Date of Award


Degree Type


Degree Name



Chemistry and Biochemistry

First Advisor

Carmichael, Tricia


Pure sciences, Applied sciences, Chemical mechanical polishing, Dithiophosphinic acid, Flexible electronics, Microelectronics, Molecular electronics, Self-assembled monolayers




This dissertation reports a variety of new methods and materials for the fabrication of electronic devices. Particular emphasis is placed on low-cost, solution based methods for flexible electronic device fabrication, and new substrates and molecules for molecular electronic tunnel junctions. Chapter 2 reports a low-cost, solution based method for depositing patterned metal circuitry onto a variety of flexible polymer substrates. Microcontact printing an aluminum (III) porphyrin complex activates selected areas of an oxidized polymer substrate to electroless copper metallization. Chapter 3 reports a new transparent conductive electrode for use in optoelectronic devices. A highly conductive, transparent silver nanowire network is embedded at the surface of an optical adhesive, which can be applied to a variety of rigid and flexible polymer substrates. Chapter 4 describes a new approach to the self-assembly of mesoscale components into two-dimensional arrays. Unlike most previously reported self-assembly motifs, this method is completely dry; eliminating solvent makes this method compatible with the assembly of electronic components. Chapter 5 describes a new class of self-assembled monolayer (SAM) on gold formed from dihexadecyldithiophosphinic acid ((C 16 ) 2 DTPA) adsorbate molecules. The binding and structure (C 16 ) 2 DTPA SAMs is dependent upon the roughness and morphology of the underlying gold substrate. Chapter 6 investigates the influence of chain length on the binding and structure of dialkyl-DTPA SAMs on smooth, template-stripped (TS) gold. Binding of the DTPA head group is independent of the length of the alkyl chain, while the structure of the organic layer has a counter-intuitive dependence: As the length of the alkyl chain increases, these SAMs become more disordered and liquid-like. Chapter 7 describes the fabrication of ultra smooth gold substrates using chemical mechanical polishing (CMP). These substrates are smooth, uniform, and prove to be ideal candidates for bottom electrodes within SAM-based molecular electronic tunnel junctions. Chapter 8 investigates the charge transport properties of new diphenyldithiophosphinic acid (Ph 2 DTPA) SAMs on TS gold within metal-SAM//Ga 2 O 3 /EGaIn molecular tunnel junctions. A computational investigation provides insight into the electronic structure of the junction.