Date of Award

1994

Publication Type

Master Thesis

Degree Name

M.A.Sc.

Department

Industrial and Manufacturing Systems Engineering

Keywords

Engineering, Mechanical.

Supervisor

Du, R.

Rights

info:eu-repo/semantics/openAccess

Abstract

This thesis proposes a new three dimensional cutting process model. The basic features and improvements over previously developed models include: (1) Cutting force calculations based on the concept of equivalent orthogonal cutting process (EOC), which converts the modelling of three dimensional cutting processes into the modelling or orthogonal cutting processes. In the model, both cutting force coefficient and chip load are considered as the functions of cutting conditions, tool geometry, and machine-tool structural vibrations. (2) Microstructure hardness variation of workpiece material has been taken into consideration. (3) The regenerative mechanism and mode coupling effect in machining are included. The structural dynamics equations, which include five vibration modes, are in the form of a set of simultaneous differential equations. The fourth-order Runge-Kutta method is applied to solve these equations numerically. Based on the proposed model, systematic simulation of turning processes has been conducted. The simulation results show that feed and tool nose radius are the primary cutting parameters in determining surface finish. Surface finish improves with the decrease of feed. The effect of tool nose radius is not monotonic: surface finish improves with the increase of tool nose radius when the tool nose radius is below a certain limit. However, above that limit, surface finish becomes worse with the further increase of tool nose radius. Cutting speed, depth of cut and tool geometrical angles are secondary parameters in determining surface finish, and have much smaller influences. The simulation results of surface finish are verified experimentally. The simulated surface finish are in agreement with the experimental results.Dept. of Industrial and Manufacturing Systems Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis1994 .F36. Source: Masters Abstracts International, Volume: 33-04, page: 1323. Adviser: Ruxu Du. Thesis (M.A.Sc.)--University of Windsor (Canada), 1994.

Share

COinS