Date of Award

2015

Degree Type

Thesis

Degree Name

M.A.Sc.

Department

Electrical and Computer Engineering

First Advisor

Khalid, Mohammed

Keywords

CONNECT NoC synthesis tool

Rights

CC BY-NC-ND 4.0

Abstract

Rapid growth in the number of IP cores in SoCs resulted in the need for effective and scalable interconnect scheme for system components - Network-on-Chip (NoC). Design and implementation of an NoC from scratch is very time consuming and limits the NoC design space that can be explored. In this thesis we evaluate and compare NoC synthesis tool CONNECT with manually generated NoC design using Altera Quartus II. Three sizes of ring, mesh and torus NoC topologies are used for evaluation based on two metrics: logic resource utilization and maximum clock frequency. For larger NoC sizes manual design provides up to 85% reduction in area utilization. With respect to maximum clock frequency, CONNECT provides superior results for all NoC sizes, providing up to 80% higher clock frequency. These results provide an insight into the area versus frequency tradeoffs when using the CONNECT NoC synthesis tool.

Share

COinS