Date of Award
2009
Publication Type
Master Thesis
Degree Name
M.A.Sc.
Department
Mechanical, Automotive, and Materials Engineering
Keywords
Engineering, Materials Science.
Supervisor
Edrisy, Afsaneh (Department of Mechanical, Automotive and Materials Engineering)
Rights
info:eu-repo/semantics/openAccess
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Abstract
The wear mechanisms of novel linerless eutectic Al-Si engines subjected to extensive dynamometer testing have been thoroughly investigated using an array of surface and subsurface techniques to elucidate the effects of alloying, surface preparation, and temperature on the overall wear progression of linerless Al-Si engines. The efforts of this research have revealed that the long term wear resistance of linerless eutectic Al-Si engine bores is derived from the combined effects of oil deposits, silicon exposure, and the formation of reduced grain structures in the aluminum-matrix. Under this criterion, silicon particles maintained exposure at an equilibrium height of ~0.4 to 0.6 um. Amorphous structured oil deposits, abundant on the worn surface, were shown to fill/protect uneven areas on the aluminum-matrix. The evolution of the bore microstructure is explained in terms of fragmentation of silicon particles and subsequent "polishing" of the entire worn surface caused by sliding contact with the rings.
Recommended Citation
Slattery, Benjamin, "Linerless Eutectic Al-Si Engine Wear: Microstructural Evolution" (2009). Electronic Theses and Dissertations. 211.
https://scholar.uwindsor.ca/etd/211