Title

Computer analysis of composite documents with non-uniform background.

Date of Award

2004

Degree Type

Dissertation

Degree Name

Ph.D.

Department

Electrical and Computer Engineering

First Advisor

Sid-Ahmed, Maher,

Keywords

Engineering, Electronics and Electrical.

Rights

CC BY-NC-ND 4.0

Abstract

The motivation behind most of the applications of off-line text recognition is to convert data from conventional media into electronic media. Such applications are bank cheques, security documents and form processing. In this dissertation a document analysis system is presented to transfer gray level composite documents with complex backgrounds and poor illumination into electronic format that is suitable for efficient storage, retrieval and interpretation. The preprocessing stage for the document analysis system requires the conversion of a paper-based document to a digital bit-map representation after optical scanning followed by techniques of thresholding, skew detection, page segmentation and Optical Character Recognition (OCR). The system as a whole operates in a pipeline fashion where each stage or process passes its output to the next stage. The success of each stage guarantees that the operation of the system as a whole with no failures that may reduce the character recognition rate. By designing this document analysis system a new local bi-level threshold selection technique was developed for gray level composite document images with non-uniform background. The algorithm uses statistical and textural feature measures to obtain a feature vector for each pixel from a window of size (2 n + 1) x (2n + 1), where n ≥ 1. These features provide a local understanding of pixels from their neighbourhoods making it easier to classify each pixel into its proper class. A Multi-Layer Perceptron Neural Network is then used to classify each pixel value in the image. The results of thresholding are then passed to the block segmentation stage. The block segmentation technique developed is a feature-based method that uses a Neural Network classifier to automatically segment and classify the image contents into text and halftone images. Finally, the text blocks are passed into a Character Recognition (CR) system to transfer characters into an editable text format and the recognition results were compared to those obtained from a commercial OCR. The OCR system implemented uses pixel distribution as features extracted from different zones of the characters. A correlation classifier is used to recognize the characters. For the application of cheque processing, this system was used to read the special numerals of the optical barcode found in bank cheques. The OCR system uses a fuzzy descriptive feature extraction method with a correlation classifier to recognize these special numerals, which identify the bank institute and provides personal information about the account holder. The new local thresholding scheme was tested on a variety of composite document images with complex backgrounds. The results were very good compared to the results from commercial OCR software. This proposed thresholding technique is not limited to a specific application. It can be used on a variety of document images with complex backgrounds and can be implemented in any document analysis system provided that sufficient training is performed.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .A445. Source: Dissertation Abstracts International, Volume: 66-02, Section: B, page: 1061. Advisers: Maher Sid-Ahmed; Majid Ahmadi. Thesis (Ph.D.)--University of Windsor (Canada), 2004.