The design of an asynchronous BCJR/MAP convolutional channel decoder.

Date of Award


Degree Type


Degree Name



Electrical and Computer Engineering

First Advisor

Tepe, Kemal,


Engineering, Electronics and Electrical.




The digital design alternative to the everyday synchronous circuit design paradigm is the asynchronous model. Asynchronous circuits are also known as handshaking circuits and they may prove to be a feasible design alternative in the modern digital Very Large Scale Integration (VLSI) design environment. Asynchronous circuits and systems offer the possibility of lower system power requirements, reduced noise, elimination of clock skew and many other benefits. Channel coding is a useful means of eliminating erroneous transmission due to the communication channel's physical limits. Convolutional coding has come to the forefront of channel coding discussions due to the usefulness of turbo codes. The niche market for turbo codes have typically been in satellite communication. The usefulness of turbo codes are now expanding into the next generation of handheld communication products. It is probable that the turbo coding scheme will reside in the next cellular phone one purchases [1]. Turbo coding uses two BCJR decoders in its implementation. The BCJR decoding algorithm was named after its creators Bahl, Cocke, Jelinek, and Raviv (BCJR). The BCJR algorithm is sometimes known as a Maximum Priori Posteriori (MAP) algorithm. This means a very large part of the turbo coding research will encompass the BCJR/MAP decoder and its optimization for size, power and performance. An investigation into the design of a BCJR/MAP convolutional channel decoder will be introduced. This will encompass the use and synthesis of an asynchronous Hardware Definition Language (HDL) called Balsa. The design will be carried through to the gate implementation level. Proper gate level analysis will identify the key metrics that will determine the feasibility of an asynchronous design of that of the everyday clocked paradigm.* *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation).Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .P47. Source: Masters Abstracts International, Volume: 43-05, page: 1782. Adviser: Kemal Tepe. Thesis (M.A.Sc.)--University of Windsor (Canada), 2005.