Date of Award
2013
Publication Type
Master Thesis
Degree Name
M.Sc.
Department
Computer Science
Keywords
Artificial intelligence, Computer science
Supervisor
Scott D. Goodwin
Rights
info:eu-repo/semantics/openAccess
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Abstract
In this thesis, we present a new algorithm: Demand Sensitive Map Abstraction (DSMA). DSMA is a special kind of hierarchical pathfinding algorithm in which we vary the granularity of abstraction of the high-level map based on pathfinding request demand associated with various regions in the high level map and the search time of the last path request. Additionally, the low level A* search is not restricted by the boundaries of the high level sectors. By dynamically varying the abstraction we are able to maintain a balance between path quality and search time. We compare DSMA with two variations where the granularity of abstraction is constant; one of those contains maximum granularity throughout (Dense HA*) and the other contains the minimum (Sparse HA*). Our experimental results show that DSMA's performance is a balance between Dense HA* and Sparse HA*. Depending on the resources available DSMA can behave either as Dense HA* or as Sparse HA* or lie somewhere in between. Moreover we do not pre-cache paths at any level, which gives us the added benefit of working with a flexible abstract map without the necessity of changing the pre-cached paths if the low level map changes.
Recommended Citation
Bhattacharjee, Sourodeep, "Pathfinding by demand sensitive map abstraction" (2013). Electronic Theses and Dissertations. 4720.
https://scholar.uwindsor.ca/etd/4720