A SigmaDelta modulator for digital hearing instruments using 0.18 mum CMOS technology.

Date of Award


Degree Type


Degree Name



Electrical and Computer Engineering

First Advisor

Miller, W. C.,


Engineering, Electronics and Electrical.




This thesis develops the design methodology for a low-voltage low-power SigmaDelta Modulator, realized using a switched op-amp technique that can be used in a hearing instrument. Switched op-amp implementation allows scaling down the design to the latest CMOS technology. A single-loop second-order SigmaDelta Modulator topology is chosen. The modulator circuit features reduced complexity, area reduction and low conversion energy. The modulator has a sampling rate of 8.2 MHz with an over-sampling ratio (OSR) of 256 to provide an audio bandwidth of 16 kHz. The modulator is implemented in a 0.18 mum digital CMOS technology with metal-to-metal sandwich structure capacitors. The modulator operates with a supply voltage of 1.8 V. The active area is 0.403 mm2. The modulator achieves a 98 dB signal-to-noise-and-distortion ratio (SNDR) and a 100 dB dynamic range (DR) at a Nyquist conversion rate of 32 kHz and consumes 1321 muW with a joule/conversion figure of merit equal to 161 x 10-12 J/s. The design methodology is developed through the extensive use of simulation tools. The behaviour simulation is carried out using Matlab/SIMULINK while circuits are simulated with Hspice using the Cadence design tools. Full-custom layout for the analog and the digital circuits is performed using the Cadence design tool. Post-processing simulation of the extracted modulator with parasitic verifies that results meet the requirements. The design has been sent to CMC for fabrication. Source: Masters Abstracts International, Volume: 43-03, page: 0947. Adviser: W. C. Miller. Thesis (M.A.Sc.)--University of Windsor (Canada), 2004.

This document is currently not available here.