Title

Ability of beach users to identify rip currents at Pensacola Beach, Florida

Document Type

Article

Publication Date

2013

Publication Title

Natural Hazards

Volume

68

Issue

2

First Page

1041

Last Page

1056

DOI

10.1007/s11069-013-0673-3

Keywords

Beach user, Rip current, Risk

Abstract

Quasi-permanent rip current hot spots at Pensacola Beach, Florida, pose a significant hazard to beach users, largely because the hot spots are located at or close to the primary access points. While an increase in the number of lifeguards has led to a decrease in the number of drownings since 2004, the number of rescues and contacts has increased to over a 30,000 year. Despite warning signs at access points along the beach, it is not clear whether beach users are able to identify a rip channel or an active rip current. To assess beach users' knowledge of rip currents and their ability to identify rip channels and currents, 97 surveys were conducted between June and September of 2010 at Pensacola Beach. Beach users were asked to identify rip channels in oblique photographs taken on green, yellow and red flag days when the potential for rip currents is low, medium and high, respectively. A majority of participants suggested that they could identify a rip channel or current (if present), but less than 20 % of beach users were able to identify the rip channels and currents. The majority of participants identified heavy surf areas as the location of the rips versus the relatively flat water of the current or the darker color water of the channel. Results further suggest that most beach users, and particularly local participants, are overconfident in their ability to identify rip channels and currents. The focus of beach users on heavy surf as an indication of the rip current potential and the overconfidence in identifying a rip channel or current affects the spatial distribution of beach users and to some degree the location of rescues and drownings. While it can be quite difficult for the average beach user to identify rip channels and active rip currents, the results of the study suggest a need for further education efforts to reduce the rip hazard, particularly in areas where lifeguards are not permanently stationed. © 2013 Springer Science+Business Media Dordrecht.