Title

High performance constraint satisfaction problem solving: State-recomputation versus state-copying.

Date of Award

2005

Degree Type

Thesis

Degree Name

M.Sc.

Department

Computer Science

Keywords

Computer Science.

Rights

CC BY-NC-ND 4.0

Abstract

Constraint Satisfaction Problems (CSPs) in Artificial Intelligence have been an important focus of research and have been a useful model for various applications such as scheduling, image processing and machine vision. CSPs are mathematical problems that try to search values for variables according to constraints. There are many approaches for searching solutions of non-binary CSPs. Traditionally, most CSP methods rely on a single processor. With the increasing popularization of multiple processors, parallel search methods are becoming alternatives to speed up the search process. Parallel search is a subfield of artificial intelligence in which the constraint satisfaction problem is centralized whereas the search processes are distributed among the different processors. In this thesis we present a forward checking algorithm solving non-binary CSPs by distributing different branches to different processors via message passing interface and execute it on a high performance distributed system called SHARCNET. However, the problem is how to efficiently communicate the state of the search among processors. Two communication models, namely, state-recomputation and state-copying via message passing, are implemented and evaluated. This thesis investigates the behaviour of communication from one process to another. The experimental results demonstrate that the state-recomputation model with tighter constraints obtains a better performance than the state-copying model, but when constraints become looser, the state-copying model is a better choice.Dept. of Computer Science. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .Y364. Source: Masters Abstracts International, Volume: 44-01, page: 0417. Thesis (M.Sc.)--University of Windsor (Canada), 2005.