}{\partial U}) \omega_U^2 + (\frac{\partial \text{rv}}{\partial u_p}) \omega_{u_p}^2 \right\}^{1/2} \tag{A.12}
\]

for the above data the estimated uncertainty in the relative velocity is 0.01 m/s.
B.1 Data Acquisition Program in Basic

LIST

100 HIMEM: 38144: REM SET UP GENERAL ADDRESS

200 DIM A%(1,2000):A%(1,0) = 0

300 HOME: HTAB 12: INVERSE: PRINT "DATA ACQUISITION": NORMAL: PRINT

400 PRINT: PRINT "THIS PROGRAM MAKES A SERIES OF READINGS EACH TIME IT IS CALLED"

500 PRINT "IT TAKES 4000 READINGS ON EACH CHANNEL": PRINT "WITH THIS PROGRAM YOU CAN": PRINT ". CREATE A FILE": PRINT ". RUN TO COLLECT": PRINT ". AND THEN STORE IT."

600 PRINT CHR$ (4) "LOAD GETAI13, A$9500"

700 PRINT: PRINT "ENTER YOUR CHOICE: (C,R,S)"

710 GET A$

720 IF A$ = "C" THEN 1000

730 IF A$ = "S" THEN 2000

740 IF A$ = "R" THEN 3000

750 IF ASC (A$) = 13 THEN PRINT: PRINT CHR$ (4) "RUN HELLO"

760 GOTO 700

1100 PRINT: INPUT "CARD IN SLOT NUMBER? ";SLOT

1200 A%(0,0) = SLOT:A%(1,0) = -2000

1300 PRINT: INPUT "CHANNEL A? (0-15 OR RETURN) ";CA$:CA$ = VAL (CA$): IF CA$ = "" THEN 700

1400 PRINT: INPUT "CHANNEL B? (0-15 OR RETURN) ";CB$:CB$ = VAL (CB$): IF CB$ = "" THEN 700
1500 PRINT : PRINT "0=0 TO 5V
 4=-5 TO +5V": PRINT "1=0 TO
 0 1V 5=-1 TO +1V": PRINT
 2=0 TO .5V 6=+.5 TO +.5
 V": PRINT "3=0 TO .1V 7
 =-.1 TO +.1V"
1600 PRINT : INPUT "GAIN SETTING
 ? (CHANNEL A) " ; GA
1700 PRINT : INPUT "GAIN SETTING
 ? (CHANNEL B) " ; GB
1800 K = 1
1810 FOR I = 1 TO 2000
1820 IF (I / 2 - K) = 0 THEN GOTO
1865
1840 A%(0,I) = CA + 16 * GA
1860 GOTO 1900
1865 K = K + 1
1870 A%(0,I) = CB + 16 * GB
1900 NEXT I
1999 GOTO 700
2000 REM STORE DATA
2100 CD$ = CHR$ (4)
2200 INPUT "FILENAME? "; FS
2300 PRINT CD$; "OPEN "; FS
2400 PRINT CD$; "DELETE "; FS
2500 PRINT CD$; "OPEN "; FS
2550 PRINT CD$; "WRITE "; FS
2600 PRINT D$, T$, SLOT, CA$, CB$, GA
2700 FOR K = 1 TO 2000: PRINT A%(1,K); NEXT K
2800 PRINT CD$; "CLOSE "; FS
2999 GOTO 700
3000 REM RUN
3100 IF A%(0,0) = 0 THEN 700
3200 HOME
3510 POKE 8,1: CALL 38144
3520 K = 2
3550 FOR J = 1 TO 500 STEP 2
3600 PRINT A%(1,J), A%(1,K)
3610 K = K + 2
3650 NEXT J
3999 GOTO 700
B.2 Data Acquisition Subroutine in Assembly Language

0000: 2 ;
0000: 3 ; INTERACTIVE STRUCTURES INC
0000: 4 ; DAT DEC '80
0000: 5 ;
0000: 6 ; AI13 TO APPLESOFT ARRAY
0000: 7 ;

0000: 8 ; VARIABLE DEFINITIONS
0000: 9 ;
0080: 10 C080 DEVICE SELECT LOCATION
006B: 11 *6B APPLESOFT ARRAY POINTER
006D: 12 AARY EQU $6D APPLESOFT ARRAY END
0061: 13 PTR EQU 6
0008: 14 AARY PTR EQU
003C: 15 OLDCH EQU $3C LAST CHANNEL/GAIN USED
003D: 16 DELAY EQU $3D DELAY COUNTER
0006: 17 DLYVAL EQU 6 FOR ABOUT 45 MS DELAY
00F9: 18 STASUB EQU $F9 'STA DEV+SLOT*16'

----- NEXT OBJECT FILE NAME IS GETAI13
9000: 22 ORG $9000
9000: 23 ;
9000: 24 ; THIS ROUTINE TAKES THE N'TH INTEGER ARRAY
9000: 25 ; TO DETERMINE THE SAMPLING SEQUENCE FOR
9000: 26 ; THE AI13. BEFORE USE DIMENSION A YOUR
9000: 27 ; ARRAYS AS 1 BY N. THE (0,0) ELEMENT
9000: 29 ; THE (0,1)'TH ELEMENT CONTAINS THE
9000: 30 ; NEGATIVE OF THE NUMBER
9000: 31 ; OF SAMPLES TO TAKE (LESS THAN THE
9000: 32 ; ARRAY DIMENSION SIZE) ...
9000: 33 ; THEN FILL THE '(0,1)'TH ELEMENTS WITH
9000: 34 ; THE AI13 ADDRESS/GAIN PARAMETERS.
9000: 35 ; IF THIS IS NEGATIVE THIS SAMPLE IS SKIPPED
9000: 36 ; AFTER CALLING THE (1,1)'TH ELEMENTS WILL
9000: 37 ; CONTAIN THE VALUES.
9000: 38 ; TO SELECT THE ARRAY TO USE POK
9000: 39 ; IT'S NUMBER INTO LOCATION 8 BEFORE CALLING.
9000: 40 ; NOTE; THIS LOCATION IS ClobberED!
9000: 41 ;
9000: 42 GETAI13 EQU *
9000: A5 6B LDA AARY GET START OF ARRAY SPACE
9000: 44 STA PTR
9000: 45 LDA AARY+1
9000: 46 STA PTR+1
9000: A0 00 47 GAA1 LDY #0
9000: A1 06 48 LDA (PTR),Y
9000: 24 49 BPL GNARY1
9000: C9 50 INY
9000: B1 06 51 LDA (PTR),Y
9000: 20 52 BPL GNARY
9000: C6 08 53 DEC ARYPTR
9000: D0 1C 54 BNE GNARY '
9000: CB 55 INY

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
GETAI13.ASM A113 TO APPLESOFT ARRAY

9018:CB 56 INY
9019:CB 57 INY
901A:B1 06 58 LDA (PTR),Y GET NUMBER OF DIMENSIONS
901C:AA 59 TAX WE WANT TO SKIP OVER THEM
901D:CB 60 INY
901E:CB 61 GAA2 INY
901F:CB 62 INY
9020:CA 63 DEX
9021:DO FB 64 BNE GAA2
9023:98 65 TYA
9024:18 66 CLC
9025:65 06 67 ADC PTR
9027:85 08 68 STA ARYPTR NOW GET REAL POINTER
9029:A9 00 69 LDA #0
902B:18 70 ADC PTR+1
902D:85 09 71 STA ARYPTR+1
902F:18 72 CLC
9030:90 22 73 BCC GETOK GOT THE ARRAY
9032:CB 74 GNARY1 INY
9033:CB 75 GNARY1 INY
9034:18 76 CLC
9035:B1 06 77 LDA (PTR),Y POINT TO NEXT ARRAY
9037:65 06 78 ADC PTR CAN'T OVERWRITE JUST YET
9039:48 79 PHA
903A:CB 80 INY
903B:B1 06 81 LDA (PTR),Y
903D:65 07 82 ADC PTR+1
903F:85 07 83 STA PTR+1
9041:68 84 PLA NOW WE CAN
9042:85 06 85 STA PTR
9044:A5 07 86 LDA PTR+1
9046:C5 6E 87 CMP AARYE+1 SEE IF PAST END
9048:FO 03 88 BEQ GNAA2
904A:90 BC 89 BCC GAA1
904C:60 90 GNAA3 RTS RETURN WITHOUT DOING ANYTHING
904D:A5 06 91 GNAA2 LDA PTR
904F:C5 6D 92 CMP AARVE
9051:90 E5 93 BCC GAA1
9053:60 94 RTS

9054: 96 GETOK EQU * NOW GOT THE ARRAY
9054:A9 9D 97 LDA #$8D 'STA' CODE
9056:85 F9 98 STA STASUB SETUP A STORE SUBROUTINE
9058:A9 C0 99 LDA #$C0
905A:85 FB 100 STA STASUB+2
905C:A9 60 101 LDA #$60 'RTS'
905E:85 FC 102 STA STASUB+3
9060:A0 01 103 LDY '#1 WANT THE SLOT #
9062:B1 08 104 LDA ARYPTR,Y
9064:29 07 105 AND #7 JUST IN CASE
9066:0A 06 106 ASL A TIMES 16
9067:0A 107 ASL A
9068:0A 108 ASL A
9069:0A 109 ASL A
906A:AA 110 TAX
906B:0F 80 111 ORA #$80
906D:85 FA 112 STA STASUB+1
906F:C8 113 INY NOW GET NUMBER OF SAMPLES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
GETAI13.ASM AI13 TO APPLESOFT ARRAY

9070:B1 08 114 LDA (ARYPTR),Y
9072:B5 07 115 STA PTR+1
9074:CB 116 INY
9075:B1 08 117 LDA (ARYPTR),Y
9077:B5 06 118 STA PTR
9079:A9 00 119 LDA #0 . INITIALIZE OLD CHANNEL/GAIN
907B:85 3C 120 STA OLDCH
907D: 121 GETLOOP EQU *
907D:18 122 CLC
907E:A9 04 123 LDA #4 . POINT TO NEXT ELEMENT
9080:65 08 124 ADC ARYPTR
9082:85 08 125 STA ARYPTR
9084:A9 00 126 LDA #0
9086:65 09 127 ADC ARYPTR+1
9088:B5 09 128 STA ARYPTR+1
908A:A9 06 129 LDA #DLYVAL INIT DELAY LOOP
908C:B5 3D 130 STA DELAY
908E:A0 00 131 LDY #0 GET HI-ORDER BYTE
9090:B1 08 132 LDA (ARYPTR),Y TO SEE IF SKIPPING
9092:30 29 133 BMI SKIPTHIS
9094:CB 134 INY NOW FOR LO-ORDER BYTE
9095:B1 08 135 LDA (ARYPTR),Y
9097:20 F9 00 136 JSR STASUB SETUP ADDRESS/GAIN
9099:48 137 PHA
909B:C5 3C 138 CMP OLDCH SEE IF SAME AS BEFORE
909D:F0 08 139 BEQ SKPDLY YES, DON'T HAVE TO DELAY
909F:29 02 140 AND #2 SEE IF HI-GAIN SETTINGS
90A1:F0 04 141 BEQ SKPDLY NO, LO-GAIN (FASTER)
90A3:C6 3D 142 WAILP DEC DELAY NOW TWIDDLE OUR THUMBS
90A5:00 FC 143 BNE WAILP
90A7:68 144 SKPDLY PLA RESTORE CHANNEL/GAIN
90AB:85 3C 145 STA OLDCH UPDATE OLD
90AA:20 F9 00 146 JSR STASUB TAKES CARE OF OP-AMP SPROING
90AD:48 147 PHA
90AE:68 148 PLA
90AF:CB 149 INY
90B0:BD 81 CO 150 LDA DEV+1,X THIS COMES OUT FIRST
90B3:29 0F 151 AND #F AND OFF FLAGS
90B5:91 0B 152 STA (ARYPTR),Y SAVE HI-ORDER
90B7:CB 153 INY
90BB:BD 80 CO 154 LDA DEV,X
90BB:91 0B 155 STA (ARYPTR),Y AND LO-ORDER
90BD: 156 SKIPTHIS EQU * # ELEMENTS COUNTER
90BD:E6 06 157 INC PTR
90BF:D0 BC 158 BNE GETLOOP
90C1:E6 07 159 INC PTR+1
90C3:D0 B8 160 BNE GETLOOP
90C5:60 161 RTS

*** SUCCESSFUL ASSEMBLY: NO ERRORS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
B.3 Data Processing Program in Basic

LIST

200 DIM A%(1,2000),AFM%(1,30),A%(1,0)=0
250 DIM ANM%(1,30),HPTN%(1,30),HNTP%(1,30)
260 DIM VNM(30),ENTP(30),VPM(30)
 ,EPRTN(30),XA(20),YA(20),ZX(20),ZY(20),EM(20)
270 DIM VM(20)
275 INPUT "FREQUENCY OF OSS = ?";FC
276 INPUT "SUPRESSED VOLTAGE = ?";EC
280 N = 0.0:M = 0.0
290 VC = 47.743209
700 PRINT : PRINT "ENTER YOUR CHOOSE:(R,U,S)"
710 GET A$
720 IF A$ = "R" THEN 1000
730 IF A$ = "S" THEN 2000
740 IF A$ = "U" THEN 3000
750 IF ASC (A$) = 13 THEN PRINT : PRINT CHR$ (4) "RUN HELLO"

760 GOTO 700
1000 REM LOAD DATA STORED EARLIER
1010 INPUT "TIME IN SECS = ?";SEC
 CS
1020 MV = VC / SEC
1110 INPUT "FILENAME?";FS
1120 CD$ = CHR$ (4)
1130 PRINT CD$; "OPEN";FS
1140 PRINT CD$; "READ";FS
1150 INPUT D$;T$;SLOT;CA$;CB$;GA
 ,GB
1160 FOR J = 1 TO 1998
1170 INPUT A%(1,J)
1180 NEXT J
1190 PRINT CD$; "CLOSE";FS
1200 K = 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
1210 FOR J = 1 TO 500 STEP 2
1220 PRINT AX(1,J),AX(1,K)
1230 K = K + 2
1240 NEXT J
1250 GOTO 4000
2000 REM STORE DATA
2050 R = VP(N) / W
2100 CD$ = CHR$(4)
2200 INPUT "FILENAME? "; F$
2300 PRINT CD$;"OPEN "; F$
2400 PRINT CD$;"DELETE "; F$
2500 PRINT CD$;"OPEN "; F$
2550 PRINT CD$;"WRITE "; F$
2551 PRINT M
2552 PRINT 0
2600 FOR I = 1 TO M: PRINT XA(I)
: PRINT YA(I)
2610 PRINT ZX(I); PRINT ZY(I)
2620 PRINT EM(I); PRINT VM(I)
2700 NEXT
2710 PRINT FC; PRINT W
2800 PRINT CD$;"CLOSE "; F$
2999 GOTO 280
3000 REM UPDATING DATA
3010 M = M + 1
3020 XA(M) = VPM(N) + MV
3030 YA(M) = EPTN(N) + EC
3040 ZX(M) = ABS(MV - VNM(N))
3050 ZY(M) = ENTP(N) + EC
3060 EM(M) = (TW * HG) / (4096 * 999) + EC
3070 VM(M) = MV
3080 GOTO 700
4000 REM
4002 TV = 0.0
4003 N = N + 1
4005 INPUT "HWGAIN"; HG
4006 INPUT "ACCNGAIN"; AG
4008 W = FC * 2.0 * 3.14159
4010 I = 1:I J = 0:K = 0
4020 IF A%(1,I) > 2048 THEN 4050
4030 I = I + 2
4040 GOTO 4020
4050 IF I > 1 THEN 4085
4060 I = I + 2
4070 IF A%(1,I) < 2048 THEN 4165
4080 GOTO 4060
4085 TEMP3 = I - 1
4090 AB = A%(1,I)
4100 I = I + 2
4110 IF I > 1998 THEN 4260
4120 IF A%(1,I) < 2048 THEN 4150
4130 IF A%(1,I) > AB THEN 4090
4140 GOTO 4100
4150 L = I - 1; J = J + 1
4160 APM%(1,J) = AB - 2048: HPTN%(1,J) = A%(1,L)
4165 GOTO 4170
4165 TEMP1 = I - 1
4170 AC = A%(1,I)
4180 I = I + 2
4190 IF I > 1998 THEN 4260
4200 IF A%(1,I) > 2048 THEN 4230
4210 IF A%(1,I) < AC THEN 4170
4220 GOTO 4180
4230 L = I - 1; K = K + 1
4240 ANM%(1,K) = 2048 - AC: HNTP%(1,K) = A%(1,L)
4245 TEMP4 = I - 1
4250 GOTO 4090
4260 X1 = 0; X2 = 0; X3 = 0; X4 = 0
4265 J = J - 1; K = K - 1
4270 FOR I = 1 TO J
4280 X1 = X1 + APM%(1,I)
4290 X2 = X2 + HPTN%(1,I)
4300 NEXT
4310 VPM(N) = (X1 * AG * 9.81) / (2048 * 0.01 * W * J)
4320 EPTN(N) = (X2 * HG) / (4096 * J)
4330 FOR I = 1 TO K
4340 X3 = X3 + ANM%(1,I)
4350 X4 = X4 + HNTP%(1,I)
4360 NEXT
4370 VNM(N) = (X3 * AG * 9.81) / (2048 * 0.01 * K * W)
4380 ENTP(N) = (X4 * HG) / (4096 * K)
4390 PRINT VFM(N), EPTN(N)
4400 PRINT VNM(N), ENTP(N)
4405 IF A%(1,1) > 2048 THEN 4410
4406 TEMP1 = TEMP3: TEMP2 = TEMP4
4410 FOR I = TEMP1 TO TEMP2 STEP 2
4420 TV = TV + A%(1,1)
4430 NEXT
4450 GOTO 700
VITA AUCTORIS

1954 Born in Bombay, Maharashtra, India on December 17.
1971 Completed high school at Sacred Heart Boy's High School, Bombay, India in June.
1978 Received the Degree of Bachelor of Mechanical Engineering from the University of Bombay, Bombay, India in June.
1978-1982 Worked as a Production Engineer with Godrej & Boyce Mfg Co Pvt Ltd, Bombay, India.
1986 Currently a candidate for the Degree of Master of Applied Science in Mechanical Engineering at The University of Windsor, Windsor, Ontario, Canada.