Title

Efficient quadratic placement for FPGAs.

Date of Award

2005

Degree Type

Thesis

Degree Name

M.A.Sc.

Department

Electrical and Computer Engineering

Keywords

Engineering, Electronics and Electrical.

Rights

CC BY-NC-ND 4.0

Abstract

Field Programmable Gate Arrays (FPGAs) are widely used in industry because they can implement any digital circuit on site simply by specifying programmable logic and their interconnections. However, this rapid prototyping advantage may be adversely affected because of the long compile time, which is dominated by placement and routing. This issue is of great importance, especially as the logic capacities of FPGAs continue to grow. This thesis focuses on the placement phase of FPGA Computer Aided Design (CAD) flow and presents a fast, high quality, wirelength-driven placement algorithm for FPGAs that is based on the quadratic placement approach. In this thesis, multiple iterations of equation solving process together with a linear wirelength reduction technique are introduced. The proposed algorithm efficiently handles the main problems with the quadratic placement algorithm and produces a fast and high quality placement. Experimental results, using twenty benchmark circuits, show that this algorithm can achieve comparable total wirelength and, on average, 5X faster run time when compared to an existing, state-of-the-art placement tool. This thesis also shows that the proposed algorithm delivers promising preliminary results in minimizing the critical path delay while maintaining high placement quality.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .X86. Source: Masters Abstracts International, Volume: 44-04, page: 1946. Thesis (M.A.Sc.)--University of Windsor (Canada), 2005.